
ON THE EXTENSIONS OF THE PREDICTOR-CORRECTOR
PROXIMAL MULTIPLIER (PCPM) ALGORITHM AND

THEIR APPLICATIONS
by

Run Chen

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Industrial Engineering

West Lafayette, Indiana

December 2020

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Andrdew L. Liu, Chair

School of Industrial Engineering

Dr. Gesualdo Scutari

School of Industrial Engineering

Dr. Susan R. Hunter

School of Industrial Engineering

Dr. Raghu Pasupathy

Department of Statistics

Approved by:

Dr. Abhijit Deshmukh

2

ACKNOWLEDGMENTS

First, I would like to thank my advisor Professor Andrew Liu. When I transferred

my major from Physics to Operations Research, becoming a graduate student at School of

Industrial Engineering, I knew nothing about optimization or power system. I have walked a

long way until I finally graduate with doctoral degree, and my advisor is always by my side,

supporting and guiding me along the way. From him, I have learnt not only the knowledge

but also the way of doing research. His experience and insights are always of tremendous

help when I get stuck at some problems. I really appreciate his great patience, especially

for a student like me, who does not follow the advice every time. All my write-ups with his

detailed comments, from a cover letter to a paper draft, are the things I will treasure for my

whole life. In my eyes, Andrew Liu is a professor who really cares about the education and

the development of a student. I feel extremely fortunate to have him as my advisor.

I would like to thank Professor Gesualdo Scutari, Professor Susan Hunter and Professor

Raghu Pasupathy for agreeing to serve on my dissertation committee. I really appreciate

them for all the valuable comments and suggestions.

I would also like to thank all the staff in my department for providing such a nice studying

and working environment for us. I would say ”thank you” to all my colleagues on the third

floor of Grissom Hall. Though I have not seen them for a long time due to the pandemic,

their smiling faces have always brightened my day and will continue shine in my memory.

Finally, I would like to dedicate this dissertation to my parents. For nine years of studying

abroad, I have missed too many important moments when they needed me. Without their

unconditional love and support, I can never make a single step.

3

TABLE OF CONTENTS

Page

 LIST OF TABLES . 6

 LIST OF FIGURES . 7

 ABSTRACT . 8

 1 INTRODUCTION . 10
 1.1 Motivation . 10
 1.2 Objectives of the Thesis . 14
 1.3 Thesis Outline . 15

 2 DISTRIBUTED AND ASYNCHRONOUS ALGORITHMS FOR N-BLOCK CON-
VEX OPTIMIZATION WITH COUPLING CONSTRAINTS 17

 2.1 Introduction . 17
 2.2 Extending the PCPM Algorithm to Solving General Constrained N-block

Convex Optimization Problems . 18
 2.2.1 N-block PCPM Algorithm for General Constrained Convex Optimiza-

tion Problems . 18
 2.2.2 Convergence Analysis . 20
 2.2.3 Numerical Experiments . 25

 2.3 Extending the N-block PCPM Algorithm to an Asynchronous Scheme 27
 2.3.1 Asynchronous N-block PCPM Algorithm for Convex Optimization

Problems with Linear Coupling Constraints 29
 2.3.2 Convergence Analysis . 31

 2.4 Numerical Experiments . 32
 2.4.1 An Optimization Problem on a Graph 32
 2.4.2 Two Problem Reformulations . 33
 2.4.3 Housing Price Prediction . 34
 2.4.4 Numerical Results of Synchronous N-block PCPM Algorithm 35
 2.4.5 Numerical Results of Asynchronous N-block PCPM Algorithm 36

 2.5 Conclusion and Future Works . 37
 2.6 Proofs in Section 2.2.2 . 39

 2.6.1 Proof of Proposition 2.2.3 . 39
 2.6.2 Proof of Theorem 2.2.4 . 40
 2.6.3 Proof of Theorem 2.2.5 . 45

 2.7 Proofs in Section 2.3.2 . 47
 2.7.1 Proof of Theorem 2.3.2 . 47

 3 A DISTRIBUTED ALGORITHM FOR LARGE-SCALE CONVEX QUADRATI-
CALLY CONSTRAINED QUADRATIC PROGRAMS 55

 3.1 Introduction . 55
 3.2 A Distributed Algorithm for Large-scale Convex QCQPs 58
 3.3 Convergence Analysis . 62
 3.4 Implementation . 68

4

Page
 3.4.1 Distributed Storage of Data and Parallel Computing 68
 3.4.2 Adaptive Step Size with Auto-learned Allocation Weights 71
 3.4.3 Stopping Criteria . 74

