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ABSTRACT 

Accurate DNA replication is vital for maintaining genomic stability. Consequently, the 

machinery required to drive this process is designed to ensure the meticulous maintenance of 

information. However, random misincorporation of errors reduce the fidelity of the DNA and 

lead to pre-mature aging and age-related disorders such as cancer and neurodegenerative 

diseases. Some of the incorporated errors are the result of the error prone DNA polymerase alpha 

(Pol α), which initiates synthesis on both the leading and lagging strand. Lagging strand 

synthesis acquires an increased number of polymerase α tracks because of the number of 

Okazaki fragments synthesized per round of the cell cycle (~50 million in mammalian cells). The 

accumulation of these errors invariably reduces the fidelity of the genome. Previous work has 

shown that these pol α tracks can be removed by two redundant pathways referred to as the short 

and long flap pathway. The long flap pathway utilizes a complex network of proteins to remove 

more of the misincorporated nucleotides than the short flap pathway which mediates the removal 

of shorter flaps. Lysine acetylation has been reported to modulate the function of the nucleases 

implicated in flap processing. The cleavage activity of the long flap pathway nuclease, Dna2, is 

stimulated by lysine acetylation while conversely lysine acetylation of the short flap pathway 

nuclease, FEN1, inhibits its activity. The major protein players implicated during Okazaki 

fragment processing (OFP) are known, however, the choice of the processing pathway and its 

regulation by lysine acetylation of its main players is yet unknown. This dissertation identifies 

three main findings: 1) Saccharomyces cerevisiae helicase, petite integration frequency (Pif1) is 

lysine acetylated by Esa1 and deacetylated by Rpd3 regulating its viability and biochemical 

properties including helicase, binding and ATPase activity ii) the single stranded DNA binding 

protein, human replication protein A (RPA) is modified by p300 and this modification stimulates 

its primary binding function and iii) lysine acetylated human RPA directs OFP towards the long 

flap pathway even for a subset of short flaps. 
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 INTRODUCTION 

1.1 Interplay Between Genome Stability, Cell Cycle and DNA Replication 

One contributor to maintaining genome stability is faithful and error free DNA replication 

(1). In order to duplicate 3 billion nucleotides worth of genetic information of a human genome, 

the replication machinery ought to be efficient and finely regulated to ensure the following: 

recruitment of necessary protein players, proper and timely addition of nucleotides and correction 

of any associated errors. These processes are well coordinated within the context of the cell cycle 

where two major phases dictate the timing of cellular duplication and segregation events: 

interphase and mitosis or M phase outlined in figure 1.1 (2). While the M phase is the stage where 

nuclear division and chromosome segregation occurs, the interphase consists of two rest phases 

(G1 and G2) and the S phase where DNA replication is allowed to occur only once (3,4).  

 

 

Figure 1.1 Cell cycle phases. Timing of cellular events is separated into interphase where rest 
phases G1 and G2 flank cell duplication that occurs in the S phase while chromosomal 

segregation occurs in the mitotic phase (5). 
 

The concerted interplay between cell cycle regulation and DNA replication mechanisms 

necessitate checkpoints at these rest phases that help mitigate deleterious cellular consequences. 

In mammalian cells, there are two G1 checkpoints; one is referred to as the restriction point while 



 
 

14 

the other is the G1/S transition which once crossed, commits the cell to duplication in the S phase 

(6). Crossing this point is favored by the presence of extracellular growth factors though an 

alternative model suggests that only a fraction of cells enter into this uncommitted phase while 

others exit mitosis and continue cycling through to the next phase (7). Previous studies have 

demonstrated that mutations to genes encoding G1 regulatory proteins are responsible for a 

majority of cancers (8,9). The G2 checkpoint on the other hand ensures that the DNA is completely 

duplicated before proceeding to mitosis (10). It is also at this checkpoint that replication errors and 

damages which occur on the recently synthesized strand that are missed by the replication 

machinery are further repaired. This is important because incorrect genetic information contained 

within the genome could lead to unfavorable outcomes such as cancers, increased response to 

genotoxic stress and neurodegenerative disorders downstream (11).  

The mechanism of DNA replication was first outlined by Meselson and Stahl who provided 

evidence that this process occurred semi-conservatively with both strands serving as templates 

during replication (12). Following this discovery, Okazaki et al in 1968 highlighted that replication 

also occurrs in a semi-discontinuous fashion with one strand synthesizing continuously and the 

other discontinuously (13). Since then, we refer to the continuously synthesized strand as the 

leading strand and the strand synthesized discontinuously as the lagging strand, a result of the anti-

parallel nature of DNA (14). Over the years, more details about the mechanism of DNA replication 

have been discovered and the processes have been categorized into three steps: initiation, 

elongation and termination (15). In eukaryotes, DNA replication is initiated at multiple origins 

whereas bacteria typically have only one (16,17). Although eukaryotic cells contain multiple 

origins, not all are fired at the same time, a regulatory mechanism directed by the cell cycle (18). 

The initiation events start with  (i) origin licensing by the inactive pre-replicative complex [origin 

recognition complex (ORC1-6), Cdt1 and Cdc6] which directs the loading of minichromosome 

maintenance complex (MCM2-7) helicase during G1-S to the origin to be fired and (ii) origin 

firing which induces the formation of an active helicase complex consisting of MCM, GINS and 

Cdc45, collectively referred to as CMG helicase which then unwinds the parent strand allowing 

for the replisome to be recruited for elongation (19).  Following the unwinding of the parental 

DNA strand, the activities of the replisome bifurcate as replication proceeds to the elongation 

phase based on the directionality of the leading and lagging strands.  Because the focus of my 
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dissertation is to understand the enzyme mechanism involved in lagging strand synthesis and 

maturation, these events are highlighted in the subsequent sections. 

1.2 Correlation Between Lagging Strand Replication and Nucleosome Assembly 

1.2.1 Dynamics of Lagging Strand Replication 

Given that replicative polymerases only synthesize in the 5’ – 3’ direction, the lagging 

strand inherently poses a challenge to the replicative process as the template DNA mirrors the 

directionality of the polymerase consequently hindering the daughter strand from being able to be 

synthesized in the correct orientation (20). Polymerases also have another “rule of action” as 

defined by Mitra and Kornberg wherein, only one nucleotide is added to the new chain at a time 

(21). However, due to the fact that polymerases are unable to synthesize de novo, the addition of 

nucleotides must be preceded by an initiating primer (22). Therefore, to circumvent these 

highlighted predicaments, the cell replicates the lagging strand discontinuously and elongation is 

initiated by DNA polymerase alpha (Pol α) (13,23,24).   

Pol α , the first eukaryotic polymerase to be discovered, is a heterotetrameric protein that 

catalytically functions both as a primase and a polymerase (25). Its primase function is associated 

with the p48 subunit in conjunction with its p58 accessory subunit synthesizing approximately 8-

10 RNA molecules (26). Following RNA primer extension, there is a switch to its polymerase 

function which is induced by steric clashes that exist between the length of the RNA primer and 

the primase causing the p58 subunit to rotate its C terminus and giving way to the p180 subunit 

(27,28).  The p180 subunit primarily catalyzes the polymerase reaction, but it does so in tandem 

with p70 synthesizing about 20-30 nucleotides of DNA (27). Similar to other B family polymerases, 

Pol α has an exonuclease catalytic domain (29). However,  it is often referred to as an error prone 

polymerase because this domain while present, is inactive permitting errors associated with 

misincorporated nucleotides and ribonucleotides (20). Previous work has shown that Pol α creates 

mutational hotspots during lagging strand replication as 1.5% of the mature genome is comprised 

of DNA synthesized by this error prone polymerase (30,31). 

Once the RNA-DNA initiating primer has been synthesized, Pol α is displaced by the 

action of replication factor C (RFC), the clamp loader which binds to the nascent strand at the 

3’OH position and loads proliferating cell nuclear antigen (PCNA) onto it, a process to which the 
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single stranded DNA binding protein (SSDBP), replication protein A (RPA) is recruited (32-34). 

The concerted activities of these proteins promote polymerase switching from Pol α to the lagging 

strand polymerase, polymerase delta (Pol δ) (35,36). This polymerase requires the binding of 

PCNA to processively extend about 100-200 nucleotides of DNA at each primer tract (37-39).  

These short segments of replicated DNA are termed Okazaki fragments (OFs) and in a bid to form 

a fully functional DNA strand, must be processed (40). Processing ensures that the initiating RNA-

DNA primer is removed so as to prevent possible mutagenicity. Additionally, it ensures that these 

short segments are ligated in a DNA-DNA fashion as the presence of RNA within this duplex will 

give rise to instability, as a result of the fact that RNA contains a highly reactive 2’ OH group that 

can react with the aqueous environment causing shortened templates (41). 

In an attempt to rid the cell of an accumulation of RNA, the lagging strand polymerase, Pol 

δ not only possesses synthesis activities, but also exhibits strand displacement functions when in 

close proximity to downstream OFs as shown in figure 1.2 (42). Work by Maga et al shows that 

as the polymerase synthesizes the upstream OF, in conjunction with PCNA and RPA, its 

processivity is amplified, displacing the downstream OF into a flap whose size is limited by the 

presence of the SSDBP (37). Due to the complementarity of the displaced flap and the newly 

synthesized upstream OF to the template, there is an equilibration into a structure known as a 

double flap (43). There are two proposed pathways for processing this flapped intermediate and 

they have been delineated as the short flap and long flap pathway (40,44). In the short flap pathway, 

which is believed to be the predominant method by which OFs are processed, a structure specific 

protein, flap endonuclease 1 (FEN1) physically interacts with the clamp PCNA.  

This interaction stimulates the activity of FEN1 by 10-fold allowing it bind to the newly 

equilibrated, short double flap substrate (45,46). Upon binding, FEN1 threads through to the base 

of the flap, bending it at a 100° angle, a possibility that can only exist when the dsDNA contains 

a break or a flap and cleaves creating a nick (47). This process is referred to as nick translation and 

it is through the constant repetition of this process that the RNA-DNA initiator primer is removed 

(48). Finally, once DNA-DNA ends are revealed, the resulting nick can then be sensed and sealed 

by DNA Ligase I or its S. cerevisiae homolog Cdc9 which also tethers onto PCNA (49-51).  
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Figure 1.2 Elongation phase of lagging strand DNA synthesis. Okazaki fragment processing 
pathways outlining the short and long flap pathway proteins (1). 

 

While most OFs are processed via the short flap pathway, studies have shown that an 

alternative route exists for flap processing (52). This pathway has been termed the long flap 

pathway and is utilized when short flaps become lengthened due to a variety of reasons (49,52). 

One such scenario where this could occur is when FEN1 is disengaged from the replisome as a 

result of possible post translational modifications (PTMs) or stimulated strand displacement 

activity of Pol δ (53,54). Another instance where the long flap pathway is activated is in the 

presence of a helicase, petite integration frequency (Pif1) (55). This 5’ – 3’ helicase has been 

demonstrated to precede the lagging strand polymerase unwinding the downstream OF and 

creating a lengthened flap as a result (56). As flap length increases, RPA binds with high affinity 

preventing the formation of fold back structures and preventing the DNA from inappropriate 

degradation by cellular nucleases which has a catastrophic impact on genomic stability (57). The 
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binding of RPA to these flaps is refractory to FEN1 cleavage and necessitates the presence of 

another nuclease, Dna2 (58). Dna2 serves as both a nuclease and helicase which displaces RPA 

and sequentially cleaves the flap substrate multiple times leaving a 5-6nt terminal product, a 

fundamental difference in its catalytic activity when compared to FEN1 (59). At this point, FEN1 

is able to cleave the shortened flap and Lig I can seal the nick created.  

The presence of both of these pathways highlight that the cell has regulatory mechanisms 

in place wherein it engages one pathway over the other. Ultimately, the choice of OFP should 

promote the highest level of replication fidelity, especially as there are about 50 million OFs that 

are synthesized and ligated on the lagging strand during one round of the mammalian cell cycle 

(60). It is therefore imperative that the cell invests into redundant proteins and pathways that aid 

in the removal of RNA-DNA primers synthesized by Pol α which initiates thousands of OFs as 

incorporation of any errors during this process present the cell with dire consequences. 

1.2.2 Nucleosome Assembly 

  In 2012, work by Smith and Whitehouse showed that Okazaki fragment processing (OFP) 

is closely associated with nascent nucleosome deposition (61). This work provided insight into the 

correlation between DNA replication processes and the components of nucleosomal assembly. It 

revealed that OFs are ligated at nucleosomal dyads and this relationship serves as a form of 

regulation for both the length of OFs and determining the position of nucleosome deposition as 

one could alter both properties by changing components of either process (61). Other work has 

also demonstrated the importance of these interactions as depletion of the histone chaperones, 

chromatin assembly factor 1 (CAF-1) and anti-silencing function 1 (Asf1) slow down the rate of 

DNA replication (62). The results of these studies, came as no surprise given that DNA is 

compacted around histones to form chromatin as identified by Walther Flemming (63). The 

nucleosome is a functional unit of chromatin containing a histone octamer and 146 bp of DNA 

(64). The histone octamer consists of two copies of histone H2A, H2B, H3 and H4 and during 

nascent nucleosome assembly, CAF-1 mediates the formation and transfer of a histone H3 and H4 

tetramer to the nucleus (65). CAF-1 is further recruited to the replication fork by PCNA the 

homotoroidal clamp, allowing the deposition of this H3-H4 nucleosome precursor (66). Following 

this, H2A-H2B quickly associate forming a mature nucleosome (67). These core histone proteins 

each contain a lysine rich tail and a globular domain impacting its overall charge (68). The final 
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histone to be added is histone H1 which is believed to be necessary for exit out of S phase. As with 

DNA replication, histones are exclusively expressed during the S phase of the cell cycle 

demonstrating the consistent interplay and regulation of both processes (69-71). 

When considering nucleosome assembly and its components, it is imperative to visualize 

them within the context of how they exist in the cell and understand the underlying principles 

guiding their mechanism of actions. The compaction of DNA around histones is defined by (i) the 

attraction that occurs due to the interaction between negatively charged DNA and positively 

charged lysine rich histones and (ii) the need to fit the entire genome into a 2-10µm cellular 

compartment called the nucleus (72). This tight packaging which serves as medium of protection 

for the naked DNA, also precludes it from being accessible to other cellular components that might 

need to interact with it for different cellular events. Therefore, to navigate this functional hindrance, 

certain levels of regulation have been implemented to provide access to the DNA for key biological 

processes. One major form of regulation that has been widely studied is the post translational 

modification (PTM) of histones (72).  

PTMs are classified as modulations arising from the reversible and irreversible addition or 

deletion of chemical moieties to amino acids, the addition of covalent crosslinks to multiple protein 

domains and the proteolytic processing of certain regions of a protein (73). Functionally, PTMs 

extend a protein’s diversity by impacting its cellular localization, as well as promoting changes to 

its structure, catalytic activity and interactions with other proteins and cellular co-factors (74). It 

is on this basis that PTMs act as a form of regulation of not only histone – histone interactions, but 

also histone – DNA interactions as some of these PTMs inherently affect the net charge of the 

histones. The first identification of a histone modification was made in 1964 and since then, over 

30 different modifications have been observed (75,76). These histone modifications including 

methylation, ubiquitination, acetylation, ADP ribosylation and more recently SUMOylation have 

shown that nucleosome structure and stability can be greatly impacted such that the nucleosomes 

exist in either a fully wrapped or less wrapped state controlling access to the DNA (75,77).  

1.3 Lysine Acetylation as a Reversible Post Translational Modification of Histone Proteins 

Histone tails are one of the points of modification for several PTMs. One such PTM that 

has been widely studied and modifies these lysine rich tails is lysine acetylation, which was first 

described over 50 years ago by Vincent Allfrey (78).  Lysine acetylation is a reversible chemical 
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modification wherein an acetyl moiety is transferred from acetyl-CoA to the ε - amino group of a 

lysine residue as shown in figure 1.3 (79,80). Conserved across prokaryotes to eukaryotes, this 

modification serves two functions on histones: (i) it neutralizes the positive charge of the lysine 

residues limiting its affinity for the negatively charged DNA and (ii) it recruits necessary 

transcription factors containing acetyl lysine motifs/bromodomains (64,81). By disrupting the 

overall net charge of histones, lysine acetylation promotes the decondensation / unwrapping of 

nucleosomes providing access to the DNA for replication and other downstream cellular events 

(80). The reverse reaction termed deacetylation promotes condensation or the tight packing of 

nucleosomes into heterochromatin (82). Although this modification could be non-enzymatic as is 

the case in the mitochondria where there are high levels of acetyl-CoA, more often than not, the 

reversible reaction is mediated by two groups of enzymes lysine acetyl transferases (KATs) that 

are termed “writers” and lysine deacetylases (KDACs) often referred to as “erasers” (64). The tight 

regulation of both enzymes mediates gene activation and repression respectively (83,84). 

Previously, the terms used to describe these group of enzymes were histone acetyl transferases 

(HATs) and histone deacetylases (HDACs) until it was identified that they could modify non-

histone proteins as well (85). 

 

                      
 

Figure 1.3 Lysine acetylation as a post translational modification. Reversible acetylation and 
deacetylation reaction of a lysine residue mediated by KATs and KDACs respectively (86). 
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1.3.1 Regulators of Lysine Acetylation: KATs and KDACs 

KATs 

There are two types of KATs that promote the addition of an acetyl moiety to lysine 

residues and they are classified on the basis of their substrate specificity and localization: nuclear 

or type-A and cytoplasmic or type-B KATs (83). Type-A KATs are responsible for mediating the 

acetylation of free histones in chromatin while the type-B KATs acetylate nascent histones aiding 

in their localization and deposition to the replication fork for nucleosomal assembly (84). Over 21 

KATs have been identified in humans and about 10 in S .cerevisiae (80,87). In addition to 

categorizing KATs on the basis of subcellular localization, type-A HATs can also be grouped into 

3 different families on the basis of their mode of action and sequence homology across species: (i) 

GCN5 related N-acetyl transferases (GNATs), (ii) the MOZ, Ybf2, Sas2 and Tip60 family of acetyl 

transferases (MYST) and (iii) p300/CREB binding protein acetyl transferases (p300/CBP) (88). 

All three families of KATs possess a similar acetyl-CoA binding motif Q/RxxGxG/A although the 

mechanism of acetylation differs as detailed below (80,89). 

GCN5 related N-Acetyltransferases (GNAT) 

Contained within this family of acetyltransferases is Gcn5, it the prototypical member. In 

S. cerevisiae, Gcn5 exists within a multiprotein complex referred to as the SAGA complex 

consisting of Spt, Ada2, Gcn5 and Ada3 (90). It catalyzes the acetylation of both histone H3 and 

H4 with preference given to H3 when in the complex (91). Previous work demonstrates that in the 

absence of Gcn5, cells accumulate in the G2/M phase and are more sensitive to DNA damage 

highlighting that this KAT is necessary for cell cycle progression (92). Furthermore, work by 

Burgess et al revealed that Gcn5 is required for CAF-1 mediated replication coupled nucleosome 

assembly (93). Other proteins in this family are the human Gcn5 homolog, KAT2A and PCAF 

(KAT2B) (94). In this family, the process of lysine acetylation proceeds sequentially in three steps: 

deprotonation of the ε amine group of the lysine to be acetylated by a glutamine residue in the 

KAT’s active site (Glu80) followed by a transient intermediate structure formed between the 

protein’s lysine residue and the bound acetyl-CoA which promptly releases Co-ASH leaving a 

final lysine acetylated product as shown in Figure 1.4 (68).  
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Figure 1.4 GNAT and MYST family mechanism of action. Formation of deprotonated 
intermediate before the release of  Co-ASH to form an acetylated lysine product (80). “Reprinted 

(adapted) with permission from (Ibrahim et al, 2018). Copyright (2020) American Chemical 
Society.” 

P300/CREB Binding Protein Acetyltransferases (p300/CBP) 

In this family of KATs, p300, CBP and Rtt109 are all members. The first member of this 

family to be identified was p300 and it was discovered a little under 40 years ago where it was 

observed to function as a transcriptional activator associated with the E1 A protein (95). A few 

years later, CBP was discovered to have high homology with p300 and was grouped in the same 

category. They were later observed to function as KATs that could mediate the transfer of acetyl 

groups to histone and non-histone proteins alike (96,97). The yeast homolog of these human 

proteins is Rtt109 and although structurally similar, functions slightly differently from the other 

two (98).   

 

Figure 1.5 p300/CBP “Hit and Run” mechanism of action. Rapid release of Co-ASH and 
acetyl lysine product (80). “Reprinted (adapted) with permission from (Ibrahim et al, 2018). 

Copyright (2020) American Chemical Society.” 
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Unlike the other KAT families, their mechanism of action is referred to as a “hit and run” 

or Theorell-Chance transfer mechanism. Here, the transfer is rapid and mediated by aromatic 

residues lying within the shallow catalytic pocket of the protein that direct the lysine residue for 

nucleophilic attack by the acetyl CoA (99). The tyrosine residue then protonates the sulfhydryl 

group of CoA releasing it as depicted in Figure 1.5 (80). 

MYST Acetyltransferases 

This family of acetyltransferases was named according to its founding members: MOZ, 

Ybf2, Sas2 and Tip60 (100). They contain a conserved MYST domain among species that is made 

up of a zinc finger domain and an  acetyl-CoA binding motif (101). Similar to GNATs, they also 

exist in multiple protein complexes. For example, the yeast Esa1 protein, a Tip60 homolog 

functions with nucleosome acetyltransferase of histone H4 (NuA4) complex (102). This protein is 

necessary for cell cycle progression as a deletion of its gene is embryonically lethally (103). It also 

has been detected to acetylate H4 histone tails (104). Mechanistically, MYST family of KATs 

require deprotonation by a glutamine residue as highlighted in Figure 1.4 though it was previously 

thought that this reaction was mediated by cysteines (105). 

KDACs 

The deacetylation reaction is mediated by KDACs, which have been categorized into two 

groups based on their dependency on Zn2+ or NAD+ cofactors (106). The classical family of 

deacetylases is Zn2+ dependent and consists of three classes of KDACs: Class I, II and IV while 

the NAD-dependent KDACs describe class III/sirtuins (107). The first reference to deacetylation 

was made in 1977 by Riggs et al who discovered that n-butyrate causes histone modifications in 

HeLa cells (108). Subsequently, various enzymes that were able to remove acetyl and other acyl 

groups from lysine resides were discovered. Similar to KATs, although these enzymes mediate the 

removal of acetyl groups, they do so in unique ways. Class I, II and IV KDACs act similarly in 

that three amino acids stabilize the acetyl-lysine in the protein’s catalytic site and the Zn2+ cofactor 

polarizes the C-O group making the carbonyl carbon more electrophilic as indicated in Figure 1.6A. 

This carbon is then nucleophilically attacked by water molecules as activated by a histidine residue. 

Finally, a tyrosine reside on the KDAC stabilizes the transition state as the acetyl group is removed 
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from the lysine residue (109). Sirtuins on the other hand deacetylate by binding the acetyl-lysine 

within its active site, a necessary step for nicotinamide hydrolysis. This hydrolytic reaction gives 

rise to an O- alkylamidate intermediate wherein the acetyl group on the 1’ carbon is attacked as 

outlined in Figure 1.6B (110). The cyclic intermediate formed is further attacked by a water 

molecule resulting in a deacetylated lysine and a 2’- acetyl-ADP-ribose (111).   

Class I KDACs 

This group contains human KDAC 1, 2, 3 and 8 and their yeast homolog,  Rpd3 (112). 

Similar to KATs, these KDACs also exist within a complex like Rpd3 which belongs to the 

nucleosome remodeling and deacetylase complex (NuRD) (113). In mammalian cells, the NuRD 

complex consists of both KDAC1 and 2 which share ~85% sequence identity (114). KDAC1 and 

2 also form complexes with Sin3 and Co-REST (115). Though expressed in all tissues, they are 

localized to the nucleus where they function (116). In mice, inhibition of KDAC1 leads to cell 

cycle arrest as a result of the increased expression of p21, a cyclin dependent kinase (CDK) 

inhibitor (117). Deletion of KDAC2 although not embryonically lethal leads to heart defects (118). 

KDAC3 has only ~34% sequence identity with KDAC8 making it the most related class I KDAC 

(119). Knockout of this deacetylase in mice are embryonically lethal while a deletion of KDAC8 

leads to cranial defects (120). 
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Figure 1.6 Mechanism of action of KDACs. A) Class I, II and IV KDACs require Zn2+ 
cofactor and water molecules for deacetylation reaction B) Sirtuins formation of an O- 

alkylamidate intermediate (80). “Reprinted (adapted) with permission from (Ibrahim et al, 2018). 
Copyright (2020) American Chemical Society.”  

 

A. 

B. 
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Class II KDACs 

This class is further subdivided into 2 groups: Class IIa and IIb and contained within each 

class are KDAC 4, 5, 7, 9 and KDAC 6 and 10 respectively. This class shuttles between both the 

nucleus and the cytoplasm depending on certain cellular modifications and localization signals 

such as phosphorylation (121,122). In yeast, class II KDACS are fore mostly represented by Hda1 

which was discovered in 1996 by Carmen et al and over the years has been outlined to function in 

complex with Hda2 and Hda3 (123,124). Class IIa enzymes share a highly conserved C-terminal 

catalytic domain (125). They are expressed in specific tissues such as the heart and brain making 

them markedly different from class I KDACs which are ubiquitously expressed (126,127). In mice, 

a knockout of some of these KDACs results in cardiac defects and excessive bone formation 

highlighting their importance in specific tissues (128,129). In mammalian cells, class IIb enzymes 

are mostly cytoplasmic and are represented by double deacetylase domains (130). Interestingly, 

KDAC 10 has been discovered to be a poor lysine deacetylase, but a strong polyamine deacetylase 

showing that these KDACs are not limited to one modification (131). Knockout of this class in 

mice yields no observable phenotype (132).  

