
SOCIAL REINFORCEMENT LEARNING

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Mahak Goindani

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Jennifer Neville, Chair

Department of Computer Science

Dr. Clifton Bingham

Department of Computer Science

Dr. Dan Goldwasser

Department of Computer Science

Dr. Petros Drineas

Department of Computer Science

Approved by:

Dr. Kihong Park

Head of the School Graduate Program

iii

To, who have always stayed

through my thick and thin:

The Glorified Almighty,

My Adored Parents,

My Revered GrandParents,

My Beloved Brother,

My Dearest Uncles

iv

ACKNOWLEDGMENTS

I wholeheartedly thank my advisor Dr. Jennifer Neville, who has been a great

mentor and has played a significant role in the successful completion of this disser-

tation. Jen is one of the most empathetic people I have met in my life. I admire

her for her compassion and humility, and I am inspired by her professionalism, hard-

work, calm and positive attitude even during tough times. I am grateful to her for

providing timely feedback on my progress and guiding me through every step in re-

search, starting from literature survey to problem formulation to designing solutions

and experiments for evaluation. I thank her for being patient through these, and pro-

viding me the freedom to explore different research topics, problems and solutions.

Her technical expertise and abundant knowledge on a variety of areas have helped

me improvise my solutions, and thanks to her wealthy experience, sharp insights and

unique perspective that played a key role in the successful completion of this disser-

tation. I understood the true meaning of research after I started working with her.

I also thank her for teaching me the art of writing good papers and presentation of

ideas with clarity. I learned from her to constructively deal with criticism and use it

to improve solutions and presentations in the future. I was fortunate to work both

as a Teaching Assistant and a Research Assistant under Jen. The learnings that I

received from Jen as a TA have helped me improvise my communication and presen-

tation skills, in my own research and professional career. I also admire her for taking

interest in students’ concerns and going above and beyond to help them resolve those,

be it related to research, or internships or jobs, or otherwise. I also appreciate her ef-

forts to involve some humor during our meetings, that helps to reduce stress, and easy

conveyance of ideas. I also thank her for providing me valuable tools and resources

to accomplish my research and teaching activities. I will always be obliged to Jen

for her wonderful guidance and incessant support and encouragement, even amidst

v

a global Covid-19 Pandemic and on her sabbatical, that made my Ph.D. journey a

great learning experience. I am grateful to her for mentoring me on both professional

and personal fronts that has helped me grow as a better individual. I will always

cherish the meetings and interactions with Jen.

I am obliged to my committee members Dr. Chris Clifton, Dr. Petros Drineas,

and Dr. Dan Goldwasser for their valuable feedback and thoughtful comments on my

dissertation. I benefited enormously from the insightful discussions with them.

I have been greatly fortunate to have an immensely loving, caring and support-

ive family members, who have always made sure that I am happy. I will be forever

indebted to them for all the things they have done for me, and have raised me as a

better individual. I am grateful to my parents Dr. Suresh Goindani and Dr. Renu

Goindani, and my grandmother Lajwanti Dembla, for bestowing their infinite bless-

ings and unconditional love upon me, and for their endless sacrifices to ensure that I

achieve great success in life. It was my parents’ motivation that helped me acknowl-

edge the importance of research and education in life. They have always strived hard

to make sure that I receive the best education and resources in my life. I will always

be thankful for their incessant efforts and countless nights they have spent to guide

and encourage me to excel and reach the zenith. I am thankful to their unconditional

moral support, even from great distance and different time zone in India. They are

my back bone, and it is their guidance, love, support and understanding, that has

helped me survive through all ups and downs in my life and research. I thank them

for being available always and listening to my anxiety and frustrations, and sharing

their experiences and advice to boost self-confidence in me. This has helped me avoid

any distractions, and focus solely on the objectives with full concentration and dedi-

cation. I thank them for always guiding me to stay calm, composed and positive in all

circumstances in life, which has helped me focus on improving myself and provided

strength to face criticism. They always advised to not think deeply about failure, but

rather learn from it and move faster and stronger towards my goals. They have always

ensured to ask me about my progress at school and my work, which helped me move

vi

forward constantly without getting deviated from my path. I am grateful to their

constant efforts for always being available and making me feel better — away from

home. They have always motivated me to think big and put in great efforts to achieve

heights in my career. They are my role models and I admire them for their hard work,

dedication, and sincerity. They have inculcated self-discipline in me, which is a key

factor for successfully completing my dissertation. I faithfully thank Mr. Narendra

Dubey for his encouragement and teachings to always be positive and strive towards

my goals. His precious blessings and constant moral support have helped me come

this far. I express my sincere gratitude towards my grandmother, who has taken a

great care of me and bestowed her selfless love, due to which I could achieve success.

I also thank my brother Akshay for all his help, prayers, and the great discussions

we have. His lively, humorous, and joyful talks always helped to alleviate the stress

during my Ph.D., and are a reason for my happiness. I am greatly thankful to my

uncles Mr. Naresh Dembla, and Mr. Navin Dembla, for their unceasing wonderful

guidance, advice and support to overcome different hurdles in my journey. They have

always taught me the importance of education. They have shared valuable resource

to enhance the quality of my work, and have always motivated me to study further.

I thank Uncle Naresh for his constant help and motivation to improve my skills and

knowledge while in India. He constantly reminded me of my objectives and guided

me through to complete my dissertation faster. Uncle Navin has always provided me

a family-like home in the US, and I thank him for his constant efforts to make sure

that I stay happily and comfortably away from home. I thank them for motivating

me to go beyond my capacity to achieve greater. I will always be obliged to my friend

Louise Jewell, who has helped me throughout my stay in West Lafayette. I thank her

for her great companionship and welcoming nature for international students, along

with the numerous rides, good food, and other resources that she gave me, to make

my stay easier in this place, away from my family. I am falling short of words to

express my gratitude and praise for my family members for all their selfless sacrifices,

efforts, love, support and encouragement, without which this journey would have been

vii

greatly challenging, especially at a physical distance from family members. I couldn’t

have asked for anything more in life.

I express my heartfelt gratitude for my colleagues in the Network Learning and

Discovery (NLD) Lab under Jen, for their constructive comments and helpful dis-

cussions on my research. Hogun has always been encouraging and supportive, and I

thank him for listening to my concerns and sharing advice with me, that helped me

bear the stress during challenging times. I am very much grateful to Gui and Jean

for taking out their worthy time to discuss my ideas and provide constructive feed-

back to improvise solutions. Their keen insights have helped me make my approach

more methodical. I am also thankful to Ellen, Gui, Jean, Mengyue, and Giselle for

their valuable suggestions to improve my presentations, and for helping me realize

the importance of great presentations. I am grateful to Jason and Jiasen for sharing

great advice and tips to improve my dissertation. I also thank Jean and Mengyue

for their friendly conversations and generous rides. Thanks to the kind help from

my amiable labmates that this journey became joyful and easier. I also thank my

other peers at Purdue for helping me through difficult times. Ahmed M., and Ahmed

E. have always motivating me to achieve greater by sharing their experiences, that

helped me become more confident, especially in trying times. I am also obliged to

the Computer Science Department at Purdue, and the staff members, for providing

me funding, resources and a welcoming environment to pursue research in the United

States. I also thank all professors at my undergraduate school, who gave me their

valuable recommendations, which also played a role in my successful admission to the

doctoral program.

viii

TABLE OF CONTENTS

Page

LIST OF TABLES . xi

LIST OF FIGURES . xii

ABSTRACT . xiv

1 INTRODUCTION . 1
1.1 Application . 3
1.2 Research Questions . 4

1.2.1 Main Hypothesis . 5
1.2.2 Proposed Research . 6

2 BACKGROUND . 8
2.1 Markov Decision Process . 8
2.2 Policy Learning and Optimization . 9
2.3 Reward Shaping . 10
2.4 Multivariate Hawkes Process . 11
2.5 Political Bias . 12

3 SOCIAL REINFORCEMENT LEARNING 13
3.1 Motivation . 13
3.2 Problem Definition . 15
3.3 Applications . 18

3.3.1 Fake News Mitigation . 18
3.3.2 Viral Marketing . 19
3.3.3 Recommendation Services with community interactions 20
3.3.4 Online Discussion Forums/Question-Answer Services 21
3.3.5 Healthcare Applications . 21

3.4 Challenges . 22
3.4.1 High Dimensionality . 22
3.4.2 Sparsity . 23
3.4.3 Partial Observability . 24
3.4.4 Evaluation . 26

4 RELATED WORK . 28
4.1 Relational Reinforcement Learning . 28
4.2 Multi-Agent Reinforcement Learning 28
4.3 Process Interventions . 34

ix

Page

5 CENTRALIZED SOCIAL REINFORCEMENT LEARNING 36
5.1 Introduction . 36
5.2 Related Work . 38
5.3 Problem Definition . 39
5.4 News Diffusion Processes . 40

5.4.1 Diffusion based on Network Structure 41
5.4.2 Diffusion based on History and Influence 41
5.4.3 Diffusion based on Political Bias 42
5.4.4 Evaluation of Proposed Processes 44

5.5 Incentivization Model . 46
5.5.1 State Features . 47
5.5.2 Reward . 49
5.5.3 Policy Learning and Optimization 50
5.5.4 Policy Evaluation . 55

5.6 Experiments . 56
5.6.1 Baselines . 56
5.6.2 Results . 57
5.6.3 Experiments on Semi-Synthetic Data 59

6 EFFICIENT CENTRALIZED SOCIAL REINFORCEMENT LEARNING . 62
6.1 Introduction . 62
6.2 Related Work . 64
6.3 Problem Definition . 66
6.4 Cluster-Based Social Reinforcement Learning Approach 67

6.4.1 Overview . 67
6.4.2 Activity Processes . 68
6.4.3 Dynamic Cluster-based Policy 69
6.4.4 Policy Evaluation . 80

6.5 Experiments . 80
6.5.1 Baselines . 82
6.5.2 Results . 84

7 TOWARDS DECENTRALIZED SOCIAL REINFORCEMENT LEARN-
ING VIA EGO-NETWORK EXTRAPOLATION 93
7.1 Introduction . 93
7.2 Related Work . 97
7.3 Problem Definition . 99
7.4 Approach . 100

7.4.1 Overview . 100
7.4.2 Activity Processes . 103
7.4.3 Formulation Details . 104

7.5 DENPL Approach . 106
7.5.1 Learning dependency between Followees-Followers states . . . 111

x

Page
7.5.2 Attention between users based on State 112
7.5.3 Learning dependency between Followees-Followers retweets and

likes (actions) . 112
7.5.4 Extrapolating Followers’ states 114
7.5.5 Policy Evaluation . 118

7.6 Experiments . 119
7.6.1 Baselines . 119
7.6.2 Results . 121

8 CONTRIBUTIONS . 127
8.1 Summary of Contributions . 127
8.2 Future Directions . 129

REFERENCES . 132

xi

LIST OF TABLES

Table Page

4.1 Comparison of Social RL approaches (highlighted) with existing MARL
approaches. ‘−′ represents that a given attribute is not defined for the
problem setting considered in the corresponding approach. The values in
columns Maximum Dimensionality and Effective Dimensionality refer to
a rough upper bound (i.e., ∼). Note: K � N 29

5.1 Sum of Retweets at τ + g for Users Selected at τ 59

6.1 Number of Clusters (C) for Clustering Based Methods 83

6.2 Relative Performance (Mean ± Std. Error) 84

6.3 Sum of Retweets at τ + g for Users Selected at τ 86

7.1 Sum of Retweets at τ + g for Users with Interventions at τ 125

xii

LIST OF FIGURES

Figure Page

1.1 Traditional MARL vs Social RL . 2

3.1 Social network with agent interactions. Colored nodes represent active
users (darker shade for users who are tweeting, lighter shade for people
exposed to tweets). State is given by the number of tweets by each user (in
the order [A,B,C,D,E]), and reward is calculated as the number of users
exposed. Users’ collective actions of tweeting news lead to a transition
from state s to s′. 16

5.1 Difference (expected and observed number of events) 46

5.2 Difference in expected and observed number of likes 50

5.3 Policy Learning and Evaluation Framework 53

5.4 Neural Network Architecture . 53

5.5 Relative Performance on Twitter Datasets 58

5.6 Relative Performance vs Ratio of Decay 58

5.7 Relative Performance (Different Network Properties) 61

6.1 Overview of Cluster-Based Policy Learning and Evaluation 67

6.2 NN for approximating Value Function . 76

6.3 NN for estimating cluster-level actions . 77

6.4 Distribution of Base Intensities for Twitter 2016 81

6.5 Distribution of Base Intensities for Twitter 2015 81

6.6 Number of Epochs until Convergence . 85

6.7 Relative Performance vs Network Size . 87

6.8 Relative Importance of Tweets and Retweets 88

6.9 Ratio of decay for tweeting true and fake news 88

6.10 Ratio of decay for retweeting true and fake news 89

6.11 Relative Performance vs Number of Clusters 89

xiii

Figure Page

6.12 Cluster Alignment Scores for DCPL . 90

6.13 Number of Unique Clusters across Users 90

6.14 Number of Changed Clusters per User across Stages 91

6.15 Contingency Matrix (C-PF vs other baselines) 92

7.1 Partially Observable Ego-network of a user i. Teal color corresponds to
Followees, and White color corresponds to Followers of a user. User i is a
Follower to her Followees A,B,C,D whose activities she can observe, and
a Followee of her Followers X, Y, Z whose activities she cannot observe. . . 96

7.2 Overview of policy learning for a user . 101

7.3 Learn generalized representation of Followees’ states 111

7.4 Learn generalized representation of Followees’ actions 113

7.5 Learn to estimate user’s actions for Followees 113

7.6 Learn to estimate user’s state from Followees’ states 114

7.7 Obtain generalized representation of user’s state and Followees’ states . . 115

7.8 Obtain generalized representation of user’s actions 115

7.9 Estimate Followers’ actions for user . 116

7.10 Estimate Followers’ states . 117

7.11 Performance vs N (Collective Reward) 121

7.12 Performance vs N (Cumulative Reward) 122

7.13 Convergence . 124

xiv

ABSTRACT

Goindani, Mahak PhD, Purdue University, December 2020. Social Reinforcement
Learning. Major Professor: Jennifer Neville.

There are various real-world applications that involve large number of interacting

agents, for e.g., viral marketing, personalized teaching, healthcare, recommendation

systems, online communication platforms. However, much of the existing work in

Multi-Agent Reinforcement Learning (MARL) focuses on small number of agents.

The standard approaches to train a complex model for each user in a decentralized

fashion are impractical for thousands of agents. Centralized learning is also infeasible

due to the curse of dimensionality and exponential increase in joint representations.

There is an opportunity to utilize the interactions and correlations between agents,

to develop RL approaches that can scale for large number of agents. However, user

interactions are typically sparse. In this dissertation, we define Social Reinforcement

Learning as a sub-class of MARL for domains with large number of agents with

relatively few (sparse) relations and interactions between them.

We consider the important task of fake news mitigation as an example to demon-

strate the real-world applicability of our proposed Social RL approaches. First, we

propose a centralized Social RL approach to estimate incentives (interventions) re-

quired to promote the spread of true news in a social network—in order to mitigate

the impact of fake news. We model news diffusion as a Multivariate Hawkes Process

(MHP) and make interventions that are learnt via policy optimization in a Markov

Decision Process (MDP). The key insight is to estimate the response a user will get

from the social network upon sharing a post, as it indicates her impact on news dif-

fusion, and will thus help in efficient allocation of incentive. Second, we develop an

efficient centralized Social RL approach to address the challenges of computational

xv

complexity (associated with large number of agents), and sparse interaction data.

Our key idea is to reduce the model size by dynamically clustering users based on

their payoff and contribution to the goal. Lastly, the above proposed centralized ap-

proaches can be applied when the environment is fully observable to all agents, with a

common system shared between all agents. To develop solutions for scenarios where

agents receive only a partial view of the environment, and agents can also have sep-

arate individual goals, we propose a Social RL approach that is more decentralized.

Our key idea is to use sequential parameter sharing and ego-network extrapolation to

incorporate agent correlations and improvise estimates of the partially hidden system

information. We evaluate our proposed approaches on two Twitter datasets. Our

centralized learning methods outperform other alternatives that do not consider es-

timates of user feedback when learning how to allocate incentives. Furthermore, by

clustering users, we are able to achieve faster convergence along with learning more

accurate estimates, compared to baselines that do not model agent correlations or

only use static clusters. Additionally, our decentralized learning approach achieves

performance equivalent to that of centralized learning approach and superior perfor-

mance to other baselines that either consider complete system information available

to an agent, or other estimates of the hidden environment state.

1

1 INTRODUCTION

With the increased inclusion of social network interactions in media, information, and

online retail systems, there is an opportunity to learn from relational interactions and

user feedback to improve overall system engagement and better personalize customer

recommendations. However, since user behavior evolves over time and is influenced by

both peers and changes in the environment, it is essential to tailor network strategies

by learning sequential decisions interdependently and dynamically.

Reinforcement Learning (RL) is useful to model scenarios when agents interact

with the environment leading to a change in their behavior or state. Additionally,

there can be multiple agents interacting with each other and with the environment,

that again influences their decisions or actions, and this comes under the class of

Multi-Agent Reinforcement Learning (MARL). As opposed to Supervised Learning,

there is no direct signal (labeled input/output) to learn from in RL. The signal in RL

is the dynamic reward obtained on interactions with the environment. The objective

of RL/MARL is to learn a policy function that helps the agent determine the best

action to take, in a given state, in order to maximize the reward.

In this thesis, we propose Social Reinforcement Learning as a general framework

to facilitate modeling in a dynamic environment with user interactions and feedback.

The setting is applicable for a variety of real-world network applications that have

(i) large number of users taking actions, (ii) user-user or user-item interactions, and

(iii) inter-dependence between user actions, i.e., actions taken by one user influence

the actions of other users in the network. This includes domains such as viral mar-

keting, personalized teaching, healthcare, and recommender systems. Specifically, we

define a Social RL model for learning in scenarios with multiple interacting agents—

to learn decisions that help to maximize the likelihood of desired consequences in the

future. We note this is different from existing work in MARL as we consider a large

2

Figure 1.1.: Traditional MARL vs Social RL

number of agents with relatively sparse interactions between them (Fig. 1.1), which

make it challenging to learn inter-agent dependencies. In real-world social networks,

user interactions lead to dependencies between their actions (due to peer-influence).

Specifically, the actions taken for one user impacts the likelihood of the actions for

other users in the future. For example, if one user tweets more about a certain

topic, that may influence their followers to tweet more on the same topic. Thus, the

objective is to learn strategies that scale for large number of agents, and take the

inter-agent interactions into account. However, we note that each user typically only

interacts with a small number (i.e., � N) of other users in the network. This means

the network interactions are relatively sparse.

The goal in this setting is to learn a policy π that maps user(s’) state to user(s’)

actions — to determine the best action(s) to take to maximize reward (which is de-

termined by transitions to future states). For example, we may want to learn how

to promote the release of new movies to users in a social network, to encourage lik-

ing/reviewing/sharing activities with their friends, in order to maximize ticket/rental

purchases over time.

3

1.1 Application

There are several critical real-world applications where the Social RL setting is

applicable, e.g., viral marketing, healthcare, recommender systems with community

interactions. Social RL helps to model system dynamics such as estimating user re-

sponses (e.g., likes, comments, shares) considering effects of peer-influence. It can be

used to understand customer demands, and learn strategies to incentivize competing

products (e.g., news recommendation) by capturing changing user interests and feed-

back. Thus, it is essential to develop MARL solutions that scale for large number of

agents, for challenging dynamic environment comprising of high-dimensional obser-

vation spaces, in collaborative and adversarial settings, with partial observability.

In this dissertation, we consider an application of Fake News Mitigation, and

develop Social RL approaches to combat fake news spread in social networks. [1]

defines fake news as “fabricated articles that are intentionally and verifiably false,

and could misled readers”. Online social media has increasingly become a platform

for widespread dissemination of fake news stories [2]. [1] found that roughly half of

the users on Facebook who viewed fake news stories believed them. The diffusion of

fake news in social networks is significantly farther, faster, deeper, and wider than

that for true news [3]. This indicates a pressing need to combat fake news spread in

social networks.

Fake news mitigation is a multifaceted problem. Much of the previous work has

focused on the detection of fake news using linguistic, demographic, and community

based features. [4] studied network properties such as clustering coefficient, closeness

and betweenness centrality, neighbor based features like number of followers and

followees, to identify users likely to spread fake news on Twitter. [5] tried to classify

the propagation path of news to detect fake news at early stages of diffusion. There

has been relatively less work on limiting the spread of fake news. Some recent work

has considered mitigating fake news by identifying potential purveyors of fake news

to block their posts [6, 7]. However, it may not be feasible to take forceful actions

4

such as censoring users posts, since it can violate users’ rights (Bill [8]), and can

have negative effects enforcing misinformation [2, 9–11]. Some research tried to limit

the influence of fake news by strategically selecting users that can spread true news

([12–14]). We use an approach similar to [15], which aimed to mitigate the impact

of fake news by making interventions to the true news diffusion process. In addition,

we also consider the user response as feedback to determine the efficacy of users,

and model both the news diffusion and user responses as stochastic processes. [16]

observed that around 46% of the fake news stories circulated on Facebook were on

U.S. Politics and Elections. In addition, the reactions of people are more significant

for topics related to politics, than other topics such as movies or weather [17]. Thus,

in this work, we consider news related to U.S. Politics.

The problem of fake news mitigation can be mapped to a Social RL setting,

as social networks comprise of thousands of agents who interact with each other

by sharing information. There are community interactions on social media where

users share news articles corresponding to fake or true news, and other peers provide

comments or likes. However, typically social network interactions are sparse as users

interact with a relatively small number of other users. To mitigate the impact of fake

news, we can incentivize users to spread more true news, by learning interventions

for the true news diffusion process, such that the users who are exposed more to

fake news also become exposed more to true news. We provide the detailed problem

definition in Sec. 5.3.

1.2 Research Questions

Social reinforcement refers to the process where acceptance and praise from others

reinforces behaviors/preferences of an individual (e.g., [18]). With the increased use

of social media, response from peers plays an important role in shaping the behavior

and decision-making of individuals (e.g., [19]). In this research, we define a Social

Reinforcement Learning Problem that considers learning in environments with mul-

5

tiple interacting agents—to facilitate modeling user interactions and feedback while

learning decisions (actions) for a given situation (state) that maximize the likelihood

of desired reward in the future. Additionally, the environment can be fully observable,

where all agents observe the complete network state, or it can be partially observable,

where an agent receives a partial view (observation) of the network, that may be dif-

ferent from other agents’ observations. Agents can receive a shared network reward

based on the collective actions of all agents, or they can receive local rewards based on

their individual actions. Social RL is different from traditional MARL as it considers

a large number of agents with sparse interactions between them. Agents interact with

each other that that leads to an increase in the likelihood of certain actions in the

future due to peer-influence and effect of past interactions, and this impact decays

over time. Due to this, there is a temporal dependency between agents’ states and

actions, and hence, the data is not independent and identically distributed, as is in

many other problems. Thus, we develop solutions that can scale for large number

of agents, and capture the relations and interactions between agents, along with the

feedback received from the environment — to learn to make better decisions in both

fully observed and partially observed scenarios where agents can receive global as well

as local rewards.

1.2.1 Main Hypothesis

The goal of the present research is to verify the following hypothesis. Social Rein-

forcement Learning considers the setting with large number of agents with relatively

few interactions between them. It is, thus, challenging due to high-dimensional search

space, and sparse agent interactions, resulting in high computational complexity, and

insufficient samples to capture inter-agent dependencies for learning accurate poli-

cies, especially in partially observable environment. By utilizing the properties of the

social network structure, agent relations and interactions, we can obtain a compact

model to represent the environment dynamics and estimate latent environment state.

6

This can help in learning more accurate policy estimates, along with achieving faster

convergence because agents are correlated (behave similarly) and peer influence and

feedback in social networks helps determine user efficacy.

1.2.2 Proposed Research

We propose the following solutions to overcome the challenges in Social RL prob-

lems, and enhance policy learning by effectively using properties of the social network

structure, and agent relations and interactions.

(a) We use Multivariate Hawkes Processes (MHP) to characterize user activities in

social network. By integrating the MHPs in a RL framework, we model both

excitation events and social reinforcement. Our key insight is to estimate the

response a user will obtain from the social network upon sharing a post, and

use it to learn better policies in such a way that we avoid full joint learning

or learning an independent model for each user, that are both computationally

intensive. User response helps in learning appropriate selection of users and

efficient allocation of incentive among those, under budget constraint.

(b) Due to large number of users and high-dimensional continuous spaces, central-

ized learning becomes computationally intensive. To overcome this, we propose

a cluster-based policy learning approach that utilizes the correlation between

agents to reduce the dimensionality of state/action spaces along with avoiding

noisy estimates. Our idea is to by dynamically cluster users (based on their

payoff and contribution to the goal) and combine this with a method to de-

rive personalized agent-level policies from cluster-level policies. This helps to

reduce the effective number of agents and offset sparse interactions, thus achiev-

ing faster convergence and better policy estimates.

(c) Dependencies among user activities throughout the network impact the reward

for individual actions and need to be incorporated into policy learning, how-

7

ever the directed interactions entail that the network is partially observable to

each user. To address this, we consider decentralized learning and execution,

in contrast to the above solutions that use centralized learning and execution.

Since it is challenging for users to capture network dependencies while learning

policies locally, due to insufficient state information, we propose to use parame-

ter sharing and ego-network extrapolation to incorporate agent correlations and

improve estimates of the partially hidden state information, for learning better

policies.

This document is organized as follows. First, we provide background on multi-

agent reinforcement learning and multivariate Hawkes processes. Second, we define

Social Reinforcement Learning, and describe the challenges and opportunities to solve

Social RL problems, along with the real-world applications where Social RL setting

is applicable. Third, we describe related work with respect to the proposed problems.

Fourth, we present a centralized Social RL approach that uses feedback modeled

as a function of peer-influence and political bias, to obtain an effective incentive

allocation strategy under fixed budget. Fifth, we describe an efficient centralized

cluster-based social reinforcement learning approach that utilizes agent correlations

for learning better policy estimates and reducing the computational cost. Lastly, we

introduce partially observable setting in Social RL, along with local rewards, and

propose solutions for learning individual policies more accurately and efficiently, by

modeling dependencies in ego-networks, and extrapolating those.

8

2 BACKGROUND

Reinforcement Learning (RL) is used to solve sequential decision making problems

in which agents learn by interacting with the environment. Agents perform actions

that lead to a change in their state, and receive reward based on their actions. This

reward is used as signal by the agent to learn optimal actions to perform in the

future. On performing an action, the agent transitions to another state with some

probability. Thus, the environment is stochastic in nature as there is an uncertainty

about the consequences of actions, due to which the next state of the environment

is not certain. The next state (input) of the environment depends on the current

state and/or previous states, and thus, the input is not independent and identically

distributed (non-i.i.d).

This is different from supervised learning or semi-supervised learning problems

that consider i.i.d. data with pre-specified labels provided for learning a mapping from

inputs to outputs. In RL, there are no pre-specified labels given, instead, the agent

learns using the reward obtained by performing actions. In unsupervised learning,

there are no labels provided for the data. Thus, RL is also different from unsupervised

learning since the dynamic reward is used as the signal for learning.

2.1 Markov Decision Process

Markov Decision Processes (MDP) are used to solve RL problems. A MDP is

a tuple 〈S,A, R, T, γ〉, where S = {st}Tt=1 is the set of states at different time-steps

t, A = {at}Tt=1 is the set of actions, R(st, at) ∈ R is the reward obtained on taking

action at in state st, T (st, at, st+1) is the probability of transitioning from state st to

the next state st+1 on taking action at, and γ ∈ [0, 1] is the discount factor that governs

the relative importance of immediate and future rewards. The objective is to learn a

9

policy function π : S→ A that maximizes the total expected discounted reward for all

stages
T∑
t=1

γt−1E[R(st, at)]. Each state is associated with a value function Vπ(st), that

is the total expected reward when in the given state st following policy π, i.e., Vπ(st) =

E[
T∑
t=1

γt−1R(st, π(st))]. Each state-action pair is associated with a Quality function

or Q-function, that is the total expected reward obtained on taking action at in state

st and then following policy π, Qπ(st, at) = E[R(st, at)] +
T∑
t=2

γt−1E[R(st, π(st))]. In

multi-agent RL, agents can either receive individual rewards Ri or a common reward

R shared between all agents.

MDPs use the Markov property. Specifically, we assume that the current state

alone affects the next state, i.e., the future (st+1) is conditionally independent of the

past (s1, s2, ..., st−1) given the present state (st). This assumption requires the states

to be fully observable to each agent. A generalization of MDP is Partially Observable

MDP (POMDP) that considers the scenario when agents receive a partial observation

of the system ot,i, and each agent takes action based on her local observation.

2.2 Policy Learning and Optimization

The state-of-the-art Deep RL methods use Policy Search to learn the optimal

policy function. Specifically, a policy is approximated as a function parameterized by

weights θ, i.e., π = f(st; θ), and the parameters are updated in order to maximize the

expected return. Deep Neural Networks are widely used to approximate the policy

function as they are powerful function approximators that can effectively capture

higher-order relations between different states and actions [20, 21]. Policy Gradient

methods are gradient-based optimization methods used to learn optimal parameters,

and are more effective in high dimensional spaces, and can learn continuous policies

[22–25]. The gradient of policy estimates provides strong signals to improve the

parameterized policy, however, these estimates have high variance, especially for high-

dimensional state-action spaces [26].

10

To reduce the variance, a widely used approach is to subtract a baseline from the

objective function to get unbiased estimates that are less noisy [27]. Instead of sim-

ply using the expected reward, an advantage function is to optimize the policy that

is obtained by subtracting the value of state as baseline from the expected reward.

This is known as the Advantage Actor-Critic algorithm [25, 28, 29], where the policy

function (actor) learns using the feedback from the value function (critic). Intuitively,

the advantage function helps to determine the action that has better consequences

compared to others (relative advantage), by removing an average amount of return.

Since it is computationally expensive to compute V (st) from future rewards for every

possible policy π, the value of a state is approximated as a function parameterized

by weights φ, that is, V (st) = f(st;φ) (e.g., [30, 31]). Generally, for stable learn-

ing, separate parameters are used to approximate the policy function and the value

function.

