
COMMUNITY RECOMMENDATION IN SOCIAL NETWORKS

WITH SPARSE DATA

A Thesis

Submitted to the Faculty

of

Purdue University

by

Emad Rahmaniazad

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

December 2020

Purdue University

Indianapolis, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

Dr. Brian King, Co-chair

Department of Electrical and Computer Engineering

Dr. Ali Jafari, Co-chair

Department of Computer Information Technology

Dr. Paul Salama

Department of Electrical and Computer Engineering

Approved by:

Dr. Brian King

Head of the Graduate Program



iii

ACKNOWLEDGMENTS

I would like to thank all of my advisors, Dr. Ali Jafari, Dr. Brian King, and Dr.

Paul Salama, for their mentorship, and the graduate programs coordinator, Sherrie

Tucker, for her consistent help and support. Also, I wanted to thank all the Course

Networking’s employees and the CyberLab team for providing the opportunity for

me to complete my thesis. Last but not least, a special thanks to my family for their

support.



iv

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Word2vec Model . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Intelligent Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 COURSE NETWORKING . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Learning Management System . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 ePortfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Social Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 RUMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Intelligent Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 How can AI help? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Rumi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Implementation Process . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5 Inference Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 COMMUNITY RECOMMENDATION . . . . . . . . . . . . . . . . . . . . . 27

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



v

Page

5.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3.2 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Continuous Bag-of-Words (CBOW) . . . . . . . . . . . . . . . . . . . . 43

5.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Bidirectional Encoder Representations from Transformers (BERT) . . . 50

5.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.6 Results and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6.1 Neighboring Collaborative Filtering (NCF) . . . . . . . . . . . . 52

5.6.2 Multi-word Context CBOW . . . . . . . . . . . . . . . . . . . . 53

5.6.3 Transferred BERT . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.7 Rumi Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7.1 Service Introduction . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7.2 Recommendations List . . . . . . . . . . . . . . . . . . . . . . . 57

5.7.3 Empty List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.7.4 Service Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . 66

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



vi

LIST OF TABLES

Table Page

5.1 Community User IDs Collection . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Major User IDs Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Community Recommendations Collection . . . . . . . . . . . . . . . . . . . 42

5.4 Comparison of Top-1, Top-5, and Top-10 accuracy for different models . . 55



vii

LIST OF FIGURES

Figure Page

3.1 About Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Skills Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Showcase Example along with Demonstrated Skills . . . . . . . . . . . . . 13

3.4 Social Engagement Section . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Community Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Rumi’s Different Facial Expressions. From left to right: Neutral, Sad, and
Happy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Feedback Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 Intuition Behind the Modified CF Algorithm . . . . . . . . . . . . . . . . . 31

5.2 CBOW and Skip-gram Architectures . . . . . . . . . . . . . . . . . . . . . 44

5.3 One-word Context CBOW Model . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Multi-word Context CBOW Model . . . . . . . . . . . . . . . . . . . . . . 48

5.5 NCF Accuracy per Number of Train Users; NCF with Two Features (left)
and NCF with One Feature (right) . . . . . . . . . . . . . . . . . . . . . . 53

5.6 Train and Validation Losses along with the Top-1 & Top-5 Accuracy of
CBOW Model with 8 Hidden Units . . . . . . . . . . . . . . . . . . . . . . 54

5.7 Train and Validation Losses along with the Top-1 & Top-5 Accuracy of
CBOW Model with 6 Hidden Units . . . . . . . . . . . . . . . . . . . . . . 54

5.8 Model Summary of Transferred BERT . . . . . . . . . . . . . . . . . . . . 55

5.9 Community Recommendations Introduction - Desktop View . . . . . . . . 57

5.10 Community Recommendations Introduction - Mobile View . . . . . . . . . 58

5.11 Initial Idea to Display Community Recommendations - Desktop View . . . 58

5.12 Compact Way to Display Community Recommendations - Desktop View . 59

5.13 Final Design to Display Community Recommendations - Desktop View . . 59

5.14 Initial Idea to Display Community Recommendations - Mobile View . . . . 60



viii

Figure Page

5.15 Adding and Removing Community Recommendations - Mobile View . . . 60

5.16 Unsuccessful Design for Community Recommendations - Mobile View . . . 61

5.17 Community Recommendations List - Mobile View . . . . . . . . . . . . . . 62

5.18 Adding a Community or Undoing the Action - Mobile View . . . . . . . . 62

5.19 Asking for User’s Field of Study - Desktop View . . . . . . . . . . . . . . . 63

5.20 Asking for User’s Field of Study - Mobile View . . . . . . . . . . . . . . . 63

5.21 Settings Menu - Desktop View . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.22 Turning Community Recommendations off - Desktop View . . . . . . . . . 65



ix

ABSTRACT

Rahmaniazad, Emad. M.S.E.C.E., Purdue University, December 2020. Community
Recommendation in Social Networks with Sparse Data. Major Professors: Brian
King and Ali Jafari.

Recommender systems are widely used in many domains. In this work, the im-

portance of a recommender system in an online learning platform is discussed. After

explaining the concept of adding an intelligent agent to online education systems,

some features of the Course Networking (CN) website are demonstrated. Finally,

the relation between CN, the intelligent agent (Rumi), and the recommender system

is presented. Along with the argument of three different approaches for building a

community recommendation system. The result shows that the Neighboring Col-

laborative Filtering (NCF) outperforms both the transfer learning method and the

Continuous bag-of-words approach. The NCF algorithm has a general format with

two various implementations that can be used for other recommendations, such as

course, skill, major, and book recommendations.



1

1. INTRODUCTION

Recommender systems are methods utilized in a variety of areas to give users rec-

ommendations based on their preferences. Over the last ten years, with online infor-

mation growth, designing and evaluating such systems has been necessary to solve

information overload problems [1]. As a result, recommendation systems have been

widely implemented in many internet activities. Some examples worth mentioning

are e-commerce, web pages, censorship sectors, and other sectors such as news, tourist

information, and e-learning [2].

In this work, the focus is on using recommender systems in the learning manage-

ment system (LMS), which is an e-learning platform. A learning management system

is a software application or web-based technology used to design, perform, and eval-

uate a specific learning process [3]. CourseNetworking (CN) is an instance of such

an LMS where users from all around the world can join and share their information

like academic achievements, work background, skills, and join different communities

related to their interests.

Online communities play an essential role in enhancing the degree of user en-

gagement or the number of interactions. The number of user interactions positively

correlates with user satisfaction and hence, the system’s success. The more members

get involved, the more productive that network will be. However, it is not easy to

have an acceptable user engagement rate on a social platform. For example, analyzing

the CN data shows that the majority number of CN users have not participated in

any communities. That is, there might be a group of users who do not have the time

to find relevant communities using the search tools. In this case, we need a method to

increase the engagement of those inactive users or to improve users’ decision-making

process.



2

Applying a community recommender system might be an effective solution to this

problem. Community recommender systems help users to join communities. Such

systems can also build a lively environment for the social network’s existing com-

munities to attract more members, resulting in more interactions. Moreover, having

users join communities makes it easier to give them recommendations in the future.

Before exploring the details of implementing a community recommender system in

CN, it is needed to learn more about recommender systems.

Recommender systems can take different approaches or techniques. Some of pri-

mary Recommendation system approaches are proposed in learning objects are as

follow [2]:

• Content-based System (CBS)

• Collaborative Filtering System (CFS)

• Demographic-based System (DBS)

• Hybrid Recommender System (HRS)

In CBS [2], the recommender engine gives recommendations by finding items

similar to what the user is known to like. In the CFS [2] approach, the engine tries to

find people who have similar consumption patterns to the user and then recommends

items that those people might like. A DBS [2] makes decisions by categorizing users

based on the demographic group they belong to, such as income, age, and learning

level. Finally, in HRS [2], two or more recommender techniques are combined to gain

better performance.

This work aims to develop a recommender system to provide personalized com-

munity recommendations for CN members. This system is implemented under the

concept of an Intelligent Agent, known as Rumi. This agent has to first gain the

user’s trust by providing them useful information. Then the chance of acceptance

will increase if Rumi recommends communities to the user. Whereas recommending



3

things to users from the system without involving an agent will be static and less

amusing.

Three techniques have been used to build the community recommendation engine;

collaborative filtering (CF), Word2Vec, a content-based approach, and transfer learn-

ing, a state-of-the-art hybrid approach. Each of which has been modified based on

the CN dataset. Before applying any of the modified models, the dataset was cleaned

and prepared. In other words, each method requires a unique data preprocessing

pipeline to remove inconsistent data and a translation to convert the data to inputs

and outputs of the models. In the end, all approaches have been compared.

The next chapter discusses the previous research related to this work. More

information about CN and its functionalities are provided in Chapter 3. Chapter 4

explains the reasons for implementing Rumi in the CN and the services he provides.

The most critical chapter of this work is Chapter 5, where the three approaches for

building a community recommendations are argued. This chapter also illustrates

some of the designs related to how Rumi will recommend communities to the user.

Finally, the last chapter includes a conclusion of this work and the ways to improve

it.



4

2. RELATED WORK

2.1 Recommender Systems

There are many studies related to Recommender Systems and language under-

standing. In this section, some of the existing related work is reviewed through three

topics. Each of these research works has been selected to be considered based on sev-

eral criteria, such as their proposed method’s performance, their dataset similarity

with CN dataset, time and space consumption, and other limitations and downsides.

Determining the most suitable recommender system is not trivial. There are three

main evaluation methods to measure recommender systems quality: user studies,

online evaluations, and offline evaluations [4]. Additionally, an improper evaluation

metric can lead to selecting an inappropriate algorithm for the task of interest. The

choice of evaluation metric is made by the recommender systems’ core tasks—the

prediction task, the recommendation task, and the utility maximization task [5].

Online evaluations measure user satisfaction implicitly [6]. In online evaluations,

recommendations are shown to real users of the system during their session [4]. Then,

the recommender system tracks how often a user admits a recommendation. Accep-

tance is frequently measured by click-through rate (CTR) [5]. On the other hand,

offline evaluations use pre-compiled datasets from which some information has been

removed. Subsequently, the recommender algorithms are examined on their ability

to recommend the missing information [5] [6] .