Class III KDACs/Sirtuins 

In the 1990’s the first member of this family, silent information regulator (Sir2) was 

identified in yeast (133). Upregulation of Sir2 seemed to extend the cell’s lifespan in an NAD+ 

dependent manner highlighting its impact in regulating transcriptional silencing (134,135). NAD+ 

has always been viewed in terms of catalyzing reduction-oxidation reactions in the cell, but in the 

last decade, its role in acting as a substrate for deacetylation activities has garnered much interest 

(136). In mammalian cells, there are seven sirtuins (SIRT1-7) belonging to four different classes 

based on the homology of their sequences: SIRT1-3 are class I sirtuins while SIRT 4, SIRT5 and 

SIRT 6-7 belong to class II, III and IV respectively (137). SIRT1 and 7 are localized to the nucleus 

though SIRT 1 can be shuttled to the cytoplasm where SIRT 2 also localizes (138-140). SIRT 3-5 

all contain a mitochondrial localization sequence while SIRT 7 is localized to the nucleolus (141-

144).   
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Class IV KDACs 

There is only one KDAC in this class and that is KDAC 11 which is the most recently 

discovered deacetylase (145). It appears to be most closely related to Class I HDACs but serves 

unique functions. It primarily localizes to the nucleus and as of yet has not been shown to 

deacetylate any histone, though its activity on non-histone proteins has been detected (146). In 

addition, KDAC11 has been shown to remove long-chain acyl groups from lysine resides other 

than acetyl moieties (147)   

1.4 Lysine Acetylation as a Modifier of Non-Histone Proteins 

While this modification has been attributed to the regulation of histone proteins for over a 

century, it has now been shown that it is not limited to just one subset of proteins. It is important 

to note that while most proteins (80-90%) are N-terminally acetylated, internal lysine acetylation 

serves a different function (148).  Choudhary and colleagues have been at the forefront of using 

proteomic techniques to detect novel proteins that are modulated by lysine acetylation (149). An 

outline of some of the functional roles lysine acetylation plays in numerous pathways mediated by 

its non-histone targets is provided below. 

1.4.1 Transcription Activation 

The first non-histone protein to be identified as being able to undergo acetylation was p53, 

a transcription co-activator (150). Lysine acetylation of p53 by TIP60/MOF (K120) and p300 

(K164 and C-terminus) activates the protein by abolishing its binding with p21 and Mdm2, a 

repressor that prevents p53 responsive genes from being activated and ultimately cell arrest (151). 

Because p53 needs to be tightly regulated within the cell, Md2 recruits KDAC1 or SIRT1 to 

deacetylate p53 (152). Additionally, acetylation of Mdm2 by p300 promotes its interaction with 

the deubiquitinase USP7 and ultimately, p53 ubiquitination (153). Another transcription factor that 

is impacted by lysine acetylation is NF-κB whose two subunits (p65 and p50) are acetylated 

altering transcription activation (154). 
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1.4.2 Cytoskeletal Stability 

All isoforms of actin have been reported to be acetylated and this modification enhances 

their stability which is important as they inform cell shape and motility (155). Additionally, other 

regulatory proteins that are involved with the cytoskeleton are also acetylated such as cofilin and 

contarctin which are modulated by p300 and deacetylated by KDAC6 resulting in regulated cell 

motility (156). Other microtubules modified by this PTM include both α and β-tubulin which when 

acetylated downregulates tubulin polymerization (157). 

1.4.3 Protein Aggregation 

Aggregation is a hallmark of a myriad of neurological disorders including Alzheimer’s 

disease where in tau protein aggregation is defined as an early marker of the disease (158,159). 

Ordinarily, tau proteins mediate microtubule assembly and contribute to neuronal morphology 

(160). However, previous work has revealed that tau proteins can be modified by p300 and CBP 

and this modification leads to an inhibition of its cellular degradation thereby accumulating these 

proteins (161). Conversely, in mice, inhibition of p300 ameliorates the effect of tau induced 

memory deficit and hippocampal atrophy highlighting that the tight regulation of tau proteins by 

lysine acetylation has dire neurological consequences (162). 

1.4.4 Cellular localization 

In addition to cellular localization signals attached to proteins, lysine acetylation has been 

shown to aid in shuttling proteins from one cellular location to another or affecting the ability of 

proteins to localize to certain areas. Lysine acetylation of the RECQL4 helicase interrupts its 

engagement with nuclear import factors thereby preventing its transport and causing it to 

accumulate in the cytoplasm (163).  Additionally, nuclear import proteins are also regulated by 

lysine acetylation themselves such as importin-α1 which when acetylated by p300/CBP aids in its 

association with importin-β (164).  
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1.4.5 DNA Replication  

The replicative process requires intricate regulation to ensure that genome stability is 

maintained. Coupled with PTMs like phosphorylation that regulate the cell cycle and time when 

this process occurs, lysine acetylation has been revealed to be another method of fine-tuning 

replication to ensure high fidelity processing (165). Glozak et al discovered that the licensing 

factor Cdt1 is modified by KAT2A and KAT2B, offering it protection from being degraded by 

ubiquitination (166). Interestingly, at least three of the proteins implicated during lagging strand 

replication have been identified to be regulated by this PTM. FEN1, the short flap endonuclease is 

lysine acetylated by p300 and this inhibits its binding and cleavage properties (53). Conversely, 

its functional interacting partner in the long flap pathway, Dna2 shows improved DNA binding 

and cleavage when acetylated by p300 (167).  

 

Given the proximity and interaction between histone deposition and lagging strand 

replication, it is no surprise that these OFP proteins are acetylated. It is on the basis of these 

observations that this study was founded. We sought to elucidate if other lagging strand proteins 

specifically Pif1 and RPA could be acetylated. Furthermore, we probed the cellular contexts 

wherein this modification was activated on the proteins and finally, detailed the impact of lysine 

acetylation on their biochemical properties. This study reveals that though the process of DNA 

replication is already optimized to perform high fidelity synthesis, its mechanisms can be further 

fine-tuned by lysine acetylation to promote higher fidelity processing via the long flap pathway. 

This decision to process Okazaki fragments in this manner ensures that the majority of 

misincorporated errors are removed resulting in improved genome stability.  
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 NUCLEAR PIF1 IS POST TRANSLATIONALLY 
MODIFIED AND REGULATED BY LYSINE ACETYLATION  

Chapter 2 along with Appendix A were originally published in Journal of Biological Chemistry. 

Ononye, O. E., Sausen, C. W., Balakrishnan, L., and Bochman, M. L. (2020) Lysine Acetylation 

Regulates the Activity of Nuclear Pif1. J Biol Chem 

 

2.1 Abstract  

In S. cerevisiae, the Pif1 helicase functions to impact both nuclear and mitochondrial DNA 

replication and repair processes. Pif1 is a 5’-3’ helicase, which preferentially unwinds RNA-DNA 

hybrids and resolves G-quadruplex structures. Here, we report lysine acetylation of nuclear Pif1, 

which influences both its cellular and core biochemical activities. Using Pif1 overexpression 

toxicity assays, we determined that the acetyltransferase NuA4 and deacetylase Rpd3 are primarily 

responsible for dynamically acetylating nuclear Pif1. Mass spectrometry analysis revealed that 

Pif1 was modified throughout the protein’s sequence on the N-terminus (K118, K129), helicase 

domain (K525, K639, K725), and C-terminus (K800). Acetylation of Pif1 exacerbated its 

overexpression toxicity phenotype, which was alleviated upon deletion of its N-terminus. 

Biochemical assays demonstrated that acetylation of Pif1 stimulated its helicase activity, while 

maintaining its substrate preferences. Additionally, both the ATPase and DNA binding activities 

of Pif1 were stimulated upon acetylation. Limited proteolysis assays indicate that acetylation of 

Pif1 induces a conformational change that may account for its altered enzymatic properties. We 

propose an acetylation-based model for the regulation of Pif1 activities, addressing how this post 

translational modification can influence its role as a key player in a multitude of DNA transactions 

vital to the maintenance of genome integrity.  
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2.2 Introduction 

At the core of all cellular transactions, such as replication, repair, and transcription, is the 

need for biological machines to gain access to the genetic information stored within the DNA 

duplex (168). Along with chromatin remodeling, access to the DNA is provided through either the 

active or passive action of helicases, which function to unwind double-stranded DNA (dsDNA) 

into its complementary single strands. Approximately 1% of the genes in eukaryotic genomes code 

for helicases, and to date, over 100 RNA and DNA helicases have been discovered (169,170). 

These motor proteins function by coupling ATP hydrolysis to mechanical movement to break the 

hydrogen bonds between complementary base pairs in dsDNA (169). One such DNA helicase, 

Pif1, was first identified in a screen for genes that influence the frequency of mitochondrial DNA 

recombination in Saccharomyces cerevisiae (171). Since its initial discovery, Pif1 has been 

characterized as a member of the Superfamily 1B group of helicases, which translocate along 

single-stranded DNA (ssDNA) in the 5’ to 3’ direction (172). Unlike some members in this 

superfamily, Pif1 only binds to DNA, but preferentially unwinds RNA-DNA forked duplexes and 

structured regions such as G-quadruplexes (G4s) and R-loops (170,173-177).  

Following its initial discovery in yeast mitochondria over 20 year ago, Pif1 has been shown 

to also localize to the nucleus, where it participates in a myriad of DNA transactions. It functions 

in Okazaki fragment maturation, wherein it lengthens the flap ahead of DNA polymerase δ, 

allowing RPA to bind to the displaced flap (56). Recently, it was determined that the rate of 

replication on lagging strands containing G4s is delayed in the absence of Pif1, underscoring the 

need for Pif1 to unwind regions that are difficult to replicate due to the presence of DNA secondary 

structures (178). Pif1 also stimulates the activity of polymerase δ during break-induced replication 

through bubble migration (179). Furthermore, prior to mitosis, Pif1 helps to resolve R-loops and 

aid in protein displacement from tDNA (tRNA genes) (175), while within the ribosomal DNA 

(rDNA), it is required for maintaining arrest at the replication fork barrier (RFB) (180). 

Additionally, Pif1 acts as a negative regulator of telomerase, both at telomeric ends and sites of 

double-strand breaks (DSBs) where it prevents telomere addition, allowing for the recruitment of 

DSB repair factors (181-184). Given Pif1’s involvement in a plethora of cellular activities, it still 

remains a mystery how its numerous activities are regulated.  

Structurally, Pif1 is divided into three domains: N-terminus, helicase core, and C-terminus. 

A wealth of research has improved our understanding of the structural motifs and related functions 
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of the helicase domain, but in comparison, little is known about the N- and C-terminal domains of 

Pif1. Currently, these regions are postulated to be modular accessory domains that may serve as 

regulatory regions (176,185,186). We hypothesize that the functional significance of these 

domains may help to maintain specific folds that are necessary for protein function and establish 

points for post translational modifications (PTMs) (187). Protein PTMs serve to expand a protein’s 

functional toolbox by altering cellular localization and impacting protein structure, function, and 

availability while mediating novel interactions with other proteins or nucleic acids (188). 

Acetylation of the ε-amino group on a lysine residue is one such PTM that has been studied in the 

context of modulating chromatin architecture for many decades (189-191). However, many non-

histone proteins are also modified by acetylation, including replication/repair-associated helicases 

such as Dna2 (167), BLM (192), and WRN (193).  

In addition to reports of acetylation of multiple helicases, many functional interacting 

partners of Pif1 in the Okazaki fragment maturation pathway, namely, Dna2 (167), FEN1 (194), 

PCNA (195), and RPA (196,197) are also modified by lysine acetylation. Since the sequence 

coding for Pif1 is fairly rich in lysine residues (~10% of the whole sequence), an amino acid that 

serves as a good target for many PTMs, we were interested in investigating the acetylation 

dynamics of Pif1. In the current study, we aimed to specifically explore the lysine acetylation 

status of Pif1, identify the enzymes that dynamically mediate this modification, and elucidate the 

impact of acetylation on the protein’s cellular functions and alterations to its biochemical activities. 

Using Pif1-FLAG overexpression constructs, we compared cellular toxicity in wild-type and 

acetyltransferase or deacetylase mutant strains. Based on the growth phenotypes, we determined 

that the acetyltransferase (KAT), NuA4 (Esa1), and its counteracting deacetylase (KDAC), Rpd3, 

are responsible for regulating Pif1 overexpression toxicity in vivo. The Pif1 N-terminal domain 

(PiNt) was critical for this toxicity regulation, as N-terminally truncated Pif1 (Pif1ΔN) did not 

behave in the same manner as the full-length Pif1. Additionally, using in vitro Piccolo NuA4 

(Esa1)-acetylated recombinant protein, we evaluated the impact of this modification on Pif1’s 

biochemical functions - DNA unwinding, G4 resolvase activity, DNA binding, and ATPase 

activity - and observed a stimulation in all four activities in the acetylated form when compared to 

the unmodified form of the protein. The results of our cellular assays and in vitro studies indicate 

that lysine acetylation serves as an important regulator of Pif1 activity within the cell.  
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2.3 Results 

2.3.1 Cellular Acetylation Status Modulates Pif1 Overexpression Toxicity In Vivo 

Acetylation dynamics within the cell are tightly regulated by KATs and counteracting 

KDACs (198). These lysine modifiers regulate both histone and non-histone proteins, thereby 

impacting biochemical activities and cellular processes (199). Because the lysine-rich sequence of 

Pif1 makes it a target for modification by acetylation, we were interested in defining the effect of 

this modification on the functional activities of Pif1 within the cell. To understand the impact of 

global cellular acetylation on the function of Pif1, we initially sought to alter the acetylation 

dynamics in the cell by creating either KAT or KDAC mutant strains. It has previously been 

reported that the overexpression of Pif1 in S. cerevisiae is toxic to cell growth (200-202). Therefore, 

we used this overexpression toxicity phenomenon to develop a phenotypic assay to determine the 

impact of cellular acetylation. Our hypothesis was that altering the cellular levels of acetylation 

may influence Pif1 interactions with other proteins and/or its own function, thereby altering the 

overexpression toxicity phenotype. A galactose-inducible overexpression plasmid was used to 

overexpress Pif1 in wild-type, acetyltransferase mutant, and deacetylase deletion mutant cells. 

However, the growth kinetics (i.e., length of lag phase, doubling rate, and terminal cell density) of 

S. cerevisiae cells are affected by multiple variables in a somewhat stochastic manner (203). Thus, 

it can be difficult to compare growth curves between independent experiments using the same 

strain, let alone comparing strains with multiple genetic backgrounds. 

To overcome these limitations of cell growth analyses, we developed a data analysis 

method to specifically focus on the effect of Pif1 overexpression regardless of strain background. 

First, cell growth was monitored by measuring the optical density of liquid cultures at 660 nm 

(OD660) over 48 FEN1, and the mean OD660 for each strain was calculated. Then, to determine the 

effect of Pif1 overexpression on growth, the mean OD660 of cells grown in galactose-containing 

medium was divided by the mean OD660 of the same strain grown in glucose-containing medium, 

which strongly represses the GAL1/10 promoter. Finally, this galactose/glucose ratio for each Pif1-

overexpressing strain was normalized to the same ratio from an empty vector control. The 

normalized growth value for each genotype is interpreted as the toxic effect of Pif1 overexpression 

in that specific genetic background. The results of these experiments are shown in Figure 2.1. Here, 

we recapitulated the toxicity of Pif1 overexpression reported by others (200-202), finding an 
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approximately 50-60% reduction in wild-type growth upon overexpression of the helicase (Figure 

2.1A). 

To determine if acetylation of Pif1 had an effect on overexpression toxicity, we performed 

similar experiments in KAT mutant cells. Acetyltransferases representative from the Gcn5-related 

N-acetyltransferase (GNAT) family, the MYST family, and p300/CBP family were chosen for our 

studies (204). The genes encoding the Gcn5 (GNAT) and Rtt109 (p300/CBP) KATs are non-

essential and can be cleanly deleted, but the catalytic subunit Esa1 of the NuA4 complex (MYST) 

is essential (205,206), so the temperature-sensitive esa1-414 allele (207) was used. This allele has 

reduced KAT activity at 30°C but full activity at 25°C. Pif1 overexpression in the esa1-414 

background caused significantly (p < 0.001) reduced toxicity compared to wild-type when grown 

at the restrictive temperature (30°C) but not at the permissive temperature (25°C) (Figure 2.1B). 

No such effect was observed upon Pif1 overexpression in the gcn5Δ and rtt109Δ backgrounds, 

suggesting that NuA4 (Esa1) acetylates Pif1 in vivo and that acetylation is connected to Pif1 

overexpression toxicity.  

To address this hypothesis further, the effects of Pif1 overexpression were assessed in a set 

of S. cerevisiae strains each lacking a single KDAC (Figure 2.1C). If hypo-acetylation resulted in 

better growth upon Pif1 overexpression in the esa1-414 cells, then hyper-acetylation in one or 

more KDAC-null backgrounds should exacerbate the toxicity. Indeed, we observed significant (p 

< 0.001) increases in Pif1 overexpression toxicity in cells lacking either the KDAC, Rpd3 or Hda2 

(Figure 2.1C). Unfortunately, we could not test for synergistic Pif1 toxicity in a double rpd3Δ 

hda2Δ mutant strain because that combination of KDAC deletions is synthetically lethal (data not 

shown). These results indicate that hyperacetylation of Pif1 in cells lacking Rpd3 or Hda2 leads to 

increased toxicity upon helicase overexpression. Furthermore, the experiments in Figure 2.1B 

suggest that NuA4 (Esa1) mediates Pif1 acetylation in vivo, and Rpd3 and/or Hda2 are responsible 

for deacetylating Pif1 (Figure 2.1C). It should be noted that NuA4 and Rpd3 are known to have 

balancing activities in vivo (207), lending credence to these results, and thus, we focused on Rpd3 

instead of Hda2 herein. 

2.3.2 Pif1 Acetylation is Dynamically Regulated by NuA4 and Rpd3 

Because Pif1 overexpression toxicity was significantly altered in specific KAT and KDAC 

mutant strains, we were interested in directly confirming if the lysine residues on Pif1 were 



 
 

35 

acetylated in these backgrounds. Based on the results obtained in Figure 2.1B and C, we 

investigated the acetylation status of overexpressed Pif1-FLAG in the acetylation proficient 

(rpd3Δ) and acetylation deficient (esa1-414) strains that displayed significant difference in overall 

cell viability compared to the wild-type strain. To assess Pif1 acetylation, we immunoprecipitated 

the lysates with anti-acetyl lysine antibody, followed by immunoblotting with anti-FLAG antibody. 

Input and phosphoglycerate kinase (Pgk1) served as a loading control in all experiments. The 

western blot results showed increased Pif1 acetylation in the rpd3Δ lysate (1.7-fold) and decreased 

Pif1 acetylation in the esa1-414 lysate compared to the wild-type (compare lane 2 and 3 to lane 1 

respectively, Figure 2.2A), consistent with the results in Figure 2.1. These results further confirm 

that Pif1 acetylation is regulated by the action of NuA4 (Esa1) and its counteracting partner, Rpd3.  

To test the efficiency of recombinant Piccolo NuA4 (Esa1/Epl1/Yng2 subunits) for 

acetylating Pif1, we used a previously established in vitro acetylation protocol to modify 

recombinant Pif1 (194). Using an anti-acetyl lysine antibody, we were able to detect lysine 

acetylation of Pif1 on the Piccolo NuA4-modified Pif1 but not on the unmodified form (Figure 

2.2B), confirming that Piccolo NuA4 was capable of acetylating Pif1. Similarly, autoradiography 

of in vitro acetylated Pif1 also showed the helicase to be modified, in addition to the 

autoacetylation of the Esa1, Epl1, and Yng2 subunits of Piccolo NuA4 (A- 1). Further, using 

tandem mass spectrometry analysis, we were able to identify six acetyl lysine sites on the in vitro-

modified Pif1: K118, K129, K525, K639, K725, and K800 (Figure 2C). An example of an 

acetylation spectrum detecting the +42 Da mass shift is shown in A- 2. These results establish a 

Pif1 acetylation signature that defines two sites of modification in the N-terminal domain (K118, 

K129), three in the helicase domain (K525, K639, K725), and one on the C-terminus (K800). The 

two modified residues clustered in the PiNt were intriguing because while the function of the PiNt 

is still being elucidated, it has already been shown to regulate some of Pif1’s activities and alter 

its overexpression toxicity in vivo (201). To investigate this further, we used an N-terminal domain 

truncation of Pif1 (Pif1ΔN) lacking amino acids 1-233 to determine the role of the PiNt in Pif1 

acetylation. We found that similar to modifying the full-length Pif1, Piccolo NuA4 (Esa1) was 

also able to in vitro acetylate recombinant Pif1ΔN (Figure 2.2B) and detected sites K525, K639, 

K725 and K800 to be acetylated using mass spectrometry. Additionally, acetylation of previously 

determined lysine sites on the helicase and C-terminal domains in the absence of PiNt were 

confirmed by mass spectrometry.  
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2.3.3 The Absence of the PiNt in Acetylation Mutant Strains Impacts Overexpression 
Toxicity 

To assess the contribution of the PiNt to acetylation-dependent toxicity, we used the 

Pif1ΔN construct in our overexpression toxicity assay, investigating the same genetic backgrounds 

as in Figure 2.1. As previously reported (201), Pif1ΔN was less toxic in this assay in wild-type 

cells than full-length Pif1 (Figure 2.3A and 2.3B), exhibiting a toxicity value of ~0.8 compared to 

0.4, respectively. No decrease in toxicity was observed in the esa1-414 cells nor in any other KAT 

deletion strain (Figure 2.3A). Because wild-type cells over-expressing Pif1ΔN already showed 

robust growth, this result is unsurprising.  

Among the KDAC mutant strains, deletion of the PiNt rescued the increased toxicity of 

Pif1 overexpression in hda2∆ cells (Figure 2.3B). Deletion of RPD3 still resulted in increased 

toxicity relative to wild-type cells (p < 0.01), upon Pif1ΔN overexpression (Figure 2.3B), but this 

still represented a significant growth improvement compared to full-length Pif1 overexpression in 

rpd3∆ cells (p < 0.0001). Indeed, growth in rpd3∆ cells led to a 51% toxicity increase when Pif1 

was overexpressed, compared to only a 20% toxicity increase with Pif1ΔN (Figure 2.3C). There 

were no significant effects of Pif1ΔN overexpression in the other KDAC deletion backgrounds. 

The reduction of acetylation effects on Pif1ΔN toxicity compared to full-length Pif1 indicates that 

the PiNt is critical for acetylation-altered activity in vivo.  

2.3.4 Acetylation Stimulates Pif1’s Helicase Function 

Pif1 is a structure-specific helicase, and the order of its preferential unwinding of substrates 

is RNA:DNA forks > DNA:DNA forks > 5’ tailed DNA:RNA duplex > 5’ tailed DNA:DNA 

duplex (208). We designed forked and tailed duplex substrates to aid in determining the impact of 

lysine acetylation on the helicase activity of Pif1. Because Pif1 is a non-processive helicase, assays 

were performed using unmodified (UM) and Piccolo NuA4 (Esa1) in vitro-acetylated (AC) forms 

of the protein under multi-turnover conditions, such that more unwound products could be 

visualized given the experimental parameters used. Under these conditions, Pif1 was able to rebind 

to its DNA substrate after initial dissociation, allowing for multiple rounds of binding followed by 

unwinding. The amplitude (a measure of the percentage of DNA molecules that are completely 

unwound by the helicase during the course of the reaction) of unwinding was compared between 

UM-Pif1 and AC-Pif1 on different cognate helicase substrates. We observed that Pif1 acetylation 



 
 

37 

led to ~3-fold increase on a DNA-DNA fork (Figure 2.4A), DNA-DNA tail (Figure 2.4C), and 

RNA-DNA tail substrates (Figure 2.4D) and ~2-fold increase on an RNA-DNA fork (Figure 2.4B). 

Both RNA-DNA substrates had higher amplitudes than their DNA-DNA counterparts, confirming 

that indeed, the nature of the nucleic acid within the duplex region of the displaced strand dictates 

Pif1’s preference for certain substrates over others (208). Furthermore, the Pif1 helicase is 

additionally known to unwind stable G4 structures, which can hinder DNA replication (178). 

Therefore, using a G4 substrate, we determined the impact of acetylation on G4 resolution under 

similar conditions (209). Identical to its other preferred substrates, we observed ~2-fold 

stimulation of unwinding when Pif1 was acetylated (Figure 2.4E). Formation of a stable G4 

structure was confirmed by performing a synthesis assay using Pol δ in the presence of unmodified 

and acetylated forms of the helicase (Figure 2.4F). DNA pol 𝛿𝛿 alone was unable to synthesize on 

the G4 substrate past the gap region, indicating the presence of a stable G4 structure. However, in 

the presence of both UM-Pif1 and AC-Pif1, we observed synthesis past the gap and into the G4 

region. The AC-Pif1 displayed the highest stimulation of pol 𝛿𝛿 synthesis, including the formation 

of a full-length product, presumably because AC-Pif1 was more efficient at G4 structure resolution 

than UM-Pif1. 