2.3 Reward Shaping

Learning the policy based on the global system reward, without considering the

individual contribution of users results in noisy estimates, as an agent may be re-

warded positively for performing bad if other agents are performing good [32]. The

idea behind reward shaping is to shape the reward signal so that it better reflects

an agent’s contribution, to improvise MARL solutions. Difference Reward (DR) and

Potential-Based Reward Shaping (PBRS) are two widely used reward shaping tech-

niques.

Difference Reward (Di) is a shaped reward signal that helps to determine the

effectiveness of an agent by subtracting the contribution of other agents from the

overall system objective, i.e., Ri = R−R−i, where R is the global system reward, and

R−i is the system reward without the contribution of agent i. This also helps to remove

a large amount of noise created by the actions of other agent in the system [33, 34].

Any action taken to increase Ri corresponds to increasing R, while agent i’s impact

11

on her own reward is much higher than its relative impact on R [35]. Thus, DR is

used to enhance policy learning in multi-agent systems.

In Potential-Based Reward Shaping, the shaped reward signal is the the differ-

ence of a potential function defined over a source state and a destination state [36].

However, PBRS requires prior knowledge of the problem domain and the potential

function is application-specific. Hence, PBRS has limited utility. [35] proposed com-

bination of DR and PBRS to improve the reward signal for policy learning.

2.4 Multivariate Hawkes Process

Hawkes process [37] is a stochastic point process governing the arrival rate λ of

an event. It is self-exciting in nature, which means that past events increase the

likelihood of occurrence of new events in the future. Let N (t) ∈ (Z ∪ {0}) be a

counting process representing the number of events upto time t. Let ti be the time of

occurrence of i-th event. The Hawkes process is represented by the counting process,

N (t) =
∑
ti≤t

h(t− ti)

where h(t) = 1 if t ≥ 0, and 0 otherwise. Let λ(t) be the associated intensity function

governing the arrival rate of events. For Hawkes process, λ(t) is given as,

λ(t) = µ+
∑
ti≤t

f(t− ti) (2.1)

where µ ∈ R+ is the base exogenous intensity and f(t) is the Hawkes kernel that

determines the decay rate of the influence of past events. For example, the Hawkes

exponential kernel is given as f(t) = φ ωeωth(t), where φ > 0.

N -dimensional Multivariate (multi-dimensional) Hawkes Process (MHP), consists

of N Hawkes processes N1,N2, ...,NN , that are mutually-exciting in nature, that is,

the occurrence of an event of process (dimension) i influences the occurrence of an

event of process (dimension) j in the future. In this case, each process (dimension)

has its own intensity function, given as,

12

λi(t) = µi +
N∑
j=1

t∫
0

Φijωe
−ωtdN (s) (2.2)

where s is the placeholder for limits in the integral, and Φij is the influence that

process i exerts on process j. MHPs have been widely used to model user activities

in social networks [15,38].

2.5 Political Bias

We consider news related to U.S. Politics (Chapter 1), and measure political bias

of a user as the political leaning of the user towards communities of two polarities:

Democratic (D) and Republican (R) Party. Each user i has bias values bR,i, bD,i ∈

[0, 1], for R and D, respectively. To compute the initial bias values, we run a random

walk based community-detection algorithm [39,40], using the adjacency matrix of the

social network, with starting seeds for the two communities as the official profiles of

politicians whose political affiliation is already known. The bias is estimated as user’s

proximity to the two sets of seeds for D and R such that bR,i + bD,i = 1.

Bounded Confidence Model

According to Bounded Confidence Model (BCM) [41,42], each user i has an opinion

xi ∈ [0, 1]. Two adjacent users i and j interact if and only if their opinions are

close enough, i.e., |xi − xj| ≤ ε ∈ [0, 0.5], resulting in a change in their opinions

as xi = xi + µ(xj − xi) and xj = xj + µ(xi − xj). BCM assumes that the two

interacting users must be close enough in their opinions (hold same set of beliefs),

and the exchange increases one user’s opinion and decreases another’s. However, these

assumptions do not hold in our case, since an interaction between users with similar

ideology can increase the bias instead of reducing it. Moreover, we have a one-way

interaction between a user and her followers instead of both ways. Therefore, we

proposed a model to update political bias (described in Chapter 6).

13

3 SOCIAL REINFORCEMENT LEARNING

3.1 Motivation

With the increased use of social media, ratings and response from peers plays an

important role in shaping the behavior and decision-making of users (e.g., [19]). While

there has been a great deal of research in the IR and RecSys communities on how to in-

corporate user activity and feedback to personalize search and recommendation, there

has been relatively less work on how to model dependencies among dynamic user in-

teractions in social networks for these same tasks. Real-world social networks consist

of large numbers of users who interact with each other and are related in various ways

([15, 43, 44]). There is an opportunity to learn relationships between the users (i.e.,

agents) based on their network interactions over time and use the discovered correla-

tions to improve automated decision making. For example, estimating user responses

(or feedback) in social networks (likes/comments/shares) helps to learn strategies for

motivating users to favor one competing product over another [43] to increase brand

awareness and revenue, or deciding how to place content on websites to maximize

click-through-rate (e.g., [45]) and seek customer attention. Also, retail websites can

enhance their recommendations by utilizing the user-feedback via reviews/ratings on

purchased products, to increase the overall number of returning visitors (described

more in Sec. 3.3.3), or online question-answer forums (e.g., StackOverflow) can exploit

user-interactions via answers/comments to other users’ questions, to increase the rate

of providing answers, or minimize the number of unanswered questions (Sec. 3.3.4).

Furthermore, online communication platforms (e.g., Slack) can learn to identify im-

portant people for a particular user, at different times, based on feedback such as

frequency of interactions or delay in responses, and prioritize messages from them,

or suggest labels/filters for messages from different peers, in order to improvise the

14

quality of service. Email services can utilize peer communication patterns to learn

auto-fill suggestions/salutations and personalize those for different peers with differ-

ent relations (formal/informal contacts). In corporate organizations, a manager can

learn which comments to make, when to comment, whom to reply to in an online

group discussion (for a new feature/service) with her team, so as to encourage more

people to participate or respond faster. [46, 47] showed that social networks play an

important role in the development of obesity via peer influence on people’s energy

intake and physical activity. However, appropriately selecting users based on social

network structure for anti-obesity campaigns can help to reduce individual’s body

weight and thus, overall obesity prevalence in the complete network [48]. Moreover,

social media can be utilized as a promising intervention platform for increasing phys-

ical activity among people by providing supportive social influences [49, 50]. Thus,

personalized healthcare applications can utilize peer-influence to encourage users to

exercise more and lose weight in a shorter period of time (Sec. 3.3.5).

There are numerous settings that involve large numbers of interacting users, in-

cluding social networks, online advertising bidding agents [51], healthcare, recom-

mender systems with community interactions, online communication platforms and

email services. It is essential to develop sequential decision making methods for these

domains that scale to a large number of interacting users. Note that user prefer-

ences in these systems may evolve based on peer behavior or environment dynamics.

In this case, a personalized recommendation systems (e.g., news) need to update

and/or diversify its suggestions to keep up with dynamic user interests [31]. More-

over, there are also applications (e.g., viral marketing) where multiple users share

a limited resource yet influence others in unobserved ways, which requires learning

how to assign credit [35]. These characteristics lead to a dynamic environment com-

prising of high-dimensional observations, which further challenge the development of

sequential decision making methods.

We consider a Multi-Agent Reinforcement Learning (MARL) based solution, which

models multiple agents that interact with the environment and with each other, lead-

15

ing to a change in their states and actions in the future. The use of RL facilities

incorporation of feedback in the form of immediate as well as future rewards to opti-

mize decisions based on past experiences, and consider actions with long-term utility.

This is particularly useful when the reward is delayed over time. For example, there

are different applications that motivate users to follow a healthy lifestyle like exercis-

ing regularly by providing them small immediate incentives, and larger incentives in

the future when they achieve a milestone after performing a sequence of actions.

3.2 Problem Definition

We define Social Reinforcement Learning as a sub-class of Multi-Agent RL, that

considers large number of agents with interactions between them. Specifically, we con-

sider a social network setting with N users. Each user i ∈ {1, ..., N} is an agent. Let

G = (V,E) represent the social network graph, where each node vi ∈ V corresponds

to user i, and edge Eij = 1 if there exists an edge (i.e., relation) between agent i and

j, and 0 otherwise. In addition, users perform d different activities (e.g., tweet, com-

ment, like) in the social network. We say that the network is dense when all agents

interact, i.e., the number of interactions is Ω(N2), and the network is sparse when

agents only interact with a constant number of other agents, i.e., O(N) interactions.

Let si ∈ Rd (si ≥ 0) be the state of user i. This corresponds to the d activities

the user performs. Then, the state of the network represents the activities over the N

users, s = {si}Ni=1. The network activities are dynamic in nature, and thus, we have

different states of the network at different time-stamps. Let st represent the network

state at time t. We consider a finite horizon setting, i.e., we observe the activities up

to time T .

An action ad,i ∈ R corresponds to a modification to the d-th activity of user i. It

is important to note that action is different from activity. An action is a decision to

influence an activity or make the activity more visible. Let a = {ad,i}Ni=1 refer to the

set of actions, one for each user in the network. Actions leads to a change in the state

16

Figure 3.1.: Social network with agent interactions. Colored nodes represent ac-

tive users (darker shade for users who are tweeting, lighter shade for people ex-

posed to tweets). State is given by the number of tweets by each user (in the order

[A,B,C,D,E]), and reward is calculated as the number of users exposed. Users’ col-

lective actions of tweeting news lead to a transition from state s to s′.

of each user, and consequently, a change in the overall network state. Let T (s, a, s′)

be the probability of transitioning to the network state s′ after performing actions a

in network state s. There may be a reward Rd,i for each agent i and/or each activity

d, or a collective reward R(s) ∈ R based on the complete network state that is shared

between all agents.

Because users interact in the network, actions taken for one user may impact the

state (i.e., activity) of other users. More specifically due to peer-influence, changes in

the activity of user i may influence the likelihood of user j’s activities in the future

17

if i and j are connected in G, either directly (i.e., Eij = 1) or through a longer path.

For example, if one user tweets more, that may influence their followers to tweet more

as well. Fig. 3.1 shows a network of users who interact via sharing news.

Thus, agent interactions lead to dependencies between agents’ activity, and thus

actions and state transitions. Specifically, the state transition distribution does not

depend on the user activities s and actions a alone, but also depends on the network

G, i.e., P (s′|s, a,G) 6= P (s′|s, a). Also, note that the underlying state transition

distribution is not always explicitly known as it depends on the network dynamics,

which is the model-free RL setting. Since both the individual reward Ri and the

collective network reward R depend on the state transition distribution T , and user

i’s activity can be moderated both by actions taken with respect to i and actions

taken for her peers, it is important to consider the effect of network structure (G)

when learning the policy π.

In a fully observable environment, all agents have access to the complete network

state st, and thus, we can perform centralized learning and centralized execution. In

centralized learning, the joint state of all agents st is considered at the time of training.

In centralized execution, the actions for an individual agent are based on the joint

state of all agents, i.e., at,i = π(st). Specifically, the goal is to learn a policy that maps

the network state at time t to the collective actions for each user, i.e., π : st → at

such that the total expected discounted reward E[
T∑
t=1

γt−1Rt] is maximized, where

γ ∈ [0, 1) is the discount factor governing the relative importance of the immediate

reward compared to future rewards.

In partially observable environments, agents do not have access to the complete

state of the network, and each agent receives a partial observation of the environment

oi that depends on her local network structure or ego-network Gi. Each user has a

different ego-network, and thus, a user i receives a different observation than that of

another user j in the network, i.e., oi 6= oj. A user i receives a local reward Ri, that

can either depend on all peers in her local network Gi, or a subset of peers in Gi.

Since, each user receives a different observation and reward, centralized learning and

18

centralized execution cannot be employed that involves sharing the state and actions

between users, and a common reward. Thus, we consider decentralized training and

decentralized execution in such environments. In decentralized training, each agent i

learns her local policy πi individually without sharing any state or observations with

other agents. Decentralized execution means that the actions for an individual user

are based solely on her individual state, i.e., at,i = π(st,i). The goal for each agent

i is to learn her own policy πi that maps her state at time t to her actions, i.e.,

πi : st,i → at,i such that her total expected discounted local reward E[
T∑
t=1

γt−1Rt,i] is

maximized.

Typically social networks are sparse with only O(N) interactions between agents.

Thus, the challenge is to capture ∼N2 agent dependencies given these sparse inter-

actions.

3.3 Applications

There are multiple applications that involve encouraging pro-social behavior in

people. We can use Social RL to develop efficient solutions for these settings. Below

we provide examples of these applications, and map those to the Social RL setting

with respect to the social network relations, interactions, state, action and reward.

3.3.1 Fake News Mitigation

• Network: Nodes are users of a social network, and there are edges between two

users if they have friends or followers relation

• Interaction: Users interact via activities such as making tweets, retweets and

providing likes, for different types of news (true/fake)

• Agent’s State: The number of posts (tweets and retweets) made for true and

fake news, and likes received by a user

19

• Agent’s Action: Increase the sharing rate for tweets and retweets of a user, for

true news

• System Reward: Correlation between the number of exposures to fake and true

news across all users

• Individual (Local) Reward: Correlation between the number of exposures to

fake and true news in the local neighborhood

3.3.2 Viral Marketing

• Network: Nodes are users of a social network, and there are edges between two

users if they have friends or followers relation

• Interaction: Users interact via activities such as posts and likes

• Agent’s State: The number of posts made for a particular brand, and the num-

ber of likes received

• Agent’s Action: Promote (or make more visible by increased sharing) the posts

related to the specific brand

• System Reward: Brand awareness measured as the number of people reached,

i.e., exposed to the posts related to the brand

• Individual (Local) Reward: Visibility measured as

– Number of people exposed to a user’s posts

– Position (rank) of user’s posts in her peers’ feeds

– Amount of time for which the user’s feed stays at top in her peers’ feeds

20

3.3.3 Recommendation Services with community interactions

Retail services (e.g., Amazon, eBay) can enhance their recommendations by uti-

lizing the user interactions via reviews provided by users on purchased products, in

order to increase the overall number of returning visitors, and customer satisfaction.

The idea is to use the ratings/comments as feedback from users who have purchased

similar products in the past to enhance the quality of one’s reviews in the future. A

user can utilize the comments/ratings provided by her neighbors (i.e., users who have

also purchased similar products in the past) on her reviews, as feedback, to learn

to make better reviews in the future. The system can utilize peer feedback to learn

efficient users, i.e., who provide quality reviews that help other users, and increase

the number of purchases or returning visitors, or customer satisfaction.

• Network: Nodes are users of the service, and there are edges between two users

if they purchased similar products in the past

• Interaction: Users interact via providing comments, ratings, upvotes, downvotes

on each other’s reviews

• Agent’s State: The number of reviews a user has provided on purchased prod-

ucts, and the number of upvotes, downvotes received

• Agent’s Action: Increase the quality of reviews, e.g., adding more information

• System Reward: The system goal is to encourage users to give more qualitative

reviews in order to improve

– Number of purchases made, i.e., revenue

– Customer satisfaction measured as number of returning visitors

• Individual (Local) Reward: Number of people who purchased the products

reviewed by the user, after reading/reacting to her reviews

21

3.3.4 Online Discussion Forums/Question-Answer Services

• Network: The nodes are users of the service, and there are edges between two

users if they take the same course (e.g., on Piazza, Blackboard), or discuss

similar topics (e.g., on Quora, Stack Overflow)

• Interaction: Users interact via providing comments/ratings on each other’s an-

swers

• Agent’s State: The number of questions a user has answered, and the number

of upvotes/likes, downvotes received

• Agent’s Action: Increase the quality and rate of providing answers to questions

asked by peers

• System Reward:

– Rate at which users receives answers, or the response time, on an average

– Total number of unanswered questions (to be minimized)

– Number of customers for the service (or class participation)

• Individual (Local) Reward:

– Credits (e.g., reward points or ‘badge’ or class participation grade) received

for providing answers.

3.3.5 Healthcare Applications

Some recent work has studied that online peer networks can motivate people to

exercise more (e.g., [49]). They observed that social influence from online peers was

more successful than promotional messages for increasing physical activities. Based

on this, our idea is that if a user is performing well (achieves more milestones), then

sharing her activities with those users who have similar health condition or physical

22

state can encourage the latter to also achieve more milestones, resulting in an increase

in the reward defined as the total number of people with reduced obesity levels.

• Network: The nodes correspond to users of the application, with an edge be-

tween two users if they have same gender and similar age and body weight.

These attributes, i.e., gender, age, body weight, are known only to the user and

the system, and not shared with other users due to privacy concerns

• Interaction: Users interact via sharing their activities and providing comments

or likes

• Agent’s State: Number of miles walked, number of calories consumed

• Agent’s Action: Increase the sharing rate of her activities e.g., milestones com-

pleted, miles walked, calorie intake, or some information/suggestions on weight

loss, with her peers

• Network Reward:

– Total number of people with reduced obesity levels

– Average time taken for the people to lose weight

• Individual (Local) Reward: Number of people with reduced weight after react-

ing to user’s activities

3.4 Challenges

We present the challenges that make Social RL problems difficult and potential

ways to address those.

3.4.1 High Dimensionality

Much of the work on Multi-Agent Reinforcement Learning (MARL) is limited

to small number of agents (< 50) (e.g., [52]). The standard approaches to train an

23

independent (decentralized) model for each user, i.e. N different model (e.g., [35]) are

impractical for thousands of agents, especially when the policy function approximators

are complex such as Deep Neural Networks. Moreover, joint (centralized) learning

considers the actions of all agents for learning the policy of any agent, i.e., ∼N2

dependencies. However, this is computationally intensive as the joint action space

grows larger with an increase in the number of agents. This is particularly more

challenging for Social RL due to curse of dimensionality, i.e., we have only O(N)

agent interactions available to model ∼N2 dependencies. Thus, high dimensional

spaces result in high computational cost and large variances in policy estimates.

We can utilize the social networks structure, characteristics of user interactions,

and correlation between agents to develop policy learning approaches based on certain

approximations, that simplify the learning process, while still accounting for all agent

dependencies given large number of users. For example, [43] decoupled the different

processes governing user interactions to approximate the joint action space more effi-

ciently. They dynamically optimize the policy corresponding to agent interactions via

tweets, but use historical data to estimate another type of interaction, i.e., feedback.

This helps to reduce the number of parameters and avoid noisy policy estimates.

3.4.2 Sparsity

Typically, social networks are sparse with only O(N) agent interactions. Thus,

learning accurate policies that can capture ∼N2 dependencies between agents, be-

comes challenging since there are not sufficient samples to learn from that can capture

higher-order relations (interactions) in the data. To overcome this, we can utilize the

symmetry between states and/or agents to reduce the size of the MDP as in [53,54].

Furthermore, we can offset data sparsity issues by aggregating the interactions of sim-

ilar/correlated users. This can also help to reduce the dimensionality of the search

space and thus, the number of parameters and variance.

24

The sparsity of agent interactions also results in noisy policy estimates. To over-

come this, [43] modeled user feedback that measures the efficacy of different users, and

uses it as a signal to learn effective incentive allocation strategy. This can be thought

of as a reward shaping technique which is used in multi-agent credit assignment and

resource allocation problems where it is important to determine the contribution of

each agent towards the common system goal for learning better policies [55]. However,

their approach is different from standard reward shaping techniques, that consider a

separate reward for each user (e.g., [35]). Since that requires a separate model for

learning each agent’s policy function, it is computationally intensive for large num-

ber of agents. To avoid this issue, they provide user feedback as input to the policy

function approximator.

3.4.3 Partial Observability

The above problems become even more challenging in partially observable envi-

ronments, where agents do not have access to the complete state of the environment

and receive only a partial observation of the environment. Agents need to act solely

based on their local observations, and can also receive different local rewards based

on their individual actions. Thus, each agent needs to learn her own policy function

that determines the actions that she needs to take in a particular state, to maxi-

mize her individual (local) reward. Markov Decision Processes (MDP) cannot be

applied directly to partially observable domains, and instead Partially Observable

MDPs (POMDP) are employed, that generally involve learning decentralized policies

for agents (e.g., [56]) or making some approximations (e.g., [57]). However, the former

is computationally infeasible for large number of agents, and for the latter, we need

to ensure that the assumptions are consistent/preserve the network structure, and

agent dependencies.

The challenge is that individual policies need to account for dependencies through-

out the network, as the actions of agents are influenced by the activities of their peers

25

as well. Centralized learning and execution that helps to capture network-wide inter

agent dependencies cannot be employed when agents receive different local rewards

and observations. Moreover, decentralized learning is also infeasible for large num-

ber of agents, since it is impractical to learn thousands of complex policy functions.

Also, in Social RL problems, the number of samples per user for learning individual

policies are insufficient, due to the sparse interaction data, resulting in large errors

due to variance. Thus, there is not sufficient local information available to capture

network-wide dependencies.

The Partially Observable Environment can be further categorized as Strongly Par-

tially Observable Environment and Weakly Partially Observable Environment, de-

scribed as follows.

Weakly Partially Observable Environment

In most of the MARL approaches for partially observable domains that consider

both local state and local reward, the hidden state of the environment becomes avail-

able to agents within a short period of time, i.e., before the time-horizon of the task.

We refer to these environments as Weakly Partially Observable Environments. For

such environments, the relevant state information can be used as history for policy

learning (e.g., [58–61]), since the state information becomes available before the finite

time-horizon. Additionally, these approaches consider a small number of agents, and

hence the memory requirements for storing the history of all agents is lower.

Strongly Partially Observable Environment

There are scenarios where the state information does not become available to

agents before the finite time-horizon of the task, and we refer to this as Strongly

Partially Observable Environment. For e.g., in social networks, due to the directed

nature of user interactions, a user cannot observe the state of her followers (e.g.,

in [44]). Moreover, social networks are not strongly connected, so even with message

26

passing the complete state of all followers would likely not be available before the

finite time-horizon. Even if the state information could become available to agents, it

is space-prohibitive to store the complete trajectory information for a large number of

users. Thus, the relevant state information cannot be utilized by the user as history,

which makes policy learning even more challenging in these environments. To address

this problem, we can utilize the social network structure and user relations, to estimate

the hidden environment state from the observed state of the environment and use it

to improvise policy learning.

3.4.4 Evaluation

Another important challenge is to improvise the scheme of evaluating the learned

policies. On-policy evaluation is relatively easier for MARL tasks with small number

of agents, especially games. However, it might not be feasible always to apply the

policy online before testing in certain real-world complex tasks, especially in medical

and healthcare domains. This is also challenging for problems that involve online so-

cial networks because of multiple factors such as restrictions imposed by the operators

of social networking websites, dynamic behavior/response of large number of users,

government regulations. Additionally, in cases when it is feasible to conduct on-policy

evaluation (e.g., in [15]), it is important to ensure that the subset of agents considered

is representative of the entire population and is not biased. E.g., making real-time

interventions on Twitter is not feasible, and thus [43] did not explicitly test if there

is a reduction in fake news spread due to the learned policy. Instead, they used a

simulated environment as a proxy for online interventions to measure the reward. In

addition to simply using the simulated synthetic data, in scenarios where we cannot

conduct online experiments, we need to find efficient ways that assess different meth-

ods using some held-out real-world data. For example, apart from computing the

reward on simulated data, [43] also measured the impact/efficacy of agents selected

on a held-out real dataset to evaluate their resource allocation strategy.

27

Moreover, the existing metrics to evaluate MARL approaches are based primarily

on the reward. However, we believe that evaluation based solely on reward serves

merely as a proof of concept as the model is designed to maximize the reward it-

self. Thus, it is also important to perform evaluations in environments where the

assumptions made by the model do not necessarily hold. [43] conducted experiments

by applying the learned policy with respect to different fake news diffusion processes

based on different network properties such as degree distribution, clustering coeffi-

cient, centrality. They tested across multiple scenarios that are likely to hold in real

world to assess generalisation to other environments.

In this work, we present potential solutions to address the above challenges using

properties of the social network structure, agent interactions and correlations.

28

4 RELATED WORK

4.1 Relational Reinforcement Learning

Relational RL combines RL with relational learning or inductive logic program-

ming ([62]) to represent states, actions, and policies using the structures and relations

that identify them [63]. The structural representations allow to solve problems at an

abstract level, and thus Relational RL approaches provide better generalization. Re-

lational RL has been used in multi-agent systems to share information among agents,

to learn better individual policies [64]. Previous work used first-order representations

to achieve effective state/action abstractions (e.g., [63, 65, 66]). Some recent work

has also used relational interactions between agents for policy learning in multi-agent

systems (e.g., [67–70]). However, relational learning adds extra complexity with in-

creased state space, due to the informedness/abstraction and generalization abilities

provided by it [64]. Thus, these approaches are limited to discrete spaces with small

number of agents that have dense interactions between them. We take motivation

from relational learning to capture agent relations and interactions, however, we do

not directly use Relational RL due to the above limitations.

4.2 Multi-Agent Reinforcement Learning

The key factors that differentiate Social RL from traditional MARL are the large

number of agents and the sparse interactions between them, i.e., the network G that

characterizes agent interactions. In addition, the interactions are dynamic, and thus

the network can evolve with time. Agents can also interact via multiple activities,

and each activity leads to the formation of a new link between agents. Thus, there

exists d links types between agents corresponding to d different activities over the

29

T
ab

le
4.

1.
:

C
om

p
ar

is
on

of
S
o
ci

al
R

L
ap

p
ro

ac
h
es

(h
ig

h
li
gh

te
d
)

w
it

h
ex

is
ti

n
g

M
A

R
L

ap
p
ro

ac
h
es

.
‘−
′

re
p
re

se
n
ts

th
at

a
gi

ve
n

at
tr

ib
u
te

is
n
ot

d
efi

n
ed

fo
r

th
e

p
ro

b
le

m
se

tt
in

g
co

n
si

d
er

ed
in

th
e

co
rr

es
p

on
d
in

g
ap

p
ro

ac
h
.

T
h
e

va
lu

es
in

co
lu

m
n
s

M
ax

im
u
m

D
im

en
si

on
al

it
y

an
d

E
ff

ec
ti

ve
D

im
en

si
on

al
it

y
re

fe
r

to
a

ro
u
gh

u
p
p

er
b

ou
n
d

(i
.e

.,
∼

).
N

ot
e:
K
�

N
.

A
p
p
ro

a
ch

D
a
ta

/
E

n
v
ir

o
n
m

e
n
t

M
o
d
e
l

N
e
tw

o
rk

D
e
n
si

ty

#
L

in
k

T
y
p

e
s

(d
)

S
p
a
ce

O
b
se

rv
a
b
il
it

y
R

e
w

a
rd

T
y
p

e

M
a
x
im

u
m

D
im

e
n
si

o
n
a
li
ty

E
ff

e
ct

iv
e

D
im

e
n
si

o
n
a
li
ty

L
e
a
rn

in
g

M
e
th

o
d

#
P

o
li
ci

e
s

#
A

ct
io

n
s

P
e
r

P
o
li
cy

#
P

o
li
ci

e
s

#
A

ct
io

n
s

P
e
r

P
o
li
cy

[1
5]

S
p
ar

se
1

C
on

ti
n
u
ou

s
F

u
ll

G
lo

b
al

1
N

1
N

C
en

tr
al

iz
ed

[4
4]

S
p
ar

se
2

C
on

ti
n
u
ou

s
P

ar
ti

al

(S
tr

on
g)

L
o
ca

l
N

1
N

1
D

ec
en

tr
al

iz
ed

P
ar

t
1

S
p
ar

se
2

C
on

ti
n
u
ou

s
F

u
ll

G
lo

b
al

1
N

1
N

C
en

tr
al

iz
ed

P
ar

t
2

S
p
ar

se
3

C
on

ti
n
u
ou

s
F

u
ll

G
lo

b
al

1
N

2
1

K
2

C
en

tr
al

iz
ed

P
ar

t
3

S
p
ar

se
3

C
on

ti
n
u
ou

s
P

ar
ti

al

(S
tr

on
g)

L
o
ca

l
N

N
1

N
2

P
ar

ti
al

ly

C
en

tr
al

iz
ed

[7
1]

D
en

se
1

D
is

cr
et

e
F

u
ll

G
lo

b
al

1
N

1
N

C
en

tr
al

iz
ed

[5
7]

D
en

se
1

D
is

cr
et

e
F

u
ll

L
o
ca

l
1

N
1

N
C

en
tr

al
iz

ed

[7
2]

[7
3]

−
1

D
is

cr
et

e
P

ar
ti

al

(W
ea

k
)

L
o
ca

l
N

N
N

N
C

en
tr

al
iz

ed

[7
4]

−
1

D
is

cr
et

e
F

u
ll

G
lo

b
al

1
N

1
K

C
en

tr
al

iz
ed

[7
5]

−
1

D
is

cr
et

e
P

ar
ti

al

(W
ea

k
)

L
o
ca

l
N

N
K

K
D

ec
en

tr
al

iz
ed

30

network. For e.g., when a user tweets a news, it reaches her followers leading to an

interaction between users, and when a user provides feedback (e.g., by liking a tweet),

that corresponds to another type of interaction ([43, 44]).

We present a comparison of Social RL with the state-of-the-art MARL approaches,

based on different environment factors and model settings in Table 4.1. Social RL

problems have a sparse network density (i.e., O(N) agent interactions), whereas other

MARL problems consider a dense network, that makes it easier to capture ∼N2 agent

dependencies. We consider the type of action search space, that can be either Discrete

or Continuous. Search space is an important factor as it affects the computational

cost. Learning policies for discrete spaces is easier than that for continuous spaces, and

much of the RL models can only be applied to discrete spaces (e.g., [52,57,58,61,76–

95]). The state-of-the-art Deep Q-Network (DQN) [96] is applicable only to discrete

and low-dimensional action spaces, as it considers a finite set of actions, and finds the

one that can provide maximum expected return in a given state. It can be extended to

high-dimensional continuous state spaces via discretization, however, this can lead to

multiple problems, especially, the curse of dimensionality [97]. Some recent work has

considered continuous actions spaces, e.g., [56, 68, 98–105]. However, these methods

are designed for small number of agents, and do not scale for thousands of agents.

