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ABSTRACT

Yarlagadda Sri Kalyan Ph.D., Purdue University, December 2020. Image Analysis
For Shadow Detection, Satellite Image Forensics and Eating Scene Segmentation and
Clustering. Major Professor: Fengqing Maggie Zhu.

Recent advances in machine learning has enabled notable progress in many as-

pects of image analysis. In this thesis, we present three applications to exemplify

such advancement, including shadow detection, satellite image forensics and eating

scene segmentation and clustering. Shadow detection and removal are of great in-

terest to the image processing and image forensics community. In this thesis, we

study automatic shadow detection from two different perspectives. First, we propose

automatic methods for detecting and removing shadows in color images. Second, we

present machine learning based methods to detect if shadows have been removed in

an image. In the second part of the thesis, we study image forensics for satellite im-

ages. Satellite images have been subjected to various tampering and manipulations

due to easy access and the availability of image manipulation tools. In this thesis,

we propose methods to automatically detect and localize spliced objects in satellite

images. Extracting information from the eating scene captured by images provides

new means of studying the relationship between diet and health. In the third part

of the thesis, we propose a class-agnostic food segmentation method that is able to

segment foods without knowing the food type and a method to cluster eating scene

images based on the eating environment.
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1. INTRODUCTION

Image analysis focuses on the extraction of meaningful information from digital im-

ages by means of digital image processing techniques. Over the years a vast number

of digital image processing techniques have been developed for various paradigms

such as media forensics [1], food image analysis [2], object detection [3], semantic seg-

mentation [4], image and video compression [5], augmented reality and much more.

These techniques sit at the heart of products and technologies that we use on a daily

basis and are also enabling new generation of technologies such as self-driving cars,

and augmented reality headsets. Cameras in smart phones are able to capture high

quality images because of image analysis techniques developed for noise reduction

and low-light photography. Many image analysis techniques are used in the manufac-

turing industry for automating tasks in the production lines. Today, image analysis

techniques are capable of compressing high quality videos into files occupying a few

mega bytes. Techniques like these form the backbone of all video streaming services in

use today. Image analysis techniques developed for object detection, pose estimation

and semantic segmentation are used extensively in the development of self-driving car

technology.

In the past, a lot of feature engineering went into developing image analysis tech-

niques. These features are often hand-crafted and specific to the task at hand. These

features need to be customized either by manual tuning or learnt using machine learn-

ing methods. Examples of image analysis techniques based on hand crafted features

include SIFT [6], SURF [7], histogram equalization, and SLIC [8]. Such approach

of crafting features by hand lead to some very successful image analysis techniques.

However, for many important tasks such as object detection and semantic segmen-

tation, their performance was far below common human capability. With recent

advance of deep learning [9], automatic feature engineering was made possible and
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has led to the development of more effective image analysis techniques. In this thesis,

we present deep learning based image analysis techniques for shadow analysis, satel-

lite image forensics and food image analysis. Before delving into details we provide a

very brief overview of deep learning.

Deep learning is a sub field of machine learning that revolves around using Arti-

ficial Neural Networks (ANN) for learning representations of data. Methods dealing

with learning representations of data fall under the umbrella of representation learn-

ing. Deep learning based methods employ ANN to learn these representations. Multi-

layered ANN’s are powerful mathematical constructs that are proven to be capable of

approximating a large variety of mathematical function to arbitrary accuracy [10]. For

this reason, they are nicknamed “Universal Approximators”. While ANNs have

shown great potential, they come with a few challenges. First, it is hard to optimize

them and second, they are very data hungry. Backpropogation [11] proposed in 1986

made it possible to optimize multi-layer ANNs, but processing is very slow due to

low computational power offered by the then state-of-the-art machines. Also, massive

amounts of data is required to train these ANNs. Since 1986, computational power of

processors has risen exponentially, data storage has become very cheap and powerful

graphical processing unit (GPU) can very efficiently perform backpropogation. All

these technology advancements have enabled researchers to train multilayered ANNs

on massive amount of data. This was first demonstrated by a group of researches led

by Geoffrey E. Hinton in [12]. In [12] they trained AlexNet, a very deep Convolu-

tional Neural Network (CNN) (a special type of ANN) to classify images into 1,000

categories. AlexNet consists of approximately 60 million parameters and was trained

on ImageNet [13] dataset. ImageNet is a dataset that contains more than 1 million

images belonging to 1,000 different categories. In this classification task, AlexNet

outperformed its nearest competitor by a significant margin (> 10% in top-5 error)

demonstrating the effectiveness of multilayered ANNs.
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1.1 Shadow Detection And Removal

Shadows are common aspect of images and videos. They often contain a lot of

information essential for scene lightning, scene geometry and object tracking. Be-

cause of this shadow analysis is of great interest to the image processing community.

In Chapter 2 we propose a simple yet effective approach to detect and remove shad-

ows from a single image. An image is first segmented and based on the reflectance,

illumination and texture characteristics, segment pairs are identified as shadow and

non-shadow pairs. The proposed method is tested on two publicly available and

widely used datasets. Our method achieves higher accuracy in detecting shadows

compared to previous reported methods despite requiring fewer parameters. In addi-

tion we also show results of shadow-free images obtained by relighting the pixels in

the detected shadow regions.

1.2 Shadow Removal Detection And Localization For Forensics Analysis

Because shadows are so integral to images they are also of importance to image

forensics community. The recent advancements in image processing and computer

vision allow realistic photo manipulations. In order to avoid the distribution of fake

imagery, the image forensics community is working towards the development of image

authenticity verification tools. Methods based on shadow analysis are particularly

reliable since they are part of the physical integrity of the scene, thus detecting

forgeries is possible whenever inconsistencies are found (e.g., shadows not coherent

with the light direction). An attacker can easily delete inconsistent shadows and

replace them with correctly cast shadows in order to fool forensics detectors based on

physical analysis. In Chapter 3, we propose a method to detect shadow removal done

with state-of-the- art tools. The proposed method is based on a convolutional neural

network (CNN) specifically trained for shadow removal detection using a conditional

generative adversarial network (cGAN).
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1.3 Detection And Localization Of Splicing In Satellite Images

In Chapter 4 we look at verifying the integrity of satellite images. Current satellite

imaging technology enables shooting high-resolution pictures of the ground. As any

other kind of digital images, overhead pictures can also be easily forged. However,

common image forensic techniques are often developed for consumer camera images,

which strongly differ in their nature from satellite ones (e.g., compression schemes,

post-processing, sensors, etc. Therefore, many accurate state-of-the-art forensic algo-

rithms are bound to fail if blindly applied to overhead image analysis. Development of

novel forensic tools for satellite images is paramount to assess their authenticity and

integrity. In this chapter, we propose an method for satellite image forgery detection

and localization. Specifically, we consider the scenario in which pixels within a region

of a satellite image are replaced to add or remove an object from the scene. Our al-

gorithm works under the assumption that no forged images are available for training.

Using a generative adversarial network (GAN), we learn a feature representation of

pristine satellite images. A one-class support vector machine (SVM) is trained on

these features to determine their distribution. Finally, image forgeries are detected

as anomalies. The proposed algorithm is validated against different kinds of satellite

images containing forgeries of different size and shape.

1.4 Learning Eating Environments Through Scene Clustering

In Chapter 5, we propose a method to cluster eating scene images based on their

eating environments. It is well known that dietary habits have a significant influence

on health. While many studies have been conducted to understand this relationship,

little is known about the relationship between eating environments and health. Yet

researchers and health agencies around the world have recognized the eating environ-

ment as a promising context for improving diet and health. In this paper, we propose

an image clustering method to automatically extract the eating environments from

eating occasion images captured during a community dwelling dietary study. Specif-
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ically, we are interested in learning how many different environments an individual

consumes food in. Our method clusters images by extracting features at both global

and local scales using a pre-trained deep neural network. The variation in the number

of clusters and images captured by different individual makes this a very challenging

problem. Experimental results show that our method performs significantly better

compared to several existing clustering approaches.

1.5 Saliency-Aware Class-Agnostic Food Image Segmentation

In Chapter 6, we propose a method to segment salient missing objects from a

pair of images. Advances in image-based dietary assessment methods have allowed

nutrition professionals and researchers to improve the accuracy of dietary assessment,

where images of food consumed are captured using smartphones or wearable devices.

These images are then analyzed using computer vision methods to estimate energy

and nutrition content of the foods. Food image segmentation, which determines the

regions in an image where foods are located, plays an important role in this process.

Current methods are data dependent, thus cannot generalize well for different food

types. To address this problem, we propose a class-agnostic food image segmentation

method. Our method uses a pair of eating scene images, one before start eating and

one after eating is completed. Extracting information via a pre-trained deep neural

network from both the before and after eating images, we can food images by finding

the salient missing objects without any prior information about the food class. We

model a paradigm of top down saliency which guides the attention of the human

visual system (HVS) based on a task to find the salient missing objects in a pair of

images. Our method is validated on food images collected from a dietary study which

showed promising results.
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1.6 Contribution Of This Thesis

• We proposed a simple and effective method that uses reflectance to detect and

remove shadows in color images. Although our method has very few parameters,

it is able to achieve similar level of performance when compared to some of the

existing deep learning and machine learning approaches.

• We analyzed shadow removal from a forensics perspective, where we designed a

method for detection and localization of shadow removal from a color image us-

ing state-of-the-art shadow removal methods.We demonstrated the importance

of building a custom tool for shadow removal detection as convention forensic

tools fail to detect these shadow manipulations.

• We investigated the integrity of satellite images by proposing a method to detect

and localize spliced objects in satellite images. Our method trains only on

pristine data and does require prior knowledge of the nature of spliced objects.

Our method also shows good performance in detecting and localizing spliced

objects of various classes and sizes.

• We proposed a method to cluster eating scene images based on their eating en-

vironments. Dieticians can cluster images using our method for further analysis

of diet quality thus reducing

• We proposed a class agnostic food image segmentation model by segmenting

salient missing objects in a pair of images.Our method achieves better per-

formance than many of the existing class agnostic approaches. Our proposed

method will also be able to segment salient missing objects in other scenarios

as well.
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2. DETECTION AND REMOVAL OF SHADOWS FROM

RGB IMAGES

2.1 Overview

Shadows are ubiquitous. They are formed when light is partially or fully occluded

by objects. Shadows provide information about lighting direction [14], scene geometry

and scene understanding [15] in images and are crucial for tracking objects [16] in

videos. They also form an integral part of aerial images [17]. However, shadows can

also complicate tasks such as object detection, feature extraction and scene parsing

[18].

There have been many methods proposed to detect shadows from images and

videos [16, 18–23]. In this chapter we focus on detecting shadows from color images.

With the recent boom in data driven approaches, machine learning based methods

have been applied to detect shadows [18, 20, 21]. In [18] Conditional Random Fields

consisting of 2490 parameters are used to detect shadows in gray scale images using

features such as intensity, skewness, texture, gradient similarity etc. In [20] Convolu-

tional Neural Networks consisting of 1000’s of parameters are used to detect shadows.

In [19] intensity information around edges is used to detect shadow boundaries. In [21]

image is first segmented and various classifiers are used to detect regions similar in

color and texture by comparing different segments with each other.

In this chapter we propose a non-training based shadow detection method which

requires fewer parameters, yet achieves high accuracy compared to previous methods

[18, 20, 21]. We differ from [21] in the features and classifiers used for comparing

regions and also in the approach of using these comparisons to obtain the shadow

mask. Every surface is characterized by two features: its reflectance and its texture.

When a shadow is cast on a surface its illuminance reduces, but its reflectance remains
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Fig. 2.1.: Note that both the surfaces are dark but one is due to shadow and another
is due to shading. Such examples complicate shadow detection but can be solved
using neighborhood information

the same. Due to the reduction in the illuminance, there will also be some loss in

texture information. By examining a surface, it is difficult to tell whether it is dark

due to the effects of shadow or shading. An example of this is given in Figure 2.1. By

comparing surfaces with each other we can detect shadows with greater confidence.

Hence, by pairing different regions of an image based on their reflectance, texture and

illumination characteristics we can detect shadows efficiently.

2.2 Shadow Detection

Our goal is to group different regions of an image based on their reflectance, texture

and illumination characteristics. To group pixels with similar properties into different

regions, we first segment an image using the Quickshift method [24] with a Gaussian

kernel size of 9. Our assumption is that a single segment should contain pixels with

similar reflectance and illumination. An example of segmentation result is shown in

Figure 2.2. In the subsections below we explain how we design the reflectance, texture

and illumination classifiers to label each segment as shadow or non-shadow.
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(a) Original Image

(b) Segmented Image

Fig. 2.2.: An example of a test image segmented using Quickshift with a kernel size
of 9. The segmentation correctly separates the boundaries between the shadow and
non-shadow regions.

2.2.1 Reflectance classifier

Consider the illumination model used in [21],

Ii = (ticos(θ)Ld + Le)Ri (2.1)
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where Ii is the vector representing the ith pixel in RGB space, Ld and Le are vectors

representing the direct light and reflected light from the environment, respectively. θ

is the angle between direct light and surface normal and Ri is the reflectance vector.

The value of ti indicates whether the pixel belongs to shadow or non-shadow segment.

