
RANKING OF ANDROID APPS BASED ON SECURITY EVIDENCES

by

Ayush Maharjan

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

Department of Computer and Information Science at IUPUI

Indianapolis, Indiana

December 2020

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Rajeev R. Raje, Chair

Department of Computer and Information Science

Dr. Mihran Tuceryan

Department of Computer and Information Science

Dr. Xukai Zou

Department of Computer and Information Science

Approved by:

Dr. Shiaofen Fang

3

Dedicated to my parents

4

ACKNOWLEDGMENTS

I cannot begin to express my deepest gratitude to my advisor Dr. Rajeev Raje for his

guidance and supervision throughout my research. This research would not have been successful

without his invaluable insights and encouragement. I would also like to thank my committee

members Dr. Xukai Zou and Dr. Mihran Tuceryan for their support to my research.

I would like to extend my sincere thanks to my friend Nahida Sultana Chowdhury for

valuable suggestions and ideas towards my research. It was an immense help sharing different

ideas and thoughts with her for this research. I would also like to thank her for sharing the datasets

that were used in the research.

I would also like to acknowledge the assistance of Nicole Wittlief and the Department of

Computer Science throughout my time here at IUPUI. I would also like thank the Office of

International Affairs and the Graduate Office for their assistance in working towards my degree.

I am extremely grateful to my parents for their support in pursuing my degree and

encouragement throughout my research work. I am deeply indebted to my friend Barsa, my brother

Aswin, and my cousins Sagun and Amita for the encouragement and motivation that they have

provided throughout my work. Lastly, I would also like to thank all my friends and family who

supported me in my journey.

5

TABLE OF CONTENTS

LIST OF TABLES .. 7

LIST OF FIGURES .. 8

ABSTRACT .. 9

 INTRODUCTION .. 10

1.1 Objective ... 12

1.2 Contribution .. 12

 RELATED WORK AND BACKGROUND .. 14

2.1 Key Concepts related to Android .. 14

 Android Components ... 14

 Permissions .. 15

 App Resources ... 16

 The Manifest File ... 16

 APK File .. 17

2.2 Mobile Application Security ... 18

2.3 Common Vulnerability Scoring System (CVSS) ... 20

 CVSS Calculation .. 23

2.4 Security Vulnerability Analysis .. 24

 Benchmarking of Tools ... 25

2.5 Trust and Subjective Logic ... 27

2.6 Rank Correlation ... 30

2.7 Related Work .. 31

 PROPOSED APPROACH .. 33

3.1 Ranking Scheme ... 33

 Base Scheme based on the categories of evidences (B1) .. 34

 Base Scheme based on the frequency of evidences (B2) .. 34

 Base Scheme based on the severity of evidences (B3) .. 35

 Consensus Scheme treating each tool equally (C1) ... 36

 Consensus Scheme based on the trust of the tools (C2) .. 36

3.2 Dataset... 37

6

3.3 Tools Selection.. 38

3.4 Tool Analysis .. 38

 MobSF ... 38

Code Analysis ... 39

Manifest Analysis .. 39

 AndroBugs ... 46

 Qark ... 49

3.5 CVSS Calculation ... 49

 MobSF ... 49

 Androbugs .. 58

 QARK .. 60

 EXPERIMENTAL RESULTS .. 63

4.1 Benchmark Analysis ... 63

4.2 Individual Tool Results ... 68

 MobSF Results... 68

 AndroBugs Results .. 70

 QARK Results ... 72

 Correlation of the ranks between the Tools ... 74

4.3 Combined tool results ... 75

 Consensus Scheme treating each tool equally (C1) Results 76

 Consensus Scheme based on the trust of the tools (C2) Results 78

4.4 Summary ... 80

 CONCLUSION AND FUTURE WORK ... 82

REFERENCES ... 84

7

LIST OF TABLES

Table 1. CVSS Vector String Base Metric Values ... 22

Table 2. CVSS Metric Values ... 23

Table 3. Dataset Count .. 37

Table 4. MobSF Manifest categories from source code ... 40

Table 5. Final List of findings for MobSF Manifest Analysis .. 45

Table 6. All categories of findings reported by Androbugs and their type 47

Table 7. CVSS Scores Provided by MobSF ... 50

Table 8. Calculated CVSS for MobSF Code Analysis ... 52

Table 9. Calculated CVSS for MobSF Manifest Analysis ... 54

Table 10. Calculated CVSS for Androbugs .. 58

Table 11. Calculated CVSS for Qark .. 60

Table 12. Ghera Results .. 63

Table 13. Ghera count by category ... 68

Table 14. Precision, Recall, and F-Score for Ghera Benchmark Results 68

Table 15. MobSF Summary .. 69

Table 16. Kendall Tau’s Correlation for MobSF .. 70

Table 17. AndroBugs Summary ... 71

Table 18. Kendall Tau's Correlation for Androbugs ... 72

Table 19. Qark Summary .. 72

Table 20. Kendall Tau's Correlation for Qark .. 74

Table 21. Correlation between rankings generated by the tools for B1 .. 74

Table 22. Correlation between rankings generated by the tools for B2 .. 75

Table 23. Correlation between rankings generated by the tools for B3 .. 75

Table 24. C1 Summary ... 76

Table 25. Kendall Tau's Correlation for C1 .. 77

Table 26. C2 Summary ... 78

Table 27. Kendall Tau's Correlation for C2 .. 79

8

 LIST OF FIGURES

Figure 1. Example of Android Manifest File .. 17

Figure 2. Generic Ranking Framework .. 33

Figure 3. Base Scheme based on categories of evidences (B1) .. 34

Figure 4. Base Scheme based on the frequency of evidences (B2) .. 34

Figure 5. Base Scheme based on the severity of evidences (B3) .. 35

Figure 6. Consensus Scheme treating each tool equally (C1) .. 36

Figure 7. Consensus Scheme using the trust of tools (C2) ... 37

9

ABSTRACT

With the large number of Android apps available in app stores such as Google Play, it has

become increasingly challenging to choose among the apps. The users generally select the apps

based on the ratings and reviews of other users, or the recommendations from the app store. But it

is very important to take the security into consideration while choosing an app with the increasing

security and privacy concerns with mobile apps. This thesis proposes different ranking schemes

for Android apps based on security apps evaluated from the static code analysis tools that are

available. It proposes the ranking schemes based on the categories of evidences reported by the

tools, based on the frequency of each category, and based on the severity of each evidence. The

evidences are gathered, and rankings are generated based on the theory of Subjective Logic. In

addition to these ranking schemes, the tools are themselves evaluated against the Ghera benchmark.

Finally, this work proposes two additional schemes to combine the evidences from difference tools

to provide a combined ranking.

10

 INTRODUCTION

There has been a significant increase in the usage of smartphones in the past decade [1].

Google’s Android OS and Apple’s iOS have been the two most popular operating systems that

have been most widely used for the smartphone devices. Android OS dominates the smartphone

market share, running in more than 70% of all mobile devices [2]. This popularity of smartphones

has also led to development of large number of apps that run on these devices. As of November

2020, there are over 3 million Android Apps published in Google Play, the official marketplace

for Android Apps [3].

In this competitive market, the users of these mobile devices have the flexibility of selecting

apps for their particular needs from a large variety of apps. People generally rely on the app ratings

and reviews, and the features mentioned in the description of the apps on the app store for selecting

apps for their use. The app ratings and reviews alone can sometimes be biased and may not be a

true reflection of the quality of the apps. Security is one of the most important internal metrics

which should be considered during the selection of apps. This thesis proposes a way of ranking

and selecting apps based on the security evidences gathered through the static code analysis of the

apps.

The types of security risks posed by mobile apps are quite different from the risks involved

with desktop or Web software. Most of the mobile applications rely on user data and constantly

communicate through network with remote servers and devices. It is important to make sure that

the data is protected within the device as well as when it is being transmitted over a communication

channel such as WiFi, Bluetooth, NFC, etc. With the advancement of smartphones, people have

become more dependent on such devices. Many apps use important personal data of the users (such

as their photos, location, personal messages, etc.), which makes the security of data even more

important. Hence, it is important to take the security of the applications into consideration while

downloading an app. We are considering these security issues for ranking Android apps so that the

users can consider them while downloading an app for their usage.

There have been numerous efforts on identifying and categorizing the security issues in

mobile apps. Several open source and commercial static analysis tools are available that can detect

security issues in the applications. These tools are generally used during development to detect

and fix security and privacy issues. We use these tools as the sources of evidence to rank apps.

11

One of the challenges that needs to be considered, while collecting security-related evidences

is that the issues detected by the static analysis tools are not all equivalent. Hence, we need to

consider issues such as the frequency, severity, impact, etc., of the issues to get a better ranking of

similar apps. There are standards such as OWASP Mobile Top Ten [4] and Common Weakness

Enumeration (CWE) in Mobile Applications [5] that categorizes the security issues into different

levels of severity. While these standards categorize the security vulnerabilities, each category

within the standards can cover a broad number of vulnerabilities that can have different severity.

During the security analysis, another standard metric that considers different issues is the Common

Vulnerability Security Score (CVSS). CVSS is a metric that calculates a security score based on

factors such as the type of attack, its severity, complexity of exploiting the vulnerability, and the

impact of the vulnerability in terms of confidentiality, availability and integrity. In the research,

the issues being detected are classified and scored using the CVSS and integrated into our ranking

methodology.

Another challenge is that the tools may themselves not be reliable. Most of the static analysis

tools are known to report false positives [6]. It is difficult to consider each issue when we are

running static analysis on large number of real-world apps. This can be overcome by using a

sample set of benchmark apps to analyze the reliability of the tools. This research uses Ghera

android vulnerabilities benchmark [7] to benchmark each of the selected static analysis tools, and

based on the performance on the benchmark, we have assigned them a reputation score. The Ghera

benchmark is chosen over other available benchmarks due several factors including the number of

issues reported across different categories, the nature of the issues reported, and the format of the

benchmark apps are organized.

Finally, the degree of our belief (our trust) that an app is secure needs to be quantified.

Subjective Logic [8] is used to represent the trust of different app based on the evidences generated

by the static analysis tools. Subjective Logic allows us to represent an opinion about a proposition

(in our research, the proposition being that the app is secure) using a tuple of belief, disbelief and

uncertainty. Subjective Logic is used because it incorporates a degree of uncertainty unlike

traditional binary logic. It also provides several operators that can be used to combine opinions.

These operators are useful in calculating the trust of an app and combining the opinion of multiple

static analysis tools.

12

In this research, we have proposed three basic ranking schemes that consider different factors

for calculating the ranks. The first scheme uses the different categories of vulnerabilities present

in the apps. The second scheme considers the frequency of vulnerabilities in each category. The

third scheme considers the severity of each vulnerability based on the CVSS. We can use these

three schemes to calculate ranks using each of the selected tools separately. We also provide two

additional schemes to combine the ranks from the selected tools. Among the two schemes that

combine the opinions of different tools, the first one considers each tool equally whereas the

second tools assign a weight to each tool based on their performance in the benchmark.

The analysis is performed using three different static analysis tools. Our dataset contains 175

apps across 8 different categories. Five of the categories (finance, insurance, news, shopping, and

travel) consist of 5 apps each. These five categories help in performing a detailed analysis of our

ranking schemes. Three categories (games, photography, and tools) contain 50 apps in each

category. We have used these three categories to validate our ranking schemes in a larger data set.

Any ranking of app is subjective in nature and depends on various factors that are taken into

consideration and the weightage given those factors. There is no single ground truth that we can

rely to measure the correctness of any ranking method. The ranking schemes that we have proposed

in this research provide a justifiable ranking scheme based on the security evidences from different

static analysis tools and provide a basis for similar research in the future.

1.1 Objective

The goal of the thesis is to analyze the security vulnerabilities present in android applications

and develop schemes for ranking the applications based on the presence of security vulnerabilities.

1.2 Contribution

1. This thesis proposes three basic ranking schemes based on empirically collected security

evidences using Subjective Logic, and two additional schemes to combine rankings from

different static analysis tools from the basic schemes.

2. This research performs an empirical analysis and obtain the CVSS scores for the

evidences detected by the static code analysis tools used in the experiments.

13

3. This effort researches common benchmarks and analyzes the reliability of the static code

analysis tools for integrating them into the ranking scheme.

4. Finally, this work employs the proposed schemes on Apps collected from the Google Play

(the official marketplace for Android apps).

14

 RELATED WORK AND BACKGROUND

This chapter discusses the background theory of the related concepts and describes

prominent research efforts associated with the work for this research.

2.1 Key Concepts related to Android

There are several key concepts related to Android Apps that are useful while analyzing the

security of the Android applications.

 Android Components

An android app is comprised of four different types of components [9]:

1. Activities [10]: An Activity provides the user interface for the apps. It usually

represents a single screen in the app. It displays the views to the users and handles user

interactions. Activities also allow users to navigate to other activities.

2. Services [11]: Services is a component that allows handling of background tasks. It

does not provide any user interface. Services can be used for tasks such as playing

music in the background, syncing data over network, etc. Services are of three types:

a. Foreground Services: These services are noticeable to the users and must display

a notification. An example of foreground service is an audio app playing music in

the background.

b. Background Services: These services perform operations in the background

without any notification to the users.

c. Bound Services: These services are tied to other components and can exchange

data with the components it is bounded to.

3. Broadcast Receivers [12]: Broadcast Receivers provide a mechanism for different

events to be delivered outside the regular flow of the apps. For example, we can use

broadcast receiver to listen for a broadcast announcing that the battery is low, and the

receiver gets triggered even when the app is not running.

15

4. Content Providers [13]: Content providers manage the app data stored in any

persistence mechanism. Other apps can query or modify the data through the content

providers with appropriate permissions.

The activities, services, and broadcast receivers are activated using messages called Intents

[14]. Intents are used to build components together at runtime. Intents can also contain data that is

passed onto the components. Intents are of two types:

1. Explicit Intents: It specifies the target application’s package name or a fully qualified

component class name to trigger a component.

2. Implicit Intents: Implicit Intents use intent filters to identify the action to be performed,

and the components that can satisfy the action are triggered to handle it. Implicit intents

are generally used to allow communication between different apps.

Content Providers on the other hand are triggered using Content Resolvers [15]. The content

resolvers provide CRUD (create, read, update, delete) methods for the data source defined in the

content providers. The content providers are identified using a simple URI that uses the content://

schema.

 Permissions

Permissions [16] are a security mechanism provided to protect the privacy of the users. Each

app runs in its own sandbox environment and requires permissions to interact with the system

resources and other app. Apps must declare permissions to use sensitive data such as performing

network access, sending SMS, reading or writing the user’s private data, etc. Permissions are

declared in the manifest file.

There are three different protection levels of permissions [16]:

1. Normal Permissions: These permissions are general permissions that do not use private

data of the users.

2. Signature Permissions: These permissions are granted only to the apps that are signed by

the same certificate.

3. Dangerous Permissions: Dangerous permissions are required to access data or resources

that involve user’s private information.

16

Before Android 5.1.1, permissions were requested during installation, but from Android 6.0

onwards dangerous permissions are requested only in the runtime with the normal permission

being requested at the installation time.

It is recommended to declare only the permissions that are really required by an app. For

runtime permissions, it is also recommended to provide the context to why the permission is being

asked for.

There are several pre-existing permissions defined in the android system. It is also possible

to define custom permissions to restrict access to resources provided by the app.

 App Resources

Resources such as images, audio files, layouts, styles, etc. are saved in the res folder. A

unique identifier is generated for each of the resource by the SDK, and this unique code is

accessible in the source code.

 The Manifest File

The AndroidManifest.xml file is an XML file present in all applications that allows the

system to know the details of the app. It declares all the components along with the application

details such as the application name, package name, version code, version name, minSdk and

targetSdk versions, permissions, etc.

Permissions can be declared using the <uses-permission> tag. The components can be

declared using the following tags inside the <application> tag:

• <activity> for Activities

• <service> for Services

• <provider> for Content Providers

• <receiver> for Broadcast Receivers

17

Figure 1. Example of Android Manifest File (reproduced verbatim from [17])

An example of manifest from the android developer guide [17] is shown in Figure 1. The

manifest declares two activities: MainActivity (which is the launcher activity that is launched when

the app is opened) and the DisplayMessageActivity. We can also see the metadata related to the

app in the manifest.

 APK File

All the compiled code of an android app, along with data and resource files, is packaged as

an archive file called the Android package (APK). The file has an extension “.apk”.

The compiled code is in Dalvik Executable (dex) format. Tools such as dex2jar [18] and

jadx [19] convert the dex to Java Archive (jar) format, so that the compiled Java classes can be

analyzed using readily available code analysis tools.