Moreover, many methods learn an independent model for each agent [56,76,105–115].

This is done to so that the size of search space is smaller (as opposed to the large

search space in centralized learning), and the model can be trained efficiently. Social

RL problems generally have continuous spaces ([15, 43, 44]) describing the complex

user interactions and network activities in social networks, and the solutions for these

can be easily extended/applied to the discrete problem settings.

The computational cost depends on the number of policies required to learn the

actions for all agents. Based on the environment characteristics and the agent depen-

dencies considered, each model has a maximum number of policies required to learn

the actions for all agents, that we refer to as the Maximum Dimensionality in the

table. And, we use Effective Dimensionality to refer to the effective (actual) number

31

of policies and actions learned based on the approximations/assumptions made by

the model. For example, [74] reduces the effective number of actions to a constant

K(� N) based on some aggregate of agents’ actions. However, their approaches is

designed for small restricted discrete action spaces. [75] approximated the effective

number of agents as a constant K and learned K decentralized policies.

Agents can have either complete system information, i.e., Full Observability or

partial information about the system, i.e., Partial Observability. In the latter case,

each agent has a local view of the environment and makes decisions based only

on her local observation. Some previous work considered fully observable setting

(e.g., [15, 43, 44, 71, 77, 78, 98–101, 116, 117]). In general, partial observability is more

challenging due to the lack of information available to learn accurate policies, com-

pared to full observability. In addition, much of the previous work that considers

partially observable environments, has considers a weakly partially observable envi-

ronment (described in Sec. 3.4.3) (e.g., [72,75]), where the hidden state of the environ-

ment can be used as history to improvise policy estimates. Some recent approaches

have developed solutions for strongly partially observable environment, where the la-

tent state of the environment is not available to agents before the time-horizon of the

task (e.g., [44]), and thus, cannot be used as history for policy learning. However,

these solutions do not scale for large number of agents.

Furthermore, the reward received by an agent in the system can be either Global,

i.e., common reward for all agents based on their collective state and actions, or it can

be Local, i.e., reward for the individual agent based solely on her individual actions

and/or actions of a subset of other agents in the system. For example, [44] considers

a Social RL setting where a user receive local reward based on the rank of her posts

in her followers’ news feed. Cooperative MARL tasks have a common reward for all

users (e.g., [89,102,118]). Decentralized (or independent) Learning considers learning

an independent policy function for each agent based solely on her individual state

and/or local reward, without conditioning on the collective state of all agents. Thus,

the dimensionality for decentralized learning is ∼N . Some decentralized learning

32

approaches (e.g., [89,118]) assume a global state shared across users and learns actions

conditioned on the global state.

Much of the work in MARL has considered decentralized learning, e.g., [56–58,90–

92,105,106,108,110,111,114,115,119–127]. [107] proposed an Independent Q-Learning

(IQL) approach that learns a Q-function for all state-action pairs for all agents in the

system. However, this is applicable only for small number of agents, and results

in policies with large variance [97], especially when there are sparse/insufficient sam-

ples. [128] considered the problem of energy sharing optimization where each building

(agent) learns to choose from a discrete set of actions. A DQN is learnt for each build-

ing. However the number of agents are limited to only ten, and the model does not

scale for larger number of agents [97]. [93] learnt an independent DQN for each agent

in the game of soccer with discrete low dimensional state and action spaces, for only

five agents. [113] considered a common-pool resource problem where each agent learns

a self-interested policy via DQN. [129] introduced the problem where agents while

learning the main policy, also learn to trade in their respective actions in exchange

for the environmental reward. However, they consider only two agents. [130] executes

an asynchronous advantage actor-critic algorithm to learn policy for each agent in

parallel, however the number of agents again is limited to four. [60] used Long Short

Term Memory (LSTM) to develop Deep Recurrent Q-Network (DRQN) that extends

Deep Q-Networks and uses history to overcome the problem of hidden information in

partially observable environments. [61] extended DRQN to solve POMDPs for multi-

agent systems and proposed Distributed Deep Recurrent Q-Network (DDRQN) which

learns an independent DRQN for each agent, and is applicable only to a small number

of agents with discrete state/action spaces. [58] extends MARL to multi-task setting,

where partial observability is realized by hiding task identity from agents, who learn

to cooperate to solve decentralized POMDP tasks. They learn a decentralized policy

for each agent, however, their approach cannot be extended when agents receive dif-

ferent rewards [97]. To address the problem of scaling to large number of agents in

partially observable domains, [102] proposed to first learn for sub-tasks that involve

33

small number of agents, and then add more agents for more complex tasks. However,

this approach can be applied only to problems that can be divided into sub-problems

with smaller number of agents.

Centralized (or joint) Learning considers the joint states/observations of all agents,

i.e. ∼N2 dependencies to learn a joint action over all agents. Much of the previous

work considered centralized learning with small number of agents (e.g., [77–79, 98–

100,116,117]), and some recent approaches have considered centralized learning with

large number of agents (e.g., [15, 71]). However, the computational cost increases

with the number of agents since we need to learn ∼N2 parameters to model the agent

dependencies, and centralized learning can only be used when the environment is fully

observable to all agents.

Some approaches have used centralized training and decentralized execution (e.g.,

[72]) for partially observable domains. The idea is to learn a centralized controller

based on the actions and observations of all users that guides the policy learning of

decentralized agents who can then execute individual actions independently based

solely on their local observations. [131, 132] developed a master-slave multi-agent

RL solution in which a a master agent receives and collectively processes messages

from slave agents. It then provides unique instructive messages to each slave agent.

Slave agents use their own information and the instructive messages from the master

agent to decide which action to take. [85, 133] proposed solutions for multi-agent

credit assignment problems in a partially observable setting where it is difficult for

agents to realize their contribution to the team’s success from global rewards. They

propose to estimate a baseline function using a centralized controller, that is used

to obtain the expected reward for each decentralized agent. However, their model

can be applied only for discrete action spaces and small number of agents [97]. [134]

proposed deep loosely coupled Q-network for partially observable systems where each

agent has a degree of independence and she can choose to either learn independently

or cooperate jointly, based on her local observation. However, these approaches are

limited to small number of agents. There are also scenarios when agents receive noisy

34

observations and thus, each agent has a different observation of the true state [97].

[135] introduced learning of a communication policy that allows agents to interact

and share their observations. Along with learning the main policy, agents need to

determine whether their observations are informative to share with other agents.

However, learning the communication protocols along with policy learning increases

the number of parameters, and adds extra time complexity for execution.

4.3 Process Interventions

Previous work considered modeling news diffusion using Independent Cascade

(IC) model [12–14] and tried to limit the influence of fake news by selecting subset of

users that can spread true news. However, they do not differentiate between (re)tweet

and exposure events, and consider a user to be activated in both cases. Moreover,

their assumptions for user interactions and information diffusion, under IC model,

do not hold in real-world social networks [136], and without these assumptions, their

approach is computationally infeasible as shown by them. They consider a user can

be activated only once, and users can be activated only by a single user. But, in

practice, a user can become active or inactive multiple times, depending on their

interactions with other users, that are mutually-exciting in nature [15]. Additionally,

they consider fixed (re)tweeting rates, however, this does not hold in practice [136].

Also, they assume that a user can be exposed to either fake or true news campaigns

(not both), and once activated, users cannot change campaigns.

Multivariate Hawkes Process (MHP), considers history of user events and inter-

actions, and better capture news diffusion, They consider self and mutually exciting

nature of user activities in real-world networks [43]. Thus, instead of assuming fixed

probabilities for news sharing (e.g., in [12]), we model excitation events using MHPs

and integrate those in a RL framework to capture the dynamically changing user be-

havior. Moreover, we estimate base intensities (natural rate) of users to spread fake

and true news, from real data, instead of assuming any pre-determined rates. We do

35

not make any strong assumptions as in IC model (e.g., [12]), and in our case users

can be activated by both fake and true news campaigns, as in a real-world setting.

36

5 CENTRALIZED SOCIAL REINFORCEMENT LEARNING

5.1 Introduction

In this work, we consider the task of combating fake news dissemination in online

social media systems. Under the assumption we can characterize the diffusion of news

over the network by some stochastic process, and that the diffusion of true news is

independent from the diffusion of fake news, our aim is to mitigate the spread of fake

news by increasing the spread of true news.

We have a fixed budget that can be provided as incentives and thus, appropriate

selection of users and efficient allocation among those is important. The response

a user receives on sharing some post is an important indicator of her effectiveness

in spreading the news further, and can help to determine the amount of incentive to

spend on the user. For example, in social networks, this response can be quantitatively

measured in terms of number of “likes” received by the user.

Social reinforcement refers to the process where acceptance and praise from others

reinforces behaviors/preferences of an individual (see e.g., [18]). We propose to model

feedback from peers to learn better incentivization policies. Rewards on social media

(i.e., ‘likes’) are a form of acceptance and appreciation from peers, which affects the

regions of the brain responsible for decision-making and thus leads to a change in their

behavior [137, 138]. Specifically, we use the number of ‘likes’ obtained on sharing a

post users provide a positive reinforcement by hitting the ‘like’ button as observed

in [19]. ‘Likes’ have also been used as an important feature in classification of news

as fake or true [139].

To learn how to efficiently allocate incentives, we consider estimates of user feed-

back and user political bias. Since the response a user provides for a tweet is likely to

depend on her degree of political bias, we conjecture that estimates of user response

37

(as a function of political bias) can help to efficiently select people to incentivize to

promote true news. To incorporate these effects, we consider a user’s leaning towards

the Democratic and Republican Parties. Thus, we model the feedback as a function

of political bias, towards the Democratic and Republican Parties. Specifically, we

model user response using a Multivariate Hawkes Process (MHP), whose base inten-

sity is proportional to their political bias, and interleave it with the news diffusion

processes (also modeled as an MHP). We estimate a user’s initial political bias using

a community detection algorithm and propose a model to update the bias over time.

Our setting is a cooperative multi-agent RL problem (MARL), where the number

of agents is large and the state and action spaces are continuous, which makes the

problem more challenging. Much of the previous work in MARL focuses on learning

a separate model for each user independently, or learning jointly by considering the

full state and action spaces across all users. However, both these approaches are

computationally intensive for a large number of agents. We avoid this by decoupling of

the post and response processes to approximate the joint action space more efficiently.

We dynamically optimize the intensity for the MHP corresponding to post events, but

only estimate parameters for the response events from historical data. By doing this,

we reduce the number of parameters and avoid noisy policy estimates.

To evaluate the performance of our model, we use two real-world Twitter datasets.

Since we have access to limited real-world data, and we cannot make real-time in-

tervention, we perform experiments on semi-synthetic data demonstrating the results

with respect to different network properties for fake and true news diffusion likely to

hold in real-world. The results show that adding intervention to increase the spread

of true news is beneficial for mitigating the impact of fake news relative to providing

no incentive. And compared to other baselines that do not consider estimates of user

response and political bias, our model is able to achieve increased true news diffusion,

in terms of maximizing the number of people reached and the number of mitigated

users, that is users who are already exposed to fake news, that become exposed to

true news.

38

5.2 Related Work

[15] proposed to mitigate the impact of fake news by making interventions to true

news diffusion process modeled as MHP, and mapping the problem to a Markov De-

cision Process (MDP). Our work is motivated by their approach, but we extend their

model to incorporate a feedback component between pairs of users modeled using a

separate MHP, and interleave it with the news diffusion MHP. We believe that feed-

back is important in selection of users for efficient incentive allocation under budget

constraints. The feedback provided to users can be thought of as a reward shaping

technique, which is used in multi-agent credit assignment and resource allocation

problems where it is important to determine the contribution of each agent towards

the common system goal for learning better policies [55]. However, our approach is

different from standard reward shaping techniques, which consider a separate feed-

back for each user in the reward function. Since that requires a separate model for

learning each agent’s policy function, it is computationally intensive for large number

of agents. To avoid this issue, we provide user feedback as input to the policy function

approximator.

[44] uses deep reinforcement learning with marked temporal point processes for

incentivizing agents in personalized teaching and viral marketing domains. Similar

to our approach, they use feedback events to improve policy learning. However,

their events are application specific and are assumed to be generated from a black

box distribution. In contrast, we propose a process governing generation of feedback

events, and evaluate it using events from real data. Moreover, [44] trains a separate

model for each user independently, which is computationally intensive. In contrast,

we decouple the news diffusion and response processes to learn an approximate model.

This reduces the size of the joint action space and helps to avoid noisy estimates, in

addition to reducing the number of parameters (compared to the full joint).

39

5.3 Problem Definition

We consider the following setting. Let there be N users and let G represent

the followers network, where Gji = 1 if i follows j, and 0 otherwise. We consider

tweets corresponding to news stories, labeled fake (F) or true (T). We consider

the act of tweeting and retweeting by users as a news sharing event and do not

differentiate between them. The data contains a temporal stream of events e =

(t, i, h), where t is the time-stamp at which user i (re)tweets a post with label h = F

or T corresponding to fake or true news. Let Ni(t, h) be the number of times user i

shares posts corresponding to h = F (fake) or T (true) news, respectively up to time

t. Let T be the time-horizon of the task, divided into K stages of length ∆, where

stage k corresponds to the time interval [τk, τk+1) such that τk+1 − τk = ∆.

The impact of fake and true news can be measured in terms of the number of

people who are exposed, that has also been used in [7, 15]. We can compute the

number of times a user i is exposed to news by time t as G.i · N (t, h). Since it is

difficult to stop the spread of fake news, we want to ensure that users receive at least

as much true news as they do fake news (i.e., G.i · N (t, F) ' G.i · N (t, T)). We

believe that an increased exposure to true news can increase skepticism for fake news,

as described in Section 1. Note that our goal is not to detect, but to mitigate the

impact of fake news. Thus, we consider the (re)tweets labeled fake/true apriori.

The objective is then to incentivize users to share true news in a targeted fashion

such that the people who are exposed more to fake news are also exposed more to

true news. From an algorithmic perspective, we want to learn how to efficiently

allocate the incentives assuming a budget constraint. Specifically, given the state

of the system s ∈ RdN(s ≥ 0, d ∈ Z+), which represents d network activities over

N users, we want to learn an incentivization policy function π : s → a to obtain

incentive actions a ∈ RN(a ≥ 0) corresponding to the increase in the likelihood of

sharing true news per user. Since we will only incentivize sharing of true news, we

evaluate our intervention strategy by computing the correlation between exposures

40

to fake and true news. We also measure the distinct number of people mitigated and

assess the effectiveness of users selected by the strategy to spread true news.

5.4 News Diffusion Processes

A number of diffusion models have been developed to capture the spread of infor-

mation in social networks. Many of these models are based on stochastic processes

that use intensity functions governing the sharing rate per user. Some intensity func-

tions depend only on network structure, while others take into account the effect of

previous events and interactions between users. We considered several alternative

processes and evaluate which better characterizes the diffusion of news in our real

data.

Generative Process Since the process of fake and true news diffusion is the same

except for parameters, we provide a generic expression for intensity. Let λh,i be the

intensity for user i sharing a post, where h = T corresponds to true news, and h = F

corresponds to fake news. The generative process to determine time-stamps at which

user i makes posts corresponding to true news, given their respective intensities, is

described as follows. Let {th,i,j}j≥1 be the time-stamps for user i. Define {th,i,j}j≥1

to be the inter-arrival times, which are assumed to be independent for all processes.

Assuming the diffusion processes start at time 0, we can write, th,i,m =
m∑
n=1

th,i,n.

Ni(t, h) is the number of times user i shares posts by time t (defined in Section 5.3).

We have Ni(t, h) =
∑
m≥1

I(t ≥ th,i,m). Let κh,i be the fraction of news tweets up to

time T by user i for h = T (true) or h = F (fake) news. These values are computed

from historical data. The sampling method to generate inter-arrival times depends

on the type of diffusion process and is explained for each type below.

41

5.4.1 Diffusion based on Network Structure

DEG Intensity depends on the number of followers and followees of the user: λh,i =

κh,i(
N∑
u=1

Giu +
N∑
u=1

Gui)

CEN Intensity is proportional to closeness centrality [140]. Let δiu be the shortest

distance from i to u in G: λh,i = κh,i(
N∑
u=1

δiu)
−1

Generative Process The above processes are homogeneous poisson processes,

whose inter-arrival times are exponentially distributed, fh,ti(t) = λh,ie
−λh,it, with

inverse cdf is given by F−1
h,ti(u) = − lnu

λh,i
. Since F−1

h,ti(t) has a closed form expression,

we use inverse transform sampling to sample th,i,j =
− lnuj
λh,i

, where j ≥ 1, uj ∼ U(0, 1).

After we obtain the inter-arrival times ti,j, we can generate the event times th,i,j =
j∑

n=1

th,i,n.

5.4.2 Diffusion based on History and Influence

We consider an N -dimensional MHP, where each dimension corresponds to a user

i. MHP naturally captures the phenomenon of self and mutual excitations between

user events discussed in Sec. 4.3.

λh,i(t) = µh,i +
N∑
j=1

∫ t

0

Φji (ωhe
−ωht) dNj(s, h)

where, the integral is over time, and s is used as placeholder for limits {0, t}. µh,i is

user i’s base exogenous intensity. The second term considers the effect of previous

events and mutual excitations among users, where Φ is a kernel adjacency matrix and

Φji corresponds to the impact that user j has on user i in the news diffusion process.

We use the standard Hawkes exponential kernel ωhe
−ωht to capture the decaying effect

of history over time, where ωh is the hyper-parameter governing the rate of decay.

µh and Φ are estimated from real data.

42

Generative Process Ogata’s Thinning Algorithm [141] is used to generate event

times by sampling inter-arrival times using rejection sampling. The idea is to first

generate events from a homogeneous poisson process with a rate greater than the

desired rate, and then reject an appropriate fraction of events generated to achieve

the desired rate [142]. After this, we assign a dimension i ∈ [1, N] to each of the

time-stamps generated with probability proportional to λh,i.

Efficient Computation of Intensity To incorporate the effect of past events,

much of the recent work uses complete trajectories of users (eg. [44]). However, since

we consider MHPs to characterize user activities in the network, our model can include

the effect of self and other users’ history and actions implicitly, as in [15] and [43].

The efficient computation of history and summing it to one scalar per dimension as

described below, is computationally efficient as we do not need to store the complete

trajectory for each user.

The diffusion of news is modeled as MHP, a non-Markovian process. However,

since we map the problem to a Markov Decision Process (MDP), we need to include

the effect of history from previous events. Let HF,i be the effect of intensity due

to all events in previous k stages, for user i, on the future t > τk, for fake news

diffusion. HF,i = ωF
N∑
j=1

∫ τk
0

Φji e
−ωF (t−s) dNj(s, F). As observed in previous work

([143,144]), exponential kernel allows to efficiently compute the intensity, by defining

yF,k,i = λF,i(τk) − µF,i, so that, HF,i = yF,k,ie
−ωF (t−τk). Hence, using yF,k,i, we can

efficiently compute the intensity at t > τk, without having to sum over all previous k

stages. Similarly, we have yT,k,i = λT,i(τk)− ak−1,i − µT,i for true news diffusion.

5.4.3 Diffusion based on Political Bias

Apart from network properties and user interactions, we believe that user’s politi-

cal bias is an important factor governing the probability of her sharing a post. Hence

we model political bias and its change over time based on [145]. The idea is that when

two users interact, it changes their degree of bias. Let Gi. = {j|Gij = 1} be the set

43

Algorithm 1 Update Political Bias

1: Input: Ik, {Gi.}Ni=1, {bk−1,i}Ni=1

2: /* Initialize bias values at stage k with those at stage k − 1 */

3: for i = 1...N do

4: bD,k,i = bD,k−1,i, bR,k,i = bR,k−1,i

5: end for

6: /* Update bias based on interactions during stage k*/

7: for e = (t, i, h) ∈ Ik do

8: Let i be the user corresponding to the event e.

9: for each j ∈ Gi. do

10: if bD,k−1,i > bR,k−1,i then

11: bD,k,j = bD,k,j + 0.5[|bD,k,i − bD,k,j| − ρ(|bD,k,i − bD,k,j|)]

12: bR,k,j = 1− bD,k,j
13: else

14: bR,k,j = bR,k,j + 0.5[|bR,k,i − bR,k,j| − ρ(|bR,k,i − bR,k,j|)]

15: bD,k,j = 1− bR,k,j
16: end if

17: end for

18: end for

19: return {bk,i}Ni=1

of followers of user i. Let Ik be the list of events {e = (t, i, h)}τk≤t≤τk+1
that occurred

during stage k, sorted in chronological order. Let bD,k,i and bR,k,i be the bias of user

i, respectively, for stage k. We say that a user i, in stage k, has polarity pk,i = D

if bD,k,i > bR,k,i, and pk,i = R otherwise. We assume that the bias is constant in the

interval [τk, τk+1) and update it at the end of stage k (time τk+1), taking into account

the cumulative effect of interactions during the interval, as described in Algorithm

1. The function ρ in lines 11 and 14 helps to maintain the bias values in [0, 1] as

ρ(x) = 0 if x ∈ [0, 0.5], and ρ(x) = 1 if x ∈ (0.5, 1].

44

Aligned (AL) If a user i has polarity D in stage k, then her intensity for stage

k + 1 will be set to her bias (at stage k) for D, otherwise the intensity will be set to

her bias for R: λh,k+1,i = I(pi,k = R) bRi,k + I(pi,k = D) bDi,k

BCM Similar to AL, but the bias at stage k is computed using Bounded Confidence

Model (BCM) [41, 42] (Section 2.5) that has been widely used to capture opinion

dynamics in social networks.

Generative Process Given the bias values computed for stage k, the diffusion pro-

cess during stage k+ 1, for each user i, is a homogeneous Poisson process. Therefore,

we sample the inter-arrival times as tk+1,i,j = − lnU(0,1)
λk+1,i

. For stage k+ 1, we can write

tk+1,i,j = τk+1 +
j∑

n=1

tk+1,i,n.

5.4.4 Evaluation of Proposed Processes

Our goal is to quantitatively assess which of the above processes better charac-

terizes news diffusion in real-world data. For this, we use a portion of the data as

training data to infer parameters, and then simulate processes for later stages, with

the assumption that parameters learnt from historical data (past stages) continue to

describe the process in the future. We compare characteristics of the simulated data

with the real data to evaluate the various processes.

We use two real-world datasets, Twitter 2016 and Twitter 2015 [5,146], with 750

and 2050 users in the networks, respectively. We observed that in our data around

75% of the news last for 40 hours, and thus we take T = 40 hours, with 40 stages of

length ∆T = 1 hour each. Also we observed that true news decays faster than fake

news, and thus chose ωF < ωT . Specifically, we set ωF = 0.6 and ωT = 1 for Twitter

2016, and ωF = 0.75 and ωT = 1 for Twitter 2015. To decide ω, we performed a grid

search and chose the one with least error. We consider ω as a pre-specified hyper-

parameter as in [15], and did not estimate from data due to increased computational

cost.

45

We infer parameters (µ,χ,Φ) using Maximum Likelihood Estimation as in [15,

147, 148] using data from first 10 stages. Suppose we have l previously observed

sequences I = {oq}lq=1, where each o is a sequence of events {(toj , ioj , hoj)}noj=1 observed

during the first 10 stages, and no is the number of events in o. Since we assume

that the diffusion of fake (hoj = F) and true (hoj = T) news is independent, we

separate the events corresponding to fake and true news diffusion, and learn the

respective parameters separately. We provide a generic expression for likelihood,

with exponential kernel for MHP:

L(Θ) =
∑
o∈I

[
no∑
j=1

log λioj (t
o
j)−

N∑
i=1

TPE∫
0

λi(t)dt)] (5.1)

where TPE corresponds to the time-stamp of the historical data used to estimate

parameters (10 in our case). We minimize with L1 regularization to avoid over-fitting,

min
µ,Φ
−L(Φ,µ) + ζ1||µ||1 + ζ2||Φ||1 (5.2)

where ||Φ||1 =
N∑

i,j=1

Φij, is used to enforce sparsity of the matrix Φ. To efficiently

solve our optimization problem, we divide it into easily solvable sub-problems, based

on the approach of Alternating Direction Method of Multipliers (ADMM) [149]. See

[147] for more details on efficient optimization.

We evaluate which of the proposed processes better captures the real data. The

training/test framework is shown in Fig. 5.3. The simulations of MHP are performed

using “tick” python library ([150]). Using the parameters learned from the first 10

stages, we simulate the process for later stages. Let ND,i(t) be the number of events

of user i up to time t in the real data, and let NP,i(t) be the number of events of user

i up to time t obtained from the simulating process P . NP,i(t) = Ni(t, F) for fake

news diffusion and NP,i(t) = Ni(t, T) for true news diffusion defined in Sec. 5.3. For a

given interval of length ∆, we define error EP,∆ as the absolute difference between the

number of events generated from the simulated process P and the number of events

in the real data in the interval ∆, averaged over all users:

46

(a) Fake News Processes (b) True News Processes

Figure 5.1.: Difference (expected and observed number of events)

EP,∆ =
1

N

N∑
i=1

|[ND,i(t′ + ∆)−ND,i(t′)]− [NP,i(t′ + ∆)−NP,i(t′)]| (5.3)

where t′ > TPE(= 10). Figure 5.1 shows the error, for each process, corresponding to

different values of ∆, where we average over 10 different time intervals for each value

of ∆ by taking different values of t′ ∈ [11, 40]. We observe that MHP achieves the

least error, and that it decreases with increasing interval length, for both fake and

true news diffusion. This can be attributed to the fact that MHP considers history of

previous events, and mutual excitations. Thus, we can say that MHP closely models

the diffusion of fake and true news in real-world data, and use it as the process

characterizing news diffusion in our model described next.

5.5 Incentivization Model

Let sk be the state of the network at stage k. We define actions ak ∈ RN , where

ak,i ≥ 0 is the incentive provided to user i to promote true news, during stage k.

We learn the function π : sk → ak by using policy optimization problem in a Markov

47

Decision Process (MDP) ([151]), such that the reward (objective) defined in Sec. 5.5.2

is maximized. MDP based methods take into account the reward achieved on applying

the policy, from the current stage as well as from the future stages. We add ak as an

intervention to the intensity function for true news diffusion modeled using MHP.

λT,i(t) = µT,i + ak,i +
N∑
j=1

∫ t

0

Φji (ωT e
−ωT t) dNj(s, T) (5.4)

where τk ≤ t < τk+1 for the kth stage. Since the total amount of incentive provided

is usually limited, we impose budget constraint by fixing the sum of incentives for all

users at stage k to be Ok, (
N∑
i=1

ak,i = Ok). We consider ak as actions in the MDP, where

the space of all possible actions is given by Ak = {ak ∈ RN |ak ≥ 0, ||ak||1 = Ok}.

Generative Process The process to generate events after applying intervention is

the same as in Sec. 5.4.2, except the time-stamps are generated for every stage k using

the corresponding intensity for the stage, similar to the diffusion based on political

bias (Sec. 5.4.3).

5.5.1 State Features

We represent the state of the network sk for stage k as sk = (nk,wk). Here, nk(T)

and nk(F) refer to the number of true and fake news events in the previous stage,

respectively, and are obtained as nk(h) = N (τk, h)−N (τk−1, h), where N (t, h) is the

number of events upto time t, corresponding to true (h = T) or fake (h = F) news

diffusion, described in Sec. 5.3. wk refers to user responses in terms of the number of

likes received.

Number of Events in Previous Stages

As shown in previous work [15, 152, 153], a common choice of features to param-

eterize point processes is the number of events in the previous stage. Hence, we

48

define nk(F) ∈ RN and nk(T) ∈ RN , such that nk,i(F) = Ni(τk, F)−Ni(τk−1, F) and

nk,i(T) = Ni(τk, T)−Ni(τk−1, T).

User Response

We consider the news diffusion and response processes to be inter-leaving, and

measure response for a user at the end of each stage. Let W(t) = [Wui(t)]
N
u,i=1,u 6=i,

where Wui(t) is the number of times user i likes the (re)tweets by user u up to time t.

Wk,u =
N∑

i=1,u6=i

∫ τk+1

τk
dWui(s) is the total likes received by user u during stage k. Hence,

the feature vector representing the feedback received by users is wk = {Wk,u}Nu=1.

We cannot make real-time interventions on Twitter and do not know apriori the

response (number of likes) a user would receive on (re)tweeting under the news dif-

fusion model. Hence, we model the environment generating user responses using

another MHP, motivated by [154] that modeled the number of times user i retweets

source u. We extend their approach, in our case, to model the number of likes given

by a user i to source u, by incorporating the stage (time) dependent political bias

as the base exogenous intensity explained below. For each pair of users, we have

corresponding intensity modeled using MHP, given as {ψu,i(t)}, u, i ∈ [1, N], u 6= i).

Aligned Bias User Response

If source u and her follower i have the same political leaning (polarity), then the

probability (intensity) of i “liking” u’s post increases, whereas if they have different

polarity, then the probability decreases. To realize this, we adjust the base intensity

depending on the bias values.

ψk+1,u,i(t) = χi + I(pk,i=pu,k)bpk,i,k,i − I(pk,i 6=pk,u)b¬pk,i,k,i

+
N∑

j∈G.i

∫ t

0

ωLGji e
−ωLt dWuj(s)

(5.5)

49

where t ∈ [τk, τk+1). χi is the base intensity estimated from the data that is

independent of the history. G.i is the set of followees of i. Using above, we try to

accumulate the response a user receives from her direct and indirect followers, by

aggregating the likes by followees of user i to the post of user u. The more frequently

the followees of i like u’s posts, the more she tends to “like” u’s posts. When i likes u’s

post, Wui(t) gets incremented, furthur increasing the chances of liking u’s post among

the followers of i. We simulate the above process for each stage k by first computing

the users u who shared true news during stage k, i.e., users with nk,u(T) > 0, and

then generate feedback events using ψk,u,i, only for those users. For simplicity, we set

ωL = 1.

To test whether bias helps to model the response process better, we compare it

with the alternative model described below that doesn’t consider political bias.

Without Bias User Response

ψu,i(t) = χi +
N∑

j∈G.i

∫ t

0

ωLGji e
−ωLt dWuj(s) (5.6)

To evaluate how well the above model captures “like” events in the network,

we use a similar setting as in Sec. 5.4.4, and observed that the Aligned Bias User

Response model outperforms Without Bias User Response model that does not take

into account bias. We compare the number of likes generated from the above models

(after estimating the parameters) to those observed in the real data. The average

absolute difference as a function of time interval length is shown in Fig. 5.2. We can

see that the Aligned Bias User Response model is better than the Without Bias User

Response model.