When ti = 0 the pixel is in the shadow segment and vice versa. Two segments

belonging to the same surface but under different illumination can be modeled as

ti = 0 for all the pixels in the shadow segment and ti = 1 for all the pixels in the

non-shadow segment. Assuming that direct light and environment light are constant

in magnitude and direction over the two segments, we can see that the reflectance

property of the surface remains constant in both cases. Taking the respective median

of all pixels in RBG color space in each of the segments, we have the following,

INS −Median color of non-shadow segment

IS −Median color of shadow segment

ID = INS − IS = (cos(θ)Ld)R
median

In the case when Le is similar to Ld in terms of chromaticity, the angle between the

vectors ID and INS should be zero. However, in practice Le differs from Ld, hence

these two vectors will have a small angle provided they are of the same material and

a large angle if they are of different material with different reflectance properties. By

thresholding the angle between the color vectors ID and INS, we can decide whether

two segments with different illumination conditions belong to the same material. We

call this the “angle criterion.” Notice that we don’t look at the angle between INS

and IS because in the case where Le is significantly different from Ld in terms of

chromaticity, the angle between these two vectors will be very large even if they

represent the same surface. We set the angle threshold to be 10◦. An example of this

case is illustrated in Figure 2.3.
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(a)

(b)

Fig. 2.3.: An illustration of color vectors is given in 2.3a. In 2.3b visually region A
(the shadow region) on the road appears blue, not gray. This is due to the large
chromaticity difference in direct light Ld and the reflected light Le leading to a large
θ1. However, the angle between ID and INS (θ2) will be small so that we can classify
region A and region B as shadow non-shadow pairs.

2.2.2 Luminance Classifier

Shadows are formed when direct light is partially or fully occluded and hence have

lower illumination. The decrease in illumination depends on the relative intensities
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of Ld and Le. A large decrease in illumination intensity darkens the shadow. To

build an effective luminance classifier, we need to be able to detect the decrease in

illumination and be able to attribute that decrease to obstruction of light and not due

to some noise. In order to model this, we look at the luminance values of all pixels in

the LAB color space. We compute the median luminance of all segments in the LAB

space and compute the histogram of the median luminance values. The peaks of the

histogram give us an estimate of the number of different illumination regions in the

image.

We then split the image into regions by grouping segments based on their prox-

imity to the peaks. Segments within the same region are not compared because they

have similar illumination intensity while segments from different groups are allowed

for comparison to detect shadows. This step is useful because it adaptively groups

segments into regions with similar illumination. An example of grouping segments

into regions based on their luminance is shown in Figure 2.4. In addition to the

grouping criteria, for two segments to be shadow non-shadow pairs, the ratio of their

median luminance T in LAB space has to be above the threshold of 1.2 in order to

avoid comparing segments with similar illumination. T can be anywhere between

1 and ∞ and the closer it is to 1 the closer the illumination intensities of the two

segments are. Shadow non-shadow pairs will have a high values of T compared to

segments with similar illumination intensities.

2.2.3 Texture classifier

Since shadow and the corresponding non-shadow segments are of the same ma-

terial their texture characteristics will be similar. However, due to the reduction

in illumination intensity of shadow segments, some texture information is lost. To

capture this phenomenon, we look for texture similarity between the segments under

comparison provided that their T is not very high, because if its high a lot of texture

information would have been lost. We compute the Earth Mover Distance between
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(a) Segmentation

(b) Luminance clustering

Fig. 2.4.: The segmented image in 2.4a is grouped using the luminance classifier and
the result is shown in 2.4b.

the histograms of the texton maps [25] of both segments and threshold it to find

whether the two segments have similar texture. However, if T is greater than 2.4 we

do not compare them for texture similarity as a lot of texture information is lost in

the shadow segment due to the decrease in illumination.

2.2.4 Implementation

In this subsection, we describe how we use the above three classifiers to detect

shadow non-shadow segment pairs. Each segment is compared to its neighboring

segments using the reflectance, texture and luminance classifiers discussed above. If
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all the classifiers label the pair as a shadow non-shadow pair, we store that connection.

We use these connections to connect more segments. For every shadow non-shadow

pair, we take all the non-classified neighbors of the shadow segment and compare

them to non-shadow segment using the above classifiers. We repeat this process 3

times. The reason is that some shadow segments may have neighbors which are

also shadow segments themselves. Such segments will not be detected in the first

iteration. In order to connect them to the already labeled shadow segments, we

repeat the process by using the information obtained from the initial connections.

The process is illustrated in Figure 2.5.

(a) First Iteration

(b) Second Iteration

Fig. 2.5.: The connections obtained by first iteration are marked with the white lines
(2.5a) and the connections obtained by second iteration are marked by the blue lines
(2.5b).
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2.2.5 Refinement

The above implementation detects shadow non-shadow pairs with similar re-

flectance, texture and different luminance but does not put any constraint on how

bright the shadow segment should be. Without such constraint, two very bright seg-

ments can be misclassified as shadow non-shadow pairs. In order to avoid this, we

limit the shadow region to have a gray scale value lower than the Otsu threshold of

the image. We segment the image again with a Gaussian kernel of size 3 (smaller than

the Guassian kernel used in the initial segmentation) and look for segments which

contain shadow pixels using the initial shadow mask. A finer segmentation mask leads

to better modeling of the shadow non-shadow boundaries. Given a segment contains

shadow pixels, if more than 70% of pixels in that segment have a gray scale value less

than the Otsu threshold, we label the entire segment as a shadow segment and if not

we label the entire segment as non-shadow.

2.3 Experimental Results

The proposed method is evaluated on two publicly available datasets, the UIUC

dataset [21] and the UCF dataset [18].

2.3.1 UIUC Dataset

The UIUC dataset consists of 108 images with shadows, out of which 32 images

have been used for training and 76 for testing by [21]. We have evaluated our method

on the 76 test images. In addition to computing the per class accuracy, we also show

the Balanced Error Rate (BER) for our method which is computed as the following,

BER = 1− 1

2
(

TP

TP + FN
+

TN

TN + FP
) (2.2)

where FP is False Positives, FN is False Negatives, TP is True Positives and TN is

True Negatives. The lower the BER the better the method. BER is used because
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there are fewer shadow pixels than non-shadow pixels in the images. The results

of our methods and others are shown in table 2.1. We have achieved the highest

accuracy detecting shadows and a very close BER compared to [20] which has the

smallest BER of all three methods.

Table 2.1.: Results Our Proposed Method Compared to Other Methods On UIUC
Dataset

Methods Shadows Non-Shadows BER

Unary

+ Pair-

wise( [21])

.716 .952 .166

ConvNet(

[20])

.847 .955 .099

Our

method

.906 .855 .119

2.3.2 UCF Dataset

The UCF dataset is also widely used for testing shadow detection methods. It

consists of 355 images which are more diverse and complex than the UIUC dataset.

In [18] 120 images were used for testing. We have tested our method on 236 images.

Out of the 236 images, for 162 of them we have followed the proposed method, but for

74 images from OIRDS [26] dataset we have chosen a threshold of .35 instead of using

the Otsu threshold for limiting the gray scale of the shadow pixels. This is because

OIRDS dataset contains aerial images with very dark shadow regions. The results are

reported in Table 2.2 and comparisons to other methods are shown in Table 2.3. In

comparison to other methods, our method achieved the highest accuracy in detecting

shadows and also has the best BER.
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2.4 Shadow Removal

To remove shadows we follow the same approach as described in [21]. Some

examples of shadow removal are shown in Figure 2.6.

Table 2.2.: Detection Confusion Matrices of Our Proposed Method On UCF Dataset

74 images from

OIRDS dataset

Shadow Non Shadow

Shadow .899 .101

Non - Shadow .116 .884

162 images from

UCF dataset

Shadow Non Shadow

Shadow .922 .078

Non - Shadow .191 .809

Table 2.3.: Detection Confusion Matrices of Our Proposed Method Compared to
Other Methods On UCF Dataset

Methods Shadows Non-Shadows BER

BDT-

BCRF [18]

.639 .934 .2135

Unary

+ Pair-

wise( [21])

.733 .937 .165

ConvNet(

[20])

.780 .926 .147

Our

method

.920 .827 .1265
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(a) Original Image (b) After shadow removal

(c) Original Image (d) After shadow removal

Fig. 2.6.: Sample shadow removal results.
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3. SHADOW REMOVAL DETECTION AND

LOCALIZATION FOR FORENSIC ANALYSIS

3.1 Overview

Image editing tools are widely available. It is possible to download professional

image manipulation tools (e.g., Photoshop), to use image editing operations directly

from web interfaces (e.g., Pixlr), or even more easily to automatically forge a picture

using completely unsupervised tools (e.g., FaceSwap). If maliciously edited images

are shared online or distributed through broadcast channels, their impact in terms of

opinion formation and fake news distribution can cause serious social consequences.

Many blind image forensic tools have been developed in the literature through

years [27–29]. Among these techniques, many focus on verifying image digital in-

tegrity. These methods typically exploit statistical traces left by alterations of digital

signals and can be used for a wide variety of applications (e.g., detecting the origi-

nating device or camera model [30, 31], general forgeries [32, 33], resampling [34–36]

and multiple compressions [37, 38]). The main issue behind many of these methods

is that they rely on a strict set of assumptions that cannot always be verified and

they suffer from multiple editing operations being applied altogether. Many meth-

ods can be fooled if “laundering” operations that scramble image statistics are used

to edit images (e.g., small resizing and cropping, subtle global operations, and re-

compressions).

Other forensics techniques rely on verifying image physical integrity. This means

detecting whether an image is authentic by checking physical consistencies in reflec-

tions [39], lightning [40, 41], shadows [42–44], and other constraints that must be

verified in a real-world photoshoot. As an example, by knowing the direction of light

illuminating a scene, it is possible to estimate shadow directions. In the same way,
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it is possible to estimate whether all objects in the scene present a shadow coher-

ent with the other ones [42]. The drawback of this technique is that they are often

semi-supervised (e.g., the analyst should manually check for shadow cast, lightning

directions, etc.). However, they are innately robust against laundering. Indeed, as

long as the image semantic content remains unchanged, it is still possible to verify

physical inconsistencies despite resizing, rotations, or image re-compression opera-

tions. To fool these techniques, an expert manipulator must take into account the

laws of physics, and retouch the picture accordingly.

In the past fooling physical integrity detection was considered a challenging task,

nowadays this might be only partly true. Indeed, thanks to the increasingly advance-

ment in machine learning and signal processing, many image editing operations can

be used in an almost automatic fashion, not always requiring the hand of a profes-

sional. Among these, many methods for shadow removal have been proposed in the

literature [21, 45–48]. These can be readily used to remove incorrectly cast shadows

from edited images to fool physical integrity detectors leveraging shadows to assess

image authenticity [43,49].

In this chapter, we propose a method to detect whether an automatic shadow

removal technique has been used to edit an image. If shadow modification is detected,

we also propose a way to partly recover the location of the missing shadow. In doing

so, we can help shadow-based image forensics detectors. The proposed solution is

based on the use of a specific class of convolutional neural network (CNN) known

as conditional generative adversarial network (cGAN). The architecture is trained on

purpose for the problem under analysis on a dataset of images whose shadows have

been removed with a very accurate yet easy-to-use state-of-the-art technique [48].

The rest of the chapter is structured as follows. Section 3.2 provides the reader

with some background on shadow removal algorithms, and provides the formal prob-

lem definition. Section 2.2 is devoted to the explanation of the proposed methodology

for shadow removal detection and localization. Section 3.4 contains all the details of

the performed experimental campaign.
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3.2 Background and problem statement

In this section we introduce the reader to state-of-the-art techniques for auto-

matic shadow removal. Then, we provide the formal definition of the shadow removal

detection and localization problem.

3.2.1 Shadow Removal

The problem of shadow removal involves inconspicuously relighting the shadow

pixels while leaving the non shadow pixels unchanged. Over the years, many meth-

ods have been proposed to address this problem [21, 45–48]. These methods can be

classified as automatic [21, 46, 47] or user-aided [45, 48], and the criterion for this

classification relies solely on how shadows are detected before removal. User aided

methods rely on input from humans to detect shadows and then they proceed to re-

move shadows automatically. Automatic shadow removal methods aim to directly go

from an input image to its shadow free counterpart. Both automatic and user aided

methods have their potential downsides. For automatic methods, errors in shadow

detection could severely hamper the effectiveness of shadow removal, while user aided

methods could prove to be tedious.

In this chapter we choose to use the shadow-removal technique proposed in [48].

This choice is driven by the following considerations. Despite being a user aided

method, it requires only two rough strokes from a user as input. This makes it very

easy to use for non-expert image manipulators and the visual results are very pleasant.

We use the authors own implementation [48] of the shadow removal method.

3.2.2 Problem Formulation

Let us define a natural image under analysis as I. A pixel with coordinate (x, y)

is denoted as I(x, y). Let us also define a shadow forgery mask M, being a matrix

the same size of the image, whose entries indicate which pixels are affected by the
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shadow removal algorithm. In other words the sample with coordinate (x, y) in M is

defined as

M(x, y) =

1, if a shadow has been deleted in I(x, y).

0, otherwise.

(3.1)

The goal of our method is twofold. First, to detect whether any shadow has been

removed in image I. Second, if a shadow has been removed, to estimate the locations

of pixels that originally contained shadow traces. In order to solve both problems,

we compute M̂ being an est M. If M̂ ≈ 0, we conclude that no shadows have been

removed and the image is authentic. Conversely, if M̂ 6≈ 0, we conclude that the

image has been edited, and the original shadow was located in pixel at locations

{(x, y) : M̂(x, y) = 1}.

3.3 Proposed Method

Our proposed method for shadow removal detection and localization is based

on the following pipeline: (i) the image I under analysis is adapted to fit a given

resolution; (ii) a convolutional neural network (CNN) trained to generate a heatmap

that indicates the likelihood of shadow removal traces for each patch pixel is used;

(iii) the heatmap is thresholded to estimate M̂ and to make a decision concerning

shadow detection and localization. In the following, we provide a detailed description

about each step of the proposed procedure.