On LinkedIn.com, there is a feature called “Skills and Expertise,” where users can

tag themselves with topics to represent their expertise areas. The goal in [7] is to

form a large enough list of skills and expertise that members might pick among to

add to their profile. A topic extraction pipeline is proposed in [7], which includes

creating a folksonomy of skills and expertise. The folksonomy is constructed from the



5

members’ data by taking three steps: discovery, disambiguation, deduplication. In

the discovery phase, [7] extracts phrases from the profiles. After finding an initial set

of skill phrases, it is needed to disambiguate those phrases that possessed multiple

meanings depending on their context. Next, the proposed pipeline removes skill

phrases that are semantically duplicate of each other. Finally, the most likely skills

are offered to users based on their profiles and the list of skills [7].

2.1.1 Collaborative Filtering

One online recommendation algorithm is Item-to-Item CF, developed by Ama-

zon.com. The existing recommendation algorithms cannot scale to Amazon.com’s

massive dataset of customers and products; therefore, Amazon.com builds its own

algorithm [8]. In this approach, for each item purchased by the user, Amazon.com

makes a neighborhood of related items and recommends the most similar ones to

the user. The similarity metric between two items is calculated based on how often

customers tend to buy them together. The advantage of this method is that it can

react immediately to the user’s interaction. In contrast, three common recommending

approaches, traditional CF, cluster models, and search-based methods, cannot find

a set of suitable recommendations in less than a second. One of the downsides of

the item-to-time algorithm is that many product pairs have no common customers;

consequently, the approach is inefficient in terms of processing time and memory

usage [8].

An item-based CF algorithm is proposed in [9], in which a user receives a rec-

ommendation based on the items the user has rated. It computes the similarity

between two items by isolating the users who have rated both of those items, then

applies Pearson-r correlation and adjusted cosine techniques to determine the simi-

larity. Finding the k most similar items to a target item, [9] generates predictions.

The approach proposed by [9] fails to recommend new items to the users who have

not rated any items, where cold start happens.



6

The approach proposed by [10], Combinational Collaborative Filtering (CCF),

is a hybrid method that formulates personalized community recommendations on

Orkut dataset. This algorithm fuses the user-based CF method (bag of users) with

the words describing a community (bag of words) to solve the database’s sparsity

problem. One of the downsides of the proposed algorithm is computation complexity,

which results from utilizing Gibbs Sampling and Expectation-Maximization (EM)

techniques. To solve this problem, computation is distributed among several machines

by using the parallelization method. Parallel computing speeds up the model training

and improves the quality of recommendations [10].

Instead of recommending items to an individual user, [11] concentrates on mak-

ing recommendations for a group of people in a community by defining a metric,

Community Similarity Degree (CSD). CSD quantifies the inner connection density of

community members by their common interests. This metric has a lower computation

complexity compared to the conventional approaches, such as cosine similarity. The

CSD metric’s effectiveness is evaluated by utilizing a web crawler that follows the

Breadth-First Search (BFS) approach to collect users’ information from Facebook.

Then, users are sorted into four different types of communities. The authors’ experi-

ments show that recommending communities to users based on the CSD metric has

the best accuracy in all community types [11].

2.1.2 Word2vec Model

Two model architectures, a continuous bag of words (CBOW) and Skip-Gram are

proposed by [12] for computing vector representations of words. CBOW maximizes

the target word’s probability by looking at the context, which can be problematic

for rare words. On the other hand, given the distributed representation of the in-

put word, the Skip-Gram model is designed to predict the context. The experiments

show that the Skip-Gram model works well with small datasets and outputs a better

representation for even rare words or phrases. However, the CBOW model exhibits



7

better performance on frequent words and runs faster than the Skip-Gram model.

Comparing the quality of vector representations in terms of syntactic and semantic

similarities shows that both the CBOW and Skip-Gram models outperform the pop-

ular neural network models (both feedforward and recurrent). Also, they have less

time complexity and better accuracy in larger datasets [12].

Mikolov et al. present several extensions in [13] to improve both the quality

of the vectors and the training speed of the Skip-Gram model. They improve the

algorithm’s speedup by subsampling frequent words. This also helps to learn more

regular word representations. Word embedding techniques [13] use the skip-gram

model to generate word representations for a large corpus. According to [13], one

of the major pitfalls when performing word embeddings is the high computational

cost of performing softmax on the output. Negative Sampling in [13] outperforms the

hierarchical softmax, which uses the Hoffman tree to present the word frequency.

Negative Sampling [13] uses Noise Contrastive Estimation (NCE) [14] to improve

the computational efficiency of the skip-gram model by updating the weights only for

a subset of the nodes, not all the outputs. The negative samples are chosen randomly

based on the number of their occurrences in the corpus. The authors also display the

success of their algorithm in learning idiomatic phrases in [13].

The choice of hidden units’ activation functions is important in designing an op-

timal neural network for a given dataset. Utilizing different activation functions in

neural networks produces various results. Five different activation functions, Bi-

Polar Sigmoid, Uni-Polar Sigmoid, Tanh, Conic Section, and Radial Bases Function

(RBF), are used to a multi-layered perceptron (MLP) neural network architecture.

Comparing the results show that Tanh has the most accuracy and outperforms oth-

ers in most cases; however, this still one might not obtain the same result on every

dataset. The best activation function needs to be selected based on the dataset and

the problem [15].



8

2.1.3 Transfer Learning

Although neural networks are proven to be robust methods for supervised learning

tasks, their effectiveness is limited due to insufficient data. In most cases, collecting

new data and labeling them to feed into the network are expensive or time-consuming.

In recent years, transfer learning proposed a reliable solution to this problem. In

transfer learning, instead of initializing the parameters randomly at the beginning of

the training, a pre-trained model on another dataset can be used. Therefore, there is

no need to hold the assumption that training and test data are needed to have the

same distribution [16].

Most current research focuses on the deployment of transfer learning in deep neural

networks, called deep transfer learning. Deep transfer learning is classified into four

categories in [17] as follows: instances-based deep transfer learning, mapping-based

deep transfer learning, network-based deep transfer learning, and adversarial-based

deep transfer learning. In most real-world applications, a hybrid method is utilized

to achieve better performance.

The transfer learning in NLP tasks can be divided into pre-training and fine-tuning

tasks. There are many standard language models to tackle NLP tasks. One of the

significant limitations of standard language models is their unidirectional property,

where only a left-to-right or right-to-left architecture can be used during pre-training.

In contrast, Bidirectional Encoder Representations from Transformers (BERT) model

developed by Google.com [18] applies masked language models (MLM) to enable pre-

trained deep bidirectional representations. Mask language model learns to understand

the relationship between words by randomly choosing some of the tokens from the

input and predicting the masked word based on its context. The pre-training BERT

model on a large corpus helps the model to get a deeper understanding of how lan-

guage works. Besides the masked language models, BERT is also pre-trained on the

Next Sentence Prediction task to understand the relationship between sentences [18].



9

2.2 Intelligent Agent

The lack of an agent in learning systems has been argued in [19]. The author in [19]

conceptualized three different intelligent agents and claims that learning systems can

benefit from these agents. In addition, [20] states that implementing agents can

make the dynamism in the learning process more powerful. The differences between

conventional software and an agent are discussed in [21]. Some of the properties for

these differences are as follows:

• Autonomous: The agent can make decisions based on its reasoning and without

any implicit permission. Whereas conventional software waits for commands.

• Reactive: The agent can find out about any changes in the system and ad-

justs its functionality before reacting. In contrast, conventional software is

programmed to take specific actions for predefined changes.

• Trustworthy: The agent listens to its owner and does not cross the line to gain

trust.

• Personalized: The agent learns over time and is taught what to do in every

condition. On the other hand, conventional software has limitations for being

controlled by the user.

• Social behavior: The agent interacts with members to help them reach their

goals. This communication mimics real-world conversations. However, conven-

tional software mostly takes commands.

A graduate student, Seyed Mahmood Hosseini Asanjan, has proposed an online

personal assistant that integrates with CourseNetworking and can be integrated with

other institutions’ learning system through a set of RESTful APIs [22]. The imple-

mentation of this software took place at the research and development laboratory of

CN, CyberLab. The software supports a model-view-controller (MVC) architecture



10

and is written in PHP 7.1 and uses Laravel framework. It runs on the Amazon Web

Services (AWS) cloud platform and has a MongoDB database.

The agent collects data from users and adjusts its performance by utilizing ma-

chine learning techniques. The software also has two engines to decide when to show

the agent and what content to respond. One of which is the Reasoning engine that

computes the required response for any of the API requests. The other engine is the

Priority engine, which finds the feature with higher priority among all the features.

These features include announcements, friend recommendations, and job recommen-

dations. Priority engine has a 12 hours cycle before previewing the agent again. It

sorts the features based on their importance and in this cycle.



11

3. COURSE NETWORKING

3.1 Learning Management System

A conventional Learning Management System (LMS) focuses on managing the

course-related objects, stated in [23]. The white paper discusses two of the flaws of

these systems. The first flaw is that a conventional LMS aims to connect a limited

number of users within a classroom or broader scope; it only links people on one

campus. Even if other institutions license the same platform, there is no connection

between members of different institutions.

Another issue with a conventional LMS is that they pay little attention to how

user-friendly their system is [23]. For instance, several clicks are needed for reaching

necessities on the system. Therefore, a manual or support team is required to give

specific instructions.

CourseNetworking (CN) is an instance of an LMS which not only manages the

courses but also solves the two problems mentioned. CN has removed the boundaries

between institutions, and students from different campuses can message each other.

This interaction can be the beginning of a new network for remote collaboration. To

overcome the second issue, CN designs user interfaces (UIs) with higher usability,

and consequently, fewer clicks and instructions are required for interacting with the

system.

In addition, CN offers two other tools; a digital resume and a social network. The

former tool is called an ePortfolio, where users can express themselves through various

sections. The latter feature connects instructors, students, and employers from all

around the world.



12

3.2 ePortfolio

CN, like many job oriented websites, has its ePortfolio where one can express

their achievements, educational background, and expertise. CN’s ePortfolio has many

sections, but this project only focuses on some of them. One of which is the About

Section, shown in Figure 3.1. In this part, users can write a short bio, add crucial

documents, write a tagline or quote, and input the basic information such as their

Field of Study.

Fig. 3.1.: About Section

The second division is the Skills Section that contains the member’s skills (Figure

3.2). This is a popular part in most portfolios because it is easier for both reader

and writer to identify skill tags or phrases rather than find out about them when the

word or phrase is embedded in the text. In fact, what makes CN’s version unique



13

is the ability to showcase previous work and link the showcase to skills in the Skills

Section. These showcases are displayed in the Showcase Section.