5.5.2 Reward

We use the correlation between exposures to fake and true news ([15]) to quantify

our objective that people exposed more to fake news are also exposed more to true

50

(a) Twitter 2016 (b) Twitter 2015

Figure 5.2.: Difference in expected and observed number of likes

news. The number of exposures by time t is given by G ·N (t, h), and that in stage

k can be obtained as G ·N (τk+1, h)−G ·N (τk, h), i.e. G · nk(h). Thus, the reward

is given as,

R(sk) =
1

N
(nk(T))>G>G nk(F) (5.7)

5.5.3 Policy Learning and Optimization

Regulating policy at different time steps helps model the dynamic behavior of

people, for e.g., a user is active for a certain time period time and becomes inactive

afterwards. Also, in our problem, we impose a budget constraint on the total amount

of intensities allocated to users, and thus, regulating their distribution is important.

Therefore, we consider multi-stage interventions, i.e., interventions at regular spanned

time intervals.

Our goal is to learn policy π to determine the intervention to be applied at each

stage for true news diffusion process such that the total expected discounted reward

51

for all stages, J =
K∑
k=1

γkE[R(sk, ak)] is maximized, where γ ∈ (0, 1] is the discount

rate.

In order for our policy to have long-term impact, we consider both immediate and

future rewards. But, as a post ages, its influence decreases [148]. In social networks,

the feeds are chronologically sorted [44], and thus, a user sees most recent posts from

her peers than older. This indicates that reward from recent stages is more important

than that from later stages in time. Since, our reward is based on number of exposures

to a post, we use discounted rewards setting (as used in previous work (e.g., [15,31]),

that is easier to realize using multi-stage interventions described above. Using Eq. 5.7,

we can write,

E[Rk(sk, ak)] =
1

N
E[(nk(T))> G>G nk(F)] =

1

N
E[nk(T)]> G>G E[nk(F)] (5.8)

The expected reward for fake and true news diffusion processes can be decomposed

due to the independence assumption. Following [15] and [143], we obtain,

E[nk(T)] = Γh(µT + aT,k) + ΥhyT,k (5.9)

E[nk(F)] = ΓhµF + ΥhyF,k (5.10)

where, yT,k and yF,k are defined in Sec. 5.4.2, that capture the effect of history due

to past events, Υh = (Φ− ωhI)−1(e(Φ−ωhI)(∆) − I) and Γh = Υh + (Φ− ωhI)−1(Υh −

I(∆))/ωh. Thus, we compute the expected reward as,

E[Rk(sk, ak)] =
1

N
(ΓT (µT + ak) + ΥTyT,k)

>

G>G (ΓFµF + ΥFyF,k)

(5.11)

The linear dependence of expected reward on policy ak results in a convex optimiza-

tion problem. Similarly, we calculate E[wk] (as in [143]).

We represent the policy as a function of state (sk), parameterized by weights θ,

that is, ak = π(sk;θ), where π is the function we want to learn. Each state is associ-

ated with a value V (sk), that is, the total expected reward when in the given state

following policy π, V (sk) = E[
K∑
j=k

γjRj|(sk, π)]. Since it is computationally expensive

52

to compute V (sk) from future rewards for every possible policy π, we approximate the

value as a function of the state parameterized by weights φ, that is, V (sk) = f(sk;φ),

as in [30,31]. Policy gradient methods are more effective in high dimensional spaces,

and can learn continuous policies. Thus, we use state-of-the-art advantage actor-critic

algorithm [28] to find the optimal policy. The details are presented in Algorithm 2.

Setup

Fig. 5.3 shows the complete training/test setup for our model. In the figure,

e[t, t′] and l[t, t′] represent the post and like (feedback) events between time t and

t′. We use MHPλ to denote the MHP defined in Sec. 5.4.2, and MHPψ to denote

the MHP defined in Sec. 5.5.1. We use the data from time [0, K(= 10)) to learn

the parameters. Then we divide the remaining data corresponding to time interval

[K(= 10), 4K] into three parts, data from [K, 2K) corresponds to training dataset

used to learn the policy, data from [2K, 3K) corresponds to evaluation dataset used

to evaluate the learnt policy by measuring reward obtained, and data from [3K, 4K]

is used as held-out dataset for experiments in Sec. 5.6.2.

We obtain the training dataset and evaluation dataset by generating post (tweet)

and feedback events using MHPλ and MHPψ, respectively. Generating data using

MHPs is supported by our observation that MHPλ and MHPψ better capture the

diffusion and feedback processes as shown in Sections 5.4.4 and 5.5.1. Moreover,

since we cannot make real-time intervention to test the policy, we use a simulated

environment (using MHPs) as a proxy for online interventions to measure the reward

using evaluation data. In order to make the training and evaluation environment

similar, we use the events generated by simulating MHPs with parameters learnt

from real data. Moreover, we compute the expected value of reward in the future

(next stage) assuming that the diffusion process follows the MHP.

Let there be K stages in the training data. Given features for stage k, we find

the policy to be applied for stage k + 1. We use a multi-layer feed-forward neural

53

Figure 5.3.: Policy Learning and Evaluation Framework

nk,1(F)

nk,2(F)

nk,1(T)

nk,2(T)

wk,1

wk,2

Value (V (sk))

ak,1

ak,2

Figure 5.4.: Neural Network Architecture

54

Algorithm 2 Policy Learning and Optimization

1: Input: {sk}Kk=1,µ,Φ,χ, ω, γ, ηθ, ηφ

2: Output: θ∗

3: repeat

4: for k = 1, ..., K − 1 do

5: ak+1 = π(sk;θ)

6: V (sk) = f(sk;φ)

7: ak+1 = ak+1

||ak+1||1
×Ok /* Budget Constraint */

8: Compute E[Rk+1(ak+1)] (Eq. 5.8)

9: nk′(h) = E[nk(h)], wk′ = E[wk], sk′ = (nk′(h),wk′)

10: V (sk′) = f(sk′ ;φ)

11: rk = E[Rk+1(ak+1)] + γV (sk′)

12: end for

13: Lθ = 0, Lφ = 0

14: for k = 1, ..., K do

15: Let Dk =
K∑
j=k

γk−1rk

16: Bk = Dk − V (sk) /* Compute Advantage */

17: Lθ = Lθ +Bk

18: Lφ = Lφ + ||V (sk)−Dk||2
19: end for

20: Jθ = Lθ, Jφ = −Lφ
21: θ = θ + ηθ∇θJθ, φ = φ+ ηφ∇φJφ

22: until ||∆θ|| < 0.1

23: θ∗ = θ

24: return θ∗

network (NN) to learn this policy π. The input to the NN, for stage k, is the state

sk = [nk(F),nk(T),wk]. Hence, the dimensionality of input layer is 3N , where N is

the number of users in the network. Now, V (sk) = f(sk;φ), and ak+1 = π(sk;θ). We

55

use the same NN to learn both θ and φ, however they are independent of each other.

We use one hidden layer to learn the policy π : sk → ak+1, and a separate hidden

layer to learn the value function V (sk). There are 2 different outputs of the NN, a

scalar value V (sk), and an N-dimensional output corresponding to the action ak+1,i

for each user i. We used Adam optimizer and learning rate of 0.02. Fig. 5.4 shows

the network for two users.

After we obtain the policy as output of the NN, we impose budget constraint

by normalizing, as shown in line 7 in Alg. 2, and compute the expected reward for

stage k + 1 using ak+1 (line 8). nk′ and wk′ are the expected feature vector for the

state sk′ obtained after applying the policy (line 9), and we find the expected value

of the next state V (sk′) in line 10. rk represents the expected reward that could be

obtained by applying action ak+1 in state sk, in line 11, that comes from the Bellman

Optimality Equation [151]. Instead of simply using the expected reward to optimize

the policy, we use an advantage function that is obtained by subtracting the value

of state as baseline from the expected reward. This helps to reduce the variance in

estimates. Lines 15-16 show the computation of advantage function for each state sk.

In lines 20-21, we learn the optimal parameters θ and φ, initialized randomly, using

stochastic gradient descent, with learning rates ηθ and ηφ, respectively.

5.5.4 Policy Evaluation

To evaluate the learnt policy, we find the intervention a = π(s) where s = (n,w)

obtained from events in the simulated evaluation data, as shown in Fig. 5.3. We

simulate MHPλ after adding a to the base exogenous intensity µT for true news

diffusion, and compute the following evaluation metric.

Evaluation Metric To compare the performance of different methods, we consider

the reward along with the fraction of users exposed to fake news that become exposed

to true news. The latter helps to assign more importance to the mitigation of distinct

users over mitigation of few users with high exposures. Let LT,k and LF,k be the sets

56

of users exposed to true and fake news, respectively, during stage k. LT,k = {i|i ∈

[1, N],nk(T) ·G.i > 0} and LF,k = {i|i ∈ [1, N],nk(F) ·G.i > 0}. Define performance

as P =
K∑
k=1

Rk × |LT,k∩LF,k|
|LF,k|

We measure the performance of a method relative to

that obtained by applying no intervention, in order to assess the gains by making

interventions. Specifically, we report the difference between the performance after

applying the learnt policy and that without applying a policy. Note that since we

cannot make real time interventions, we cannot explicitly test if there is a reduction

in fake news spread.

5.6 Experiments

For experiments, we used Ok ∼ N · U(0, 1), and γ = 0.7. We compare our model,

that we call MHP-U, against different baselines described below.

5.6.1 Baselines

Vanilla MHP (V-MHP)

Policy is a function of user events (tweets), similar to [15]), does not consider bias

or feedback.

Exposure-based Policy (EXP)

To mitigate users who shared more posts related to fake news in past [15]: Inter-

vention ak,i ∝
k∑
l=0

N∑
j=1

Gij nl,i(F).

DEG

Intervention ai ∝ degree of a user i (Sec. 5.4).

57

CEN

Intervention ai ∝ closeness centrality of a user i (Sec. 5.4).

AVG

Intervention ak,i = Ok
N

, that is, the average budget per user.

Random (RND)

Intervention ak,i ∝ U(0, Ck
N

]

5.6.2 Results

Fig. 5.5 shows the relative performance of different methods. The correlation

between fake and true news exposures is higher for MHP-U, and it also maximizes

distinct number of users exposed to fake news. The gain in performance comes from

the pairwise user feedback (MHPψ) modeled.

Fig. 5.6 shows a change in performance with respect to the ratio of decay parameter

for true and fake news diffusion. As this ratio increases, the performance decreases

exponentially. This is due to the fact that in the later stages, we have less true news

events compared to fake news events. We mark the ratio corresponding to the settings

described in Sec. 5.4.4, with a vertical line.

The above results serve as a proof of concept that providing incentives helps

to increase the spread of true news even among the people exposed to fake news.

However, since we cannot make any real-time interventions, we compare different

methods by measuring the impact of nodes selected on held-out dataset (Sec. 5.5.3).

Let S(τ) be the set of users who spread true news according to the model by time

τ , that is, S(τ) = {i|(Ni(τ, T) − Ni(2K,T)) > 0}. We call these as selected users,

and the remaining users are considered missed (M(τ)) by the model. We consider

τ ∈ [2K, 3K]. Given users in S(τ) and M(τ), we calculate the total number of users

58

(a) Twitter 2016 (b) Twitter 2015

Figure 5.5.: Relative Performance on Twitter Datasets

(a) Twitter 2016 (b) Twitter 2015

Figure 5.6.: Relative Performance vs Ratio of Decay

who retweeted the posts of these users between time [τ
′
, τ

′
+ ∆) where τ

′
= τ + g, in

order to measure the impact of the selected and missed nodes in terms of the people

actually reached out in real data. g = {0, 2, 5, 8} indicates the gap or number of

stages after which we want to measure the impact (in the future). We considered

different values of ∆ ∈ {1, 2, 3, 4, 5} and report the average values in Table 5.1. We

see that the impact of selected nodes (S) is greater than that of missed nodes (M) for

MHP-U, and V-MHP by a large margin.

59

Table 5.1.: Sum of Retweets at τ + g for Users Selected at τ

MODEL
τ

′
= τ + 0 τ

′
= τ + 2 τ

′
= τ + 5 τ

′
= τ + 8

S M S M S M S M

MHP-U 1000.5 400.8 830.2 223.3 630.8 170 553.3 140.4

V-MHP 700.4 416.6 553.7 250.4 420.9 162.2 369.1 148.8

DEG 590.6 500.3 445.3 350.1 330.3 259.8 296.6 233.4

EXP 600.2 575.7 299.1 437.8 210.5 298.8 200.2 291.7

CEN 538.5 569.9 369.2 334.6 283.7 257.6 246.1 223.3

AVG 420.7 598.2 260.3 449.1 215.4 325.6 173.3 300.2

RND 410.1 518.4 205.7 459.2 178.7 340.2 136.1 306.4

5.6.3 Experiments on Semi-Synthetic Data

We use subsets of twitter data to study the performance with respect to different

network parameters. The results, on Twitter 2016, are shown in Fig. 5.7, where we

highlight the region closely representing real-world scenarios. We observe that our

method outperforms the baselines by larger margin in all such regions.

Ratio of out-degree to in-degree

Fake news sources have lower out-degree and high in-degree, compared to sources

for true news [155,156]. Fig. 5.7-a shows that the performance decreases as the ratio

of ratio of out-degree to in-degree for sources of fake news to that of true news,

increases. This can be due to a decrease in the number of followers for true news

sources. This ratio is usually less than 1 in real networks [157].

60

Average Degree

[158] showed that the average degree of users in fake news network (users who

retweet fake news) is more than that in true news network. Fig. 5.7-b shows that the

performance decreases as the ratio of average degree for fake news network to true

news network increases, since fewer people are reached out by true news spreaders.

Centrality

Closeness centrality for sources of fake news is higher than that for true news

[4, 157]. Fig. 5.7-c shows change in performance with respect to ratio of average

closeness centrality of fake news sources to that for true news. The performance is

high for ratio 1.

Political Bias

[1] observed that Democrats (D) are more likely to believe fake news than Re-

publicans (R), and R are more likely to believe true news than D. We say that a user

is High D (High R) if bD,0,i > 0.5 (bR,0,i > 0.5) and Low D (Low R) otherwise. Based

on this, we create four groups of people. Group 1: High D fake, High R true news

sources. Group 2: High D fake, Low R true news sources. Group 3: Low D fake,

High R true news sources. Group 4: Low D fake, Low R true news sources. Fig. 5.7-d

shows that the performance is least for Group 1, when bias is high for both R and D,

indicating that it is difficult to encourage people to spread news that does not align

with their ideology.

61

(a) Ratio of Out-to-in Degree (b) Ratio of Average Degree

(c) Closeness Centrality (d) Political Bias

Figure 5.7.: Relative Performance (Different Network Properties)

62

6 EFFICIENT CENTRALIZED SOCIAL REINFORCEMENT LEARNING

6.1 Introduction

News dissemination on Twitter is aided by two types of events—tweets, in which

users share their own posts, and retweets, in which users re-post the information

shared (tweeted) by others. Notably, as more people spread some news, others also

start circulating it, irrespective of the underlying evidence, which is referred to as the

BandWagon effect [159]. Thus, if more people spread true news, their peers will also

share true news more, and social media sites can be a platform for people to help

reduce the spread of fake news [160].

Intervention-based methods aim to mitigate the impact of fake news by increasing

spread of true news [15]. These works conjecture that an increased exposure to

true news will increase suspicion and mistrust for fake news, leading to a potential

decrease in fake news spread. In the previous chapter, we proposed a centralized

social reinforcement learning approach that learns how to incentivize users to share

true news such that people exposed more to fake news also become exposed more to

true news [43]. Multi-agent RL in a social context is difficult when there are a large

number of users with relatively few interactions due to high dimensionality of the

continuous state and action spaces. To reduce the computational cost, we previously

considered tweets and retweets to be equivalent events.

However, some recent studies have observed large differences in the diffusion pat-

terns of tweets and retweets, especially for fake news (e.g., [161]). They observed that

the number of retweets for fake news are much higher than that for true news. And,

retweets play a major role in the widespread and faster diffusion of news, compared

to source tweets [3]. [162] found that Twitter has a low level of reciprocity and the

influence between pair of users is asymmetric. They also observed that tweets are

63

able to reach a greater audience due to the retweets. The retweet network is very

different from the followers network, and most of the retweets are from users who do

not follow the source user of the tweet [3, 163]. [158] studied the differences between

the network structure of fake and true news diffusion, and found that on an aver-

age, users in the fake news diffusion network retweet more and are retweeted more,

compared to those in the true news diffusion network. To capture these differences,

we model the tweet and retweet events with separate processes, which increases the

model dimensionality, particularly when the goal is to learn centralized policies and

decentralized learning cannot scale to large number of users.

In the previous chapter ([43]), we presented a Social RL approach to mitigate

the impact of fake news by learning interventions to increase the intensity of true

news diffusion. We employed joint policy learning to capture agent dependencies,

however, we still estimate ∼N2 parameters resulting in high computational cost and

larger variance in policy estimates due to sparse interactions. Also, due to the high-

dimensionality of joint state/action representation in the previous approach, the im-

pact of an individual’s state features in learning her own policy diminishes with larger

N , resulting in noisy estimates as the policy parameters overfit to a single type of

users who may be in the majority. This also makes it infeasible to model reciprocity

in agent interactions, because N2 agent pairs would lead to N×N2 =N3 parameters.

To avoid this, previously we only considered individual (i.e. N) actions per user.

To overcome these challenges, we propose a Dynamic Cluster-based Policy Learn-

ing (DCPL) approach to Social RL that utilizes the properties of the social network

structure and agent correlations to obtain a compact model to represent the system

dynamics. Specifically, we propose to cluster similar users in order to reduce the

effective number of policies to be learned, and overcome the problem of sparse data

by aggregating the interactions of similar users. We then develop a method to easily

derive personalized agent-level actions from cluster-level policies by exploiting vari-

ability in agents’ behaviors. Thus, we reduce the problem of learning policies for N

users to that for C clusters (C � N), and hence, the model dimensionality from ∼N3

64

(with pairwise agent interactions) to ∼C3, to allow efficient and effective joint pol-

icy learning, considering all users. To consider individual contributions to the global

network reward, we design clustering features motivated by difference reward [35].

Specifically, we define contribution features to measure a user’s efficacy given other

agents’ actions, and, payoff features to determine how responsive an agent is to the

policy applied in the past. We use these features (via clusters) to learn agents’ effec-

tiveness early on, for better exploring the action space, without increasing the state

space, in order to speed-up convergence. Since agent interactions are dynamic, we

update the policy after regular time-intervals and dynamically align and update the

cluster memberships to reflect the effects of applying the updated policy. To the best

of our knowledge, DCPL is the first MARL method to consider policy learning while

dynamically clustering users, in social networks.

We evaluate the performance of DPCL compared to different static clustering and

non-clustering policy learning methods, using real-world Twitter datasets. Results

show that it is important to model the tweet and retweet events as separate processes.

Compared to other baselines, our dynamic cluster-based approach is able to learn

better policies that achieve higher network reward, by learning a compact model that

reduces the effective number of policies required to be estimated.

6.2 Related Work

[15] proposed to mitigate the impact of fake news by increasing the diffusion of

true news that is characterized using Multivariate Hawkes Process (MHP). [43] devel-

oped a Social RL approach to combat fake news spread by providing users incentives

to share more true news, that are learnt using history of user events, and feedback.

Since the method in [43] outperforms [15], we do not compare our proposed method

against the latter.

[44] learned a separate model for each agent. However, this ignores inter-agent

dependencies, and is infeasible for large N . [15, 43] developed centralized learning

65

approaches for fake news mitigation on Twitter, by modeling agent interactions via

tweets and likes. They consider individual (i.e. N) actions and estimate ∼N2 parame-

ters resulting in high computational cost for large networks. Also, they do not address

the problem of sparse interactions that leads to increased variance in estimates. In

contrast, we reduce the model dimensionality by clustering similar users. This allows

us to efficiently learn a more compact model and facilitates modeling actions per

user pair (i.e. N2 actions) to capture reciprocity in user interactions. Moreover, it

addresses the problem of sparse interaction data by aggregating the interactions of

similar users.

[15, 43] did not distinguish between tweets and retweets, and learned the same

action for both activities. However, the diffusion patterns of tweets and retweets

have large differences, especially, for fake news [161]. Moreover, retweet network is

very different from followers network on Twitter with a low level of reciprocity [3]. To

capture these differences, we consider tweet and retweet as separate network activities,

resulting in three different types of agent interactions. Also, we learn actions per

user pair to capture the reciprocity in user interactions, i.e., N2 actions. However,

this leads to an increase in the model dimensionality, particularly for joint learning,

resulting in large number of parameters (∼ N3), and high computational cost.

To overcome this, and learn better resource allocation strategies, we propose to

first cluster users with latent features (based on their past behavior and contribution

to the objective). To reduce the computational complexity, previously [74] considered

an aggregate of agents to obtain a smaller effective number of agents. However, their

approach is applicable to only small restricted discrete action spaces [97]. [72,73] used

an aggregate statistic of agents’ actions along with certain strong assumptions on the

state-transition model. However, Social RL problems usually have continuous spaces

describing the intricate user interactions and network activities, and the complex

state-transition dynamics are generally unknown.

Previous work utilized symmetry between states and/or agents to reduce the size

of the Markov Decision Process (e.g., [53, 54]). Our clustering approach is based on

66

the observation that similar users tend to show similar behavior, and thus we propose

to learn similar policies for them. This has also been utilized to cluster users in

mobile health domain [164,165]. However, they did not consider user interactions and

dependencies, clustered users only once, and assumed the cluster assignments remain

fixed (static). In our setting, we consider dynamic user interactions. Thus, there is

a need to dynamically update cluster assignments, and we propose an approach to

ensure cluster alignment at different time-steps.

6.3 Problem Definition

We consider a social network with N users who interact via d different network

activities (e.g. tweet, like). Each user i ∈ {1, ..., N} is an agent. Let G represent

the followers adjacency matrix for the social network graph, where Gij = 1 if j

follows i, and 0 otherwise. Our data contains a temporal stream of events with

the time horizon [0, T) divided into K stages, each of time-interval ∆, where stage

k ∈ [1, K] corresponds to the time-interval [τk, τk+1). We consider three types of

events characterizing user activities, corresponding to tweets (T), retweets (R), and

likes (L). We represent the tweet or retweet events using e = (t, i, h, z) where t is

the time-stamp at which user i shares a post of type z = T or R, with label h = F

(Fake) or T (True). Like events are represented as l(u, i, t) indicating user i likes user

u’s post at time t.

A quantitative measure of the impact of fake and true news is the number of

people exposed. Let Ni(t, h, z) represent the number of times user i shares news of

type z = T or R, with label h = F or T , up to time t. Then the number of times

a user i is exposed to news up to time t corresponds to G.i · N (t, h, z). Let Wi(t) be

the number of likes received by user i upto time t. Our goal is to incentivize users

to share true news—to ensure that users receive at least as much true as fake news.

Algorithmically, we want to increase the probability of sharing true news in a targeted

fashion by learning an efficient strategy to allocate incentive among users, based on

67

Figure 6.1.: Overview of Cluster-Based Policy Learning and Evaluation

properties of the network G and the effects of past user interactions. Specifically,

given the network state s ∈ RdN corresponding to d user activities (described further

in Sec. 6.4.3), we want to learn an incentivization policy π : s→ a to obtain incentive

actions a ∈ RN+N2
(a ≥ 0), where tweet actions are per user (i.e., N) and retweet

actions are per user pair (i.e., N2). Incentive corresponds to increasing the likelihood

of users sharing true news, and can be realized (in real-world) by using external

motivation (e.g., money, reward/credit points). Note that fake news mitigation is

a multifaceted problem, and the reward function depends on the application under

consideration. In this work, we consider reward as the correlation between exposures

to fake and true news, based on the idea that users exposed more to true news must

also be exposed more to fake news so that they are less likely to believe in fake news

in the future [15].

6.4 Cluster-Based Social Reinforcement Learning Approach

6.4.1 Overview

Fig. 6.1 illustrates the different components of our system. Our key insight is to

decouple the processes governing tweet, retweet and like events. This helps to study

the effect of different types of events in news diffusion, and learn an approximate model

more efficiently than full joint learning. We map the excitation events to states in

68

a Markov Decision Process (MDP), and learn interventions to increase the intensity

function for true news diffusion. To further increase efficiency, we cluster similar users

together so that we can learn a smaller cluster-level intervention policy, from which

we can easily derive individual interventions for the members of each cluster.

Specifically, from the training data we learn a set of Multivariate Hawkes Processes

(MHP), one for each type of activity event, and also cluster the users. We use the

MHP models to simulate additional training data for learning the policy. While

learning the policy function πC , we compute state features for each cluster (based

on its current members) and compute the interventions for clusters given the current

policy, and derive users interventions. Then we calculate expected reward and use

this to further optimize the policy and update the cluster memberships.

To evaluate the estimated policy π̂C , we simulate data again from the MHPs.

Using the final clusters CK , we obtain interventions from the policy to add to the

MHP intensity functions and generate evaluation data to assess empirical reward. We

also assess the effectiveness of the users selected by our model to promote true news

by measuring their number of retweets in held out training data. Each component is

described in more detail next.

6.4.2 Activity Processes

We use N -dimensional MHPs ([37]) to model user activities and simulate network

dynamics. Since we cannot make real-time intervention to test the policy, we require

a simulated environment as a proxy for online interventions to measure the reward

using evaluation data. [43] illustrated that MHPs closely model news diffusion and

feedback processes in real-world, and thus, we use the events generated by simulating

MHPs with parameters learned from real data. Let λh,z,i be the intensity function

governing the sharing rate of user i, where h = F or T , and z = T or R:

λh,z,i(t) = µh,z,i +
∑N

j=1

∫ t

0

Φz,ji (ωh,ze
−ωh,zt) dNj(s, h, z)

69

where, the integral is over time, and s is used as placeholder for limits {0,t}. µh,z,i
is the base exogenous intensity of user i, Φz is the kernel adjacency matrix esti-

mated from the training data, and ωh,ze
−ωh,zt is the exponential Hawkes kernel. For

Tweet MHP and Like MHP, we use MHP models proposed in Chapter 5 to obtain

Ni(t, h,T) and Wi(t). For the Retweet MHP, we need to estimate the (asymmet-

ric) influence between all pair of users, i.e., ΦR,ji to capture reciprocity. This naively

requires ∼N2 parameters, but we use a low-rank approximation of the kernel matrix,

proposed in [166], to improve efficiency. Our policy will learn actions that correspond

to interventions to increase sharing of true news events (h = T) only. Let az,k,i be a

constant intervention action for user i at stage k (time t ∈ [τk, τk+1)), added to the

her base intensity.

λT,z,i(t) = µT,z,i + az,k,i +
N∑
j=1

∫ t

0

Φz,ji (ωT,ze
−ωT,zt) dNj(s, T, z)

To simulate the event data, we interleave the MHPs to generate tweet events, then

retweet events, and then like events. This ensures that the training and evaluation

environments are similar.

6.4.3 Dynamic Cluster-based Policy

Our goal is to learn a policy π that maps the state representation (over N users) to

intervention actions for tweet and retweet intensities (N +N2 actions). To lower the

computational cost, our key insight is to utilize agent correlations to reduce the size

of the MDP. Specifically, we propose to cluster users into C clusters, so that we can

learn a policy πC that maps the state representation of C clusters to C + C2 actions,

where C � N . We use a fixed number of clusters because we assume that the set of

user types don’t change much over time, but we allow users to move from cluster to

cluster. We then develop a method to derive user-level actions from the cluster-level

actions. Let ck,i be the cluster of user i at stage k, where ck,i =m (m ∈ [1, C]), and

Ck = {ck,i}Ni=1 is the set of all cluster assignments at stage k. We define the cluster

70

membership matrix, Mk ∈ {0, 1}N×C, at stage k, such that Mk,i,m = 1 if m= ck,i,

and 0 otherwise.

Alg. 3 outlines our approach to learning a cluster-based policy πC parameterized

by θ, given simulated training data ({sU,k}Kk=1), initial cluster memberships (M1),

and user features (X1) as input, with hyperparameters γ, ηθ, ηφ, δ. We first compute

the state features of the clusters by averaging the state features of their associated

members. Then, given the state features per cluster, we apply the current policy to

obtain cluster-level actions aC,z,k. Next, we compute the cluster centroids and derive

user-level actions aU,z,k, based on the distance of the user to the centroids (see Alg. 4).

Then we compute the expected reward based on the user-level actions (Alg. 5), and

calculate user payoff and contribution features X (described later) to recluster users

into C clusters (see Alg. 7). Finally, we update the policy parameters θ by first

computing the objective (see Alg. 6) based on the expected reward, and then using

stochastic gradient descent with learning rates ηθ and ηφ. The algorithm repeats until

convergence and returns the final policy parameters and cluster memberships. We

describe each component next.