3.3.1 Image Size Adaptation

One of the problems that arises when processing high resolution images with

CNNs, is that image resolution rarely matches the CNN input size. Therefore, a

common strategy consists is to split the full resolution image into smaller patches,
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analyze each patch separately, and finally aggregate the results. This rationale has

been already successfully used by other recently proposed forensic detectors [50,51].

One of the issues in doing this, is the trade-off between accuracy and computa-

tional complexity. To obtain a fine-grained solution, patches must be extracted with

a large overlap. This increases the number of patches to cover the whole image area,

thus a higher computational time.

In order to compromise and reduce the required computational power, we propose

to use a slightly different solution. As a matter of fact we train our CNN in order

to work on images that have been downsized by a factor of almost 2 with respect

to their original resolution. This has two major positive effects. First, the CNN

becomes naturally resistant to resize laundering. Second, when a high resolution

image is under analysis, the analyst can extract larger (thus less) patches, resize

them for CNN analysis, and finally upsample the results back to the original image

size.

3.3.2 CNN Architecture

To estimate M̂ from an image I resized to the correct CNN resolution, we learn

a mapping function that goes from the resized I to M̂ using a cGAN. This cGAN is

based on pix2pix [52]. The architecture of the cGAN is composed by two different

CNNs namely, the Generator G and the Discriminator D, coupled together as shown

in Figure 4.3.

Generator G is a U-net [53] containing more than 10 convolutional layers with

skipped connections. This network turns the input image into the estimated mask as

defined M̂ = G(I). Discriminator D is a simpler and shallower network composed by

a series of convolutional, pooling and fully connected layers. This network acts as a

binary classifier on shadow masks, trying to distinguish whether they are a ground

truth mask, or a mask estimated by the generator G. The discriminator is trained

to output either 1 or 0 depending on the nature of the inputs, i.e, D(I,M) = 1
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(a) Generator Training

(b) Discriminator Training

Fig. 3.1.: cGAN overall architecture. The generator (a) is trained to fool the dis-
criminator. The discriminator (b) is trained to detect ground truth and estimated
masks.

and D(I, M̂) = 0. Both the generator and discriminator are coupled together using

a loss function LCGAN(G,D) (please refer to [52] for details on LCGAN(G,D)). In

addition to LCGAN(G,D) the generator is also trained to reduce a reconstruction loss

between the predicted mask M̂ and the true mask M, denoted as LR(M, M̂). The

loss function of cGAN denoted by L, is defined as

L = LcGAN + λ · LR (3.2)
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(a) Original I (b) Modified I

(c) M (d) M̂

(e) Original I (f) Modified I

(g) M (h) M̂

Fig. 3.2.: Example of shadow removal from image I, ground truth shadow mask M
and estimated shadow mask M̂.

By coupling the two loss functions as shown in Eq.3.2, we force the generator to

not only generate M̂ that is close to M but also fool the discriminator in the process.
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This additional constraint results in a G that better maps I to M as opposed to just

training G to reduce LR without the discriminator D.

We chose LR to be the binary cross-entropy (BCE) between M̂ = G(I) and M.

This is different with respect to the classic pix2pix network, which makes use of l1-

norm. However, as our goal is to estimate a binary mask, cross-entropy seems like a

more natural choice (as we verify in the results presentation).

Once the network has been trained, the discriminator is not considered anymore,

and the generator is used to turn new images under analysis I into estimated shadow

masks as M̂ = G(I).

3.3.3 Shadow Removal Detection and Localization

Depending on the image size adaptation strategy, one might need to splice together

(with possible overlaps) all estimated masks M̂ coherently with the image patch

extraction policy. If the image under analysis already fit the network input size,

there is no need to perform additional steps and the estimated mask M̂ can be

directly used. However, as we did not constrain the network output to be boolean,

the mask M̂ is estimated in a real domain. To construct a binary mask, we need to

threshold M̂ using a value Γ, which can be learned upon a validation set of images.

An example of original image, manipulated image, ground truth mask, and estimated

mask M̂ is reported in Figure 3.2.

3.4 Experiments and Results

In this section we describe our experimental evaluation. We first describe the

image dataset. We then report details about the use CNN training policy. Finally,

we present the achieved numerical results.
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3.4.1 Image Datasets

To correctly evaluate the proposed method, we constructed a dataset containing

both natural non-manipulated images and image whose shadows have been removed.

We started with the publicly available Image Shadow Triplets Dataset (ISTD) pro-

posed in [47]. ISTD consists of 1870 color image pairs from 135 different natural

scenes. Each image pair is defined as
{
IS, ISF

}
, where IS denotes an image with a

shadow, and ISF denotes a shadow-free image depicting the same scene of IS. Each

image has a resolution of 640 × 480 pixels. A couple of examples are shown in Fig-

ure 6.1.

For each pair, we used the selected shadow removal [48] for each image IS to obtain

the manipulated shadow-free image denoted by ÎSF . The binary forgery mask MS is

obtained by checking which pixels have been actually modified

MS(x, y) =

0, if IS(x, y) = ÎSF (x, y),

1, if IS(x, y) 6= ÎSF (x, y).

(3.3)

In our experimental scenario ÎSF is a forged image whose shadow has been removed,

and its binary forgery mask is MS. The effectiveness of any forensic method is not

only determined by how well it works on forged images but also on how effective it

is on authentic images. In our scenario each non-manipulated image ISF serves as an

authentic image with a forgery mask MSF = 0.

In summary, our image dataset D consists of 1870 pairs of forged images with

masks denoted by
{
ÎSF ,MS

}
, along with 1870 pairs of authentic images with masks

denoted by
{
ISF ,MSF

}
.

3.4.2 Training Strategy

Prior to training, the forged and authentic images along with their masks are

resized to a resolution of 256 × 256 pixel to match the CNN input. The dataset
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D is then split into training Dtrain, validation Dval and test Dtest. Dataset Dtrain
consists of 1130 forged images and the corresponding 1130 authentic images. Similarly

Dval consists of 200 forged and 200 authentic images. Finally, Dtest consists of the

remaining 540 forged and 540 authentic images. While the entire dataset D contains

images from 135 different scenes, the images for training and validation come from

90 of 135 different scenes, whereas images used for testing come from the remaining

45 scenes. In doing so, we ensure that the method is not merely learning how to

distinguish between scenes.

In order to train the used CNN minimizing the proposed loss function, we used

Adam optimizer [54] for both the discriminator and the generator. We set λ = 10,

and trained the model for 200 epochs, selecting for test the model minimizing loss on

Dval.

Fig. 3.3.: ROC showing shadow removal detection performance. BCE loss is the
proposed one, whereas l1 loss is the standard pix2pix one.
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3.4.3 Numerical Analysis

To show some examples of masks obtained by running our algorithm, Figure 6.1

reports two sets of images composed by the original picture with shadow, the edited

picture whose shadow has been removed, the ground truth mask M, and the estimated

mask M̂. From this visual example it is possible to notice that our proposed method is

able to correctly pinpoint shadow removal even on images that have been manipulated

in a visually plausible manner. Moreover, the method provides information about the

original shadow location, which can be helpful to perform some shadow-based forensic

analysis.

To numerically evaluate our proposed method in terms of shadow-removal de-

tection, we tested the constructed dataset. Specifically, after estimating each mask

M̂, we computed its average value, and compared it against a threshold Γ to detect

removed shadows. The idea is that the average value of M̂ should be zero (or approx-

imately so) for non-manipulated pictures. Figure 3.3 reports the receiver operating

characteristic (ROC) curve obtained by changing the value of the used threshold Γ.

Figure 3.3 shows two curves: one obtained using the proposed binary cross-entropy

(BCE) loss; one obtained using the conventional pix2pix l1-norm loss. It is possible

to see that the proposed loss modification makes the algorithm more precise, as the

achieved area under the curve (AUC) increase to 0.788 (using BCE) from 0.751 (using

conventional l1-norm loss).

If an image has been detected as manipulated, we also want to estimate the

manipulated pixels. To this purpose, we compared each thresholded estimated mask

M̂ to the ground truth mask M in a pixel-wise fashion. By changing the threshold

used to binarize M̂ we computed two ROC curves. In terms of localization, it is

possible to note that AUC reaches 0.803 using the proposed BCE loss, whereas it

only reached 0.701 using the conventional one.

As final experiment, we compared our method against a set of general-purpose

image forensic techniques. Specifically, we considered the toolbox presented in [55],
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which contains a set of more than 10 algorithms. Additionally, we also tested the

technique proposed in [50], which is considered among the best splicing detection and

localization tools to be used when no apriori information about the kind of manip-

ulation are available. None one of these techniques was able to provide localization

AUC > 0.6 on the proposed dataset. However, this behavior is somehow expected

as none of these methods are specifically tailored to this type of manipulation and

probably needs some more tuning.

Fig. 3.4.: ROC showing shadow removal localization performance. BCE loss is the
proposed one, whereas l1 loss is the standard pix2pix one.
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4. DETECTION AND LOCALIZATION OF SPLICING IN

SATELLITE IMAGES

4.1 Introduction

Ever since the birth of the Internet, the accessibility to images has become easier

overtime. Internet has become an affordable and effective platform for distributing

one’s own images. User friendly software like Photoshop and Gimp can be used to

generate a variety of image manipulations such as inpainting, copy-forge, splicing,

etc. A combination of the above two scenarios is a perfect environment for produc-

ing doctored images, which when treacherously used can cause substantial damage.

Therefore, it is of paramount importance to develop forensic methods to validate the

integrity of an image. For this reason, over the years, the forensic community has

developed several techniques for image authenticity detection and integrity assess-

ment [27–29].

In addition to photographs captured with cameras and smartphones, other types of

imagery are starting to be circulated, posing new problems for the forensic community.

Indeed, current satellite imaging technology enables shooting high-resolution pictures

of the ground. Due to the increased availability of satellites equipped with imaging

sensors, overhead images are becoming popular. It is now possible to easily gather

overhead images of the ground through public websites [56] and to buy custom image

sets of specific locations and times. As any other kind of digital images, overhead

pictures can also be easily forged. One question that needs to be addressed is whether

these images are authentic. Cases of malicious overhead image manipulations have

already been reported [57], [58]. The development of forensic methods tailored to the

analysis of this type of imagery is considered to be urgent.
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However, common image forensic techniques are often developed for consumer

cameras, which strongly differ in their nature from satellite sensors (e.g., compression

schemes, post-processing, sensors, etc.). Therefore, many accurate state-of-the-art

forensic algorithms are bound to fail if blindly applied to overhead image analysis.

Development of novel forensic tools for satellite images is paramount to assess their

authenticity and integrity.

To fill the lack of ad-hoc forensic techniques for satellite images, the authors of [59]

proposed an active method based on watermark embedding. Watermarks can then

be exploited to detect possible doctored image regions. Unfortunately, this method

can only be used if watermark is inserted at image inception time. More recently,

the authors of [60] proposed a passive forensic method for overhead image analysis.

This algorithm is based on machine learning techniques, but it can only localize image

regions that have been inpainted. To the best of our knowledge, no specific algorithms

for other kinds of satellite image forgeries have been proposed in the literature.

In this chapter, we propose an algorithm for satellite image forgery detection and

localization. Specifically, we consider the situation in which pixels within a region

of a satellite image are replaced to add or remove an object from the scene. Our

algorithm works under the assumption that no forged images are available for training.

Using a generative adversarial network (GAN), we learn a feature representation of

pristine satellite images. A one-class support vector machine (SVM) is trained on

these features to determine their distribution. Finally, image forgeries are detected

as anomalies.

To validate the proposed method, we built a custom dataset of forged satellite

images using different forgery sizes. Results in terms of forgery detection and lo-

calization are presented. Moreover, as the proposed algorithm works by analyzing

images patch-wise, it is possible to strongly parallelize it to keep processing time at

bay.
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4.2 Problem Definition and Background

In this section we describe the problem formulation and notation used through-

out the entire chapter. Following this, we provide some background concepts on

autoencoders and convolutional neural networks.

4.2.1 Problem formulation

Consider an image I coming from a satellite. We can represent the pixel integrity

associated with the image I, as a binary mask M of the same size as the image in

pixels. Each entry of M is a binary label 0 or 1, such that a pixel belonging to a

forged area is assigned the label 0 and a pixel from an untampered area is assigned

a 1. As forgery, in this chapter we consider an object insertion / removal through a

copy-paste operation from a different source. This means that forged pixels do not

belong to a satellite image but come from a different device (e.g., the picture of a

plane acquired with a normal camera). Figure 4.1 shows an example of a pristine

satellite image and a completely white (i.e., label 1) mask, as well as a forged image

with the respective black and white mask localizing the forgery. Within this setup,

our goal is twofold:

• Tampering Detection: given an image, detect whether it is pristine or forged.

• Tampering Localization: given a forged image, detect which are the forged pix-

els.

These two tasks can be accomplished by computing M̂ (i.e., an estimate of M). If

M̂ contains any entry different from 1, the image is detected as forged. Entries of M̂

whose values are 0 represent forged pixel positions.
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4.2.2 Related Work

In this section we present a brief summary of autoencoders that are needed to

follow this chapter. For a thorough review, we recommend the readers to refer to

Chapter 14 of [61].

Autoencoders are neural networks that are trained to attempt to obtain an output

equal to the input through a set of linear and non-linear operations that expand or

reduce data dimensionality at some point in the network. They consist of two parts:

the encoder Ae and decoder Ad. The output of the encoder is called feature vector

or hidden representation, and we represent it as h. In this chapter we work with

autoencoders where the dimensionality of h is lower than the dimensionality of the

input. This kind of autoencoders are known as undercomplete autoencoders. From

now on, whenever we refer to autoencoders we refer to undercomplete autoencoders.