An example of these showcases, along with skills demonstrated in work, is shown

in Figure 3.3. Users can explain their work in detail and attach documents, images,

and videos. More so, they can modify the visibility and create shareable links to

send it to employers. As a result, employers are more attracted if an accomplishment

follows a skill with a detailed explanation.

Fig. 3.2.: Skills Section

Fig. 3.3.: Showcase Example along with Demonstrated Skills



14

One final section is the Social Engagement Section, where the closest people in

your network are illustrated, along with their ranking. This closeness depends on

your engagement with the users. For example, if you reflect on a particular user’s

posts or rate them a lot, your engagement score with that user increases. As a result,

that user’s ranking will improve on this section. Figure 3.4 shows this section with

top-six closest users.

Fig. 3.4.: Social Engagement Section

3.3 Social Network

CN is also a social network where people with similar interests or goals are gathered

in a network, course, or community. In each of these groups, members can share their

thoughts, documents, and communicate by creating posts, polls, or events. Others

can reflect and rate the created posts, polls, and events. Every CN member can create



15

any of these groups which can be either private or public, except for communities.

The main differences among them are:

• Networks usually are associated with a licensed institution.

• A course belongs to an instructor or a lecturer that can be a member of a

network or not.

• A community consists of people that relate common interests or goals. All the

communities on CN are publicly available for all the users to join them.

All of these actions take place on the Home Feed where the social network aspect

of CN along with the LMS aspect is combined. That is, all the information about

the mentioned groups is displayed.

Typically, users join networks and courses because of their institute or the course

they have taken and they cannot join any desired network or course; unless they are

public. On the other hand, as stated above, communities are publically available and

anyone with a CN account can join them. Users’ communities are listed on top of

the Home Feed (Figure 3.5). If a user clicks on any of them, the content of the Home

Feed is filtered and only the related material to the selected community is shown. On

the button right of Figure 3.5, there are two buttons. Users can remove or sort their

communities with the “Edit” option and they can add more community by using the

“Join Communities” button.

Throughout this project, the phrase “tag” is used for referring to a community.

This tag can be a single word or a long-phrase and they can be categorized into the

following categories followed by an example in the parenthesis:

• Skills: This kind of community discusses a specific skill and whoever is interested

in learning that skill can join them (e.g. Python). These tags are the same as

the skills on the ePortfolio.



16

Fig. 3.5.: Community Section

• Majors: Field of studies are another category which sometimes they are accepted

as a skill. An example of that is computer science which is both a skill and a

degree.

• Companies: If a community belongs to a company, job-seeking users can join

their community and get more familiarized with that company. (e.g. CourseNet-

working)

• Events: Name of any event such as conferences and meetings is a great choice

of community where the members or audiences can join and interact (e.g. IU

Online).

• Locations: Some communities are locations of an event or they are basically the

name of a city, region or country (e.g. US).

• Sports: Sports are another community to connect members of a system. (e.g.

Soccer)

• Others: The fact that one can make a new community with any name in their

mind, makes this feature of CN very interesting.



17

To conclude this chapter, CN is an LMS and a social network that supplies an

ePortfolio. In essence, CN is a combination of LinkedIn, Facebook, and Canvas in

terms of having an ePortfolio, being a social network, and an LMS, respectively. This

project focuses on the skill and about parts of the ePortfolio and the community

section on the Home Feed.



18

4. RUMI

4.1 Intelligent Agent

In the previous chapter, the crucial role of Learning Management Systems (LMSs)

in today’s environment and differences of CourseNetworking (CN) with a conventional

LMS was discussed. In this chapter, a new tool is explained that can help an LMS

become more dynamic.

Generally, LMSs are very static, which means the functionalities of the system are

equal for every user. For example, when a file is added to a course by the instructor,

the system sends a message to all the students who did not disable their notification.

But this message does not consider the status, mood, and availability of a user.

Moreover, these systems do not have any persona and the interaction between a user

and an LMS does not mimic a human communication. Having non personalized

reactions and pre-defined instructions for every command will not build the desired

trust, mentioned in Section 2.2.

In order to have a smart LMS in the sense that the functionalities differ for different

users, CN has come up with the idea of utilizing artificial intelligence (AI).

4.2 How can AI help?

AI can help to add the properties mentioned in Section 2.2 to a learning system.

This aid can be done in various ways such as advising, networking, assisting, and

entertaining. AI can advise the students by notifying their due dates in a course,

encouraging them to learn the materials, and studying the grade trends to find the

outliers and alert the user in those conditions.



19

Also, AI can network the users of a system by recommending friends to follow or

send messages. It can even connect users who are looking for and offering tutoring in a

specific field. Assisting can be done by helping to build an ePortfolio. As an example,

there are many CN accounts that have not completed their ePortfolio. AI can assist

by recommending jobs to job seekers. Finally, holding some AI-based competitions

can make these systems more amusing.

4.3 Rumi

The AI project of CN in collaboration with CyberLab is about developing and

conceptualizing an intelligent agent called Rumi, who can make an LMS more dy-

namic and tailored toward users’ needs. The name is taken from the famous Iranian

poet, Jalāl ad-Dı̄n Muhammad Rūmı̄, who is known for his wisdom.

In CN, Rumi plays the role of a digital mentor, a personal assistant, and an

advisor [24]. Rumi has a human-like persona and is a male in his mid 30’s. He

expresses his emotion through facial expressions. That is, he can be either neutral,

sad, or happy based on the content of the service he provides [24]. Figure 4.1 shows

different faces of Rumi.

Fig. 4.1.: Rumi’s Different Facial Expressions. From left to right: Neutral, Sad, and
Happy



20

In general, Rumi communicates with users by offering some services within a

unique post. This post appears on top of the CN’s website. Examples of some

designs are included in Section 5.7. These services include:

• Notifications

• Community Recommendations

• Job Recommendations

• Quote Competition

• Tips

In Notifications, Rumi tells the users who have checked their ePortfolio or gave

them a new recommendation. He also notifies them if they got a new endorsement for

any of their showcases, expertise, or recommendations. Another typical notification

is about people who start following others.

The primary purpose of this work is about Rumi’s Community Recommendations.

In which, Rumi suggests new communities to a user based on their CN profile and

connections. A comprehensive explanation of this service, including its designs, is

given in Chapter 5.

In the Job Recommendations service, Rumi gathers users’ information and directs

them to job engines. These engines include, Indeed [25], Chegg Internships [26], and

HigherEdJobs [27].

Although Rumi seems serious at first glance, he also amuses users by holding

competitions. One of which is the Quote Competition [28], where it promotes the

gamification aspect of Rumi. In this competition, Rumi collects users’ quote, shown

in Figure 3.1 [28]. Then based on an ELO system, he recommends two quotes at a

time to each user and asks them to select the better quote [28]. Finally, with the

results obtained, the top quotes receive a badge from CN [28].



21

In Tip service, Rumi briefly describes some information. This information includes

informing users of CN’s features, recommending resources, or sharing learning and

teaching guidance.

4.4 Implementation Process

As mentioned in Section 2.2, the architecture and integration of an intelligent

agent required developing the front-end and writing the back-end in PHP with the use

of Laravel framework. Implementing Rumi in this way has several limitations. First of

all, CyberLab graduates are usually not experienced front-end developers, and writing

the front-end code will distract them from their primary role as machine learning

researchers. Second, popular machine learning libraries and packages are written in

Python. Third, connecting the scripts written in other programming languages than

PHP to Laravel would require a layer of application programming interface (API).

Having many API layers results in less efficient integration with CN and other learning

systems.

The implementation process of Rumi was redesigned in July 2019, so the process

becomes faster and resolves the limitations mentioned above. As of July 2019, the

CyberLab team has decided to use Python as the programming language for back-end

development and provide the API for integration with other platforms by utilizing

one of the most popular Python web application frameworks, Flask. Rumi uses a

MongoDB database due to the same reasons discussed in [22] and is run on Amazon

Web Services (AWS).

The software has been dockerized with Docker so that future CyberLab graduates

can easily catch up with the process and add more services to Rumi. Having an

API-based architecture that only contains the services’ content will not involve any

front-end development and make the transition to other programming languages and

frameworks more manageable.



22

The front-end is being implemented by CN’s production team in overseas collab-

oration with the CyberLab team. Therefore, more time is devoted to the machine

learning aspect of the project and providing the APIs. All of these changes have

taken into account that Rumi functions as software as a service (SAAS), one of the

Rumi project goals.

4.5 Inference Engine

In general, Rumi interacts with users with one of its services. The challenges for

Rumi are when to interact and which service to choose. To tackle these challenges, an

“Inference Engine” is announced. Similar to the priority engine that is described in

[22], Rumi’s inference engine picks the most important service based on the feedback

received from each CN member. A cycle is defined for when to show the chosen

service to the user. This cycle is set at 12 hours, which means the time between

each time Rumi appears should be at least 12 hours. Whenever a user logs in, if this

time has passed since the last time Rumi displayed a service, the inference engine is

called, and the next service is shown. There is an exception to this scenario, which is

when a notification exists. In that case, no matter when was the last time that Rumi

appeared, he will deliver that message to the user.

This engine also collects the feedback for each service and does some calculations

that [22] refers to as the reasoning engine. Any feedback is related to either a service

or, in general, Rumi’s settings. When the inference engine receives feedback from

the user, it sends it to the right service, or if it is related to the settings options,

it will apply the necessary changes. The feedback received by a particular service is

processed, and the result is sent back to the inference engine to help with the inference

of the next service. In the end, the feedback is stored in the database. Figure 4.2

illustrates this process.

For every CN account, the inference engine computes a Service Score for each of

Rumi’s services except the Notifications service. Every time the inference engine is



23

Fig. 4.2.: Feedback Structure

called, the service with the highest Service Score is inferred as the most valuable ser-

vice. Then the content of the selected service is displayed to the user. The algorithm

behind the scoring mechanism considers three main factors:

• Repetition: The number of times that a specific service is shown back-to-back.

The algorithm has to rotate the services in such a way that all the services have

a chance to be chosen, and it does not go into a loop that continually picks

exactly one service.

• Interaction: The number of interactions a user makes with a particular service.

The interactions here refers to the requests sent to the server either by selecting

buttons or scrolling the pages. Some of the services require many clicks, while

others can have as low as one click. Hence, the algorithm has to come up with

a scaling factor to balance these interactions.

• Flag: Users, CN admins, or institution admins can disable a service. If the flag

is off for a service, the algorithm should not select that service until the status

of the Flag changes.