State Features

We represent the network state sk ∈ RdN at stage k as the number of events for d

different network activities (i.e., interactions) in the previous stage (e.g., in [15, 152,

153]). Specifically, sk,i,j is the number of events for the jth(j ∈ [1, d]) activity that

user i∈ [1, N] has performed in stage k−1. Let nk,i(h, z) = Ni(τk, h, z)−Ni(τk−1, h, z)

represent the number of times user i shares news in stage k−1, and wk,i = Wi(τk)−

Wi(τk−1) represent the number of likes received by user i. Let sU,k,i = (nk,i(T,T),

nk,i(F,T), nk,i(T,R), nk,i(F,R), wk,i) be the state feature for user i that is input to

Alg. 3. We compute the state features for cluster m, at stage k, as the mean of the

state features of its members (line 5, Alg. 3). Thus, there are d = 5 network activities

71

Algorithm 3 Dynamic Cluster-based Policy Optimization

1: Input: {sU,k}Kk=1,M1,X1, γ, ηθ, ηφ, δ

2: repeat

3: for k = 1, ..., K do

4: /* Compute cluster state features */

5: sC,k,m=
∑N

i=1Mk,i,msU,k,i/
∑N

i=1Mk,i,m, ∀m

6: aC,z,k = πC(sC,k;θ) /* Get cluster-level actions */

7: /* Compute cluster centroids */

8: Yk,m =
∑N

i=1Mk,i,mXk,i/
∑N

i=1Mk,i,m, ∀m

9: /* Obtain user-level actions with Alg. 4 (πU) */

10: aU,z,k = πU(aC,z,k,Xk,Yk)

11: rk = GetExpectedReward(sU,k, aU,z,k,φ, γ)

12: Obtain Xk+1 using aU,z,k, aU,z,k−1 /* Eq. 6.10, 6.11 */

13: Mk+1 = UpdateClusters(Yk,Mk,Xk+1, δ)

14: end for

15: /* Learn Policy and update parameters */

16: Jθ, Jφ = GetTotalObjective({rk}Kk=1, {sU,k}Kk=1,φ, γ)

17: θ = θ + ηθ∇θJθ, φ = φ+ ηφ∇φJφ

18: until |∆θ| < δ /* Convergence */

19: θ∗ = θ,M∗ = MK

20: return M∗,θ∗

corresponding to tweets (T/F), retweets (T/F), and likes, and the dimensionality of

the state representation is 5N , which will be reduced to 5C once we cluster users.

Reward

We consider the reward function to be the correlation between exposures to fake

and true news. The number of exposures by time t is given by G ·N (t, h, z), and

72

that in stage k can be obtained as G ·N (τk+1, h, z)−G ·N (τk, h, z), i.e. G ·nk(h, z).

Thus, the reward is given as,

Rz(sU,k) =
1

N
(nk(T, z))>G>G nk(F, z) (6.1)

Since, retweets are prominent in news diffusion compared to tweets (Sec. 6.1), we

consider the cumulative reward R as,

R(sU,k) = ζ RT (sU,k) +RR(sU,k) (6.2)

where ζ is the relative importance of reward from tweet events compared to that from

retweet events.

Objective

Our goal is to learn a cluster-based policy πC to determine the interventions to

be applied to users, at each stage, for true news diffusion process such that the

total expected discounted reward for all stages, J =
K∑
k=1

γkE[R(sU,k, aU,T ,k, aU,R,k)] is

maximized, where γ∈(0, 1] is the discount rate. We map the interventions to actions

in MDP. We impose a budget constraint on the total amount of intervention that can

be applied to all users i.e. ||aU,z,k||1 = Oz,k, where Oz,k is the total budget at stage k

(line 8, Alg. 4). Using Eq. 6.1, we can write,

E[Rz(sU,k, aU,z,k)] =
1

N
E[nk(T, z)]> G>G E[nk(F, z)]

We assume that the diffusion of fake and true news is independent, and thus, decom-

pose the expected reward. E[nk(h, z)]. The cumulative expected reward due to tweets

and retweets is, E[R(sU,k, aU,T ,k, aU,R,k)] = E[RT (sU,k, aU,T ,k)] + E[RR(sU,k, aU,R,k)].

The computation of E[nk(h, z)] is similar to that in Sec. 5.5.3. Specifically,

E[nk(T, z)] = Γh,z(µT,z + aT,z,k) + Υh,zyT,z,k (6.3)

E[nk(F, z)] = Γh,zµF,z + Υh,zyF,z,k (6.4)

73

where, yT,z,k and yF,z,k are as defined in Section 5.4.2, that capture the effect of

history due to past events, and, Υc,z = (Φz − ωc,zI)−1(e(Φz−ωc,zI)(∆) − I), Γc,z =

Υc,z + (Φz − ωc,zI)−1(Υc,z − I(∆))/ωc,z. Thus, we compute the expected reward as,

E[Rz,k(sU,k, az,k)] =
1

N
(ΓT,z(µT,z + az,k) + ΥT,zyT,z,k)

>

G>G (ΓF,zµF,z + ΥF,zyF,z,k)

(6.5)

Similarly, we calculate E[wk] (refer [143] for more details). Using Eq. 6.2, we obtain,

E[R(sU,k, aT ,k, a<,k)] = ζ E[RT (sU,k, aT ,k)] + E[R<(sU,k, a<,k)] (6.6)

From Equations 6.3, 6.4 and 6.5, we can write the expected number of events and

reward for a user as follows,

E[nk,i(T, z)] = 1
>ΓT,z,i,.(µT,z,i + aT,z,i) + 1

>ΥT,z,i,.yT,z,k,i (6.7)

E[nk,i(F, z)] = 1
>ΓF,z,i,.µF,z,i + 1

>ΥF,z,i,.yF,z,k,i (6.8)

Ei[Rz,k(sU,k,i, az,k,i)] =
1

N
Ei[(nk,i(T, z) nk,i(F, z)) G>.iG.i]

=
1

N
Ei[nk,i(T, z)] Ei[nk,i(F, z)]] G>.iG.i

(6.9)

We can substitute Equations 6.7 and 6.8 in Equation 6.9 to compute the expected

reward for each user i.

Clustering Features

We design clustering features based on Difference Reward (DR) that use a user’s

contribution to shape the reward signal and reduce noise in policy estimates. We

define payoff features that indicate how responsive a user is to the policy applied in

the past, by measuring the change in a user’s expected reward after applying policy

in stage k − 1.

74

pz,k,i = Ei[Rz(sU,k−1, aU,z,k−1)]− Ei[Rz(sU,k−2, aU,z,k−2)] (6.10)

We define contribution features qz,k,i to measure user i’s contribution in the expected

reward, given the actions of other users. Specifically, we calculate the difference in

the total expected reward obtained on providing incentive to the user, to when no

incentive is provided to the user. To compute the latter, we set the incentive for user

i as 0.

qz,k,i = Ei[Rz(sU,k−1, aU,z,k−1)] (6.11)

− Ei[Rz(sU,k−1, ({aU,z,k,j}Nj=1,j 6=i; aU,z,k−1,i = 0))]

Thus, the complete set of features used for clustering users at the start of stage k

is Xk,i = (pT ,k,i, pR,k,i, qT ,k,i, qR,k,i), i ∈ [1, N]. The similarity between two users i

and j is based on the Euclidean distance between their respective feature vectors

Xk,i and Xk,j. We do not know the policy estimates apriori for the first stage, and

obtain initial clusters C1 and membership M1, using K-means++, based on empirical

rewards computed from training data. This captures the natural policy or intrinsic

behavior of users to spread news, without external incentives. We incorporate the DR

signals as input to the policy function approximator (via clustering features), rather

than using them as explicit shaped reward signal that is different for each agent. This

helps to avoid learning a separate model for each user as in the standard DR shaping

techniques (e.g., [35]).

Learning Cluster-based Policy

Given cluster-level state features sC,k, our goal is to learn a cluster-based policy

parameterized by θ, i.e., aC,T ,k, aC,R,k = πC(sC,k;θ). {aC,T ,k,m}Cm=1 is learned for

each cluster Cm and corresponds to the incentive for increasing the tweet activities of

its members, and {aC,R,k,m,m′}Cm,m′=1 is learned for each pair of clusters (m,m′) and

75

indicates how much to incentivize a user of cluster m to retweet the posts of a user

in cluster m′.

The value of the network state sU,k is the total expected reward when in the given

state following policies πC , πU . Since it is computationally expensive to compute

V (sU,k) from future rewards for every possible policy, we approximate the value as a

function of the state parameterized by weights φ, i.e. V (sU,k) = f(sU,k;φ), (as in [30]).

Policy gradient methods are more effective in high dimensional spaces, and can learn

continuous policies. Thus, we use advantage actor-critic algorithm (e.g., [28]).

Let there be K stages in the Simulated Training Data (STD) (Fig. 6.1). Given

state features at the beginning of stage k (i.e. at time τk), we learn policy func-

tion πC to obtain actions to be applied during stage k (i.e. time-interval [τk, τk+1)),

using a multi-layer feed-forward neural network. We find intervention actions for

the clusters, aC,T ,k, aC,R,k = πC(sC,k), corresponding to tweet and retweet intensi-

ties, respectively, as the output of the neural network (line 6 of Alg. 3). We use

two different neural networks, for approximating the policy function πC , and the

value function, V (sU,k). Fig. 6.2 shows the value function approximator for three

users, parameterized by weights φ, i.e., V (sU,k) = f(sU,k;φ). The input to the

value function approximator for stage k, are the state features of users, sU,k =

[nk(F,T),nk(T,T),nk(F,R),nk(T,R),wk]. The dimensionality of input layer is

5N , where N is the number of users in the network. We use one hidden layer with

(5N/2) nodes to learn the value function. And the output is a scalar value i.e., V (sU,k).

We used Adam optimizer with learning rate 0.05 to train this network. Fig. 6.3 shows

the policy function approximator for two clusters, with one and two users, respectively,

parameterized by weights θ, i.e., aC,T ,k, aC,R,k = πC(sC,k;θ). aC,T ,k = {aC,k,m}Cm=1,

and aG,R,k = {aC,k,m,m′}Cm,m′=1. The input to the policy function approximator for

stage k, are the state features of clusters, sC,k = {nk,m(h, z)}Cm=1 obtained as the

average of the state features of their associated members (users). The dimensionality

of input layer is 5C, where C is the number of clusters. We use a hidden layer with

(3C) nodes to learn the policy function. And the outputs are a C-dimensional vector

76

nk,1(F,T)

nk,2(F,T)

nk,3(F,T)

nk,1(T,T)

nk,2(T,T)

nk,3(T,T)

nk,1(F,R)

nk,2(F,R)

nk,3(F,R)

nk,1(T,R)

nk,2(T,R)

nk,3(T,R)

wk,1

wk,2

wk,3

V (sU,k)

Figure 6.2.: NN for approximating Value Function

corresponding to the interventions for the Tweet MHP for each cluster, and a C2-

dimensional vector corresponding to the interventions for the Retweet MHP for pairs

of clusters. We used Adam optimizer with learning rate 0.01 to train this network.

Then, in line 10, we obtain interventions for the users aU,z,k based on their vari-

ability from their cluster, using Alg. 4. Alg. 4 computes the interventions for the

users by weighting the cluster interventions by their distance to the centroid. Since

retweets involve an interaction between pair of users, we consider incentives αU,R,k,i,j

for each pair of users, where αU,R,k,i,j is the amount of incentive provided to user i

to retweet user j’s posts. However, due to high computational cost, we do not want

to model an N2-dimensional MHP for retweet activities. So instead, to reduce it to

an N−dimensional MHP, we compute the weighted average of incentive actions in

line 8. We normalize user actions based on our budget constraint in line 9. Then,

77

nk,1(F,T)

nk,2(F,T)

nk,1(T,T)

nk,2(T,T)

nk,1(F,R)

nk,2(F,R)

nk,1(T,R)

nk,2(T,R)

wk,1

wk,2

aC,T ,k,1

aC,T ,k,2

aC,R,k,1,1

aC,R,k,1,2

aC,R,k,2,1

aC,R,k,2,2

Figure 6.3.: NN for estimating cluster-level actions

Algorithm 4 GetUserInterventions (πU)

1: Input: aC,z,k,Xk,Yk

2: Let ck,i be the cluster to which user i belongs to, at stage k.

3: /* Incentive per user for Tweet MHP */

4: ãU,T ,k,i = aC,T ,k,ck,i||Xk,i −Yk,ck,i||2, ∀i ∈ [1, N]

5: /* Incentive, per pair of users for retweets */

6: αU,R,k,i,j =aC,R,k,ck,i,ck,j ||Xk,i−Yk,ck,i||2||Xk,j−Yk,ck,j ||2, ∀i, j ∈ [1, N]

7: /* Weighted average to get incentive per user for Retweet MHP */

8: ãU,R,k,i = 1
N

∑N
j=1 αU,R,k,i,jΦR,ji, ∀i ∈ [1, N]

9: aU,z,k =
ãU,z,k
||ãU,z,k||1

×Oz,k /* Budget Constraint */

10: return aU,z,k

we compute the expected reward using these actions, as described in Alg. 5, and the

total objective for optimizing policy πC in Alg. 6.

78

Algorithm 5 GetExpectedReward

1: Input: sU,k, aU,z,k,φ, γ

2: Compute E[Rk(sU,k, aU,z,k)]

3: sU,k′ = (E[nk(h,T)],E[nk(h,R)],E[wk])

4: V (sU,k′) = f(sU,k′ ;φ)

5: rk = E[Rk(sU,k,aU,T ,k,aU,R,k)] + γV (sU,k′)

6: return rk

Algorithm 6 GetTotalObjective

1: Input: {rk}Kk=1, {sU,k}Kk=1,φ, γ

2: Lθ = 0, Lφ = 0

3: for k = 1, ..., K do

4: V (sU,k) = f(sU,k;φ) /* Value Function */

5: Let Dk =
∑K

j=k γ
krk /* Total Discounted Reward */

6: Bk = Dk − V (sU,k) /* Advantage Function */

7: Lθ = Lθ +Bk; Lφ = Lφ + ||V (sU,k)−Dk||2
8: end for

9: Jθ = Lθ, Jφ = −Lφ
10: return Jθ, Jφ

Update Clusters

Using actions aU,z,k learnt for stage k, we calculate the clustering features (Eq. 6.10-

6.11) for the next stage, Xk+1. Due to application of the policy, Xk+1,i is different

from Xk,i. Thus, we need to re-compute the centroids and cluster memberships.

Additionally, we want the clusters to be aligned across different stages, so that the

policies can be optimized using the neural network, for different clusters across mul-

tiple epochs. To achieve this, we define weighted centroids that include the effect

of the centroids in the previous stage. This helps to ensure that the centroids do

not shift much and thus, we can align clusters in stage k + 1 with those in stage k.

79

Algorithm 7 UpdateClusters

1: Input: Yk,Mk,Xk+1, δ

2: Let Ÿ k+1 = Yk, Mk+1 = Mk

3: repeat

4: Let ẏ = Ÿ k+1 /* Centroids in previous iteration */

5: Ẏ k+1,m = (
∑N

i=1Mk+1,i,mXk+1,i)/(
∑N

i=1Mk+1,i,m) ∀m ∈ [1, C]

6: Ÿ k+1,m = ε1Ẏ k+1,m + ε2Yk,m ∀m ∈ [1, C]

7: mi = arg
C

max
m=1
||Xk+1,i − Ÿ k+1,m||2

8: Mk+1,i,mi = 1, and ∀m 6= mi,Mk+1,i,m = 0

9: until ||ẏ − Ÿ k+1||2 < δ /* Convergence */

10: return Mk+1

Alg. 7 shows the steps to update clusters. For clustering at stage k+1, we begin with

the memberships from stage k (line 2). This helps in faster convergence of clusters.

Using Xk+1, we obtain the updated centroids Ẏ k+1,m∀m ∈ [1, C] for stage k + 1 (line

5). We define C weighted centroids Ÿ k+1,m = ε1Ẏ k+1,m + εYk,m∀m ∈ [1, C], (line 6),

ε1 +ε2 = 1. ε1, ε2 indicate the importance assigned to the centroids from the previous

stage and the current stage, respectively. After updating the centroids, we update

the membership matrix and repeat until convergence. Additionally, since the change

in policy estimates across epochs reduces as optimization gets closer to convergence,

the clustering features (which are dependent on these estimates) do not change much

for the same stages across such epochs and we can start to reuse the learned clusters.

Similar to simulated annealing, we only update the cluster assignments every ηe ∈ Z+

epochs gradually increasing ηe as the epoch number increases, which helps speed up

convergence of policy learning.

80

6.4.4 Policy Evaluation

Since the Simulated Evaluation Data (SED) is conditioned on STD, we use the

clusters converged at the end of the policy learning to evaluate the learned policy.

First, we find intervention actions for the network state obtained from events in SED.

Then, we generate events by simulating MHPs after adding interventions to the base

intensities for true news diffusion, and use those to compute the following evaluation

metric.

Evaluation Metric

Comparing different methods solely based on reward (e.g., [15]) does not suffice,

and a better model is the one that mitigates more distinct number of users [43]. Thus,

we multiply the reward by the the fraction of users exposed to fake news that become

exposed to true news. This helps to assign more importance to the mitigation of dis-

tinct users over mitigation of few users with high exposures. Specifically, performance

P is given as
∑K

k=1 Rk × |LT,k∩LF,k||LF,k|
, where LT,k = {i|i ∈ [1, N],nk(T, z) ·G.i > 0} and

LF,k = {i|i ∈ [1, N],nk(F, z) ·G.i > 0} are the sets of users exposed to true and fake

news, respectively, during stage k.

6.5 Experiments

We use real-world datasets, Twitter 2016 and Twitter 2015 [5,146], with 750 and

2050 users, respectively. We consider time-horizon T = 40, divided into 40 stages

of ∆T = 1 hour each. The Training Data, STD, SED before and after applying in-

terventions, and Held-Out Data (Fig. 6.1), respectively, correspond to time-intervals,

[0, 10), [10, 20), [20, 30), and [30, 40).

First, we test whether news diffusion patterns via tweet and retweet activities are

similar in the Twitter data. Figures 6.4 and 6.5 show a comparison of the distribution

of respective base intensities across all users. We find that more number of users

81

(a) Fake News (b) True News

Figure 6.4.: Distribution of Base Intensities for Twitter 2016

(a) Fake News (b) True News

Figure 6.5.: Distribution of Base Intensities for Twitter 2015

have higher retweet intensities for fake news, compared to true news. Also, the

distribution of retweet intensities has more variance compared to tweet intensities.

These observations are consistent with [3], and imply that it is important to consider

separate processes for tweet and retweet events, as described in Sec. 6.1.

82

6.5.1 Baselines

We compare our model, which we call DCPL, against different baselines described

below. We use Oz,k ∼ N · U(0, 1), and γ = 0.7. For C-PF, we set ε1 = ε2 = 0.5 to

assign equal importance to the centroids from previous and current stages.

Non-Clustering Methods

NC-1

No Clustering. All users in same cluster i.e. C = 1

NC-N

Identical actions for tweet and retweet events. Each user is in separate cluster

(C = N) ([43]).

NC-TR

Separate actions learnt for tweet and retweet activities (for true news diffusion),

and C = N .

NC-PF

Same as NC-TR, but with clustering features (Eq. 6.10, 6.11) added in the state

representation of users, and C = N .

Clustering Based Methods

RND

Randomly assign users to C static (fixed) groups.

83

C-NET

Clusters obtained using K-Means++ with network features (degree, closeness cen-

trality, clustering coefficient).

KM-R

Static clusters are obtained using K-Means++ with empirical reward features,

and are not updated dynamically.

KM-S

Static clusters as in KM-R, but state features are also used in clustering ([164,

165]).

The input to the policy function approximator (i.e. neural network) requires input

and output of fixed dimensions, and hence, we assume fixed number of clusters C. We

use the scores of Bayesian Information Criterion, and Within Cluster Sum of Squared

Distance to choose C for each clustering-based method. Table 6.1 reports the number

of clusters (C) obtained for different baselines, and we observe C ∈ {8, 9} for different

methods.

Table 6.1.: Number of Clusters (C) for Clustering Based Methods

DENPL KM-R KM-S C-NET RND

Twitter 2016 9 9 9 8 9

Twitter 2015 8 8 9 8 9

84

Table 6.2.: Relative Performance (Mean ± Std. Error)

Twitter 2016 Twitter 2015

Clustering C-PF 98.19 ± 1.52 95.175 ± 1.75

Based KM-R 81.28 ± 1.78 73.98 ± 1.64

Methods KM-S 78.63 ± 1.82 70.37 ± 1.69

C-NET 64.07 ± 1.98 51.52 ± 1.72

RND 55.52 ± 4.23 42.17 ± 4.94

Non-Clustering NC-PF 87.39 ± 3.46 80.73 ± 3.72

Methods NC-TR 77.83 ± 3.37 62.76 ± 3.51

NC-N 67.04 ± 3.21 56.10 ± 3.48

NC-1 58.68 ± 1.02 47.12 ± 1.10

6.5.2 Results

Table 6.2 shows the relative performance of different methods. Our approach

DCPL achieves high correlation between exposures to true and fake news, along with

maximizing number of distinct mitigated users. Also, NC-TR outperforms NC-N,

implying that tweet and retweet events are not identical and it is beneficial to decouple

these. The clustering-based methods achieve greater performance than non-clustering

methods.

NC-N, NC-TR, NC-PF have larger variance and noisy estimates due to high di-

mensionality of state/action space. NC-1 has high bias as it doesn’t consider differ-

ences in user behavior. Clustering based approaches have lower variance, implying

that clustering helps to reduce noise in estimates.

Moreover, DCPL that updates cluster assignments dynamically based on policy

applied, outperforms those that assume fixed assignments (KM-R, KM-S, C-NET,

RND). NC-PF that does not perform clustering also outperforms these, as it adjusts

85

(a) Twitter 2016 (b) Twitter 2015

Figure 6.6.: Number of Epochs until Convergence

policy based on dynamic user behavior. Thus, we need features indicative of users’

payoff and contribution, apart from state features, to get better estimates.

The performance of KM-R is slightly greater than KM-S, implying that reward

based features alone are useful for learning better estimates, without state features.

C-NET achieves lower performance than non-clustering baselines, indicating that not

all features are useful in clustering users to reflect the amount of incentive needed.

The reward based features in DCPL consider network structure implicitly, and are

better indicators of users’ payoff and contribution.

Fig. 6.6 shows a comparison of the time taken until convergence by different meth-

ods. DCPL converges faster than NC-PF and NC-TR, and achieves a greater per-

formance for all epochs. NC-PF outperforms KM-R and NC-TR, but takes longer to

converge, implying that the latent features (Eq. 6.10, 6.11) are useful if included in

state representation, however, lead to increased computational cost. In DCPL, the

information about users’ payoff and contribution via clusters, helps in better explo-

ration over the action space without increasing the state space. This helps the model

to learn users’ effectiveness early on and converge faster to the optimal policy.

The above results serve as a proof of concept that providing incentives helps to

mitigate the impact of fake news. However, since we cannot make real-time interven-

86

Table 6.3.: Sum of Retweets at τ + g for Users Selected at τ

MODEL
τ

′
= τ + 0 τ

′
= τ + 2 τ

′
= τ + 5 τ

′
= τ + 8

S M S M S M S M

C-PF 1320.9 439.8 1289.1 393.2 912.5 352.4 853.3 208.2

KM-R 1181.2 546.6 875.6 381.2 667.4 419.6 603.2 366.8

KM-S 1103.7 510.8 871.2 311.3 660.4 415.5 592.2 356.6

C-NET 810.4 691.2 695.3 669.6 517.8 545.7 496.5 453.6

RND 569.9 712.5 485.1 600.6 369.7 706.8 329.2 591.3

NC-PF 1200.4 471.4 890.7 406.2 682.6 397.6 593.2 283.4

NC-TR 1077.2 522.4 862.4 425.8 652.5 450.6 567.4 274.4

NC-N 1003.5 450.8 838.1 378.3 625.7 378.3 551.9 297.6

tions, we also compare different methods by measuring the impact of nodes selected

for intervention, in terms of the people they actually reached in the Held-Out Data,

as in [43]. Let S(τ) refer to the the set of users selected to spread true news by time τ ,

according to the model, i.e., S(τ) = {i|(Ni(τ, T, z)−Ni(2K,T, z)) > 0} τ ∈ [20, 30),

and the remaining users are considered missed (M(τ)) by the model. We calculate

the total number of users who retweeted the posts of users in S(τ) and M(τ) between

time [τ
′
, τ

′
+ ∆) where τ

′
= τ + g, and g = {0, 2, 5, 8} indicates the gap or number

of stages after which we want to measure the impact (in the future). We considered

different values of ∆ ∈ {1, 2, 3, 4, 5} and Table 6.3 reports the average. We see that

the impact of selected nodes (S) is greater than that of missed nodes (M) for DCPL

by a large margin.

We conducted additional experiments to explore the effects of network character-

istics on performance. We down-sampled the datasets to compare the performance of

different approaches as a function of network size (number of users). Fig. 6.7 shows

87

(a) Twitter 2016 (b) Twitter 2015

Figure 6.7.: Relative Performance vs Network Size

that the performance of all methods decreases with a decrease in network size, and

our method DCPL outperforms for all network sizes considered.

We vary ζ, the relative importance of reward from tweet and retweet activities.

Fig. 6.8 shows that with an increase in this ratio, that is a decrease in the contribution

by retweet events, the performance decreases for all methods. We also observe a

relatively steep decrease in the performance after a ratio of 1 that corresponds to

equal importance of tweet and retweet events. This suggests that retweets contribute

more to the total reward than tweets, which is also consistent with [3].

Figures 6.9 and 6.10, respectively, show the change in the performance with respect

to change in the kernel decay parameter, for tweeting and retweeting fake and true

news. We keep the decay parameter for Tweet MHP fixed, while varying the decay

parameter for Retweet MHP, and vice-versa. As this ratio increases, the performance

decreases, for both tweet and retweet activities, due to presence of fewer true news

events than fake, in later stages. We also observe a slightly more steep decrease

in performance for retweet activities, compared to tweet activities, implying that

retweets have a major contribution in the reward, compared to tweets.

We also conducted additional experiments to explore characteristics of the learned

clusters. Fig. 6.11 shows the relative performance of different clustering-based meth-

88

(a) Twitter 2016 (b) Twitter 2015

Figure 6.8.: Relative Importance of Tweets and Retweets

(a) Twitter 2016 (b) Twitter 2015

Figure 6.9.: Ratio of decay for tweeting true and fake news

ods with respect to the number of clusters C. We observe that the methods achieve

greater performance for number of clusters 8 and 9, which confirms the selection of C

based on BIC and WC-SSD scores (Sec. 6.5.1). We observe that the methods perform

better for smaller number of clusters in the range C ∈ [8, 12]. Moreover, DCPL out-

performs other baselines for all values of C, which is due to the fact that it captures

dynamic user behavior by re-assigning users to clusters at different stages.

89

(a) Twitter 2016 (b) Twitter 2015

Figure 6.10.: Ratio of decay for retweeting true and fake news

(a) Twitter 2016 (b) Twitter 2015

Figure 6.11.: Relative Performance vs Number of Clusters

We evaluate cluster alignment across different stages, in our method DCPL by

comparing the clusters at stage k with those obtained in the previous stage k−1.

Fig. 6.12 shows the Adjusted Rand Index (ARI) and Normalized Mutual Information

(NMI) scores. For stage 1, we compare with the initial clusters obtained using the

reward computed from training data. We see that both NMI and ARI scores are high,

and this presents a proof of concept that clusters of DCPL are indeed aligned.

90

Figure 6.12.: Cluster Alignment Scores for DCPL

(a) Twitter 2016 (b) Twitter 2015

Figure 6.13.: Number of Unique Clusters across Users

Additionally, we also analyze the movement of users between different clusters

across multiple stages, in DCPL. Figures 6.13 and 6.14, respectively, show histograms

for the number of unique clusters that a user is in, and the number of times a user

changes clusters, across all the stages in the learning phase. We see that majority

of the users change clusters 4-6 times. This justifies our conjecture that there is a

change in user behavior (features) due to the policy applied in the past, and it is

important to capture this by updating the cluster assignments dynamically. We also

conclude that users do not return back to the same clusters that they were in the

previous stages.

91

(a) Twitter 2016 (b) Twitter 2015

Figure 6.14.: Number of Changed Clusters per User across Stages

Fig. 6.15 shows contingency matrices comparing the clusters obtained by our

method DCPL with those obtained by other baselines. Specifically, the rows of the

contingency matrix are ordered by the clusters in DCPL, and the columns are or-

dered by the clusters in the baseline method. The contingency matrix reports the

intersection cardinality (number of common users) for every cluster pair from the two

methods. We find that clusters of DCPL are most similar to those of KM-R, followed

by KM-S, C-NET, RND, consistent with the decreasing order of these methods, in

terms of maximizing reward.

92

(a) KM-R (b) KM-S

(c) C-NET
(d) RND

Figure 6.15.: Contingency Matrix (C-PF vs other baselines)

93

7 TOWARDS DECENTRALIZED SOCIAL REINFORCEMENT LEARNING

VIA EGO-NETWORK EXTRAPOLATION

7.1 Introduction

We consider a multi-agent reinforcement learning scenario in social networks,

where the agents are users trying to optimize long term reward for their actions.

The key challenge in this scenario is that individual policies need to account for de-

pendencies throughout the network, as users’ actions and reactions are influenced by

the activities of their neighbors. For example, in Twitter if one user tweets more

about a certain topic, that may influence their Followers to tweet more on the same

topic. Thus, user interactions lead to network dependencies between activities (due

to peer-influence).

Moreover, many online social network relations are directed and as such the net-

work information may only flow in one-direction [167]. For example, Twitter links

correspond to Followee-Follower relationships. A Follower can observe the activities

of her Followees, however, the information does not flow in the opposite direction,

unless the Followee also follows the Follower. Due to the directed nature of these

interactions, the environment is partially observable to a user (agent), and we refer

to the user’s local network as a partially observable ego-network.

In these social network settings, there are a number of decision making applications

that can be formulated as agents optimizing individual rewards, which depend on

activities in the larger network context. For example, a user in a social network may

want choose when and what to post to maximize her influence or visibility among her

followers (e.g., [44]), or an agent receives individual credit based on her contribution

in credit assignment and resource allocation tasks (e.g., [35]). The perception of

users about the popularity of a certain attribute (e.g., news topic) is governed by the

94

perception of her local neighbors, and is much different than global prevalence of the

attribute in the complete network [167, 168]. Thus, the individual reward of a user

might be different from that of other users in the network, depending on her peers

and local network structure. To formalize this, we consider a setting where each user

receives a separate local reward that depends on her activities and the activities of

related users in her local neighborhood.

Recent work on multi-agent reinforcement learning (MARL) for social network

settings [15, 43, 169] has assumed a fully observable environment where each agent

can observe the activities of all other agents in the network, with a common shared

reward between all agents to be optimized. They employ a joint model (central-

ized training) to capture inter-agent dependencies by learning the collective action

of all users conditioned on the complete network state across all users (centralized

execution). Centralized learning also allows to share samples and policy parameters

between agents, and thus, overcomes the problem of insufficient samples for each

user [102], leading to lower variance in estimates.