 3.5 Numerical Experiments . 75
 3.5.1 Solving Standard-Form Convex QCQPs 76
 3.5.2 Multiple Kernel Learning in Support Vector Machine 78

 3.6 Conclusion and Future Works . 84
 3.7 Proofs in Section 3.3 . 85

 3.7.1 Proof of Proposition 3.3.3 . 85
 3.7.2 Proof of Theorem 3.3.4 . 89

 4 A DISTRIBUTED ALGORITHM FOR MULTI-STAGE STOCHASTIC PROGRAMS
WITH APPLICATION TO ELECTRICITY CAPACITY EXPANSION 106

 4.1 Decomposition Methods for Multi-stage Stochastic Program 106
 4.1.1 Multi-stage Stochastic Program . 106
 4.1.2 Scenario Tree and Node Separability 107
 4.1.3 Nonanticipativity and Scenario Separability 109
 4.1.4 Comparison of Node Decomposition and Scenario Decomposition . . 111

 4.2 A Hybrid Decomposition Method for Multi-scale Multi-stage Stochastic Pro-
gram under Multi-scale Uncertainties . 113

 4.2.1 Additional Structures . 113
 4.2.2 Extended Nonanticipativity and Hybrid Scenario-node Decomposition 114
 4.2.3 Under Multi-scale Uncertainties . 117

 4.3 A Simplified PCPM Algorithm using Orthogonal Projection 120
 4.3.1 Apply the PCPM Algorithm . 121
 4.3.2 Orthogonal Projection . 122
 4.3.3 A Simplified PCPM Algorithm . 123

 4.4 Electricity Capacity Expansion under Multi-scale Uncertainties 124
 4.4.1 Capacity Expansion Planning . 125
 4.4.2 Sub-hourly Economic Dispatch of Generation and Transmission . . . 127
 4.4.3 A Co-optimization Model . 130

 4.5 Numerical Experiments . 131
 4.5.1 Data . 131
 4.5.2 Scenario Tree Generation . 132
 4.5.3 Numerical Results . 136

 4.6 Conclusion and Future Works . 137

 5 CONCLUDING REMARKS . 139
 5.1 Summary . 139
 5.2 Future Research . 140

 REFERENCES . 142

5

LIST OF TABLES

 3.1 Elapsed clock time used by PC2PM for solving the single-constraint convex
QCQP (3.22). 71

 3.2 Number of iterations and elapsed wall-clock time used by PC2PM for solving a
single-constraint convex QCQP (3.22) with different settings of (ε0, . . . , ε5). . . . 73

 3.3 Comparison of PC2PM with CPLEX 12.8.0 for solving standard-form, large-scale
convex QCQPs. 77

 3.4 Comparison of PC2PM with CPLEX 12.8.0 for solving multiple kernel learning
problems using 5 Gaussian kernel functions. 82

 3.5 Comparison of PC2PM with CPLEX 12.8.0 for solving multiple kernel learn-
ing problems using 3 kernel functions. (For 1-norm soft margin SVM, PC2PM
converges with a tolerance τ = 4× 10−3 instead of 10−3.) 83

 4.1 Comparison of Node and Scenario Decomposition 112

 4.2 Comparison of Hybrid Scenario-node Decomposition with Node-only and Scenario-
only Decomposition . 117

 4.3 Indices, Sets and Functions for Capacity Expansion Planning 125

 4.4 Decision Variables for Capacity Expansion Planning 125

 4.5 Parameters for Capacity Expansion Planning 126

 4.6 Indices, Sets and Functions for Sub-hourly Economic Dispatch of Generation and
Transmission . 128

 4.7 Decision Variables for Sub-hourly Economic Dispatch of Generation and Trans-
mission . 128

 4.8 Parameters for Sub-hourly Economic Dispatch of Generation and Transmission . 129

 4.9 Data of Generation Sectors. 133

 4.10 Data of Demand Nodes. 133

 4.11 Data of Transmission Lines. 133

 4.12 Probabilities and Ratios for Generating the Binary Scenario Tree. 135

 4.13 Numerical Results for Sub-hourly Modeling on a multi-node computer cluster. . 136

6

LIST OF FIGURES

 2.1 Convergence Results of Applying Algorithm 1 to Problem (2.15) with ρ = 0.009. 26

 2.2 Convergence Results of Applying Algorithm 1 to the Modified Problem (2.15)
with ρ = 0.009. 27

 2.3 Main-Worker Paradigm for Algorithm 1 . 28

 2.4 Illustration of how asynchronous scheme iterates faster than synchronous scheme. 29

 2.5 Convergence Results of Applying Algorithm 1 to solve Reformulated Problems
(2.27) and (2.28) with ω = 1.0 and ρ = 0.06. 36