Such an architecture forces the autoencoder to capture a salient representation of the

input in a reduced dimensionality space.

Autoencoders are trained by minimizing through iterative procedures a loss value

defined as

L = L(x, Ad(Ae(x))), (4.1)

where L(·, ·) is the loss function computing some distance between its two arguments,

x is the autoencoder input, and Ad(Ae(x)) is the output. In the special case where L

is the mean squared error (MSE) loss, the autoencoder learns to perform a generalized

non linear principal component analysis (PCA).

In this chapter we design our autoencoders using Convolutional Neural Networks

(CNNs). CNNs have proven to be very successful in a variety of computer vision tasks

such as object recognition [62], object detection [63], etc. They came to limelight in

2012 [64] when they produced stunning results in the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) [65]. Since then there has been an explosion in the

application of CNNs to various other computer vision tasks and often resulting in

new state of the art results.
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(a) Pristine image (b) Pristine mask

(c) Forged mask (d) Forged Mask

Fig. 4.1.: Example of pristine (a) and forged (c) images I associated to their binary
forgery masks M (b) and (d), respectively

When it comes to image forensics, the use of CNNs has been on the rise. Many

forensic problems deal with non-linear and often difficult to model pipelines. There-

fore, CNNs have proven to be successful in this area. The first works using CNNs

in this area were focused on steganalysis [66–69]. Strictly concerning multimedia

forensics, many other tasks have been considered. As a few examples, [70] deals

with median filtering detection, [71] proposes the use of a constrained convolutional

layer for forgery detection. In [51,72–74], the problem of camera model identification
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and its possible forgeries is explored. Double JPEG compression is also considered

in [38,75].

Convolutional neural networks usually consist of operations such as convolutions,

batch normalization [76], local pooling, thresholding and non linear activations. These

operations are stacked together and are tuned by minimizing a cost function at the

output. Following, we describe some of the most commonly used layers:

• Convolutional: the input of this layer is convolved with a bank of filters whose

response is learned through training. The input is typically a 3D structure, i.e.,

it has two spatial coordinates plus depth (e.g., an RGB image). The output is

known as feature map.

• Max pooling: given an input x, a sliding window is used to extract the maximum

value over it.

• Batch Normalization: given an input x, this layer normalizes x by imposing

zero mean and unit variance. Details about this are explained in [76].

• Deconvolutional: this layer is the transpose of a convolutional layer. The output

is obtained by convolving a zero-padded version of the input with a filter bank

learned through training. The spatial dimensions of the output are greater than

that of the input.

4.3 Method

In this section we elaborate on the details of our method to detect object insertion

/ deletion attacks in satellite images. In particular, the pipeline of our method is

reported in Figure 4.2, and it is composed by the following steps:

• The color image under analysis is split into patches (either overlapping or not)

of size 64× 64 pixels.

• A adversarially trained autoencoder encodes the patches into a low dimensional

representation called feature vector h.
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Fig. 4.2.: Pipeline of the proposed method. At training time, the feature extractor
and one-class SVM learn their models from pristine images only. At testing time,
forged areas are detected as anomaly with respect to the learned model.

• A one-class SVM fed with h is used to detect forged patches as anomalies with

respect to features distribution learned from pristine patches.

• Once all patches are classified, a label mask for the entire image is obtained by

grouping together all the patch labels.

The rationale behind the proposed solution is that autoencoders are able to cap-

ture a reduced dimensionality representation of the input data, still retaining impor-

tant characteristic information, as shown in [77] for forensic purposes. Therefore,

by training an autoencoder only on pristine data, we expect it to learn to extract

features specific of original satellite images. Conversely, when it is tested on forged

data, the extracted features should be strongly different from those obtained from

pristine images. A one-class SVM trained on pristine features only can then be used

to discriminate between features coming from pristine and forged images. Following,

we report a detailed explanation of each step of the proposed pipeline.
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Fig. 4.3.: Architecture of the used GAN.

4.3.1 Patch Extraction

The given image I is split into regular patches Pk, where k ∈ [1, K] is the patch

index, and K is the total amount of patches. Patches can be either overlapped or not

depending on the selected trade-off between detection accuracy and computational

complexity (i.e., overlapping leads to more patches to analyze but more accurate

results).

4.3.2 Feature Extraction

Every patch Pk is fed to the autoencoder A which consists of two parts: the

encoder Ae and decoder Ad. Both Ae and Ad are made of convolutional and deconvo-

lutional neural networks respectively. They are symmetric in terms of the number of

layers. The architecture of Ae has been selected following the same rationale of [78]

and it is as follows:
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• conv1 : convolution layer with 16 filters each of size (6,6) with stride 1.

• conv2 : convolution layer with 16 filters each of size (5,5) with stride 2.

• conv3 : convolution layer with 32 filters each of size (4,4) with stride 2.

• conv4 : convolution layer with 64 filters each of size (3,3) with stride 2.

• conv5 : convolution layer with 128 filters each of size (2,2) with stride 2.

All convolutional layers except conv5 are followed by batch normalization. All

the convolution layers are activated using a linear function. The output of conv5 is

the feature vector h, a 2048 dimensional vector and has a much lower dimension than

that of the input which is 12288 dimensional. The architecture of Ad is as follows:

• dconv1 : deconvolution layer with 64 filters each of size (2,2) with stride 2.

• dconv2 : deconvolution layer with 32 filters each of size (3,3) with stride 2.

• dconv3 : deconvolution layer with 16 filters each of size (4,4) with stride 2.

• dconv4 : deconvolution layer with 16 filters each of size (5,5) with stride 2.

• dconv5 : deconvolution layer with 3 filters each of size (6,6) with stride 1.

Every deconvolutional layer is followed by batch normalization except deconv5. De-

conv5 has a hyperbolic tangent activation where all other deconvolution layers have

linear activations. The output of deconv5 is the output of the autoencoder. Once

the autoencoder is trained on pristine image patches, we use it as feature extractor

to compute the feature vector hk = Ae(Pk) from each image patch Pk.

Conventionally A can be trained using stochastic gradient descent to minimize

mean squared loss between input (i.e., Pk) and output (i.e., Ad(Ae(Pk))) . However

better results can be achieved when we follow an adversarial framework for training

the autoencoder. In [79] the authors established a framework of min-max adversarial

game between two neural networks, namely the generator and discriminator, and
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such networks are called Generative Adversarial Networks. As shown in Figure 4.3,

the discriminator aims to accurately discriminate between patches from real satellite

images and patches created by the generator. The generator on the other hand aims

to mislead the discriminator by trying to generate data closer and closer to the real

one. Such frameworks have proven to be extremely effective.

The architecture of the discriminator D we use is as follows:

• conv1 : convolution layer with 16 filters each of size (5,5) with stride 1 followed

by Leaky ReLU and batch normalization.

• conv2 : convolution layer with 16 filters each of size (2,2) with stride 2.

• conv3 : convolution layer with 32 filters each of size (4,4) with stride 1 followed

by Leaky ReLU and batch normalization.

• conv4 : convolution layer with 32 filters each of size (2,2) with stride 2.

• conv5 : convolution layer with 64 filters each of size (3,3) with stride 1 followed

by Leaky ReLU and batch normalization.

• conv6 : convolution layer with 64 filters each of size (2,2) with stride 2 followed

by Leaky ReLU and batch normalization.

• fc1 : A 128-neuron fully connected dense layer followed by a Leaky ReLU acti-

vation.

• fc2 : A single neuron followed by a sigmoid activation.

After training the autoencoder using the GAN strategy on pristine images only,

the encoder Ae is used to extract the feature vector hk from each patch Pk under

analysis.
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4.3.3 One-Class SVM

The autoencoder A is trained only on pristine patches and hence it learns to

encode them very well. So when A sees a patch containing a forgery, it encodes it

quite differently. In order to capture this difference without any knowledge on forged

data, we use a one-class SVM trained on feature vectors h extracted from pristine

images only. The used one class SVM learns pristine feature distribution. It then

outputs a soft value which represents the likelihood of the feature vector h under

analysis being pristine. We define the soft mask as a matrix the same size of the

image, where each entry contains the soft SVM output relative to the image patch in

the same position. This soft mask can be used to obtain the final detection binary

mask M̂ by simply thresholding.

4.4 Experimental Validation

In this section we report the experimental validation of the proposed technique.

We first discuss how we built the used dataset. We then provide details about the con-

sidered experimental setup for reproducible research. Finally, we show the achieved

numerical results.

4.4.1 Dataset

We tested our algorithm using overhead images obtained from the Landsat Science

program [80,81]. The Landsat Science is a program run jointly by NASA [82] and the

US Geological Survey(USGS) [83]. It was first launched in 1972 and has produced

the longest, continuous record of Earth’s land surface as seen from Space. NASA is

responsible for the remote sensing equipment, launching satellites and validating their

performance. USGS operates the satellites and manages data reception, archiving and

distribution. Since late 2008 these images have been made available free of charge.

The Landsat Program obtains overhead images from a series of satellites. We have
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created our dataset D using images from one satellite. D consists of 130 color images

each cropped at a resolution of 650× 650 pixels. This dataset is further divided into

three parts namely training Dtrain, validation Dval and testing Dtest.

Out of the 130 images, 30 of them are used to create patches for training and

validation. Patches of size 64 × 64 × 3 are extracted from every image with a patch

stride of 32×32 generating a total of 10830 patches. Out of these patches, 20 percent

have been used for validation and the remaining for training. So Dtrain consists of

8664 patches and Dval 2166 patches.

The remaining 100 images are used for creating Dtest. Half of Dtest is used to

generate forgeries, the remaining half is kept as pristine testing data. In order to create

forged images, credible objects such as airplanes, clouds, etc. are spliced at random

positions onto the 50 selected images from Dtest. During the splicing operation, the

size of spliced objects relative to the used analysis patch size is controlled. Therefore,

we define three sizes namely:

• Small - Object size is smaller than the patch size (approximately 32 pixel per

side).

• Medium - Object size is comparable to patch size (approximately 64 pixel per

side).

• Large - Object size is larger than patch size (approximately 128 pixel per side).

Objects of each size are forged onto the 50 images at random positions to create 150

forged images, i.e., we have 50 images with Small objects spliced onto them (D32),

50 images with Medium objects spliced onto them (D64), and at last 50 images with

Large objects spliced onto them (D128). Examples of pristine images and forged

images with different size forgeries are shown in Figure 4.4.
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4.4.2 Experimental Setup

Our model consists of two important components, namely the Autoencoder A and

the one-class SVM. In this section we describe the policies we used to choose the best

model and the various hyper parameters for each of these.

Autoencoder

The autoencoder is fed with patches from pristine images and its task is to capture

their distribution. An autoencoder can be trained on its own but we choose to couple

it with a Discriminator D to further push its training. The job of D is to be able

to discriminate between patches produced by A and the actual patches from pristine

images. By coupling A with D we form a Generative Adversarial Network (GAN).

We can judge the performance of A using the mean squared error metric and the

performance of D by binary cross entropy. Both A and D are CNNs and, in order to

choose the right CNN architecture, we use the following approach:

• The architecture of D is fixed and it is described in the Feature Extraction

section.

• For A, a variety of CNN architectures are tested and the one with the lowest

mean squared error loss is chosen as the best model.

The various architectures tested to choose the best model for A are detailed in

Table 4.1 and Table 4.2

Training Strategy

We adopt two different training strategies, With GAN and Without GAN

• Without GAN: we train the autoencoder with patches from Dtrain and Dval.

We use the Adam optimizer for a total of 100 epochs. The model weights with
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the lowest MSE loss on Dval over the 100 epochs are chosen as the final model

weights.

• With GAN: we first train the autoencoder using patches from Dtrain and Dval

using the Adam optimizer for 100 epochs. The weights corresponding to the

lowest loss on Dval over the 100 epochs are locked. We then use these weights

to initialize the weights of the generator in the GAN. The GAN is then trained

for 100 epochs with the SGD optimizer and a learning rate of 0.001 for the

discriminator, and the Adam optimizer with a learning rate of 0.001 for the

generator. The GAN training is carried out on batches of 128 patches. The

weights with the lowest MSE loss are chosen for the final generator.

For the SVM, we used a radial basis function with γ = 1/2048 as kernel, and

small value of nu-parameter (ν = 0.00001).

4.4.3 Results

Using the With GAN training strategy, the mean squared error (MSE) loss

over Dval for the various architectures of the autoencoder are reported in Table 4.3.

Architectures A2, A3 and A4 have similar number of parameters (about 100k) while A1

has almost a million parameters. Note that A1 , A2 and A3 perform similarly despite

the huge difference in the number of parameters. Among all of them A4 provides the

lowest MSE and hence better patch reconstruction. Therefore, we decided to select

architecture A4 for our system.

In order to visualize the forged-vs-pristine discriminability power of feature vectors

h extracted from the proposed autoencoder, we applied the t-SNE algorithm [84]. T-

SNE can be used for unsupervised feature dimensionality reduction in order to check

whether it is possible to cluster some data. In our particular case, the feature vector h

is a high dimensional vector that is very difficult to visualize, whereas, by applying t-

SNE we have some visual clues on feature behavior. Figure 4.5 shows the distribution

of features in a reduced dimensionality space of three dimensions using t-SNE. It is
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possible to notice that patches not containing forged pixels have features that cluster

together (i.e., red dots). Conversely, features belonging to patches containing forged

pixels (i.e., blue dots) are spread in the three-dimensional space far from the pristine

cluster. This confirms that the proposed feature vector is able to capture forged-vs-

pristine information.