To study the impact of acetylation on helicase activity in the absence of the PiNt, 

experiments were also performed using the UM- and AC-Pif1ΔN recombinant protein. Under 

multi-turnover conditions, acetylation increased the amplitudes of forked duplex unwinding (~2-

3-fold) analogous to the full-length protein (Figures 2.4A and 2.4B). However, we observed 

decreased unwinding of tailed substrates by AC-Pif1ΔN compared to full-length AC-Pif1 (Figures 

2.4C and 2.4D). These data demonstrate that although Pif1ΔN retains the preference for RNA-

DNA substrates, it is not equally affected by acetylation in the same manner as the full-length 

protein, indicating that the PiNt may be involved in the altered biochemistry of AC-Pif1. 

Additionally, for the G4 substrate, although acetylation of PifΔN yielded a ~2-fold increase in the 

amplitude of unwinding relative to UM-PifΔN, our results suggest that deletion of the PiNt had an 

impact on Pif1’s interaction with this substrate (Figure 2.4E). A comparison of the amplitude of 

unwinding at the highest time-point for every substrate is summarized in Figure 2.4G. Control 

experiments showed that neither the presence of Piccolo NuA4 (Esa1) nor acetyl CoA alone 

impacted helicase activity, but acetylation of Pif1 was necessary to observe stimulation of helicase 

activity (A- 3). 
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Results from our multi-turnover helicase assays demonstrated that acetylation of Pif1 led 

to an increase in the amount of unwound products formed compared to UM-Pif1. We then inquired 

if this increase was due to a change in the rate of Pif1 unwinding when the helicase was modified 

by lysine acetylation. To address this, helicase assays were performed under single-turnover 

conditions, where the protein was trapped by the addition of an excess of unlabeled oligonucleotide, 

permitting only one round of binding and unwinding of its substrate. We ensured that the presence 

of the protein trap did not affect the unwinding kinetics of the protein (data not shown). The rate 

of unwinding of the DNA-DNA fork by UM-Pif1 was 0.409 ± 0.210 s-1, while that of its acetylated 

form was 0.368 ± 0.132 s-1 (Figure 2.5A). Comparatively, the rate of unwinding of the RNA-DNA 

fork by UM-Pif1 was 0.344 ± 0.208 s-1, and that of AC-Pif1 was 0.344 ± 0.151 s-1 (Figure 2.5B). 

Thus, the data obtained from the single-turnover assays showed that irrespective of the forked 

substrate (DNA:DNA or RNA:DNA fork) incubated with the helicase, acetylation did not 

influence the rate of unwinding. However, we observed that there was still an increase in helicase 

activity (as measured by the amplitude) on an RNA:DNA fork substrate compared to a DNA:DNA 

fork substrate, following the previously established phenomenon that Pif1 preferentially unwinds 

RNA-DNA forks (210). Additionally, AC-Pif1 displayed ~3-fold stimulation in the formation of 

unwound product compared to UM-Pif1 on a DNA:DNA fork substrate, and ~ 2-fold stimulation 

on a RNA:DNA fork substrate (Figure 2.5A and 2.5B) as measured by their amplitudes. Negligible 

unwinding of the tailed substrates was found under the experimental conditions used for single-

turnover studies (data not shown). Interestingly, our results suggest that lysine acetylation does 

not stimulate Pif1 unwinding by affecting its unwinding rate. Instead, acetylation may make the 

protein more processive as the amplitude of unwound product formed was increased when 

substrates were incubated with AC-Pif1. Taken together, these results show that lysine acetylation 

improves the helicase-catalyzed unwinding of both forked and tailed substrates. They also show 

that this PTM preserves the protein’s preference and processivity for RNA-DNA hybrids. 

2.3.5 ATPase Activity of Pif1 is Increased upon Lysine Acetylation 

As a helicase, Pif1 utilizes the energy produced from ATP hydrolysis to translocate along 

ssDNA and unwind the DNA duplex. Due to the coupling of its helicase activity to ATP hydrolysis, 

we sought to determine if acetylation also impacts Pif1’s ATPase activity, using an NADH-

coupled spectrophotometric assay (211). This assay operates on the principle that steady-state 
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hydrolysis of ATP is proportional to NADH oxidation. Because Pif1 is a DNA-stimulated ATPase, 

we measured the change in absorbance associated with NADH oxidation and ultimately ATP 

hydrolysis in the presence of a 45-nt ssDNA at 340 nM over a 30-min period. We found a ~3-fold 

stimulation in the rate of ATP hydrolysis (Figure 2.6A) when full-length Pif1 was acetylated 

compared to its unmodified form, suggesting that this modification co-stimulates the helicase-

coupled ATPase activity of Pif1. Comparatively, the rate of ATP hydrolysis of Pif1ΔN displayed 

no significant difference between the unmodified and acetylated forms of the helicase. 

Interestingly, we observed that the rate of ATP hydrolysis of PifΔN was higher than that of the 

full-length protein (Figure 2.6B), implying that the PiNt may further play a role in regulating Pif1 

ATPase activity. 

2.3.6 Acetylation Enhances Pif1’s Substrate Binding Ability 

This binding to a single-stranded region on the DNA precedes its ATPase activity and 

ultimately its unwinding function. Therefore, we speculated that the stimulation in helicase-

catalyzed unwinding observed upon acetylation might correlate with differential binding of Pif1 

to its substrate. To determine this, biolayer interferometry (BLI) technology was used to measure 

the affinity of UM- and AC-Pif1 to a biotinylated 45-nt ssDNA oligonucleotide immobilized on a 

streptavidin biosensor. We found that the binding affinity of AC-Pif1 was two-fold stronger than 

UM-Pif1, with KD values of 7.2 ± 0.3 nM and 19.1 ± 5.1 nM, respectively (Figure 2.7A). A 

representative sensorgram showing the binding curves when 125 nM of UM- and AC-Pif1 were 

incubated with 500 nM of 45 nt ssDNA is presented in Figure 2.7B. These results show that 

acetylation of Pif1 leads to higher affinity ssDNA binding. Furthermore, we observed that the UM- 

and AC-Pif1 ssDNA association rates differed, but their dissociation rates were similar, supporting 

the hypothesis that the increased amounts of substrate unwound by AC-Pif1 vs. UM-Pif1 might be 

due to faster association and stronger affinity for ssDNA when Pif1 is acetylated. Evaluating 

DNA:DNA fork binding via EMSAs also revealed a difference in the binding affinities of UM-

Pif1 and AC-Pif1, confirming the results obtained from the BLI analyses (Figure 2.7C).  

Based on these results, we hypothesized that AC-Pif1ΔN would show a similar binding 

trend when compared to UM-Pif1ΔN. However, we observed that acetylation had no impact on 

the binding affinity of the truncated protein, as the calculated KD values were 14.1 ± 1.5 nM and 

15.2 ± 3.3 nM for UM-Pif1ΔN and AC-Pif1ΔN, respectively (Figure 2.7A). Moreover, these 
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values are similar to unmodified full-length Pif1 (19.1 ± 5.1 nM). This suggests that while Pif1ΔN 

can bind to ssDNA similar to Pif1, it is not affected by acetylation in the same manner. We 

hypothesized that acetylation may drive a conformational change in the Pif1 structure that does 

not occur for Pif1ΔN, and to test this, we next examined changes in Pif1 structure induced by 

acetylation using limited proteolysis. 

2.3.7 Acetylation Alters the Conformation of Pif1, likely mediated through the N-terminal 
Domain 

To date, there are no published atomic-level structures of full-length S. cerevisiae Pif1 

including its N-terminal domain (212,213), presumably due to the challenges presented by the 

predicted native disorder of the PiNt (201). Being unable to crystallize full-length UM-Pif1 and 

AC-Pif1, we instead used limited proteolysis assays to determine if a gross conformational change 

plays a role in AC-Pif1’s altered biochemical activities. If a conformational change occurs in 

solution upon Pif1 acetylation, then the protease digestion patterns of UM-Pif1 and AC-Pif1 

should differ. We incubated recombinant Pif1 with GluC protease for various lengths of time; 

GluC was chosen instead of an enzyme such as trypsin or LysC to prevent lysine acetylation from 

inhibiting the protease. We found that full-length UM-Pif1 was nearly completely degraded within 

the first 15 min, with lower molecular weight digestion products continuing to form over 60 min 

(lanes 2 – 4, Figure 2.8A). In contrast, a proportion of full-length undigested AC-Pif1 remained 

even after 60 min, with minor small peptide (20-35 kDa) product formation (lanes 6 – 8, Figure 

2.8A).  

Next, we repeated this assay with recombinant UM- and AC-Pif1ΔN proteins to determine 

the role of the PiNt in acetylation-driven conformational changes. We observed that UM-Pif1ΔN 

was more resistant to GluC proteolysis than UM-Pif1, with at least a portion of undigested UM-

Pif1ΔN evident at all time points (lanes 2-4, Figure 2.8B). This suggests that the PiNt is a major 

target of GluC activity in the context of UM-Pif1. Indeed, although we do not know the sequences 

of the digested species created by limited proteolysis, it should be noted that the highest molecular 

weight digestion product of UM-Pif1 is approximately the same size as undigested Pif1ΔN 

(Figures 2.8A and B), perhaps indicating that the PiNt is easily removed from Pif1 upon GluC 

digestion. Further, unlike with full-length Pif1, AC-Pif1ΔN was only slightly protected from GluC 

digestion compared to UM-Pif1ΔN, with both proteins exhibiting similar proteolytic cleavage 
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patterns and rates of digestion (compare lanes 2 – 4 to lanes 6 – 8, Figure 2.8B). Taken together, 

these data indicate that acetylation induces a conformational change in Pif1, which occurs either 

directly in the PiNt or which requires the PiNt for allosteric changes. 

2.4 Discussion 

While the enzymatic functions of the Pif1 helicase have been extensively characterized, 

the precise mechanisms by which the activities of this helicase are coordinated to impact a variety 

of nuclear DNA transactions remain unknown (213-217). Pif1’s cellular abundance is predicted to 

be low (218), and aberrant Pif1 levels in the cell lead to deleterious effects. Deletion or depletion 

of Pif1 from the nucleus results in telomere hyperextension and telomere addition to double-

stranded breaks (219). Conversely, as described previously (200,201) and in Figure 2.1A, 

overexpression of Pif1 is toxic to cells, inhibiting cell growth. These studies demonstrate that the 

activity of the protein is regulated in the cell by one or more means. Indeed, phosphorylation is 

known to regulate Pif1’s role in telomere maintenance (220). However, the role of other PTMs in 

regulating Pif1 activities has not yet been elucidated. In our current study, we determined the 

acetylation dynamics of Pif1 in vivo and, using in vitro biochemical assays, defined alterations to 

its various enzymatic activities upon modification. We speculate that lysine acetylation is a 

mechanism used by the cell to regulate the function of Pif1 for different nuclear DNA transactions.  

Acetylation of histone tails helps to neutralize the positive charge on lysine residues, 

causing the destabilization of the chromatin architecture and thereby allowing biological 

machineries to gain access to the DNA (221). Enzymes responsible for dynamically modifying 

histone residues can also interact and acetylate non-histone proteins, including proteins associated 

with DNA replication and repair (79,199). Our toxicity assay for Pif1 overexpression in different 

KAT and KDAC mutant strains pointed to the KAT, NuA4, and its counteracting partner KDAC, 

Rpd3, as responsible for cellular Pif1 acetylation (Figures 2.1B, 2.1C and 2.2A). The KAT activity 

of Esa1 is linked to cell cycle progression, potentially by regulating transcription (103). In S. 

cerevisiae, Rpd3 is also associated with cell cycle control by regulating replication origin firing 

(222). Both Esa1 and Rpd3 also play an important role in the DNA repair process, albeit these 

studies are in connection with histone acetylation (104). Because both the acetylation modifiers 

are in close contact with chromatin during cell cycle progression and repair, it is not surprising 

that they would also play a role in modifying Pif1, a helicase associated with replication and repair. 
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Our Pif1 toxicity assay, while quantitative, will not catch subtle modifications (singular or multiple 

lysine acetylation on Pif1) that other redundant KATs and KDACs may be able to accomplish. In 

addition to NuA4 (Esa1), other KATs can potentially also interact with and acetylate Pif1 during 

different cellular events. For example, the gene encoding the KAT Rtt109 is essential when Pif1 

is over-expressed (200). While we observed in vitro acetylation of Pif1 using the KAT Gcn5, we 

did not observe in Pif1 acetylation with recombinant Rtt109. Similarly, deletion of both these 

KATs did not alleviate toxicity in the Pif1 overexpressed strains. However, we also found Hda2 

to play a subtle role in the deacetylation process, though, its impact may not have been as high as 

Rpd3, based on the toxicity studies (Figure 2.1B). Thus, although NuA4 (Esa1) and Rpd3 may 

serve as the primary modifiers of Pif1, we cannot rule out the activity of other KATs and KDACs 

in regulating Pif1 acetylation, because these modifiers display redundancy in their cellular 

functions (223). Although we did not evaluate if acetylation of Pif1 is coordinated along with cell 

cycle phases in our current study, previous work demonstrates that acetylation of other replication 

proteins, including FEN1 and PCNA, does not display cell cycle specificity (53,224). Nonetheless, 

considering that Pif1 partakes in multiple DNA transactions, lysine acetylation may be specifically 

regulated in response to a genome maintenance event requiring alterations to specific activities of 

Pif1.  

Acetylation of recombinant proteins has its own caveats, including that the in vitro 

acetylation reaction never goes to completion and, in the absence of other protein regulators, tends 

to be promiscuous (225). However, the six lysine residues we report to be modified on Pif1 were 

acetylated in multiple independent in vitro reactions, thus making them robust potential targets for 

modification by Piccolo NuA4 (Esa1) (Figure 2.2C). Of these lysine residues, two resided in the 

PiNt, three in the helicase domain, and two in the C-terminus. The fact that this modification is 

not limited to a certain segment/domain of the protein suggests that many of the various 

biochemical properties of the protein could be impacted. Pif1’s helicase core alone houses the 

seven conserved amino acid motifs common to this family where the direction of ssDNA 

translocation is determined, ATP hydrolysis, and ssDNA binding occur (226-228). Lysine 

acetylation of the BLM helicase is similarly spread across its different domains, allowing for 

regulation of its functions during DNA replication and the DNA damage response (192). 

Helicase assays performed using in vitro-modified Pif1 revealed a significant stimulation 

in its unwinding activity upon acetylation compared to the unmodified form. This stimulation was 
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apparent on all substrates tested, even though the levels of stimulation differed based on the 

specific substrate being unwound (Figure 2.4F). The single-turnover and multi-turnover helicase 

reactions confirmed that the increased helicase unwinding was due to increased processivity and 

not due to a faster rate of unwinding (Figures 2.4 and 2.5). In addition to Pif1’s helicase activity, 

its ATPase function was also stimulated when the protein was acetylated (Figure 2.6). However, 

because Pif1 is a DNA-stimulated ATPase, it is difficult to determine if this stimulation is due to 

faster ATP hydrolysis or if faster DNA binding allows ATP hydrolysis to occur more rapidly. 

Future work using order-of-addition ATPase assays could help to delineate between these two 

possibilities.  

Characterization of DNA binding activity demonstrated increased binding by AC-Pif1 

compared to UM-Pif1 (Figure 2.7). At a first glance, this observation is counterintuitive because 

one would expect lower nucleic acid binding affinity when the positive charge on lysine is 

neutralized by acetylation. However, Pif1 was acetylated at a single site, K725, located within the 

DNA binding domain (DBD) (229), while the other modified sites were found throughout the 

protein. Alterations in binding activities could depend on sites modified within and outside the 

DBD, and how each of those individual lysine charge neutralization events impact the overall 

binding of a protein. Of the six Pif1 lysine residues we found to be acetylated in vitro, one residue, 

K525, is conserved in hPIF1 (K485). K485 makes contact with ssDNA, and mutation of this 

residue to alanine results in decreased ssDNA binding affinity (214). In yeast, K525 may be 

important for the regulation of Pif1 DNA binding and acetylation-altered activity, which 

mutational analysis would elucidate further. Acetylation of other proteins, such as p53 (230), Gata-

1 (231), and Stat3 (232), all serve as examples of proteins displaying increased binding affinities 

for specific DNA substrates when acetylated. Interestingly, acetylation of replication protein A 

(RPA) promotes its displacement from ssDNA during DSB repair (233), and acetylated FEN1 

displays lower substrate binding affinity (53). All of these proteins are hypothesized to undergo 

conformational changes upon acetylation, which may alter their ability to interact with and bind to 

their cognate substrates. 

Pif1 has a large N-terminal domain (PiNt) making up almost one-third of the protein, and 

this domain is predicted to be natively disordered (201). Due to the ability to mutate the N-terminus 

and still retain helicase activity, we focused on characterizing the two acetylation sites on the N-

terminal domain. Overexpression toxicity assays revealed that deletion of the PiNt resulted in 
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lesser toxicity compared to wild-type Pif1 when cellular acetylation dynamics were altered (Figure 

2.3). Because the PiNt is predicted to be natively disordered, we hypothesized that it might undergo 

a conformational change when Pif1 is acetylated, thus impacting the biochemical properties of the 

helicase domain. Acetylation has been documented to cause conformational changes in a number 

of other proteins. For instance, PCNA is acetylated in response to DNA damage, and this induces 

long-range conformational changes in the protein, distal from the acetylation site (224). Similarly, 

the DNA binding protein TCF4 is suggested to change conformations when acetylated in a 

complex with DNA (234), and Beta 2-glycoprotein changes from a closed to open conformation 

upon acetylation (235).  

Limited proteolysis is a method of detecting protein conformational changes that does not 

require crystallization or large amounts of protein, which are currently both obstacles when 

working with AC-Pif1. The altered digestion and degradation patterns in the acetylated form of 

Pif1 compared to the unmodified form indicate changes in the tertiary structure of the protein 

(Figure 2.8). Similarly, because AC-Pif1ΔN displayed the same digestion pattern as UM-Pif1ΔN, 

we speculate that the PiNt is necessary for the acetylation-based conformational change. It may be 

that the acetylated residues in the helicase and/or C-terminal domain are responsible for changes 

in the PiNt, similar to the allosteric changes that acetylation drives in PCNA. Alternatively, a 

combination of residues in every domain might require acetylation for these changes to take place. 

The structure of the PiNt is unknown, but the transition from a closed to an open conformation like 

Beta 2-glycoprotein upon acetylation could explain how Pif1 ssDNA binding affinity increases. 

Additional study, including high-resolution structures of full-length UM-Pif1 and AC-Pif1, is 

needed to address these questions and further understand how acetylation affects Pif1 structure. 

The impetus for studying Pif1 lysine acetylation was triggered by the observation that 

multiple proteins involved in the Okazaki fragment maturation pathway are also acetylated. 

Studies in vitro have shown that Pif1 promotes increased strand displacement synthesis by the 

lagging strand DNA pol δ (236). Increased strand displacement allows for the creation and 

cleavage of longer 5’ displaced flaps. While genetic and biochemical studies support a redundant 

alternate long flap pathway for Okazaki fragment maturation, this model is largely based on in 

vitro reconstitution assays. One hypothesis for creating longer flaps in the cell is to completely 

remove the initiator RNA/DNA primer on the lagging strand that is synthesized by the error-prone 

DNA polymerase α (40). Another possibility to consider is if Rad27FEN1 disengages from the 
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replisome, it may unintentionally allow for the creation of longer flaps within the cell, thereby 

necessitating an alternate pathway for flap processing. Along with acetylation of other Okazaki 

fragment proteins, including Rad27FEN1 and Dna2, Pif1 modification may push the creation of 

longer flaps during the maturation process, allowing for higher fidelity synthesis (Figure 2.9). 

Recent evidence from the Rass group provides an alternate explanation for the observation that the 

lethality of dna2Δ is suppressed by pif1Δ (237). In this study, they show that in dna2Δ cells, Pif1 

mediates checkpoint activation following replication stress, which leads to replication fork stalling. 

These stalled replication forks are resolved through break-induced replication or recombination-

dependent replication (RDR), both of which utilize the Pif1 helicase for efficient D-loop structure 

resolution. Acetylation of Pif1 may also play a role in coordinating the checkpoint response and 

recruitment of proteins during stalled replication.  

AC-Pif1 was also shown to be more efficient at G4 structure resolution (Figure 2.4E). 

Though the unmodified form of Pif1 is capable of efficient G4 resolution, due to increased binding 

affinity of the acetylated form, AC-Pif1 could potentially resolve tandem G4 structures more 

effectively than UM-Pif1 (Figure 2.9). Thus, while finely regulated concentrations of AC-Pif1 may 

be critical to the maintenance of overall genome stability, increases in AC-Pif1 levels may 

overwhelm the replication machinery by generating longer ssDNA segments, leading to cellular 

toxicity. Other studies have shown similar results supporting this hypothesis. For instance, SV40 

T-antigen inhibits Okazaki fragment processing when in a higher-concentration hexameric state, 

but it supports Okazaki fragment processing when in a lower-concentration monomeric state (238). 

Dysregulation of Rad5, an enzyme involved in post-replication repair in yeast and humans, leads 

to cisplatin sensitivity when both deleted or overexpressed (239). The study of human PIF1 (hPIF1) 

has also demonstrated the deleterious consequences of Pif1 helicase misregulation. The 

transfection of cultured primary neurons with hPIF1 is toxic, increasing the risk of cell death (240). 

Further, human tumor cells rely on hPIF1 for protection from apoptosis (241), whereas hPIF1 

depletion in normal cells increases replication fork arrest (242). The L319P hPIF1 mutant is linked 

to breast cancer and cannot suppress the lethality of Pfh1 deletion in S. pombe (243), indicating 

that mutant hPIF1 activity could also lead to cancer cell growth. These studies demonstrate that 

regulation of PIF1 family helicases is critical not just in S. cerevisiae but also in humans, and as 

such, acetylation of hPIFif1 may be a conserved modification used by the cell to regulate hPIF1 

activity. 
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In conclusion, we propose that lysine acetylation of Pif1 is a regulatory mechanism that 

dynamically alters the cellular enzymatic activity of the helicase. While this study serves as the 

first report of acetylation-based regulation of Pif1, many questions remain unanswered. The 

precise timing and cellular triggers of Pif1 acetylation are still unknown. Likewise, how acetylation 

affects Pif1’s interactions with other proteins and cellular localization remain to be determined. 

Here, we report the importance of the N-terminus in regulating acetylation-dependent Pif1 activity. 

While the C-terminus, also predicted to be disordered, serves as an important point of contact for 

PCNA during BIR (236), we are currently unaware of how specific lysine residue acetylation 

impacts this domain. Crosstalk between PTMs is commonplace, and as such, acetylation may be 

connected to Pif1 phosphorylation or other lysine residue dependent PTMs. Studies designed to 

answer these and other remaining questions regarding Pif1 activity and regulation will be 

important to further our understanding of how Pif1 achieves its multi-faceted role of maintaining 

genomic integrity. 

2.5 Materials and Methods. 

2.5.1 Strains, media, and reagents 

The S. cerevisiae strains used are listed in Tables A- 1 and A-2. The cells were maintained 

on rich medium (YPD) or synthetic drop-out medium and transformed with overexpression 

plasmids using standard methods. Escherichia coli strain NiCo21(DE3) (New England Biolabs) was 

transformed with the pLysS plasmid (Novagen) to create the NiCo21(DE3) pLysS strain. The E. 

coli cells were maintained on LB medium supplemented with antibiotics (50 μg/ml kanamycin, 34 

μg/ml chloramphenicol, and/or 100 μg/ml ampicillin as needed). Liquid cultures were grown in 

2X YT medium for protein overproduction and supplemented with the same antibiotics. dNTPs 

were purchased from New England Biolabs (Ipswich, MA). Oligonucleotides were purchased from 

IDT (Coralville, IA) and are listed in Table A- 4. Chemical reagents were purchased from Thermo-

Fisher, Sigma, or DOT Scientific. 
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2.5.2 Overexpression toxicity assays 

Plasmid pESC-URA was used for the galactose-induced overexpression of proteins in S. 

cerevisiae. Empty pESC-URA vector or pESC-URA-Pif1 (WT or mutant) was transformed into 

the indicated yeast strains, and transformants containing the plasmid were selected on SC-Ura 

drop-out media. Fresh transformants were then grown in liquid SC-Ura medium containing 2% 

raffinose for 16 FEN1, the cells were harvested and washed with sterile water, and then diluted to 

an OD660 of 0.01 in SC-Ura supplemented with either 2% glucose or galactose. A 200-µL volume 

of each culture was added in duplicate to wells in 96-well round bottom plates, and each well was 

overlaid with 50 µL of mineral oil to prevent evaporation. The plate was monitored using a 

Synergy H1 microplate reader (BioTek), taking OD660 measurements at 15-min intervals for 48 

FEN1, with linear shaking occurring between readings. The plate reader also incubated the cells 

at 25 or 30°C as indicated. The mean of the OD660 readings for each Pif1-expressing strain grown 

in galactose was divided by the mean OD660 of the same strain grown in glucose. This mean value 

was normalized to that of cells from the same genetic background containing empty vector to 

produce a toxicity value for each Pif1 variant in each yeast genotype. Plasmids used in this study 

are detailed in Table A- 3. 