18

2.2 Mobile Application Security

The security challenges for Mobile Apps are different from the security challenges posed

by traditional desktop apps and Web apps. This can be primarily attributed to three factors:

1. The architecture of the mobile platforms such as Android and iOS provide sets of APIs that

are significantly different from that of desktop or laptop operating systems. The platforms

themselves take into consideration a lot of factors to make the mobile apps secure. The

platforms use sandboxing environment to prevent mobile apps from causing harm to the

device or other apps. They provide APIs to program the apps. Special APIs are provided

for Inter-Process Communication (IPC). To use features such as Location and Internet, a

permission model is provided. It is important the applications follow best security practices

to avoid any leaks of sensitive information.

2. The purpose, pattern and frequency of the usage of mobile apps are also considerably

different than those of desktop or Web apps. The users use the applications for various

tasks to make their day-to-day lives easier. People use apps for managing their navigation,

finance, education, healthcare, and many other aspects of their lives rather than just

managing their contacts and phone calls. This means that the apps handle a lot of personal

data such as location, financial data, and health data. The security challenges are further

amplified by the fact that the mobile apps generally store these data locally as well as back

it up in some remote server or other trusted endpoints. Thus, proper security measures

should be taken to store the data in device, and while communicating these data with trusted

endpoints.

3. The apps are usually packaged into an archived file (for example, APK for Android, and

IPA for iOS). The source code is archived into these files which makes it easier for

malicious users can decompile these archived files and exploit vulnerabilities present in

the apps. They can also tamper with the archived file and send it users. The platform

themselves provide mechanisms to prevent such attacks. These archived files are generally

signed with the developer’s certificate and the users should only download the app from

secure and well-known app stores. The apps need to ensure that they are difficult to tamper

with or reverse engineer by using proper security measures such as code obfuscation.

Due to these differences in the vulnerabilities of mobile apps, the Open Web Application

Security Project (OWASP) has a separate Mobile Security Project. They have identified a separate

19

top ten categories of mobile vulnerabilities published in 2016 [4]. A summary of the top ten

categories are as follows:

• M1 Improper Platform Usage: These vulnerabilities are due to misuse of platform APIs

and the failure of using proper security controls offered by them.

• M2 Insecure Data Storage: Issues related to insecure data storage and unintended data

leakage are covered under this category.

• M3 Insecure Communications: These security issues arise when the data being

communicated is not secured when communicating with trusted endpoints.

• M4 Insecure Authentication: This category covers issues when the authentication and

session management of end users is done poorly.

• M5 Insufficient Cryptography: These issues arise when cryptography is applied to sensitive

data being stored or communicated, but the cryptography being implemented itself does

not fulfil the required security standards.

• M6 Insecure Authorization: Issues with the authorization of users to use different features

of the app are included in this category.

• M7 Client Code Quality: This category includes the code level problems such as buffer

overflow and memory leaks.

• M8 Code Tampering: Making changes to the resources or code in the app binary or any

other form of modifying the original app is covered under this category.

• M9 Reverse Engineering: Mobile apps can be reverse engineered, and its source code,

assets and other resources can be exploited to extract sensitive information such as

cryptography information, backend endpoints and intellectual property.

• M10 Extraneous Functionality: Unintended or malicious backdoor functionalities or other

internal developmental issues that can lead to security exploits comprise this category.

These categories can be utilized to calculate the priority of different categories of findings in

our research. The relevance of the top ten category decreases from M1 down to M10. But even

within each of the ten categories, the findings can have a different impact and priority. One of the

ways to quantify these aspects is the Common Vulnerability Scoring System (CVSS). [4]

20

2.3 Common Vulnerability Scoring System (CVSS)

The Common Vulnerability Scoring System (CVSS) is a specification maintained by the

Forum of Incident Response and Security Teams (FIRST) that assigns a numerical value to the

security vulnerabilities based on their severity. The CVSS score can be used to define the criticality

of the vulnerabilities that are found in the apps.

This research uses version 3.0 of CVSS specification. The CVSS specification calculates a

score based on three metric groups [20]:

• Basic Metric Group

• Temporal Metric Group

• Environmental Metric Group.

The Basic Metric Group can be further classified into Exploitability Metrics that defines the

characteristics of the vulnerable component, the Scope that defines the extent to which the

vulnerability can impact resources beyond its privileges, and the Impact metrics that defines the

impact on the confidentiality, availability and integrity of the component. [20]

The Exploitability Metrics consists of the following sub-metrics [20]:

• Attack Vector (AV): The attack vector defines the context through which the vulnerability

can be exploited. It can consist of the following values:

o Network (N): The vulnerability is exposed through the network stack and the

attacker’s path is through the OSI layer 3.

o Adjacent (A): The vulnerability is exposed through the network stack but is limited

to the same shared physical or logical network and cannot be performed across the

OSI layer 3 boundary.

o Local (L): The vulnerability is local and is not exposed through the network stack.

The attacker’s path is through the read/write/execute capabilities.

o Physical(P): The vulnerability requires a physical access to the device being

exploited.

• Attack Complexity (AC): This metric defines the conditions beyond the attacker’s control

that must be present to exploit the vulnerability. The metric may have a value of low(L) or

high(H) depending on whether special conditions that requires a measurable amount of

preparation or execution is required for the exploitation of the vulnerability.

21

• Privileges Required (PR): This metric defines the level of privilege required to exploit the

vulnerability. It’s value is None (N) if the attacker does not require any authorization; Low

(L) if the attacker requires basic privileges that could only affect the settings and files

owned by users; or High (H) if significant privileges that could affect component-wide

settings and files are required.

• User Interaction (UI): This metric can have values None(N) or Required(R) depending on

whether the exploitation of the vulnerability requires some interaction from the user.

The scope (S) defines whether the vulnerability in one software component can lead to changes

across the other components in the system. If the attack only affects the authorized scope, its value

is Unchanged (U). If the vulnerability affects resources beyond the authorized scope of the

component being exploited, its scope is Changed (C) [20].

The Impact Metrics are defined as follows [20]:

• Confidentiality Impact (C): It measures the impact to the confidentiality of information

being managed by the component caused by the exploitation of the vulnerability. If total

confidentiality is lost, the values is High(H). If some of the information are exposed by the

vulnerability but the attacker does not have control over what information is obtained, it

should be categorized as Low(L). If there is no loss of confidentiality, the metric should

have value None(N).

• Integrity Impact (I): It measures the impact on the integrity of the information being

managed by the component caused by the exploitation of the vulnerability. It should have

High(H) value if there is total loss of integrity, Low(L) if there is a limited amount of

modification that can be caused by the attacker, or None(N) if there is no loss of integrity.

• Availability Metric (A): It measures the impact on availability of the component caused by

the vulnerability. If the attack can cause total denial of access to resources, the vulnerability

can be categorized as High (H). If the attack is causes reduced performance or interrupts

availability temporarily, it can be classified as Low (L). If there is no impact on the

availability of the system, the metric can be assigned value None (N).

The Temporal and Environmental Metric groups are optional. The temporal metrics define the

current state of the exploit technique (Exploit Code Maturity), existence of patches or workarounds

(Remediation Level) and confidence on the description of vulnerability (Report Confidence). The

22

environmental metrics define the importance of Confidentiality, Integrity and Availability

Requirements of the affected component to the organization. [20]

The CVSS metrics can be textually represented in the form of a vector string. The following

table (extracted from Table 15 in [20]) from the CVSS specification denotes the symbols used for

the vector string for the base metrics (the symbols for temporal and environmental metrics can be

found in the specification):

Table 1. CVSS Vector String Base Metric Values

Metric Values (V)

Attack Vector, AV [N, A, L, P]

Attack Complexity, AC [L, H]

Privileges Required, PR [N, L, H]

User Interaction, UI [N, R]

Scope, S [U, C]

Confidentiality, C [H, L, N]

Integrity, I [H, L, N]

Availability, A [H, L, N]

A CVSS vector string is of the form [20]:

𝐶𝑉𝑆𝑆: [𝑉𝑒𝑟𝑠𝑖𝑜𝑛]/𝐴𝑉: [𝑉]/𝐴𝐶: [𝑉]/𝑃𝑅: [𝑉]/𝑈𝐼: [𝑉]/𝑆: [𝑉]/𝐶: [𝑉]/𝐼: [𝑉]/𝐴: [𝑉]

An example of the CVSS vector string for a vulnerability with a Physical Attack Vector,

Low Attack Complexity, None Privilege Required, Required User Interaction, Unchanged Scope,

Low Confidentiality Impact, High Integrity Impact and None Availability Impact is:

𝐶𝑉𝑆𝑆: 3.0/𝐴𝑉: 𝑃/𝐴𝐶: 𝐿/𝑃𝑅: 𝑁/𝑈𝐼: 𝑅/𝑆: 𝑈/𝐶: 𝐿/𝐼: 𝐻/𝐴: 𝑁

The metrics in the vector string can be in any order according to the specification. This

format from the specification [20] has been used throughout this document for representing the

CVSS metrics of a vulnerability.

The National Vulnerabilities Database (NVD) [21] is one of the popular vulnerabilities

databases that used the CVSS as a metric for the vulnerabilities reported in the database. The NVD

is a reliable source of information that we have used for the CVSS score for several vulnerabilities

in this research.

For the security vulnerabilities not available in the database, the CVSS vector can be

determined by analyzing the vulnerability and the CVSS score can be calculated using the formula

described in the following section.

23

 CVSS Calculation

Given a CVSS vector, the CVSS score can be calculated using the CVSS Calculator [22].

The calculation is based on the numerical values and the formulas defined in the CVSS

specification. There are formulas defined for the temporal and environmental metrics in the

specification. This study uses only the base metrics for simplicity.

In the specification [20], the Base Score is defined as a function of Impact Sub-Score (ISC)

and Exploitability Sub-Score (ESC).

The ISC is calculated as follows [20]:

 𝐼𝑆𝐶 = {
6.42 ∗ 𝐼𝑆𝐶𝐵𝑎𝑠𝑒 (𝑖𝑓 𝑠𝑐𝑜𝑝𝑒 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑)

7.52 ∗ [𝐼𝑆𝐶𝐵𝑎𝑠𝑒 − 0.029] − 3.25 ∗ [𝐼𝑆𝐶𝐵𝑎𝑠𝑒 − 0.02]15 (𝑖𝑓 𝑠𝑐𝑜𝑝𝑒 𝑐ℎ𝑎𝑛𝑔𝑒𝑑)

Where,

𝐼𝑆𝐶𝐵𝑎𝑠𝑒 = 1 − [(1 − 𝐼𝑚𝑝𝑎𝑐𝑡𝐶𝑜𝑛𝑓) ∗ (1 − 𝐼𝑚𝑝𝑎𝑐𝑡𝐼𝑛𝑡𝑒𝑔) ∗ (1 − 𝐼𝑚𝑝𝑎𝑐𝑡𝐴𝑣𝑎𝑖𝑙)

The ESC is calculated as follows:

𝐸𝑆𝐶 = 8.22 ∗ 𝐴𝑡𝑡𝑎𝑐𝑘 𝑉𝑒𝑐𝑡𝑜𝑟 ∗ 𝑃𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ∗ 𝑈𝑠𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

The Base Score is calculated as follows [20]:

𝐵𝑎𝑠𝑒 𝑆𝑐𝑜𝑟𝑒 = {

0 [𝑖𝑓 𝐼𝑆𝐶 ≤ 0]

𝑟𝑜𝑢𝑛𝑑(min(𝐼𝑆𝐶 + 𝐸𝑆𝐶, 10)) [𝑖𝑓 𝐼𝑆𝐶 > 0 𝑎𝑛𝑑 𝑆𝑐𝑜𝑝𝑒 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑]

𝑟𝑜𝑢𝑛𝑑(min(1.08 ∗ (𝐼𝑆𝐶 + 𝐸𝑆𝐶), 10))[𝑖𝑓 𝐼𝑆𝐶 > 0 𝑎𝑛𝑑 𝑆𝑐𝑜𝑝𝑒 𝐶ℎ𝑎𝑛𝑔𝑒𝑑]

The metric values (from the Table 16 of the specification [20]) can be found in table below:

 Table 2. CVSS Metric Values

Metric Metric Value Numerical Value

Attack Vector Network

Adjacent Network

Local

Physical

0.85

0.62

0.55

0.2

Attack Complexity Low

High

0.77

0.44

Privilege Required None

Low

High

0.85

0.62 (0.68 if Scope is Changed)

0.27 (0.50 if Scope is Changed)

User Interaction None

Required

0.85

0.62

ImpactConf, ImpactInteg,

ImpactAvail

High

Low

None

0.56

0.22

0

24

These metric values are used later during the calculation of CVSS for the issues detected by

the tools.

2.4 Security Vulnerability Analysis

There have been numerous efforts for detection of vulnerabilities in Android apps. A lot of

research has been done be security experts, and different tools have been developed for detecting

vulnerabilities in the Android applications.

There are three major categories of tools for detecting security vulnerabilities:

1. Static Code Analysis Tools: These tools analyze the bytecode or the source code of the

apps without executing the code. These tools generally perform quick analysis, but due

to lack of visibility of data, they may contain large number of false positives. Qark [23],

Androbugs [24], MobSF [25], and JAADAS [26] are some of the generic static open

source tools available to be used for static analysis of Android apps.

2. Static Taint Analysis Tools: Taint Analysis Tools are specialized static analysis tools

that detect information leakage. They track every data from every possible source all the

way through to the sinks (where the data is used). These tools are specialized at finding

the data leakages, but cannot detect other kinds of security vulnerabilities such as

vulnerabilities related to the SSL, Web, permissions, etc. Flowdroid [27], DroidSafe

[28], and Amandroid [29] are some examples of static analysis that are used for taint

analysis of Android apps.

3. Dynamic Code Analysis Tools: Dynamic Analysis Tools run the analysis during or after

execution of the code. They are capable of providing much more visibility and details

to the vulnerabilities being detected, but they take a longer time to execute and can miss

the vulnerabilities that were not triggered during the execution of the code. MobSF [25],

in addition to static analysis, is also able to perform the Dynamic Code Analysis of

Android apps.

25

 Benchmarking of Tools

Besides development of tools, there have been efforts to analyze the effectiveness of the

tools, and several benchmarks have been created for such analysis. The various benchmarks that

were considered are discussed below.

The Ghera Android Vulnerabilities benchmark [7] provides source code for the benign app,

malicious app and the secure app for each benchmark. The Benign app is the version of the

application that exhibits the vulnerability, the malicious app is the application that exploits the

vulnerability in the benign app, and the secure app is the application with the security vulnerability

removed from the benign app. Each benchmark also provides a summary of the vulnerability along

with the affected Android versions and description and example of the vulnerability being

demonstrated through the benign and the secure apps. The Ghera benchmark has a total of 60

benchmarks categorized into seven groups – Cryptography, Inter-Component Communication

(ICC), Networking, Non-API, Permission, Storage, System, and Web.

Damn Insecure and Vulnerable App (DIVA) [28] is an app that contains insecure and

vulnerable code. It was originally intended as a learning tool for Android developers to understand

different security vulnerabilities, but it has been used by security professionals for penetration

testing. It includes various challenges such as insecure logging, hardcoding issues, insecure data

storage, input validation issues, access control issues, etc. [28]

Purposefully Insecure and Vulnerable Android Application (PIVAA) [29] is another

insecure and vulnerable app that was designed as an improvement over the outdated DIVA. It

covers the following vulnerabilities [29]:

• Usage of Weak Initialization vector

• Possible Man-In-The-Middle (MITM) Attack

• Remote URL load in WebView

• Object Deserialization on Untrusted Resource

• User-Supplied Input in SQL queries

• Missing Tapjacking Protection

• Enabled Application Backup

• Enabled Debug Mode

• Weak Encryption

26

• Hardcoded Encryption Keys

• Dynamic Code Loading

• Creation of World Readable or Writable Files

• Usage of Unencrypted HTTP Protocol

• Weak Hashing Algorithms

• Predictable Random Number Generation

• Exported Android Components

• JS enabled in a WebView

• Temporary File Creation

• Hardcoded Insecure Data

• Untrusted Certificate Authorities (CA) Acceptance

• Usage of banned API functions

• Self-Signed Certificate Authority (CA) enabled in Webview

• Cleartext SQLite Database

DroidBench [30] is a micro-benchmark designed to evaluate the effectiveness of Android

taint-analysis tools. It comprises of 120 test cases for data leakage in Android apps. The test cases

cover the leakages related to Java (such as Arrays and Lists, Callbacks, Reflection) and Android

APIs (such as Lifecycle, Inter-App Communication, Inter-Component Communication).