24

These factors are employed to formulate the Service Score. To do so, a score is

assigned to each factor. The Service Score is a real number and is called Score in

our formulation. It is assumed that Score has a non-negative value, so its minimum

is zero.

Also, Repetition, Interaction, and Flag scores are referred to as repetitionScore,

interactScore, and flagScore respectively. The flagScore is a Boolean variable. Its

default value is set to one, and whenever the service is turned off, it will become

zero. Because Score is always greater than zero, repetitionScore and interactScore

are non-negative too. The Service Score is calculated using Equation 4.1 only for

the services which their flagScore is non-zero. Then based on Algorithm 1 the next

service is chosen.

Score = interactScore ∗ repetitionScore (4.1)

Algorithm 1 Inference Engine Algorithm

Input: services . The services includes all types of scores

Output: chosenService

1: Max← 0

2: Score← 0

3: chosenService← ∅

4: for each service of services do

5: if service.f lagScore is not zero then

6: Score← service.repetitionScore× service.interactScore

7: if Score greater than Max then

8: Max← Score

9: chosenService← service

10: end if

11: end if

12: end for



25

As shown in Figure 4.2, although every feedback is stored, the inference engine

relies on certain ones to measure repetitionScore and interactScore. First, a fixed-

length history list is defined to hold the number of repetitions and interactions for

every service. The length of this list is called l. In other words, every time a service is

inferred, both service’s name and the number of interactions that the user had with

it are stored.

The repetitionScore for service i is measured using the last l inferences. If that

service is chosen in the jth inference, rij will be one otherwise zero. This score aims

to provide a chance for services that have not been shown in a while and prevent the

algorithm from reselecting a particular server over and over. For the former goal, a

linear function or an exponential one is suitable. The latter end can be achieved by

assigning a score of zero to the service shown in the entire history list.

In practice, the exponential function below achieved a better result when utilized

with the formula of interactScore. The repetitionScore of service i is computed

using Equation 4.2.

repetitionScore(i) = 1−
∑l

j=1 2rij

2l − 1
(4.2)

The interactScore goal is to increase the chance of being inferred for the services

with a high number of interactions. Here, the first few interactions are more precious

than those received afterward. More so, the closer the number of interactions gets to

the maximum limit, the slower this score should grow. This phenomenon is observed

in exponential functions where at first, their value increases fast, but after a while, it

is saturated.

The formula applied to calculate the interactScore is shown in Equation 4.3,

where a and b are parameters that along with l have to be tuned. Also, sij is the

total number of interactions for the ith service in the jth inference. If a service is not

picked in an inference, this value will become zero.

As mentioned, sij will vary for every service, and the sigma in Equation 4.3 in-

tensifies these differences. Thus, there should be a way to compensate. A solution is



26

to multiply a constant to the total score of each service. This constant controls the

service’s total score to stay in a certain range. The ci in Equation 4.3 is a constant

associated with service i.

interactScore(i) = 1 +
exp

(
1 + ci

∑l
j=1 sij

)
a exp (b)

(4.3)

The next chapter discusses the algorithm behind the Community Recommenda-

tions and showcases user-friendly designs.



27

5. COMMUNITY RECOMMENDATION

5.1 Introduction

As discussed in Section 4.3, Rumi provides many services. One of which is Com-

munity Recommendation. Referring to Section 3.3, every user has a section related to

their communities on the Home Feed. They can add or modify their joined commu-

nities with editing and joining options. Typically, CourseNetworking (CN) members

join these communities to communicate, socialize, or learn new things, especially if

the community is related to a specific skill. By looking at CN’s data, it is noticed

that many users haven’t joined any communities, and most of the communities have

a few members. Rumi, as an intelligent agent, is here to connect people and make the

system more productive and engaged. The more engaging users become, the more

fruitful the social network becomes. Consequently, recommending communities can

be beneficial to fulfill these goals.

Not any recommendation can encourage members to join a community. These

recommendations have to be related to their taste, personality, profession, skill set,

and surroundings. Also, the way recommendations are shown can attract them to

add them. If a list of many communities is shown at once, it can distract the user’s

attention. Moreover, a totally unrelated recommendation might lessen the acceptance

rate.

Rumi has to consider all of the conditions mentioned above. Hence, data prepro-

cessing is vital to prepare the recommendation list. After the data is cleaned, then

machine learning techniques become handy to find the most suitable communities for

each member. The advantage of recommending communities is that there is no need

to check the tag’s semantic meaning as long as it does not have a typo. Whereas when

it comes to recommending skills, it is essential that the label be a skill. For example,



28

if a recommender system suggests “IUPUI” to a user as a skill recommendation, it

has low accuracy and negatively influences the user. Any destructive impulse received

by a user from Rumi will shake the trust between the agent and that user. Thus,

Rumi must employ the most accurate recommender engine.

This chapter’s main objective is to devise a recommender system for Commu-

nity Recommendation by utilizing three methods and then comparing their accuracy.

These methods are a modified version of Collaborative Filtering (CF), Continuous

Bag of Words (CBOW), and transfer learning using Bidirectional Encoder Represen-

tations from Transformers (BERT).

5.2 Data Preprocessing

This project uses sample data from CN’s testing database. It consists of users’

ids, their Fields of Study, user’s social engagement, and, most importantly, their list

of communities. The ids were mapped to natural numbers to keep users’ identities

secret. The Field of Study and social engagement info is taken from the About and

Social Engagement Sections on the ePortfolio. This sample data extracted from the

CN is stored in CSV format.

The data is passed through a preprocessing pipeline before being used in the

recommender systems. In this process, users with zero numbers of communities and

no Fields of Study were initially removed because there is insufficient information

regarding them. Next, all the Non-English communities and Fields of Study were

removed by comparing their characters to English characters.

For the remaining communities and Fields of Study, their characters were con-

verted to lowercase to check for typos and duplication. A heuristic threshold was

chosen to remove the communities that their members’ number is less than the thresh-

old. This heuristic value not only removes the tags that have typos but also discards

meaningless communities or those that belong to test accounts.



29

The total number of distinct communities in the sample data is more than 14,000.

After passing it through the preprocessing pipeline explained above, this number

drops to less than 1,000 tags. The same scenario holds for different majors in the

data. Before the preprocessing, the total number of majors is above 9,000, but after

crossing the pipeline, it reduces to around 3,500.

5.3 Collaborative Filtering

The first approach is a modified version of item-to-item CF [8] called Neighbor-

ing Collaborative Filtering (NCF). The name is derived from the general idea, which

selects popular tags among the user’s neighboring members as community recom-

mendations. The neighboring members of a target user are people who are somehow

related to that user. There are many features on CN that can cause two users to be

related. Some of which are as follow:

• Skill: When both users have at least one skill in common on their ePortfolio.

These skills are shown in Figure 3.2.

• Community: Same as the above feature, instead they are members of at least

one community in the system. Also, these communities are retrieved from the

Community Section, Figure 3.5.

• Field of Study: Similar to the last two features, in this feature, users are re-

lated when they have specified the same Field of Study in their About section,

Figure 3.1.

• Social Engagement: As shown in Figure 3.4, a user is connected to people who

they have engaged more.

• Colleague: When two users have enrolled or are enrolling in the same course in

CN, they are related. This relationship also includes the relation between an

instructor and a student.



30

• Following and Followers: If any of them follows the other’s account, both are

related.

• Endorsement: When one of the users has endorsed any section of the other

user’s ePortfolio, this makes a relationship between the two.

• Recommendation: When one has written a recommendation for the other user,

a connection has occurred.

• Post: If any of the two has rated or reflected on the other user’s posts, the two

are linked.

• Organization: When two users are former or current members of an organiza-

tion, there is a connection between them.

• Nationality: When both have the same nationality, they are linked.

• Location: When two users have declared the same state or city on their About

section, they are related.

By studying the skill relation, it is seen that in most of the CN accounts, all

of a user’s skills are also shown on their community list. One of the reasons for

this observation is that whenever a user adds a skill to their ePortfolio, the system

automatically adds that tag to their community list. Thus, the skill list is a subset

of the community list unless someone manually adjusts these two sections on their

account.

In the sample data, there are many inactive members. Inactive members are

people who do not interact with the system regularly. As a result, each member has

slightly over one follower on average because of inactivity. Also, after cleaning the

data, there is not much improvement in this average. So, this project ignores the

Following and Followers feature.

Endorsing some parts of the ePortfolio and writing a recommendation are newly

added features to CN. More so, writing a recommendation takes some time, and



31

users resist doing so. For these reasons, the sample data does not have sufficient data

related to these two features.

The rest of the features are too general to be accepted as a reasonable factor for

finding members with common community interest as the target user. Hence, out of

all of the features mentioned above and many more, only the following were chosen

to find the neighboring members.

• Community

• Field of Study

• Social Engagement

In other words, users who have a common Field of Study or community or have

engaged with the target user are considered as the neighboring.

The next subsection describes NCF in detail, but it is worth getting an overview

of the method prior to that. Figure 5.1 illustrates the idea of how the NCF algorithm

works.

Fig. 5.1.: Intuition Behind the Modified CF Algorithm



32

The first row shows the target user. All the user’s data that can be used to

find related members are exhibited in the second row. These features are the three

mentioned above. Most importantly, the neighboring members come in the third

row. Eventually, the most frequent communities among these members are selected

as community recommendations for the target user unless the target user has already

joined them.

5.3.1 Algorithm

The basic algorithm using nested for loops is shown in Algorithm 3. This algorithm

uses a function shown in Algorithm 2, where the function inputs a user and a specific

feature. Then it returns the related users to the input user based on that feature. For

example, assume a user is majoring in Computer Science and Computer Engineering.

If this user and the feature of major is passed to NEIGHBORING, the inner loop

searches for members who are majoring in either Computer Science or Computer

Engineering. The result is the users who have specified one of the mentioned majors

in their Field of Study.

Algorithm 2 Neighboring members

1: function Neighboring(user, feature, users) . Fixed user and feature

2: Neighboring ← ∅

3: for each item in user.feature do

4: for each member of users do

5: if item exists in member.feature then

6: add member to Neighboring . Duplicate members can exist

7: end if

8: end for

9: end for

10: return Neighboring

11: end function



33

Assuming that there exist n users and each user can have at most k instances of

a feature, the function runs in O(nk2) in the worst case. One can look at k as the

number of majors, communities, or relationships that a user can have.

In Section 5.3.3, a creative way is explained to reduce this running time to O(k)

by storing data in the database.