However, in our setting each user receives a different reward and has a differ-

ent partial observation of the environment—thus we cannot employ previous ap-

proaches based on centralized learning and centralized execution. In addition, the

joint state/action space grows larger with the number of agents, and thus, centralized

learning with thousands of agents is computationally intensive [170]. In contrast, de-

centralized learning and decentralized execution focuses on learning a separate policy

for every agent individually, and actions are obtained conditioned solely on the local

state and observation of the agent. Learning the policies independently allows to

preserve the privacy, i.e., limit the data sharing between users as agents do not need

to share their local state, observation or reward with other users in the network [89].

However, decentralized training does not scale for large number of agents, as it is

impractical to learn thousands of complex policy functions [169]. Additionally, due

to sparse interaction data in social networks, the number of samples available for each

user in decentralized learning is quite sparse, which would result in large errors due

95

to variance. Specifically, with decentralized learning/execution it will be challenging

to learn accurate policies as each agent does not have sufficient information available

to capture inter-agent dependencies.

To address these challenges, in this work we propose to perform partially central-

ized learning with decentralized execution. Specifically, we learn conditioned only on

the local state and observation of each user in order to apply the learned policies in

decentralized execution. For learning, we consider a single policy function that maps

the local state of an agent to her actions. We use parameter sharing to learn this

function across users, which offsets the data sparsity issues that would arise in fully

decentralized learning. By only sharing the model parameters sequentially, and not

the trajectories (state/action/reward) of each user, we aim to provide more auton-

omy to agents and safeguard their privacy (limit the data shared between agents).

We consider a common neural network and agents access the network in a sequence.

At a given iteration, only a single agent learns and updates the shared parameters

based only on her state, observation and reward.

Given the partial observations of each user, to learn accurate policies, we propose

to utilize ego-network extrapolation to improvise the estimates of the hidden state

information, and exploit the local network structure, relations, and interactions to

learn inter-agent dependencies. In a social network with Followee-Follower relation-

ship, each user has two roles—a Followee to certain users, and a Follower of certain

users (as shown in Fig. 7.1). We utilize this observation to locally learn the depen-

dency between Followees and Followers. A user can only observe the state of her

Followees, and not those of her Followers or other users in the network. However,

the reward that a user obtains depends on the activities of her Followers’ other Fol-

lowees as well whom she cannot observe. Now, the activities of a Follower depends

on the activities of her Followees. Thus, our idea is that by estimating the activities

(i.e., state) of her Followers, a user can approximate the impact of the activities of

her Followers’ other Followees (whom she cannot observe). Therefore, we propose

to estimate the Followers’ states, in order to improve the policy for a user. Our

96

Figure 7.1.: Partially Observable Ego-network of a user i. Teal color corresponds to

Followees, and White color corresponds to Followers of a user. User i is a Follower

to her Followees A,B,C,D whose activities she can observe, and a Followee of her

Followers X, Y, Z whose activities she cannot observe.

key insight is to perform ego-network extrapolation over the local neighborhood of a

user, by first learning the dependency from the activities of her Followees, and then

extrapolating those to estimate the activities of her Followers. To the best of our

knowledge, this is the first MARL approach to exploit the relations between users in

a partially observable social network, by transferring the knowledge learnt from one

set of users to another set of users, and estimate the hidden environment information

for policy learning. Note that the mapping between a user’s Followees and the user

(as a Follower) is learnt locally by the user, and is a many-to-one mapping. Thus, the

challenge is to extrapolate/project this mapping from the user (as a Followee) to her

Followers, which is one-to-many projection. To overcome this challenge, we capture

the reciprocity in user interactions, to learn a many-to-many mapping over the set

of users, and that can be easily projected to a many-to-many mapping, leading to

better estimates. Additionally, different Followees have different impact on the activ-

ities of their Followers, and this impact changes over time based on the dynamic user

97

activities and interactions. We incorporate the dynamic peer-influence by learning

the attention between activities of each Followee-Follower pair, to further improvise

the estimates of the hidden state of the environment, and thus, the policy for each

user.

We refer to our approach as Decentralized Ego-Network Policy Learning (DENPL)

and evaluate performance compared to different centralized and decentralized learning

approaches, using two real-world Twitter datasets. Compared to other baselines, our

approach DENPL achieves performance equivalent to that of the centralized learning

method and other approaches that assume full observability of the complete network

state. Experiments show that sequential update of parameters by each user indi-

vidually improves the sample efficiency per user, resulting in more accurate policy

estimates.

7.2 Related Work

[43] developed centralized learning based solutions for Social RL problems that

use the collective state, actions and feedback of all agents, to capture inter-agent

dependencies. However, this is computationally intensive for large networks since the

joint state/action space grows with the number of agents. [169] proposed a dynamic

clustering-based approach to reduce the effective number of policies that overcomes

the problem of high dimensional spaces and sparse interactions. However, centralized

learning is applicable only in fully observable environments, where the complete net-

work state is available to all agents. Moreover, these consider a common reward for

all agents, and centralized learning and centralized execution (e.g., [71]) is equivalent

to single agent RL, and it is easier and faster to learn accurate policy estimates given

the complete network state.

While traditional MARL approaches do not scale for large numbers of agents

in social networks (see e.g., [169]), there is previous work on MARL scenarios that

optimize individual rewards in a larger, dependent context. Cooperative MARL tasks

98

consider a common reward for all users (e.g., [89,102,118]). In our problem however,

each user receives a separate local reward that depends on her actions and the actions

of other users whom she cannot observe. Additionally, our problem is different from

competitive MARL (e.g., [171]), as we do not consider conflicting goals or a fixed

shared resource across all users. To learn actions based on local reward, some previous

work used fully decentralized learning (e.g., [172]). However, this does not scale to

our setting since training a complex model for each user independently is impractical

for thousands of agents.

Some other decentralized learning approaches (e.g., [89,118]) assume a global state

shared across users and learns actions conditioned on the global state. In most of

the MARL approaches for partially observable domains that considers both local

state and reward, the hidden state of the environment becomes available to an agent

within a short period of time, i.e., before the time-horizon of the task. Thus, these

approaches can incorporate relevant state information as history for policy learning

(e.g., [58, 59]). Additionally, these consider small number of agents, and hence the

memory requirements for storing the history for all agents is lower. In contrast, due

to the directed nature of user interactions in our problem setting, an agent can only

directly observe Followees, and can only observe Followers if there is a directed path

linking them through other agents. This means that even if state information was

passed via neighbors in the network, the complete network state would likely not be

available before the finite time-horizon. And even if it could, storing complete network

trajectory information for a large number of users would be space-prohibitive. Thus,

the relevant state information cannot be utilized by the user as history.

Recent work has considered agents connected in a graph with local rewards [57].

However their approach is restricted to discrete action spaces and dense undirected

graphs. [89, 118] assume a shared reward between all agents, and develop a decen-

tralized approach based on local message passing to estimate the global reward using

estimates from direct neighbors. However, they assume strongly connected graphs for

small number of agents where message passing can converge. [102] considered central-

99

ized learning and decentralized execution through the use of a centralized controller,

and parameter sharing between agents for policy learning. However, the shared con-

troller has access to the entire history of state, action and reward for each user. Thus,

this does not safeguard the privacy of users in real-world social networks.

7.3 Problem Definition

We consider a social network setting with N users, where each user i ∈ {1, ..., N}

is an agent. Users have a Followee-Follower relationship, and interact via d different

network activities (e.g., tweet, retweet, like). We represent the followers adjacency

matrix for the social network graph using G, where Gji = 1 if i follows j, and 0

otherwise. We consider a directed social network graph and thus, the direction of

information flow is only in one direction. Due to this, an agent can observe the

activities of her Followees G.i, but she can’t observe the activities of her Followers

Gi.. Thus, the environment is partially observable to an agent, and we refer to this

as a user’s partially observable ego-network.

Let the state of a user i, si ∈ Rd corresponds to d network activities that she

performs, and her local observation oi is the partial view of the environment that

corresponds to the activities of her Followees (described in more detail in Section

7.4.3). Given the individual state and observation, each user learns a policy πi :

si → ai to obtain actions that maximize her local reward Ri (received from external

system). A quantitative measure of the impact of fake and true news is the number of

people exposed. We define the reward received by a user as the correlation between

exposures to fake and true news among her Followers, based on the idea that users

exposed more to true news must be exposed more to fake news [15], along with the

number of distinct mitigated Followers. In addition, there is a penalty Pi for each

user that corresponds to the cost or some amount of effort that a user needs to spend

to post.

100

Our data contains a temporal stream of events with the time horizon [0, T)

divided into K stages, each of time-interval ∆T , where stage k ∈ [1, K] corresponds

to the time-interval [τk, τk+1). Users interact via three types of network activities, i.e.,

tweets (T), retweets (R), and likes (L). Each activity corresponds to an event. The

tweet or retweet events are represented using e = (t, i, h, z) where t is the time-stamp

at which user i shares a post of type z = T or R, with label h = F (Fake) or T

(True). We represent the Like events as l(u, i, t) indicating user i likes user u’s post

at time t. We assume that users know the type of news posted by their Followees.

Let Ni(t, h, z) represent the number of times user i shares news of type z = T or

R, with label h = F or T , up to time t. Then, the number of times a user i is

exposed to news up to time t corresponds to
∑

z={T ,R}
∑

j∈G.i
Nj(t, h, z). Let Wj,i(t)

be the number of likes provided by user i to user j upto time t. The goal of each

user is to mitigate the impact of fake news among her Followers, that is realized

algorithmically by increasing their respective sharing rate for true news diffusion in

a targeted fashion—such that her Followers receive as much true news as fake (i.e.,∑
z={T ,R}

∑
j∈G.i

Nj(t, F, z) '
∑

z={T ,R}
∑

j∈G.i
Nj(t, T, z)).

7.4 Approach

7.4.1 Overview

Fig. 7.2 illustrates the different components of our system. We learn a set of Mul-

tivariate Hawkes Processes (MHP) for different network activities, from the training

data. We use the MHP models to simulate additional training data, i.e. events, for

learning the policy. We map the excitation events to states and observations in a

Partially Observable Markov Decision Process (POMDP), where each user learns the

amount by which she needs to increment her intensity function for true news diffusion.

Our policy learning algorithm is described in detail in Alg. 8. For learning the policy

for a user i, our idea is to learn the dependency between the activities of Followees and

Followers (line 3), and utilize it to estimate the hidden state of i’s Followers, using the

101

Figure 7.2.: Overview of policy learning for a user

state of i’s Followees. Specifically, we first learn a model gS to obtain a generalized

representation for the state of the Followees. Then, we learn another model fS that

learns to estimate the state of user i, sk,i from an attention-weighted aggregate of

her Followees’ generalized state representations. We learn a many-to-one mapping

from the state of Followees to a user’s state, however, while extrapolating the states

of Followers from the user’s state, it is a one-to-many mapping. This results in less

accurate estimates of Followers’ states, since there is only one input signal to estimate

the states of multiple Followers.

To address this, we utilize the pairwise user interactions, i.e., the retweets and

likes that a user provides to her Followees, to learn a many-to-many mapping that

can be used to effectively extrapolate the Followers’ states. We learn a model gA

to obtain a generalized representation for the retweet and likes provided by user i’s

Followees (to their Followees), and another model fA that learns to estimate the

retweets and likes provided by user i to her Followees, from her Followees’ generalized

representation for retweets and likes. After learning these models using the activities

of user i and her Followees, we use these to extrapolate the states of user i’s Followers

from user i’s state and observation (lines 5,7). Then, the state of user i, along with

her Followees’ states, and her Followers’ estimated states obtained above, is used

to approximate the value of user i’s activities Vi (line 9) and compute the expected

102

reward ri (line 17), to learn policy π. To evaluate the estimated policy, we simulate

data again from the MHPs. Using the learned policy π̂, we obtain actions that are

added to the MHP intensity functions to generate evaluation data, which is then

Algorithm 8 PolicyLearningForUser(i,θπ,θV ,φS ,φA,θS ,θA,θ=)

1: /* User i obtains her actions based on her state, using policy π */

2: az,k,i = π(sk,i;θπ) /* Decentralized Execution */

3: φS ,φA,θS ,θA,θ= = LearnFolloweeFollowerDependency(i, sk,i,ok,i,

az,k,i, {az,k−1,j}j∈G.i
,φS ,φA,θS ,θA,θ=) (Alg. 11)

4: /* User estimates her Followers’ retweets/likes for stage k */

5: {(n̂R,k,i,m, ŵk,i,m}m∈Gi.
, {αAk,j,m)}m∈Gi.,j∈G.i

= ExtrapolateFollowersRetweetsLikes(i,

az,k−1,i,φA,θA) (Alg. 13)

6: /* User estimates her Followers’ states for stage k */

7: {ŝk,m}m∈Gi.
= ExtrapolateFollowersStates(i, sk,i, {sk,j}j∈G.i

,

{(n̂R,k,i,m, ŵk,i,m}m∈Gi.
, {αAk,j,m)}m∈Gi.,j∈G.i

,φS ,θS ,θ=) (Alg. 12)

8: /* User estimates her Value Function */

9: Vk,i = fV (sk,i, {sk,j}j∈G.i
, {ŝk,m}m∈Gi.

;θV)

10: /* User estimates her expected state and observation for next stage */

11: sk′,i = (E[nk,i(h, z)]), {sk′,j}j∈G.i
= {(E[nk,j(h, z)])}j∈G.i

12: /* User estimates her Followers’ expected states for next stage */

13: {(n̂R,k′,i,m, ŵk′,i,m}m∈Gi.
, {αAk′,j,m)}m∈Gi.,j∈G.i

= ExtrapolateFollowerRetweetsLikes(i,

az,k,i,φA,θA) (Alg. 13)

14: {ŝk′,m}m∈Gi.
= ExtrapolateFollowersStates(i, sk′,i, {sk′,j}j∈G.i

,

{(n̂R,k′,i,m, ŵk′,i,m}m∈Gi.
, {αAk′,j,m)}m∈Gi.,j∈G.i

,φS ,θS ,θ=)

15: /* Compute expected reward */

16: Vk′,i = fV (sk′,i, {sk′,j}j∈G.i
, {ŝk′,m}m∈Gi.

;θV)

17: rk,i = E[Rk,i] + γVk′,i

18: Store rk,i, Vk,i

19: return φS ,φA,θS ,θA,θ=

103

used to measure empirical reward. We also assess the effectiveness of the users who

choose to increment their intensities to promote true news, under the policy learned

by our model, by measuring the number of retweets accumulated by them, in held

out training data. We describe each component next.

7.4.2 Activity Processes

We use N -dimensional MHPs ([37]) to model user activities and simulate envi-

ronment dynamics. Let λh,T ,i be the intensity function governing the tweet events of

user i:

λh,T ,i(t) = µh,T ,i +
∑N

j=1

∫ t

0

Φji (ωh,T e
−ωh,T t) dNj(s, h,T)

where, where h = F or T , and the integral is over time, and s is used as placeholder

for limits {0,t}. µh,T ,i is the base exogenous intensity of user i to tweet, Φji is a

kernel adjacency matrix estimated from the training data, and ωh,T e
−ωh,T t is expo-

nential Hawkes kernel. To obtain Ni(t, h,T), and Wj,i(t), respectively, we use the

Tweet MHP and Like MHP models proposed in Chapter 5. Let aT ,k,i be a constant

intervention action for user i at stage k (time t ∈ [τk, τk+1)), added to the her base

intensity to tweet, for true news diffusion (i.e. h = T).

λT,T ,i(t) = µh,T ,i + aT ,k,i +
∑N

j=1

∫ t

0

Φji (ωh,T e
−ωh,T t) dNj(s, h,T)

To capture the reciprocity in user interactions, we define Retweet MHP as follows.

λh,Rv,i(t) = µh,R,i +
∑N

j∈G.i

∫ t

0

Gji (ωRe
−ωRt) dNvj(s, h,R)

where, λh,R,k+1,v,i(t) is the intensity function for user i to retweet the post of her

Followee v, and Nvj(t, h,R) is the number of times user j retweets the posts of user

v up to time t. The number of retweets of a user j (Sec. 7.3) can be obtained as

Nj(t, h,R) =
∑

v∈G.j
Nvj(t, h,R). Similar to [154], we aggregate the retweets by

104

Followees of user i to the post of user v, based on the idea that the more frequently

the Followees of i retweet v’s posts, the more she tends to retweet v’s posts. When i

retweets v’s post, Nvi(t, h,R) gets incremented, that furthur increases the likelihood

of retweeting v’s posts among the Followers of i. Let aR,k,v,i be a constant intervention

action for user i to retweet Followee v’s posts, at stage k, added to the her base

intensity, for true news diffusion.

λh,R,v,i(t) = µh,R,i + aR,k,v,i +
∑N

j∈G.i

∫ t

0

Gji (ωRe
−ωRt) dNvj(s)

To simulate the event data, we interleave the MHPs to generate tweet events, then

retweet events, and then like events.

7.4.3 Formulation Details

State Let nk,i(h, z) = Ni(τk, h, z)−Ni(τk−1, h, z) represent the number of times user

i shares news in stage k−1. Let sk,i be the state of agent i, that comprises of the

number of tweets, and retweets that user i has made corresponding to fake and true

news in stage k, i.e., sk,i=(nk,i(T,T), nk,i(F,T), nk,i(T,R), nk,i(F,R)).

Observation Each user can observe the state of her Followees, along with the

number of retweets and likes that her Followees have provided to their Followees.

Let wk,j,i be the number of likes provided by user i to her Followee j in stage k,

that can be computed as wk,j,i = Wj,i(τk+1)−Wj,i(τk), where we obtain Wj,i(t) using

Like MHP. Let nR,k,j,i be the number of times user i retweets the posts of user j in

stage k, that is obtained as
∑

h={T,F}[Nji(τk+1, h,R) − Nji(τk, h,R)] (from Retweet

MHP). The observation ok,i of a user i in stage k can then be represented as ok,i =

{sk,j, ({nR,k,l,j, wk,l,j}l∈G.j
)}j∈G.i

.

Reward At the end of each stage k, every user receives (from an external system)

a reward RM,k,i defined as the correlation between the exposures to fake and true

news among her Followers Gi.. We assume that this reward is provided to a user i

105

from the external system since the network is only locally/partially observable to the

user and she cannot observe the state and/or actions of her Followers’ other Followees

{{∪G.m}m∈Gi.
/{i}} (apart from i herself), that accounts for the number of times i’s

Followers are exposed to fake and true news. The total number of exposures to a user

m in stage k is obtained as
∑

i∈G.m
nk,i(h, z). Thus, the mitigation reward RM,k,i for

user i at stage k is given as,

RM,k,i =
∑

z={T ,R}

∑
m∈Gi.

(
∑

l∈G.m
nk,l(T, z))(

∑
l∈G.m

nk,l(F, z))

|G.m|
(7.1)

Additionally, we consider a penalty Pk,i for a user to post more, which corresponds

to the cost or some amount of effort that a user needs to spend to post. While there

can be different functions to quantify the penalty for posting more, we consider the

penalty in this problem to be the number of posts made by a user as a fraction of the

maximum number of posts made by her Followees.

Pk,i =

∑
h={T,F}

∑
z={T ,R} nk,i(h, z)

maxj∈G.i∪i
∑

h={T,F}
∑

z={T ,R} nk−1,j(h, z)
(7.2)

Thus, the total reward Rk,i received by user i at stage k is given as

Rk,i = RM,k,i − Pk,i (7.3)

Hence, a user needs to learn a policy that mitigates the impact of fake news among

her Followers, with fewer number of posts.

Objective The goal of each user i is to learn a policy πi : sk,i → aT ,k,i, {aR,k,j,i}j∈G.i

to determine her intervention actions for tweet and retweet processes for true news

diffusion, in order to maximize the total expected discounted reward that she receives,

for each stage k, i.e., Jk,i =
∑K

k=1 γ
kE[Rk,i], where γ∈(0, 1] is the discount rate. From

Eq. 7.3, we can write,

E[Rk,i] = E[RM,k,i]− E[Pk,i] (7.4)

106

From Eq. 7.1, we have,

E[RM,k,i] =
∑

z={T ,R}

∑
m∈Gi.

(
∑

l∈G.m
E[nk,l(T, z)])(

∑
l∈G.m

E[nk,l(F, z)])

|G.m|

We assume that the diffusion of fake and true news is independent, and thus, we

can decompose the expected reward due to these. For more details, see [15, 169].

Additionally, from Eq. 7.2, we compute,

E[Pk,i] =

∑
h={T,F}

∑
z={T ,R} E[nk,i(h, z)]

maxj∈G.i∪i
∑

h={T,F}
∑

z={T ,R} nk−1,j(h, z)
(7.5)

For the intervention actions, we assume an upper cap on the amount of interven-

tion for each user, i.e. az,k,i ≤ ρ, where ρ. The interventions are continuous, and thus,

the space of intervention actions for user i is given as Ak,i = {aT ,k,i, aR,k,j,i|aT ,k,i ∈

[0, ρ], aR,k,j,i ∈ [0, ρ], j ∈ G.i}.

7.5 DENPL Approach

Given the partially observable ego-network, the goal of a user is to learn a policy

πi that determines the intervention actions for her tweet and retweet intensities, based

on her state and local observation to maximize her local reward. The local reward of

a user depends on her Followers’ exposures to fake and true news, which is impacted

by the user’s actions as well as the actions of other users (her Followers’ Followees)

whom she cannot observe. Thus, our key idea is to estimate the states of the Followers

of a user, with the observation that a user serves both as a Followee and a Follower in

her ego-network. Specifically, we learn a mapping between Followees’ states and the

user’s (Follower) state, i.e., fS : {sk,j}j∈G.i
→ sk,i, and then extrapolate it to estimate

Followers’ states from user’s (Followee) state, i.e., {sk,m}m∈Gi.
= fS(sk,i). We propose

partially centralized learning approach in which we only share the parameters between

agents, without sharing the samples (i.e., state/actions/reward) between agents, in

order to safeguard the privacy of the agents, by which we mean to limit data sharing

107

Algorithm 9 SequentialParameterSharing

1: Initialize θπ,θV ,φS ,φA,θS ,θA,θ= randomly.

2: repeat

3: for k = 1, ..., K do

4: for i = 1, ..., N do

5: φ̃S , φ̃A, θ̃S , θ̃A, θ̃= = PolicyLearningPerUser(i,θπ,θV ,φS ,

φA,θS ,θA,θ=)

6: φS ,φA,θS ,θA,θ= = φ̃S , φ̃A, θ̃S , θ̃A, θ̃=

7: end for

8: end for

9: for i = 1, ..., N do

10: /* Agent i updates policy based on her objective */

11: θ̃π, θ̃V = ComputeObjectiveUpdatePolicyForUser(i,θπ, θV)

12: /* Set initial weights for the next user in the sequence */

13: θπ, θV = θ̃π, θ̃V

14: end for

15: until |∆θπ| < δ /* Convergence */

16: θ∗π = θπ

17: return θ∗π

between agents. Thus, we use the same function for all users, i.e., πi = π, however,

the input and output corresponds solely to a single user. Our policy learning approach

for a single user is presented in Algorithms 8-13, and we describe the components in

detail next.

We represent the policy π as a function of user i’s state, parameterized by weights

θπ, i.e., aT ,k,i, {aR,k,j,i}j∈G.i
= π(sk;θπ). The value of user i’s state is defined as

the total expected reward when in the given state following policy π, i.e., Vk,i =

E[
K∑
t=k

γtRt,i|(π, sk,i)]. In a social network, due to peer-influence, the activities of a user

affect the likelihood of activities of her Followers (Sec. 7.1). Thus, the value of a user’s

108

Algorithm 10 ComputeObjectiveUpdatePolicyForUser(i,θπ,θV)

1: Lθ,i = 0, Lφ,i = 0

2: for k = 1, ..., K do

3: Let Dk,i =
K∑
j=k

γk−1rk,i

4: Bk,i = Dk,i − Vk,i /* Compute Advantage */

5: Lθπ ,i = Lθπ ,i +Bk,i

6: LθV ,i = LθV ,i + ||Vk,i −Dk,i||2
7: end for

8: Jθ,i = Lθπ ,i, JθV ,i = −LθV ,i
9: /* Update parameters based only on user i’s objective */

10: θπ = θπ + ηθπ∇θπJθπ ,i, θV = θV + ηθV∇θV JθV ,i

11: return θπ, θV

state is also conditioned on her ego-network, i.e., Vk,i = E[
K∑
t=k

γtRt,i|(π, sk,i,G.i,Gi.)].

It is computationally expensive to compute Vk,i from future rewards for every possible

policy π, and thus, we approximate the value as a function of the state of the user, the

states of her Followees, and states of her Followers, parameterized by weights θV , i.e.,

Vk,i = fV (sk,i, {sk,j}j∈G.i
, {sk,m}m∈Gi.

;θV). The total expected discounted reward can

then be expressed as Jk,i = E[Rk,i] + γ fV (sk′,i, {sk′,j}j∈G.i
, {sk′,m}m∈Gi.

;θV), where

sk′ is the next state. We use advantage actor-critic algorithm (e.g., [28]) to learn

continuous policies for agents since policy gradient methods are more effective in

high dimensional spaces.

To realize partially centralized learning, we perform sequential weight update

in which there is a random ordering of the users. A user i updates the weights

based on her own objective i.e., θ̃ = θ + ηθ∇θπJθ,i, and then the next user j in the

random ordering uses the initial weights as the weights learned by user i i.e. θ̃, and

updates them based on her objective Jk,j. The algorithms for sequential parameter

sharing and weight update are presented in Algorithms 9 and 10. To update the

weights for functions π and V , for a single user, we compute rk,i that represents

the expected reward obtained by user i for her actions aT ,k,i, aR,k,i in stage k, i.e.,

109

Algorithm 11 LearnFolloweeFollowerDependency(i, sk,i,ok,i, az,k,i, {az,k−1,j}j∈G.i
,φS ,

φA,θS ,θA,θ=)

1: repeat

2: /* Generalized representation for Followees’ retweets, likes */

3: {(hAR,k−1,l,j, h
L
k−1,l,j)}j∈G.i,l∈∪G.j

= gA({(nR,k−1,l,j, wk−1,l,j)

}j∈G.i,l∈∪G.j
;φA)

4: /*Compute reconstruction loss for Followees’ retweets, likes*/

5: LAφ =
∑

j∈G.i
||{hAR,k−1,l,j}l∈∪G.j

− {nR,k−1,l,j}l∈∪G.j
||2 +∑

j∈G.i
||{hLk−1,l,j}l∈∪G.j

− {wk−1,l,j}l∈∪G.j
||2

6: /* Estimated retweets, likes of user i */

7: {n̂R,k,j,i, ŵk,j,i}j∈G.i
= fA({(hAR,k−1,l,j, h

L
k−1,l,j)}j∈G.i,l∈∪G.j

;θA)

8: /* Compute loss for estimated retweet actions of user i */

9: LAi =
∑

j∈G.i
||nR,k,j,i − n̂R,k,j,i||2 +

∑
j∈G.i

||wk,j,i − ŵk,j,i||2
10: /* Generalized representation for user i’s Followees’ states */

11: {hSk,j}j∈G.i
= gS({sk,i}j∈G.j

;φS)

12: /* Compute reconstruction loss LSφ for Followees’ states */

13: LSφ =
∑

j∈G.i
||hSk,j − sk,j||2

14: /* Attention between user i and Followees based on state */

15: αSk,j,i = σ(=(sk−1,i,h
S
k,j; θ=))

16: /* Estimate state of user i */

17: ˆsk,i = fS(sk−1,i,
∑
j∈G.i

αSk,j,i h
S
k,j, {n̂R,k,j,i, ŵk,j,i}j∈G.i

; θS)

18: /* Compute loss LSi for estimated state of user i */

19: LSi = ||sk,i − ŝk,i||2
20: Li = LSi + LAi + LSφ + LAφ /* Total Loss */

21: /* Update Weights for user i */

22: φS = φS + ηφS∇φSLi(φS), φA = φA + ηφA∇φALi(φA), θA = θA +

ηθS∇θSLi(θS), θA = θA + ηθA∇θALi(θA), θ= = θ= + ηθ=∇θ=Li(θ=)

23: until |∆θS < δ| /* Convergence */

24: return φS ,φA,θS ,θA,θ=

110

rk,i = Ei[Rk,i] + γVk,i. Let Dk,i be the total discounted reward for stage k, where K

is the total number of stages, i.e., Dk,i =
∑K

j=k γ
krk,i The parameters θV of the value

function are updated with the loss ||Vk,i −Dk,i||2, as the value function corresponds

to the total expected discounted reward that a user can obtain in a given state. To

update the policy function parameters θπ, we optimize the advantage function that

is obtained by subtracting Vk,i as baseline from Dk,i, which helps to compute the

relative advantage of actions by subtracting an average amount of return, and also

reduce the variance. Note that, to avoid the problem of non-stationary policies due

to individual learning by each agent [173], we consider that agents perform updates

in a sequence, and the actions of agents in stage k are updated after the actions of

all agents have been updated in stage k − 1.

Moreover, each user has different number of Followees and Followers in her ego-

network, i.e., the dimensions of input and output while extrapolation using fS , are

different from those while learning fS . Thus, we consider that the dimensionality of

input and output of shared oracle (neural network) corresponds to the total number

of users N , and that the input and output are sorted by user ids. While learning the

function with respect to a given user i, we use a sentinel to receive the signal only

from the Followees of the user, and determine the output only for the Followers of

the user. We use the same approach to learn different functions π, V, fS , fA, gS , gA.

Now, to update the parameters for policy π at stage k, we need to accurately

estimate the total expected discounted reward from future stages Jk,i, that depends on

the estimates of the value function Vk,i. However, to approximate the value function

for a user, we require the state of her Followers, which is hidden from her partial

view of the environment. Thus, we learn a mapping between the state of Followees

and user’s state, and then use the learned mapping to extrapolate the states of her

Followers using her state and local observation.

111

Figure 7.3.: Learn generalized representation of Followees’ states

7.5.1 Learning dependency between Followees-Followers states

Each user i learns a function fS parameterized by weights θS to estimate her state

ŝk,i from the states of her Followees {sk,j}j∈G.i , with an objective LSi to minimize the

difference between the estimated and true states of the user, as shown in line 19,

Alg. 11. We first obtain a generalized representation for the Followees’ states using

stacked auto-encoders (e.g., [174]) so that the same function that is used to estimate

user i’s state from her Followees’ states, can be used to estimate user i’s Followers’

states from user i’s state, i.e., the input can be generalized across different sets of

users. Specifically, user i learns a function gS : R|G.i|d → R|G.i|d, parameterized by

weights φS (where |G.i| is the number of Followees of user i), to obtain the generalized

representation {hSk,j}j∈G.i
for the states of her Followees as shown in line 11, Alg. 11

with reconstruction loss LSφ in line 13, Alg. 11. Fig. 7.3 shows the input and output for

the model gS using an example of user’s partially observable ego-network in Fig. 7.1.