ICC-Bench [31] is a more specialized repository of benchmark apps focused towards Inter-

Component data leakage in Android apps. It consists of 24 small apps representing various

vulnerabilities related to ICC.

DialDroid-Bench [32] is another benchmark focused towards the Android taint-analysis

tools that consists of 30 real world applications. It only consists of the apk files without any source

code or vulnerability details making it difficult to put it into use for analysis of the tools.

This research chooses to use the Ghera benchmark over the other benchmark for several

reasons. First, the Ghera benchmark covers a wider range of issues than other benchmarks across

several categories. It covers a broader range of issues than the benchmarks such as DroidBench,

ICC-Bench, DialDroid-Bench, which are focused towards the taint analysis tools. Secondly, the

Ghera benchmark consists of micro-benchmarks that makes it easier to look at each issue

separately. Though DIVA and PIVAA also represent categories that focuses issues not just related

to the taint analysis, they contain all the errors in a single application. This makes the analysis

27

difficult because it is difficult to verify if the issue is reported correctly. Lastly, the Ghera

benchmark also provides good documentation of the issues and a version of the benchmark app

with the issue fixed. This is particularly useful because it helps to recognize the false negatives

reported by the tools.

2.5 Trust and Subjective Logic

Trust is the measurement of the degree of belief or disbelief of one entity towards another

entity. In the thesis, our trust is related to the security of the android application. The trust of an

application is based on the evidences gathered using different static analysis tools.

We are using Subjective Logic to represent the trust for the application. The subjective logic

is a probabilistic model created by Jøsang [8] which defines an agent’s opinion of a system in

terms of belief, disbelief and uncertainty. We are using this opinion in terms of trustworthiness

developed through the evidences gathered.

In traditional probabilistic model, we can consider a proposition is considered to be binary

(either it is true or false). Subjective Logic takes into account the factor of uncertainty that we

encounter in the real world. Subjective Logic proposes a belief model. The trust of a system is

defined using ω = (b, d, u) tuple where the values b, d and u represent the belief, disbelief and

uncertainty. An important property similar to traditional probabilistic model is that the sum of b,

d, and u is always 1.

Jøsang has also described various operators [8] for combining the opinions from different

sources. The operators are as follows:

• Conjunction: It is used to combine opinion of an agent about two different subjects using

conjunction (“and” operation). Suppose that ωx = (bx, dx, ux) is an opinion that app x can

be trusted and ωy = (by, dy, uy) is an opinion that app y can be trusted. Then the opinion

that both app x and app y can be trusted is represented as ωx  y = (bx  y, dx  y, ux  y) such

that

 𝑏𝑥  𝑦 = 𝑏𝑥𝑏𝑦 (Eq 1)

 𝑑𝑥  𝑦 = 𝑑𝑥+𝑑𝑦 − 𝑑𝑥𝑑𝑦 (Eq 2)

 𝑢𝑥  𝑦 = 𝑏𝑥𝑢𝑦+𝑢𝑥𝑏𝑦 + 𝑢𝑥𝑢𝑦 (Eq 3)

28

• Disjunction: It is used to combine opinion of an agent about two different subjects using

disjunction (“or” operation). Suppose that ωx = (bx, dx, ux) is an opinion that app x can be

trusted and ωy = (by, dy, uy) is an opinion that app y can be trusted. Then the opinion that

either app x or app y can be trusted is represented as ωx  y = (bx  y, dx  y, ux  y) such that

 𝑏𝑥  𝑦 = 𝑏𝑥 + 𝑏𝑦−𝑏𝑥𝑏𝑦 (Eq 4)

 𝑑𝑥  𝑦 = 𝑑𝑥𝑑𝑦 (Eq 5)

 𝑢𝑥  𝑦 = 𝑑𝑥𝑢𝑦+𝑢𝑥𝑑𝑦 + 𝑢𝑥𝑢𝑦 (Eq 6)

• Negation: It is a unary operation that represents an opinion being false. Suppose that ωx

= (bx, dx, ux) is an opinion that app x can be trusted. Then the opinion that the app x cannot

be trusted is represented as ωx = (bx, dx, ux) such that

 𝑏𝑥 = 𝑑𝑥 (Eq 7)

 𝑑𝑥 = 𝑏𝑥 (Eq 8)

 𝑢𝑥 = 𝑢𝑥 (Eq 9)

• Discounting (): Discounting operation is used for chaining operations. Suppose that

ωx
t = (bx

t, dx
t, ux

t) is an opinion that app x can be trusted according to evidences from tool

t, and ωt = (bt, dt, ut) represent an opinion that the tool t can be trusted. Then the overall

opinion that the app x can be trusted given the opinion about tool t can be represented as

ωx = ωt  ωx
t = (bx, dx, ux) such that

 𝑏𝑥 = 𝑏𝑡𝑏𝑥
𝑡 (Eq 10)

 𝑑𝑥 = 𝑑𝑡𝑑𝑥
𝑡 (Eq 11)

 𝑢𝑥 = 𝑑𝑡 + 𝑢𝑡 + 𝑏𝑡𝑢𝑥
𝑡 (Eq 12)

• Consensus Operator (): The consensus operator is an operator that is used to combine

opinions from two different agents. The consensus operator tries to reduce the

uncertainty by combining two opinions. Suppose ωt1 = (bt1, dt1, ut1) and ωt2 = (bt2, dt2, ut2)

are the opinions that an app x can be trusted according two tools. Then the combined

opinion can be represented as ωx = ωt1  ωt2 = (bx, dx, ux) such that

29

 𝑏𝑥 =
(𝑏𝑡1𝑢𝑡2 + 𝑢𝑡1𝑏𝑡2)

⁄
(Eq 13)

 𝑑𝑥 =
(𝑑𝑡1𝑢𝑡2 + 𝑢𝑡1𝑑𝑡2)

⁄
(Eq 14)

 𝑢𝑥 =
(𝑢𝑡1𝑢𝑡2)

⁄
(Eq 15)

 where

 = 𝑢𝑡1 + 𝑢𝑡2 − 𝑢𝑡1𝑢𝑡2 (Eq 16)

The conjunction, disjunction and consensus operators can be applied in any order since

they are commutative and associative.

Jøsang [33] has also proposed on Ordering operation to sort different opinions to order

opinions about different agents. Given two applications, the application that can be trusted more

is the application that has the highest (b + u) / (b + d + 2u) if the values are equal, else the

application with the lowest uncertainty u. We can use this comparison logic to order arbitrary

number of applications.

For weighted consensus, Zhou et. al. [34] have proposed a cumulative weighted fusion

operator. Given ωe1 = (be1, de1, ue1) and ωe2 = (be2, de2, ue2) from two different set of evidences with

weights  and  respectively, we can use the fusion operator to calculate the combined opinion as

ωx = (bx, dx, ux) such that

𝑏𝑥 =

( − 𝑢𝑒1𝑢𝑒2)( 𝑏𝑒1𝑢𝑒2 +  𝑏𝑒2𝑢𝑒1)

(𝑢𝑒2 + 𝑢𝑒1 + ( + )𝑢𝑒1𝑢𝑒2)

(Eq 17)

𝑑𝑥 =

( − 𝑢𝑒1𝑢𝑒2)( 𝑑𝑒1𝑢𝑒2 +  𝑑𝑒2𝑢𝑒1)

(𝑢𝑒2 + 𝑢𝑒1 + ( + )𝑢𝑒1𝑢𝑒2)

(Eq 18)

 𝑢𝑥 =
(𝑢𝑒1𝑢𝑒2)

⁄
(Eq 19)

where

 = 𝑢𝑡1 + 𝑢𝑡2 − 𝑢𝑡1𝑢𝑡2 (Eq 20)

The values of ue1 and ue1 cannot be 0 or 1 for using this operator because denominator will

be equal to 0.

30

Ceolin et. al. [35] have proposed the formula for calculating the subjective logic opinion

tuple from the evidences as follows:

𝑏 =

𝑝𝑜𝑠𝑡𝑖𝑣𝑒 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 + 𝑛

(Eq 21)

𝑑 =

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 + 𝑛

(Eq 22)

 𝑢 =
𝑛

𝑡𝑜𝑡𝑎𝑙 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 + 𝑛
 (Eq 23)

where n is indicates cardinality of the set of possible outcomes.

This study uses the value of n as 2 because our opinion about an app is to either trust it or

not trust it based on the evidences.

2.6 Rank Correlation

Kendall Tau’s rank correlation [36] is one of the popular methods to measure the degree of

correlation between two ranking schemes. Kendall Tau distance is calculated by counting the

number of pairwise disagreements between two rank orders. It is defined as:

 𝜏 =
𝑛𝑐 − 𝑛𝑑

(𝑛
2

)
 (Eq 24)

where nc is the number of concordant pairs and nd is the number of discordant pairs.

 (𝑛
2
) =

𝑛(𝑛−1)

2
 is the binomial coefficient for the number of ways to choose two out of n

items.

To address ties in the rankings, different versions of Kendall Tau have been proposed over

the years. The “tau-b” version accounts for ties and is defined as:

 𝜏 =
𝑛𝑐 − 𝑛𝑑

√(𝑛𝑐 + 𝑛𝑑 + 𝑇)(𝑛𝑐 + 𝑛𝑑 + 𝑇)
 (Eq 25)

 where T is number of ties in the first ranking and U is the number of ties in the second

ranking.

31

SciPy library for Python language provides the method for calculating the Kendall Tau’s

correlation [37].

Kendall Tau’s correlation has been used in the study to compare rankings generated by

different schemes and tools.

2.7 Related Work

There has not been a lot of work in the research community to rank and compare Android

applications. The ratings and reviews provided by the App Stores are used by most users to select

their applications. Google Play does not provide a universal ranking methodology of android apps,

but rather suggests apps based on user’s preferences and history.

There are third-party organizations like AppBrain [40], and AppAnnie [3] that provide

ranking of Android apps based on factors such as ratings, number of downloads, active users, etc.

They either use a single metric or do not specify the calculation that was performed for calculating

the ranking of apps.

Besides these, there are few other works that have focused towards ranking of Android

apps in the research community.

Chowdhury et. al. [38] have proposed a ranking scheme based on the internal and external

views of apps. They have used FindBugs, a static analysis tools for Java code, to perform the

evaluation of internal view, and used sentiment analysis on the ratings to calculate the external

rating. They propose a method to combine these two views for a holistic evaluation of the Android

apps. This paper builds on a previous research [39] where a ranking scheme has been proposed

based on the results of Findbugs, and shows disparity between the findings and the ratings and

reviews provided by the users. In another paper [40], they have proposed another ranking scheme

that takes security into consideration. They have evaluated apps based on the results of FlowDroid,

and text analysis of security concerns from the user reviews. This thesis borrows many concepts

from these papers but taking a more detailed approach on evaluating the security of the apps.

Gallege et. al. [44] have also proposed a parallel approach for selecting and recommending the

apps available in online marketplaces.

Aside from the efforts in ranking applications, there have been many studies for evaluating

the analysis tools themselves.

32

Qiu et. al. [41] have performed an analysis between the static taint analysis tools FlowDroid,

AmanDroid and DroidSafe. They have performed the comparison using the DroidBench and ICC-

Bench Benchmark Suites. In this research, we have performed a similar analysis for generic static

analysis tools that were used.

Pauck et. al. [42] have performed an empirical evaluation on the static taint analysis tools

used in the research community. They have used the DroidBench [30] to perform the analysis on

six different tools. They have also proposed ReproDroid framework to perform an accurate and

reproducable evaluation of the static analysis tools to overcome the differences in the evaluation

techniques used by the authors of the tools.

A survey of android security threats and defenses was conducted by Rashidi et. al. [43].

Many of the threats identified are still relevant, whereas some have become outdated. There were

several tools gathered in the survey, but none of the tools fit the needs of this research.

In this chapter, we have introduced all the background and theory required for our proposed

approach. We have borrowed many concepts from the related work and tried to overcome some of

their shortcomings in our research.

33

 PROPOSED APPROACH

This chapter proposes different ranking schemes that are used in our analysis. It also

describes the dataset and the selection of tools. Finally, a detailed analysis of the capabilities of

the tools used on our study is presented.

3.1 Ranking Scheme

A generic framework for the ranking of the android apps is show in the figure below.

Figure 2. Generic Ranking Framework

Given a set of n applications, the framework should return them as an ordered set of apps

by calculating their ranks based on the evidences gathered from the various static analysis tools.

The schemes take the apk files as input and generate a subjective opinion on the applications. The

ordering operation of subjective logic is then used as a ranking algorithm on these subjective logic

opinions to get the ranks of the applications.

This study proposes three different base schemes to generate the subjective opinions on the

trustworthiness of the applications. Each static analysis tools in our experiment are used in these

schemes to gather the evidences and generate opinions. Two more schemes are proposed for

combining the opinions from different static analysis tools. The schemes are discussed in more

detail in the subsections below.

34

 Base Scheme based on the categories of evidences (B1)

The first scheme uses the categories of good practices and security vulnerabilities that are

reported by the tools.

Figure 3. Base Scheme based on categories of evidences (B1)

All the static analysis tools generate different categories of evidences. Each category

representing good practice is treated as positive evidence, and each potential security vulnerability

is treated as negative evidence. The BDU calculator uses the count of positive and negative

categories of evidences to output the subjective logic tuple ω using equations 21-23.

The ranking generated by this scheme will represent the trustworthiness of applications

based on the different kinds of vulnerabilities that may be present in the application.

 Base Scheme based on the frequency of evidences (B2)

The second base scheme considers the frequency of occurrence of each category of the

evidences.

Figure 4. Base Scheme based on the frequency of evidences (B2)

In this scheme, the different categories of evidences along with the frequency of the

occurrences of each of the findings are collected. Given the category and its count, the subjective

logic can be used to calculate subjective logic tuples (ωe1, ωe2, … ωen) using equations 21-23 where

the count is used as the number of positive/negative evidence. These opinions for different

categories of evidences can be combined using the consensus operator (given by equations 13-16)

to give the final opinion ω of the scheme.

35

The ranking generated by this scheme takes into consideration the number of attack surfaces

present in the application.

 Base Scheme based on the severity of evidences (B3)

Besides the frequency of the evidences, the severity of each evidence could be an important

metric for ranking the applications. This scheme adds weights to the consensus operation used in

scheme B2.

Figure 5. Base Scheme based on the severity of evidences (B3)

The static analysis tools return the frequency of each evidence. In addition to the frequency,

a weight representing the severity of evidences is calculated for each evidence.

To calculate the severity of evidences, we explored various approaches. We tried to assign

Common Weakness Enumeration (CWE) [5] to each evidence, but the enumerations were not

available for all the evidences reported by the tools. Another approach was to use the OWASP

Mobile Top 10 [4], but the ten categories were broad and the vulnerabilities within each category

could have different severity. On the other hand, the CVSS score could be calculated separately

for each evidences, and it provided a wholesome score based on various factors such as attack

vector, attack complexity, scope, impact (confidentiality, integrity, availability), etc. that we have

already discussed in detail in Chapter 2. Thus, we decided to use the CVSS as the weight for this

scheme.

The consensus operator in the base scheme (B2) can be replaced with a weighted consensus

operator using the calculated weight. The weighted consensus operator is given by equations 17-

20.

The ranking generated by this scheme considers the different attack surfaces and their

potential impact.

36

 Consensus Scheme treating each tool equally (C1)

One of the ways of combining the opinions is to treat each tool equally. The scheme can

be represented as shown below.

Figure 6. Consensus Scheme treating each tool equally (C1)

This scheme can utilize any of the base schemes to get the opinions from the different tools

and use the consensus operator (equation 13-16) to combine the results.

 Consensus Scheme based on the trust of the tools (C2)

This scheme adds the trust of the tools as an additional factor. The results of running the

benchmarks can be used to calculate the trust of the tools. The trust is discussed in detail in Section

4.1. Assuming the trust of tools are known, the discounting operator (equation 10-12) can be used

to weigh the opinions from each tool before applying the consensus operator (equation 13-16).

37

Figure 7. Consensus Scheme using the trust of tools (C2)

3.2 Dataset

The dataset consists of 175 applications from 7 different categories. The apk files were

downloaded from APKPure [44]. The categories and number of applications in each category is

listed in table below.

Table 3. Dataset Count

Category Number of Applications

News 5

Travel 5

Shopping 5

Insurance 5

Finance 5

Games 50

Tools 50

Photography 50

Each category consists of applications with similar functionality. For example, the games

are all 2048 puzzles, tools are all scientific calculators, photography apps are all photo editors.

Having similar functionality will results in a fair comparison and ranking of applications.

The five categories have 5 applications are used for a detailed analysis of the ranking

schemes. The three other categories having a larger application set are used to verify our initial

analysis and to calculate correlation between different schemes and tools.