 2.6 MSE for Testing Data Set with ω Varying from 10−2 to 103 and µ = 0.1. 37

 2.7 Convergence Results of Applying Algorithm 2 and Algorithm 3 to Solve the
Reformulated Problem (2.28) with τ = 4 and ρ = 0.0005. 38

 2.8 Simulated Elapsed Wall-clock Time on the Main Processor with Various Maxi-
mum Delay τ and a Same ρ = 0.0005. 39

 3.1 Illustrations of matrix-vector multiplications using MPI functions. 69

 3.2 Computational speedup of PC2PM for solving a single-constraint convex QCQP
(3.22). 72

 3.3 Convergence of residuals. 78

 4.1 An example of a 4-stage stochastic process depicted in the form of a 4-level
scenario tree. 108

 4.2 The decision sequence for each scenario of the 4-level scenario tree in Figure 4.1 .
Vertical dotted lines represent the nonanticipativity constraints. 110

 4.3 The decision sequence for each scenario and the local copy at each node of the
4-level scenario tree in Figure 4.1 . Vertical dotted lines represent the extended
nonanticipativity constraints. 115

 4.4 The decision sequence for each scenario and the local copy for each realization of
the multi-scale uncertainty at each node of the 4-level scenario tree in Figure 4.1 .
Vertical dotted lines represent the extended nonanticipativity constraints. 119

 4.5 A double-loop Network in a Reserve Margin Region. 132

7

ABSTRACT

Many real-world application problems can be modeled mathematically as constrained

convex optimization problems. The scale of such problems can be extremely large, pos-

ing significant challenges to traditional centralized algorithms and calling for efficient and

scalable distributed algorithms. However, most of the existing works on distributed opti-

mization have been focusing on block-separable problems with simple, linear constraints,

such as the consensus-type constraints. The focus of this dissertation is to propose dis-

tributed algorithms to solve (possibly non-separable) large-scale optimization problems with

more complicated constraints with parallel updating (aka in Jacobi fashion), instead of se-

quential updating in the form of Gauss-Seidel iterations. In achieving so, this dissertation

extends the predictor corrector proximal multiplier method (PCPM) to address three issues

when solving a large-scale constrained convex optimization problem: (i) non-linear coupling

constraints; (ii) asynchronous iterative scheme; (iii) non-separable objective function and

coupling constraints.

The idea of the PCPM algorithm is to introduce a predictor variable for the Lagrangian

multiplier to avoid the augmented term, hence removing the coupling of block variables while

still achieving convergence without restrictive assumptions. Building upon this algorithmic

idea, we propose three distributed algorithms: (i) N -block PCPM algorithm for solving N -

block convex optimization problems with both linear and nonlinear coupling constraints;

(ii) asynchronous N -block PCPM algorithm for solving linearly constrained N -block convex

optimization problems; (iii) a distributed algorithm, named PC2PM, for solving large-scale

convex quadratically constrained quadratic programs (QCQPs). The global convergence is

established for each of the three algorithms. Extensive numerical experiments, using various

data sets, are conducted on either a single-node computer or a multi-node computer cluster

through message passing interface (MPI). Numerical results demonstrate the efficiency and

scalability of the proposed algorithms.

A real application of the N -block PCPM algorithm to solve electricity capacity expansion

models is also studied in this dissertation. A hybrid scenario-node-realization decomposition

method, with extended nonanticipativity constraints, is proposed for solving the resulting

8

large-scale optimization problem from a multi-scale, multi-stage stochastic program under

various uncertainties with different temporal scales. A technique of orthogonal projection is

exploited to simplify the iteration steps, which leads to a simplified N -block PCPM algorithm

amenable to massive parallelization during iterations. Such an algorithm exhibits much more

scalable numerical performance when compared with the widely used progressive hedging

approach (PHA) for solving stochastic programming problems.

9

1. INTRODUCTION

1.1 Motivation

Many real-world application problems can be modeled mathematically as constrained

convex optimization problems, as follows:

minimize
x

f(x)

subject to x ∈ X ,

Ax = b,

gj(x) ≤ 0, j = 1, . . . , M,

(1.1)

where x ∈ Rn is the decision variable, the objective function f : Rn → R is a convex function,

and each nonlinear constraint function gj : Rn → R is a convex function for all j = 1, . . . , M .