Algorithm 3 NCF Algorithm
Input: users, features

Output: recommendation list for each user

1: for each user of users do

2: RecommendationList(user) ← ∅

3: List ← ∅ . Duplicate values can exist

4: for each feature of features do . Fix one of the features

5: for each member of Neighborofg(user, feature, users) do

6: for each community of member.community do

7: if community don’t exist in user.community then

8: add community to List(user)

9: end if

10: end for

11: end for

12: end for

13: for each unique community in List do

14: count the number of repetitions of unique community in the List

15: add (community, count) to RecommendationList(user)

16: end for

17: sort the RecommendationList(user) in descending order based on count

18: end for



34

The Algorithm 3 can be divided into three parts to calculate its runtime. First

is the procedure to find the List of communities. Then, the process of counting the

repetition of this List. Finally, sorting the recommendation list.

The first part is run in O(n2k4mf), where f and m are the number of features

and maximum neighboring members for a specific feature, respectively. The second

and third parts depend on the number of unique communities, c. The former is run

in O(nh) if counting sort is used, where h is equal to max {c,mfk}. The latter will

have a runtime of O(nc lg c) with insertion sort. In total, because n is much greater

than c, the runtime in the worst case will be O(n2k4mf). Again, if some repetitive

calculation is stored in the database, this runtime will decrease a lot.

Another way to reach the same result is to employ matrix multiplication. This

approach, Algorithm 4, is much faster than Algorithm 3 because Python performs

matrix multiplication smarter than nested for loops. Note that this algorithm can be

utilized for other recommendations, such as major, course, and book recommenda-

tions. Here it is assumed that the subject is equal to “community”.

As Algorithm 4 shows, the first matrix U has all users on both of its rows and

columns. At first, this matrix is initialized with zero. Every time a feature matrix is

created, the multiplication of this feature matrix to its transpose is added to U . The

constructed matrix, after multiplication, holds the number of common items between

two users. For instance, if the feature is equal to major, the multiplication of the

major matrix to its transpose will create a matrix that shows how many common

major two users have.

Each feature matrix has n rows and m columns, where n and m are the number

of users and unique items in that feature, respectively. In the end, the final U is

multiplied to the community feature matrix to create R. The community feature

matrix shows the relation between users and all the communities.

It is important not to recommend the already joined communities to a user. So, R

should be multiplied one more time to the community feature matrix, and the result

must be subtracted from R to remove the joined communities.



35

Algorithm 4 Matrix Approach for NCF Algorithm
Input: users, features, subject

Output: R . recommendation matrix

1: n ← length(users)

2: i← 0

3: Create U [n][n]← 0 . creating user relation matrix

4: for each feature of features do . Fix one of the features

5: i← i+ 1

6: m ← length(feature)

7: Create Fi[n][m] . creating feature matrix for each feature

8: for each user of users do

9: for each item of features do

10: if item exists in user.feature then

11: Fi[user][item]← 1

12: else

13: Fi[user][item]← 0

14: end if

15: end for

16: end for

17: U ← U + Fi · F T
i . adding weights to the relation between users

18: if feature equal to subject then . Is true only once

19: index← i . storing the subject matrix

20: Create R[n][m] . creating recommendation matrix

21: end if

22: end for

23: R← U · Findex

24: R← R−R · Findex . removing users’ subjects from recommendations



36

5.3.2 Feedback

The NCF algorithm can be further improved by utilizing a feedback structure.

This part explains how this feedback is received and embedded in the NCF algorithm

for both approaches.

As mentioned before, Rumi learns from the user’s feedback and improves his ser-

vices’ quality. In Community Recommendation, if a user does not select a community

after they saw it, it can be inferred that they did not want to join it. The unchosen

community is referred to as a removed community.

By applying this feedback to Algorithm 3, it changes to Algorithm 5. The only

difference is in lines 17-23, where the feedback is applied. For every removed commu-

nity, the communities of its members are discarded from the List. In other words,

referring to Figure 5.1, let’s call every item in the second row and all of its descendants

a Branch. Then lines 17-23 are saying which Branches to remove from the figure.

It is assumed that line 20 is run in O(1) with a hashing mechanism. Similar to

the NEIGHBORING function of Algorithm 2, lines 18-22 will take O(nk2). Because

a user can send feedback to all c communities, the outer loop is run c times. After

all, the new lines run in O(cnk2), which is not comparable with O(n2k4mf) and is

much smaller.

In the matrix approach, the story is slightly different. When the feedback is

included, Algorithm 4 alters to Algorithm 6. The new algorithm is only storing the

non-zero values in lines 8-12. The reason for this will be discussed in Section 5.3.3.

When creating the U matrix, if the feature matrix is about the relationship between

communities and the users, then the feedback is applied to that multiplication to

reduce the time and make the algorithm more efficient. That is, first, the feedback

matrix, D, is created from the removed communities. Then D is subtracted from the

community feature matrix. The resulting matrix is multiplied to its transpose and

then added to U . This matrix can have negative entities, while the feature matrices

do not have any.



37

Algorithm 5 NCF Algorithm with Feedback
Input: users, features

Output: recommendation list for each user

1: for each user of users do

2: RecommendationList(user) ← ∅

3: List ← ∅ . Duplicate values can exist

4: for each feature of features do . Fix one of the features

5: for each member of Neighborofg(user, feature, users) do

6: for each community of member.community do

7: if community don’t exist in user.community then

8: add community to List(user)

9: end if

10: end for

11: end for

12: end for

13: for each unique community in List do

14: count the number of repetitions of unique community in the List

15: add (community, count) to RecommendationList(user)

16: end for

17: for each tag in user.feedback do

18: for each member that tag exists in member.community do

19: for each community in member.community do

20: (community, count)← (community, count− 1)

21: end for

22: end for

23: end for

24: sort the RecommendationList(user) in descending order based on count

25: end for



38

Algorithm 6 Matrix Approach for NCF Algorithm with Feedback
Input: users, features, subject

Output: R . recommendation matrix

1: n ← length(users)

2: i← 0

3: Create U [n][n]← 0 . creating user relation matrix

4: for each feature of features do . Fix one of the features

5: i← i+ 1

6: m ← length(feature)

7: Create Fi[n][m] . creating feature matrix for each feature

8: for each user of users do

9: for each item in user.feature do

10: Fi[user][item]← 1

11: end for

12: end for

13: if feature equal to subject then . Is true only once

14: index← i . storing the subject matrix

15: Create R[n][m] . creating recommendation matrix

16: Create D[n][m] . creating feedback matrix

17: for each user of users do

18: for each tag in user.feedback do

19: D[user][tag]← 1

20: end for

21: end for

22: U ← U + (Fi −D) · (Fi −D)T . adding feedback weights to the user

relation matrix

23: else

24: U ← U + Fi · F T
i . adding weights to the relation between users



39

Algorithm 6 Matrix Approach for NCF Algorithm with Feedback (continued)

25: end if

26: end for

27: R← U · Findex

28: R← R−R · Findex . removing users’ subjects from recommendations

By ignoring the time it takes to calculate the matrix multiplication, Algorithm 6

runs in O(fnk), where f is the number of features, n is the number of users, and k

is the maximum number of feature instances that a user can have.

Note that it is also assumed the zero matrices are instantly created, and no time

is required to store that many zero entities. In the next section, the way to store and

use the matrices are explained.

5.3.3 Implementation

The two approaches for the NCF algorithm that consider feedback, Algorithm 5

and Algorithm 6, are implemented in CN. Each of which had their challenges. This

part discusses the solutions to overcome these challenges.

Both algorithms generate recommendations for all the users, and they both sort

the final recommendation list. These two actions are not necessary to take place in

the same way stated in the system. First of all, a new recommendation list is required

whenever a user interacts with the system and changes something on their profile.

Therefore, the algorithm needs not run for all users, which reduces the runtime by a

factor of n. Second, after all, the algorithm tries to find the most useful communities

for the user. Thus, sorting the recommendation list is useless, and only selecting the

top-ranked communities is sufficient.

By applying these two adjustments, both approaches will run much faster. Here,

the time to connect to the database or retrieve data is neglected because both al-

gorithms perform the same operations. The generating process is taken place offline



40

after a specific period, one hour, and the system creates new recommendations for

the users whose trigger is set. In contrast, some parts of the feedback mechanism,

such as removing the already joined communities from the recommendation list, are

applied instantly.

Because CN uses MongoDB, then the terms collections, key, and type are used

here. A Collection is equivalent to tables in relational databases [29]. Records are

stored as a BSON document in MongoDB collections [30]. BSON is a binary repre-

sentation of JSON documents, and they have different types [31].

Nested For Loop Approach

The running time of Algorithm 2 and Algorithm 5 are O(nk2) and O(n2k4mf),

respectively. If the data needed for the NEIGHBORING function is stored in

memory, by assuming that the time for retrieving data is O(1), then both runtimes

will drop by a factor of nk. In other words, the goal is to make the inner loop of

Algorithm 2 run in O(1).

A collection associated with each feature is required to achieve this end. This

collection should contain all the users who have a specific instance of that feature.

The time needed to create each of these collections relies on the total number of

instances, d, for every feature. Then with one scan over the user collection, all

the users having that instance can be found. Thus, the total time will be O(dnk).

Certainly, this runtime could be lessened, but because it is only run once a week or

month, it is left as is. Tables 5.1 and 5.2 show two such collections.

For example, the Community User IDs Collection stores all the users who are

members of a specific community. This collection contains the name of a community

along with the id of users in that community. This collection can help to decrease

the running time of lines 18-22 in Algorithm 5 from O(nk2) to O(k) because it is not

required anymore to search for members of a community.



41

Table 5.1.: Community User IDs Collection

Community UserID

Field Type

id ObjectId

Community String

User IDs Array

Count Int32

Table 5.2.: Major User IDs Collection

Major UserID

Field Type

id ObjectId

Major String

User IDs Array

Count Int32

To further reduce the running times, both of the above adjustments are taken into

considerations. A trigger is added to each user’s document. Whenever a user adds

or discards one of the features attached to the algorithm, this trigger will be set. So,

except the first time the algorithm is run, the outer loop in Algorithm 5 would only

consider users who their trigger is set. As a result, this could boost the speed by ten

times.

Moreover, only 60 of the top recommendations are stored in the Community Rec-

ommendations collection for each user. This collection is shown in Table 5.3. Instead

of sorting all the tags in RecommendationList, the top 60 ones are found and saved

for future reference.