In order to evaluate forgery detection performance, we estimated the soft mask

M̃ for each image in the dataset. For each mask, we selected as pristine confidence

the minimum M̃ value (i.e., the SVM output associated to the least probable pris-

tine patch). By thresholding this confidence score, we obtained a receiver operat-

ing characteristic (ROC) curve. Figure 4.6 shows some examples of forged images,

groundtruth masks, and estimated soft mask M̃. Figure 4.7 shows ROC curves split

for datasets containing forgeries of different average size. Clearly, the bigger the

forgery (i.e., 128 pixel per side), the better the performance (area under the curve

around 0.97). However, even when forgeries are smaller than the analysis block (i.e.,

32 pixel per side on 64× 64 blocks), the area under the curve (AUC) is almost 0.80.

Additional results are reported in Table 4.4. This table reports AUC for each

different size dataset depending on the used autoencoder training strategy. More

precisely, it is possible to notice that by training the autoencoder without the GAN,

detection results are always slightly worse. This motivates the use of the GAN training

paradigm for forgery detection in this scenario.

In order to validate the proposed method in terms of localization, we computed

a soft mask M̃ for each image in the dataset. We then thresholded each soft mask

M̃ to obtain a binary mask soft mask M̂. For each image and used threshold, we

computed: the true positive rate as the percentage of forged pixels correctly detected;

false positive rate as the percentage of pristine pixels detected as forged. Based on

these two values, we drew ROC curves. Figure 4.8 shows ROC curves obtained with

our proposed GAN on datasets with forgeries of different size. Specifically, it is

possible to notice that AUC is always greater than 0.90. In particular, if the forgeries

are twice the size of the analysis patch, the AUC is higher than 0.97.



48

Additional results are reported in Table 4.5. We show AUC values for the different

datasets (according to forgery sizes), comparing the effect of training the autoencoder

with or without the GAN. Notice that, for localization purposes, it is slightly better

to avoid the GAN.

A final consideration is devoted to computational time. We tested the proposed

algorithm on a workstation equipped with an Intel Core i7-5930K CPU, 128 GB of

RAM and a NVIDIA GeForce Titan X GPU. The processing time needed for a 64×64

pixel patch (considering both the autoencoder and the SVM) was around 500µs for

testing. As each patch processing is independent, the algorithm allows for strong

parallelization, thus making processing of high resolution images not an issue.
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(a) Image with small sized splicing (b) Forged Mask

(c) Image with medium sized splicing (d) Forged

(e) Image with large sized splicing (f) Forged

Fig. 4.4.: Examples of forged images with forgeries of different sizes. Ground truth
masks M are also reported.
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Table 4.3.: MSE of the various autoencoder architectures. The one with the lowest
MSE loss is selected for the proposed method.

Architecture Trainable Parameters MSE loss
A1 997299 0.00131671
A2 84547 0.00131675
A3 124883 0.00130047
A4 135939 0.00125511

Fig. 4.5.: Example of t-SNE representation of the feature vectors extracted from a
forged image. Features from pristine patches (i.e., red dots) cluster together, whereas
features from forged patches (i.e., blue dots) are more distant.

Table 4.4.: Detection results in terms of AUC for the different datasets. AUCs are
reported in two different cases: autoencoder trained with or without the GAN. Best
results are reported in italics.

Forgery AUC AUC AUC
Size (without Gan) (with GAN) Difference
Small 0.784 0.797 +0.013

Medium 0.904 0.920 +0.016
Large 0.950 0.972 +0.022
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Table 4.5.: Localization results in terms of AUC for the different datasets. AUCs are
reported in two different cases: autoencoder trained with or without the GAN. Best
results are reported in italics.

Forgery AUC AUC AUC
Size (without Gan) (with GAN) Difference
Small 0.913 0.902 -0.009

Medium 0.963 0.961 -0.002
Large 0.970 0.974 -0.004
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(a) Forged image I (b) Forged image I

(c) orged mask M (d) Forged mask M

(e) Soft mask M̃ (f) Soft mask M̃

Fig. 4.6.: Examples of forged images with ground truth forged mask M and estimated
soft mask M̃. It is possible to notice the correlation between ground truth and
estimated soft mask.
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Fig. 4.7.: Forgery detection ROC curves. Each curve represents results on a different
dataset according to the forgery average size.

Fig. 4.8.: Forgery localization ROC curves. Each curve represents results on a differ-
ent dataset according to the forgery average size.
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5. LEARNING EATING ENVIRONMENTS THROUGH

SCENE CLUSTERING

5.1 Overview

In 2016, $7.5 trillion was spent on healthcare worldwide, which is approximately

10% of the world GDP [85]. While there are many factors that influence health,

dietary habits have a significant impact [86,87]. To understand the complex relation-

ship between dietary habits and health, nutrition practitioners and researchers often

conduct dietary studies to subjectively assess dietary intake of children and adults.

Participants in these studies are asked to report the foods and drinks they consumed

on a daily basis for a period of time. This data is then analyzed by researchers to

understand the impact of certain dietary behaviors on health. For example, studies

have shown that frequent consumption of fast food [88], skipping breakfast [89], and

absence of home food [90] contribute to the increasing risk of obesity and overweight.

While many studies have been conducted to understand how diet affects health [91],

fewer work has been done to study the relationship between eating environments and

health. However, researchers [92, 93] and organizations such as the World Heath Or-

ganization and International Obesity Task Force have recognized the vital role of

eating environments on health and diet. Studies have shown that some factors of

the environment such as screen viewing during meals, family mealtime [94], and meal

preparation time [95] influence health. For instance, family mealtime is shown to pos-

itively affect nutrient intake and meal preparation time is inversely related to Body

Mass Index (BMI). While such patterns have been found, the relationship between

eating environments and health is still poorly understood, partly due to the lack of

valid, reliable measures of environmental factors. In this chapter, we focus on under-

standing eating environments of an individual using digital images captured during
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(a) Scene 1

(b) Scene 2

Fig. 5.1.: Here are images of two different eating environments, captured by a single
participant. The colored checkerboard in all the images is the FM.

eating occasions. In particular, we are interested in learning how many different

environments an individual consumes food in.

Dietary Recall, 24-hr recall, and Food Frequency Questionnaire (FFQ) [96] are

well-known dietary assessment methods used in most dietary studies. These meth-

ods require participants to manually enter details of their diet information through

a web interface, or an in-person or phone interview. These methods are known to

be time-consuming and prone to errors because participants may not recall all foods

and beverages they consumed or cannot accurately estimate the food portion [96].

To overcome these limitations, researchers have leveraged advances in mobile technol-

ogy to develop image-based dietary assessment methods to record daily food intake.

Some examples of image based dietary assessment tools are TADA™ [97] and Food-

Log [98].In these approaches, participants record their diet by capturing images of

foods and beverages consumed using mobile cameras. These images can then be an-

alyzed by trained analysts [99] or using image analysis methods [100–102] to extract

nutrient information. In this chapter, we leverage eating occasion images captured

using the TADA™ system to cluster eating scenes based on their visual appearance to
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Fig. 5.2.: Scatter plot of the number of images captured per participant versus the
number of eating scene clusters per participant.

help understand the relationship between a person’s eating environment and dietary

quality.

5.2 Dataset and Related Work

We used a dataset D that consists of 3137 images from 66 participants collected

in a community dwelling dietary study [103]. In this study, participants were asked

to take pictures of their foods and to place a colored checkerboard with known di-

mensions, called the Fiducial Marker (FM), in the scene. An example of two pairs

of images belonging to two different eating environments are shown in Fig. 5.1. The

FM serves two purposes: to aid in color correction, and more importantly, to provide

a reference scale for food portion estimation, so the nutrient content of the foods can

be computed. One of the challenges of this dataset is the large variance in the number

of images and the number of eating environments for different participant, as shown

in Fig. 5.2.
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Fig. 5.3.: Overview of feature extraction
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Our goal is to cluster food images of a participant based on eating environments.

Clustering is not a new concept. Several classical [104] and deep learning-based [105]

methods have been proposed. Classical clustering approaches are applied on relevant

features extracted from the data [106]. However, the problem of clustering food images

based on the eating environments captured has not been studied before, so the relevant

features are not defined. On the other hand, deep learning-based methods, given

sufficient data, are capable of simultaneously learning to extract relevant features

and cluster images [105]. A common assumption of such approaches is that the

number of clusters is known a priori [105]. However, in our case, we do not know

a priori the number of eating environments for each participant. In addition, the

number of images collected by each participant is not sufficient to apply deep learning-

based methods directly, as they usually require hundreds of images per cluster for

training a good model. As both classical and deep learning-based approaches have

their shortcomings for clustering eating environments from images, new techniques

need to be developed to solve this problem.

5.3 Method

In this section, we describe the details of the proposed method. First, we introduce

the notation used throughout the chapter. Pk denotes the kth participant in the

dataset. The ith image captured by participant Pk is denoted by xPk
i . Our goal is to

cluster food images based on eating environment. We do this by extracting features

at the local and global level from relevant pixels of xPk
i and then applying a clustering

method on said features.

5.3.1 Global Feature Extraction

The image xPk
i contains many salient objects such as the food, drinks, FM, and sil-

verware. However, pixels belonging to the salient objects do not contain any credible

information regarding the eating environment because a person can eat different food
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with different plates in the same eating environment. Pixels belonging to the FM are

also not relevant because the FM is common to all food images, irrespective of the

eating environment. Instead, we are interested in pixels belonging to the non-salient

regions. To extract these relevant pixels in xPk
i , we first extract its binary saliency

map denoted by sPk
i using a state-of-the-art saliency estimator R3NET [107]. The

salient pixels of xPk
i have a value of 1 in sPk

i and the rest have a value of 0. The

relevant pixels of xPk
i are captured by x̃Pk

i , and is defined as

x̃Pk
i = (1− sPk

i ) ∗ xPk
i (5.1)

Features are extracted from x̃Pk
i using a Convolutional Neural Network (CNN) VGG16

[108] pre-trained on the ImageNet dataset [13]. We use a pre-trained VGG16 for

feature extraction because these features are robust to artifacts such as noise, lighting

changes, and differing viewpoints.

The 2nd convolutional layer is chosen for feature extraction and the reasoning

behind this is explained in Section 5.4.1. Global Average Pooling (GAP) is applied

to the output of the 2nd layer to spatially summarize the information into a 64-

dimensional vector. This vector is denoted as gPk
i and we refer to it as the global

feature.

5.3.2 Local Feature Extraction

Since the FM is always placed in close proximity to the foods, we assume it is on

the same surface as the foods. Examples of such surfaces may include desk, dining

table, and kitchen counter, to name a few. These surfaces give us a lot of information

about the eating environment because it is very likely that a person uses the same

surface during an eating event in a particular eating environment. Therefore, we

extract features from this surface and they are denoted by lPk
i .

By identifying the FM in the image, we can extract information about the eating

surface. The FM is detected by finding the salient object with the highest number of
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interest points. An interest point is a pixel that ORB (Oriented FAST and Rotated

BRIEF) [109] finds useful for image registration. The FM has a lot of interest points

because of the colored checkerboard pattern and it is unlikely for other salient objects

such as foods to have as many distinct interest points. The salient objects of the image

can be found by performing connected component analysis on sPk
i and treating each

connected component as a salient object. Once we have located the FM, we extract

a region around it from x̃Pk
i . lPk

i is obtained from this region using the pre-trained

VGG16 in the same way as done in 5.3.1. Fig. 5.3 illustrates the the global and local

feature extraction process.

5.3.3 Feature Fusion and Clustering

We fuse the local and global features using their distance matrices. The distance

matrices GPk and LPk are defined as follows

LPk

(i,j) = ||lPk
i − l

Pk
j ||2

GPk

(i,j) = ||gPk
i − g

Pk
j ||2

(5.2)

The fused distance matrix DPk is defined as follows

DPk = α ∗ LPk + (1− α) ∗GPk (5.3)

Here α ∈ [0, 1] and controls the relative importance of the local and global features.

A higher value of α indicates local features are more important and vice versa. In

our case , α = 0.44. The reason behind this is explained in Section 5.4.1. Affinity

Propagation (AP) [110] is applied to DPk to obtain the final clusters.

5.4 Experiments

In this section we describe all the experiments conducted and compare our method

to four existing clustering methods, namely: DBSCAN [111], MeanShift [112], OP-
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Fig. 5.4.: ARI scores for different α and convolutional layer m on Dval
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TICS [113], and AP [110]. We use the Adjusted Rand Index (ARI) and Normalized

Mutual Information (NMI) to measure the accuracy of our clusters. ARI ranges from

−1.0 to 1.0 while NMI ranges from 0 to 1.0. Higher values indicate better clustering

for both ARI and NMI. Accuracy over a dataset is reported as the average accuracy

among all participants.

5.4.1 Hyperparameter Tuning

Our method has two hyperparameters: the weighting factor for feature fusion

α and the convolutional layer of VGG16 for feature extraction m. Our dataset D is

split into Dval and Dtest. Dval consists of images from 10 participants and Dtest contain

images from 56 participants. Our method is evaluated on Dval by varying α and m. α

ranges from 0 to 1 in steps of 0.01. To find the optimal m for our dataset, we extract

features from convolutional layers preceding a max-pooling layer. There are five such

layers in VGG16. ARI is used to select the optimal values. Fig. 5.4 shows the ARI

scores for different values of α and convolutional layer m, and the optimal value for

α is 0.44 and for m is 2.