The constraint set X ⊂ Rn is a closed convex set, A ∈ Rm×n is a full row-rank matrix, and

b ∈ Rm is a given vector.

However, the scale of the optimization problem (1.1), characterized by n, m and M ,

can be extremely large due to many factors, such as the availability of large-scale data

and the increasing complexity of physical/cyber systems. Such problems pose significant

challenges to traditional centralized algorithms, such as the well-established interior point

method (IPM) and the sequential quadratic programming (SQP) method [1], which cannot

be easily carried out on multiple computing units to speed up convergence to an optimal

solution. Moreover, the exploding volume of data (analytical form of functions, matrices

and vectors) may overwhelm the storage of a single computing unit. Even when there are no

out-of-memory issues, it will take a really long time for the centralized algorithm to converge,

even with polynomial running time.

To overcome these limitations of centralized algorithms, various decomposition tech-

niques have been developed [2]. For example, the alternating direction method of multipli-

ers (ADMM) has been widely used to solve large-scale optimization problems arising from

statistics and machine learning [3]. To illustrate our point and ease the argument, we briefly

describe the ADMM algorithm below, as well as the PCPM algorithm, which is another

10

decomposition approach.

• Alternating Direction Method of Multipliers (ADMM)

Consider the following 2-block linearly constrained convex optimization problem:

minimize
x1∈Rn1 , x2∈Rn2

f1(x1) + f2(x2)

subject to A1x1 + A2x2 = b, (λ)
(1.2)

where f1 : Rn1 → (−∞, +∞] and f2 : Rn2 → (−∞, +∞] are closed proper convex functions,

A1 ∈ Rm×n1 and A2 ∈ Rm×n2 are full row-rank matrices, b ∈ Rm is a given vector, and λ ∈

Rm is the corresponding Lagrangian multiplier associated with the linear equality constraint.

The classic Lagrangian function L : Rn1 × Rn2 × Rm → R is defined as:

L(x1, x2, λ) = f1(x1) + f2(x2) + λT (A1x1 + A2x2 − b). (1.3)

It is well-known that for a convex problem of the specific form in (1.2) (where the linear

constraint qualification automatically holds), finding an optimal solution is equivalent to

finding a saddle point (x∗
1, x∗

2, λ∗) such that L(x∗
1, x∗

2, λ) ≤ L(x∗
1, x∗

2, λ∗) ≤ L(x1, x2, λ∗)

[4]. To find such a saddle point, a simple dual decomposition algorithm can be applied

to L(x1, x2, λ). More specifically, at each iteration k, given a fixed Lagrangian multiplier

λk, the primal decision variables (xk+1
1 , xk+1

2) can be obtained, in parallel, by minimizing

L(x1, x2, λk). Then a dual update λk+1 = λk + ρ(A1xk+1
1 + A2xk+1

2 −b) is performed, where

a positive scalar ρ is the step size.

While the above algorithmic idea is simple, it is well-known that convergence cannot

be established without more restrictive assumptions, such as strict convexity of f1 and f2

(e.g., Theorem 26.3 in [4]). One approach to overcome such difficulties is to obtain the

primal decision variables (xk+1
1 , xk+1

2) via minimizing the augmented Lagrangian function,

11

evaluated at λk: Lρ(x1, x2, λk) := L(x1, x2, λk) + ρ
2‖A1x1 + A2x2 − b‖2

2, in an alternating

direction:

xk+1
1 =argmin

x1∈Rn1
f1(x1) + (λk)T A1x1 + ρ

2‖A1x1 + A2xk
2 − b‖2

2,

xk+1
2 =argmin

x2∈Rn2
f2(x2) + (λk)T A2x2 + ρ

2‖A1xk+1
1 + A2x2 − b‖2,

(1.4)

followed by the dual update:

λk+1 = λk + ρ(A1xk+1
1 + A2xk+1

2 − b). (1.5)

The parameter ρ is given, which determines the step-size for primal and dual variables’

update in each iteration, and recent studies of convergence properties about ADMM can be

found in [5], [6]. With (1.4), however, xk+1
1 and xk+1

2 can no longer be obtained in parallel

due to the augmented term ‖A1x1 + A2x2 − b‖2
2. To overcome this difficulty, the predictor

corrector proximal multiplier method (PCPM) is proposed by [7].