To improve the estimates for the Followers’ states, it is important to consider the

attention that a Follower pays to her Followees to account for the different peer-

influence between users.

112

7.5.2 Attention between users based on State

A user i learn the attention weights αSk,j,i between her state in the past stage sk−1,i,

and the generalized state of her Followee j in the current stage k, using an attention

mechanism = : Rd × Rd → R. The attention weights are computed as αSk,j,i =

σ(=(sk−1,i,h
S
k,j; θ=)) (line 14, Alg. 11), where σ is the sigmoid function. Similar

to [175], the attention mechanism = is learned using a multi-layer feed-forward neural

network, in which the gradient of the total loss is back-propagated through to jointly

learn the weights for the attention mechanism along with the total loss for user i,

Li = LSi + LAi + LSφ + LAφ (line 18, Alg. 11), where LAi and LAφ are described later in

Sec. 7.5.3.

Each user has different number of Followees and Followers. Therefore, the mapping

between Followees’ states and a user i’s state is the mapping from R|G.i|d to Rd, where

d is the number of network activities (Sec. 7.3). On the agent level, it is a many-to-

one mapping from the Followees to the user, i.e., |G.i| → 1. Now, if user i uses the

same mapping to extrapolate the states of her Followers by providing her state as the

input, the mapping will be Rd → R|Gi.|d, that, on the agent level, is a one-to-many

mapping from the state of the agent to the states of her Followers, i.e., 1 → |Gi.|.

Hence, the estimates of the states of the Followers of user i computed using user i’s

state and attention weights between user i and her Followers will be less accurate.

To address this, we utilize the pairwise interactions, i.e., the retweets and likes that

a user provides to her Followees, to learn a many-to-many mapping that can be used

effectively to extrapolate the states of the Followers, described as follows.

7.5.3 Learning dependency between Followees-Followers retweets and likes (actions)

A user i learns a mapping from the number of retweets and likes (defined in

Sec. 7.4.3) given by her Followees (to their Followees), to the number of retweets and

likes given by her (as a Follower) to her Followees, and then uses the same map-

ping to extrapolate the retweets and likes given by her Followers to herself (acting

113

Figure 7.4.: Learn generalized representation of Followees’ actions

Figure 7.5.: Learn to estimate user’s actions for Followees

as a Followee). First, we generalize the input representation across different sets of

users using stacked auto-encoders, to effectively transfer this mapping. Each user i

learns a function gA, parameterized by weights φA, to obtain the generalized repre-

sentation {(hAR,k−1,l,j , h
L
k−1,l,j)}j∈G.i,l∈∪G.j

for the number of retweets and likes given

by her Followees, as shown in line 3, Alg. 11 with reconstruction loss LAφ in line 5,

Alg. 11. Fig. 7.4 shows the input and output for the model gA using an example of

user’s partially observable ego-network. Then, we learn a function fA parameterized

by weights θA, to estimate the number of retweets and likes given by a user to her

Followees {n̂R,k,j,i, ŵk,j,i}j∈G.i
from the generalized representation of the number of

114

Figure 7.6.: Learn to estimate user’s state from Followees’ states

retweets and likes of her Followees as shown in line 7, Alg. 11. The parameters θA

are learned to minimize LAi which is the difference between the estimated and actual

number of retweets/likes for the user, as shown in line 9, Alg. 11. Fig. 7.5 shows the

input and output for the model fA using an example of user’s partially observable

ego-network. The estimated number of retweets and likes of a user, together with the

user’s previous state in stage k − 1 and the state of her Followees are then provided

as input to fS to estimate the user’s state in stage k, as shown in line 17, Alg. 11.

Fig. 7.6 shows the input and output for the model fS using an example of user’s

partially observable ego-network.

7.5.4 Extrapolating Followers’ states

After learning fS , we use it to extrapolate the states of a user i’s Followers de-

scribed as follows. We propose to use the states of user i’s Followees, along with

user i’s state, to improvise the estimates of user i’s Followers’ states. We first ob-

115

Figure 7.7.: Obtain generalized representation of user’s state and Followees’ states

Figure 7.8.: Obtain generalized representation of user’s actions

tain the generalized representations hSk,i and {hSk,j}j∈G.i
, respectively, for the states of

user i and her Followees using the learned function gS (Fig. 7.7), as shown in line 2,

Alg. 12. Next, our idea is to utilize the attention weights between the retweets/likes

of user i’s Followers (for user i), and the retweets/likes of a user i (for user i’s Fol-

lowees), to capture the indirect dependency between user i’s Followees and user

i’s Followers. Specifically, the user utilizes the learned function gA to obtain the

generalized representation for the number of retweets and likes provided by her to

her Followees (Fig. 7.8), which is then used to extrapolate the number of retweets

and likes given by her Followers using learned function fA (Fig. 7.9), as shown in

116

Figure 7.9.: Estimate Followers’ actions for user

Alg. 13. The attention that a user i’s Follower m provides to the user’s Followee

j, in stage k, is αAk,j,m = θA[hAR,k−1,j,i, n̂R,k,i,m] + θA[hLk−1,j,i, âR,k,i,m] (line 6, Alg. 13)

where θA[hAR,k−1,j,i, n̂R,k,i,m] is the weight between the node corresponding to the rep-

resentation for number of retweets of user i for her Followee j, and the output node

that corresponds to the estimated number of retweets of Follower m for user i, in

the neural network. Similarly, θA[hLk−1,j,i, âR,k,i,m] corresponds to number of likes.

Then, using the learned fS we estimate the state of user i’s Follower m, in stage k

(Fig. 7.10), as a function of the estimated state of m in stage k − 1, the generalized

state representation of user i weighted by αS (Sec. 7.5.2), and the generalized state

representation of user i’s Followees weighted by αA as shown in line 6, Alg. 12.

Note that, we capture the impact of two-hop Followees of m by learning the

attention weights αAk,j,m based only on the actions of one-hop Followee i.e., user i.

With this, we also avoid storing the explicit states/actions of the two-hop Followees to

obtain the attention provided to them by the Follower m. Additionally, we randomly

sampled separate set of Followees for learning and separate set for extrapolation, and

did not find much difference compared to using the complete set of a user’s Followees

for both learning and extrapolation. Hence, the latter case does not bias our results.

117

Figure 7.10.: Estimate Followers’ states

Algorithm 12 ExtrapolateFollowersStates(i, sk,i, {sk,j}j∈G.i
, {(n̂R,k,i,m, ŵk,i,m}m∈Gi.

,

{αAk,j,m)}m∈Gi.,j∈G.i
,φS ,θS ,θ=)

1: /* Generalized representation for state of user i and her Followees */

2: hSk,i = gS(sk,i;φS), {hSk,j}j∈G.i
= gS({sk,j}j∈G.i

;φS)

3: /* Attention between Followers and user i based on state */

4: αSk,i,m = σ(=(ŝk−1,m,h
S
k,i;θ=))

5: /* Estimated Followers’ states */

6: ŝk,m = fS(ŝk−1,m, α
S
k,i,m hSk,i +

∑
j∈G.i

αAk,j,m hSk,j, {(n̂R,k,i,m,

ŵk,i,m}m∈Gi.
;θS) ∀m ∈ Gi.

7: return {ŝk,m}m∈Gi.

After extrapolating the Followers’ states, user i can estimate her value function

Vk,i based on her own state, the states of her Followees, and the estimated states of

her Followers, i.e., Vk,i = fV (sk,i, {sk,j}j∈G.i
, {sk,m}m∈Gi.

;θV), (line 9, Alg. 8).

118

Algorithm 13 ExtrapolateFollowersRetweetsLikes(i, {aR,k−1,j,i}j∈∪G.i
,φA,θA)

1: /* Generalized representation for user i’s retweets, likes */

2: {(hAR,k−1,j,i, h
L
k−1,j,i)}j∈∪G.i

= gA({(nR,k−1,j,i, wk−1,j,i)}j∈∪G.i
;φA)

3: /* Estimated retweet, likes of user i’s Followers */

4: {n̂R,k,i,m, ŵk,i,m}m∈Gi.
= fA({(hAR,k−1,j,i, h

L
k−1,j,i)}j∈G.i

;θA)

5: /*Attention between Followees and Followers based on retweets, likes*/

6: αAk,j,m = θA[hAR,k−1,j,i, n̂R,k,i,m] + θA[hLk−1,j,i, âR,k,i,m] ∀j ∈ G.i,∀m ∈ Gi.

7: return {(n̂R,k,i,m, ŵk,i,m)}m∈Gi.
, {αAk,j,m}m∈Gi.,j∈G.i

7.5.5 Policy Evaluation

For each user i, we find the intervention actions az,k,i = π(sk,i;θπ) given her state

sk,i that is obtained from events in the evaluation data. To obtain the actions, we do

not need to estimate the Followers’ states as π is conditioned only on the state of user

i. Then, we simulate the MHPs after adding az,k,i to the respective base exogenous

intensities of tweet (z = T) and retweet (z = R) processes for true news diffusion,

and compute the following evaluation metric. To compare with previous work [43], we

compare the performance of different methods based on the collective reward obtained

across all users in the network. Let performance P =
∑K

k=1 Rk × |LT,k∩LF,k|
|LF,k|

, where

LT,k = {i|i ∈ [1, N],nk(T, z) ·G.i > 0} and LF,k = {i|i ∈ [1, N],nk(F, z) ·G.i > 0}

are the sets of users exposed to true and fake news, respectively, during stage k, and

Rk is the collective reward defined as the correlation between exposures to fake and

true news across all users in the network. To evaluate the performance of different

methods based on individual rewards, we compute the reward Rk,i for a user which is

the correlation between exposures to fake and true news among the Followers of user

i along with the fraction of the Followers exposed to fake news that become exposed

to true news, that helps to assign more importance to the selection of distinct users

over the selection of few users with high exposures. Then, we compare different

methods based on the cumulative reward, i.e.,
∑K

k=1

∑N
i=1 Rk,i × |LT,k,i∩LF,k,i||LF,k,i|

, where

LT,k,i = {i|i ∈ Gi.,nk(T, z) ·G.i > 0} and LF,k,i = {i|i ∈ Gi.,nk(F, z) ·G.i > 0} are

119

the sets of Followers of user i exposed to true and fake news, respectively. To assess

intervention gains, we measure the performance relative to that obtained by applying

no intervention. Specifically, we compute the difference between the performance

after applying the learnt policy and that without applying a policy.

7.6 Experiments

We use real-world datasets, Twitter 2016 and Twitter 2015 [5,146], with 750 and

2050 users, respectively. The time-horizon T = 40 is divided into 40 stages of ∆T = 1

hour each. The time-intervals for Training Data, STD, SED before and after applying

interventions, and Held-Out Data (Fig. 7.2), respectively, are, [0, 10), [10, 20), [20, 30),

and [30, 40). We let ρk ∼ U(0, 1), and γ = 0.7, as in [15,169].

We consider the baselines listed next to compare the performance of our approach.

Note that we perform sequential parameter sharing in all the baselines, except DEC,

due to the large number of users in the network. To compare the performance with

respect to N , we down-sample the network. Specifically, we select a user i randomly.

Then we select atmost ζ ≤ 5 Followees and Followers of the user randomly. We

then repeat this process for all the selected users until we reach the desired network

size limit. For each network size, we down-sample 20 different networks and report

average results.

7.6.1 Baselines

OS (Observed State)

An agent learns the value function based only on her state and the state of her

Followees (e.g., [93]).

120

TFS (True Follower States)

To compare to the scenario where agents would have access to the true state of

their Followers (but not to the complete network state of all users), we consider this

baseline in which an agent uses the true state of her Followers along with her state

and Followees’ states to approximate the value function.

EFS (Extrapolated Follower State)

This version of our proposed extrapolated modeling approach learns a many-

to-one mapping from the state of a user’s Followees to the user’s state, and then

transfers the model to estimate user’s Followers’ states from user’s state (one-to-

many mapping). Agent’s state, Followees’ states and the estimated Followers’ states

are used to approximate the value function.

EFSA (Extrapolated Follower States + Actions)

This version of our proposed approach which performs extrapolated modeling via

many-to-many mapping learned using the retweet actions and likes between users,

but the state of user’s Followees is not used to estimate the states of her Followers.

Agent’s state, observation and the estimated Followers’ states are used to approximate

the value function.

CEN (Fully Centralized Learning)

The environment is fully observable to all agents, and they observe the complete

network state, and learn actions to maximize their individual rewards. The actions

are conditioned on the complete network state, as opposed to TFS, in which the

actions are conditioned only on the state of a user. The complete network state is

used to approximate the value function (e.g., [15, 43,71]).

121

(a) Twitter 2016 (b) Twitter 2015

Figure 7.11.: Performance vs N (Collective Reward)

DEC (Fully Decentralized Learning)

The components are same as in DENPL, however, a separate model is learned for

each user, without sharing any parameters (for small number of users) (e.g., [44,107,

119]).

RND (Random Actions)

Random. az,k,i ∝ U(0, ρ).

7.6.2 Results

We compare the relative performance of different methods with respect to network

size N , based on Collective Reward in Fig. 7.11, and Cumulative Reward in Fig. 7.12.

We find that the results for both are qualitatively the same. Our proposed approach

performs equivalent to the centralized learning method CEN, and outperforms other

baselines, for all network sizes. We observe that our method DENPL, TFS, EFS,

and EFSA that use sequential parameter sharing described in Sec. 7.5, achieve a

much higher performance and lower variance compared to the fully decentralized

122

(a) Twitter 2016 (b) Twitter 2015

Figure 7.12.: Performance vs N (Cumulative Reward)

method DEC. This is because the effective number of samples per user increases

due to sharing parameters. Thus, by only sharing the parameters that are updated

individually by each user based on her own objective, without sharing any actual

data/samples between users, we can achieve large gains in performance with lower

variance.

We note that there is very little change in the performance of the fully decentral-

ized method DEC with respect to the number of agents N , and the results have high

variance. This is due to the fact that each agent learns her policy independently,

conditioned solely on her local neighborhood, without sharing any parameters or tra-

jectory information from other agents in the network. Hence, there are less samples

available to improvise the estimates for each user. Also, the memory requirements

increase with an increase in the number of agents as we need to store separate set

of parameters for every agent. This shows that fully decentralized learning does not

yield accurate policy estimates, and adds extra sample complexity to the task, due

to insufficient information per user. On the other hand, the performance of partially

centralized learning methods decreases with a decrease in N . This shows that with

parameter sharing, the sample efficiency improves with an increase in the number

123

of agents, as the samples of more users are available to optimize the parameters,

resulting in better performance.

We observe a large difference in the performance of method OS in which a user

simply learns the value function based on her state and her Followees’ states, and

method TFS, in which the user also includes the true states of her Followers to

approximate the value function. This shows that it is important to use the states of

the Followers to learn the value function. In practice, the user cannot observe her

Followers’ states, and therefore it is important to estimate the Followers’ (hidden)

states and use it for policy learning.

The method EFS that estimates the states of the Followers and utilize those

to approximate the value function, outperforms OS. This indicates that including

the estimates of Followers’ states via ego-network extrapolation helps to improvise

the policy. However, the performance of EFS is still lower compared to TFS, which

indicates that simply inverting a many-to-one mapping between Followees and a user,

to a one-to-many mapping between the user and Followers does not yield accurate

estimates of Followers’ states. This is due to insufficient input signals while estimating

the states of Followers from the state of a user alone.

The method EFSA, which uses the pairwise user interactions to estimate the

Followers’ retweets and likes and in-turn use those for estimating the Followers’ states,

achieves a much higher performance than EFS, and is closer to TFS. Thus, pairwise

user interactions help to effectively extrapolate a many-to-many mapping.

Our proposed approach DENPL performs better than EFSA and TFS. This indi-

cates that along with the estimated Followers’ retweets/likes, utilizing the state of the

Followees combined with the attention learned between the Followees and Followers

of a user, helps to incorporate information about two-hop (more than one-hop) Fol-

lowees, and thus obtain better estimates for Followers’ states. Our method achieves

performance equivalent to the centralized learning method CEN, that has the highest

performance since it assumes a fully observable environment and learns conditioned

on the complete network state of all the agents, whereas other approaches consider a

124

(a) Twitter 2016 (b) Twitter 2015

Figure 7.13.: Convergence

partially observable environment. However, fully centralized learning is computation-

ally intensive due to high dimensional joint state/action representations that grows

larger with the number of agents. It is important to note that we cannot perform

clustering as in Chapter 6, since that requires a centralized controller that has access

to the states/actions/rewards of all users for clustering, and thus, clustering will be

performed at a global level. However, we want to learn in a more decentralized fash-

ion to safeguard privacy by not sharing the data between users. This indicates that

by effectively extrapolating the dependencies learned from the Followees to Followers

using pairwise user interactions and peer-influence as attention, we are able to learn

policies equivalent to those learned via centralized learning. In addition, by perform-

ing sequential parameter sharing, we are able to improve the sample efficiency, and

also ensure that the policies are more privacy-aware (limited data-sharing between

users) (Sec. 7.1).

We also conducted additional experiments to study the challenge, in a partially

observable setting, due to the unavailability of the Followers’ states, as compared

to the scenario where the hidden state becomes available after a few time-steps (i.e.

before the time-horizon). In the latter, the true state can be utilized as history for

policy learning, however, in the former, as in our problem setting, the hidden state is

125

Table 7.1.: Sum of Retweets at τ + g for Users with Interventions at τ

MODEL
τ

′
= τ + 0 τ

′
= τ + 2 τ

′
= τ + 5 τ

′
= τ + 8

I ¬I I ¬I I ¬I I ¬I

CEN 956.5 410.8 775.4 229.3 625.8 210.8 560.2 177.7

DENPL 938.9 418.1 765.8 239.3 610.2 230.6 532.9 182.6

TFS 925.5 426.7 764.7 245.9 599.8 245.6 552.8 192.2

EFSA 849.7 544.8 712.9 323.8 555.1 301.4 498.5 239.7

EFS 597.6 565.7 554.8 361.8 519.7 331.4 433.7 301.3

OS 492.3 426.2 430.6 368.1 331.9 302.6 282.7 233.3

RND 400.6 515.8 258.1 414.6 338.6 349.4 112.8 376.8

not available to agents for learning (even beyond the time-horizon), due to the directed

nature of user interactions. In Fig. 7.13, we compare the time until convergence

required by different methods. The methods CEN, TFS assume the availability of the

true state of Followers, and hence converge much faster compared to other methods.

On the other hand, our approach DENPL and OS do not have the state information of

the Followers available, and hence these take longer to learn accurate state estimates.

We also compared with the versions of our approach, DENPL-2, DENPL-5, DENPL-

8, where we assume that the state information becomes available after 2, 5, 8 time-

steps, respectively, and use that as history to improvise the estimates. These versions

converge faster, but as the number of time-steps (when true state information becomes

available) increases, it takes longer to converge. Recall however, this requires storing

the trajectory for every user, which is space inefficient for social networks.

The above results, based on reward, serve as proof of concept that increasing the

intensity of posting true news by a user helps to mitigate the impact of fake news

locally, i.e., increase the exposure of true news, among the Followers who are exposed

to fake news. Since we cannot make real-time interventions, we compare different

methods by measuring the impact of users who increase their intensity for true news

126

diffusion, in terms of the total number of users actually reached in the real Held-Out

Data. Specifically, we compare the total number of retweets accumulated by users

who do not perform intervention versus users who perform intervention to promote

true news under the policy learned using different baselines. Let I(τ) refer to the

the set of users who make interventions to their intensity for true news diffusion,

in SED (τ ∈ [20, 30)) and promote true news by time τ , according to the model,

i.e., I(τ) = {i|(Ni(τ, T, z)−Ni(2K,T, z)) > 0}, and the remaining users who do not

perform interventions, are referred to as ¬I(τ). We calculate the total number of

users who retweeted the posts of users in I(τ) and ¬I(τ) between time [τ
′
, τ

′
+ ∆)

where τ
′
=τ + g, and g={0, 2, 5, 8} indicates the gap or number of stages after which

we want to measure the impact of users (in the future). We considered different values

of ∆ ∈ {1, 2, 3, 4, 5} and Table 7.1 reports the average. We see that the number of

retweets accumulated by users who promote true news (I) is greater than that of users

who do not perform interventions (¬I) for our method DENPL by a large margin.

127

8 CONTRIBUTIONS

In this dissertation, we defined Social Reinforcement Learning (Chapter 3), for sys-

tems with a large number of agents with sparse interactions between them, in both

fully observed and partially observed environments. We described the challenges of

high-dimensionality and sparsity associated with Social RL problems, that makes it

difficult to learn policies, especially in partially observable environments. We pro-

posed ways to address these by utilizing properties of the social network structure,

agent interactions and relations, by obtaining a compact model that better captures

agent dependencies and is much more efficient to solve. We discussed several ap-

plications where the Social RL setting is applicable and characterized those with

respect to the different attributes of the Social RL problem setting. In this chapter,

we summarize the contributions of this dissertation, and outline avenues for future

research.

8.1 Summary of Contributions

In Chapter 5, we proposed a centralized Social RL approach to capture the inter-

agent dependencies and improve the sample efficiency per user for learning policies

to incentivize users to spread more true news (to mitigate the impact of fake news).

We designed a model to estimate the likely feedback for users based on both their

network structure and the political bias of their peers. We demonstrated the gain

in the performance of our method due to the user feedback modeled. Moreover, we

effectively provided the user feedback as input to the policy function approximator,

and thus, we avoided learning a separate complex model for each user (as in the stan-

dard reward shaping techniques). We also decoupled the post and response processes

to approximate the joint action space more efficiently in order to reduce the computa-

128

tional complexity, as we dynamically optimized the intensity for the MHP governing

the post events, and only learned parameters for the feedback events from historical

data. We demonstrated that our proposed approach achieved better performance in

terms of the reward and the number of distinct mitigated users. We showed the gain

in the performance of our method due to appropriate selection of users and efficient

allocation of incentive among them. We tested the efficacy of the users selected by our

model and demonstrated that the selected users achieved greater number of retweets,

indicating an increased true news spread.

In Chapter 6, we developed an efficient algorithm for centralized policy learning

to overcome the challenges of high-dimensionality and sparsity, by clustering users

dynamically to reduce the model size and achieve faster convergence as well. We

aggregated the interactions of similar agents to overcome the problem of sparsity and

curse of dimensionality, and thus, lowered the variance. We defined weighted centroids

to ensure cluster alignment across different stages, while dynamically updating the

cluster memberships, as required by the policy function approximator. We reduced

the problem of learning policies for N users to that of learning policies for C clusters,

and thus, the number of parameters to be learned from ∼N3 to ∼C3 (C � N). Thus,

we lowered the computational complexity for centralized policy learning, while still

considering all agent dependencies given large number of users. We designed latent

features to cluster users based on their payoff and contribution to the goal, and thus,

we provide a discriminative power to our model to differentiate between different

types of users (and their activities), for efficient allocation of incentives among them

under fixed budget. We also reduced the number of parameters by providing the

latent features as input to the policy function via clusters, instead of adding them to

the state representation. Thus, we better explore the action space, without increasing

the state space, which also helps in faster convergence of our method. We showed

that our dynamic clustering approach quickly learns better policy estimates, and

outperformed different static clustering and non-clustering alternatives.

129

In Chapter 7, we created an effective extrapolated modeling approach for learn-

ing policies in partially observable environments where agents receive different local

observations and rewards. We first learned the dependency between followees and

followers, and extrapolated those to estimate hidden network state. We improvised

the estimates of the hidden state and thus, the policy, by utilizing pairwise user in-

teractions and peer-influence as attention. We developed a framework for sequential

parameter sharing where a sequential update of parameters is performed by the users

individually, based solely on their individual state, observations and rewards. We

make our approach more privacy aware by only sharing parameters, and not the ac-

tual samples or trajectory information across users. We also provide more autonomy

to the agents to learn their own actions and execute those in a decentralized fashion,

rather than the system determining the actions for all users as in fully centralized

learning. We showed that our approach is able to achieve performance comparable

to the fully centralized learning method that assumes full observability and access to

the complete network state, and also outperforms decentralized approaches that use

baseline estimates of the hidden state. Thus, we illustrate the potential for Social RL

methods to learn in a decentralized fashion, limiting the need for data sharing across

agents.

We also developed new measures to improvise evaluation in scenarios where online

application of policy is not feasible. Along with the reward measured from simulated

data as in traditional approaches, we also measured the impact of users who modify

their actions based on the learned policies using real-held out data. We designed the

performance measure to emphasize more on the mitigation of distinct users over the

mitigation of few users with high exposures.

8.2 Future Directions

There are a few directions that remain as future work and are very interesting to

explore, for example:

130

In adversarial settings, agents have competing goals, and often do not have access

to the state of other agents. The individual agent rewards can also be in conflict

with the overall system objective, giving rise to the problem of Social Dilemma (e.g.,

[56, 176]). In Social RL setting, an example of social dilemma is when certain bots

or users with malicious objectives want to intentionally spread fake news, which is in

contrast to the system goal of promoting true news. In such scenarios, future work

will involve exploring ways to model the intentions or trustworthiness of agents, and

estimating the consequences of other agent’s actions, and use those to improvise policy

learning for an agent.

It might be possible to scale decentralized learning for large number of users by

learning policies for individual agents concurrently. However, for this, it is critical

to ensure that the policy learnt for an agent is responsive to the changes in the

policies of other agents, i.e., the policies are stationary. When the agent policies

are learnt independently without taking into account the actions of other agents, the

stored samples used for learning an agent’s policy can become obsolete as other agents

update their policies concurrently resulting in non-stationary policies [102,177]. Thus,

the policies that were learnt to be optimal in response to the past actions of other

agents, can actually become worse as the other agents have already changed their

policies meanwhile. Also, changes in the policy of an agent during learning can affect

the optimal policy of other agents, leading to inaccurate estimates of the expected

reward. Thus, in the future, it will be interesting to develop decentralized concurrent

learning approaches for Social RL problems that yield stationary policies along with

scaling to thousands of users.

We note that for reward calculations, we assume if user i follows user j, then all

posts by j will be visible to i. However, for deployment in practice, systems would

need to consider other factors like the time intervals when user j is online to determine

if she is actually exposed to i’s post. Future work can incorporate the probability of a

user being online during certain time-intervals in a day and the probability of a user

131

i viewing user j’s posts during those time-intervals, to improve reward measurements

and overall performance.

132

REFERENCES

[1] Hunt Allcott and Matthew Gentzkow. Social media and fake news in the 2016
election. Journal of Economic Perspectives, 31(2):211–36, 2017.

[2] David MJ Lazer, Matthew A Baum, Yochai Benkler, Adam J Berinsky, Kelly M
Greenhill, Filippo Menczer, Miriam J Metzger, Brendan Nyhan, Gordon Pen-
nycook, David Rothschild, et al. The science of fake news. Science, 2018.

[3] Soroush Vosoughi, Deb Roy, and Sinan Aral. The spread of true and false news
online. Science, 359(6380):1146–1151, 2018.

[4] Chao Yang, Robert Harkreader, and Guofei Gu. Empirical evaluation and new
design for fighting evolving twitter spammers. IEEE Transactions on Informa-
tion Forensics and Security, 8(8):1280–1293, 2013.

[5] Yang Liu and Yi-Fang Brook Wu. Early detection of fake news on social me-
dia through propagation path classification with recurrent and convolutional
networks. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[6] Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. Fake news
detection on social media: A data mining perspective. ACM SIGKDD Explo-
rations Newsletter, 19(1):22–36, 2017.

[7] Kai Shu, H Russell Bernard, and Huan Liu. Studying fake news via network
analysis: detection and mitigation. In Emerging Research Challenges and Op-
portunities in Computational Social Network Analysis and Mining, pages 43–65.
Springer, 2019.

[8] H.R.492. Biased algorithm deterrence act of 2019.
https://www.congress.gov/bill/116th-congress/house-bill/492/, 2019.

[9] Gordon Pennycook and David G Rand. The implied truth effect: Attaching
warnings to a subset of fake news stories increases perceived accuracy of stories
without warnings. 2017.

[10] Norbert Schwarz, Lawrence J Sanna, Ian Skurnik, and Carolyn Yoon. Metacog-
nitive experiences and the intricacies of setting people straight: Implications for
debiasing and public information campaigns. Advances in experimental social
psychology, 2007.

[11] Ullrich KH Ecker, Joshua L Hogan, and Stephan Lewandowsky. Reminders and
repetition of misinformation: Helping or hindering its retraction? Journal of
Applied Research in Memory and Cognition, 2017.

[12] Ceren Budak, Divyakant Agrawal, and Amr El Abbadi. Limiting the spread
of misinformation in social networks. In Proceedings of the 20th international
conference on World wide web. ACM, 2011.

133

[13] Xinran He, Guojie Song, Wei Chen, and Qingye Jiang. Influence blocking
maximization in social networks under the competitive linear threshold model.
In Proceedings of the 2012 siam international conference on data mining, pages
463–474. SIAM, 2012.

[14] Nam P Nguyen, Guanhua Yan, My T Thai, and Stephan Eidenbenz. Contain-
ment of misinformation spread in online social networks. In Proceedings of the
4th Annual ACM Web Science Conference, pages 213–222. ACM, 2012.

[15] Mehrdad Farajtabar, Jiachen Yang, Xiaojing Ye, Huan Xu, Rakshit Trivedi,
Elias Khalil, Shuang Li, Le Song, and Hongyuan Zha. Fake news mitigation via
point process based intervention. arXiv preprint arXiv:1703.07823, 2017.

[16] Craig Silverman. This analysis shows how viral fake election news stories out-
performed real news on facebook. BuzzFeed News, 16, 2016.

[17] Dan M Kahan, Ellen Peters, Erica Cantrell Dawson, and Paul Slovic. Motivated
numeracy and enlightened self-government. Behavioural Public Policy, 1(1):54–
86, 2017.