2.5.3 Protein purification 

S. cerevisiae Pif1 was over-expressed in NiCo21(DE3) pLysS cells and purified as 

previously reported (184), with slight modification. To increase the yield of SUMO-Pif1, up to 10 

mL TALON resin was used in the form of tandem 5-mL TALON HiTrap columns in the initial 

capture of recombinant protein from lysate. The Pif1ΔN mutant (176) lacked the first 233 amino 

acids of the helicase. Recombinant Pif1ΔN protein was expressed and purified in an identical 

manner to full-length wild-type (WT) Pif1. The S. cerevisiae Piccolo NuA4 complex (consisting 

of Esa1, Epl1, and Yng2) was over-expressed using the polycistronic expression system developed 

in the Tan laboratory and purified from BL21(DE3) pLysS cells as previously described (244). S. 

cerevisiae pol δ was purified by co-expressing the pol 3, pol 31, and GST-pol 32 plasmids in 

BL21(DE3) cells and purifying as previously described (245).  
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2.5.4 In vitro acetylation 

In vitro acetylation of Pif1 was performed using two complementary methods. In the first 

method, purified recombinant Pif1 (Pif1 or Pif1ΔN) was incubated with the Piccolo NuA4 

complex (Esa1/Epl1/Yng2) in the presence of acetyl-CoA in 1X HAT buffer (50 mM Tris-HCl 

(pH 8.0), 10% (v/v) glycerol, 150 mM NaCl, 1 mM dithiothreitol (DTT), 1 mM 

phenylmethylsulfonyl fluoride, and 10 mM sodium butyrate) for 30 min at 30°C. For proteins 

analyzed via mass spectrometry, DTT was omitted from the reaction buffer.  

In the second method, Pif1 was in vitro acetylated using the same protocol as above, but 

the reactions were incubated for 60 min. Subsequently, the reaction mixture was loaded onto a 

TALON affinity column. Because Esa1 was 6X-His tagged, the Piccolo complex remained bound 

to the column, whereas the acetylated Pif1 was eluted by the column wash buffer (50 mM sodium 

phosphate (pH 7.5), 300 mM NaCl, 1 mM PMSF, 5 mM β-mercaptoethanol, 10% (v/v) glycerol, 

and 7 µg/uL pepstatin A). The eluate was analyzed by SDS-PAGE and Coomassie staining and 

found to contain no contaminating proteins or subunits from the acetyltransferase. 

A ratio of 1:1:10 [Pif1/ Pif1ΔN):acetyltransferase:acetyl-CoA] was maintained for all 

acetylation reactions. Results described in this report used AC-Pif1 that was obtained using the 

second method. However, results for all biochemical assays were confirmed using AC-Pif1 

obtained using both methods.  

2.5.5 Mass spectrometry 

Tandem mass spectra from in vitro Piccolo NuA4 (Esa1)-acetylated full-length Pif1 were 

collected in a data-dependent manner with an LTQ-Orbitrap Velos mass spectrometer running 

XCalibur 2.2 SP1 using a top-fifteen MS/MS method, a dynamic repeat count of one, and a repeat 

duration of 30 s. Enzyme specificity was set to trypsin (or Lys-C when cleaved with this protease), 

with up to two missed cleavages permitted. High-scoring peptide identifications were those with 

cross-correlation (Xcorr) values ≥1.5, delta CN values ≥0.10, and precursor accuracy 

measurements within ±3 ppm in at least one injection. A mass accuracy of ±10 ppm was used for 

precursor ions, and a mass accuracy of 0.8 Da was used for product ions. Carboxamidomethyl 

cysteine was specified as a fixed modification, with oxidized methionine and acetylation of lysine 

residues allowed for dynamic modifications. Acetylated peptides were classified according to gene 
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ontology (GO) annotations by Uniprot. Lysine residues identified as being modified in three or 

more independent in vitro reactions, cleaved with either trypsin or Lys-C, are reported. 

2.5.6 Western blotting  

Pif1 protein and the acetylation levels of over-expressed Pif1-FLAG were probed in WT, 

rpd3∆, and esa1-414 cells. Cells were grown in YPD or selective media and harvested at OD660 = 

1.0. Harvested cells were lysed by incubation for 10 min at 95˚C in yeast lysis buffer (0.1 M NaOH, 

0.05 M EDTA, 2% SDS, and 2% β-mercaptoethanol). Then, 5 µL of 4 M acetic acid was added 

for every 200 µL lysate, and the mixture was vortexed for 30 s. Lysates were incubated again at 

95˚C for 10 min, and the soluble fraction was collected by centrifugation (246). Overexpression 

levels of Pif1 and Pif1ΔN were detected by immunoblotting with anti-FLAG antibody (Millipore 

Sigma A8592). For loading controls, the levels of Pgk1 were detected by immunoblotting with an 

anti-Pgk1 antibody (Fisher 22C5D8). Acetylation of cellular Pif1 was detected by 

immunoprecipitating cell lysate with anti-acetyl lysine antibody (CST 9441) resin and 

immunoblotting with an anti-FLAG M2 antibody (Millipore Sigma A8592). Specifically, Protein 

G Dynabeads (Invitrogen 10007D) were incubated with anti-acetyl lysine antibody (CST 9441) 

with end-over-end rotation for 4 FEN1 at 4°C, followed by the addition of 1 mg of cell lysate, 

which was then rotated overnight at 4°C. The beads were washed three times in the washing buffer 

provided with the Dynabead kit, and the beads were resuspended in 2X Laemmli buffer, boiled, 

and analyzed by SDS-PAGE followed by western blotting using the anti-FLAG M2 antibody. The 

fold-change in Pif1 acetylation was determined by first normalizing to the PGK-1 loading control, 

followed by comparing the levels of total Pif1 to the modified form of Pif1.  

To detect in vitro-acetylated Pif1, 2.5 µM of purified protein, unmodified (UM-Pif1) or 

acetylated (AC-Pif1; acetylated protein obtained by the second method above), was separated by 

4-15% gradient SDS-PAGE and immunoblotted with the anti-acetyl lysine antibody. 

2.5.7 Oligonucleotides  

Synthetic oligonucleotides were purchased from Integrated DNA Technologies. The 

lengths and sequences (5’-3’) of each oligonucleotide are listed in Table A- 4. For helicase assays, 

the template was 5’-labeled using the IR 700 dye synthesized by IDT. The IR-labelled template 
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primer (T1) was annealed in IDT duplex buffer to oligonucleotide D1, D2, D3, or D4 to generate 

the DNA fork, RNA fork, DNA tail, or RNA-DNA tail substrate (respectively) in a 1:4 ratio. 

Oligonucleotides employed in BLItz assays contained a 3’ biotin tag to allow for binding to the 

streptavidin biosensors. The G4 template (T2) was radiolabeled with [γ-32P] ATP from Perkin 

Elmer and incorporated at the 5′ end using polynucleotide kinase as previously described (194). 

The template was further purified on a 12% sequencing gel containing 7 M urea. The radiolabeled 

T2 oligonucleotide was annealed to oligonucleotide D5 in a buffer containing 20 mM Tris (pH 

8.0), 8 mM MgCl2, and 150 mm KCl in a 1:4 ratio. All annealing reactions were incubated at 95°C 

for 5 min and then slowly cooled to room temperature as previously described (209). 

2.5.8 Electrophoretic mobility gel shift assay (EMSA) 

The binding affinities of UM-Pif1 and AC-Pif1 were measured by incubating increasing 

concentrations of the protein (100 and 200 nM) with 5 nM DNA fork substrate in 1X EMSA buffer 

(50 mM Tris-HCl (pH 8.0), 2 mM DTT, 30 mM NaCl, 0.1 mg/mL bovine serum albumin, and 5% 

(v/v) glycerol). The reactions were incubated at 30°C for 10 min, and samples were loaded onto a 

pre-run 8% polyacrylamide native gel. The gel was electrophoresed at a constant 250 V for 1 FEN1 

and imaged using an Odyssey imaging system (700-nM filter). Using Image Studio, the 

densitometry of each band was used to calculate binding affinity with the equation: [(bound 

product) / (bound product + substrate remaining) * 100]. 

2.5.9 BLItz analysis 

To measure the binding kinetics of the different forms of Pif1 to single-stranded (ss)DNA, 

500 nM of a biotinylated 45-nt substrate (T1) was diluted in 1X HAT buffer and coated onto a 

streptavidin dip read biosensor for 120 s (Pal Forte Bio, CA, USA.) A baseline was established for 

all biosensor reads by immersing them in 1X HAT buffer for 30 s. Following the baseline reading, 

4 µL of the corresponding form of Pif1 at varying concentrations (62.5, 125, 250, and 500 nM) 

was applied to the biosensor for 150 s to measure association. Upon completion, the biosensor was 

then immersed in 550 µL of 1X HAT buffer to establish dissociation kinetics for another 150 s. 

The shift in wavelength was recorded, and the binding affinity (KD) was analyzed using ForteBio 

software. 
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2.5.10 Helicase assay 

The unwinding efficiency of the different forms of Pif1 was assessed on a wide variety of 

substrates using either multi- or single-turnover assays. For multi-turnover reactions, 5 nM 

substrate was incubated with 1 nM Pif1 at 30°C for 0, 0.5, 1, 2, 3, or 4 min. Reactions were 

performed in helicase buffer (50 mM Tris-HCl (pH 8.0), 2 mM DTT, 30 mM NaCl, 0.1 mg/mL 

bovine serum albumin, 5% (v/v) glycerol, 4 mM MgCl2, and 8 mM ATP) and terminated with 80 

mM EDTA, 0.08% SDS, and 50% formamide (final concentration) as previously described (209). 

For single-turnover reactions, 1 µM protein trap (T50) and 75 nM cold trap complementary to the 

labelled strand were added to prevent reannealing. Reactions under these conditions were started 

by adding 8 mM ATP and 4 mM MgCl2. Samples were loaded onto pre-run 8% native 

polyacrylamide gels and electrophoresed for 30-45 min at 250 V. Gels were imaged using an 

Odyssey imaging system (700-nM filter) and quantified using Image Studio. The percentage of 

substrate unwound was calculated using the following equation: % unwound = [(unwound product) 

/ (unwound product + substrate remaining) * 100]. Unwinding data were fit to the equation A(t) 

= A(1-ekut) using Graphpad Prism, where A is the amplitude of product formation, ku is the rate of 

unwinding, and t is time (247). 

2.5.11 ATPase assay 

ATP hydrolysis was measured using an NADH coupled assay in the presence of 3 µM 

ssDNA (unlabeled T1) and 10 nM helicase. The reaction buffer (10 mM ATP, 10 mM MgCl2, 1 

mM phosphoenolpyruvate, 10 U/mL pyruvate kinase, 16 U/mL lactate dehydrogenase, and 0.8 

mM NADH) was pre-loaded into 96-well plates. To start the reaction, protein and DNA were 

added, and absorbance readings at 340 nm were recorded every 60 s for 30 min using a BioTek 

Cytation 5™ multi-mode plate reader. The rate of hydrolysis was determined as previously 

reported (248). 
 

2.5.12 Proteolysis assay 

Proteolysis assays were performed at 30˚C for up to 60 min. Pif1 proteins were diluted in 

25 mM Na-HEPES, 5% glycerol, 50 mM NaOAc, 150 µM NaCl, 7.5 mM MgOAc, and 0.01% 
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Tween-20, and GluC protease was diluted in 100 mM ammonium bicarbonate. Proteolysis 

reactions were performed at a 1:250 GluC:Pif1  ratio. To assess proteolysis, 6 µg of protein was 

mixed with SDS-PAGE loading dye and chilled on ice at the indicated time points. The stopped 

reactions were ultimately electrophoresed on 10% SDS-PAGE gels for 45 min at 150 V and stained 

with Coomassie Brilliant Blue staining dye. 
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[A]            [B]       [C] 

 

Figure 2.1 Pif1 over-expression toxicity is altered based on cellular acetylation levels.  
[A] A galactose-inducible Pif1 expression vector, along with the empty vector, were transformed into wild-type cells. Growth was 

monitored over 48 FEN1, and the mean OD660 of Pif1-expressing strains was normalized to that of the empty vector in both glucose- 
and galactose-containing media. [B] Pif1 was overexpressed in acetyltransferase deletion (gcn5𝛥𝛥 and rtt109𝛥𝛥) or temperature-

sensitive (esa1-414) mutants at permissive (25°C) and restrictive (30°C) temperatures. [C] Pif1 was overexpressed in the indicated 
deacetylase mutant strains. The graphed values represent the average of ≥3 independent experiments of technical duplicates, with error 

bars corresponding to the standard deviation. **p<0.001. Data obtained by Christopher Sausen Ph.D 
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Figure 2.2 Pif1 is acetylated both in vivo and in vitro. 

[A] Top Panel: S. cerevisiae lysates from WT (lane 1), esa1-414 (lane 2), and rpd3𝛥𝛥 (lane 3) backgrounds were immunoprecipitated 
with anti-acetyl lysine (ac-K) antibody-coated Protein G-dynabeads and immunoblotted with anti-FLAG antibody (1:1000); middle 

Panel: 10% of input immunoblotted with the anti-FLAG antibody and; bottom panel: PGK-1 antibody (1:10,000). Fold change in Pif1 
acetylation is indicated. [B] Immunoblot of unmodified Pif1 (lane 1), NuA4 (Esa1) in vitro-acetylated full-length Pif1 (lane 2), 

unmodified Pif1ΔN, and NuA4 (Esa1) in vitro-acetylated Pif1ΔN probed with anti-Ac-K antibody. [C] Schematic of the full-length 
Pif1 sequence. The positions of all of the lysine residues in the sequence are denoted with red lines, and all acetylated lysine residues 

identified by mass spectrometry are denoted with black lines and red filled circles 
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 [C]  

Figure 2.3 Deletion of the PiNt reduces Pif1’s overexpression 
toxicity. 

[A] Pif1ΔN was overexpressed in acetyltransferase mutants at 25°C 
and 30°C. [B] Pif1ΔN was overexpressed in deacetylase mutant 

strains. [C] Comparison of the overexpression toxicity of Pif1 and 
Pif1ΔN in the rpd3𝛥𝛥 background. The graphed values represent the 

average of ≥ 3 independent experiments of technical duplicates, with 
error bars corresponding to the standard deviation. **p<0.01. Data 

obtained by Christopher Sausen Ph.D 
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Figure 2.4 Measurement of Helicase Activity Under Multi Turnover Conditions. 
The kinetics of 1nM of full length and N-terminus deleted Pif1 helicase activity under multi 

turnover condition were assessed over 6 time points (0’’, 30’’,1’,2’, 3’ and 4’) in the presence of 
5nM IR labelled [A] DNA fork, [B] RNA fork, [C] DNA tail and [D] RNA Tail. [E] cMyc-G4 

template stabilized by K+ was annealed to a complimentary 5’ radiolabeled 21 nt ssDNA and the 
kinetics of Pif1 structure resolving activity was measured by the accumulation of the 

radiolabeled substrate over 6 time points (0”, 1’, 2.5’, 5’, 7.5’, and 10’). Black line with open 
squares represents Pif1-FL and dotted black lines with filled squares represents acetylated form 

of Pif1-FL. Red line with open triangles represents Pif1∆N and dotted red lines with filled 
triangle represents acetylated form of Pif1∆N.  F) The synthesis activity of 23 nM S. cerevisiae 
DNA polymerase delta (pol 𝛿𝛿) was assayed on 5 nM cMyc-G4 substrate in the absence (lane 1) 
and presence of increasing concentrations (5 and 10 nM) of UM-Pif1 (lanes 3, 4) and AC-Pif1 
(lanes 5, 6). The reactions were performed in a reaction buffer containing 20 mM Tris HCl (pH 
7.8), 8 mM Mg(CH3COO)2, 100 mM KCl, 1 mM DTT, 0.1 mg/mL BSA, 100 μM dNTPs, and 1 

mM ATP for 10 min at 30ºC. Reactions were terminated using 2X termination dye and were 
immediately heated to 95°C and loaded onto a pre-warmed denaturing polyacrylamide gel (12% 

polyacrylamide, 7 M urea), and reaction products were separated by electrophoresis for 80 min at 
80 FEN1, subsequently dried, and analyzed, G) Comparison of amplitude of unwinding by Pif 1 
(UM/AC-FL and UM/AC-ΔN) on different substrates. Data from the analysis was fit to a first 

order reaction [A{1-exp[-(ku*X)], in which A is the amplitude of the reaction, ku is the apparent 
rate constant of unwinding and X is time. Values are represented as mean + SEM of at least three 

independent experiments 
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Figure 2.4 continued 
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Figure 2.5 Measurement of Helicase Activity Under Single Turnover Conditions.  
The single turn over kinetics for measuring unwinding activity of 1nM of full length and N-terminus deleted Pif1 helicase activity was 

assessed in the presence of a protein trap (T50) and DNA trap  (unlabeled 45mer complementary to displaced strand) over 6 time 
points (0’’, 30’’,1’,2’, 3’ and 4’) in the presence of 5nM IR labelled [A] DNA fork and [B] RNA fork. Data from the analysis was fit 
to a first order reaction [A{1-exp[-(ku*X)], in which A is the amplitude of the reaction, ku is the apparent rate constant of unwinding 
and X is time. Black line with open squares represents Pif1-FL and dotted black lines with filled squares represents acetylated form of 
Pif1-FL. Red line with open triangles represents Pif1∆N and dotted red lines with filled triangle represents acetylated form of Pif1∆N.  

Data from the analysis was fit to a first order reaction [A{1-exp[-(ku*X)], in which A is the amplitude of the reaction, ku is the 
apparent rate constant of unwinding and X is time. Values are represented as mean + SEM of at least three independent experiments.
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Figure 2.6 Pif1 ATPase is stimulated upon acetylation. 
Using an NADH-coupled assay, the rate of ATP hydrolysis by [A] UM-Pif1 (open black bars) and AC-Pif1 (filled black bars) and [B] 
UM-Pif1∆N (open red bars) and AC-Pif1∆N (filled red bars) was measured in the presence of 45-nt ssDNA. Values are represented as 

the mean + SEM of at least three independent experiments. *p<0.05, **p<0.01 

[A] [B] 
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Figure 2.7 Characterizing Pif1 Binding Properties. Increased binding affinity induced by lysine acetylation.  

[A] EMSA of increasing concentrations of Pif1 (100 and 200 nM) in both its unmodified and acetylated form bound to 5 nM of a 
DNA fork substrate. [B] Sensogram displaying measured binding kinetics of 125 nM Pif1 to an immobilized biotinylated 45nt 
biotinylated ssDNA using BLItz technology. [C] Binding affinity (KD) of the unmodified and acetylated forms of Pif1-FL and 

Pif1ΔN. 
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Figure 2.8 Acetylation of Pif1 Induces a Conformational Change.  
A time course GluC degradation reaction of unmodified and acetylated [A] Pif1 and [B] Pif1ΔN is shown. [C] Quantitation of 

degraded products by full-length Pif1 [open squares (unmodified) vs black filled squares (acetylated)] and Pif1ΔN [open triangles 
(unmodified) vs red filled triangles (acetylated)]. Data obtained by Christopher Sausen Ph.D 
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Figure 2.9 Model for Altered Acetylated Pif1 Activities  
Middle Panel: Replication fork with two tandem G4 

structures on the leading strand and one G4 structure on the 
lagging strand (replication stalled) and Okazaki fragments 
(RNA primers indicated in green). Top Panel: Unmodified 

Pif1 (or deacetylated by KDAC, Rpd3) is able to resolve one 
G4 structure on the leading strand and the G4 structure on the 
lagging strand allowing for synthesis of Okazaki fragments. 

Presence of UM-Pif1 (or deacetylated) allows for 
displacement of a few long 5’ flaps during Okazaki fragment 
maturation. Bottom Panel: Acetylated Pif1 [by KAT, NuA4 

(Esa1)] resolves the tandem G4 structures on the leading 
strand, resolves and allows synthesis over the G4 structure 

and pushes the majority of the flaps to be longer during 
Okazaki fragment maturation.  
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 LYSINE ACETYLATION OF REPLICATION PROTEIN 
A (RPA) ALTERS ITS BINDING PROPERTIES TO SINGLE 

STRANDED DNA  

3.1 Abstract 

Replication Protein A (RPA), a single-stranded DNA binding protein (ssDBP), is vital for 

various aspects of genome maintenance such as replication, recombination, repair and checkpoint 

activation. Binding of RPA to ssDNA protects it from degradation by cellular nucleases, prevents 

secondary structure formation and illegitimate recombination. In our current study, we identified 

the acetyltransferase, p300 to be capable of acetylating endogenous RPA on the 70kDa subunit. 

Interestingly, cell cycle status and exposure to specific DNA damaging agents impacted the 

acetylation status of RPA. Based on this observation, we evaluated the effects of lysine acetylation 

on the biochemical properties of RPA. Investigation of binding properties of RPA revealed that 

acetylation of RPA increased its binding affinity to ssDNA compared to unmodified RPA. The 

improvement in binding efficiency was most evident on the smaller length ssDNA oligomers. 

Acetylated RPA also bound more stably to ssDNA compared to the unmodified form of the protein. 

Our results suggest that during replication, the acetylation-based enhancement in the DNA binding 

properties of RPA may alter the choice of the lagging strand DNA processing pathway to prefer 

the longer flap pathway for processing, thereby improving genome fidelity.  
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3.2 Introduction 

 

Replication protein A (RPA) is a highly conserved heterotrimeric protein in eukaryotes, 

and is involved in various aspects of DNA metabolism such as DNA replication, repair and 

recombination (249). Present at relatively high concentrations within human cells of ~1 µM (Klein 

et al, 2015), it functions as the major single strand DNA (ssDNA) binding protein (250). During 

various DNA transactions, high affinity binding of RPA to ssDNA stabilizes the DNA and protects 

it from degradation from cellular nucleases (251). Stabilization of ssDNA structure by RPA also 

prevents the formation of stable secondary structures that could impede DNA transactions (252) . 

Additionally, RPA serves to function as a platform for the assembly of a multitude of replication 

and repair associated proteins during various biological events.  RPA was first isolated from HeLa 

cells where it was shown to play an important role in Simian Virus 40 (SV40) replication (253). 

RPA in eukaryotes is composed of 3 subunits: RPA1, RPA2 and RPA3 with molecular weights of 

70kDa, 32kDa and 14kDa respectively (254). All three subunits are important for the formation of 

a stable and functional RPA complex.                                                

RPA1 has four oligosaccharide/oligo nucleotide binding (OB) domains called DNA 

binding domains (DBDs) A, B, C and F, while RPA2 and RPA3 have one OB domain each - DBD 

D and DBD E, respectively (251,255).  Different RPA DBDs are activated depending on the length 

of the ssDNA bound to it (256). It was previously suggested that RPA shows a sequential mode of 

interaction with ssDNA;  (i) low affinity binding to ~8 nt ssDNA where DBD A and DBD B of 

RPA1 would interact (257), (ii) medium affinity binding to ~18-20 nt ssDNA with DBD A, B and 

C or RPA1 interacting, and (iii) high affinity binding to ~28-30nt ssDNA which implicated all 

three DBDs of RPA1 (A,B,C) and additionally DBD-D of RPA2 (257). However, multiple recent 

studies have updated the modular binding model to propose a dynamic binding model for RPA to 

ssDNA, wherein the binding of RPA to substrate is stable, however, it must be dynamically bound 

such that it easily hands-off the ssDNA substrate to its interacting protein partners (258). This 

model has been further improved in a study using hydrogen-deuterium exchange mass 

spectrometry (HDX-MS) to show dynamic binding by DBD-A and DBD-B and more stable 

binding by the TriC core made up of DBD-C, D and E (259).  

During DNA replication, unwinding of the duplex DNA necessitates binding and 

protection by RPA on both the leading and lagging strand ssDNA templates (260-262). On the 
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leading strand, RPA inhibits priming by DNA polymerase alpha/primase (pol α), however, on the 

lagging strand, the priming function of pol α is stimulated in the presence of RPA (35).  

Additionally, RPA also influences lagging strand synthesis by stimulating the strand displacement 

activity of DNA polymerase δ (pol δ), which functions to create a 5’ flap structure (263). In most 

circumstances, this structure is recognized, bound and cleaved by flap endonuclease 1 (FEN1) (46). 

However, creation of long 5’ flaps permits stable binding of RPA to displaced flaps preventing 

FEN1 cleavage (57,264). Processing of RPA bound 5’ flaps, requires the nuclease/helicase, Dna2, 

to displace RPA and cleave the flap to a length that is not optimal for RPA rebinding (265). FEN1 

then cleaves the remainder of the flap allowing for ligation and maturation of the Okazaki 

fragments. Thus RPA functions as a governing switch that dictates the choice of flap processing 

during Okazaki fragment maturation (57).  

RPA not only binds to ssDNA in order to direct synthesis, but it also works in conjunction 

with helicases to promote strand unwinding (257), especially with BLM helicase and WRN 

helicase (266). These protein-protein interactions allow for the removal of secondary structures 

that could be formed during the replication process. RPA has also been shown to possess strand 

annealing properties in the presence or absence of secondary structures (257). Bartos et al showed 

that in the presence of ssDNAs containing secondary structures, an increased amount of RPA led 

to a transient melting of the structures allowing the ssDNAs to anneal to their complimentary 

strands forming double stranded DNA (dsDNA) (257). 

Furthermore, RPA plays an equally important role in DNA repair as it does in DNA 

replication. RPA has been implicated in the base excision repair (BER) pathway as it physically 

interacts with Uracil DNA glycosylase (UNG), an enzyme required for the removal of uracil 

formed from the deamination or misincorporation of cytosine (267-269) and thereby stimulating 

long flap BER pathway (267). During double-strand break DSB repair, the complementary strands 

are cut at similar positions in two places close to one another. These breaks lead to dissociation 

and inappropriate recombination with other ssBPs or other ssDNA (270). There are two pathways 

through which DSBs are repaired: non-homologous end joining (NHEJ) and homologous 

recombination (HR) (271). While NHEJ does not require sequence homology for repair, HR does, 

and thus this pathway is limited to G2 and S phases of the cell cycle (272). RPA is one of the 

proteins which when phosphorylated, works with phosphorylated Rad51 to find a homologous 

region for repair of the damaged strands (270). It is believed that other post-translational 
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modifications of RPA could be involved in DNA repair via HR but the exact details are unknown 

(272).    