From equation 5.3, we can infer that as the value of α increases, more weight

is given to local features and vice-versa. An optimal value of 0.44 for α suggests

that our method performs best when approximately equal weight is given to both

local and global features. This shows that using only one of these features is less

optimal. In Fig. 5.4, we can see that the performance of our method degrades once

the chosen feature extraction layer gets very deep. Later layers, like conv-13, extract

abstract features and completely lose information about edges, colors, and textures.

We suspect this loss of information is the reason for decrease in performance.

As discussed above, we chose VGG16 as the CNN architecture and varied α and

m over Dval to find the optimal solution. In principle, we could also optimize for the

right architecture by implementing our method on other CNN architectures such as

ResNet [114], Inception [115] etc. in place of VGG16 for feature extraction. Opti-
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mizing across the architecture space would significantly increase the complexity of

the experiments. We chose VGG16 over ResNet and Inception [115] because of the

simplicity of its structure for easier analysis. VGG16 has only 13 convolutional layers

and they are all stacked one after another in a linear fashion. In contrast, Resnet

can have anywhere between 34 to 152 convolutional layers and for Inception, con-

volutional layers are stacked in a non-linear fashion. Comparison between different

network architectures could be a future direction to explore when implementing for a

specific application with target requirements such as model complexity and compu-

tation resource.

5.4.2 Testing

We evaluated the performance of our method on Dtest after selecting the optimal

values for α and m using the validation set Dval. We choose four well-known clustering

methods for comparison, namely DBSCAN [111], MeanShift [112], OPTICS [113],

and AP [110] using the eating scene image as the input. ARI and NMI for the five

methods are reported in Table 5.1, where our method achieves the best performance.

It is worth noting that although we use AP [110] for clustering after feature fusion,

our method performs significantly better than AP [110] when meaningful features are

not known. This indicates that our feature extraction strategy is highly relevant and

very important to our problem.

Table 5.1.: ARI and NMI scores for methods tested on Dtest. The best results are
reported in bold.

Methods ARI NMI

Ours 0.39 0.68

DBSCAN [111] 0.24 0.47

MeanShift [112] 0.12 0.35

OPTICS [113] 0.08 0.39

AP [110] 0.2 0.49
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6. SALIENCY-AWARE CLASS-AGNOSTIC FOOD IMAGE

SEGMENTATION

6.1 Introduction

It is well-known that dietary habits have profound impacts on the quality of one’s

health and well-being [86, 87]. While a nutritionally sound diet is essential to good

health [116], it has been established through various studies that poor dietary habits

can lead to many diseases and health complications. For example, studies from the

World Health Organization (WHO) [116] have shown that poor diet is a key modifiable

risk factor for the development of various non-communicable diseases such as heart

disease, diabetes and cancers, which are the leading causes of death globally [116]. In

addition, studies have shown that poor dietary habits such as frequent consumption of

fast food [88], diets containing large portion size of energy-dense foods [117], absence

of home food [90] and skipping breakfast [89] all contribute to the increasing risk of

overweight and obesity. Because of the many popular diseases affecting humans are

related to dietary habits, there is a need to study the relationship between our dietary

habits and their effect on our health.

Understanding the complex relationship between dietary habits and human health

is extremely important as it can help us mount intervention programs to prevent these

diet related diseases [118]. To better understand the relationship between our dietary

habits and human health, nutrition practitioners and researchers often conduct di-

etary studies in which participants are asked to subjectively assess their dietary intake.

In these studies, participants are asked to report foods and drinks they consumed on

a daily basis over a period of time. Traditionally, self-reporting methods such as

24-hr recall, dietary records and food frequency questionnaire (FFQ) are popular for

conducting dietary assessment studies [119]. However, these methods have several
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drawbacks. For example, both the 24-hr recall and FFQ rely on the participants’

ability to recall foods they have consumed in the past. In addition, they are also

very time-consuming. For dietary records, participants are asked to record details

of the meals they consumed. Although this approach is less reliant on the partici-

pants’ memory, it requires motivated and trained participants to accurately report

their diet [119]. Another issue that affects the accuracy of these methods is that of

under-reporting due to incorrect estimation of food portion sizes. Under-reporting

has also been associated with factors such as obesity, gender, social desirability, re-

strained eating and hunger, education, literacy, perceived health status, age, and

race/ethnicity [97]. Therefore, there is an urgent need to develop new dietary assess-

ment methods that can overcome these limitations.

In the past decade, experts from the nutrition and engineering field have combined

forces to develop new dietary assessment methods by leveraging technologies such as

the Internet and mobile phones. Among the various new approaches, some of them

use images captured at the eating scene to extract dietary information. These are

called image-based dietary assessment methods. Examples of such methods include

TADA™ [97], FoodLog [98] , FoodCam [120], Snap-n-Eat [121], GoCARB [122, 123]

and DietCam [124], to name a few. In these methods, participants are asked to

capture images of foods and drinks consumed via a mobile phone. These images

are then analyzed to estimate the nutrient content. Estimating the nutrient content

of foods in an image is commonly performed by trained dietitians, which can be

time consuming, costly and laborious. More recently, automated methods have been

developed to extract nutrient information of the foods from images [125–127]. The

process of extracting nutrient information from images generally involves three sub-

tasks, food segmentation, food classification and portion size estimation [97]. Food

image segmentation is the task of grouping pixels in an image representing foods. Food

classification can then identify the food types. Portion size estimation [126] is the

task of estimating the volume/energy of the foods in the image. Each of these tasks is

essential for building an automated system to accurately extract nutrient information
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from food in images. In this chapter, we focus on the task of food segmentation. In

particular, we propose a food segmentation method that does not require information

of the food types.

Food segmentation plays a crucial role in estimating nutrient information as the

image segmentation masks are often used to estimate food portion sizes [124–126,

128, 129]. Food segmentation from a single image is a challenging problem as there

is a large inter- and intra-class variance among different food types. Because of this

variation, techniques developed for segmenting a particular class of foods will not be

effective on other food classes. Despite these drawbacks, several learning based food

segmentation methods [100,123,130,131] have been proposed in recent years. One of

the constraints of learning based methods is data dependency. They are only effective

on the food categories they trained on. For instance in [130], class activation maps

are used to segment food images. The Food-101 dataset [132] is used to train the

model and the method is tested on a subset of another dataset that have common

food categories with Food-101. This is a clear indication that their method [130] is

only effective on food classes that have been trained on. Similarly, the learning based

method proposed in [131] is trained and tested only on UEC-FOOD100 [133]. The

UEC-FOOD100 dataset has a total of 12,740 images with 100 different food categories,

out of which 1,174 have multiple foods in a single image. In their method, the dataset

is partitioned into training and testing subsets, each contains all the food categories.

The authors of [131] split this dataset into training and testing in the following way.

All the images containing a single food category were used for training and images

containing multiple food categories were used for testing. This way the training

set contained 11,566 images and the testing set contains 1,174 images. Splitting the

dataset in this fashion does not guarantee that the training and testing subsets contain

images belonging to different food categories. In fact this would mean they contain

common food categories. Furthermore, the authors in [131] did not conduct any cross

dataset evaluation. Thus the learning based method in [131] is also only effective on

food categories it has been trained on. In [123], a semi automatic method is proposed
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to segment foods. The authors of [123] assume that foods are always present in

a circular region. In addition they also assume information about the number of

different food categories is known. They conducted experiments on a dataset of 821

images. While they achieve promising results, their approach is not designed for the

real world scenario where their assumptions don’t hold. In [134] a food segmentation

technique is proposed that exploits saliency information. However, the success of

this approach relies on successfully detecting the food container. In [134] the food

container is assumed to be a circular plate. Experimental results were reported using

a dataset consisting of only 60 images. While the assumptions in [134] are valid in

some cases, its very likely they will not hold in often in the real world.

In addition, there are also constraints imposed by the available datasets. Pub-

licly available food image datasets such as UECFOOD-100 [133], Food-101 [132] and

UECFOOD-256 [135] are biased towards a particular cuisine and also do not provide

pixel level labelling. Pixel level labelling is crucial because it forms the necessary

ground truth for training and evaluating learning based food segmentation methods.

To overcome the limitations posed by learning based methods and the availability

of public datasets with ground truth information, we proposed to develop a food

segmentation method that is class-agnostic. In particular, our class-agnostic food

segmentation method uses information from two images, the before eating and after

eating image to segment the foods consumed during the meal.

Our data is collected from a community dwelling dietary study [136] using the

TADA™ platform. In this study, participants were asked to take two pictures of their

eating scene, one before they start eating which we call the before eating image and

one immediately after they finished eating which we call the after eating image. The

before eating and after eating image represent the same eating scene, however for the

purpose of this work, we only select image pairs where the after eating image does not

contain any food. Our goal is to segment the foods in the before eating image using

information from both before and after eating images. To illustrated this problem

in a more general scenario, lets consider an experimental setup in which a person is
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(a) Before eating image.

(b) After eating image.

Fig. 6.1.: A pair of eating scene images, taken before and after a meal is consumed.
The salient missing object in figure a is the food in the container.

given a pair of images shown in Fig.6.1 and is asked the following question, “Can you

spot the salient objects in Fig. 6.1a that are missing in Fig. 6.1b?”. We refer to these

as the salient missing objects. To find salient missing objects, the Human Vision

System (HVS) compares regions that are salient in both images. In this example, the

food, container and color checkerboard in Fig. 6.1a are the salient objects and in Fig.

6.1b, the color checkerboard, spoon and container are the salient objects. Comparing

the salient objects in both of these images, HVS can identify the food as the salient

missing object. In this chapter, our goal is to build a model to answer this question.

By looking for salient missing objects in the before eating image using the after eating

image as the reference we can then segment the foods without additional information

such as the food classes. As the above approach does not require information about

the food class, we are able to build a class-agnostic food segmentation method by

segmenting only the salient missing objects.
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The above question does not bear significance for just any pair of random im-

ages. It only becomes relevant when the image pairs are related. For example, in

Fig. 6.1, both images have many regions/objects with same semantic labels such as

color checkerboard, container and the black background. However, the relative po-

sitions of these regions/objects are different in both images due to camera pose and

different time of capturing the images. Because of similarity at the level of semantics

between both images, it is plausible to define the notion of salient missing objects.

Notice that we are not interested in pixel-level differences due to changes in illumi-

nation, poses and angles.

In this experimental scenario, the visual attention of HVS is guided via a task,

hence it falls under the category of top down saliency. Visual attention [137, 138]

is defined as the process that capacitates a biological or artificial vision system to

identify relevant regions in a scene [137]. Relevance of every region in a scene is

attributed through two different mechanisms, namely top down saliency and bottom

up saliency. In top down saliency, attention is directed by a task. An example of this

mechanism in action is how a human driver’s HVS identifies relevant regions on the

road for a safe journey. Other examples where top down saliency have been studied

are sandwich making [139] and interactive game playing [140]. In bottom up saliency,

attention is directed towards those regions that are the most conspicuous. Bottom up

saliency is also known as visual saliency. In the real world, visual attention of HVS is

guided by a combination of top down saliency and bottom up saliency. In the above

question of finding salient missing objects, visual attention is guided by a task and

hence it falls under the category of top down saliency. Top down saliency has not

been studied as extensively as visual saliency because of its complexity [137].

In this chapter, we propose an unsupervised method to find the salient missing

objects between a pair of images for the purpose of designing a class agnostic food

segmentation method. We use the after eating image as the background to find

the contrast of every pixel in the before eating image. We then fuse the contrast

map along with saliency maps to obtain the final segmentation mask of the salient
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missing objects in the before eating image. We also compare our method to other

class-agnostic methods. Since food is a salient object in the before eating image, by

detecting salient objects in the before eating image we are able to segment the food.

We compared our method to four state-of-the-art salient object detection methods,

namely R3NET [107], NLDF [141], UCF [142] and Amulet [143].

The chapter is organized as follows. In section 2, we formulate our problem

and discuss related work. We describe our proposed method in detail in Section 3.

In section 4, we discuss dataset and experiment design. In section 5, we discuss

experimental results and compare our method with other salient object detection

methods. Conclusions are provided in Section 6.

6.2 Problem Formulation and Related Work

In this section, we first introduce common notations used throughout the chapter.

We then discuss related works on modeling top down saliency and change detection.

6.2.1 Problem Formulation

Consider a pair of images {Ib, Ia} captured from an eating scene.

• Ib : We refer to it as the “before eating image.” This is the meal image captured

before consumption.

• Ia : We refer to it as the “after eating image.” This is the meal image captured

immediately after consumption.

Our goal is to obtain a binary mask M b, that labels the salient missing objects in Ib

as foreground (with a binary label of 1) and rest of Ib as background (with a binary

label of 0).
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6.2.2 Related Work

Our goal is to find salient missing objects in a pair of images. Since the visual

attention of the HVS is guided by a task, it falls under the category of top down

saliency. Top down saliency is much more complex than visual saliency and hence has

not been studied extensively. Some of the recent works modeling top down saliency

paradigms are [144,145]. In [145], given an image or video and an associated caption,

the authors proposed a model to selectively highlight different regions based on words

in the caption. Our work is related in the sense that we also try to highlight and

segment objects/regions based on a description, except that the description in our

case is a much more generic question of finding the salient missing objects in a pair

of images without specific details.

Another related problem is modeling change detection [146–149]. In change de-

tection, the objective is to detect all relevant changes between a pair of images that

are aligned or can be potentially aligned via image registration. Examples of such

changes may include object motion, missing objects, structural changes [147] and

changes in vegetation [146]. One of the key differences between change detection and

our proposed problem is that in change detection, the pair of images are aligned or

can be potentially aligned via image registration [150] which is not true in the case

of salient missing objects. In the case of finding salient missing objects, we cannot

guarantee that Ib and Ia can be registered, as often there is relative motion between

objects of interest as shown in Fig. 6.1 and also in Fig. 6.6.