42

Table 5.3.: Community Recommendations Collection

Community Recommendations

Field Type

id ObjectId

User ID String

Communities Array

Matrix Approach

One challenge in this approach is the memory requirement. Each feature matrix

in Algorithm 6 can have more than nd entities, where n and k are the number of users

in the system and number of instances of a feature. After multiplying this matrix to

its transpose, the number of entities reaches n2. For a system with a million users,

storing this amount of entities in the random access memory (RAM) is costly.

The bright side is that these matrices are sparse and have many zero elements.

With the notation used before, every row of them can have at most k ones. Even

when they are multiplied together, the result is still a sparse matrix. Thus, matrix U

will not have many non-zero entities and is a sparse matrix.

A solution to overcome this challenge is to utilize libraries that efficiently calculate

sparse matrices multiplication. Here, the SciPy’s Compressed Sparse Row matrix

(csr matrix) [32].

Although both modifications to decrease the runtime hold here too, this approach

has a disadvantage. That is, the result matrix after each multiplication should be

stored on RAM. To handle this issue and save memory, one can immediately delete

that matrix after it is added to U . In the end, the recommendations are stored in the

Community Recommendations collection.



43

5.4 Continuous Bag-of-Words (CBOW)

Natural language processing (NLP) is one of the subfields of artificial intelligence.

Recommender system engines have different components in which processing natural

language efficiently plays an important role, such as language understanding and

language generation [33].

In recent years, NLP algorithms have been used massively in designing and train-

ing recommender systems. Recommender systems that feed in textual data as inputs

require understanding items and user profiles and processing their information. This

system can be formulated using NLP word2vec algorithms, where each word is rep-

resented as a continuous vector. At the next step, the relation between the items is

required to be under consideration to rank them by order of the most relevant to the

user’s intent [34].

Two of the NLP models, Continuous Bag-of-Words (CBOW) and Continuous

Skip-gram, are proposed in [12]. The former tries to predict the target word based on

the context, while the latter is the way around. Given the target word, it predicts all

the surrounding words [12]. Figure 5.2 illustrates these two architectures with their

three different layers; input, projection, and output.

To exploit an NLP model for community recommendations, one can look at a

user’s communities as a sentence. For example, assume Emad Azad in CN is a

member of Computer Science, Python, Machine Learning, Artificial Intelligence, and

TensorFlow communities. This information from the user can be converted to a

sentence like below:

“Emad Azad is a member of Computer Science, Python, Machine Learn-

ing, Artificial Intelligence, and TensorFlow communities.”

After this conversion, both CBOW and Skip-gram model can recommend a new

community to Emad. The difference will be in how the models are trained and what

will be the input and output.



44

Fig. 5.2.: CBOW and Skip-gram Architectures

In general, as shown in Figure 5.2, the CBOW model collects more information and

outputs the most probable word. Moreover, the term bag-of-words refers to the fact

that the words’ order in the input layer does not influence the projection layer [12].

In contrast, Skip-gram requires less information, only one word, and outputs several

options. It is found that increasing the length of the output layer improves the

quality of the prediction. However, because this length is correlated to the model’s

complexity, it will be computationally more expensive [12].

When it comes to the community recommendation problem, the goal is to find the

most suitable community for the user. Also, due to the conversion explained above,

the ordering of the communities does not matter. That is, all three sentences below

have the same meaning:

“Emad Azad is a member of Machine Learning, Computer Science, Arti-

ficial Intelligence, TensorFlow, and Python communities.”

“Emad Azad is a member of Python, Machine Learning, TensorFlow,

Artificial Intelligence, and Computer Science communities.”



45

“Emad Azad is a member of TensorFlow, Machine Learning, Python,

Computer Science, and Artificial Intelligence communities.”

Generally, when a user is a member of n communities, one can construct n! of these

sentences. Aiming for the most valuable community and having equivalent sentences

like above are sufficient to choose the CBOW over Skip-gram for community recom-

mendation problem.

The rest of the section describes CBOW algorithm [35]. Where a text, such as

the previous sentences, is defined as the bag of its words. Then by feeding this input

to the model, a target word will be predicted.

The inputs of the model should be in the format of one-hot encoded vectors. The

size of the vector, V , is equal to the number of unique vocabulary words. Every word

has its unique vector with all zeros except the index associated with that word. This

index is marked with one. The output format is also a one-hot encoded vector. An

on-word context CBOW model is shown in Figure 5.3, where both the input and

output have only one word [35].

Fig. 5.3.: One-word Context CBOW Model

In this model, the input, X, is linked to the output layer by using two matrices.

The first matrix, W , is called the input-hidden matrix. This V ×N matrix projects the



46

input to a hidden layer vector, h, of size N . Using Equation 5.1, h can be calculated

without adding any activation function [35].

h = W TX (5.1)

Similarly, the second matrix, W ′, is of size N × V and is called the hidden-

output matrix [35]. This matrix projects the hidden vector to a score vector, U ,

with Equation 5.2. The score vector is then passed through a softmax, a log-linear

classification model, to find the output, Y .

U = W ′Th (5.2)

Each element of U is refereed to as uj. Then, the jth element of output, yj is

measured by Equation 5.3.

yj =
exp (uj)∑V

j′=1 exp (uj′)
(5.3)

The object here is to maximize the probability of the output word, wO, given

the input word, wI . Maximizing p (wO|wI), is equivalent to maximizing the value of

the index associated with the output word in Y . This index is labeled j∗. The loss

function, E, is defined as − log p (w0|wI). Equation 5.4 describes how to calculate

this loss function [35].

E = − log p (wO|wI)

= uj∗ + log
V∑

j′=1

exp (uj′)
(5.4)

This loss function is used to update input-hidden and hidden-output matrices.

The author in [35] explicitly explains how to do so. Before showing the procedures,

two other variables need to be defined. One of which is the prediction error and is as

follow:

ej =

yj j 6= j∗

yj − 1 j = j∗
(5.5)



47

Then W ′ can be updated as:

v
′(new)
wj

= v
′(old)
wj

− η · ej · h, for j = 1, ..., V (5.6)

where v
′
wj

is the jth column of W ′ and η is the learning rate.

The second variable is the derivative of E with respect to every hidden layer

element, EH, an N-dim vector. Each of its units, EHi, is the weighted sum of the

prediction error of all words in the vocabulary. These weights are the element of

W ′ [35].

EHi =
V∑
j=1

ej · w′ij (5.7)

Where w′ij is the entity in the ith row and jth column of W ′. Now, the update

rule for input-hidden matrix can be measured by Equation 5.8. Note that, in contrast

to Equation 5.6, the equation is applied to only one row of W . This row, vwI
, is the

row associated with the input word, wI [35]..

v(new)
wI

= v(old)wI
− η · ej · h (5.8)

One can train the one-word context model with the help of Equations 5.1-5.8.

Another CBOW model, multi-word context, is shown in Figure 5.4, where the input

layer consists of multiply words. Instead of inputting a one-hot encoded vector to the

model, C vectors are fed at once. The updating matrices are the same, except W is

multiplied to the vector representation of every input word. The result is averaged in

order to find the hidden layer vector. Thus, the Equation 5.1 changes to Equation 5.9,

where Xi is the one-hot vector of the ith input word [35].

h =
1

C
W T (X1 +X2 + . . .+XC) (5.9)

The objective is still the same. That is, maximizing the probability of the out-

put word, wO, given the input words, wI,1, ..., wI,C . So, the goal is to maximize

p (wO|wI1, ..., wIC). Consequently, the loss function will become:



48

E = − log p (wO|wI1, ..., wIC)

= uj∗ + log
V∑

j′=1

exp (uj′)
(5.10)

where j∗ is the index of the output word [35].

Fig. 5.4.: Multi-word Context CBOW Model

The way both of the matrices are updated stays almost the same. In fact, Equa-

tion 5.6 remains exactly unchanged. While Equation 5.8 should be repeated for all

the words in the input layer, w1,c, where vwI,c
is the row of W associated with the cth

input word in the input layer.

v(new)
wI,c

= v(old)wI,c
− 1

C
· η · EHT , for c = 1, ..., C (5.11)

The hyperparameters of both models are the learning rate, η, and the number of

units in the hidden layer, N . With the help of a validation set, the hyperparameters

of the model can be tuned.

If a validation set is not used while training the models, the updating process

should continue until the error does not change significantly. Otherwise, one can plot



49

the error of the validation set per the number of epochs. Then stop the training

when this plot plateaus. Note that, because after every iteration, only C rows of the

input-hidden matrix are changed, the process might require many epochs.

5.4.1 Implementation

The CN dataset is modified to be fed into a multi-word context CBOW model.

The communities of every user are considered as a sentence, and each community as

a word. The same way mentioned in the previous section, except the first part, the

punctuation, and the last word are removed. For the same example, “Emad Azad is a

member of Computer Science, Python, Machine Learning, Artificial Intelligence, and

TensorFlow communities.”, the input words will be only the five communities that

Emad has.

Each community is then represented by a one-hot encoded vector of size V , where

V is the total number of distinct communities in the dataset. That is, the represen-

tation of each vector is all zero values except the index of that community, which is

marked with one.

The model’s inputs will be all the one-hot encoded vectors associated with a user’s

communities except one. That one community will be considered as the output. The

idea behind this process is that if one of the user’s communities is ignored, the other

communities of that user should lead the model to find it as a recommendation because

the user preferred that ignored community as they have already joined it.

The CN dataset is split into three sets to train the model; train, validation, and test

set. For every user in the train and validation sets, the process mentioned is repeated

as long as all of the communities are ignored once. For example, if somebody has four

communities, this process continues four times. This way, there will be more data to

train the model.

The model is implemented from scratch with the formula related to the multi-word

context CBOW. The accuracy of the model will be addressed in Section 5.6.



50

5.5 Bidirectional Encoder Representations from Transformers (BERT)

Transfer learning is a new tool in recent years to solve the problems of insufficient

data. The general assumption is that the train and test data should come from the

same feature space or have the same distribution. In comparison, Transfer Learning

enables using the trained model in one domain and transferring the knowledge to

another field. For example, a network that can recognize pictures of apples is an

excellent choice to be transferred. With a slight modification, it can then decipher

images of pears this time [16].

Deep learning techniques are getting more attention from researchers recently [17].

These techniques require lots of data for the training part. Because not every domain

can acquire many samples and information, transfer learning is prevalent in deep

learning [17]. As a result, many pre-trained models in different disciplines are ready

to be transferred to another field. A common approach is to add several layers on

top of a pre-trained network. The rest of the model can then be fine-tuned with the

little data available by freezing the initial layers. The fewer data available, the more

layers are frozen.