The ssDNA binding function of RPA and its interaction with protein partners are regulated 

within the cell using a variety of post translational modifications (PTMs). The most extensively 

characterized modification is that of RPA phosphorylation, specifically on the N terminus of the 

RPA2 subunit. Differential phosphorylation of RPA2 occurs during various phases on the cell 

cycle, with phosphorylation of RPA2 linked to the G1 to S transition (273) and dephosphorylation 

linked to the mitotic phase. RPA2 is also phosphorylated on exposure to various DNA damaging 

agents such as hydroxyurea (HU) and UV irradiation suggesting a role for phosphorylation in 

mitigating the damage response (254,274). Interestingly, the lysine residues on RPA1 are also 

subject to multiple forms of modifications, some of which may function as competing 

modifications. For example, RPA1 is known to undergo acetylation, SUMOylation, 

ubiquitinylation, and crotonylation. SUMOylation of RPA1 is known to recruit Rad51 to the 

location of damage where it is repaired by homologous recombination (275). Another PTM 

observed on all three subunits of RPA is ubiquitination (276). Following DNA damage, RPA-

ssDNA recruits Ataxia telangiectasia and Rad3-related protein (ATR), ATR interacting protein 

(ATRIP) kinase and Pre-MRNA Processing Factor 19 (PRP19) complex to trigger 

phosphorylation and ubiquitination of RPA, which in turn activates ATR-ATRIP and the DNA 

damage response (DDR) (276,277). As a part of UV damage response, RPA was shown to undergo 

lysine acetylation (165). Lysine acetylation of RPA1 altered the efficiency of the nucleotide 

excision repair process (165). A recent report characterized RPA1 crotonylation in response to 

camptothecin (CPT) induced DNA damage, wherein they showed that the modification greatly 

enhanced the protein’s interaction with ssDNA (278). While lysine mono-methylation of RPA1 

has been identified in proteomic analysis, thus far, there are no reports characterizing this 

modification.  

Our interest in understanding the regulatory mechanism of lysine acetylation on enzyme 

activity stemmed from the observation that multiple proteins involved in lagging strand maturation 

are modified by lysine acetylation. Acetylation of FEN1 and Dna2 imparted opposing effects on 

these proteins with FEN1 showing decreased nuclease activity whereas, Dna2 showed stimulated 

cleavage function. Since RPA is known to govern the choice of the lagging strand maturation 

pathway, in our current work we characterized the impact of lysine acetylation on the binding 
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property of RPA. Contrary to previous reports, we found that in addition to PCAF and GCN5, 

RPA1 is also acetylated by the acetyltransferase p300, both in situ and in vitro (165,279). The 

main role of p300 is to act as a transcription coactivator that aids in chromatin remodeling making 

it accessible for transcription (280,281). Additionally, p300 has also been shown to acetylate many 

DNA replication and repair proteins (FEN1 (167), Dna2 (167), WRN (193), Pol beta (282)). Our 

work reveals additional lysine acetylation sites on RPA1 than previously reported. We also found 

increase in levels of RPA1 acetylation to correspond with the G1/S phase of the cell cycle and also 

observed acetylated RPA directly at the replication fork. Similar to previous reports we observed 

an increase in RPA acetylation on exposure to UV damage and direct association of RPA1 with 

damaged forks. We further analyzed alterations in the dynamic binding of RPA on lysine 

acetylation and found that acetylation stimulates the binding activity of RPA to bind stably to 

shorter length ssDNA.  The acetylated form of RPA was also slower in dissociating from the 

ssDNA compared to the unmodified form of RPA, in presence of a high excess of competing 

substrate. Additionally, the melting and annealing properties of RPA are also influenced by lysine 

acetylation. Our data suggests that changes to the binding function of acetylated RPA will 

undoubtedly impact protein-protein interactions, wherein RPA hands-off the substrate to other 

proteins in either replication or repair pathways.  

3.3 Results 

3.3.1 In Vivo and In Vitro Acetylation of RPA by acetyltransferase, p300 

A study analyzing the acetylation status of proteins in a whole cell extract using high-

resolution mass spectrometry (MS) identified residues K163, K167 and K259 on hRPA1 to be 

modified by lysine (K) acetylation (165). A subsequent study using serial enrichments of different 

post-translational modifications found that in addition to RPA1 (K163 and K577), RPA3, the 14 

kDa subunit, (K33, K39) was also acetylated (283). In studies using HEK293T cells, the RPA1 

subunit was co-transfected with different acetyltransferases, and only GCN5 and PCAF was 

reported as capable of acetylating RPA1 (196,197). Since numerous proteins in the DNA 

replication and repair pathway were modified by another KAT, p300, and because proteomic 

analysis identified acetylation signatures on RPA1 that could potentially be linked to p300 related 

signatures we wanted to test the ability of p300 in modifying RPA. To test endogenous RPA 
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acetylation, in the absence and presence of p300, we used the colon cancer wild-type cell line 

HCT116, and a p300 deficient cell line (HCT116p300-), derived from HCT116 by targeting the exon 

2 of the EP300 gene. Additionally, we also tested acetylation of RPA in HCT116p300- cell line, 

transfected with increasing concentrations (1 µg or 2.5 µg) of plasmid expressing EP300 cDNA 

(HCT116p300- + EP300).  We observed RPA1 to be acetylated in all three cell lines using 

immunoprecipitation followed by western blot analysis. Acetylation levels of RPA1 was measured 

by immunoprecipitating proteins using a pan-acetyl lysine antibody, followed by immunoblotting 

with RPA1 antibody. Comparing the acetylation levels of RPA1, we observed ~ 2- fold reduction 

in the acetylation levels of RPA1 in HCT116p300- compared to HCT116 cells (Figure 3.1A). On 

transfection with increasing concentrations of EP300 cDNA into the HCT116p300- cells, we 

observed a corresponding increase in levels of acetylated RPA1 (Figure 3.1A). This observation 

indicates that p300 can acetylate endogenous RPA. Though RPA1, showed decreased level of 

acetylation in the p300 deficient cell line, compared to wild-type, we still observed basal levels of 

RPA1 acetylation. This suggests that in addition to p300, other redundant acetyltransferases, as 

previously reported, are capable of endogenously expressed RPA. Expression levels of the other 

KATs in both the wild-type and p300 deleted cells are shown in Figure B-1A. We repeated this 

experiment in HEK293T cells and observed a p300 associated dose-dependent increase in levels 

of endogenous RPA1 (Figure B-1B). We also tested acetylation status of RPA2 and RPA3 from 

both HCT116 and HEK293 cells but did not detect any lysine acetylation on these subunits (data 

not shown). 

In-vitro acetylation of RPA1 by p300 was further confirmed using autoradiography (Figure 

3.1B) and western blot analysis (Figure 3.1C).  Unmodified RPA and acetylated RPA (modified 

using the catalytic domain of p300 and 14C-acetyl CoA) were subjected to separation by SDS-

PAGE gel electrophoresis and stained using Coomassie Brilliant Blue (CBB).  We detected all 

three subunits of RPA on the stained gel (lanes 1, 2, Figure 3.1B).  Autoradiography of the same 

gel revealed that in addition to the autoacetylation of the catalytic domain of p300, RPA1 and 

RPA3 (to a small extent) were also acetylated (lane 4, Figure 3.1B). We also analyzed RPA 

acetylation by western blot analysis using a pan acetyl lysine antibody and found RPA1 to be 

robustly acetylated by p300 (lane 3, Figure 3.1C) and the full-length p300 (lanes 3, 4, Figure 3.1C) 

to be autoacetylated. We did not detect acetylation of either RPA2 or RPA3 by western blotting 

(data not shown).  
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In order to study the role of RPA acetylation on its enzymatic properties, we used the full-

length acetyltransferase, p300, to in vitro modify full length RPA containing all three subunits. 

Sites of acetylation on the p300 modified RPA, was determined using tandem mass spectrometry 

(MS/MS) on tryptic peptides. All peptide masses matched theoretical masses for tryptic peptides 

for human RPA. Spectra for acetylated peptides showed a mass change of +42 daltons indicating 

addition of an acetyl group (Figure B-2).  Lysine sites that were previously identified to be 

acetylated on RPA1 in the proteomic analysis of whole cell extracts were also identified in our 

mass spectrometry analysis (K163, K167, K259, K489, K502 and K577).  We were unable to 

identify any lysine residues on RPA2 or RPA3 that were in vitro acetylated by p300. However, 

this does not imply that these sites are not modified in vitro, as the absence of peptides containing 

these acetylated sites could be due to the poor ionization of the acetylated peptide, or the mass of 

the peptide being out of range for the set experimental values. Stoichiometric values for the extent 

of acetylation were not determined in these experiments.  Of note, proteomic studies have also 

identified lysine residues K163, K167, K489, K502 and K507 on RPA1 to be potential targets for 

other forms of post-translational modifications such as ubiquitination (U), sumoylation (S) and 

mono-methylation (M) (Figure 3.1D), suggesting that there could be competing or combinatorial 

PTM on the protein.   

3.3.2 RPA acetylation peaks during the G1/S phase of the cell cycle  

Cellular events dictate the PTM status of proteins, in order to modify its properties, and 

thereby enhance the repertoire of the cellular proteome. Since RPA is vital to DNA replication 

stability and fidelity, we first determined if the cell cycle impacts the acetylation status of RPA. 

HEK293T cells were synchronized during different cell cycle phases as described in Materials and 

Methods and the levels of RPA1 acetylation during the different cell phases was determined. We 

used a pan-acetyl lysine antibody to immunoprecipitate acetylated proteins from different cell 

cycle phases, followed by immunoblotting for RPA1 to determine the acetylation status. We also 

performed this experiment in reverse, wherein we used RPA1 antibody to immunoprecipitate and 

a pan-acetyl lysine antibody to immunoblot and although we obtained similar results, the blots 

displayed significant background pixilation (data not shown). As shown in Figure 3.2A, total 

levels of RPA1 and acetylated RPA1 were altered during different cell cycle phases. Quantitation 

of AcRPA1 normalized to RPA1 levels, showed that acetylation of RPA1 peaked during the G1/S, 
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followed by S phase of the cell cycle (Figure 32B). Cell synchronization were confirmed by 

probing for the differential expression of cyclins during the various phases (Figure B-3A).  

While there was a global increase in the acetylation of RPA1 during the G1/S phase, we 

were particularly interested in determining the acetylation status of RPA1 associated to the 

replication fork. In order to directly assess acetylation of RPA, we developed an antibody 

recognizing acetylated K163 of RPA1 (RPA1K163ac). This antibody eliminated the need to 

immunoprecipitate acetylated proteins followed by immunoblotting using a pan-acetyl antibody. 

Specificity of the antibody to detect the K163 acetylated residue of RPA1 was confirmed using 

ELISA (Figure B-4).  However, while anti-RPA1K163ac only detects a 70 kDa band on in vitro 

modified samples, it also detects ~ a 55 kDa band in cellular extracts, which corresponds to a 

proteolytic product (Figure B-5).  This proteolytic product was shown to be stabilized on binding 

to ssDNA (284). Isolation of proteins on naked DNA (iPOND) technique using the RPA1K163ac 

revealed a similar trend to our previous study, wherein, we observed the high levels of RPA1 

acetylation in the G1/S and S phase compared to other phases of the cell cycle (Figure 3.2C). These 

results indicate acetylation levels of RPA1 are regulated in response to the cell cycle. We were 

unable to enrich the iPOND eluates in order to immunoprecipitate RPA1 and probe its acetylation 

using a pan-acetyl lysine antibody.  

3.3.3 RPA is acetylated in response to DNA damage repair  

Next, we asked if DNA damage regulates acetylation of RPA, since both Dna2 and FEN1 

show increased acetylation on UV damage (167). HEK293T cells were exposed to various DNA 

damaging agents such as hydroxyurea (HU), methane methoxy sulfonate (MMS), ultraviolet 

radiation (UV), and etoposide (ETP) and the change in acetylation pattern of RPA1 was analyzed. 

DNA damage was confirmed by the presence of markers such as phospho Chk1 (p-Chk1), phospho 

Chk2 (p-Chk2), phospho p53 (p-p53) and phospho H2AX (p-H2AX) (Figure B-6). Similar to both 

Dna2 and FEN1, RPA1 also showed increase in acetylation on exposure to UV radiation and did 

not display detectable increase in acetylation in response to other forms of damaging agents 

(Figure 3.3A).  RPA1 levels were normalized and fold increase in levels of acetylated RPA1 levels 

were calculated and plotted in Figure 3.3B. Alterations in the phosphorylation of RPA32 serves as 

a control for known changes in response to DNA damaging agents (Figure 3.3C). Cells are known 

to undergo global hyperacetylation in response to either MMS (285) or UV (286) damage.  Similar 
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to the cell synchronization studies (Figure 3.2D), we were interested in determining if the increase 

in cellular pools of acetylated RPA1 could be correlated to the RPA that is directly associated with 

the damaged fork. Using the iPOND assay we probed for the acetylation status of RPA1 directly 

associated with the damage fork using anti-RPA1K163ac and found that acetylated RPA1 correlated 

directly with repair of UV damaged forks. Overall, our results suggest that similar to checkpoint 

kinases that are activated in DNA damage response, RPA1 acetylation could specifically be 

involved in mediating the UV-induced damage response.  

3.3.4 Acetylation of RPA increases its ssDNA binding affinity 

Binding of RPA to ssDNA is initiated by weak dynamic interactions at lengths of ~ 8-10 

nt involving the A and B domains, while high affinity binding of RPA requires ssDNA to be ≥ 28 

nucleotides. We tested the binding efficiencies of unmodified and acetylated RPA on different 

length oligomers (20, 24, 29 and 32 nt) using electromobility gel shift assays (EMSAs).  Based on 

the length of the ssDNA and known binding properties of RPA, we expected weaker binding to 

the 22 and 24 nt oligomers compared to high affinity binding to the 29 and 32 nt oligomers.  To 

measure binding, we titrated varying concentrations of RPA (5, 10, 25 nM) in the presence of 

ssDNA (5 nM) and incubated at 37°C for 10 minutes. Following incubation, the reactions were 

loaded onto a 6% native gel, electrophoresed, and subsequently analyzed. Binding results indicated 

that RPA (unmodified and acetylated forms) showed binding to all 4 different length oligomers. 

Interestingly, irrespective of the length of the oligomer, the acetylated form of RPA showed higher 

binding efficiency compared to the unmodified form. However, it is important to note that the fold 

stimulation in binding of the acetylated form compared to the unmodified form correlated with the 

lengths of the oligomers. The 22nt oligomer showed the highest fold stimulation in binding by 

acetylated RPA (compare lanes 6 – 8 to lanes 14-16, 22-24, 30-32, Figure 3.4A).  Smeared pattern 

of binding to the 22 and 24nt oligomer is consistent with dynamic binding property of RPA to 

shorter oligomers. Incubation of RPA and p300 in the absence of acetyl coenzyme A showed that 

it bound similar to the unmodified RPA. Additionally, RPA incubated with acetyl coenzyme A in 

the absence of p300 bound similarly to the unmodified RPA. The acetyltransferase, p300 was 

unable to bind to the substrate, suggesting that the observed shift was only due to RPA’s interaction 

with the substrate (Figure B-7). The control experiments show that the increased binding 
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efficiency of acetylated RPA was due to lysine modification on the protein and not due to 

stabilizing interactions with the acetyltransferase.  

In order to further characterize RPA-ssDNA interactions in real time, we used the label-

free biolayer interferometry (BLI) technology to measure protein association and dissociation. 

Streptavidin biosensors were coated with 10 μM of different length biotinylated oligomers (20, 24, 

28, 32 and 45 nt) for a period of 100 seconds and allowed to associate with specific concentrations 

of either unmodified RPA (RPA), RPA incubated with p300 (RPA+AT) or acetylated RPA (Ac-

RPA) for a period of 300 seconds and then moved to a buffer wherein dissociation was measured 

for a period of 300 seconds. The resulting sensorgram allowed measurement of association and 

dissociation rate constants (ka and kd) and the equilibrium binding constant (KD). An example of 

the sensorgram showing the association and dissociation of 100nM protein (RPA, RPA+AT, Ac-

RPA) with a 28 nt oligomer is shown in Figure 3.4B. Measurements for binding of different 

concentrations of RPA with different length oligonucleotides were calculated and KD values 

determined (Figure 3.4C). Measured binding constants of the unmodified form of RPA agreed 

with previously reported steady state measurements (287-289). For every tested length of 

oligonucleotide, we found that the acetylated form of RPA had significantly lower KD compared 

to the unmodified RPA or the RPA bound to p300 (in the absence of acetyl coenzyme A).  

Calculation of the fold change in KD revealed that similar to the EMSA results, fold change in 

binding constant was the highest for the shortest length oligonucleotide (20 nt) and the lowest for 

the longest length oligonucleotide (45 nt) measured (Figure 3.4D). The lower stimulation of 

binding for the longer length oligonucleotide was expected since RPA is capable of binding to 

oligonucleotides of this length with high affinity without the need for additional stimulation by 

acetylation. 

3.3.5 Correlating sites of lysine acetylation on RPA1 to the increase in binding properties 

To determine if there was a correlation between increased binding and the number of 

acetylation sites in the protein’s DBD, we tested mutants of RPA1 subunit containing varying 

number of DBDs and acetylation sites. The DBD-F mutant contained only DBD-F domain and the 

linker region with 2 acetylation sites (K163 and K167); the FAB mutant contained DBD-F, DBD-

A and DBD-B with 5 acetylation sites (K163, K167, K259, K331 and K379); the A1/A2 mutant 

contained two DBD-A domains fused together and two acetylation sites (K259) and ΔF-RPA 
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mutant contained all DBDs except DBD-F as well as 7 acetylation sites (K259, K331, K379, K443, 

K489, K502 and K577) (Figure 3.5). In vitro acetylation of the RPA1 mutants were confirmed 

both by autoradiography and by tandem mass spectrometry (data not shown). Unmodified and 

acetylated RPA1 mutants were incubated with a 30 nt TAMARA-labeled ssDNA and their binding 

affinities were analyzed by EMSA. Both the unmodified and acetylated forms of DBD-F mutant 

did not bind to the substrate. This was an expected result, since the DBD-F mutant does not contain 

any DBDs. However, this also confirms that acetylation on sites K163 and K167 alone cannot 

change the binding property of this mutant. Additionally, this result further shows that p300 does 

not complex with DNA to create a gel shift. Acetylation of all of the other mutants (FAB, A1/A2, 

and ΔF-RPA) showed increased DNA binding compared to their corresponding unmodified forms 

(Figure 3.5). From the observed fold change in binding efficiencies, we were unable to directly 

correlate number of acetylated lysine sites to a specific increase in binding property. Our results 

suggest that acetylation of one or more lysine residues in RPA1 results in increased ssDNA-

binding efficiency, irrespective of the location of the acetylation sites with respect to the DBDs. 

 

3.3.6 Acetylated RPA binds more tightly to its substrate compared to the unmodified form 

It has been previously shown that ssDNA bound RPA rapidly dissociates in the presence 

of free RPA (258), however, it can remain stably bound to the ssDNA for many hours (290).  Given 

that many biological pathways are dependent on the assembly of RPA on ssDNA and the 

subsequent hand-off to its interacting protein partners, we were interested in comparing the 

dissociation of unmodified and acetylated RPA in the presence of a competitor ssDNA substrate. 

For the competition assays, we chose two ssDNA substrates, a 24 nt and 28 nt substrate. Since 

only substrates longer than 28-30 nt are bound efficiently by RPA, we expected weaker binding 

on a 24 nt ssDNA and tighter binding to 28 nt ssDNA (291). We used higher concentration of RPA 

(unmodified and acetylated) to prebind the 24 nt ssDNA substrate compared to the 28 nt ssDNA 

substrate, in order to ensure 100% binding of RPA on the shorter length substrate. We pre-bound 

either unmodified RPA or acetylated RPA to a TAMARA-labeled 24 nt or a 28 nt ssDNA and 

allowed it to incubate for 2 minutes. We then introduced different fold excess (100, 250, 500 and 

1000-fold) of a competitor substrate (unlabeled 28 nt substrate) and allowed it to incubate with the 

reaction for 8 minutes. The reactions were then analyzed using EMSA and the results are 
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graphically represented in Figure 3.6.  The 28 nt competitor unlabeled ssDNA was able to compete 

off unmodified RPA from both the 24 nt and 28 nt substrate at much lower concentrations 

compared to the acetylated form of RPA. In the presence of 500-fold excess competitor, nearly 

80% of the bound unmodified RPA had dissociated from both the 24 nt (black line, Figure 3.6) 

and 28 nt substrate (pink line, Figure 3.6). However, at the same concentration of the competitor, 

only ~33% of Ac-RPA was displaced from the 28 nt (pink dotted line, Figure 3.6) substrate and 

~61% from the 24 nt substrate (black dotted line, Figure 3.6). Similarly, when all of the bound 

unmodified RPA was displaced in the presence of 1000-fold competitor, 77% of acetylated RPA 

was displaced from the 24 nt substrate (black dotted line, Figure 3.6) and 60% from the 28 nt 

substrate (pink dotted line, Figure 3.6).  This data suggests that the acetylated form of RPA bound 

more tightly to the substrate and requires a significantly higher amount of competing substrate to 

be dissociated from its already bound state.  

3.4 Discussion

In the present study, we demonstrate that RPA is acetylated in vitro by acetyltransferase 

p300. This was confirmed by mass spectrometry where nine lysine residues (K163, K167, K259, 

K489, K502 and K577) acetylated on the RPA1 subunit were identified. There was no acetylation 

observed on RPA2 and RPA3 subunits of the RPA complex. For most proteins, lysine residues 

near the DNA binding domains generally activate binding activity while those within the DNA 

binding domains usually repress binding efficiency to the substrate (199,292). Four of the six 

lysine sites identified in our study lie within the DBDs of RPA1. K259 resides within DBD-A, 

while K489, K502 and K577 are in DBD-C. The remaining two sites (K163 and K167) lie in the 

linker region between DBD-F and DBD-A. Interestingly, only K577 of the six lysine sites 

identified are conserved across species.  

Acetylation of lysine residues on various proteins has been shown to activate or repress 

DNA binding depending on the proximity of the lysine residues to the DNA binding domains 

(199,292). Typically, addition of an acetyl group to a positively charged lysine residue results in 

neutralizing the charge on the amino acid, and in turn reducing affinity of the protein to the 

negatively charged DNA substrates. However, in vitro characterization of acetylated RPA1 

revealed that acetylation increases its ssDNA binding affinity and its dsDNA melting property 

while reducing its ssDNA annealing function. This is likely due to alterations in the conformation 
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of the RPA1 subunit upon acetylation, which could potentially also impact interaction with both 

ssDNA as well as other protein interacting partners. Acetylation of p53 has been reported to open 

its normally closed conformation and increase DNA binding, thereby affecting its transcriptional 

activity (150). Similar to p53, we propose that acetylation of RPA may be resulting in a more 

‘open’ conformation of the DNA binding domains on RPA1 providing more access to DNA. This 

could explain the increased affinity for binding ssDNA especially to shorter lengths of oligos as 

well as the ‘tighter’/stronger binding to ssDNA binding as shown by the competitor assay. This 

has been observed for various other cellular proteins such as p53(150), E2F1(293), STAT3(232), 

GATA1 transcription factor(231), AP endonuclease (294), p50 and p65 (NF-κB) (295) amongst 

many others where acetylation improves their DNA binding properties. The increased and ‘tighter’ 

binding of Ac-RPA to ssDNA could also explain the increase in DNA melting and the decrease in 

ssDNA annealing to form dsDNA.  

The number of sites acetylated on RPA1 subunit is proportional to the increase in ssDNA 

binding affinity as shown from our RPA1 mutant data. This suggests that acetylation of RPA1 at 

multiple lysine sites possibly causes a greater conformational change in the DBDs of RPA1 than 

at individual lysine acetylation sites. This further aids in our model of an ‘open’ conformation of 

acetylated RPA1 that results in better access to DNA. A crystal structure of Ac-RPA binding to 

ssDNA could shed some light on the ‘open’ conformation model, but this may be challenging 

given the dynamic nature of RPA complex on ssDNA. 

Acetylation of non-histone proteins has been demonstrated to alter the stability of many 

proteins through competition between post-translational modifications such as acetylation and 

ubiquitination for the same lysine residues. Acetylation has been shown to increase stability and 

half-life of proteins such as p53(296), Smad7(297) and HNF-6(298), while it decreases protein 

stability of HIF-1α(299) and SV-40 large T-antigen(300). Under conditions of fork collapse such 

as UV damage (276), RPA1 has been reported to be ubiquitinated at sites K167 and K431, one of 

which is an acetylation site identified in this study. Ubiquitination at these sites by E3 ligase 

RFWD3 is a requirement for homologous recombination to proceed at stalled forks. However, 

unlike some proteins, RPA ubiquitination does not affect its stability or half-life. It is possible that 

these sites are subject to both acetylation and ubiquitination depending on the type of cellular stress 

the cells undergo. This then determines the specific repair pathways that need to be activated. Post-
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translation modifications such as this could be a means of fine-tuning the activity of a multi-faceted 

protein such as RPA that has roles in multiple pathways.  

Acetyltransferase p300 has been shown to acetylate both histones and non-histone proteins 

such as FEN1(53), Dna2(167), p53(301) and PCNA(302) amongst others, thereby regulating their 

function. Acetylation of PCNA prevents its excessive accumulation on chromatin(302) while p53 

acetylation influences its activation and stability in the cell(301). During lagging strand synthesis, 

FEN1, Dna2 and RPA are required for Okazaki fragment processing and acetylation of these 

proteins affects their functionality. On acetylation, FEN1 activity is down regulated and this results 

in the creation of longer flaps of initiator RNA-DNA primers synthesized by the error prone DNA 

polymerase α (53). Ac-RPA then stably binds to the flap resulting in preferential processing 

through the long flap pathway, where proteins like Dna2 are recruited. Acetylation of Dna2 

stimulates it endonuclease activity (167)  allowing for RPA to be displaced and the flap cleaved. 