The problem of finding salient missing objects can be thought of as a change de-

tection problem in a more complex environment than those that have been previously

considered. Hence, we need to develop new methods to solve this problem.

6.3 Method

In this section, we describe the details of our proposed method to segment salient

missing objects in Ib. Our method consists of three parts, segmentation and feature
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extraction, contrast map generation and saliency fusion. An overview of our proposed

method is described in Fig. 6.2.

Fig. 6.2.: Overview of proposed method.

6.3.1 Segmentation And Feature Extraction

We first segment the pair of images Ia and Ib using SLIC [8] to group pixels into

perceptually similar superpixels. Let A = {ai} denote the superpixels of the after

eating image Ia and B = {bj} for superpixels of the before eating image Ib. Let

Ae ⊂ A denote the set of superpixels that are located along the image boundaries of

Ia. Similarly Be ⊂ B denote the superpixels located along the image boundaries of

Ib.

We extract features from each superpixel. We use these features to compute the

contrast map. The contrast map Cb
a gives an estimate of the probability of pixels

belonging to objects/regions present in Ib but missing in Ia. This will be explained

in detail in section 6.3.2. To compute an accurate contrast map, pixels belonging

to similar regions in Ib and Ia should have similar feature representation and vice

versa. Going from Ib to Ia we can expect changes in scene lightning, changes in noise

levels and changes in segmentation boundaries because of relative object motion. To
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compute an accurate contrast map, its important that feature representation of pixels

are robust to these artifacts.For this reason, we extract features using a pretrained

Convolutional Neural Network (CNN) instead of using hand-crafted features. We

use the VGG19 [108] pretrained on the ImageNet dataset [13]. ImageNet is a large

dataset consisting of more than a million images belonging to 1000 different classes.

It captures the distribution of natural images very well. Hence, features from a model

pre-trained on Imagenet are able to better represent many objects, surface, textures

etc. [147,151–153]. In contrast, features extracted from a model pre-trained on a food

dataset are only able to represent food objects. As our goal is to extract features that

are able to effectively represent both foods and other objects/surfaces, we chose to

use a model pre-trained on ImageNet for generalizability.

We use the pretrained VGG19 for both Ib and Ia. The output of 16th convolutional

layer in VGG19 is extracted as the feature map. The reasoning behind this choice is

explained in section 6.4.3. According to Table 1 in [108], VGG19 has a total of 16

convolutional layers. The dimensionality of the output of the 16th convolutinal layer

of VGG19 is 14×14×512 where 14×14 is the spatial resolution. The input (Ib or Ia)

to VGG19 has a spatial resolution of 224 × 224. We spatially upscale the output of

the 16th convolution layers by a factor of 16. We denote these upscaled feature maps

of Ib and Ia as F b and F a, respectively. The dimensionality of F b and F a is then

224× 224× 512. Thus every pixel will be represented by a 512 dimensional vector in

the feature space. For each superpixel, we denote the extracted features as {f bj } for

the before eating image and {fai } for the after eating image. Using these extracted

feature maps, fai and f bj are computed as described in Eq. 6.1.

fai =
1

ma
i

∑
k∈rai

F a(k)

f bj =
1

mb
j

∑
k∈rbj

F b(k)
(6.1)
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where rai denotes the set of pixels belongs to superpixel ai and ma
i is its cardinality.

rbj and mb
j are similarly defined.

6.3.2 Contrast Map Generation

Contrast is a term often associated with salient object detection methods. Con-

trast of a region in an image refers to its overall dissimilarity with other regions in the

same image. It is generally assumed that regions with high contrast demand more

visual attention [154]. In the context of our problem, visual attention is guided by

trying to find objects in Ib that are missing in Ia. Therefore, our contrast map Cb
a

of Ib is an estimate of the probability of each pixel belonging to an object missing in

Ia. Cb
a is computed as shown in Eq. 6.2.

Cb
a =

Cb,local
a + Cb,neigh

a

max(Cb,local
a + Cb,neigh

a )
(6.2)

In Cb,local
a , contrast values of a superpixel bj is computed using information from bj

and Ia, while in Cb,neigh
a contrast value of bj is computed using information from bj, its

neighboring superpixels and Ia. max(Cb,local
a +Cb,neigh

a ), which is the maximum value

in the contrast map, is used to normalize Cb
a to [0, 1]. To compute the contrast map

Cb,local
a or Cb,neigh

a , contrast values are computed for each superpixel and then these

values are assigned to the associated individual pixels. However, if bj is a superpixel

along the image boundaries, that is bj ∈ Be, we assign bj a contrast value of zero. We

assume that the salient missing objects are unlikely to be present along the image

boundaries.

The contrast value of a superpixel bj /∈ Be is denoted by cb,localj , and is computed

as:

cb,localj = min
∀i such that ai∈A

||f bj − fai ||2 (6.3)
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If bj ∈ Be then cb,localj = 0. cb,localj is the minimum Euclidean distance between the

feature vector f bj and the closest feature vector of a superpixel in the after eating

image. A superpixel bj belonging to objects/regions that are common to both Ib and

Ia will have lower value of cb,localj , while bj belonging to objects/regions present in Ib

but missing in Ia will likely have higher value of cb,localj .

Before describing how we compute Cb,neigh
a , we need to introduce a few more

notations. For a given superpixel bj, let N (bj) denote the set of all neighboring

superpixels of bj. Similarly, for any superpixel ai, N (ai) is the set of neighboring

superpixels. Consider a complete bipartite graph over the two sets of superpixels

{ai,N (ai)} and {bj,N (bj)} denoted by

Gai,bj = ({ai,N (ai)} ∪ {bj,N (bj)}, Eai,bj) (6.4)

where Eai,bj is the set of edges in Gai,bj . An example is shown in Fig. 6.3.

In Gai,bj , consider an edge eai1 ,bj1 between the two superpixels ai1 ∈ {ai,N (ai)}

and bj1 ∈ {bj,N (bj)}, the edge weight is evaluated by the Euclidean norm w(·)

defined as:

w(eai1 ,bj1 ) = ||fai1 − fbj1 ||2 (6.5)

A matching over Gai,bj is a set of edges S ⊂ Eai,bj such that no two edges in S share

the same nodes. A maximum matching over Gai,bj , denoted by S
Eai,bj
k ⊂ Eai,bj , is a

matching of maximum cardinality. There can be many possible maximum matchings

over Gai,bj , hence we use subscript k in S
Eai,bj
k to denote one such possibility. The

cost of a given S
Eai,bj
k is denoted by D(S

Eai,bj
k ) and is defined as:

D(S
Eai,bj
k ) =

∑
∀e∈S

εai,bj
k

w(e)
(6.6)
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(a) Gai1 ,bj25

(b) S
Eai1 ,bj25
1 = {eai4 ,bj28 , eai10 ,bj30 , ea1,bj25}

(c) S
Eai1 ,bj25
2 = {eai10 ,bj30 , eai4 ,bj28 , ea5,bj25}

Fig. 6.3.: Consider 2 hypothetical nodes ai1 ∈ A with N (ai1) = {ai10 , ai4 , ai5} and
bj25 ∈ B with N (bj25) = {bj30 , bj28}. In Fig. 6.3a, we illustrate how Gai1 ,bj25

is
constructed. Note that because Gai1 ,bj25

is a complete bipartite graph there is an
edge from every node in {ai1 ,N (ai1)} to every node in {bj25 ,N (bj25)}. In Fig. 6.3b
and Fig. 6.3c, examples of plausible maximum matching are shown. The value of

D(S
Eai1 ,bj25
1 ) = w(ea1,bj25 ) + w(eai10 ,bj30 ) + w(eai4 ,bj28 ) and D(S

Eai1 ,bj25
2 ) can be com-

puted in a similar manner.
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Given a Gai,bj , we want to find the maximum matching with the minimum cost. We

refer to this minimum cost as D̂min(Gai,bj) and it is computed as:

D̂min(Gai,bj) = min
∀k such that ∃ S

Eai,bj
k

D(S
Eai,bj
k ) (6.7)

For two superpixels ai and bj, D̂min(Gai,bj) measures the similarity between the two

superpixels and the similarity between their neighborhoods. The lower the value of

D̂min(Gai,bj), the more similar the two superpixels are both in terms of their individual

characteristics and their neighboring superpixels. The contrast value of superpixel

bj /∈ Be in Cb,neigh
a is denoted by cb,neighj and is computed as:

cb,neighj = min
∀i such that ai∈A

D̂min(Gai,bj)

lai,bj
(6.8)

In Eq. 6.8, lai,bj = min(|{ai,N (ai)}|, |{bj,N (bj)}|) where |{.}| denotes the cardinality

of the set {.}. If bj ∈ Be then cb,neighj = 0. D̂min(Gai,bj) is likely to increase as lai,bj

increases because there are more edges in maximum matching. In order to compensate

this effect, we divide D̂min(Gai,bj) by lai,bj in Eq. 6.8.

6.3.3 Saliency Fusion

The contrast map Cb
a gives an estimate of the probability of pixels belonging to

objects/regions present in Ib but missing in Ia. However, we would like to segment

salient missing objects. As explained in Section 6.1, to find the salient missing objects,

the HVS compares objects/regions in Ib that have a high value of visual saliency.

Therefore, we are interested in identifying regions in the contrast map Cb
a which

correspond to high visual saliency. The visual saliency information of Ib needs to be

incorporated into Cb
a to obtain our final estimate M̂ b

a, where M̂ b
a is the probability of

each pixel in Ib belonging to the salient missing objects. We can then obtain the final
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binary label M b, by thresholding M̂ b
a with T ∈ [0, 1]. If Sb is the visual saliency map

of Ib, then M̂ b
a is computed as:

M̂ b
a =

α ∗ Sb + Cb
a

max(α ∗ Sb + Cb
a)

(6.9)

where max(α ∗Sb +Cb
a) is the normalization term. In Eq. 6.9, α is a weighting factor

between [0, 1] that varies the relative contributions of Sb and Cb
a towards M̂ b

a. The

value of α is empirically computed and will be explained in Section 6.4.3. To compute

Sb, we use the state-of-the-art salient object detection method R3NET [107]. We also

compared our method to other deep learning based salient object detection methods

such as Amulet [143], UCF [142] and NLDF [141].

6.4 Experimental Results

6.4.1 Dataset

The dataset D we use for evaluating our method contains 566 pairs of before eating

and after eating images. Along with image pairs, ground truth masks of the salient

missing objects in the before eating images (which in this case are foods) are also

provided. These images are a subset of images collected from a community dwelling

dietary study [136]. The images in D exhibit a wide variety of foods and eating

scenes. Participants in this dietary study are asked to capture a pair of before and

after eating scene images, denoted as Ib and Ia. A typical participant takes about

3 to 5 pairs of images per day depending on his/her eating habits. These image

pairs are then sent to a cloud based server to analyze nutrient contents. D is split

randomly into Dval (49 image pairs) and Dtest (517 image pairs). Dval is used for

choosing the optimal hypyerparameters namely α and the convolutional layer. More

details are explained in section 6.4.3. Dtest is used to evaluate the accuracy of our

method compared to other methods. Examples of image pairs from Dtest along with

the predicted masks obtained by our method and the salient object detection methods
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are shown in Fig. 6.6. Dtest and Dval have very different food classes. In addition, the

background of the images in Dval is very different from those in Dtest. This makes D

very apt for our experiments, because Dval does not give any information about the

food classes present in Dtest. Thus if a model tuned on Dval performs well on Dtest, it

signifies that the model is able to segment foods without requiring information about

the food class.

6.4.2 Evaluation Metrics

We use two standard metrics for evaluating the performance of the proposed

method. These metrics are commonly used to assess the quality of salient object

detection methods [155].

• Precision and Recall Consider t = {Ib, Ia, Gb} in D. In t, Gb represents the

ground truth mask of the salient missing objects in Ib. Pixels belonging to the

salient missing objects in Gb have a value of 1 and the rest have a value of 0.

Our proposed method outputs M̂ b
a which has a range between [0, 1]. We can

then generate a segmentation mask M b using a threshold T ∈ [0, 1]. Given M b

and Gb, precision (P) and recall (R) are computed over D as:

P :

∑
∀t∈D |M b ∩Gb|∑
∀t∈D |M b|

, R :

∑
∀t∈D |M b ∩Gb|∑
∀t∈D |Gb|

(6.10)

For a binary mask, | · | denotes the number of non-zero entries in it. By vary-

ing T between 0 and 1, we have different pairs of precision and recall values.

When precision and recall values are plotted against each other, we obtain the

precision recall (PR) curve. The information provided by precision and recall

can be condensed into their weighted harmonic mean denoted by Fβ, where Fβ

is computed as:

Fβ =
(1 + β2) ∗ Precision ∗Recall
β2 ∗ Precision+Recall

(6.11)
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The value of lies between [0, 1]. A higher values of Fβ indicates better perfor-

mance. The value of β2 is chosen to be 0.3 similar to other works [155]. β is a

control parameter that emphasizes the importance of precision over recall. The

value Fβ varies as we move along the PR curve. The entire information of PR

curve can be summarized by the maximal Fβ denoted by Fmax
β , as discussed

in [155,156].