Recent language representation models, consider the context either from left-to-

right or right-to-left [18]. Whereas a Bidirectional Encoder Representations from

Transformers (BERT) model is introduced in [18] that has obtained state-of-the-

art accuracy for some natural language processing tasks. BERT looks at the whole

context at once. This fact is similar to the idea of bag-of-words and can be utilized for

the community recommendation problem. Moreover, [18] claims that BERT can be

fine-tuned easily by adding exactly one additional output layer on top of the model.

5.5.1 Implementation

BERT has been trained on more than 3 billion word corpus. The way it was

trained resembles the idea discussed in Section 5.4. In which a word was randomly

masked, and the model objective was to predict it using only the context [18]. This is



51

similar to removing a community from a user’s community list and trying to predict

it based on the other communities.

Using transfer learning on BERT for the community recommendation is an accept-

able approach for three main reasons mentioned; the bidirectional aspect of BERT,

the sparsity of CN dataset, and the ease of training BERT with few output layers.

The version of BERT used in this work has more than 100 million parameters, and

a vocabulary that contains more than 30,000 tokens. These tokens convert a sentence

to a vector to be fed to the model. The same procedure is taken for the CN data.

Every sentence like “Emad Azad is a member of Computer Science, Python, Machine

Learning, Artificial Intelligence, and TensorFlow communities,” is converted to a

vector of tokens. Note that one of the Computer Science, Python, Machine Learning,

Artificial Intelligence, and TensorFlow communities is replaced with a masked token

([’MASK’]). In other words, the sentence is substituted as follow

“Emad Azad is a member of Computer Science, Python, [’MASK’], Arti-

ficial Intelligence, and TensorFlow communities.”

and then the new sentence is converted to a vector of tokens. This vector is the input

of the new model, and the output will be the masked word, which in this example

is Machine Learning. Also, this version of BERT is not case sensitive. That is, the

letters of each word have to be transformed to lower case.

A softmax layer was added to the output layer of BERT to build the new recom-

mender model. The size of this layer is equal to the size of unique communities in the

system. This version of BERT’s output returns a vector of size 768 for every token of

the input. This information is then passed to the added layer. In the training part,

all the BERT model is frozen, and only the parameters between the output of BERT

and the softmax layer are tuned.



52

5.6 Results and Comparison

This section shows the accuracy of the three models explained before; NCF, multi-

word context CBOW, and transferred BERT. Some figures are displayed to compare

their result on the CN dataset.

There are many ways to compare the accuracy of a recommender system. Some

of which are explained in Section 2.1. Here, two methods are defined, and the result

of each for the three approaches are examined.

The first metric is “Top-5” accuracy, in which the label of every sample in the test

set is compared to a list of recommendations with a length of five. If that label is in

the list, that sample will have 100% accuracy; otherwise, it will be considered 0. Even-

tually, the average of all the sample’s accuracy will be the final result. For example,

assume the label for the following communities of a user is “Machine Learnin”.

User 1: {Computer Science, Python, Artificial Intelligence, TensorFlow}

If “Machine Learning” exists in the recommendations list with a length of five, the

algorithm will get 100% accuracy for this user. After performing the same process for

all the users in the test set, the final accuracy will be the average of all the individual’s

accuracy.

The second metric is similar to “Top-5” accuracy and is called “Top-1.” Their

only difference is that the length of the recommendation list in this kind of measure-

ment has to be equal to one. So, for the same example mentioned above, “Machine

Learning” has to be predicted as the most probable community in order for the model

to get 100% for that user.

5.6.1 Neighboring Collaborative Filtering (NCF)

As described in Algorithm 5 and Algorithm 6, the NCF model depends on the

users’ features to create the Neighboring. Here, two features are considered. One is

the user’s community, and the other is their Field of Study. The Top-1 and Top-5



53

accuracy are measured for both scenarios. Figure 5.5 shows these two metrics for

different sizes of the train set and two sets of features.

Fig. 5.5.: NCF Accuracy per Number of Train Users; NCF with Two Features (left)
and NCF with One Feature (right)

As it is seen, as the number of users increases, the accuracy improves. Also, NCF

works better when there are two features taken into consideration. The final Top-5

accuracy for NCF with two features is 70% and for one feature is 62%.

5.6.2 Multi-word Context CBOW

Many hidden layers and learning rates were examined and based on the validation

set, two of which were chosen. One has six hidden layers, and the other eight hidden

layers. In both cases, the learning rate of 0.01 is picked. Figures 5.6 and 5.7 show

that the Top-5 and Top-1 accuracy plateau when the validation set’s loss starts to

flatten.

It is not common to use the test set in the training process. Here, this information

is only used for illustration, and the final result is based on the epoch that training

is stopped. For the model with six hidden units, the Top-1 and Top-5 accuracy are

24% and 46%, respectively. For the other model, Top-1 accuracy is 26%, and Top-5

accuracy is 50%.



54

Fig. 5.6.: Train and Validation Losses along with the Top-1 & Top-5 Accuracy of
CBOW Model with 8 Hidden Units

Fig. 5.7.: Train and Validation Losses along with the Top-1 & Top-5 Accuracy of
CBOW Model with 6 Hidden Units

5.6.3 Transferred BERT

The new model explained in Section 5.5 is trained for 20 epochs. The summary

of this model is shown in Figure 5.8. A dropout layer is also added to prevent over-

fitting. After training the model with 84% Top-1 accuracy, the accuracy of the test

set is measured. The Top-1 accuracy is 29%, and Top-5 accuracy is 55%. Both of

these accuracies exceed both of the CBOW models.



55

Fig. 5.8.: Model Summary of Transferred BERT

5.6.4 Comparison

Finally, the accuracy of all of these models is shown in Table 5.4. The NCF is

only using the community feature to have a fair comparison, . Both CBOW models

are presented here. After all, the NCF algorithm outperform all others.

Table 5.4.: Comparison of Top-1, Top-5, and Top-10 accuracy for different models

Accuracy Algorithms

NCF CBOW (N=6) CBOW (N=8) BERT

Top-1 34% 21% 21% 29%

Top-5 64% 42% 46% 55%

Top-10 77% 55% 57% 69%



56

5.7 Rumi Designs

The main goal of creating the user interfaces (UI) for community recommendations

service was to have the best possible user experience (UX). Many designs were created

to accomplish this goal. This section discusses the pros and cons of each.

Before getting into the different ideas and sketches, one should be aware of all the

functionalities of this service:

• Service Introduction: Rumi briefly explains the service

• Recommendations List: Rumi displays community recommendations based on

the most appropriate to the least, and users can add them if they wanted

• Empty List: Rumi runs out of recommendations and asks for more information

from the user

• Service Control: Rumi provides the ability to manually control the service by

turning it on or off at any time

In general, based on which device the user uses, two separate UIs are developed.

One is for the users who use a desktop to interact with Rumi, and the other is for

mobile users. Therefore, every functionality will have two distinct designs.

5.7.1 Service Introduction

For Service Introduction, both mobile and desktop designs are almost the same.

Figures 5.9 and 5.10 show the desktop and mobile view respectively. This UI is shown

the first time that Rumi encounters a user with Community Recommendation service.

As it is illustrated in the figures, he will concisely introduce the service.



57

Fig. 5.9.: Community Recommendations Introduction - Desktop View

5.7.2 Recommendations List

After Service Introduction, the list of recommendations is shown. This is the UI

that the users see the most, so several sketches were proposed before selecting the

best version.

Desktop View

For the desktop view, the initial idea was to show three recommendations at a

time, presented in Figure 5.11. Then ask users to join any of the recommendations by

clicking on the “Add Community” button or discard them by clicking the “X” icon.

The discard feedback could help Rumi to produce better recommendations. Also, an

undo option was implemented to improve the user experience.

One disadvantage of this version is the existence of lots of white spaces between

the recommendations. Hence, a more compact list was suggested in Figure 5.12. The

new version also has a drawback; the buttons are too close to one another, making it

hard for a user to select one.



58

Fig. 5.10.: Community Recommendations Introduction - Mobile View

Fig. 5.11.: Initial Idea to Display Community Recommendations - Desktop View

Both of the previous versions enable users to remove a recommendation, but

discarding something they do not own does not make sense. So, a final version was



59

Fig. 5.12.: Compact Way to Display Community Recommendations - Desktop View

chosen that only allows users to add or undo their actions, refer to Figure 5.13. These

actions are explained after announcing the final version for the mobile view.

Fig. 5.13.: Final Design to Display Community Recommendations - Desktop View

Mobile View

On a mobile device, as shown in Figure 5.14, a list of recommendations are dis-

played in a way that the user has to scroll through them and find the ones that are

of interest. To add or remove any of the communities, they have to slide the grey

container to the right or left, respectively. Figure 5.15 demonstrates these actions.

On mobile devices, the chances that someone accidentally touches the screen is

high. Thus, providing an undo option is critical. This design did not have this option.



60

Fig. 5.14.: Initial Idea to Display Community Recommendations - Mobile View

Fig. 5.15.: Adding and Removing Community Recommendations - Mobile View

Moreover, on some operating systems, swiping right would change the URL and go to

the previous page. Because of these two reasons, this version was a complete failure.



61

Buttons replaced the swiping option to overcome the two issues mentioned, exhib-

ited in Figure 5.16. Nevertheless, similar to the desktop view, the discarding action

was not logical.

Fig. 5.16.: Unsuccessful Design for Community Recommendations - Mobile View

After all, the final mobile view is shown in Figure 5.17. It resemble the desktop

view in Figure 5.13. Except, the user has to scroll through the recommendations,

whereas on desktop, they had to clock on the left and right arrows to change between

pages.

A notification is pushed when a community is selected, and the grey oval shape

community becomes blue. The undo option is embedded in each oval. When the user

selects any of the blue ovals, the action is undone, and another notification is sent.

These notifications can be seen in Figure 5.18.



62

Fig. 5.17.: Community Recommendations List - Mobile View

Fig. 5.18.: Adding a Community or Undoing the Action - Mobile View



63

5.7.3 Empty List

Whenever Rumi runs out of recommendations, he tries to get more information

from a user. Figures 5.19 and 5.20 shows how Rumi collects user’s Field of Study to

search for more recommendations. Also, Rumi has sad face here.

Fig. 5.19.: Asking for User’s Field of Study - Desktop View

Fig. 5.20.: Asking for User’s Field of Study - Mobile View



64

When users add to their Field of Study, Rumi will immediately suggest top com-

munities of the typed in Field of Study.