38

3.3 Tools Selection

For the selection of tools, we focused on generic static analysis tools that covers many

aspects related to the security of the tools. The taint analysis tools are focused only towards data

leakages are were not considered. Dynamic code analysis tools take a long time for analysis and

may not cover all execution paths. Among the potential tools identified, JAADAS [26] result in

error for the analysis of most of the applications. MobSF [25], AndroBugs Framework [24], and

QARK [23] were the tools that were tested against various application and could run successfully.

Thus, we are using these three tools for our analysis.

3.4 Tool Analysis

All the tools used in this study have different formats for input, output, and storing results.

In this section we are exploring the capabilities of the tools for detecting various kinds of good

practices and vulnerabilities.

 MobSF

MobSF provides a user interface to upload apk files and perform a detailed analysis on the

apk file. It displays the analysis results in the web app but it can also return the results in json

format through Rest API. It can also perform analysis on iOS applications.

MobSF extracts all the metadata of the apk including the name, package name, the launcher

activity, minimum SDK, maximum SDK, version code and version name. It also tracks the

manifest along with all the activities, services, receiver, and providers for the app. It performs

various kinds of security analysis such as checking signer certificate, checking permissions, binary

analysis, manifest analysis, code analysis, file analysis, and malware analysis. It also allows

dynamic analysis on the apps.

Among the analysis that the tool provides, the manifest analysis, and code analysis contain

the results of the static analysis related to most of the security vulnerabilities. Other analysis did

not provide any significant evidences that could be used in our calculations.

In the following sections we look at the code analysis and manifest analysis done by the

tool in detail.

39

Code Analysis

The code analysis returns the good practices and potential vulnerabilities in the application

code. The tool is capable of finding 46 different categories of security evidences. The findings are

categorized as one of the following four levels:

• good (16 categories)

• info (4 categories)

• warning (5 categories)

• high (21 categories)

The good practices found by the code analysis are always reported under the ‘good’ level. The

other categories represent the security vulnerabilities.

Although the three levels (high, info, warning) for the vulnerabilities seem to represent the

severity of the vulnerability, a detailed of the analysis of the type of evidences indicates that it is

not true. It seems to be representing the likelihood of the finding to be an actual security

vulnerability. For example, among the findings reported by MobSF [25], “Insecure WebView

Implementation. Execution of user controlled code in WebView is a critical Security Hole.” has a

warning level, but it is of a high severity vulnerability, and “App creates temp file. Sensitive

information should never be written into a temp file.” has a high level, but the severity is not as

high. Thus, it is preferable to treat all the three levels equally and analyze each category of evidence

for its severity using other metrics such as CVSS.

Manifest Analysis

The manifest rules are defined under the tool’s source code defines 45 categories with a

code, title, name, level, and description for each category. But the results returned after analysis

does not contain the code which is the unique value for the categories. Several code sets have the

same name as shown in Table 4 (extracted from the source code of MobSF [25]).

40

Table 4. MobSF Manifest categories from source code (from [25])

Code Name

a_allowbackup_miss Application Data can be Backed up [android:allowBackup]

flag is missing.

a_allowbackup Application Data can be Backed up

[android:allowBackup=true]

a_testonly Application is in Test Mode [android:testOnly=true]

a_dailer_code Dailer Code: Found

[android:scheme="android_secret_code"]

a_sms_receiver_port Data SMS Receiver Set on Port: Found
[android:port]

a_debuggable Debug Enabled For App [android:debuggable=true]

a_high_action_priority High Action Priority [android:priority]

a_high_intent_priority High Intent Priority [android:priority]

a_improper_provider Improper Content Provider Permissions

a_not_protected is not Protected. [android:exported=true]

c_not_protected is not Protected.[[Content Provider, targetSdkVersion < 17]

a_not_protected_filter is not Protected.An intent-filter exists.

c_prot_unknown_appl is Protected by a permission at application level, but the

protection level of the permission should be checked.[Content

Provider, targetSdkVersion < 17]

c_prot_normal_new_appl is Protected by a permission at the application level should be

checked, but the protection level of the permission if the

application runs on a device where the the API level is less

than 17.[Content Provider, targetSdkVersion >= 17]

c_prot_unknown_new_appl is Protected by a permission at the application level, but the

protection level of the permission should be checked if the

application runs on a device where the the API level is less

than 17.[Content Provider, targetSdkVersion >= 17]

41

Table 4. Continued

c_prot_dangter_appl is Protected by a permission at the application level, but the

protection level of the permission should be checked if the

application runs on a device where the the API level is less

than 17.[Content Provider, targetSdkVersion >= 17]

a_prot_danger_appl is Protected by a permission at the application level, but the

protection level of the permission should be

checked.[android:exported=true]

a_prot_normal_appl is Protected by a permission at the application level, but the

protection level of the permission should be

checked.[android:exported=true]

a_prot_sign_sys_appl is Protected by a permission at the application level, but the

protection level of the permission should be

checked.[android:exported=true]

c_prot_danger_new is Protected by a permission at the application level, but the

protection level of the permission should be checked.[Content

Provider, targetSdkVersion < 17]

c_prot_normal_appl is Protected by a permission at the application level, but the

protection level of the permission should be checked.[Content

Provider, targetSdkVersion < 17]

c_prot_sign_sys_appl is Protected by a permission at the application level, but the

protection level of the permission should be checked.[Content

Provider, targetSdkVersion < 17]

c_prot_sign_sys_new_appl is Protected by a permission at the application level, but the

protection level of the permission should be checked.[Content

Provider, targetSdkVersion >= 17]

c_prot_sign_appl is Protected by a permission at the application level.[Content

Provider, targetSdkVersion < 17]

42

Table 4. Continued

c_prot_sign_new_appl is Protected by a permission at the application level.[Content

Provider, targetSdkVersion >= 17]

a_prot_unknown_appl is Protected by a permission at the application, but the

protection level of the permission should be

checked.[android:exported=true]

c_prot_unknown_new is Protected by a permission, but the protection level of the

permission should be checked if the application runs on a

device where the the API level is less than 17.[Content

Provider, targetSdkVersion >= 17]

c_prot_normal_new is Protected by a permission, but the protection level of the

permission should be checked if the application runs on a

device where the the API level is less than 17 [Content

Provider, targetSdkVersion >= 17]

c_prot_danger_new_appl is Protected by a permission, but the protection level of the

permission should be checked if the application runs on a

device where the the API level is less than 17.[Content

Provider, targetSdkVersion >= 17]

a_prot_danger is Protected by a permission, but the protection level of the

permission should be checked.[android:exported=true]

a_prot_normal is Protected by a permission, but the protection level of the

permission should be checked.[android:exported=true]

a_prot_sign_sys is Protected by a permission, but the protection level of the

permission should be checked.[android:exported=true]

a_prot_unknown is Protected by a permission, but the protection level of the

permission should be checked.[android:exported=true]

c_prot_danger is Protected by a permission, but the protection level of the

permission should be checked.[Content Provider,

targetSdkVersion < 17]

43

Table 4. Continued

c_prot_normal is Protected by a permission, but the protection level of the

permission should be checked.[Content Provider,

targetSdkVersion < 17]

c_prot_sign_sys is Protected by a permission, but the protection level of the

permission should be checked.[Content Provider,

targetSdkVersion < 17]

c_prot_unknown is Protected by a permission, but the protection level of the

permission should be checked.[Content Provider,

targetSdkVersion < 17]

c_prot_sign_sys_new is Protected by a permission, but the protection level of the

permission should be checked.[Content Provider,

targetSdkVersion >= 17]

a_prot_sign is Protected by a permission.[android:exported=true]

c_prot_sign is Protected by a permission.[Content Provider,

targetSdkVersion < 17]

c_prot_sign_new is Protected by a permission.[Content Provider,

targetSdkVersion >= 17]

a_launchmode Launch Mode of Activity is not standard.

a_prot_sign_appl Protected by a permission at the application

level.[android:exported=true]

a_taskaffinity TaskAffinity is set for Activity

c_not_protected2 would not be Protected if the application ran on a device

where the the API level was less than 17.[Content Provider,

targetSdkVersion >= 17]

The common names used for multiple codes are as follows:

• “c_prot_unknown_new_appl” and “c_prot_danger_appl” codes both have the name “is

Protected by a permission at the application level should be checked, but the protection

level of the permission if the application runs on a device where the the API level is less

than 17.[Content Provider, targetSdkVersion >= 17]”.

44

• “a_prot_danger_appl”, “a_prot_normal_appl”, and “a_prot_sign_sys_appl” all have the

name “is Protected by a permission at the application level, but the protection level of the

permission should be checked.[android:exported=true]”.

• “c_prot_danger_new”, “c_prot_normal_appl”, and “c_prot_sys_appl” all have the name

“is Protected by a permission at the application level, but the protection level of the

permission should be checked.[Content Provider, targetSdkVersion < 17]”.

• “c_prot_unknwon_new”, “c_prot_normal_new” and “c_prot_danger_new_appl” all have

the name “is Protected by a permission, but the protection level of the permission should

be checked if the application runs on a device where the the API level is less than

17.[Content Provider, targetSdkVersion >= 17]”.

• “a_prot_danger”, “a_prot_normal”, “a_prot_sign_sys”, and “a_prot_unknown” all have

the name “is Protected by a permission, but the protection level of the permission should

be checked.[android:exported=true]”.

• “c_prot_danger”, “c_prot_normal”, “c_prot_sign_sys”, and “c_prot_unknown” all have

the name “is Protected by a permission, but the protection level of the permission should

be checked.[Content Provider, targetSdkVersion < 17]”.

After removing the duplicates, we marked each finding as a “vulnerability” or a “good

practice”. Though the tool provides “high”, “medium” and “info” levels, the “info” level finding

may be a “vulnerability” or a “good practice”. The final dataset consists of 32 categories out of

which 6 are good practices and 26 vulnerabilities as represented in Table 5 (where the “Name”

represents a vulnerability or good practice as extracted from MobSF [25]).

45

Table 5. Final List of findings for MobSF Manifest Analysis

Name Type

Application Data can be Backed up [android:allowBackup] flag is missing. vulnerability

Application Data can be Backed up [android:allowBackup=true] vulnerability

Application is in Test Mode [android:testOnly=true] vulnerability

Dailer Code: Found
[android:scheme="android_secret_code"] vulnerability

Data SMS Receiver Set on Port: Found
[android:port] vulnerability

Debug Enabled For App [android:debuggable=true] vulnerability

High Action Priority [android:priority] vulnerability

High Intent Priority [android:priority] vulnerability

Improper Content Provider Permissions vulnerability

is not Protected. [android:exported=true] vulnerability

is not Protected.[[Content Provider, targetSdkVersion < 17] vulnerability

is not Protected.An intent-filter exists. vulnerability

is Protected by a permission at application level, but the protection level of

the permission should be checked.[Content Provider, targetSdkVersion <

17] vulnerability

is Protected by a permission at the application level should be checked, but

the protection level of the permission if the application runs on a device

where the the API level is less than 17.[Content Provider, targetSdkVersion

>= 17] vulnerability

is Protected by a permission at the application level, but the protection level

of the permission should be checked if the application runs on a device

where the the API level is less than 17.[Content Provider, targetSdkVersion

>= 17] vulnerability

is Protected by a permission at the application level, but the protection level

of the permission should be checked.[android:exported=true] vulnerability

is Protected by a permission at the application level, but the protection level

of the permission should be checked.[Content Provider, targetSdkVersion <

17] vulnerability

is Protected by a permission at the application level, but the protection level

of the permission should be checked.[Content Provider, targetSdkVersion

>= 17] vulnerability

is Protected by a permission at the application level.[Content Provider,

targetSdkVersion < 17] good

is Protected by a permission at the application level.[Content Provider,

targetSdkVersion >= 17] good

is Protected by a permission at the application, but the protection level of

the permission should be checked.[android:exported=true] vulnerability

is Protected by a permission, but the protection level of the permission

should be checked if the application runs on a device where the the API

level is less than 17 [Content Provider, targetSdkVersion >= 17] vulnerability

46

Table 5. Continued

is Protected by a permission, but the protection level of the permission

should be checked.[android:exported=true] vulnerability

is Protected by a permission, but the protection level of the permission

should be checked.[Content Provider, targetSdkVersion < 17] vulnerability

is Protected by a permission, but the protection level of the permission

should be checked.[Content Provider, targetSdkVersion >= 17] vulnerability

is Protected by a permission.[android:exported=true] good

is Protected by a permission.[Content Provider, targetSdkVersion < 17] good

is Protected by a permission.[Content Provider, targetSdkVersion >= 17] good

Launch Mode of Activity is not standard. vulnerability

Protected by a permission at the application level.[android:exported=true] good

TaskAffinity is set for Activity vulnerability

would not be Protected if the application ran on a device where the the API

level was less than 17.[Content Provider, targetSdkVersion >= 17] vulnerability

 AndroBugs

AndroBugs is a command line tool that can perform fast analysis on large number of

applications. It is a Python program that provides various commands to perform analysis on a

single apk or a set of apk files. It provides commands to display the results in command line and

also outputs the results into text files. It internally uses MongoDB to store the results. We are

leveraging this database directly to query the analysis results.

AndroBugs reports 51 different categories of finding with four levels (info, warning,

critical, and notice). Instead of reporting only the findings it returns all 51 categories, and uses

“info” level to notify the absence of the category. “Warning” and “Category” represent the various

types vulnerabilities. The “Notice” level can have a generic notice that is neither a good practice,

nor a vulnerability, or it can also report good practices and vulnerabilities. After manually

categorizing the “Notice” level we obtain a total of 38 categories as vulnerabilities, 2 categories as

generic messages (that can be ignored during analysis) and 11 categories as good practices as

shown in Table 6 (with the Finding codes reported by AndroBugs [24] reproduced verbatim).

47

Table 6. All categories of findings reported by Androbugs and their type

Finding Type

ALLOW_BACKUP vulnerability

COMMAND vulnerability

COMMAND_MAYBE_SYSTEM vulnerability

DB_DEPRECATED_USE1 vulnerability

DEBUGGABLE vulnerability

DYNAMIC_CODE_LOADING vulnerability

EXTERNAL_STORAGE vulnerability

FILE_DELETE vulnerability

FRAGMENT_INJECTION vulnerability

HACKER_BASE64_STRING_DECODE vulnerability

HACKER_KEYSTORE_NO_PWD vulnerability

HTTPURLCONNECTION_BUG vulnerability

KEYSTORE_TYPE_CHECK vulnerability

MASTER_KEY vulnerability

MODE_WORLD_READABLE_OR_MODE_WORLD_WRITABLE vulnerability

PERMISSION_DANGEROUS vulnerability

PERMISSION_EXPORTED vulnerability

PERMISSION_GROUP_EMPTY_VALUE vulnerability

PERMISSION_IMPLICIT_SERVICE vulnerability

PERMISSION_INTENT_FILTER_MISCONFIG vulnerability

PERMISSION_NO_PREFIX_EXPORTED vulnerability

PERMISSION_NORMAL vulnerability

PERMISSION_PROVIDER_EXPLICIT_EXPORTED vulnerability

PERMISSION_PROVIDER_IMPLICIT_EXPORTED vulnerability

SENSITIVE_DEVICE_ID vulnerability

SENSITIVE_SECURE_ANDROID_ID vulnerability

SENSITIVE_SMS vulnerability

48

Table 6. Continued

SSL_CN1 vulnerability

SSL_CN2 vulnerability

SSL_CN3 vulnerability

SSL_DEFAULT_SCHEMA_NAME vulnerability

SSL_URLS_NOT_IN_HTTPS vulnerability

SSL_WEBVIEW vulnerability

SSL_X509 vulnerability

USE_PERMISSION_SYSTEM_APP vulnerability

WEBVIEW_ALLOW_FILE_ACCESS vulnerability

WEBVIEW_JS_ENABLED vulnerability

WEBVIEW_RCE vulnerability

FRAMEWORK_MONODROID generic notice

MANIFEST_GCM generic notice

DB_SEE good practice

DB_SQLCIPHER good practice

DB_SQLITE_JOURNAL good practice

HACKER_DB_KEY good practice

HACKER_DEBUGGABLE_CHECK good practice

HACKER_INSTALL_SOURCE_CHECK good practice

HACKER_KEYSTORE_LOCATION1 good practice

HACKER_KEYSTORE_SSL_PINNING good practice

HACKER_PREVENT_SCREENSHOT_CHECK good practice

HACKER_SIGNATURE_CHECK good practice

SHARED_USER_ID good practice

49

 Qark

Qark is a static analysis tool that detects security vulnerabilities in Android apps. It is

programmed in Python and provides a command line interface. It can analyze both source code

and apk files. It reports the results in html or json format. Each finding reports the name, category,

line number, severity (error/vulnerability/info/warning), description, and the file where the

vulnerability was detected. It is not capable of detecting good practices. We are not using the

severity from the tool but instead calculating our own severity based on CVSS.