Following this, FEN1 can then cleave the remainder of the flap before ligation occurs. Taken 

together, this suggests that acetylation promotes genomic stability by processing Okazaki 

fragments through the long flap pathway, which would result in longer stretches of initiator RNA-

DNA primer being removed.  

Acetylation of proteins involved in DNA metabolism such as FEN1 and Dna2 have been 

previously reported to increase on UV-induced DNA damage(167). Similarly, we observed 

increase in acetylation of RPA1 upon DNA damage caused by UV damage despite no change in 

total levels of RPA. This suggested that acetylation of RPA1 does not affect RPA stability. 

Interestingly, we did observe basal level of RPA1 acetylation in these cells. This increase in 

acetylation of RPA could be attributed to various factors - increased HAT activity or decreased 

HDAC activity, either globally or specifically for RPA. While previous studies have shown both 

Gcn5 and PCAF as capable of acetylating RPA1, our studies now show that in addition to the 

reported KATs, p300 is also capable of acetylating RPA.  Given that RPA interacts with a myriad 

of protein partners, we do not rule out that acetylation may be altering some of these interactions 

and further studies are needed to address it. In conclusion, RPA acetylation modulates its functions 

by increasing its ssDNA binding and dsDNA melting properties while reducing its ssDNA 

annealing property. These modifications in functions of RPA upon acetylation could have 

significant implications on various cellular pathways such as DNA replication, cell cycle 

checkpoint, DNA repair and recombination. 
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3.5 Materials and Methods 

3.5.1 Recombinant Proteins  

 Full length hRPA was expressed in the E. coli expression strain BL21(DE3), and purified 

as previously described (303). The constructs for all hRPA1 DNA binding domains (DBDs) were 

generated using PCR in order to amplify specific regions of the RPA1 subunit. The PCR products 

were cloned into the pET28a vector, which introduced a six-histidine tag in frame at the C-terminus 

of each coding sequence. These constructs were expressed in E. coli BL21(DE3) cells and purified 

using Ni−NTA Superflow resin, as previously described (304). Catalytic subunit of p300 was 

expressed in E. coli expression strain BL21(DE3), and purified as previously described (194). 

Commercially available recombinant full length p300 (#31124), catalytic domain of p300 

(#31205), were purchased from Active Motif, Carlsbad, CA.  

3.5.2 Mass Spectroscopy Analysis  

  Tandem mass spectra from in vitro acetylated full-length RPA was collected in a data-

dependent manner with an LTQ-Orbitrap Velos mass spectrometer running XCalibur 2.2 SP1 

using a top-fifteen MS/MS method, a dynamic repeat count of one, and a repeat duration of 30 

seconds. Enzyme specificity was set to endoproteinase Lys-C, with up to two missed cleavages 

permitted. High-scoring peptide identifications are those with cross-correlation (Xcorr) values of 

≥1.5, delta CN values of ≥0.10, and precursor accuracy measurements within ±3 ppm in at least 

one injection. A mass accuracy of ±10 ppm was used for precursor ions and a mass accuracy of 

0.8 Da was used for product ions. Carboxamidomethyl cysteine was specified as a fixed 

modification, with oxidized methionine and acetylation of lysine residues allowed for dynamic 

modifications. Acetylated peptides were classified according to gene ontology (GO) annotations 

by Uniprot. 

3.5.3 Oligonucleotides   

Synthetic oligonucleotides including those containing 5’ biotin conjugation or 5-TAMRA 

label were purchased from Integrated DNA Technologies (IDT), Coraville, IL. Biotinylated 

oligomers were used in BLItz assays to allow for binding to the streptavidin biosensors (Forte 
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Biosciences, CA). Oligomers used in biochemical assays were either labeled with radiolabeled 

(32P) or fluorescently labeled (5-TAMRA). Radiolabeling was performed on the 5’ end of 

oligonucleotides using [γ-32P] ATP ([6000μCi/mmol] (Perkin Elmer) and polynucleotide kinase 

(Roche Applied Science) as previously described (305). Oligomer lengths and sequences (in the 

5’-3’ orientation) are provided in Table B-1. 

3.5.4 In Vitro Acetylation  

Recombinant human RPA was acetylated by incubating it in 1X histone acetyltransferase 

(HAT) buffer [50 mM Tris-HCl (pH 8.0), 10% (v/v) glycerol, 150 mM NaCl, 1mM dithiothreitol, 

1mM phenylmethylsulfonyl fluoride, 10 mM sodium butyrate] with either the full length (or 

catalytic domain) of p300, full length GCN5,  full length PCAF and acetyl CoA in a 1:1:10 ratio 

[RPA (full length or RPA1mutants) : acetyltransferase : acetyl CoA] for 30 mins at 37°C. The 

unmodified RPA (UM-RPA) control and the control with RPA and p300 (RPA+AT) were treated 

similar to the acetylated RPA (Ac-RPA). For autoradiography, in vitro acetylation reactions were 

performed using 0.1 μCi [14C] acetyl coenzyme A (Perkin Elmer Life Sciences). The unmodified 

and acetylated forms of RPA were separated on a 4-15% SDS PAGE gel. After electrophoresis, 

the gels were stained with Coomassie brilliant blue (CBB), pictured and subsequently dried for 

autoradiography analysis.  

3.5.5 Mammalian Cell Culture   

Human embryonic kidney (HEK293T) cells (CRL-1573) was purchased from ATCC, USA 

and cultured in Minimum Essential Media (MEM) supplemented with 10% fetal bovine serum 

(FBS), 2 mM L-glutamine, 1% penicillin/streptomycin. HCT116 parent wild-type cells and 

HCT116 p300 knockout D10 clone was purchased from Cancer Research UK Cambridge Institute 

and cultured in McCoy’s 5A medium supplemented with 10% FBS, 2mM L-glutamine and 1% 

penicillin/streptomycin. Cells were incubated at 37°C in a humidified 5% CO2 environment and 

grown to approximately 80% confluency before the next passage or further experiments. The 

EP300 cDNA plasmid in pcDNA3.1- p300 was a gift from Warner Greene (Addgene plasmid # 

23252). For transfection experiments, 0.7 x 106 cells (in 3 mL) of either HEK293 or HCT116 p300- 

in the respective media was seeded in a T-25 flask and 24 hours later was transfected with EP300 
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plasmid construct (1 µg or 2.5 µg) using Lipofectamine 3000 according to the manufacturer’s 

protocol (Invitrogen).  Following 24 hours of transfection, the cells were washed with 1X PBS, 

harvested and lysed in RIPA buffer containing 10mM sodium butyrate.  

3.5.6 Cell Synchronization 

HEK293T cells were arrested in different cell cycle phases using the following methods: 

For cells in G0/G1: cells were incubated in serum-free media for 72 hours before harvest; for cells 

in G1/S: cells were treated with 2.5mM thymidine for 17 hours, followed by washing the cells 

with 1X PBS, adding fresh media and further treatment with 2.5mM thymidine for 17 hours before 

harvest; for cells in S: cells were treated with 2.5mM thymidine for 17 hours before harvest and; 

for cells in M: cells were treated with 100 ng/mL Nocadozole (Sigma) for 18 hours before harvest. 

Following treatment all cells were processed as outlined above.  

3.5.7 DNA Damaging Agent Treatment 

  For hydroxyurea (HU) treatment, cells were treated with 4 µM HU for 1, 3 and 6 hours.  

For methyl methanesulfonate (MMS) treatment, cells were treated with 2 mM MMS for 4, 8 and 

12 hours. For ultraviolet (UV) treatment, cells were washed and maintained in warm 1X PBS 

during UV exposure. UV radiation of 10 J/m2 was administered at 254 nm (UV-C) using a CL-

1000 UV crosslinker (UVP, CA). Media was then replaced in the dishes and cells were incubated 

for 4, 8 and 12 hours before harvesting the cell lysate. 

After specified hours of treatment, cells were washed thrice with 1X PBS and lysed in 

RIPA buffer containing 10mM sodium butyrate, lysated were quantified and further used in 

immunoprecipitation and western blot experiments. Dimethyl sulfoxide (DMSO) was used as the 

untreated control for HU, MMS and ETP experiments. For the UV experiment, untreated cells 

were handled in a similar manner as the treated cells with the exception of exposing cells to UV. 

3.5.8 Isolation of proteins on nascent DNA (iPOND) Assay  

  HEK293T cells were subject to iPOND assay using a previously published protocol (306). 

Cell synchronization or treatment with different damaging agents were performed as outlined 

above. Synchronized or treated HEK293T cells (1 x 108) were labeled with 20 µM EdU for 15 min 
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alone or chased in the presence of 25 µM thymidine. Labeled cells were fixed and subjected to 

click-chemistry as described in the protocol. Replication proteins were eluted under reducing 

conditions by boiling in 2X SDS-sample buffer for 60 min. All buffers in the assay contained 

10mM sodium butyrate to prevent KDAC activity and subsequent loss of acetylation signal from 

RPA1.  Samples were then analyzed by western blotting as indicated in figure legend (Figure 3.2D 

and Figure 3.3C). 

3.5.9 Immunoprecipitation  

Immunoprecipitation was performed using the protocol described in the Dynabeads protein 

G manual (Thermo Fisher Scientific, MA) with minor modifications. Briefly, 20 µl of antibodies 

to acetyl-lysine or control IgG were prebound to 1 mg of HEK293 whole cell extract from different 

DNA damaging treatments and cell cycle phases with 200 µl of 1X PBST for 1 hour at room 

temperature with end-over mixing. Dynabeads (50 µl) were prepared by magnetic separation to 

remove the buffer and cell lysates were added to the beads and incubated with end-over mixing 

for 30 mins at room temperature. The Dynabeads-Ab-antigen complex was then washed thrice 

with 200 µls of washing buffer and separated on a magnet between washes. Elution was carried 

out using 20 µl Elution buffer and 20 µl of premixed 2X NuPAGE LDS sample buffer with 

NuPAGE sample reducing agent followed by heating the samples at 70°C for 10 mins. The 

immunoprecipitate was separated on the magnet and the supernatant was separated on precast 7.5% 

TGX gels (Bio-Rad). Western blot analysis was performed with anti-RPA1 antibody (Millipore # 

MS-692-P). 

3.5.10 Western Blot Analysis  

Synchronized or treated human embryonic kidney (HEK293T) cells were lysed in RIPA 

buffer (Thermo Fisher Scientific # 89901) containing 10mM of sodium butyrate. Protein 

concentration was determined using BCA Protein Assay (Pierce). Cell lysates (30 μg) were 

separated on precast 4-15% or 7.5% SDS-polyacrylamide Criterion gels (Bio-Rad, Hercules, CA) 

and transferred to polyvinylidene difluoride (PVDF) membranes (Bio-Rad). The following 

primary antibodies were used in overnight incubations at 4°C: RPA1, p-RPA2, RPA2, p-p53, p-

Chk2, p-H2AX and GAPDH. Secondary antibody (HRP-conjugated anti-rabbit IgG, anti-goat IgG 
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or anti-mouse IgG) was added and incubated at room temperature for 1 hour. Blots were visualized 

using Amersham ECL western blotting detection reagent (GE Healthcare Life Sciences, Pittsburg, 

PA) and GE ImageQuant LAS4000 Imager. Blots were quantified by densitometry using LI-COR 

Image Studio Lite Ver 5.2. 

3.5.11 Antibodies used in this study:  

Anti-acetyl lysine (Cell Signaling, 9441), anti-RPA1 (Thermo Fisher Scientific, MS692P0), 

anti-RPA2 (Santa Cruz Biotechnology, sc-14692), anti-RPA3 (Santa Cruz Biotechnology, sc-

30411)  and anti-GAPDH (Santa Cruz Biotechnology sc-25778), anti-p300 (Millipore, 05257), 

anti-CBP (Cell Signaling, 7389), anti-acetyl CBPK1499ac (Cell Signaling, 4771), GCN5L2 (Cell 

Signaling, 3305), anti- p-RPA2 [phospho T21] (Abcam, ab109394)  anti-p-Chk1 (Cell Signaling, 

2348) anti-p-Chk2 (Cell Signaling, 2197), anti-p-H2AX (Cell Signaling, 9718), anti-p-p53 (Cell 

Signaling, 9286) and all secondary antibodies were purchased from Cell signaling. 

3.5.12 Generation of RPAK163ac Antibody 

The anti-RPAK163ac antibody was generated and purified Genmed Synthesis Inc., Texas.  

Briefly, two peptides were synthesized, one specifically for antibody production and affinity 

purification (C+AYGASK(ac)TFGKAAGP) and a control peptide for affinity purification 

(C+AYGASKTFGKAAGP). These peptides were purified to get >75% purity and were 

conjugated to keyhole limpet hemocyanin (KLH) carrier protein. This was then injected into 2 

rabbits to generate the antibody. The antibody was subsequently purified using affinity columns 

and ELISA was performed to confirm specificity of the antibody. 

3.5.13 BLItz Analysis   

The BLItz binding system was equipped with a Dip and Read Streptavidin (SA) biosensors 

(ForteBio, CA, USA). BLItz binding assays were performed to measure binding between 

unmodified RPA (UM-RPA), RPA in presence of acetyltransferase p300 (RPA+AT) or acetylated 

RPA (Ac-RPA) with biotinylated ssDNA substrates. 10 µM of the biotinylated oligo was 

immobilized by the Streptavidin (SA) biosensor for 120 seconds. The Streptavidin (SA) biosensor 

immobilized by biotinylated oligo was dipped into 4 µl of RPA (UM or +AT or Ac) solution at 
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different concentrations (31.25, 62.5, 125 or 250 nM) for 150 second association, and 150 second 

dissociation in 1X HAT buffer. The real-time wavelength shift was recorded and analyzed by 

ForteBio software.  

3.5.14 Electrophoretic Mobility Gel Shift Assays   

Binding efficiency of Um-RPA, RPA+AT and Ac-RPA to 20, 25, 29 and 32 nt ssDNA 

were assessed using electrophoretic mobility gel shift assays. Five nanomolar of substrate was 

incubated with increasing concentrations (1, 2.5, and 5 nM) of either unmodified hRPA (Um-RPA) 

or acetylated hRPA (Ac-RPA) and incubated for 10 min at 37 °C in EMSA buffer consisting of 

50mMTris-HCl (pH 8.0), 2 mM dithiothreitol, 30 mM NaCl, 0.1 mg/ml bovine serum albumin, 

and 5% glycerol. The reactions were loaded on pre-run 6% polyacrylamide gels in 1X Tris-borate 

EDTA (TBE) buffer. Gels were subjected to electrophoresis for 1 hour 45 mins at constant 180 V.   

3.5.15 Competitor Assay   

Similar to the electrophoretic mobility gel shift assay, the binding efficiency of Um-RPA 

and Ac-RPA to radiolabeled substrates (24 nt and 28 nt) in the presence of varying concentrations 

of a cold competitor 28 nt oligomer were assessed. Five nanomolar of radiolabeled substrate was 

pre-incubated with 100nM of hRPA (Um-RPA and Ac-RPA) at 37 °C for 2 minutes. To this 

reaction a competing non-radiolabeled oligomer (28 nt) was added at 100-, 250-, 500- and 1000-

fold excess of radiolabeled primers and the reactions and further incubated for an additional 8 mins 

at 37 °C. Reactions were then loaded and electrophoresed similar to conditions described above. 

3.5.16 Gel Analysis   

Radioactive gels from all assays were dried, exposed to phosphor screen and analyzed 

using the Image Quant software as previously described (307). The percent of RPA bound to 

substrate is defined as [bound/(bound+unbound)]. Fold change is defined as [bound (Ac-

RPA/bound (UM-RPA)]. Assays containing the TAMRA, labeled oligonucleotides were 

visualized on a Typhoon FLA9600 Imager (GE Biosciences) using the preset laser excitation and 

emission settings, with a photomultiplier gain of 200 V. 
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Figure 3.1  Acetylation of RPA1 Subunit.  
 (A) IP-western blot analysis of RPA1 acetylation in wtHCT116, HCT116 p300- and HCT116 
p300- cells rescued with EP300 expression. (B) In vitro acetylated RPA was subjected to SDS-

PAGE analysis and stained using Coomassie brilliant blue (CBB). The same gel was 
subsequently analyzed by autoradiography (X-ray). (C) In vitro acetylation of RPA and full-
length p300 was visualized by Western blot analysis using an anti-acetyl lysine antibody (D) 

Domains of Replication Protein A Subunit 1. Full length RPA was modified by in vitro 
acetylation using p300 and subject to MS/MS mass spectrometry. Acetylated lysine residues on 

RPA1 and their positions are denoted. Competing modifications on the same lysine residue 
previously reported by proteomic studies are indicated, ubiquitination (square), sumoylation 

(triangle) and methylation (circle). Data obtained by Sneha Surendrahan, PhD. 
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Figure 3.2 RPA1 Acetylation is Cell Cycle Dependent 
(A) HEK293T cells were synchronized during different phases using either serum starvation or 
specific chemicals as described in the Materials and Methods. Cell lysates from different cell 
cycle phases were immunoprecipated using a pan acetyl-lysine antibody and immunoblotted 
using RPA1 specific antibody. (B) Graphical representation of change in levels of acetylated 
RPA1 during different cell cycle phases in HEK293T cells. * p-value < 0.05, *** p-value < 

0.001; (C) HEK293 cells synchronized in various cell phases were subject to an iPOND assay. 
Lysates from the analysis were evaluated for the presence of acetylated RPA1 on the nascent 

replication strand. Figures A and C are representative gels, and the error bars in (B) are for the 
average of three independent experiments. Data obtained by Sneha Surendrahan, PhD (A and B) 

and Olivia Howald (C). 
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Figure 3.3 Acetylation of RPA1 is Triggered on UV Damage to the Cells 
(A) HEK293T cells were treated with different DNA damaging agents as described in the 

Materials and Methods. Cell lysates from the different treatments were immunoprecipitated 
using a pan acetyl-lysine antibody and immunoblotted using RPA1 specific antibody. Graphical 

representation of (B) change in levels of acetylated RPA1 and of (C) phospho-RPA2 on 
treatment with different DNA damaging agents in HEK293T cells (D) HEK293 cells treated with 

different DNA damaging agents (HU and ETP – 6 hours, MMS and UV – 12 hours), were 
subject to an iPOND assay. Lysates from the analysis were evaluated for the presence of 

acetylated RPA1 on the nascent replication strand. Figures A and D are representative gels, and 
the error bars in B and C are for the average of three independent experiments. * p-value ≤ 

0.05,** p-value ≤ 0.01, **** p-value ≤ 0.0001. Data obtained by Sneha Surendrahan, PhD (A-
C). 
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Figure 3.4 Characterizing the Binding Property of Acetylated RPA 
(A) Increase Binding Efficiency of Ac-RPA. Binding efficiency of unmodified and acetylated 
RPA was studies using EMSA. Five nanomolar of substrate of varying lengths (20, 24, 29 and 

32nt) were incubated with increasing concentrations (5, 10, 25 nM) of Um-RPA or Ac-RPA, and 
the reactions were incubated for 10 min at 37°C and reactions were subsequently separated on a 

6% polyacrylamide gel. The labeled substrate is depicted above the gel with the asterisk 
indicating 5’ of the 32P label. The substrate alone and the complexes containing RPA-bound 

substrate are indicated beside the gel at the right. Fold change in the binding of acetylated RPA 
compared to the unmodified RPA has been denoted below the lane numbers.  (B) Sensorgram 

obtained using streptavidin biosensor coated with 10μM 28nt biotinylated oligonucleotide 
incubated with 160nM RPA, RPA+AT and Ac-RPA. The coating of the biosensor and the 

association and dissociation curves are shown in the sensorgram. (C) Fold change in binding 
affinity of RPA+AT and Ac-RPA compared to Um-RPA were calculated. The inverse fold 

change was then plotted graphically to show the stimulation in binding efficiencies of the Ac-
RPA compared to Um-RPA and RPA+AT. (D) Data from the sensorgrams were fit globally to a 
1:1 binding model to yield equilibrium dissociation constant (KD). Values for KD measurements 

for different length oligos are listed in the table.  
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Figure 3.5 Correlating Number of Acetylated Lysine Sites to Increase in Binding Efficiency 
Each lysine site acetylated on the mutant form of RPA1 are also indicated above every specific mutant RPA.  Binding efficiency of 

unmodified (Um) and acetylated (Ac) forms of mutant RPA was studied using EMSA. Twenty five nanomolar 30 nt TAMRA-labeled 
ssDNA substrate was incubated in with increasing concentrations (25, 50, 125 nM) of RPA or Ac-RPA, and the and the reactions were 

incubated for 10 min at 37°C and separated on a 6% polyacrylamide gel. The substrate alone and the complexes containing RPA-
bound substrate are indicated beside the gel at the right. Fold change in the binding of acetylated RPA compared to the unmodified 

RPA has been denoted below the lane numbers.  
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Figure 3.6 Assaying the Binding Efficiency of Acetylated RPA in Presence of Competing ssDNA.  
One hundred nanomolar Um-RPA (straight line) or Ac-RPA (dotted line) was pre-incubated with either a 24 nt (black line, round 

bullet) or 28 nt (pink line, square bullet) TAMRA-labeled ssDNA substrate for a period of 2 minutes at 37°C.  To this reaction 100, 
250, 500, and 1000 - fold excess of cold competitor 28nt ssDNA was added and further incubated for 8 minutes at 37°C and separated 
on a 6% polyacrylamide gel.  Percentage of protein dissociated from the substrate was calculated and graphically plotted to reveal the 

binding efficiency of RPA and Ac-RPA in the presence of an excess competitor ssDNA. 
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 ACETYLATED RPA HANDS-OFF OKAZAKI 
FRAGMENT PROCESSING OF SOME SHORT FLAPS TO THE LONG 

FLAP PATHWAY. 

4.1 Abstract 

In order to eliminate the RNA primer required for the initiation of lagging strand synthesis, 

two pathways have been proposed: the short flap and the long flap pathway.  Previous studies have 

revealed that while the short flap pathway is processed by flap endonuclease 1 (FEN1) which 

cleaves Pol δ displaced primer flaps at their base, the long flap pathway utilizes a more concerted 

array of proteins including the activities of the single stranded DNA binding protein, RPA and 

Dna2, a sequentially cleaving endonuclease. In most cases, these primer flaps are processed 

through the short flap pathway, but in others, such as when FEN1 is disengaged from the replisome, 

they are lengthened enough to be stably bound by RPA promoting long flap processing.  The 

presence of these redundant pathway suggests that a mode of regulation exists within the cell that 

can dictate the choice of one pathway over the other. Diversifying the proteome by post 

translationally modifying the enzymes involved in these pathways can serve as a form of regulation.  

For over a decade, human replication proteins have been discovered to be post 

translationally modified by lysine acetylation. Coincidentally, the Okazaki fragment processing 

(OFP) proteins FEN1, RPA and Dna2 are all modified by p300, a lysine acetyl transferase. 

Acetylation variably modulates the biochemical properties of each protein. Upon lysine acetylation, 

FEN1 experiences an inhibition in its binding and cleavage activities whereas acetylation 

stimulates the binding and cleavage properties of Dna2. Given that this PTM impacts multiple 

proteins that function in OFP, we sought to decode its impact on their interactive properties. Our 

results show that lysine acetylation indeed promotes OFP through the long flap pathway. 
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4.2 Introduction 

The accuracy of the replication process is highly dependent on the spatio-temporal 

arrangement, interaction and the precise activity of a multitude of proteins at the replication fork. 

Enzymes that are chosen for this process ensure that the DNA is duplicated with the highest fidelity 

in order to maintain genome stability. Due to the opposite polarity of the DNA duplex, the leading 

strand is synthesized continuously whereas the lagging strand is synthesized discontinuously in 

short stretches known as Okazaki fragments (OFs) (28,308). In a mammalian cell, approximately 

fifty million OFs are generated during one round of replication, each of which are initiated by 

DNA polymerase alpha (pol α) which synthesizes a short stretch of RNA (8-10nt), followed by 

20-22 nucleotides of DNA (46,60,309). In order to complete replication, and create a fully 

functional lagging strand, these OFs need to be processed further to remove the RNA from the 

genome, resynthesize that region and ligate the strands in order to form a fully functional strand 

(263).  

During lagging strand replication, pol α synthesized initiator primers are lengthened by 

DNA Pol δ, which during synthesis will frequently run into the downstream OF (310). At this 

point, pol δ switches from synthesis to strand displacement, wherein it displaces the 5’ end of 

downstream OF to create a flap structure (37). The 5’ flap is recognized and cleaved by flap 

endonuclease 1 (FEN1) creating a nick, which is then sealed by DNA ligase I (Lig I) (13,49,311). 

Experiments using recombinant replication proteins have identified this to be the primary method 

through which initiator ribonucleotides are removed from the lagging strand ensuring reduction of 

mutational load (48). This pathway is termed the “short flap pathway” of Okazaki fragment 

processing (OFP) (44). 