[18] Rebecca M Jones, Leah H Somerville, Jian Li, Erika J Ruberry, Victoria Libby,
Gary Glover, Henning U Voss, Douglas J Ballon, and BJ Casey. Behavioral
and neural properties of social reinforcement learning. Journal of Neuroscience,
31(37):13039–13045, 2011.

[19] Yeoreum Lee and Youn-kyung Lim. Understanding the roles and influences of
mediators from multiple social channels for health behavior change. In Proceed-
ings of the 18th ACM Conference on Computer Supported Cooperative Work &
Social Computing, pages 1070–1079. ACM, 2015.

[20] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[21] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end
training of deep visuomotor policies. The Journal of Machine Learning Re-
search, 17(1):1334–1373, 2016.

[22] Daan Wierstra, Alexander Förster, Jan Peters, and Jürgen Schmidhuber. Re-
current policy gradients. Logic Journal of the IGPL, 18(5):620–634, 2010.

[23] Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and
Yuval Tassa. Learning continuous control policies by stochastic value gradients.
In Advances in Neural Information Processing Systems, pages 2944–2952, 2015.

[24] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International conference on ma-
chine learning, pages 1889–1897, 2015.

[25] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. High-dimensional continuous control using generalized advantage esti-
mation. arXiv preprint arXiv:1506.02438, 2015.

[26] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil An-
thony Bharath. A brief survey of deep reinforcement learning. arXiv preprint
arXiv:1708.05866, 2017.

134

[27] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot,
and Nando De Freitas. Dueling network architectures for deep reinforcement
learning. arXiv preprint arXiv:1511.06581, 2015.

[28] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. High-dimensional continuous control using generalized advantage esti-
mation. arXiv preprint arXiv:1506.02438, 2015.

[29] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[30] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter
Abbeel. Model-ensemble trust-region policy optimization. arXiv preprint
arXiv:1802.10592, 2018.

[31] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan,
Xing Xie, and Zhenhui Li. Drn: A deep reinforcement learning framework for
news recommendation. In Proceedings of the 2018 World Wide Web Conference
on World Wide Web, pages 167–176. International World Wide Web Confer-
ences Steering Committee, 2018.

[32] Kleanthis Malialis, Sam Devlin, and Daniel Kudenko. Resource abstraction for
reinforcement learning in multiagent congestion problems. In Proceedings of the
2016 International Conference on Autonomous Agents & Multiagent Systems,
pages 503–511. International Foundation for Autonomous Agents and Multia-
gent Systems, 2016.

[33] Adrian K Agogino and Kagan Tumer. Unifying temporal and structural credit
assignment problems. In Proceedings of the Third International Joint Confer-
ence on Autonomous Agents and Multiagent Systems-Volume 2, pages 980–987.
IEEE Computer Society, 2004.

[34] Adrian K Agogino and Kagan Tumer. Analyzing and visualizing multiagent
rewards in dynamic and stochastic domains. Autonomous Agents and Multi-
Agent Systems, 17(2):320–338, 2008.

[35] Sam Devlin, Logan Yliniemi, Daniel Kudenko, and Kagan Tumer. Potential-
based difference rewards for multiagent reinforcement learning. In Proceedings
of the 2014 international conference on Autonomous agents and multi-agent
systems, pages 165–172. International Foundation for Autonomous Agents and
Multiagent Systems, 2014.

[36] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under
reward transformations: Theory and application to reward shaping. In ICML,
volume 99, pages 278–287, 1999.

[37] Alan G Hawkes. Spectra of some self-exciting and mutually exciting point
processes. Biometrika, 58(1):83–90, 1971.

[38] Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and
Hongyuan Zha. Wasserstein learning of deep generative point process mod-
els. In Advances in Neural Information Processing Systems, pages 3247–3257,
2017.

135

[39] Manoel Horta Ribeiro, Pedro H Calais, Virǵılio AF Almeida, and Wagner
Meira Jr. ”everything i disagree with is #fakenews”: Correlating political
polarization and spread of misinformation. arXiv preprint arXiv:1706.05924,
2017.

[40] Pedro Henrique Calais Guerra, Adriano Veloso, Wagner Meira Jr, and Virǵılio
Almeida. From bias to opinion: a transfer-learning approach to real-time sen-
timent analysis. In Proceedings of the 17th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 150–158. ACM, 2011.

[41] Guillaume Deffuant, David Neau, Frederic Amblard, and Gérard Weisbuch.
Mixing beliefs among interacting agents. Advances in Complex Systems,
3(01n04):87–98, 2000.

[42] Jan Lorenz. Continuous opinion dynamics under bounded confidence: A survey.
International Journal of Modern Physics C, 18(12):1819–1838, 2007.

[43] Mahak Goindani and Jennifer Neville. Social reinforcement learning to combat
fake news spread. UAI, 2019.

[44] Utkarsh Upadhyay, Abir De, and Manuel Gomez-Rodriguez. Deep rein-
forcement learning of marked temporal point processes. arXiv preprint
arXiv:1805.09360, 2018.

[45] Georgios Theocharous, Philip S Thomas, and Mohammad Ghavamzadeh. Per-
sonalized ad recommendation systems for life-time value optimization with
guarantees. In IJCAI, 2015.

[46] Sabina B Gesell, Kimberly D Bess, and Shari L Barkin. Understanding the so-
cial networks that form within the context of an obesity prevention intervention.
Journal of Obesity, 2012, 2012.

[47] Katie Powell, John Wilcox, Angie Clonan, Paul Bissell, Louise Preston, Marian
Peacock, and Michelle Holdsworth. The role of social networks in the develop-
ment of overweight and obesity among adults: a scoping review. BMC public
health, 15(1):996, 2015.

[48] Liuyan Shi, Liang Zhang, and Yun Lu. Evaluating social network-based weight
loss interventions in chinese population: An agent-based simulation. Plos one,
15(8):e0236716, 2020.

[49] Jingwen Zhang, Devon Brackbill, Sijia Yang, and Damon Centola. Efficacy and
causal mechanism of an online social media intervention to increase physical
activity: results of a randomized controlled trial. Preventive medicine reports,
2:651–657, 2015.

[50] Damon Centola. Social media and the science of health behavior. Circulation,
127(21):2135–2144, 2013.

[51] Jun Wang, Weinan Zhang, Shuai Yuan, et al. Display advertising with real-
time bidding (rtb) and behavioural targeting. Foundations and Trends R© in
Information Retrieval, 2017.

[52] He He, Jordan L. Boyd-Graber, Kevin Kwok, and Hal Daumé. Opponent mod-
eling in deep reinforcement learning. In ICML, 2016.

136

[53] Anuj Mahajan and Theja Tulabandhula. Symmetry learning for function ap-
proximation in reinforcement learning. arXiv preprint arXiv:1706.02999, 2017.

[54] Martin Zinkevich and Tucker Balch. Symmetry in markov decision processes
and its implications for single agent and multi agent learning. In In Proceedings
of the 18th International Conference on Machine Learning. Citeseer, 2001.

[55] Patrick Mannion, Sam Devlin, Jim Duggan, and Enda Howley. Multi-agent
credit assignment in stochastic resource management games. The Knowledge
Engineering Review, 32, 2017.

[56] Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore
Graepel. Multi-agent reinforcement learning in sequential social dilemmas. In
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Sys-
tems, pages 464–473. International Foundation for Autonomous Agents and
Multiagent Systems, 2017.

[57] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun
Wang. Mean field multi-agent reinforcement learning. arXiv preprint
arXiv:1802.05438, 2018.

[58] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P How, and
John Vian. Deep decentralized multi-task multi-agent reinforcement learning
under partial observability. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 2681–2690. JMLR. org, 2017.

[59] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon
Whiteson. Learning to communicate with deep multi-agent reinforcement learn-
ing. In Advances in Neural Information Processing Systems, pages 2137–2145,
2016.

[60] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially
observable mdps. In 2015 AAAI Fall Symposium Series, 2015.

[61] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson.
Learning to communicate to solve riddles with deep distributed recurrent q-
networks. CoRR, abs/1602.02672, 2016.

[62] Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory
and methods. The Journal of Logic Programming, 1994.

[63] Marc Ponsen, Tom Croonenborghs, Karl Tuyls, Jan Ramon, Kurt Driessens,
Jaap Van den Herik, and Eric Postma. Learning with whom to communicate
using relational reinforcement learning. In Interactive Collaborative Information
Systems. 2010.

[64] Tom Croonenborghs, Karl Tuyls, Jan Ramon, and Maurice Bruynooghe. Multi-
agent relational reinforcement learning. In International Workshop on Learning
and Adaption in Multi-Agent Systems, 2005.

[65] Sašo Džeroski, Luc De Raedt, and Kurt Driessens. Relational reinforcement
learning. Machine learning, 2001.

[66] Nima Asgharbeygi, David Stracuzzi, and Pat Langley. Relational temporal
difference learning. In ICML, 2006.

137

[67] Aditya Grover, Maruan Al-Shedivat, Jayesh K Gupta, Yuri Burda, and Har-
rison Edwards. Evaluating generalization in multiagent systems using agent-
interaction graphs. In AAMAS, 2018.

[68] Aditya Grover, Maruan Al-Shedivat, Jayesh K Gupta, Yura Burda, and Har-
rison Edwards. Learning policy representations in multiagent systems. arXiv
preprint arXiv:1806.06464, 2018.

[69] Andrea Tacchetti, H Francis Song, Pedro AM Mediano, Vinicius Zam-
baldi, Neil C Rabinowitz, Thore Graepel, Matthew Botvinick, and Peter W
Battaglia. Relational forward models for multi-agent learning. arXiv preprint
arXiv:1809.11044, 2018.

[70] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor
Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart,
et al. Relational deep reinforcement learning. arXiv preprint arXiv:1806.01830,
2018.

[71] Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication
with backpropagation. In Advances in Neural Information Processing Systems,
pages 2244–2252, 2016.

[72] Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin Lau. Credit assignment
for collective multiagent rl with global rewards. In NeurIPS, 2018.

[73] Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin Lau. Collective mul-
tiagent sequential decision making under uncertainty. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[74] Kaixiang Lin, Renyu Zhao, Zhe Xu, and Jiayu Zhou. Efficient large-scale fleet
management via multi-agent deep reinforcement learning. In KDD, 2018.

[75] Joel Z. Leibo, Julien Pérolat, Edward Hughes, Steven Wheelwright, Adam H.
Marblestone, Edgar Du’enez-Guzm’an, Peter Sunehag, Iain Dunning, and
Thore Graepel. Malthusian reinforcement learning. CoRR, abs/1812.07019,
2018.

[76] Siqi Liu, Guy Lever, Josh Merel, Saran Tunyasuvunakool, Nicolas Heess,
and Thore Graepel. Emergent coordination through competition. CoRR,
abs/1902.07151, 2018.

[77] Aleksandra Malysheva, Tegg Taekyong Sung, Chae-Bong Sohn, Daniel Ku-
denko, and Aleksei Shpilman. Deep multi-agent reinforcement learning with
relevance graphs. arXiv preprint arXiv:1811.12557, 2018.

[78] Peng Peng, Ying Wen, Yaodong Yang, Quan Yuan, Zhenkun Tang, Haitao
Long, and Jun Wang. Multiagent bidirectionally-coordinated nets: Emergence
of human-level coordination in learning to play starcraft combat games. arXiv
preprint arXiv:1703.10069, 2017.

[79] Zhang-Wei Hong, Shih-Yang Su, Tzu-Yun Shann, Yi-Hsiang Chang, and Chun-
Yi Lee. A deep policy inference q-network for multi-agent systems. In AAMAS,
2018.

138

[80] Patrick Mannion, Karl Mason, Sam Devlin, Jim Duggan, and Enda Howley.
Dynamic economic emissions dispatch optimisation using multi-agent reinforce-
ment learning. In Proceedings of the Adaptive and Learning Agents workshop
(at AAMAS 2016), 2016.

[81] Jakob N Foerster, Francis Song, Edward Hughes, Neil Burch, Iain Dunning,
Shimon Whiteson, Matthew Botvinick, and Michael Bowling. Bayesian ac-
tion decoder for deep multi-agent reinforcement learning. arXiv preprint
arXiv:1811.01458, 2018.

[82] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Far-
quhar, Jakob Foerster, and Shimon Whiteson. Qmix: Monotonic value func-
tion factorisation for deep multi-agent reinforcement learning. arXiv preprint
arXiv:1803.11485, 2018.

[83] Shayegan Omidshafiei, Dong-Ki Kim, Miao Liu, Gerald Tesauro, Matthew
Riemer, Christopher Amato, Murray Campbell, and Jonathan P How. Learn-
ing to teach in cooperative multiagent reinforcement learning. arXiv preprint
arXiv:1805.07830, 2018.

[84] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh,
Michael Rabbat, and Joelle Pineau. Tarmac: Targeted multi-agent communi-
cation. arXiv preprint arXiv:1810.11187, 2018.

[85] Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli,
and Shimon Whiteson. Counterfactual multi-agent policy gradients. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[86] Jakob N. Foerster, Richard Y. Chen, Maruan Al-Shedivat, Shimon Whiteson,
Pieter Abbeel, and Igor Mordatch. Learning with opponent-learning awareness.
In AAMAS, 2018.

[87] Dhouha Ben Noureddine, Atef Gharbi, and Samir Ben Ahmed. Multi-agent
deep reinforcement learning for task allocation in dynamic environment. In
ICSOFT, 2017.

[88] Thanh Le Chau Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. Multi-agent
deep reinforcement learning with human strategies. CoRR, abs/1806.04562,
2018.

[89] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Başar. Fully
decentralized multi-agent reinforcement learning with networked agents. arXiv
preprint arXiv:1802.08757, 2018.

[90] Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni. Multi-agent
cooperation and the emergence of (natural) language. CoRR, abs/1612.07182,
2017.

[91] Patrick Mannion, Sam Devlin, Jim Duggan, and Enda Howley. Multi-agent
credit assignment in stochastic resource management games. Knowledge Eng.
Review, 32:e16, 2017.

[92] Saurabh Kumar, Pararth Shah, Dilek Z. Hakkani-Tür, and Larry P. Heck. Fed-
erated control with hierarchical multi-agent deep reinforcement learning. CoRR,
abs/1712.08266, 2017.

139

[93] Mateusz Kurek and Wojciech Jaskowski. Heterogeneous team deep q-learning
in low-dimensional multi-agent environments. 2016 IEEE Conference on Com-
putational Intelligence and Games (CIG), pages 1–8, 2016.

[94] Sherief Abdallah and Michael Kaisers. Addressing the policy-bias of q-learning
by repeating updates. In AAMAS, 2013.

[95] Jeancarlo Arguello Calvo and Ivana Dusparic. Heterogeneous multi-agent deep
reinforcement learning for traffic lights control. In AICS, 2018.

[96] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. Human-level control through deep reinforcement learn-
ing. Nature, 518(7540):529, 2015.

[97] Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. Deep reinforce-
ment learning for multi-agent systems: A review of challenges, solutions and
applications. arXiv preprint arXiv:1812.11794, 2018.

[98] Hoang M Le, Yisong Yue, Peter Carr, and Patrick Lucey. Coordinated multi-
agent imitation learning. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1995–2003. JMLR. org, 2017.

[99] Yedid Hoshen. Vain: Attentional multi-agent predictive modeling. In Advances
in Neural Information Processing Systems, pages 2701–2711, 2017.

[100] Jiechuan Jiang and Zongqing Lu. Learning attentional communication for multi-
agent cooperation. In Advances in Neural Information Processing Systems,
pages 7254–7264, 2018.

[101] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Ro-
bust adversarial reinforcement learning. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pages 2817–2826. JMLR.
org, 2017.

[102] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-
agent control using deep reinforcement learning. In International Conference
on Autonomous Agents and Multiagent Systems, pages 66–83. Springer, 2017.

[103] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. Multi-agent actor-critic for mixed cooperative-competitive environ-
ments. In Advances in Neural Information Processing Systems, pages 6379–
6390, 2017.

[104] Shihui Li, Yi Wu, Xinyue Cui, Hualing Dong, Fei Fang, and Stuart Russell. Ro-
bust multi-agent reinforcement learning via minimax deep deterministic policy
gradient. In AAAI 2019, 2019.

[105] Matthew J. Hausknecht and Peter Stone. Deep reinforcement learning in pa-
rameterized action space. CoRR, abs/1511.04143, 2016.

[106] Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende,
and Koray Kavukcuoglu. Interaction networks for learning about objects, rela-
tions and physics. In NIPS, 2016.

140

[107] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Ko-
rjus, Juhan Aru, Jaan Aru, and Raul Vicente. Multiagent cooperation and
competition with deep reinforcement learning. In PloS one, 2017.

[108] Logan Michael Yliniemi and Kagan Tumer. Multi-objective multiagent credit
assignment in reinforcement learning and nsga-ii. Soft Comput., 20:3869–3887,
2016.

[109] Adam Taylor, Ivana Dusparic, Edgar Galván López, Siobhán Clarke, and Vinny
Cahill. Accelerating learning in multi-objective systems through transfer learn-
ing. 2014 International Joint Conference on Neural Networks (IJCNN), pages
2298–2305, 2014.

[110] Ivana Dusparic and Vinny Cahill. Distributed w-learning: Multi-policy opti-
mization in self-organizing systems. 2009 Third IEEE International Conference
on Self-Adaptive and Self-Organizing Systems, pages 20–29, 2009.

[111] Kris Cao, Angeliki Lazaridou, Marc Lanctot, Joel Z Leibo, Karl Tuyls, and
Stephen Clark. Emergent communication through negotiation. arXiv preprint
arXiv:1804.03980, 2018.

[112] Trapit Bansal, Jakub W. Pachocki, Szymon Sidor, Ilya Sutskever, and
Igor Mordatch. Emergent complexity via multi-agent competition. CoRR,
abs/1710.03748, 2018.

[113] Julien Pérolat, Joel Z. Leibo, Vińıcius Flores Zambaldi, Charles Beattie, Karl
Tuyls, and Thore Graepel. A multi-agent reinforcement learning model of
common-pool resource appropriation. In NIPS, 2017.

[114] Edward Hughes, Joel Z. Leibo, Matthew Phillips, Karl Tuyls, Edgar A. Duéñez-
Guzmán, Antonio Garćıa Castañeda, Iain Dunning, Tina Zhu, Kevin R. McKee,
Raphael Koster, Heather Roff, and Thore Graepel. Inequity aversion improves
cooperation in intertemporal social dilemmas. In NeurIPS, 2018.

[115] Junqi Jin, Chengru Song, Han Li, Kun Gai, Jun Wang, and Weinan Zhang.
Real-time bidding with multi-agent reinforcement learning in display advertis-
ing. In Proceedings of the 27th ACM International Conference on Information
and Knowledge Management, pages 2193–2201. ACM, 2018.

[116] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional lan-
guage in multi-agent populations. In Thirty-Second AAAI Conference on Arti-
ficial Intelligence, 2018.

[117] Johannes Heinrich and David Silver. Deep reinforcement learning from self-play
in imperfect-information games. CoRR, abs/1603.01121, 2016.

[118] Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination
graphs. arXiv preprint arXiv:1910.00091, 2019.

[119] Karl Mason, Patrick Mannion, Jim Duggan, and Enda Howley. Applying multi-
agent reinforcement learning to watershed management. In Proceedings of the
Adaptive and Learning Agents workshop (at AAMAS 2016), 2016.

[120] Woojun Kim, Myungsik Cho, and Youngchul Sung. Message-dropout: An ef-
ficient training method for multi-agent deep reinforcement learning. CoRR,
abs/1902.06527, 2019.

141

[121] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Çaglar Gülçehre, Pe-
dro A. Ortega, Daniel Strouse, Joel Z. Leibo, and Nando de Freitas. Intrinsic
social motivation via causal influence in multi-agent rl. CoRR, abs/1810.08647,
2018.

[122] Tianmin Shu and Yuandong Tian. Mˆ 3rl: Mind-aware multi-agent manage-
ment reinforcement learning. arXiv preprint arXiv:1810.00147, 2018.

[123] Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur
Szlam, and Rob Fergus. Intrinsic motivation and automatic curricula via asym-
metric self-play. arXiv preprint arXiv:1703.05407, 2017.

[124] Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. Model-
ing others using oneself in multi-agent reinforcement learning. arXiv preprint
arXiv:1802.09640, 2018.

[125] Gregory Palmer, Rahul Savani, and Karl Tuyls. Negative update intervals in
deep multi-agent reinforcement learning. CoRR, abs/1809.05096, 2018.

[126] Patrick Mannion, Jim Duggan, and Enda Howley. Learning traffic signal control
with advice. In Proceedings of the Adaptive and Learning Agents workshop (at
AAMAS 2015), 2015.

[127] Sandip Sen and Stéphane Airiau. Emergence of norms through social learning.
In IJCAI, volume 1507, page 1512, 2007.

[128] Amit Prasad and Ivana Dusparic. Multi-agent deep reinforcement learning for
zero energy communities. CoRR, abs/1810.03679, 2018.

[129] Kyrill Schmid, Lenz Belzner, Thomas Gabor, and Thomy Phan. Action markets
in deep multi-agent reinforcement learning. In International Conference on
Artificial Neural Networks, pages 240–249. Springer, 2018.

[130] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In International conference
on machine learning, pages 1928–1937, 2016.

[131] Xiangyu Kong, Bo Xin, Fangchen Liu, and Yizhou Wang. Effective master-slave
communication on a multi-agent deep reinforcement learning system. 2017.

[132] Xiangyu Kong, Bo Xin, Fangchen Liu, and Yizhou Wang. Revisiting the master-
slave architecture in multi-agent deep reinforcement learning. arXiv preprint
arXiv:1712.07305, 2017.

[133] Maximilian Hüttenrauch, Adrian Sosic, and Gerhard Neumann. Guided deep
reinforcement learning for swarm systems. CoRR, abs/1709.06011, 2017.

[134] Alvaro Ovalle Castaneda. Deep reinforcement learning variants of multi-agent
learning algorithms. Master’s thesis, School of Informatics, University of Ed-
inburgh, 2016.

[135] Ozsel Kilinc and Giovanni Montana. Multi-agent deep reinforcement learning
with extremely noisy observations. arXiv preprint arXiv:1812.00922, 2018.

142

[136] Ashish Goel, Kamesh Munagala, Aneesh Sharma, and Hongyang Zhang. A
note on modeling retweet cascades on twitter. In International Workshop on
Algorithms and Models for the Web-Graph. Springer, 2015.

[137] Dar Meshi, Diana I Tamir, and Hauke R Heekeren. The emerging neuroscience
of social media. Trends in cognitive sciences, 19(12):771–782, 2015.

[138] Eveline A Crone and Elly A Konijn. Media use and brain development during
adolescence. Nature communications, 9(1):588, 2018.

[139] Yu Wang, Jiebo Luo, Richard Niemi, Yuncheng Li, and Tianran Hu. Catching
fire via” likes”: Inferring topic preferences of trump followers on twitter. In
ICWSM, pages 719–722, 2016.

[140] Duanbing Chen, Linyuan Lü, Ming-Sheng Shang, Yi-Cheng Zhang, and Tao
Zhou. Identifying influential nodes in complex networks. Physica a: Statistical
mechanics and its applications, 391(4):1777–1787, 2012.

[141] Yosihiko Ogata. On lewis’ simulation method for point processes. IEEE Trans-
actions on Information Theory, 27(1):23–31, 1981.

[142] PA W Lewis and Gerald S Shedler. Simulation of nonhomogeneous poisson
processes by thinning. Naval research logistics quarterly, 26(3):403–413, 1979.

[143] Mehrdad Farajtabar, Xiaojing Ye, Sahar Harati, Le Song, and Hongyuan Zha.
Multistage campaigning in social networks. In Advances in Neural Information
Processing Systems, pages 4718–4726, 2016.

[144] Aleksandr Simma and Michael I Jordan. Modeling events with cascades of
poisson processes. arXiv preprint arXiv:1203.3516, 2012.

[145] Michela Del Vicario, Antonio Scala, Guido Caldarelli, H Eugene Stanley, and
Walter Quattrociocchi. Modeling confirmation bias and polarization. Scientific
reports, 7:40391, 2017.

[146] Jing Ma, Wei Gao, and Kam-Fai Wong. Detect rumors in microblog posts
using propagation structure via kernel learning. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 708–717, 2017.

[147] Ke Zhou, Hongyuan Zha, and Le Song. Learning social infectivity in sparse
low-rank networks using multi-dimensional hawkes processes. In Artificial In-
telligence and Statistics, pages 641–649, 2013.

[148] Mehrdad Farajtabar, Safoora Yousefi, Long Q Tran, Le Song, and Hongyuan
Zha. A continuous-time mutually-exciting point process framework for priori-
tizing events in social media. arXiv preprint arXiv:1511.04145, 2015.

[149] Matthew Engelhard, Hongteng Xu, Lawrence Carin, Jason A Oliver, Matthew
Hallyburton, and F Joseph McClernon. Predicting smoking events with
a time-varying semi-parametric hawkes process model. arXiv preprint
arXiv:1809.01740, 2018.

[150] E. Bacry, M. Bompaire, S. Gäıffas, and S. Poulsen. tick: a Python library for
statistical learning, with a particular emphasis on time-dependent modeling.
ArXiv e-prints, July 2017.

143

[151] Richard Bellman. A markovian decision process. Journal of Mathematics and
Mechanics, pages 679–684, 1957.

[152] Ankur P Parikh, Asela Gunawardana, and Chris Meek. Conjoint modeling of
temporal dependencies in event streams. 2012.

[153] Zhen Qin and Christian R Shelton. Auxiliary gibbs sampling for inference in
piecewise-constant conditional intensity models. In UAI, pages 722–731, 2015.

[154] Mehrdad Farajtabar, Yichen Wang, Manuel Gomez Rodriguez, Shuang Li,
Hongyuan Zha, and Le Song. Coevolve: A joint point process model for infor-
mation diffusion and network co-evolution. In Advances in Neural Information
Processing Systems, pages 1954–1962, 2015.

[155] Kai Shu, Suhang Wang, and Huan Liu. Understanding user profiles on so-
cial media for fake news detection. In 2018 IEEE Conference on Multimedia
Information Processing and Retrieval (MIPR), pages 430–435. IEEE, 2018.

[156] Michael Mccord and M Chuah. Spam detection on twitter using traditional
classifiers. In international conference on Autonomic and trusted computing,
pages 175–186. Springer, 2011.

[157] Jianan Yue. Analyzing and Detecting Social Spammers with Robust Features.
PhD thesis, McGill University Libraries, 2017.

[158] Alexandre Bovet and Hernán A Makse. Influence of fake news in twitter during
the 2016 us presidential election. Nature communications, 10(1):7, 2019.

[159] Lion Gu, Vladimir Kropotov, and Fyodor Yarochkin. The fake news machine:
how propagandists abuse the internet and manipulate the public. Trend Micro,
2017.

[160] Nor Athiyah Abdullah, Dai Nishioka, Yuko Tanaka, and Yuko Murayama.
Why i retweet? exploring user’s perspective on decision-making of information
spreading during disasters. In Proceedings of the 50th Hawaii International
Conference on System Sciences, 2017.

[161] Vincenza Carchiolo, Alessandro Longheu, Michele Malgeri, Giuseppe Mangioni,
and M Previti. Terrorism and war: Twitter cascade analysis. In International
Symposium on Intelligent and Distributed Computing. Springer, 2018.

[162] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter,
a social network or a news media? In WWW. AcM, 2010.

[163] Thi Bich Ngoc Hoang and Josiane Mothe. Predicting information diffusion
on twitter–analysis of predictive features. Journal of computational science,
28:257–264, 2018.

[164] Feiyun Zhu, Jun Guo, Zheng Xu, Peng Liao, Liu Yang, and Junzhou Huang.
Group-driven reinforcement learning for personalized mhealth intervention. In
International Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 590–598. Springer, 2018.

144

[165] Ali el Hassouni, Mark Hoogendoorn, Martijn van Otterlo, and Eduardo Bar-
baro. Personalization of health interventions using cluster-based reinforcement
learning. In International Conference on Principles and Practice of Multi-Agent
Systems, pages 467–475. Springer, 2018.

[166] Rémi Lemonnier, Kevin Scaman, and Argyris Kalogeratos. Multivariate hawkes
processes for large-scale inference. In Thirty-First AAAI Conference on Artifi-
cial Intelligence, 2017.

[167] Nazanin Alipourfard, Buddhika Nettasinghe, Andrés Abeliuk, Vikram Krishna-
murthy, and Kristina Lerman. Friendship paradox biases perceptions in directed
networks. Nature communications, 11(1):1–9, 2020.

[168] Eun Lee, Fariba Karimi, Claudia Wagner, Hang-Hyun Jo, Markus Strohmaier,
and Mirta Galesic. Homophily and minority-group size explain perception biases
in social networks. Nature human behaviour, 3(10):1078–1087, 2019.

[169] Mahak Goindani and Jennifer Neville. Cluster-based social reinforcement learn-
ing. International Conference on Autonomous Agents and Multi-Agent Systems,
2020.

[170] Mahak Goindani and Jennifer Neville. Social reinforcement learning. In 2020
AAAI Spring Symposium Series, 2020.

[171] Young Joon Park, Yoon Sang Cho, and Seoung Bum Kim. Multi-agent re-
inforcement learning with approximate model learning for competitive games.
PloS one, 14(9), 2019.

[172] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Ko-
rjus, Juhan Aru, Jaan Aru, and Raul Vicente. Multiagent cooperation and
competition with deep reinforcement learning. PloS one, 12(4):e0172395, 2017.

[173] Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz
de Cote. A survey of learning in multiagent environments: Dealing with non-
stationarity. arXiv preprint arXiv:1707.09183, 2017.

[174] Guifang Liu, Huaiqian Bao, and Baokun Han. A stacked autoencoder-based
deep neural network for achieving gearbox fault diagnosis. Mathematical Prob-
lems in Engineering, 2018, 2018.

[175] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

[176] Alexander Peysakhovich and Adam Lerer. Towards ai that can solve social
dilemmas. In 2018 AAAI SSS, 2018.

[177] Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras,
Philip HS Torr, Pushmeet Kohli, and Shimon Whiteson. Stabilising experience
replay for deep multi-agent reinforcement learning. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 1146–1155.
JMLR. org, 2017.