Qark does not enlist the vulnerabilities it detects, so we had to manually extract it from the

source code. A total of 45 vulnerabilities that could be detected were identified. The vulnerabilities

along with the CVSS scores are listed in the CVSS calculation section later.

3.5 CVSS Calculation

Since we are using the CVSS score as a weight on ranking scheme based on the severity of

evidences, we calculate the CVSS for the different findings reported by the tools. CVSS scores are

usually assigned for the security vulnerabilities discovered by security experts separately for each

specific app. Instead, we are assigning a generic score depending on the description and

vulnerabilities reported on the National Vulnerability Database (NVD) [21].

The CVSS is not used in general for good practices, but to add weights to good practices,

we are assigning the CVSS scores for good practices based on the vulnerability it tries to prevent.

If there is a vulnerability V with a CVSS score X, we assign a good practice G that prevents V the

same score X.

The CVSS calculations for the different tools are discussed in detail in the following

subsections below.

 MobSF

The MobSF provides the CVSS score for 23 out of 46 Code Analysis findings. The defined

findings are listed in Table 7 (extracted, and reported verbatim below, from MobSF [25]). For the

23 rest static analysis findings (extracted, and reported verbatim below, from MobSF [25]), the

CVSS scores were calculated as shown in Table 8.

50

Table 7. CVSS Scores Provided by MobSF [25]

Finding CVSS

App can read/write to External Storage. Any App can read data written to External

Storage. 5.5

App can write to App Directory. Sensitive Information should be encrypted. 3.9

App creates temp file. Sensitive information should never be written into a temp file. 5.5

App uses SQLite Database and execute raw SQL query. Untrusted user input in raw

SQL queries can cause SQL Injection. Also sensitive information should be encrypted

and written to the database. 5.9

Files may contain hardcoded sensitive informations like usernames, passwords, keys

etc. 7.4

Hidden elements in view can be used to hide data from user. But this data can be leaked 4.3

Insecure Implementation of SSL. Trusting all the certificates or accepting self-signed

certificates is a critical Security Hole. This application is vulnerable to MITM attacks 7.4

Insecure WebView Implementation. Execution of user controlled code in WebView is

a critical Security Hole. 8.8

Insecure WebView Implementation. WebView ignores SSL Certificate errors and

accept any SSL Certificate. This application is vulnerable to MITM attacks 7.4

IP Address disclosure 4.3

MD5 is a weak hash known to have hash collisions. 7.4

Remote WebView debugging is enabled. 5.4

SHA-1 is a weak hash known to have hash collisions. 5.9

The App logs information. Sensitive information should never be logged. 7.5

The App may use weak IVs like "0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00" or

"0x01,0x02,0x03,0x04,0x05,0x06,0x07". Not using a random IV makes the resulting

ciphertext much more predictable and susceptible to a dictionary attack. 9.8

The App uses an insecure Random Number Generator. 7.5

51

Table 7. Continued

The App uses ECB mode in Cryptographic encryption algorithm. ECB mode is

known to be weak as it results in the same ciphertext for identical blocks of plaintext. 5.9

The file is World Readable and Writable. Any App can read/write to the file 6

The file is World Readable. Any App can read from the file 4

The file is World Writable. Any App can write to the file 6

This App uses Java Hash Code. It's a weak hash function and should never be used

in Secure Crypto Implementation. 2.3

This App uses RSA Crypto without OAEP padding. The purpose of the padding

scheme is to prevent a number of attacks on RSA that only work when the encryption

is performed without padding. 5.9

Weak Hash algorithm used 7.4

WebView load files from external storage. Files in external storage can be modified

by any application. 5

52

Table 8. Calculated CVSS for MobSF Code Analysis

Finding Vector CVS

S

These activities prevent screenshot

when they go to background.

CVSS:3.0/AV:P/AC:L/PR:L/UI:R/S:U/C:H/I:

N/A:N

4.1

This App uses SQL Cipher. But the

secret may be hardcoded.

CVSS:3.0/AV:P/AC:L/PR:L/UI:N/S:U/C:H/I:

H/A:H

6.6

This app has capabilities to prevent

tapjacking attacks.

CVSS:3.0/AV:P/AC:H/PR:H/UI:R/S:U/C:H/I:

L/A:L

4.9

This App uses SQL Cipher.

SQLCipher provides 256-bit AES

encryption to sqlite database files.

CVSS:3.0/AV:P/AC:H/PR:H/UI:N/S:U/C:H/I:

H/A:H

6.1

This app listens to Clipboard

changes. Some malwares also listen

to Clipboard changes.

CVSS:3.0/AV:P/AC:H/PR:L/UI:R/S:C/C:H/I:

N/A:N

4.7

This App copies data to clipboard.

Sensitive data should not be copied

to clipboard as other applications can

access it.

CVSS:3.0/AV:P/AC:H/PR:H/UI:R/S:U/C:L/I:

L/A:N

2.7

This App detects frida server. CVSS:3.0/AV:N/AC:H/PR:H/UI:N/S:U/C:H/I

:L/A:L

5.5

This App uses an SSL Pinning

Library

(org.thoughtcrime.ssl.pinning) to

prevent MITM attacks in secure

communication channel.

CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I

:N/A:N

5.9

This App has capabilities to prevent

against Screenshots from Recent

Task History/ Now On Tap etc.

CVSS:3.0/AV:P/AC:L/PR:L/UI:R/S:U/C:H/I:

N/A:N

4.1

53

Table 8. Continued

This App may request root (Super

User) privileges.

CVSS:3.0/AV:P/AC:H/PR:H/UI:N/S:C/C:H/I:

H/A:L

6.8

This App may have root detection

capabilities.

CVSS:3.0/AV:P/AC:H/PR:H/UI:N/S:C/C:H/I:

H/A:L

6.8

This App use Realm Database with

Encryption.

CVSS:3.0/AV:P/AC:H/PR:H/UI:N/S:U/C:H/I:

H/A:H

6.1

This App may uses Safenet API. CVSS:3.0/AV:P/AC:L/PR:L/UI:N/S:U/C:L/I:H

/A:L

5.4

The App mayuse package signature

for tamper detection.

CVSS:3.0/AV:P/AC:H/PR:H/UI:N/S:U/C:H/I:

H/A:N

5.4

DexGuard Signer Certificate

Tamper Detection code is identified.

CVSS:3.0/AV:P/AC:H/PR:H/UI:N/S:U/C:H/I:

H/A:N

5.4

DexGuard App Tamper Detection

code is identified.

CVSS:3.0/AV:P/AC:H/PR:H/UI:N/S:U/C:H/I:

H/A:N

5.4

DexGuard Root Detection code is

identified.

CVSS:3.0/AV:P/AC:H/PR:H/UI:N/S:C/C:H/I:

H/A:L

6.8

DexGuard code to detect weather the

App is signed with a debug key or

not is identified.

CVSS:3.0/AV:P/AC:H/PR:H/UI:N/S:U/C:L/I:

H/A:N

4.4

DexGuard Emulator Detection code

is identified.

CVSS:3.0/AV:P/AC:H/PR:H/UI:N/S:U/C:H/I:

L/A:N

4.4

DexGuard Debugger Detection code

is identified.

CVSS:3.0/AV:P/AC:H/PR:H/UI:N/S:U/C:H/I:

L/A:N

4.4

This App download files using

Android Download Manager

CVSS:3.0/AV:P/AC:L/PR:L/UI:N/S:U/C:L/I:N

/A:N

2.1

DexGuard Debug Detection code to

detect wheather an App is

debuggable or not is identified.

CVSS:3.0/AV:P/AC:H/PR:H/UI:N/S:U/C:L/I:

H/A:N

4.4

54

Similarly, the calculated CVSS score for Manifest Analysis for each finding (extracted,

and reported verbatim below, from MobSF [25]) is shown below:

Table 9. Calculated CVSS for MobSF Manifest Analysis

Findings Vector CVSS

Application Data can be Backed up

[android:allowBackup] flag is missing.

CVSS:3.0/AV:N/AC:H/PR:H/UI:N/S:U/C:H/I:N

/A:N 4.4

Application Data can be Backed up

[android:allowBackup=true]

CVSS:3.0/AV:N/AC:H/PR:H/UI:N/S:U/C:H/I:N

/A:N 4.4

Application is in Test Mode

[android:testOnly=true]

CVSS:3.0/AV:P/AC:H/PR:L/UI:N/S:U/C:H/I:N/

A:L 4.6

Dailer Code: Found

[android:scheme="android_secret_co

de"]

CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:L/A

:L 7.3

Data SMS Receiver Set on Port:

Found
[android:port]

CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/

A:N 3.7

Debug Enabled For App

[android:debuggable=true]

CVSS:3.0/AV:P/AC:H/PR:L/UI:N/S:U/C:H/I:N/

A:L 4.6

High Action Priority [android:priority]

CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:C/C:N/I:N/

A:L 4.3

High Intent Priority [android:priority]

CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:C/C:N/I:N/

A:L 4.3

Improper Content Provider Permissions

CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:L/A

:L 7.3

is not Protected. [android:exported=true]

CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/

A:N 6.2

is not Protected.[[Content Provider,

targetSdkVersion < 17]

CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/

A:N 6.2

55

Table 9. Continued

is not Protected.An intent-filter exists.

CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:

N 6.2

is Protected by a permission at

application level, but the protection

level of the permission should be

checked.[Content Provider,

targetSdkVersion < 17]

CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:

N 4.4

is Protected by a permission at the

application level should be checked, but

the protection level of the permission if

the application runs on a device where

the the API level is less than

17.[Content Provider, targetSdkVersion

>= 17]

CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:

N 4.4

is Protected by a permission at the

application level, but the protection

level of the permission should be

checked if the application runs on a

device where the the API level is less

than 17.[Content Provider,

targetSdkVersion >= 17]

CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:

N 4.4

is Protected by a permission at the

application level, but the protection

level of the permission should be

checked.[android:exported=true]

CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:

N 4.4

56

Table 9. Continued

is Protected by a permission at the

application level, but the protection

level of the permission should be

checked.[Content Provider,

targetSdkVersion < 17] CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N 4.4

is Protected by a permission at the

application level, but the protection

level of the permission should be

checked.[Content Provider,

targetSdkVersion >= 17] CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N 4.4

is Protected by a permission at the

application level.[Content Provider,

targetSdkVersion < 17] CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 6.2

is Protected by a permission at the

application level.[Content Provider,

targetSdkVersion >= 17] CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 6.2

is Protected by a permission at the

application, but the protection level of

the permission should be

checked.[android:exported=true] CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N 4.4

is Protected by a permission, but the

protection level of the permission

should be checked if the application

runs on a device where the the API level

is less than 17 [Content Provider,

targetSdkVersion >= 17] CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N 4.4

57

Table 9. Continued

is Protected by a permission, but the

protection level of the permission

should be

checked.[android:exported=true] CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N 4.4

is Protected by a permission, but the

protection level of the permission

should be checked.[Content Provider,

targetSdkVersion < 17] CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N 4.4

is Protected by a permission, but the

protection level of the permission

should be checked.[Content Provider,

targetSdkVersion >= 17] CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N 4.4

is Protected by a

permission.[android:exported=true] CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 6.2

is Protected by a permission.[Content

Provider, targetSdkVersion < 17] CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 6.2

is Protected by a permission.[Content

Provider, targetSdkVersion >= 17] CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 6.2

Launch Mode of Activity is not

standard. CVSS:3.0/AV:L/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N 5.1

Protected by a permission at the

application

level.[android:exported=true] CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 6.2

TaskAffinity is set for Activity CVSS:3.0/AV:L/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N 5.1

would not be Protected if the

application ran on a device where the

the API level was less than 17.[Content

Provider, targetSdkVersion >= 17] CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 6.2

58

 Androbugs

The CVSS scores for the findings (reported by AndroBugs [24] reproduced verbatim) are

as follows:

Table 10. Calculated CVSS for Androbugs

Findings Vector CVSS

ALLOW_BACKUP CVSS:3.0/AV:N/AC:H/PR:H/UI:N/S:U/C:H/I:N/A:N 4.4

COMMAND CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:L/A:L 7.3

COMMAND_MAYBE_SYSTEM CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H 8.2

DB_DEPRECATED_USE1 CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:L/A:L 5.6

DB_SEE CVSS:3.0/AV:P/AC:H/PR:H/UI:N/S:U/C:H/I:H/A:H 6.1

DB_SQLCIPHER CVSS:3.0/AV:P/AC:H/PR:H/UI:N/S:U/C:H/I:H/A:H 6.1

DB_SQLITE_JOURNAL CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 7.5

DEBUGGABLE CVSS:3.0/AV:P/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:L 4.6

DYNAMIC_CODE_LOADING CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:L/A:L 5.8

EXTERNAL_STORAGE CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:L/A:L 7.3

FILE_DELETE CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 6.2

FRAGMENT_INJECTION CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N 9.1

HACKER_BASE64_STRING_DECODE CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N 6.2

HACKER_DB_KEY CVSS:3.0/AV:P/AC:H/PR:H/UI:N/S:U/C:H/I:H/A:H 6.1

HACKER_DEBUGGABLE_CHECK CVSS:3.0/AV:P/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:L 4.6

HACKER_INSTALL_SOURCE_CHECK CVSS:3.0/AV:P/AC:H/PR:L/UI:N/S:U/C:H/I:L/A:L 5.1

HACKER_KEYSTORE_LOCATION1 CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N 4.4

HACKER_KEYSTORE_NO_PWD CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 6.2

HACKER_KEYSTORE_SSL_PINNING CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 6.2

HACKER_PREVENT_SCREENSHOT_CHECK CVSS:3.0/AV:P/AC:L/PR:L/UI:R/S:U/C:H/I:N/A:N 4.1

HACKER_SIGNATURE_CHECK CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N 4.7

HTTPURLCONNECTION_BUG CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N 5.3

KEYSTORE_TYPE_CHECK CVSS:3.0/AV:P/AC:H/PR:H/UI:N/S:U/C:H/I:H/A:H 6.1

MASTER_KEY CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 9.8

59

Table 10. Continued

MODE_WORLD_READABLE_

OR_MODE_WORLD_WRITABLE
CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:L 5.9

PERMISSION_DANGEROUS CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 8.4

PERMISSION_EXPORTED CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 8.4

PERMISSION_GROUP_EMPTY_VALUE CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 8.4

PERMISSION_IMPLICIT_SERVICE CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 8.4

PERMISSION_INTENT_FILTER_

MISCONFIG
CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 8.4

PERMISSION_NO_PREFIX_EXPORTED CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 8.4

PERMISSION_NORMAL CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 8.4

PERMISSION_PROVIDER_EXPLICIT_EXP

ORTED
CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 8.4

PERMISSION_PROVIDER_IMPLICIT_EXP

ORTED
CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N 7.7

SENSITIVE_DEVICE_ID CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N 4

SENSITIVE_SECURE_ANDROID_ID CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N 4

SENSITIVE_SMS CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N 5.3

SHARED_USER_ID CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N 5.5

SSL_CN1 CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N 5.3

SSL_CN2 CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N 5.3

SSL_CN3 CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N 5.3

SSL_DEFAULT_SCHEMA_NAME CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 7.5

SSL_URLS_NOT_IN_HTTPS CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 7.5

SSL_WEBVIEW CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 7.5

SSL_X509 CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 7.5

USE_PERMISSION_SYSTEM_APP CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 6.2

WEBVIEW_ALLOW_FILE_ACCESS CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 7.5

WEBVIEW_JS_ENABLED CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 7.5

WEBVIEW_RCE CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 7.5

60

 QARK

The findings (vulnerabilities as reported by QARK [23] reproduced verbatim) and their

calculated CVSS are listed below:

Table 11. Calculated CVSS for Qark

Findings Vector CVSS

Dynamic broadcast receiver found
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A

:N
7.5

Sticky broadcast sent
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A

:N
7.5

Broadcast sent with receiverPermission

with minimum SDK under 21

CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A

:N
7.5

Broadcast sent with receiverPermission
CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:

N
6.5

Broadcast sent as specific user without

receiverPermission

CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A

:N
7.5

Broadcast sent as specific user with

receiverPermission with minimum SDK

under 21

CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A

:N
7.5

Broadcast sent as specific user with

receiverPermission

CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:

N
6.5

Ordered broadcast sent with

receiverPermission with minimum SDK

under 21

CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A

:N
7.5

Ordered broadcast sent with

receiverPermission

CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A

:N
5.9

Sticky broadcast sent
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A

:N
7.5

Empty certificate method
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:

N
9.1

61

Table 11. Continued

Empty (return) certificate method CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N 9.1

Unsafe implementation of

onReceivedSslError
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N 9.1

Allow all hostname verifier used
CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:

N
7.4

setHostnameVerifier set to ALLOW_ALL
CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:

N
7.4

ECB Cipher Usage CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:L/A:N 8.2

Encryption keys are packaged with the

application
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:L/A:N 8.2

RSA Cipher Usage CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:L/A:N 8.2

Random number generator is seeded

with SecureSeed
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N 5.3

Logging found CVSS:3.0/AV:P/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 4.6

Potential API Key found CVSS:3.0/AV:P/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 4.6

External storage used CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:L/A:L 7.3

File Permissions CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:L 5.9

Hardcoded HTTP url found CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N 5.3

Insecure functions found CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N 4

Phone number or IMEI detected CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N 4

Potientially vulnerable check permission

function called
CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N 5.5

Potential task hijacking CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N 4

Empty pending intent found CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 6.2

Backup is allowed in manifest
CVSS:3.0/AV:N/AC:H/PR:H/UI:N/S:U/C:H/I:N/A:

N
4.4

android:path tag used CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N 5.3

62

Table 11. Continued

Custom permissions are enabled in the

manifest
CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N 5.5

Manifest is manually set to debug CVSS:3.0/AV:P/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:L 4.6

Exported tags CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:L/A:N 8.2

Tap Jacking possible CVSS:3.0/AV:P/AC:H/PR:H/UI:R/S:U/C:H/I:L/A:L 4.9

launchMode=singleTask found CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N 4

android:allowTaskReparenting='true'

found
CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N 4

Webview uses addJavascriptInterface

pre-API 17
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:L/A:N 8.2

Javascript enabled in Webview CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 7.5

BaseURL set for Webview CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N 4.3

Remote debugging enabled in Webview CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:L 7.1

Webview enables content access CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 7.5

Webview enables file access CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 7.5

Webview enables universal access for

JavaScript

CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 7.5

Webview enables DOM Storage CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 7.5

63

 EXPERIMENTAL RESULTS

The results from our experiments are analyzed and discussed in this chapter. First, the

analysis of the tools on the benchmark is shown, followed by results of the ranking schemes.