Biochemical assays further showed that while the majority of the flaps are processed 

through the short flap pathway, a small minority of flaps are processed through an alternate 

pathway (55). This pathway is employed when FEN1 disengages from the replisome allowing for 

the possible formation of longer flaps to which the SSDBP, replication protein A (RPA) can bind 

(312). This alternative pathway can also be activated when the 5’-3’ helicase, Pif1 is recruited 

ahead of the polymerase, lengthening the initiator primer region therefore allowing for high 

affinity binding of RPA (55). Flaps bound by RPA do not allow FEN1 to bind the substrate and 

thread through its active site, thereby inhibiting flap cleavage (57). Consequently, another protein, 

which functions both as a nuclease and a helicase, Dna2, is required to displace RPA. Displacement 
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of RPA is combined with flap cleavage by Dna2, which similar to FEN1, cleaves the flap by 

threading it through its active site. However, unlike FEN1, it makes multiple cuts on the flap and 

leaves behind a terminal 5-6nt product, which is small enough that it evades stable RPA binding 

(48,313). FEN1 is then able to displace Dna2 and cleave the flap allowing for subsequent ligation 

by Lig I (314). This alternate pathway is termed the “long flap pathway”  or “two nuclease pathway” 

for OFP (44). 

The presence of the two alternate pathways for OFP suggests existence of a regulatory 

mechanism through which the cell can dictate the processing of OFs. Previous work has indeed 

shown that at least two levels of regulation exist that can affect which pathway OFP proceeds 

through: the accumulation of RPA and the modulation of OFP proteins by lysine acetylation 

(167,315). The DNA replication process invariably generates and exposes single stranded DNA 

(ssDNA) requiring the substantial presence of RPA during the entirety of the process. Studies have 

shown that RPA plays a role in promoting the creation of long flaps by stimulating Pol δ synthesis 

and strand displacement activities (35). When these strands are lengthened either by stimulated 

Pol δ activities or Pif1 unwinding, more ssDNA is exposed to which RPA can stably bind thereby 

obstructing FEN1 cleavage (264). This inhibition single handedly promotes processing through 

the long flap pathway. Additionally, while RPA inhibits FEN1 cleavage on long flaps, it stimulates 

Dna2 cleavage (316). Taken together, one can surmise that the presence of RPA mediates the 

switch from the short flap to the long flap pathway for processing OFs (57).  

For more than half a century, post translational modifications (PTMs) have been shown to 

regulate a myriad of biochemical pathways involved in numerous cellular processes. However, it 

is only in the past few decades that the importance of lysine acetylation as a PTM which impacts 

the function, localization and structure of non-histone proteins have gained popularity following 

the discovery of p53 as the first non-histone protein to be acetylated (150,155). As a result, our 

current understanding of this modification has since shifted from associating it solely with 

chromatin modifications to now recognizing acetylation as an important regulator of protein 

function. In 2009, Choudhary et al using an unbiased approach, identified over three thousand 

proteins to be acetylated in human cells (165). This study and other subsequent proteomic studies 

have identified a wide array of replication and repair associated proteins to be modified both in 

yeast and human cells (refs). Identification of lysine acetylation using proteomic analysis 

corroborated previous studies characterizing functional changes in acetylated OFP-associated 
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proteins, for e.g., FEN1 and PCNA (53,224). While biochemical analysis of individual acetylated 

proteins has been characterized, the impact of lysine acetylation on an entire biochemical pathway 

has thus far not been studied.  

Lysine acetylation may act as one mode of regulation through which the cell dictates the 

choice of the OFP pathway. Upon lysine acetylation by p300, FEN1 exhibits a 90% inhibition in 

its binding and cleavage activities (53). Similar to the presence of RPA on long flaps, inhibition 

of FEN1’s activities by lysine acetylation has been thought to promote long flap processing. The 

long flap pathway nuclease/helicase, Dna2, is also acetylated by p300, greatly stimulating its 

nuclease, helicase and binding activities (167). More recently, we have shown that in addition to 

PCAF and GCN5, RPA is also acetylated by p300 and similar to Dna2, it demonstrates an 

increased binding affinity to shorter length ssDNA. It has been proposed that processing via the 

long flap pathway would ensure complete removal of the Pol α synthesized initiator primer and 

resynthesis by the higher fidelity Pol δ (58,264,317)  

In our current study, we have focused on RPA and determined how acetylation of this 

central protein can govern the switch between the short and long flap pathway. We show that lysine 

acetylation of RPA promotes long flap processing even in the presence of short DNA flaps by 

stably binding to it thereby inhibiting FEN1 binding and cleavage activities. Additionally, lysine 

acetylation of RPA further stimulates the formation of long flaps by stimulating Pol δ synthesis 

and strand displacement properties. Interestingly, we have observed that RPA acetylation impacts 

the cleavage properties of Dna2 which ultimately affects the maturation of OFs upon ligation. Our 

studies reemphasize the role of lysine acetylation as an important regulator of replication fidelity.  

4.3 Results 

4.3.1 Synthesis and Strand displacement by Polymerase delta (Pol δ ) is stimulated in the 
presence of acetylated RPA  

Although the core intrinsic function of RPA is ssDNA binding, it has also been shown that 

RPA exhibits some strand melting properties that aids in resolving secondary structures which 

limit the activity of some polymerases and helicases (257). Prior work in yeast and mammalian 

cells have revealed that the processivity of Pol δ is improved in the presence of certain accessory 

proteins including PCNA and RPA (318). This increased processivity ensures that each OF is 
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efficiently synthesized and that the preceding initiating primer is processed out of the genome 

preventing the incorporation of ribonucleotides and misincorporated deoxyribonucleotides (319). 

RPA binding to the parent strand helps melt most secondary structures that could serves as a barrier 

to synthesis. Work by our laboratory has shown that lysine acetylation of RPA promotes its strand 

melting properties (section 3.2.7). It is on this basis we sought to explore the impact of RPA 

acetylation on the processivity of Pol δ as measured by the amount of synthesis and strand 

displacement products formed from OFP like substrates as shown in Figure 4.1.  

To assess polymerase synthesis, we pre-bound varying concentrations (100, 250, 500 and 

750nM) of Um-RPA (lanes 3- 6) and Ac-RPA (lanes 7-10) to a synthesis substrate (44nt labeled 

upstream primer annealed to a 110 nt template) in the presence of a 150 nM of Pol δ. Our results 

revealed that Um-RPA was slightly able to stimulate the protein’s processivity and gap filling 

activity at the tested concentrations. We detected a mild increase in the formation of a fully 

synthesized product compared to that formed by the activity of the polymerase alone (lane 2). Ac-

RPA on the other hand, was seen to further stimulate Pol δ’s processivity as the amount of fully 

synthesized product was ~2-fold higher than the product formed in the presence of Um-RPA. 

Using similar experimental conditions, the strand displacement activity of Pol δ was measured on 

a substrate containing a 60nt downstream oligonucleotide annealed to the 44+110 synthesis 

substrate thereby mirroring two OFs. Since the upstream substrate is radiolabeled, one can 

visualize strand displacement as synthesis that occurs beyond the 6nt gap separating both the 

upstream and downstream primers. In the presence of Um-RPA, there was slightly increased 

synthesis past the 6nt gap (lanes 13 – 16) when compared to the polymerase alone lane (lane 12). 

However, in the presence of Ac-RPA, ~ 2-fold stimulation to this strand displacement activity was 

detected.  

4.3.2 Regulation of FEN1 activity by lysine acetylation promotes RPA binding to short 
flaps.  

It has been demonstrated that OFP predominantly proceeds via the short flap pathway, 

wherein Pol δ and FEN1 function in a coordinated molecular handoff mechanism to ensure that 

relatively short flaps are created and removed allowing for ligation of upstream and downstream 

OFs (320).  In some cases, however, FEN1 is unable to cleave these short flaps created by Pol δ 

opportunistically providing access to other proteins that could interact with the DNA such as 
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helicases or ssDBP such as RPA. There are a few instances where FEN1 cleavage is inhibited in 

the cell including the presence of structured substrates and modulation of the protein by lysine 

acetylation or phosphorylation (53,321,322). Given that lysine acetylation of FEN1 inhibits its 

binding by ~ 90%, we wanted to explore the impact of this modification on providing access to 

varying concentrations of RPA for DNA binding.  

On a short 20 nt flap substrate, we expected to observe dynamic binding by RPA, with high 

on and off rates. This dynamic binding would offer FEN1 a chance to recognize and stably bind 

the flap base when RPA was not bound to the substrate. .  Under these experimental conditions, 

we observed that although Um-FEN1 was mildly inhibited (~16%) by RPA at its highest 

concentration (150nM), Um-FEN1 bound to the substrate with higher affinity by either 2-3 fold 

(Lanes 3-5) or with a similar affinity (Lane 6) to RPA as highlighted in Figure 4.2. This shows that 

although FEN1 activity can be inhibited by RPA, the lower affinity for this ssDBP on a shorter 

length substrate can mildly regulate this interaction. The percentage of Um-FEN1 bound in the 

presence of increasing concentrations of RPA (50, 75, 100 and 150nM) were 55.3%, 53.3%,48.9% 

and 25.2% (lanes 3-6) compared to 60% (lane 2) bound in the absence of RPA as shown in Figure 

2. However, when FEN1 was acetylated, there was a 2.4-fold decrease in the protein’s ability to 

bind the flapped DNA substrate. Consequently, more RPA molecules (~ 2-fold) were able to 

accumulate on the flap as they didn’t need to compete with FEN1 for binding. The percentage of 

FEN1 bound in the presence of equally varying concentrations of Ac-RPA was calculated to be 

27.9%, 25.8%, 5.7% and 2.9%. These results show that when FEN1 is acetylated, it provides an 

opportunity for other protein players to alter the pathway for flap processing. 

4.3.3 Lysine acetylation of RPA serves as the switch between the short flap and long flap 
pathway via inhibition of FEN1 cleavage on shorter flaps. 

FEN1’s preference for cleavage of double flaps has long been established (323-325). 

However, previous work has shown that its activity on these flap substrates is inhibited by RPA 

which accumulates as a result of the presence of single stranded DNA long enough for it to stably 

bind (54). This stability of RPA binding to DNA substrates is the basis upon which FEN1’s 

nuclease activity is inhibited as the binding of the ssDBP does not allow FEN1 to thread the 5’end 

of the flap through it active site and make a precise cleavage at the flap base. RPA stably binds to 

DNA of approximately 28nt, but recent work from our laboratory shows that lysine acetylation of 
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the protein promotes higher binding affinity to even shorter substrates (Chapter 3). Therefore, we 

sought to determine the impact of RPA acetylation on FEN1’s nuclease activity when bound to 

DNA substrates of varying lengths.  

We observed that on the short flap substrate (20nt), UM-RPA does not stably bind thereby 

leading to minimal inhibition of FEN1 cleavage as shown in lanes 3-7 (4.9%, 6.2%, 9.1%, 13.6% 

and 23.2%) when compared to cleavage by FEN1 alone as shown in Figure 4.3. Conversely, AC-

RPA which binds even shorter DNA flaps with higher affinity promoted increased inhibition of 

FEN1 cleavage (22.0%, 58.6%, 86.9%, 92.2% and 93.8%) represented by lanes 8-12. This shows 

that higher affinity binding of RPA even on short flaps prevents FEN1 from being able to thread 

through and cleave at the flap base. To further highlight that stable binding of RPA promotes 

inhibition of FEN1 cleavage, a 30nt flap was utilized in the same assay. At this length, it is believed 

that the dynamics of Um-RPA binding promotes more stable binding given the same concentration 

than on a short flap (data not shown.) Moreover, AC-RPA in all scenarios showed increased 

binding and increased inhibition of cleavage as shown in Figure 4.3. Although the fold change 

observed between the acetylated and unmodified forms of RPA was lower on the long 30nt flap 

compared to the short 20nt flap, our results highlight that acetylation of RPA is inhibitory to FEN1 

cleavage both on short and long flaps.  

4.3.4 Dna2 cleavage on short flaps is altered by acetylated RPA 

Previous studies outlining the long flap pathway have shown that the endonuclease/helicase 

Dna2 is able to displace RPA while cleaving at multiple sites on the primer flap (57,326,327). 

Majority of the work done on this pathway have explored the interaction between Dna2 and RPA 

mostly on longer flapped substrates (~ over 30nt) because it has been shown that Dna2 can function 

more efficiently within the pathway when the primer flap length increases (265). In this experiment, 

we reasoned that if acetylation of RPA promoted more stable binding to shorter flaps, then this 

interaction would still necessitate cleavage by Dna2. Therefore, we evaluated the influence of RPA 

acetylation on Dna2 activity when acting on short flaps. In the presence and absence of a fixed 

concentration of Um-RPA and Ac-RPA prebound to a 20nt double flap, varying concentrations of 

Dna2 was titrated. The cleavage profile of Dna2 revealed that on short flaps, the presence of Um-

RPA doesn’t change its pattern of cleavage as has been previously reported to be the case for 

longer flaps (48). Instead, it mildly inhibits the amount of cleavage when Um-RPA is bound in 
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lanes 5-7 (57.5%, 68.6% and 71.0%) compared to the nuclease on its own, lanes 2-4 (64.8%, 71.9% 

and 72.2%). We rationalize that this could be due to steric reasons wherein the binding of RPA to 

the shorter substrate alters the binding pattern of Dna2 to it.  

More significantly, while the amount of cleavage didn’t greatly vary when Ac-RPA was 

present in the reaction, the pattern of cleavage differed possibly owing to the conformational 

change conferred upon the protein by its modification. We observed a 2-fold accumulation of 

cleavage products around the base of the flap showing that lysine acetylation of RPA directs Dna2 

to cleave at the flap base accounting for 12% of all cleaved products when acting on a short flap. 

This pattern of base cleavage is usually associated with FEN1 (lane 11) which directly cleaves at 

the base of primer flaps.  

4.4 Discussion 

The discontinuous synthesis that arises owing to the polarity of the lagging strand creates 

a replication problem that the cell has to circumvent in order to ensure genomic stability. The 

collective amount of RNA and DNA primers synthesized by DNA polymerase alpha, the error 

prone polymerase during one round of the cell cycle presents deleterious consequences for the cell 

if left within the genome. As such, the sequential steps required for Okazaki fragment processing 

reveals a well-coordinated machinery that in many ways, is hinged on the availability and functions 

of RPA. Various studies have shown that RPA mediates a plethora of cellular transactions within 

the cell. More specifically, during lagging strand synthesis, RPA regulates the transition from 

primer initiation to strand elongation by interacting with a myriad of protein partners. While a lot 

of studies have elucidated the roles of these key protein players in silo or in tandem with other 

proteins, not much is known about how they function in tandem with one another when they are 

regulated by some PTMs (53,167,195,197). Lysine acetylation of different DNA replication 

proteins have been outlined and marked with varying impact on their biochemical properties. This 

study addresses how these biochemical changes affect the necessary protein-protein interactions 

required for OFP and provides more detailed understanding about the how this replicative process 

can be regulated.  

While polymerases are integral to DNA replication on the basis of their synthesis activity, 

they require the aid of accessory proteins to processively carry out their functions (328,329). 

Across many organisms, polymerase activity is closely associated with the presence of single 
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stranded DNA binding proteins. In  E.coli, it was discovered that the Pol III holoenzyme required 

SSB in order to replicate along φX174, G4 and M13 (328). Similarly in herpes simplex virus I 

(HSV1), the ssDBP, infected cell protein 8 (ICP8) stimulates the processivity of the herpes 

polymerase (330). Likewise, work done in eukaryotic cells has revealed that RPA is an important 

accessory factor for Pol δ (35). We rationalized that processivity is improved as a result of the 

strand melting properties of RPA which allows the polymerase duplicate DNA especially along 

hard to replicate regions such as those containing secondary structures including triplex and G-

quadruplex DNA (331,332). Additionally, given that the DNA replication process accumulates 

single stranded DNA when the duplex is unwound, the presence of RPA prevents the reannealing 

of strands wherein MgCl2 concentrations are greater than 2mM or salt concentrations are about 

100mM NaCl (333,334). This further ensures that polymerase synthesis isn’t prohibited. 

Furthermore, since Pol δ also contains strand displacement activities, the displaced downstream 

flap bound by RPA can also be melted improving the efficiency of synthesis as work by Treuner 

et al demonstrated that although not comparable to DNA helicases, RPA was able to “unwind” 

long double stranded regions (334). Recent work from our lab has shown that lysine acetylation 

of RPA regulates the melting properties of the protein creating a scenario where it could favor 

either the melting or annealing of duplex substrates. Therefore, we probed how this modification 

might impact Pol δ activities. Interestingly, our results revealed that under the experimental 

conditions, the presence of lysine acetylated RPA enhanced both synthesis and strand displacement 

activities possibly because the strand melting reaction was favored. Additional work is required to 

determine if this is the case by altering local NaCl and MgCl2 concentrations. Likewise, we 

observed that in the presence of the modified protein, the exonuclease property of this B- family 

polymerase was highly stimulated. Mechanistically, the exonuclease proof reading activity of Pol 

δ occurs in the 3’ – 5’ direction and accounts for 101 or 102 fold mutational increase in cells lacking 

this domain (335). We rationalize that RPA stabilizes Pol δ thereby promoting its exonuclease 

activity similar to its yeast homolog where it stabilizes the 3’-5’ endonuclease activity of Apn2 

(336). 

The displacement of the initiating RNA-DNA primer has long been shown to be regulated 

by PCNA mediated interactions between Pol δ and FEN1. In more recent times, the PTM, lysine 

acetylation has been shown to regulate this process too. While lysine acetylation of Pol δ has been 

outlined (unpublished work from our group), work by Hasan et al detailed the impact of this 
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modification on FEN1’s biochemistry (53). Corroborating the results from our study, FEN1 

acetylation exhibits decreased DNA binding which allows for the accumulation of RPA even on 

shorter length flaps to which it dynamically binds. Similarly, the binding of RPA to displaced flaps 

serves as a form of regulating OFP as described by Bae et al (57). In their work, RPA is described 

as the switch that governs the choice of what pathway OFP proceeds. Therefore, although FEN1 

binding is required for processing short flaps, lysine acetylation inhibits this process in two ways: 

1) it prevents FEN1 from being able to bind when modified and 2) it confers higher affinity binding 

to RPA in the presence of short flaps thereby activating the long flap processing proteins. This 

form of regulation possibly ensures that the RNA primer and erroneously incorporated DNA 

synthesized by Pol α are completely removed promoting higher fidelity synthesis. While the 

outcome of these interactions might have been hypothesized, this study clearly highlights that in 

vitro, lysine acetylation promotes favors the activation of long flap pathway proteins even in the 

presence of shorter flaps than was earlier perceived.  

To further process these RPA bound flaps, the so-called long flap endonuclease, Dna2 is 

required to interact with and displace RPA, subsequently allowing for sequential flap cleavage. 

Following this, an ~5-6 nucleotide flap is retained which is then processed by FEN1. In enquiring 

about how lysine acetylated RPA might impact its interaction with Dna2, we discovered that while 

sequential cleavage above the flap base was observed, RPA was able to direct Dna2 to cleave at 

the flap base. This result was fascinating because it denoted that while majority of the time, Dna2 

is unable to cleave at the flap base consequently requiring the action of FEN1 prior to ligation, Ac-

RPA might sterically position Dna2 in such a manner that it cleaves the flap at its base 12% of the 

time even on short flaps. The two-nuclease pathway has always been believed to process long flaps. 

However, it seems that even short flaps can be processed in this manner. Seemingly, what 

determines if short flaps are also processed by long flap pathway proteins is lysine acetylation of 

FEN1 or RPA. We hypothesize that although this doesn’t happen majority of the time, when there 

is UV induced p300 mediated acetylation of FEN1, this could occur (53). Concurrently, since RPA 

acetylation is also further increased upon DNA damage. It could be that case that a subset of these 

short flaps are processed through the long flap pathway.  



 

 104 

4.5 Materials and Methods 

4.5.1 Oligonucleotides 

Synthetic oligonucleotides were designed and purchased from Integrated DNA 

Technologies (IDT.) For FEN1 cleavage and competition assays, the downstream flaps (20F and 

30F) were 5’ labelled with IR-700 and annealed to the template (T1) and upstream 

oligonucleotides (26U) in the ratio 1:3:6 using duplex buffer obtained from IDT to form a double 

flap structure. The upstream 44nt oligonucleotide (44U) used in the polymerase assays was 

radiolabeled with [γ-32P] ATP from Perkin Elmer as previously described (194). The 5’ labelled 

substrate was annealed to the 110 nt template (T2) in a 1:4 ratio and referred to as the synthesis 

substrate while the strand displacement substrate consisted of the upstream primer (44U) annealed 

to the downstream oligonucleotide (60D) and template (110T) in the ratio 1:3:6. In addition, the 

20 nt downstream flap (20F) used in the Dna2 cleavage assay although similar in sequence to that 

of the FEN1 cleavage substrate was radiolabeled at the 3’ end using [α-32P] dCTP obtained from 

Perkin Elmer. This substrate was similarly annealed to T1 and 26U in a 1:3:6 ratio to form a 3’ 

double flap.  

4.5.2 In Vitro Acetylation  

Recombinant proteins were acetylated in the presence of acetyl CoA and the catalytic 

domain of p300 in 1X HAT buffer [50 mM Tris-HCl (pH 8.0), 10% (v/v) glycerol, 150 mM NaCl, 

1mM dithiothreitol, 1mM phenylmethylsulfonyl fluoride, 10 mM sodium butyrate]. RPA was 

acetylated in the ratio 1:1:10 (protein : p300 : Acetyl CoA) while FEN1 was acetylated in the ratio 

(1:0.1:10) as previously reported (194). The reactions were incubated at 37°C for 30 minutes and 

subsequently used in biochemical assays.      

4.5.3 Polymerase delta Synthesis Assay 

Polymerase activity by pol δ on a synthesis substrate (44U + 110T) and a strand-

displacement substrate (44U + 60D + 110T) was performed in the presence of varying 

concentrations of unmodified and acetylated RPA.  To a reaction buffer containing 50 mM Tris-

HCl (pH 8.0), 2 mM DTT, 2 μg/uL BSA, 2mM ATP, 5mM MgCl2, 1 mM dNTP mix, and 1 mM 
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NaCl. Five nanomolar of each substrate was incubated with 150 nM of human Pol δ and RPA (100, 

250, 500, and 750 nM) at 37 °C for 10 minutes to a final volume of 20 uL.  Reactions were 

terminated by adding 20 uL of 2X Termination Dye (90% formamide (v/v), 10mM EDTA, 0.01% 

xylene cyanol and bromophenol blue) and boiled at 95 °C for 5 minutes.  Samples were loaded 

onto a pre-run 12% polyacrylamide denaturation gel for 60 minutes at 80 W. The gels were 

exposed on a phosphor screen overnight and imaged using a Typhoon scanner. To quantify the 

relative difference in the amount of synthesis and strand displacement products observed, 

individual lanes representing the highest Pol δ concentration were quantified and graphed, using 

ImageQuant TL v8.1. 

4.5.4 FEN1 and RPA Competition Assay 

To assess the impact of FEN1 acetylation on the binding of RPA to short flaps (20nt), 

200nM of both unmodified and acetylated forms of FEN1 together with increasing concentrations 

of RPA (50, 75, 100 and 150nM) were added to the reaction buffer (50mM Tris-HCl (pH 8.0), 

2mM DTT, 20mM NaCl, 0.1mg/mL BSA, 5% (v/v) glycerol and 20μM EDTA.) To each reaction 

tube, 5nM of a 20nt IR-700 labelled flapped substrate was added, and the reaction was incubated 

at 37°C for 15 minutes. To an 8% pre-run native polyacrylamide gel, the samples were loaded and 

electrophoresed at 250V for 45 minutes. Gels were imaged using the previously outlined method. 

To determine the percentage of RPA or FEN1 bound flaps, the intensity of the RPA/FEN1 bound 

lanes were compared to the presence of unbound substrate and FEN1/RPA bound substrates. The 

formula used to quantify this was [(RPA or FEN1 bound product) / (RPA bound product + FEN1 

bound product + unbound substrate *100.)]    

4.5.5 FEN1 Cleavage Assay 

The cleavage activity of FEN1 on two different flap substrates with varying length (20 and 

30 nt) was assessed in the presence of varying concentrations of human RPA. To a reaction buffer 

containing 50mM Tris-HCl (pH 8.0), 2mM DTT, 20mM NaCl, 0.1mg/mL BSA, 5% (v/v) glycerol 

and 20μM EDTA, 5nM of flap substrate was incubated with 0.5nM hFEN1 and hRPA (100, 125, 

150, 175 and 200nM) at 37°C for 15 minutes to a final volume of 20μL. Following this, 2mM 

MgCl2 was added to the reaction and further incubated at 37°C for 10 minutes. Reactions were 
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terminated by the addition of 80mM EDTA, 50% formamide (final volume), and 0.08% SDS as 

previously described and then boiled at 95C for 5 minutes. Samples were loaded onto a pre-run 8% 

polyacrylamide native gel for 45 minutes at 250V. The gels were imaged using the Odyssey 

imaging system (700-nM filter) and quantified using the accompanying Image studio software. 

The intensity of each band was measured, and the amount of cleaved product was calculated using 

the equation [(cleaved product) / (cleaved product + uncleaved remnant) * 100]. Additionally, the 

percentage of cleavage inhibited by the presence of RPA was calculated by subtracting the number 

of cleaved products formed in the presence of RPA and FEN1 from the amount of product formed 

in the presence of FEN1 alone.   

4.5.6 Dna2 Cleavage Assay 

To visualize the cleavage products resulting from the activity of the nuclease Dna2, a 3’ 

labelled 20nt flap was pre-incubated with or without of 50nM Um-RPA and Ac-RPA for 5 minutes 

at 37°C. Upon completion of incubation, varying concentrations of Dna2 (50, 100 and 200nM) 

were added to a final reaction volume of 20μl at 37°C for 10 minutes. Reactions were performed 

in a buffer containing 50mM Tris-HCl (pH 8.0), 2mM DTT, 20mM NaCl, 0.1mg/mL BSA, 5% 

(v/v) glycerol, 4mM ATP and 2mM MgCl2 and terminated by the addition of 80mM EDTA, 50% 

formamide (final volume), and 0.08% SDS. This was followed by boiling at 95C for 5 minutes. 