5.7.4 Service Control

In the end, if the user gets bored of Community Recommendations, or they have

already joined their desired communities, they can disable this service. A Settings

page is provided for Rumi, shown in Figure 5.21. This page is located in the drop-

down menu under the Rumi icon. With the help of this page, the user can turn a

service on or off.

As displayed in Figure 5.22, a service can be turned off by unchecking the service’s

checkbox and saving. The mobile view looks similar to the desktop, so the figures are

not included.

Fig. 5.21.: Settings Menu - Desktop View



65

Fig. 5.22.: Turning Community Recommendations off - Desktop View



66

6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this work, three different approaches are proposed, Collaborative Filtering

(CF), Continuous Bag-of-words (CBOW), and Bidirectional Encoder Representations

from Transformers (BERT). Each of these is modified in a way that it can generate

community recommendations based on a user’s profile.

A neighboring idea is added to the CF algorithm to change it to Neighboring

Collaborative Filtering (NCF). Then a feedback mechanism is utilized to improve the

performance of NCF. For the implementation of NCF, two separate algorithms, which

both include the feedback structure, is explained. For the other two techniques, the

data is translated into sentences to be fed into both models.

These algorithms’ accuracy shows that NCF outperforms others in all of the met-

rics mentioned, such as Top-1 and Top-5 accuracy.

Moreover, the functionalities of Course Networking (CN) and the idea of an in-

telligent agent, Rumi, is discussed. One of the services that this agent provides is

community recommendations, in which the NCF algorithm is used to recommend

communities to CN users.

6.2 Future Work

The biggest challenges in this work are the sparsity and insufficiency of the CN

dataset. Figure 5.5 shows the accuracy will improve if more data is provided. The

NCF algorithm works better in this condition. The other approaches are data-driven,

meaning the more data available, the higher the accuracy gets.



67

One other difficulty is that the communities of a user are not always related to

each other. For example, if someone is interested in Python, Java, and Tennis and

joins these communities, given Python and Java as an input, it does not make sense

to predict Tennis as the output. A solution to this problem is to categories the

communities into clusters.

This work can be further improved if more features are added to the NCF algo-

rithm. Also, all the methods mentioned are using little information about every user.

This information includes data that has a structure. For example, the CBOW and

BERT model only use the communities of a user. No information from the user’s

profile nor their connection in the system is taken into consideration. The unstruc-

tured data, like user’s posts or documents in the system, can be a useful source for

improving the recommender system’s accuracy.

Another drawback of this work is the lack of existence of a second database. CN

dataset covers many community tags, but it does not convey the relationship between

these communities. A good practice is to find a database that consists of users’ skills

or communities and run the algorithms mentioned in this work.

The inference engine described in this work can also be further improved. Cur-

rently, the time that an inference is called is set at 12 hours. Certainly, this time can

be turned into unfixed time, which relies on the user’s interaction. The rest of this

section explains ideas for the new services that Rumi can offer. These ideas are as

follow:

• Post Recommendations: There are machine learning techniques that can create

new text out of previous information. They rely on transfer learning, where the

model is trained on a massive database. Then the model is tuned based on the

new input. The idea here is to use a pre-trained model that predicts sentences

and paragraphs and fine-tuned it based on every user’s posts to recommend new

ones.



68

• Exam Recommendations: The same idea mentioned above can be applied here.

Because most of the time, especially in 5-10 years, some instructors’ exams or

quizzes are usually the same. A model can mix and match them and change

some metrics to create a new exam or quiz.

• Skill Recommendations: This service can employ the same algorithm that com-

munity recommendations use. The only differences are in the input data and

the preprocessing pipeline.

• Job Recommendations: Redesigned Job Recommendations can make Rumi

more productive. An engine that can be updated based on the user’s feedback

and improved the new recommendations’ quality.



REFERENCES



69

REFERENCES

[1] M. Karimi, D. Jannach, and M. Jugovac, “News Recommender Systems - Survey
and Roads Ahead.” Information Processing and Management, 2018.

[2] J. Itmazi and M. Megias. “Using recommendation systems in course manage-
ment systems to recommend learning objects.” International Arab Journal of
Information Technology, 5(3), 234-240. 2008.

[3] N. A. Alias and A. M. Zainuddin, “Innovation for better teaching and learn-
ing: Adopting the Learning Management System.” Malaysian online journal of
instructional technology. Vol. 2, No.2, 27-40. 2005.

[4] F. Ricci, L. Rokach, B. Shapira, and K.B. P., “Recommender systems handbook,”
Recommender Systems Handbook, 2011, pp. 1-35.

[5] A. Gunawardana and G. Shani, “A survey of accuracy evaluation metrics of
recommender tasks,” Journal of Machine Learning Reearch 10, 2009, 2935-2962.

[6] J. Beel, S. Langer, M. Genzmehr, B. Gipp, and A. Nürnberger, “A Compar-
ative Analysis of Offline and Online Evaluations and Discussion of Research
Paper Recommender System Evaluation,” Proceedings of the Workshop on Re-
producibility and Replication in Recommender Systems Evaluation (RepSys) at
the ACM Recommender System Conference (RecSys), 2013.

[7] M. Bastian, M. Hayes, W. Vaughan, S. Shah, P. Skomoroch, H. Kim, S. Uryasev,
and C. Lloyd. “Linkedin skills: large-scale topic extraction and inference.” In
Proceedings of the 8th ACM Conference on Recommender systems, pages 1–8.
ACM, 2014.

[8] G. Linden, B. Smith, and J. York, “Amazon. com recommendations: Item-to-
item collaborative filtering,” IEEE Internet computing, no. 1, pp. 76–80, 2003.

[9] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-Based Collaborative
Filtering Recommendation Algorithms,” Proceedings of the Tenth International
Conference on World Wide Web - WWW, 2001.

[10] W. Chen, D. Zhang, and E. Chang. “Combinational collaborative filtering for
personalized community recommendation.” In Y. Li, B. Liu, and S. Sarawagi,
editors, Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 115–123. ACM, 2008.

[11] X. Han, L. Wang, R. Farahbakhsh, Á. Cuevas, R. Cuevas, and N. “Crespi, CSD:
A multi-user similarity metric for community recommendation in online social
networks,” Expert Systems with Applications, 53, 14–26. 2016.



70

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space.” ICLR Workshop, 2013.

[13] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed Repre-
sentations of Words and Phrases and their Compositionality.” Accepted to NIPS
2013.

[14] M. Gutmann and A. Hyvarinen, “Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models.” In Proceedings of The Thirteenth
International Conference on Artificial Intelligence and Statistics (AISTATS’10).
2010.

[15] B. Karlik and A. Vehbi, “Performance Analysis of Various Activation Functions
in Generalized MLP Architectures of Neural Networks,” International Journal
of Artificial Intelligence and Expert Systems (IJAE), vol. 1, no. 4, pp. 111–122,
2011.

[16] S. J. Pan, and Q. Yang, “A survey on transfer learning.” IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345–1359. 2010.

[17] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on deep
transfer learning,” 2018, arXiv:1808.01974, [online] Last Date Accessed: 2020-
11-12.

[18] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “Bert: Pretraining of
deep bidirectional transformers for language understanding.” arXiv preprint
arXiv:1810.04805, 2018, [online] Last Date Accessed: 2020-11-12.

[19] A. Jafari, “Conceptualizing intelligent agents for teaching and learning,” Edu-
cause Quarterly, vol. 25, no. 3, pp. 28–34, 2002.

[20] R. Agarwal, A. Deo, S. Das, “Intelligent agents in e-learning.” ACM SIGSOFT
Software Engineering Notes, Vol. 29, No. 2, pp.1-3, 2004.

[21] P. Desharnais, J. Lu, T. Radhakrishnan, “Exploring agent support at the user
interface in e-commerce applications,” International Journal on Digital Libraries,
Vol. 3, No. 4, 284-290. 2002.

[22] M. Hosseini Asanjan, “Design and development of an intelligent online personal
assistant in social learning management systems.” Master’s Thesis, Purdue Uni-
versity, Indiana University-Purdue University Indianapolis, 2019.

[23] “Coursenetworking, white paper,” https://www.thecn.com/aboutus, 2012, [on-
line] Last Date Accessed: 2020-11-01.

[24] “IUPUI CyberLab,” https://cyberlab.iupui.edu, [online] Last Date Accessed:
2020-11-09.

[25] “Indeed,” https://www.indeed.com/, [online] Last Date Accessed: 2020-11-01.

[26] “Chegg Internships,” https://www.internships.com/, [online] Last Date Ac-
cessed: 2020-11-01.

[27] “HigherEdJobs,” https://www.higheredjobs.com/, [online] Last Date Accessed:
2020-11-01.



71

[28] A. Salamat, “Heterogeneous Graph-Based Neural Network for Social Recommen-
dations with Balanced Random Walk Initialization” Master’s Thesis, Purdue
University, Indiana University-Purdue University Indianapolis, 2020.

[29] “MongoDB Collections,” https://docs.mongodb.com/manual/core/databases-
and-collections/#collections, [online] Last Date Accessed: 2020-11-04.

[30] “MongoDB Documents,” https://docs.mongodb.com/manual/core/document/,
[online] Last Date Accessed: 2020-11-04.

[31] “BSON types,” https://docs.mongodb.com/manual/reference/bson-types/, [on-
line] Last Date Accessed: 2020-11-04.

[32] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R.
Kern, E. Larson, C. J. Carey, I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D.
Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris,
A. M. Archibald, A. H.Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0
Contributors, “SciPy 1.0:Fundamental Algorithms for Scientific Computing in
Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[33] W. Guo, H. Gao, J. Shi, B. Long, L. Zhang, B.-C. Chen, and D. Agarwal, “Deep
natural language processing for search and recommender systems,” in Proc. 25th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), Anchorage,
AK, USA, Jul. 2019, pp. 3199–3200.

[34] Z. Fu, H. Gao, W. Guo, S. Kumar Jha, J. Jia, X. Liu, B. Long, J. Shi, S.
Wang, and M. Zhou, “Deep Learning for Search and Recommender Systems in
Practice.” In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (KDD ’20). Association for Computing
Machinery, New York, NY, USA, 3515–3516, 2020.

[35] X. Rong, “word2vec Parameter Learning Explained,” arXiv preprint
arXiv:1411.2738. 2014, [online] Last Date Accessed: 2020-11-12.