4.1 Benchmark Analysis

The Ghera benchmark consists of 61 benchmark applications each with two versions of the

application: benign(B) and secure(S). The vulnerability should be detected on the benign but not

on the secure(S) app. The results of the benchmark are shown in the table below.

Table 12. Ghera Results

Category Vulnerability Qark

Androbugs

MobSF

B S B S B S

Crypto BlockCipher-ECB-

InformationExposure-Lean
     

BlockCipher-NonRandomIV-

InformationExposure-Lean
     

ConstantKey-ForgeryAttack-Lean      

ExposedCredentials-

InformationExposure-Lean
     

PBE-ConstantSalt-

InformationExposure-Lean
     

ICC DynamicRegBroadcastReceiver-

UnrestrictedAccess-Lean
     

EmptyPendingIntent-

PrivEscalation-Lean
     

FragmentInjection-PrivEscalation-

Lean
     

Table 12. Continued

64

ICC HighPriority-ActivityHijack-Lean      

ImplicitPendingIntent-IntentHijack-

Lean
     

InadequatePathPermission-

InformationExposure-Lean
     

IncorrectHandlingImplicitIntent-

UnauthorizedAccess-Lean
     

NoValidityCheckOnBroadcastMsg-

UnintendedInvocation-Lean
     

OrderedBroadcast-DataInjection-

Lean
     

StickyBroadcast-DataInjection-Lean      

TaskAffinity-ActivityHijack-Lean      

TaskAffinity-LauncherActivity-

Lean
     

TaskAffinity-PhisingAttack-Lean      

TaskAffinityAndReparenting-

PhisingAndDoSAttack-Lean
     

UnhandledException-DOS-Lean      

UnprotectedBroadcastRecv-

PrivEscalation-Lean
     

WeakChecksOnDynamicInvocation

-DataInjection-Lean
     

Networking CheckValidity-

InformationExposure-Lean
     

IncorrectHostNameVerification-

MITM-Lean
     

InsecureSSLSocket-MITM-Lean      

65

Table 12. Continued

Networking InsecureSSLSocketFactory-MITM-

Lean
     

InvalidCertificateAuthority-MITM-

Lean
     

OpenSocket-InformationLean-Lean      

UnEncryptedSocketComm-MITM-

Lean
     

UnpinnedCertificates-MITM-Lean      

NonAPI MergeManifest-

UnintendedBehavior-Lean
     

OutdatedLibrary-

DirectoryTraversal-Lean
     

Permission UnnecessaryPerms-PrivEscalation-

Lean
     

WeakPermission-

UnauthorizedAccess-Lean
     

Storage ExternalStorage-DataInjection-Lean      

ExternalStorage-InformationLeak-

Lean
     

InternalStorage-DirectoryTraversal-

Lean
     

InternalToExternalStorage-

InformationLeak-Lean
     

SQLite-execSQL-Lean      

SQLite-RawQuery-Lean      

SQLite-SQLInjection-Lean      

System CheckCallingOrSelfPermission-

PrivilegeEscalation-Lean
     

66

Table 12. Continued

System CheckPermission-

PrivliegeEscalation-Lean
     

ClipboardUse-

InformationExposure-Lean
     

DynamicCodeLoading-

CodeInjection-Lean
     

EnforceCallingOrSelfPermission-

PrivilegeEscalation-Lean
     

EnforcePermission-

PrivilegeEscalation
     

UniqueIDs-IdentityLeak-Lean      

Web HttpConnection-MITM-Lean      

JavaScriptExecution-CodeInjection-

Lean
     

UnsafeIntentURLImpl-

InformaitonExposure-Lean
     

WebView-CookieOverwrite-Lean      

WebView-NoUserPermission-

InformationExposure-Lean
     

WebViewAllowContentAccess-

UnauthorizedFileAccess-Lean
     

WebViewAllowFileAccess-

UnauthorizedFileAccess-Lean
     

WebViewIgnoreSSLWarning-

MITM-Lean
     

WebViewInterceptRequest-MITM-

Lean
     

WebViewLoadDataWithBaseUrl-

UnauthorizedFileAccess-Lean
     

67

Table 12. Continued

Web WebviewOverrideUrl-MITM-Lean      

WebviewProceed-

UnauthorizedAccess-Lean
     

Qark detected the highest number (19) of the benign applications but also falsely identified

vulnerabilities in nine of the secure application. MobSF had a similar performance, correctly

identifying 18 and erroneously marking 9 applications. AndroBugs the lowest number (13) of

vulnerability identifications in benign apps, but it had the just 2 false positive for secure

applications.

We can also see that the different tools performed well on different categories of the

benchmark. The Qark and MobSF had most benign application detections in the ICC category, but

MobSF had lower number of false positives for secure applications. MobSF suffers from wrongly

identifying the secure applications in other categories while Qark performs relatively well.

AndroBugs is good at detecting Network, Web and ICC categories which are all related to

communication with external agents. The overall count for each categorized in Table 13.

Each benign application identified is a true positive, and the ones failed to be identified are

false negatives. The secure applications where the vulnerability is detected is a false negative,

otherwise they are true negatives. We can calculate the F-score as summarized in Table 14.

68

Table 13. Ghera count by category

Category

Qark Androbugs MobSF

Benign Secure Benign Secure Benign Secure

Crypto 1 0 1 1 2 1

ICC 7 6 3 0 7 1

Networking 3 0 4 1 2 2

NonAPI 0 0 0 0 0 0

Permission 0 0 1 0 1 0

Storage 2 0 0 0 2 2

System 3 2 1 0 1 1

Web 3 1 3 1 3 2

Total 19 9 13 3 18 9

Table 14. Precision, Recall, and F-Score for Ghera Benchmark Results

Tool Precision Recall F-Score

MobSF 0.66666667 0.29508197 0.40909091
Qark 0.67857143 0.31147541 0.42696629
AndroBugs 0.8125 0.21311475 0.33766234

To calculate the trust of the tools we treat the positively identified benign apps as positive

evidence, and the negatively identified secure apps as negative evidences. Thus, we get ωmobsf =

(0.6207,0.3103,0.0690), ωqark = (0.6333,0.3000,0.0667) and ωandro = (0.7222,0.1667,0.1111).

4.2 Individual Tool Results

In this section, we analyze the results from the three basic ranking schemes for each tool

individually. Then, we evaluate the correlation between the rankings generated by different tools

and different schemes.

 MobSF Results

The results on the 5 categories having 5 app each are show in Table 15.

69

Table 15. MobSF Summary

Category App BDU (B1)
Rank

(B1)
BDU (B2)

Rank

(B2)
BDU (B3)

Rank

(B3)

finance

App 1 (0.1, 0.8, 0.1) 3

(0.0048, 0.9933,

0.0019) 3

(0.0065, 0.9916,

0.0019) 3

App 2 (0.1, 0.7, 0.2) 1

(0.0526, 0.8421,

0.1053) 1

(0.0725, 0.8222,

0.1053) 1

App 3 (0.1, 0.7, 0.2) 1

(0.0045, 0.9864,

0.0091) 2

(0.0052, 0.9857,

0.0091) 2

App 4

(0.0625,

0.8125, 0.125) 5

(0.0026, 0.9948,

0.0026) 4

(0.003, 0.9944,

0.0026) 4

App 5 (0.1, 0.8, 0.1) 3

(0.0018, 0.9976,

0.0006) 5

(0.0039, 0.9955,

0.0006) 5

insurance

App 1 (0.0, 0.8, 0.2) 4

(0.0, 0.9944,

0.0056) 4

(0.0, 0.9944,

0.0056) 5

App 2

(0.1053,

0.7895, 0.1053) 2

(0.0064, 0.9918,

0.0018) 2

(0.0092, 0.989,

0.0018) 2

App 3

(0.0, 0.8667,

0.1333) 5

(0.0, 0.9937,

0.0063) 3

(0.0, 0.9937,

0.0063) 3

App 4

(0.125, 0.75,

0.125) 1

(0.0223, 0.9665,

0.0112) 1

(0.0237, 0.9651,

0.0112) 1

App 5 (0.1, 0.8, 0.1) 3

(0.0025, 0.9949,

0.0025) 5

(0.0031, 0.9944,

0.0025) 4

news

App 1

(0.0667, 0.8,

0.1333) 2

(0.0033, 0.99,

0.0067) 4

(0.0046, 0.9887,

0.0067) 4

App 2

(0.0833, 0.75,

0.1667) 1

(0.0109, 0.9674,

0.0217) 1

(0.0161, 0.9622,

0.0217) 1

App 3

(0.0625,

0.8125, 0.125) 4

(0.0025, 0.9959,

0.0016) 5

(0.0037, 0.9947,

0.0016) 5

App 4

(0.0556,

0.8333, 0.1111) 5

(0.0079, 0.9868,

0.0053) 3

(0.0089, 0.9858,

0.0053) 2

App 5

(0.0667, 0.8,

0.1333) 2

(0.0047, 0.986,

0.0093) 2

(0.005, 0.9857,

0.0093) 2

shopping

App 1

(0.1053,

0.7895, 0.1053) 2

(0.0034, 0.9932,

0.0034) 3

(0.004, 0.9926,

0.0034) 3

App 2

(0.0588,

0.8235, 0.1176) 4

(0.0031, 0.9938,

0.0031) 4

(0.0043, 0.9927,

0.0031) 4

App 3

(0.0667, 0.8,

0.1333) 3

(0.0007, 0.998,

0.0013) 5

(0.0014, 0.9973,

0.0013) 5

App 4 (0.0, 0.75, 0.25) 1 (0.0, 0.977, 0.023) 1 (0.0, 0.977, 0.023) 1

App 5

(0.0556,

0.8333, 0.1111) 5

(0.0082, 0.9886,

0.0033) 2

(0.0127, 0.984,

0.0033) 2

travel

App 1

(0.0833, 0.75,

0.1667) 1

(0.0031, 0.9937,

0.0031) 1

(0.0056, 0.9913,

0.0031) 1

App 2

(0.0667, 0.8,

0.1333) 3

(0.0011, 0.9967,

0.0022) 5

(0.0017, 0.9962,

0.0022) 5

App 3

(0.0833, 0.75,

0.1667) 1

(0.0031, 0.9937,

0.0031) 1

(0.0056, 0.9913,

0.0031) 2

App 4

(0.0667, 0.8,

0.1333) 3

(0.0032, 0.9946,

0.0021) 3

(0.0049, 0.9929,

0.0021) 3

App 5 (0.05, 0.85, 0.1) 5

(0.003, 0.9951,

0.002) 4

(0.0041, 0.9939,

0.002) 4

70

We can see that the Base Scheme B1 has a lot of ties. This is expected because both

applications may have different vulnerabilities, but the number of categories reported may be the

same. Base Schemes B2 and B3 have similar higher values of ‘d’ because MobSF does not report

counts for good practices. This leads to higher level of disbelief in the latter two schemes.

The schemes B2 and B3 have similar rankings. This is due to the fact that most of the time

some common vulnerabilities are reported for the applications.

We can use the Kendall Tau correlation to calculate the similarity between the schemes.

The following table demonstrates the correlation between the schemes on all the datasets including

games, photography and tools.

Table 16. Kendall Tau’s Correlation for MobSF

category B1 vs B2 B2 vs B3 B3 vs B1

finance 0.670820393 1 0.670820393

insurance 0.4 0.948683298 0.527046277

shopping 0.2 1 0.2

news 0.527046277 0.948683298 0.444444444

travel 0.707106781 1 0.707106781

games 0.648099549 0.996512642 0.651685162

photography 0.564841854 0.9839968 0.568855313

tools 0.458365524 0.996450754 0.46206202

We can see that the B2 and B3 schemes have very high correlation. There is also a

correlation of the two schemes with the B1 scheme. The correlations in the finance, insurance,

shopping and news can vary depending on the selection of the apps. The larger datasets give a

more precise results for the similarity of rankings.

 AndroBugs Results

The results for Androbugs is summarized in Table 17.

71

Table 17. AndroBugs Summary

Category App BDU (B1)

Rank

(B1) BDU (B2)

Rank

(B2) BDU (B3)

Rank

(B3)

finance

App 1

(0.2174, 0.7391,

0.0435) 2

(0.0725, 0.9171,

0.0104) 5

(0.0567,

0.9329, 0.0104) 5

App 2

(0.2174, 0.7391,

0.0435) 2

(0.169, 0.8028,

0.0282) 1

(0.1413,

0.8305, 0.0282) 1

App 3

(0.2222, 0.7333,

0.0444) 1

(0.1087, 0.8696,

0.0217) 2

(0.0917,

0.8866, 0.0217) 2

App 4

(0.2128, 0.7447,

0.0426) 5

(0.0815, 0.9099,

0.0086) 3

(0.0613,

0.9301, 0.0086) 3

App 5

(0.2174, 0.7391,

0.0435) 2

(0.0791, 0.9096,

0.0113) 3

(0.0618,

0.9269, 0.0113) 4

insurance

App 1

(0.2128, 0.7447,

0.0426) 2

(0.1905, 0.7778,

0.0317) 1

(0.1562,

0.8121, 0.0317) 1

App 2

(0.2128, 0.7447,

0.0426) 2

(0.123, 0.8607,

0.0164) 3

(0.0987,

0.8849, 0.0164) 3

App 3

(0.2128, 0.7447,

0.0426) 2

(0.0886, 0.8987,

0.0127) 4

(0.0691,

0.9182, 0.0127) 4

App 4

(0.234, 0.7234,

0.0426) 1

(0.1429, 0.8413,

0.0159) 2

(0.1115,

0.8726, 0.0159) 2

App 5

(0.2, 0.7556,

0.0444) 5

(0.0695, 0.9198,

0.0107) 5

(0.0552,

0.9342, 0.0107) 5

news

App 1

(0.2174, 0.7391,

0.0435) 1

(0.119, 0.8714,

0.0095) 2

(0.0929,

0.8975, 0.0095) 2

App 2

(0.2128, 0.7447,

0.0426) 3

(0.1218, 0.8654,

0.0128) 1

(0.0929,

0.8943, 0.0128) 1

App 3

(0.2128, 0.7447,

0.0426) 3

(0.0964, 0.8916,

0.012) 4

(0.0761,

0.9118, 0.012) 4

App 4

(0.1957, 0.7609,

0.0435) 5

(0.039, 0.9539,

0.0071) 5

(0.0307,

0.9622, 0.0071) 5

App 5

(0.2174, 0.7391,

0.0435) 1

(0.106, 0.8808,

0.0132) 3

(0.0846,

0.9021, 0.0132) 3

shopping

App 1

(0.2174, 0.7391,

0.0435) 2

(0.1152, 0.8727,

0.0121) 4

(0.0864,

0.9014, 0.0121) 4

App 2

(0.2128, 0.7447,

0.0426) 3

(0.0938, 0.8958,

0.0104) 5

(0.0719,

0.9177, 0.0104) 5

App 3

(0.2128, 0.7447,

0.0426) 3

(0.1371, 0.8468,

0.0161) 3

(0.1118, 0.872,

0.0161) 3

App 4

(0.2128, 0.7447,

0.0426) 3

(0.1887, 0.7736,

0.0377) 1

(0.156, 0.8063,

0.0377) 1

App 5

(0.234, 0.7234,

0.0426) 1

(0.1538, 0.8308,

0.0154) 2

(0.1244,

0.8602, 0.0154) 2

travel

App 1

(0.2128, 0.7447,

0.0426) 3

(0.125, 0.8611,

0.0139) 1

(0.1008,

0.8853, 0.0139) 1

App 2

(0.2128, 0.7447,

0.0426) 3

(0.0971, 0.8835,

0.0194) 3

(0.0805,

0.9001, 0.0194) 3

App 3

(0.2128, 0.7447,

0.0426) 3

(0.125, 0.8611,

0.0139) 1

(0.1008,

0.8853, 0.0139) 1

App 4

(0.234, 0.7234,

0.0426) 1

(0.0947, 0.8947,

0.0105) 4

(0.0735,

0.9159, 0.0105) 4

App 5

(0.234, 0.7234,

0.0426) 1

(0.0557, 0.9395,

0.0048) 5

(0.0416,

0.9535, 0.0048) 5

72

We see results similar to the MobSF for similar reasons. The B1 scheme consists of even

larger number of ties because the number of findings reported by AndroBugs is lower. Many

applications could have the same number of evidences. The B2 and B3 schemes are highly

correlated as demonstrated by the Kendall Tau’s correlation calculation in the table below.