Samples were loaded onto a pre-run 12% polyacrylamide denaturing gel with 7M urea for 90 

minutes at 80 W. The gels were exposed on a phosphor screen overnight and imaged using a 

Typhoon scanner. Using the Image studio software, the intensity of each band was measured and 

the amount of cleaved product was calculated using the equation [(cleaved product) / (cleaved 

product + uncleaved remnant) * 100]. Furthermore, the percentage of cleaved product present at 

the flap base was calculated using the equation [(product at flap base)/(total cleaved product)*100]. 
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Figure 4.1 Polymerase delta (Pol δ) synthesis and strand displacement activities are 
stimulated by RPA acetylation. 

A) Five nanomolar synthesis substrate (44U:110T) was bound to increasing concentrations of 
Um-RPA  and Ac-RPA(100, 250, 500 and 750nM). Concurrently, 150nM of Pol δ was added to 

the reaction and loaded unto a pre-run 12% denaturing polyacrylamide gel. B) Similar 
concentrations were utilized on a strand displacement substrate (44U:60D:110T) and equally 

pre-run on a 12% denaturing polyacrylamide gel.      indicates site of 5’-32P label. Data obtained 
by Brandon Wysong, Balakrishnan Laboratory. 

     

 

  



 

 108 

 

 

 

 

 

Figure 4.2 Binding of RPA to short flaps is regulated by lysine acetylation of FEN1.  
The dynamic binding of RPA to 5nM of a short double flap (20nt) was assessed using an electro 
mobility gel shift assay (EMSA) wherein varying concentrations of Um-FEN1 (lanes 2- 6) and 

Ac-FEN1 (lanes 7-12) were incubated with it and electrophoresed on an 8% polyacrylamide 
native gel. Substrate alone control was loaded in lane 1 and RPA alone control in lane 12. IR 

indicates the site of fluorescent label. 
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Figure 4.3 Lysine acetylation of RPA strongly inhibits FEN1 endonuclease activity.  

Using an 8% polyacrylamide native gel, the cleavage activity of 0.5nM FEN1 on 5nM of a 20nt 
double flap was measured in the presence of increasing concentrations of both unmodified and 

acetylated RPA (100, 125, 175 and 200nM). Lane1 contains substrate alone, lane 2 shows FEN1 
cleavage activity in the absence of RPA while lanes 3-7 represent cleavage in the presence of 

pre-bound Um-RPA and lanes 8-12 shows cleavage in the presence of pre-bound Ac-RPA.  IR 
indicates the site of fluorescent label. 
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Figure 4.4 Dna2 cleavage pattern on a short flap is modified by RPA acetylation when 
bound to short flaps.  

The sequential cleavage of increasing concentrations of Dna2 (50, 100 and 200nM) on 2.5nM of 
a 3’labelled 20nt short flap was electrophoresed on a 12% denaturing polyacrylamide gel.   In the 
absence (lanes 2-4) or presence of 50nM Um-RPA (lanes 5-7) and 50nM Ac-RPA (lanes 8-10), 

the amount of products cleaved were compared. To determine the location of the flap base, 
100fM FEN1 was incubated with the substrate (lane 11). Asterisk indicates the location of the 3’ 

-32P label. 
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 CONCLUDING REMARKS 

5.1 Overview 

Replication fidelity describes the accuracy and precision with which the cell is able to 

duplicate its genome with the least amount of errors. Lagging strand replication utilizes a catalog 

of proteins and regulatory mechanisms to ensure that synthesis proceeds with the highest fidelity 

possible.  The intricacy of the lagging strand replisome tows a fine line between creating necessary 

systems to circumvent naturally occurring hindrances (directionality of polymerases on a 5’-

3’template) and ensuring that those same systems are efficiently regulated to keep up with the 

leading strand and prevent replication delay. Additionally, many of the proteins involved in 

replication, also function in other DNA transactions. Therefore, it is imperative to understand how 

these proteins are regulated within their various contexts. Lagging strand synthesis is one of those 

processes that implicates a variety of multifunctional proteins, with the minimal essential proteins 

including helicases (Pif1), polymerases (Pol α and δ), single stranded DNA binding proteins (RPA) 

and nucleases (FEN1 and Dna2) and DNA ligase I (Lig I). While the knowledge of the biochemical 

activities of individual protein players is important, more work is needed to outline how their 

activities and cellular interactions are impacted by different post translational modifications, 

including the focus of my studies, lysine acetylation. This is crucial as various studies have 

reported marked increases in the gene expression of KDACs across different cancers (337). This 

has led to the discovery and development of various KDAC inhibitors which regulate the 

acetylation profile of these cancer cells suggesting that this reversible modification has great 

impact on cellular growth and viability. This dissertation contributes valuable insight into how two 

additional replication proteins, Pif1 and RPA are post translationally modified by lysine 

acetylation.  It also details how these individual modifications function to regulate an entire 

pathway.   

5.2 Lysine Acetylation Regulates Lagging Strand Synthesis with Possible Caveats 

Work done by our group and others has provided a framework for defining how lagging 

strand replication proteins are modified by lysine acetylation (167,197,338). While the short flap 

pathway is negatively regulated by this modification in that the binding and cleavage activities of 
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FEN1 are greatly hindered, the reverse is the case for proteins involved in the long flap pathway. 

Proteins like Pif1 helicase exhibit improved unwinding activity across numerous substrates while 

the binding affinity of the single stranded DNA binding protein, RPA, is equally increased even 

on shorter length substrates (<26nt) (338). Furthermore, the long flap endonuclease, Dna2 exhibits 

stimulated binding and cleavage activities (167). Understanding the direct impact of lysine 

acetylation on the individual biochemical properties of these proteins has allowed us to study the 

role of the PTM to directly regulate the function of the protein. The work presented in Chapter 4 

of this dissertation is the first report that details how lysine acetylation of all the proteins in the 

lagging strand maturation pathway can influence the activities of its protein partners, thereby 

impacting the functional outcomes of the pathway. A caveat however is that we do not fully 

understand how the changes associated with the lysine acetylation signature of one protein impacts 

that of another either upstream or downstream from it. For example, we do not know if the 

replication proteins are acetylated in concert with one another or if there is a sequential approach 

to how they are modified. Similarly, we are unaware if the KAT mediating the acetylation reaction 

is recruited specifically to one protein, but opportunistically modifies the others surrounding it or 

if a specific lysine acetylation signature prevents other proteins from being modified serving as 

some form of regulation.  

Yet another caveat to consider is how the lysine acetylation signature of these proteins can 

change in response to various cellular events. DNA damage has been shown to induce lysine 

acetylation of replication proteins such as FEN1, RPA and Dna2 (53,167,197). However, it is yet 

to be elucidated if this trigger contributes to changes in their acetylation signature which could 

impact how downstream effectors during repair are regulated.  For instance,  hydroxy urea (HU) 

induced RPA2 hyperphosphorylation leads to the recruitment of Rad51 for repair which wouldn’t 

occur otherwise (339). Similarly,  phosphorylation of Pif1 inhibits telomeres at sites of double 

strand breaks, but this modification is not required for inhibition at telomeric regions (182). We 

hypothesize that under different cellular conditions as highlighted in Figure 5.1, replication 

proteins such as Pif1 might function differently based on their acetylation signature.  Concurrently, 

since it is known that there is a redundancy that exists in the cell whereby multiple KATs can 

mediate the same acetylation reaction given the cellular context, one must probe if this in itself can 

alter a protein’s acetylation signature. One such protein that exemplifies this phenomenon is p53. 

Studies have revealed that similar to RPA, p53 can be acetylated by both p300 and PCAF and 
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these KATs modify the protein at different lysine residues (340). For RPA, the only site identified 

to be acetylated by PCAF was also identified to be acetylated by p300 (197). We also discovered 

using mass spectrometry that additional sites were modified when p300 mediated the reaction. 

This therefore suggests that the KAT responsible for mediating each protein modification can 

confer a different acetylation signature which possibly extends the functionality of the protein 

within a given pathway.   

      

        

Figure 5.1 Possible cellular activities that can be mediated by lysine acetylation of Pif1 
helicase. 

 Pif1’s involvement in replication (A,B), repair (D), structure resolution (C,E)and telomere 
regulation (F) can be reversibly modified by the identified KAT (Esa1) and KDAC (Rpd3)(341). 
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5.3 Future Directions 

To provide clarity on some of these unknowns, experiments such as isolation of proteins 

on nascent DNA accompanied by stable isotope labelling of amino acids in culture mass 

spectrometry (iPOND-SILAC MS) will be vital. Using these techniques outlined in Figure 5.2, 

one will be able to:  i) determine if these proteins are modified at the replication fork ii) identify 

which KAT mediates the acetylation reaction and iii) outline a lysine acetylation signature as 

defined by normal replication events as well as during various cellular triggers including DNA 

damage and cell cycle perturbations.   

 

 

Figure 5.2 iPOND-SILAC MS technique for defining OFP protein acetylome.  
Incorporation of labelled amino acids to determine acetylation signature under various cellular 

contexts. 

 

Often times, in an attempt to further define the acetylation signature of a protein, a series 

of point mutations can be utilized wherein mutants are created to serve as phenocopies of an acetyl 

mimic (K- Q) or a non-acetylated residue (K- R). Unfortunately, while this approach is feasible in 
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theory, it poses some form of challenges of its own. Changing any residue especially if it resides 

within a functional domain can impact protein structure. Consequently, one cannot confidently 

attribute observed phenotypic or biochemical changes to a varied acetylation profile. To further 

detail the key players that make up the lagging strand acetylome, KAT and KDAC deletion and 

overexpression experiments can prove helpful, but not without some limitations. Lysine 

acetylation is an important regulator of cellular activities including chromatin assembly. Therefore, 

any change to the epigenetic environment can alter gene expression of a variety of proteins which 

could impact our understanding of the results and ultimately be deleterious for the cell.   

So far, this dissertation has highlighted the importance of the acetylation of lysine residues 

in maintaining genome fidelity. However, there are other modifications including those that 

specifically target lysine residues such as methylation, SUMOylation, crotonylation and 

ubiquitination which play a role in ensuring these replication proteins are efficiently regulated. 

Only a little is known about the role of PTM cross talks in managing the DNA replication processes. 

One such cross talk is observed between methylation and phosphorylation of the short flap 

endonuclease, FEN1. It was reported that FEN1 methylation inhibits its phosphorylation activities 

promoting its engagement with the proliferating cell nuclear antigen, PCNA ensuring effective 

OFP (342). However, if FEN1 methylation was prohibited, the protein can then get phosphorylated 

preventing its interaction with PCNA. On this basis, experiments targeting cross talks on different 

replication proteins will aid in creating a network of PTMs and how they function together to 

maintain genome stability.   

While many questions are yet to be addressed, this dissertation has filled three major 

knowledge gaps in the field: i) We identified acetylation of S. cerevisiae Pif1, the enzyme 

modifiers (Esa1 and Rpd3) and determined the impact of this modification on its  biochemical 

properties showing a stimulation in binding, helicase and ATPase activities ii) We discovered that 

human RPA can be acetylated by p300 which peaks at G1/S phase of the cell cycle and exhibits a 

higher binding affinity state even to short oligonucleotides when modified  iii) Lysine acetylation 

of human RPA activates long flap pathway proteins for OFP including the processing of a subset 

of short flaps.(343) 
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APPENDIX A. SUPPLEMENTARY FOR CHAPTER 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A- 1. Piccolo NuA4 (Esa1) in vitro-acetylates Pif1 
 Recombinant NuA4 and full-length Pif1 were incubated along with 14C labelled-acetyl CoA as 
described in the Materials and Methods. The reaction products were separated on a 4-15% SDS-
PAGE gel and subsequently subjected to autoradiography. Piccolo NuA4 (Esa1) was capable of 
robustly acetylating Pif1 in vitro (lane 2). The Esa1 subunit also underwent autoacetylation and 

acetylated the other subunits (Epl1 and Yng2) of the NuA4 complex (lanes 1 and 2). 
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Figure A- 2. Spectra for Acetylated Pif1 Lysine 725 

 Representative spectra for lysine acetylation sites on Pif1 annotated on Scaffold (Proteome 
Software, Portland OR). The b-ions are labeled in red, and y-ions are labeled in blue. Neutral 

loss and other parent ion fragments are shown in green. The sequence of the acetylated peptide is 
denoted above the spectra with the acetylated lysine (K) highlighted in bold red font.  
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Figure A- 3. Pif1 resolves G4 structures to allow Pol δ synthesis.  
The synthesis activity of 23 nM S. cerevisiae DNA polymerase delta (Pol 𝛿𝛿) was assayed on 5 

nM cMyc-G4 substrate in the absence (lane 1) and presence of increasing concentrations (5 and 
10 nM) of UM-Pif1 (lanes 3, 4) and AC-Pif1 (lanes 5, 6). The reactions were performed in a 
reaction buffer containing 20 mM Tris HCl (pH 7.8), 8 mM Mg(CH3COO)2, 100 mM KCl, 1 

mM DTT, 0.1 mg/mL BSA, 100 μM dNTPs, and 1 mM ATP for 10 min at 30ºC. Reactions were 
terminated using 2X termination dye and were immediately heated to 95°C and loaded onto a 

pre-warmed denaturing polyacrylamide gel (12% polyacrylamide, 7 M urea), and reaction 
products were separated by electrophoresis for 80 min at 80 W, subsequently dried, and 

analyzed. 
 



 

 143 

 

 

 

Result: DNA pol 𝛿𝛿 alone was unable to synthesize on the G4 substrate past the gap region, 

indicating the presence of a stable G4 structure. However, in the presence of both UM-Pif1 and 

AC-Pif1, we observed synthesis past the gap and into the G4 region. The AC-Pif1 displayed the 

highest stimulation of Pol δ synthesis, including the formation of a full-length product, presumably 

because AC-Pif1 was more efficient at G4 structure resolution than UM-Pif1.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A- 4. Stimulation of helicase activity is dependent on Pif1 acetylation alone.  

Helicase assays was performed using an IR labeled DNA fork in the presence of one nanomolar of either 
UM-Pif1 (lane 2), Pif1 + Piccolo NuA4 (Esa1) (lane 3), AC-Pif1 (lane 4) or Pif1 + Acetyl CoA lithium 

salt as described in Materials and Methods. 
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Table A-1. Yeast genotypes used in this study. 
 

Strain Number Genotype 

MBY623-638 and 662-669 MATα can1∆::STE2pr-Sp_his5 lyp1∆ his3∆1 leu2∆0 met15∆0 ura3∆0 

MBY703-706, 713-714, and 799 MATα can1∆::STE2pr-Sp_his5 lyp1∆ his3∆1 leu2∆0 ura3∆0 met15∆0 

MBY710, 711, and 715 MATaa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 
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Table A-2. List of yeast strains used in this study 
 

Number Name Description 

MBY623 ura3::NatMX pESC-URA Empty vector control in a wild-type background 

MBY624 rpd3::NatMX pESC-URA Empty vector control in an rpd3Δ background 

MBY625 hda1::NatMX pESC-URA Empty vector control in an hda1Δ background 

MBY626 hda2::NatMX pESC-URA Empty vector control in an hda2Δ background 

MBY627 hda3::NatMX pESC-URA Empty vector control in an hda3Δ background 

MBY628 hos1::NatMX pESC-URA Empty vector control in a hos1Δ background 

MBY629 hos2::NatMX pESC-URA Empty vector control in a hos2Δ background 

MBY630 hos3::NatMX pESC-URA Empty vector control in a hos3Δ background 

MBY631 ura3::NatMX pESC-URA-PIF1 Pif1 overexpression in a wild-type background 

MBY632 rpd3::NatMX pESC-URA-PIF1 Pif1 overexpression in an rpd3Δ background 

MBY633 hda1::NatMX pESC-URA-PIF1 Pif1 overexpression in an hda1Δ background 

MBY634 hda2::NatMX pESC-URA-PIF1 Pif1 overexpression in an hda2Δ background 

MBY635 hda3::NatMX pESC-URA-PIF1 Pif1 overexpression in an hda3Δ background 

MBY636 hos1::NatMX pESC-URA-PIF1 Pif1 overexpression in a hos1Δ background 
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Table A-2 continued 

MBY637 hos2::NatMX pESC-URA-PIF1 Pif1 overexpression in a hos2Δ background 

MBY638 hos3::NatMX pESC-URA-PIF1 Pif1 overexpression in a hos3Δ background 

MBY662 ura3::NatMX pESC-URA-PIF1ΔN Pif1ΔN overexpression in a rpd3Δ background 

MBY663 rpd3::NatMX pESC-URA-PIF1ΔN Pif1ΔN overexpression in an hda1Δ background 

MBY664 hda1::NatMX pESC-URA-PIF1ΔN Pif1ΔN overexpression in an hda2Δ background 

MBY665 hda2::NatMX pESC-URA-PIF1ΔN Pif1ΔN overexpression in an hda3Δ background 

MBY666 hda3::NatMX pESC-URA-PIF1ΔN Pif1ΔN overexpression in a hos1Δ background 

MBY667 hos1::NatMX pESC-URA-PIF1ΔN Pif1ΔN overexpression in a hos2Δ background 

MBY668 hos2::NatMX pESC-URA-PIF1ΔN Pif1ΔN overexpression in a hos3Δ background 

MBY669 hos3::NatMX pESC-URA-PIF1ΔN Pif1ΔN overexpression in a rpd3Δ background 

MBY693 esa1-414 pESC-URA Empty vector control in an esa1-414 background 

MBY694 esa1-414 pESC-URA-PIF1 Pif1 overexpression in an esa1-414 background 

MBY703 
gcn5∆::KanMX pESC-URA empty 

vector 
Empty vector control in a gcn5∆ background 

MBY704 gcn5∆::KanMX pESC-URA-PIF1 Pif1 overexpression in a gcn5∆ background 
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Table A-2 continued 

MBY705 
rtt109∆::KanMX pESC-URA empty 

vector 
Empty vector control in an rtt109∆ background 

MBY706 rtt109∆::KanMX pESC-URA-PIF1 Pif1 overexpression in an rtt109∆ background 

MBY710 WT MBY580 pESC-URA empty vector Empty vector control in a wild-type background 

MBY711 WT MBY580 pESC-URA-PIF1 Pif1 overexpression in a wild-type background 

MBY713 gcn5∆::KanMX pESC-URA-PIF1∆N Pif1∆N overexpression in a gcn5∆ background 

MBY714 rtt109∆::KanMX pESC-URA-PIF1∆N Pif1∆N overexpression in an rtt109∆ background 

MBY715 WT MBY580 pESC-URA-PIF1∆N Pif1∆N overexpression in a wild-type background 

MBY799 esa1-414 pESC-URA-PIF1ΔN Pif1ΔN overexpression in an esa1-414 background 
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Table A-3. Plasmids used in this study. 

Number Name Description 

pMB524 pESC-URA Multi-copy vector enabling epitope tagging of genes cloned under the control of the 

bidirectional GAL1,10 promoter 

pMB526 pESC-URA-Pif1 Pif1 cloned into pESC-URA, enabling galactose induction and C-terminal FLAG tagging 

pMB540 pESC-URA-Pif1ΔN Pif1∆N cloned into pESC-URA, enabling galactose induction and C-terminal FLAG 

tagging 

pMB472 pSUMO-Pif1 Nuclear isoform of Pif1 cloned into the pSUMO vector for over-expression in Escherichia 

coli 

pMB562 pSUMO-Pif1ΔN Pif1∆N cloned into the pSUMO vector for over-expression in E. coli 

pST44 P6XHis-Epl1/Yng2/Esa1 Wild-type Esa1, Yng2 (2-18), and 6X His-Epl1 (51-380) cloned into the pST44 vector 

for over-expression in E. coli 
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Table A-4. Oligonucleotides used in this study. Capital letters = dNTP, small letters = NTP, and Bio - biotinylated. 

Oligo name 

and length 

(nt) 

Sequence 

(5’ – 3’) 

T1 (45) TTTTTTTTTTTTTTTTTTTTTTTTTGTGTCACTCACATAGCGTTC-Bio  

D1 (45) GAACGCTATGTGAGTGACACTTTTTTTTTTTTTTTTTTTTTTTTT  

D2 (45) gaacgcuaugugagugacacuuuuuuuuuuuuuuuuuuuuuuuu(O-methyl)u  

D3 (20) GAACGCTATGTGAGTGACAC  

D4 (20) GAACGCTATGugagugaca(O-methyl)c  

D5 (65) ACGTCATTGGTCTGGGGAGGGTGGGGAGGGTGGGGAAGGTTTTTCACTAATAAGTTCCGCGGCGG–

Bio 

T2 (21) CCGCCGCGGAACTTATTAGTG 

T50 (50) TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 
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APPENDIX B. SUPPLEMENTARY FOR CHAPTER 3 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B- 1. Probing for KATs in multiple lysates  
(A) Immunoblot analysis of expression of specific KATs in wild-type HCT116 and 

HCT116p300- cell lysates (B) Acetylation of RPA1 Subunit. IP-western blot analysis of RPA1 
acetylation in HEK293 cells transfected with EP300 overexpression construct. 
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Figure B- 2. MS/MS spectra for in vitro acetylated RPA1.  
Representative spectra for lysine acetylation sites on RPA1 annotated on Scaffold (Proteome Software, Portland OR). The b-ions are 

labeled in red and y-ions are labeled in blue. Neutral loss and other parent ion fragments are shown in green. Sequence of the 
acetylated peptide is denoted above the spectra with the acetylated lysine (K) highlighted in bold green font.  
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 Figure B- 3. Probing for cyclins levels at various cell cycle phases 
HEK293T Cells were synchronized during different phases using either serum starvation or 

specific chemicals as described in the Materials and Methods. (A) Synchronization in different 
cell phases were confirmed by probing for expression of specific cyclins in the different cell 
cycle phases; (B) Graphical representation of cyclins that have known expression patterns in 

different cell cycle phases.  
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Figure B- 4. Testing the Specificity of RPAK163ac antibody 
ELISA Analysis of Custom Affinity Pure Sera: Antigens (free peptides) were coated on ELISA 
strips at 10 µg/ml in coating buffer. The unbound antigen was washed and all remaining sites 

were blocked with buffer containing BSA. Anti-sera, including preimmune was diluted in 1:100, 
1:1000, 1:10,000 and 1:100,000 and added in separate wells down the column. After 60 mins of 
antibody incubation, unbound antibodies were washed and the anti-rabbit IgG-HRP conjugate is 
added. The plates were washed again after 30 mins incubation. TMB substrate is then added and 
color developed for 15 mins. The reaction (blue color) is stopped by the addition of acid (turns 

blue to yellow).  
The amount of yellow color (read at 450 nm with an ELIZA reader) is directly proportional to 
the amount of antibody. Color is read in Absorbance or OD (Optical density) units of 0.000-

2.000. Reading above 2.000 were not considered to be linear, since it displayed too much yellow 
color. This is represented by *** indicating excess color. Upon further antibody dilution, the 

absorbance was readable (Abs. < 2.000). This is represented as A450 nm.  
The ELISA assay showed that the antibodies were clearly detected in an antibody titre of 

1:10,000 and 1:100,000 and blocking using the control peptide showed that the antibody was 
specific to the acetylated peptide. 
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Figure B- 5. Testing the Specificity of RPAK163ac antibody 
HEK293T cell lysates (from either untreated or treated for 24 hours with 10mM suberoylanilide 

hydroxamic acid (SAHA) to induce cellular hyperacetylation) were separated on a 4-20% 
gradient gel and subject to immunoblotting using the RPA1K163ac antibody (1:10,000 dilution). 

In vitro acetylated RPA (AcRPA) served as a positive control.  
The RPA1K163ac antibody recognized two products in the cell lysate, the 70 kDa RPA1 and the 

55 kDa RPA1 proteolytic product.  
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Figure B- 6. Markers of DNA Damage 
HEK293T cell lysates treated with different DNA damaging agents (as described in Materials 
and Methods) were immunoblotted with antibodies against different DNA damage markers to 

confirm induction of DNA damage in our experiments. Cell lysates for HU and ETP were 
harvested 6 hours post-treatment and MMS and UV were harvested 12 hours post-treatment. 
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Figure B- 7. RPA acetylation and not the presence of p300 improves ssDNA binding 
affinity.  

Five nanomolar of IR labeled 45 nt ssDNA substrate was incubated with increasing 
concentrations (5, 10, 25 nM) of Um-RPA, RPA + p300 (in the absence of acetyl CoA) or Ac-

RPA, and the reactions were incubated for 10 min at 37°C and reactions were subsequently 
separated on a 6% polyacrylamide gel. The labeled substrate is depicted above the gel with the 

asterisk indicating 5’ of the IR-700 label. The substrate alone and the complexes containing 
RPA-bound substrate are indicated beside the gel at the right 
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Table B-1. Oligonucleotides used in this study 
             
All sequences are written in the 5’ –  3’ direction   

Oligonucleotide  Sequence  

20  TTC ACG CCT GTT AGT TAA TT  

24  TTC ACG CCT GTT AGT TAA TTC ACT  

29 TTC ACG CCT GTT AGT TAA TTC ACT GGC CG  

30  TTC ACG AGA TTT ACT TAT TTC ACT GGC CGT  

32  TTC ACG CCT GTT AGT TAA TTC ACT GGC CGT AC  

45  
TTC ACT ATA ACT ACC TAA TCT TCT GGC CGT ACT GAA CTA 

CTG ACA  

  

Oligonucleotides containing TAMRA were labelled on the 5’ end while those containing biotin 

were labelled on the 3’ end.  
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