• Receiver Operator Characteristics (ROC) Similar to the PR curve, ROC

curve is a plot of the true positive rate (TPR) against the false positive rate

(FPR). TPR and FPR are defined as:

TPR:

∑
∀t∈D |M b ∩Gb|∑
∀t∈D |Gb|

, FPR:

∑
∀t∈D |M b ∩ (1−Gb)|∑
∀t∈D |(1−Gb)|

(6.12)

Similar to Fmax
β , the entire information provided by ROC curve can be con-

densed into one metric called AUC, which is the area under the ROC curve.

Higher values of AUC indicate better performance. A perfect method will have

an AUC of 1 and a method that randomly guesses values in M b will have an

AUC of 0.5.

6.4.3 Experiments

Hyperparameter selection

The method described in Section 3 requires 2 hyperparameters, namely α in Eq.

6.9 and the convolutional layer of VGG19 for feature extraction. To justify the use

of a pre-trained VGG19 for feature extraction, we have also conducted experiments

by extracting features from ResNet34 [114] and Inception-v3 [115], pre-trained on

ImageNet. These experiments are conducted on Dval to find the best Fβ which gives

us a set of optimal hyperparameters.
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(c) Inception-v3 Fmax
β vs α

Fig. 6.4.: Fmax
β of M̂ b

a on Dval are plotted as α varies. (a) For VGG19, Fmax
β is

reported using features from all convolutional layers that precede a max polling layer.
(b) For ResNet34, features were extracted from the output of each stage. (c) For
Inception-V3, features were extracted from each layer whenever the output spatial
dimensions do not match the input spatial dimensions.

To choose the best convolutional layer, we evaluate M̂ b
a using features from every

convolutional layer of VGG19 that precedes a max pooling layer. There are 5 such

convolutional layers in VGG19. The architecture of ResNet34 can be divided into 5

stages [114]. To find the optimal layer in ResNet34, we extracted features from the
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Fig. 6.5.: ROC and PR curves of R3NET [107] (also Sb), NLDF [141], Amulet [143],
UCF [142], Cb

a and M̂ b
a are shown in the above plots. Fig 6.5b is a zoomed in version

of ROC curve in Fig 6.5a
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output of each stage. The architecture of Inception-v3 is very different from those of

ResNet34 and VGG19. To find the optimal layer in Inception-v3, we extract features

whenever there is a change in spatial dimension as the inputs propagate through the

network. There are 7 such changes occur in Inception-v3 before the average pooling

operation. Please refer to architecture of Inception-v3 provided in PyTorch [157] for

more details. In addition to extracting features from various convolutional layers,

we also vary α from 0 to 1 in steps of 0.1. We plot Fmax
β as α varies for every

convolutional layer. The result is shown in Fig. 6.4. From Fig. 6.4, its quite evident

that features from the 16th convolutional layer gives the best performance compared

to features from other layers. In addition it’s also evident that features from VGG19

achieve better performance than features from ResNet34. For features from VGG19,

the value of Fmax
β attains its maximum value of 0.754 for α = 0.6.

As we go deeper into the convolutional layers of VGG19, the features extracted

become increasingly abstract, but suffer from decrease in resolution. Abstract features

are less prone to changes in illumination, noise and pose which suits our task well. We

noticed in Figure 6.4, as we go deeper into the convolutional layers, we first observe a

degradation in the quality of features extracted (conv-layer 2 to conv-layer 8). This

trend is reversed from conv-layer 8 to conv-layer 16 with a significant improvement

of Fmax
β . We suspect this is because at first the negative effect of decreased resolution

outweighs the benefit of abstract features. However, this trend quickly reverses from

conv-layer 8 and beyond.

Testing

After obtaining the optimal hyperparameters as described in section 6.4.3, we

evaluated our method on Dtest. M̂ b
a is computed for every image pair in Dtest and

the ROC and PR curves are computed on Dtest. Since our goal is to develop a class-

agnostic food segmentation method, we compared the proposed method to 4 state-

of-the-art salient object detection techniques, namely R3NET [107], NLDF [141],
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Amulet [143] and UCF [142]. Salient object detection methods are class-agnostic and

are applicable in this scenario as food is always a salient object in Ib. Since these are

deep learning based methods, we use their respective pre-trained models to compute

the saliency maps of Ib. The ROC and PR curves of various methods are shown in

Fig. 6.5. The Fmax
β and AUC values are reported in Table 6.1.

Table 6.1.: AUC and Fmax
β values of various maps and methods.

Maps AUC Fmax
β

Cb
a 0.937 0.645

R3NET [107] (Sb) 0.871 0.527

M̂b
a (ours) 0.954 0.741

Amulet [143] 0.919 0.499

NLDF [141] 0.909 0.493

UCF [142] 0.934 0.536

6.5 Discussion

The goal of our method is to segment the salient missing objects in Ib using

information from a pair of images Ia and Ib. In the contrast map generation step as

described in Section 6.3.2, we provide an estimate of the probability of pixels belonging

to objects/regions in Ib but missing in Ia. In the saliency fusion step as described in

Section 6.3.3, saliency information of pixels in Ib is fused into the contrast map Cb
a

so as to emphasize that we are looking for salient missing objects. In order to show

that the various steps of our proposed method achieve their individual objectives, we

plotted the PR and ROC curves of the contrast map Cb
a, the visual saliency map Sb

from R3NET [107] and the estimated salient missing objects probability map M̂ b
a in

Fig. 6.5c and Fig. 6.5a. In addition, we also plot PR and ROC curves for the 3 other

salient object detection methods. From these plots, we can see that combining Sb

and Cb
a as described in Section 6.3.3 improves the overall performance. This is also
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Image Pairs
Amulet
[143]

UCF [142] NLDF [141] Ours M̂ b
a

Ground
Truth Gb

Fig. 6.6.: Sample image pairs from Dtest along with various maps are shown. For
every row, the first group of two images are the original before and after eating
images, respectively. The second group of images are the saliency maps generated by
Amulet [143], UCF [142], NLDF [141], R3NET [107] , M b

a (our method) followed by
ground truth mask Gb. The ground truth images are binary maps with pixels of value
1 representing foods and pixels of value 0 representing background. All the others
are probability maps with pixels having values between 0 and 1.

illustrated in Table 6.1, where both AUC and Fmax
β of M̂ b

a are higher than Cb
a. This

is because the contrast map Cb
a by itself models all the missing objects/regions while
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the probability map M̂ b
a also takes into account the visual saliency map Sb, which

can more accurately model the salient missing objects. We can also observe from the

PR and ROC curves in Fig. 6.5 and values in Table6.1 that our method achieved

better performance than the state-of-the-art salient object detection methods such

as R3NET [107], NLDF [141], Amulet [143] and UCF [142]. We also visually verify

the performance of our method as illustrated in Fig. 6.6. The salient object detection

methods Amulet [143], UCF [142] and NLDF [141] failed to detect only foods in

these images, while R3NET [107] succeeded in detecting the foods but also placed

equal importance to other salient objects such as the color checkerboard. Our method

gave higher probability to the foods which are the salient missing objects compared to

other salient objects in the scene. It must also be noted that our method did not have

access to information about food classes in Dtest. This is because Dval and Dtest have

very few food classes in common. By tuning the parameters on Dval, our method will

not have access to information about the food classes in Dtest. Hence the performance

of our method on Dtest is indicative of its effectiveness of segmenting foods in a class-

agnostic manner. These unique characteristics of D are also explained in section 4.1.

Hence, by modeling the foods as salient missing objects, we are able to build a better

class-agnostic food segmentation method compared to existing methods.
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7. SUMMARY AND FUTURE WORK

7.1 Overview

In Chapter 2 we proposed a simple yet effective shadow detection method requir-

ing few parameters. Each image was first segmented and segment pairs were identified

as shadow non-shadow pairs based on their reflectance, illumination and texture char-

acteristics. Experimental results showed that our method was effective for detecting

shadows but had a lower accuracy in identifying non-shadows. The connections be-

tween the detected shadow and non-shadow pairs were used to successfully remove

shadows in test images.

In Chapter 3 we proposed a shadow removal detector for forensic image analysis.

Given an input image, the proposed CNN outputs a mask showing: (i) whether

the image was manipulated by means of a shadow removal technique; (ii) the pixel

locations where a shadow was possibly present before removal. This detector can be

used as additional tool in an analyst’s asset in order to counter anti-forensic attacks

tailored to shadow-based forensics detectors. The proposed solution has been tested

against a shadow removal method that has good performance despite been very easy

to use by non-experts. As a byproduct of our investigation, we noticed that many

digital integrity detectors that appear to be extremely accurate in many situations,

did not achieve the same performance in our analysis. It is possible that manipulation

traces left by more unconventional image processing methods (as shadow removal)

are different in nature by more classical and well-studied image editing operations.

In the future we will study other state-of-the-art shadow removal methods.

In Chapter 4 we proposed a solution for satellite imagery forgery detection and

localization. The rationale behind the proposed method is that it is possible to train

an autoencoder to obtain a compact representation of image patches coming from
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pristine satellite pictures. This autoencoder can than be used as a feature extractor

for image patches. During testing, a one-class SVM is used to detect whether feature

vectors come from pristine images or not, thus representing forgeries. The solution

proposed in Chapter 4 makes use of generative adversarial networks to train the

autoencoder for the forgery detection task. Moreover, it is worth noting that the

whole system is trained only on pristine data. This means that no prior knowledge

on the forgeries is assumed to be available. Tests on copy-paste attacked images with

different forgery size show promising accuracy in both detection and localization.

Future work will be devoted to study system robustness to different kinds of forgeries

as well.

In Chapter 5, we proposed a method to cluster food images based on their eating

environment. Our method extracts features from a pre-trained CNN at multiple lev-

els. These features are fused using their distance matrices and a clustering algorithm

is applied after feature fusion. Our method is evaluated on a dataset containing 3137

eating scene images collected from a dietary study with a total of 585 clusters. We

compared our method to state-of-the-art clustering methods and showed improved

performance.

In Chapter 6, we propose a class-agnostic food segmentation method by segment-

ing the salient missing objects in a before eating image Ib using information from

a pair of before and after eating images, Ib and Ia. We treat this problem as a

paradigm of top down saliency detection where visual attention of HVS is guided by

a task. Our proposed method uses Ia as background to obtain a contrast map that

is an estimate of the probability of pixels of Ib belonging to objects/regions missing

in Ia. The contrast map is then fused with the saliency information of Ib to obtain

a probability map M̂ b
a for salient missing objects. Our experimental results validated

that our approach achieves better performance both quantitatively and visually when

compared to state-of-the-art salient object detection methods such as R3NET [107],

NLDF [141], Amulet [143] and UCF [142].
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7.2 Complete List of Publications

Following is an exhaustive list of the publications in which I have been personally

involved during my Ph.D. studies at Purdue University :

1. S. K. Yarlagadda, D.M Montserrat, D.Guera, C.J. Boushey, D. Kerr, F. Zhu

“Saliency aware class agnostic food image segmentation”, Submitted to ACM

Transactions on Computing for Healthcare,under review (minor revision).

2. S. K. Yarlagadda, S. Baireddy, D. Güera, C. J. Boushey, Kerr DA, F. Zhu,

“Learning eating environments through scene clustering”, Proceedings of IEEE

International Conference on Acoustics, Speech and Signal Processing, May,

2020.

3. S. K. Yarlagadda and F. Zhu, “A Reflectance based method for shadow de-

tection and removal”, IEEE Southwest Symposium on Image Analysis and In-

terpretation, pp. 9-12. Las Vegas, NV, 2018.

4. S. K. Yarlagadda, D. Güera, D. Mas, P. Bestagini, F. Zhu, S. Tubaro, E. J.

Delp, “Shadow removal detection and localization for forensic analysis”, Pro-

ceedings of IEEE International Conference on Acoustics, Speech, and Signal

Processing, 2019.

5. S. K. Yarlagadda, D. Güera, P. Bestagini, F. Zhu, S. Tubaro, E. J. Delp,

“Satellite image forgery detection and localization using GAN and one-class

classifier”, Proceedings of the IS&T Electronic Imaging, vol. 2018, no. 7, pp.

214-1-214-9, Burlingame, CA, January 2018.

6. D. Güera, S. K. Yarlagadda, P. Bestagini, F. Zhu, S. Tubaro, E. J. Delp, “Re-

liability map estimation for CNN-based camera model attribution”, Proceedings

of IEEE Winter Conference on Applications of Computer Vision, pp. 964-973,

Lake Tahoe, NV, February 2018.
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7. Y. Wang, J. Ribera, C. Liu, S. K. Yarlagadda and F. Zhu, “Pill recognition

using minimal labeled data”, Proceedings of IEEE International Conference on

Multimedia Big Data, pp. 346-353, Laguna Hills, CA, 2017.

8. S. Fang, S. K. Yarlagadda, Y. Wang, F. Zhu, C. Boushey, D. Kerr and E. Delp,

“Image based dietary behavior and analysis using deep learning”, Mini sympo-

sium at the International Conference of the IEEE Engineering in Medicine and

Biology Society, July 2018, Honolulu, HI.

9. J Horvath, D. Güera, S. K. Yarlagadda, P. Bestagini, F. Zhu, S. Tubaro ,

E. J. Delp, “Anomaly-based manipulation detection in satellite images”, Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops, July 2019.

10. D. Mas Montserrat, H. Hao, S. K. Yarlagadda, S. Baireddy, R. Shao , J. Hor-

vath, E. Bartusiak, J. Yang ,D. Güera, F. Zhu , E. J. Delp, “Deepfakes detection

with automatic face weighting”, Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition Workshops, July 2020.

11. D. Mas Montserrat, J. Horváth, S. K. Yarlagadda, F. Zhu, and E. J. Delp.

“Generative autoregressive ensembles for satellite imagery manipulation detec-
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Security, 2020.
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