Table 18. Kendall Tau's Correlation for Androbugs

category B1 vs B2 B2 vs B3 B3 vs B1

finance 0.251976315 0.948683298 0.358568583

insurance 0.597614305 1 0.597614305

shopping 0.119522861 1 0.119522861

news 0.447213595 1 0.447213595

travel -0.816496581 1 -0.816496581

games -0.365652197 0.948721067 -0.352139418

photography 0.082234745 0.966503591 0.073149194

tools -0.450951328 0.944591931 -0.437625285

One of the things we can note here is that we see negative correlation between B1 and the

other two schemes.

 QARK Results

For Qark, many of the dataset in the smaller categories resulted in an error. Thus, we could

calculate the b, d, u value only for a subset of the data. The summary of results is demonstrated in

the table below:

Table 19. Qark Summary

Category App BDU (B1)

Rank

(B1) BDU (B2)

Rank

(B2) BDU (B3)

Rank

(B3)

finance

App 1

App 2

(0.0, 0.7143,

0.2857) 1

(0.0, 0.9286,

0.0714) 1

(0.0, 0.9286,

0.0714) 1

App 3

(0.0, 0.8462,

0.1538) 2

(0.0, 0.9964,

0.0036) 2

(0.0, 0.9964,

0.0036) 2

App 4

App 5

73

Table 19. Continued

insurance

App 1 (0.0, 0.6, 0.4) 1

(0.0, 0.9444,

0.0556) 1

(0.0, 0.9444,

0.0556) 1

App 2

App 3

App 4 (0.0, 0.9, 0.1) 2

(0.0, 0.9964,

0.0036) 2

(0.0, 0.9964,

0.0036) 2

App 5 (0.0, 0.9, 0.1) 2

(0.0, 0.9996,

0.0004) 3

(0.0, 0.9996,

0.0004) 3

news

App 1

(0.0, 0.8667,

0.1333) 1

(0.0, 0.986,

0.014) 1

(0.0, 0.986,

0.014) 1

App 2

App 3

(0.0, 0.9167,

0.0833) 3

(0.0, 0.9989,

0.0011) 4

(0.0, 0.9989,

0.0011) 4

App 4

(0.0, 0.9167,

0.0833) 3

(0.0, 0.9977,

0.0023) 3

(0.0, 0.9977,

0.0023) 3

App 5

(0.0, 0.8947,

0.1053) 2

(0.0, 0.9973,

0.0027) 2

(0.0, 0.9973,

0.0027) 2

shopping

App 1

(0.0, 0.9048,

0.0952) 1

(0.0, 0.9984,

0.0016) 4

(0.0, 0.9984,

0.0016) 4

App 2

(0.0, 0.9091,

0.0909) 2

(0.0, 0.9974,

0.0026) 3

(0.0, 0.9974,

0.0026) 3

App 3

App 4

(0.0, 0.8571,

0.1429) 3

(0.0, 0.9773,

0.0227) 1

(0.0, 0.9773,

0.0227) 1

App 5

(0.0, 0.8947,

0.1053) 4

(0.0, 0.997,

0.003) 2

(0.0, 0.997,

0.003) 2

travel

App 1

(0.0, 0.8667,

0.1333) 1

(0.0, 0.9988,

0.0012) 2

(0.0, 0.9988,

0.0012) 2

App 2

App 3

(0.0, 0.8667,

0.1333) 1

(0.0, 0.9988,

0.0012) 2

(0.0, 0.9988,

0.0012) 2

App 4

(0.0, 0.8889,

0.1111) 3

(0.0, 0.9991,

0.0009) 4

(0.0, 0.9991,

0.0009) 4

App 5 (0.0, 0.913, 0.087) 4

(0.0, 0.9986,

0.0014) 1

(0.0, 0.9986,

0.0014) 1

All the missing data are the applications for which the analysis failed. We can also see that

the tuple values on B2 and B3 schemes are exactly the same. This is due to the fact that there are

no good practices reported by the tool. We still see a positive correlation with the B1 scheme. This

is further demonstrated by the Kendall Tau’s correlation in Table 20.

74

Table 20. Kendall Tau's Correlation for Qark

category B1 vs B2 B2 vs B3 B3 vs B1

finance 1 1 1

insurance 0.816496581 1 0.816496581

shopping 0.666666667 1 0.666666667

news 0.912870929 1 0.912870929

travel -0.2 1 -0.2

games 0.640355391 1 0.640355391

photography 0.606648847 1 0.606648847

tools 0.703807994 1 0.703807994

 Correlation of the ranks between the Tools

Besides analyzing the correlation between the schemes, we have also analyzed the

correlation between the tools themselves. For each scheme, we can calculate the correlations for

the rankings generated by the various tools.

Table 21. Correlation between rankings generated by the tools for B1

category mobsf vs qark qark vs androbugs androbugs vs mobsf

finance undefined -1 0.801783726

insurance -0.816496581 0 0.358568583

shopping 0.333333333 0.182574186 -0.358568583

news 0.8 0.8 0.471404521

travel 1 -0.894427191 -0.721687836

games 0.507690657 -0.408967417 -0.305989558

photography 0.302809776 0.004331948 0.247434671

tools 0.579153007 -0.542180557 -0.275921074

We can see that there is no significant correlation between the rankings generated. There

is a slight negative correlation between androbugs and the other two tools. We have seen a similar

pattern in the benchmark dataset where MobSF and Qark were reporting large number of true

positives and false positives whereas Androbugs is returning only a smaller number of

vulnerabilities and good practices. This scheme is similar to benchmark as it only counts the

number of categories reported.

75

Table 22. Correlation between rankings generated by the tools for B2

category mobsf vs qark qark vs androbugs androbugs vs mobsf

finance 1 1 0.527046277

insurance 0.333333333 1 0.4

shopping 0.666666667 0.666666667 0.6

news 0.333333333 0.666666667 0.4

travel -0.2 -0.2 0.555555556

games 0.658024443 0.522747551 0.585155824

photography 0.533408653 0.25033483 0.293323024

tools 0.557796088 0.367218452 0.305415481

We can see that when the frequency of the findings is included in the scheme, we no longer

see a negative correlation between Androbugs and the other two tools.

Table 23. Correlation between rankings generated by the tools for B3

category mobsf vs qark qark vs androbugs androbugs vs mobsf

finance 1 1 0.4

insurance 0 1 0.316227766

shopping 0.666666667 0.666666667 0.6

news 0.182574186 0.666666667 0.316227766

travel -0.2 -0.2 0.555555556

games 0.658024443 0.521408887 0.587105835

photography 0.539210355 0.263874275 0.292144907

tools 0.561365983 0.396201065 0.323881011

With the ranking scheme B3, we see a similar pattern. The ranking generated by all the

tools are slightly correlated to each other.

4.3 Combined tool results

We have evaluated the rankings generated by the individual tools and ranking schemes. In

this section, we evaluate the rankings generated by the combined ranking schemes that we had

proposed earlier.

76

 Consensus Scheme treating each tool equally (C1) Results

The summary of results on the consensus scheme treating each tool equally is in the table

below:

Table 24. C1 Summary

Category App BDU (B1)

Rank

(B1) BDU(B2)

Rank

(B2) BDU (B3)

Rank

(B3)

finance

App 1

(0.1875, 0.7813,

0.0312) 2

(0.0154, 0.983,

0.0016) 4

(0.0144, 0.984,

0.0016) 4

App 2

(0.1864, 0.7797,

0.0339) 1

(0.114, 0.8684,

0.0175) 1

(0.1001, 0.8824,

0.0175) 1

App 3

(0.1719, 0.7969,

0.0313) 4

(0.0127, 0.985,

0.0023) 3

(0.011, 0.9867,

0.0023) 3

App 4

(0.1803, 0.7869,

0.0328) 5

(0.0211, 0.9769,

0.002) 2

(0.0167, 0.9813,

0.002) 2

App 5

(0.1875, 0.7813,

0.0312) 2

(0.0056, 0.9938,

0.0006) 5

(0.0068, 0.9927,

0.0006) 5

insurance

App 1

(0.1724, 0.7931,

0.0345) 2

(0.0266, 0.969,

0.0044) 2

(0.0218, 0.9738,

0.0044) 2

App 2

(0.1875, 0.7813,

0.0312) 1

(0.0181, 0.9802,

0.0016) 4

(0.0182, 0.9802,

0.0016) 4

App 3

(0.1667, 0.8,

0.0333) 3

(0.0297, 0.966,

0.0042) 1

(0.0232, 0.9726,

0.0042) 1

App 4

(0.1646, 0.8101,

0.0253) 4

(0.0255, 0.9722,

0.0023) 3

(0.0212, 0.9765,

0.0023) 3

App 5

(0.1358, 0.8395,

0.0247) 5

(0.0026, 0.9971,

0.0003) 5

(0.0022, 0.9975,

0.0003) 5

shopping

App 1

(0.1463, 0.8293,

0.0244) 4

(0.0106, 0.9884,

0.001) 5

(0.0084, 0.9906,

0.001) 5

App 2

(0.1341, 0.8415,

0.0244) 5

(0.0126, 0.9862,

0.0013) 3

(0.0104, 0.9883,

0.0013) 3

App 3

(0.1833, 0.7833,

0.0333) 1

(0.0109, 0.9879,

0.0012) 4

(0.0097, 0.9891,

0.0012) 4

App 4

(0.1538, 0.8154,

0.0308) 2

(0.0446, 0.9464,

0.0089) 1

(0.0369, 0.9542,

0.0089) 1

App 5

(0.15, 0.825,

0.025) 3

(0.0178, 0.9808,

0.0014) 2

(0.017, 0.9816,

0.0014) 2

77

Table 24. Continued

news

App 1

(0.1528, 0.8194,

0.0278) 2

(0.0401, 0.9569,

0.0031) 2

(0.0322, 0.9647,

0.0031) 2

App 2

(0.193, 0.7719,

0.0351) 1

(0.0813, 0.9106,

0.0081) 1

(0.0649, 0.927,

0.0081) 1

App 3

(0.1325, 0.8434,

0.0241) 4

(0.0059, 0.9935,

0.0006) 5

(0.0053, 0.9941,

0.0006) 5

App 4

(0.119, 0.8571,

0.0238) 5

(0.0091, 0.9895,

0.0013) 4

(0.0079, 0.9908,

0.0013) 4

App 5

(0.1447, 0.8289,

0.0263) 3

(0.0153, 0.9829,

0.0018) 3

(0.0125, 0.9857,

0.0018) 3

travel

App 1

(0.1571, 0.8143,

0.0286) 2

(0.0082, 0.991,

0.0008) 3

(0.0074, 0.9918,

0.0008) 3

App 2

(0.1833, 0.7833,

0.0333) 1

(0.0107, 0.9873,

0.002) 1

(0.0096, 0.9884,

0.002) 1

App 3

(0.1571, 0.8143,

0.0286) 3

(0.0082, 0.991,

0.0008) 3

(0.0074, 0.9918,

0.0008) 3

App 4

(0.1579, 0.8158,

0.0263) 4

(0.0063, 0.9931,

0.0006) 5

(0.0055, 0.9939,

0.0006) 5

App 5

(0.1395, 0.8372,

0.0233) 5

(0.009, 0.9903,

0.0007) 2

(0.0074, 0.9919,

0.0007) 2

We can see that the number of ties is reduced when we combine multiple tools. We can

also observe that the rankings generated by B2 and B3 are highly correlated. This is further

illustrated by the Kendall Tau’s correlation in table below:

Table 25. Kendall Tau's Correlation for C1

category B1 vs B2 B2 vs B3 B3 vs B1

finance 0.316227766 1 0.316227766

insurance 0.2 1 0.2

shopping 0.2 1 0.2

news 0.8 1 0.8

travel 0.333333333 0.555555556 0.777777778

games 0.637573235 0.982112436 0.635838342

photography 0.663654909 0.983569135 0.673557399

tools 0.510261994 0.964515543 0.491188387

The high correlation between the combined rankings generated using B2 and B3 are

confirmed in the larger datasets as well.

78

 Consensus Scheme based on the trust of the tools (C2) Results

For Consensus Scheme that takes the trust of the tools into factoring, the results are

summarized in the table below:

Table 26. C2 Summary

Category App BDU (B1)

Rank

(B1) BDU(B2)

Rank

(B2) BDU (B3)

Rank

(B3)

finance

App 1

(0.1675, 0.2888,

0.5437) 1

(0.0411, 0.3742,

0.5848) 3

(0.0335, 0.3774,

0.5891) 3

App 2

(0.1484, 0.3636,

0.4879) 4

(0.098, 0.4361,

0.4659) 4

(0.0932, 0.4377,

0.4691) 4

App 3

(0.146, 0.3827,

0.4713) 5

(0.0487, 0.4886,

0.4627) 5

(0.0414, 0.4926,

0.466) 5

App 4

(0.149, 0.2939,

0.5571) 3

(0.0448, 0.3726,

0.5825) 1

(0.0341, 0.3773,

0.5885) 2

App 5

(0.1675, 0.2888,

0.5437) 1

(0.043, 0.3737,

0.5833) 2

(0.0348, 0.3772,

0.588) 1

insurance

App 1

(0.11, 0.373,

0.517) 4

(0.0851, 0.4617,

0.4533) 3

(0.0691, 0.4704,

0.4605) 3

App 2

(0.1676, 0.2873,

0.5451) 1

(0.0692, 0.3612,

0.5697) 1

(0.0574, 0.3662,

0.5764) 1

App 3

(0.1214, 0.308,

0.5706) 2

(0.0474, 0.3705,

0.5822) 2

(0.0368, 0.3751,

0.5881) 2

App 4

(0.1573, 0.3937,

0.4489) 3

(0.071, 0.4756,

0.4534) 4

(0.0577, 0.4829,

0.4595) 4

App 5

(0.1315, 0.412,

0.4565) 5

(0.0306, 0.5007,

0.4687) 5

(0.0246, 0.504,

0.4713) 5

shopping

App 1

(0.1414, 0.4064,

0.4521) 2 (0.051, 0.489, 0.46) 4

(0.0386, 0.4959,

0.4655) 4

App 2

(0.1217, 0.4179,

0.4604) 5

(0.0414, 0.4943,

0.4642) 5

(0.0324, 0.4993,

0.4683) 5

App 3

(0.1512, 0.2909,

0.5579) 1

(0.0741, 0.3595,

0.5664) 1

(0.0606, 0.3654,

0.574) 1

App 4

(0.1046, 0.4038,

0.4916) 4

(0.0839, 0.4638,

0.4523) 2

(0.0687, 0.4722,

0.4591) 2

App 5

(0.131, 0.4122,

0.4568) 3

(0.0702, 0.4778,

0.452) 3

(0.0588, 0.4839,

0.4572) 3

news

App 1

(0.1286, 0.4059,

0.4655) 2

(0.053, 0.4859,

0.4611) 2

(0.0419, 0.492,

0.4661) 2

App 2

(0.1599, 0.2789,

0.5611) 1

(0.0712, 0.3558,

0.573) 1

(0.0581, 0.3612,

0.5807) 1

App 3

(0.123, 0.417,

0.4599) 4

(0.0423, 0.4942,

0.4635) 4

(0.0339, 0.4988,

0.4673) 4

App 4

(0.112, 0.4251,

0.4629) 5

(0.0198, 0.5061,

0.4741) 5

(0.0167, 0.5077,

0.4756) 5

App 5

(0.1277, 0.4102,

0.4621) 3

(0.0475, 0.4898,

0.4627) 3

(0.0383, 0.4949,

0.4668) 3

79

Table 26. Continued

travel

App 1

(0.1336, 0.3977,

0.4687) 2

(0.0553, 0.4866,

0.4581) 2

(0.0455, 0.4919,

0.4625) 2

App 2

(0.1512, 0.2909,

0.5579) 1

(0.0524, 0.3685,

0.579) 1

(0.0438, 0.3723,

0.5839) 1

App 3

(0.1336, 0.3977,

0.4687) 2

(0.0553, 0.4866,

0.4581) 2

(0.0455, 0.4919,

0.4625) 2

App 4

(0.1359, 0.4052,

0.4589) 3

(0.0419, 0.4944,

0.4637) 4

(0.0333, 0.4991,

0.4675) 4

App 5

(0.128, 0.4181,

0.4539) 4

(0.0248, 0.5042,

0.471) 5

(0.0193, 0.5072,

0.4735) 5

Looking at the BDU-values, we can see that this ranking scheme balances out the low belief

values due to larger number of negative evidences. The trust values of the tool calculated using

the benchmark results help in achieving this balance.

The Kendall Tau’s correlation can be seen in the table below:

Table 27. Kendall Tau's Correlation for C2

category B1 vs B2 B2 vs B3 B3 vs B1

finance 0.527046277 0.8 0.737864787

insurance 0.8 1 0.8

shopping 0.4 1 0.4

news 1 1 1

travel 1 1 1

games 0.594867537 0.971890971 0.600017905

photography 0.289581722 0.94538187 0.289354926

tools 0.555506202 0.985445567 0.565523043

Similar to the C1 ranking scheme, the consensus based on B2 ranking scheme and B3

ranking scheme are heavily correlated. This can be seen in categories that have lesser number of

apps for which we have performed detailed analysis as well as in the larger datasets. There is also

a slight correlation between B1 and B2, and B1 and B3 as well.

80

4.4 Summary

In this chapter, we have evaluated the tools against the benchmark and analyzed the results

from the different ranking schemes proposed in this thesis.

In the evaluation of tools against the benchmark, we had seen that all MobSF and Qark

tools had similar performances, and AndroBugs had the worst performance. Their F1-scores were

0.41 for MobSF, 0.42 for Qark, and 0.33 for AndroBugs.

The ranking scheme based on only the categories of evidences (B1) generally have lots of

ties. This can be primarily attributed to the fact that many apps could contain same number of

security vulnerabilities and good practices. This is a really naïve approach and is not recommended

to be used.

The ranking scheme based on the frequency of evidences (B2) may provide a better

reflection of the app rankings. The rankings still have a slight correlation with ranking scheme B1

due to the fact that the apps with higher number of categories of evidences have higher frequency

of evidences in many cases. However, there are cases when apps with smaller or equal number of

categories of evidences have those evidences in large frequencies that may alter the rankings

drastically.

The ranking scheme based on the severity of evidences (B3) builds upon the ranking

scheme B2 and is highly correlated to it. Similar to ranking scheme B2, the ranking scheme B3

also has slight correlation with ranking scheme B1 in most of the cases, and for similar reasons.

Many of the apps have similar categories, and many of the categories have similar severity. This

means that only when the apps have very distinct severity levels of the evidences, the rankings are

altered from ranking scheme B2.

We also looked at two ways to combine the rankings from different tools. In the first case

(ranking scheme C1), we considered evidences from all tools equally and in second case (ranking

scheme C2), we added weights to the tools based on its performance on benchmark. We noticed

that the trends we saw while using the tools individually were present in the combined rankings as

well.

After comparing the different ranking schemes, we recommend using the ranking scheme

B3 as it takes the most criteria into consideration. Though it is similar to ranking scheme B2, it is

a more accurate reflection of the security vulnerabilities and good practices present in an app.

81

Depending on a user’s preference of tools, the rankings can be generated using a single

tool or a combination of tools. The results for the combined rankings consider all three analysis

tools but depending on the relevance of tool for a user, we could also use only a subset of the three

tools or add more tools.

There are no established rankings related to the security of the apps that can be considered

as the ground truth to compare against. There are third party app rankings such as AppBrain [47],

and AppAnnie [48] which provide rankings based on the number of downloads. Other efforts

carried out by Chowdhury et al. [40] [41] [42] and Gallege et al. [49] combine evidences obtained

both from the code analysis and user reviews. Since we are evaluating only the security evidences,

it would not be appropriate to compare our ranking schemes to these other approaches. The ranking

comparison, in addition, would require the use of same dataset – which is not the case with the

other approaches. Thus, we have limited the correlation calculation to the different ranking

schemes proposed in this research.

82

 CONCLUSION AND FUTURE WORK

This thesis has proposed several ranking schemes for ranking Android apps based on the

different security evidences generated by static analysis tools. Three ranking schemes were

proposed for ranking apps based on number of categories of the evidences, the frequency of the

evidences, and the severity of the evidences. The results from the proposed ranking schemes were

evaluated, and the ranking scheme based on the severity of evidences is the recommended ranking

scheme, because it considers most factor for ranking the apps.

Two additional ranking schemes were also proposed to combine rankings from different

tools. The first combined ranking scheme combines the tools considering each tool to be equally

weighted, and the second combined ranking scheme considers the weightage of tools based on the

performance of the tools in the benchmark. The combined ranking schemes can be used to generate

a combined ranking for any of the base ranking models for individual tools.

In summary, the major contributions of the thesis are as follows:

• This research evaluated each tool individually to identify the findings reported by the tool

and determine the CVSS score for each finding that is reported by the tools.

• Different static analysis tools available to evaluate android apps were identified.

• The benchmarks used in the research community for the static analysis tool for Android

were identified and the Ghera benchmark was selected for evaluating the tools.

• The static code analysis tools were evaluated against the Ghera benchmark.

• Subjective Logic was used to represent the evaluation of the apps and ranking them.

• Three rankings schemes were proposed and the results for each tool were evaluated for

each ranking scheme.

• Results for two additional schemes to combined rankings from different tools were

evaluated.

• The ranking scheme based on the severity was the recommended scheme as it took most

criteria into factoring, but other schemes may still be used depending on a user’s preference.

A user can also use rankings from a single tool or a combination of tools based on

preference.

83

There are several limitations to the work in this thesis. The limitations that were identified

were as follows:

• The CVSS score used in this research is generally determined by the security experts for

each vulnerability identified in an app. We have generalized to apply the CVSS for the

vulnerabilities identified by the tools without looking at each app based on the description,

and the data from the NVD database.

• The CVSS score was also calculated for the good practices based on the vulnerabilities it

tries to mitigate. The CVSS score is originally designed to be assigned for vulnerabilities

only.

• The static code analysis tools tend to have lots of false positives, and we have tried to

mitigate it by evaluating the tools against the benchmark. But there are still many findings

that could be false positives while calculating the rankings.

• Qark and AndroBugs have not been updated recently and may not detect vulnerabilities

introduced in newer versions of Android

This work provides a base for many future endeavors. This work can be extended to a

larger dataset of apps and across other categories. The set of tools can also be expanded as new

tools are developed. New schemes can also be developed by identifying other criteria for

evaluating apps. As there is more research on holistic ranking of apps, the work in this thesis can

be integrated to take the security into consideration.

84

REFERENCES

[1] PewResearch.Org, "Mobile Fact Sheet," Pew Research Center, 12 June 2019.

[Online]. Available: https://www.pewresearch.org/internet/fact-sheet/mobile/.

[2] StatCounter, "Mobile Operating System Market Share Worldwide," [Online].

Available: https://gs.statcounter.com/os-market-share/mobile/worldwide. [Accessed

14 January 2020].

[3] AppBrain, "Number of Android apps on Google Play," AppBrain, [Online].

Available: https://www.appbrain.com/stats/number-of-android-apps. [Accessed 15

November 2020].

[4] OWASP.org, "OWASP Mobile Top Ten," OWASP, 2016. [Online]. Available:

https://www.owasp.org/index.php/OWASP_Mobile_Top_10. [Accessed 14 January

2020].

[5] MITRE.org, "CWE-VIEW: Weaknesses in Mobile Applications," MITRE.org, 29

05 2013. [Online]. Available: https://cwe.mitre.org/data/definitions/919.html.

[Accessed 14 January 2020].

[6] B. Johnson, Y. Song and E. Murphy-Hill, "Why don't software developers use static

analysis tools to find bugs?," in 2013 35th Internation Conference on Software

engineering (ICSE), San Francisco, 2013.

[7] J. Mitra and V.-P. Ranganath, "Ghera: A Repository of Android App Vulnerability

Benchmarks," in Proceedings of PROMISE, Toronto, 2017.

[8] A. Jøsang, "A logic for uncertain probabilities," International Journal of

Uncertainity, Fuzziness and Knowledge-Based Systems, vol. 9, no. 3, 2001.

[9] Android Developers, "Application Fundamentals," Google Developers, [Online].

Available: https://developer.android.com/guide/components/fundamentals.

[Accessed 14 January 2019].

85

[10] Android Developers, "Introduction to Activities," Google Developers, [Online].

Available: https://developer.android.com/guide/components/activities/intro-

activities. [Accessed 14 January 2020].

[11] Android Developers, "Services Overview," Google, [Online]. Available:

https://developer.android.com/guide/components/services. [Accessed 14 January

2019].

[12] Android Developers, "Broadcasts Overview," Google Developers, [Online].

Available: https://developer.android.com/guide/components/broadcasts. [Accessed

14 January 2020].

[13] Android Developers, "Content Providers," Google Developers, [Online]. Available:

https://developer.android.com/guide/topics/providers/content-providers. [Accessed

14 January 2020].

[14] Android Developers, "Intents and Intent Filters," Google Developers, [Online].

Available: https://developer.android.com/guide/components/intents-filters.

[Accessed 14 January 2020].

[15] A. Lockwood, "Content providers and Content Resolvers," Android Design

Patterns, 25 06 2012. [Online]. Available:

https://www.androiddesignpatterns.com/2012/06/content-resolvers-and-content-

providers.html. [Accessed 14 January 2020].

[16] Android Developers, "Permissions Overview," Google Developers, [Online].

Available: https://developer.android.com/guide/topics/permissions/overview.

[Accessed 14 January 2020].

[17] Android Developers, "App Manifest Overview," Google Developers, [Online].

Available: https://developer.android.com/guide/topics/manifest/manifest-intro.

[Accessed 14 January 2020].

[18] "Dex2Jar," [Online]. Available: https://github.com/pxb1988/dex2jar. [Accessed 2

March 2020].

86

[19] "jadx," [Online]. Available: https://github.com/skylot/jadx. [Accessed 2 March

2020].

[20] FIRST.org, "CVSS 3.0 Specification Document," FIRST.org, [Online]. Available:

https://www.first.org/cvss/v3.0/specification-document. [Accessed 14 January

2020].

[21] NIST.gov, "National Vulnerability Database (NVD)," Information Technology

Laboratory, [Online]. Available: https://nvd.nist.gov/. [Accessed 2 February 2020].

[22] FIRST.org, "CVSS 3.0 Calculator," [Online]. Available:

https://www.first.org/cvss/calculator/3.0. [Accessed 14 January 2020].

[23] LinkedIn, "QARK," [Online]. Available: https://github.com/linkedin/qark.

[24] "Androbugs Framework," [Online]. Available:

https://github.com/AndroBugs/AndroBugs_Framework.

[25] "Mobile Security Framework," [Online]. Available:

https://github.com/MobSF/Mobile-Security-Framework-MobSF.

[26] "JAADAS," [Online]. Available: https://github.com/flankerhqd/JAADAS.

[27] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D.

Octeau and P. McDaniel, "FlowDroid: precise, context, flow, field, object-sensitive

and lifecycle-aware taint analysis for Android apps," ACM SIGPLAN Notices, vol.

49, no. 6, 2014.

[28] M. Gordon, K. Deokhwan, J. Perkins, L. Gilham, N. Nguyen and M. Rinard,

"Information-Flow Analysis of Android Applications in DroidSafe," in NDSS

Symposium 2015, San Diego, 2015.

[29] F. Wei, S. Roy, X. Ou and R. , "Amandroid: A Precise and General Inter-

Component Data Flow Analysis Framework for Security Vetting of Android Apps,"

ACM Transactions on Privacy and Security, vol. 21, no. 3, 2018.

87

[30] Payatu, "DIVA Android," [Online]. Available: https://github.com/payatu/diva-

android. [Accessed 4 August 2020].

[31] H.-T. B. (ImmuniWeb), "Purposefully Insecure and Vulnerable android

Application," [Online]. Available: https://github.com/HTBridge/pivaa. [Accessed 4

August 2020].

[32] C. Fritz, S. Arzt and S. Rasthofer, "DroidBench 2.0," [Online]. Available:

https://github.com/secure-software-engineering/DroidBench. [Accessed 4 August

2020].

[33] F. Wei, "ICC-Bench," [Online]. Available: https://github.com/fgwei/ICC-Bench.

[34] A. Bosu, "DialDroid-Bench," [Online]. Available:

https://github.com/amiangshu/dialdroid-bench. [Accessed 4 August 2020].

[35] A. Jøsang, "Aritifical Reasoning with Subjective Logic," in 2nd Australian

Workshop on Commonsense Reasoning, Perth, 1997.

[36] H. Zhou, W. Shi, Z. Liang and B. Liang, "Using new fusion operations to improve

trust expresiveness of subjective logic," Wuhan University Journal of Natural

Sciences, vol. 16, 2011.

[37] D. Ceolin, P. Groth and W. R. van Hage, "Calculating the Trust of Event

Description using Provenance".

[38] H. Abdi, "The Kendall Rank Correlation Coefficient," in Encyclopedia of

Measurement and Statistics, Thousand Oaks, Sage, 2007.

[39] SciPy.org, "SciPy Reference," SciPy.org, [Online]. Available:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html#r4c

d1899fa369-2. [Accessed 24 February 2020].

[40] AppBrain, "Google Play Ranking," AppBrain, [Online]. Available:

https://www.appbrain.com/stats/google-play-rankings. [Accessed 1 December

2020].

88

[41] N. S. Chowdhury and R. R. Raje, "A Holistic Ranking Scheme for Apps," in 2018

21st International Conference of Computer and Information Technology (ICCIT),

2018.

[42] N. S. Chowdhury and R. R. Raje, "Disparity between the programmatic views and

the user perceptions of mobile apps," in 2017 20th International Conference of

Computer and Information Technology (ICCIT), 2017.

[43] N. S. Chowdhury and R. R. Raje, "SERS: A Security-related and Evidence-based

RankingScheme for Mobile Apps," in The First IEEE International Conference on

Trust,Privacy and Security in Intelligent Systems, and Applications, 2019.

[44] L. S. Gallege and R. Raje, "Parallel methods for evidence and trust based selection

and recommendation of software apps from online marketplaces," in Proceedings of

the 12th Annual Conference on Cyber and Information Security Research, Oak

Ridge, 2017.

[45] L. Qiu, Y. Wang and J. Rubin, "Analyzing the analyzers: FlowDroid/IccTa,

Amandroid and DroidSafe," in ISSTA 2018: Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis, 2018.

[46] F. Pauck, E. Bodden and H. Wehrheim, "Do Android Taint Analysis Tools Keep

Their Promises," in ESEC/FSE 2018: Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 2018.

[47] B. Rashidi and C. J. Fung, "A Survey of Android Security Threats and Defenses," J.

Wirel. Mob. Networks Ubiquitous Comput. Dependable, vol. 6, pp. 3-35, 2015.

[48] "APKPure," [Online]. Available: https://apkpure.com/. [Accessed 2 March 2020].

[49] AppAnnie, "Top Apps on Google Play," AppAnnie, [Online]. Available:

https://www.appannie.com/en/apps/google-play/top/. [Accessed 1 December 2020].