• Predictor Corrector Proximal Multiplier Method (PCPM)

For the given Lagrangian multiplier λk, the PCPM algorithm introduces a predictor

variable µk+1:

µk+1 := λk + ρ(A1xk
1 + A2xk

2 − b). (1.6)

Using the predictor variable, the primal decision variables (xk+1
1 , xk+1

2) are obtained via

minimizing the classic Lagrangian function, evaluated at µk+1, plus two proximal terms:

(xk+1
1 , xk+1

2) = argmin
x1∈Rn1 ,x2∈Rn2

f1(x1) + f2(x2) + (µk+1)T (A1x1 + A2x2 − b)

+ 1
2ρ
‖x1 − xk

1‖2
2 + 1

2ρ
‖x2 − xk

2‖2
2,

(1.7)

which allows xk+1
1 and xk+1

2 to be updated in parallel again. After solving (1.7), the PCPM

algorithm updates the dual variable as follows:

λk+1 = λk + ρ(A1xk+1
1 + A2xk+1

2 − b), (1.8)

12

which is referred to as a corrector update.

The above two distributed algorithms, both of the type of proximal point algorithms, can

be conveniently applied to solve 2-block linearly constrained convex optimization problems.

However, there are still some issues for solving large-scale optimization problems, especially

in the general form of (1.1), that can not be addressed:

(i) nonlinear coupling constraints

Let the constrained convex optimization problem (1.1) be of the following specific form:

minimize
x1,...,xN

f(x1, . . . , xN) =
N∑

i=1
fi(xi)

subject to xi ∈ Xi, i = 1, . . . , N,

N∑
i=1

Aixi = b,

gj(x1, . . . , xN) =
N∑

i=1
gji(xi) ≤ 0, j = 1, . . . , M,

(1.9)

where each decision variable xi ∈ Rni is regarded as a block for all i = 1, . . . , N , and∑N
i=1 ni = n. Accordingly, the objective function f : Rn → R can be expressed as

a summation of N functions, where each function fi : Rni → R is defined on the

single block xi and is assumed to be convex for all i = 1, . . . , N . The constraint set

X can be expressed as a Cartesian product of N disjoint sets: X = ∏N
i=1Xi, where

each Xi ⊂ Rni is a closed convex set for all i = 1, . . . , N . The matrix A in the linear

equality constraint can be expressed as A = (A1 . . . AN), where each Ai ∈ Rm×ni for

all i = 1, . . . , N . Each nonlinear constraint function gj : Rn → R can also be expressed

as a summation of N functions, where each function gji : Rni → R is assumed to

be convex for all i = 1, . . . , N and j = 1, . . . , M . Such a problem is then called a

block-separable convex optimization problem with both linear and nonlinear coupling

constraints. Note that the N -block nonlinear coupling constraints can not be directly

handled by ADMM-type or PCPM-type algorithms; thus the algorithmic ideas for

decomposing such nonlinear coupling need to be explored.

13

(ii) asynchronous iterative scheme

While solving the decomposed sub-problems in parallel, the scale of each sub-problem

may vary significantly, which likely leads to significant differences in computation time

among all computing units. Moreover, different communication efficiency among all

units contributes to differences in communication delay. For synchronous, distributed

algorithms with an iterative scheme, the start of each iteration must be simultane-

ous for all computing units. The next iteration will not start until all units finish

computation and communication. These issues can severely slow down the speed of

distributed algorithms, as the time spent on each iteration is determined by the slowest

unit. To overcome these limitations of synchronized distributed algorithms, developing

convergent, asynchronous distributed algorithms is of great significance.

(iii) non-separable objective function and coupling constraints

Consider a large-scale constrained optimization problem (1.1) with non-separable ob-

jective function and nonlinear coupling constrains:

minimize
x1,...,xN

f(x1, . . . , xN)

subject to xi ∈ Xi, i = 1, . . . , N,

N∑
i=1

Aixi = b,

gj(x1, . . . , xN) ≤ 0, j = 1, . . . , M.

(1.10)

Developing efficient distributed algorithms to decompose such large-scale convex opti-

mization problems with non-separable and nonlinear coupling constraints, while still

achieving convergence under proper assumptions, is of great research interest as well

as real application need [8], [9].

1.2 Objectives of the Thesis

The main objective of the thesis is to develop efficient and scalable distributed algorithms

to address the three aforementioned issues. We propose three distributed algorithms and

14

establish their global convergence; each algorithm addresses one of the three issues respec-

tively.

We then apply the proposed distributed algorithms to solve large-scale constrained convex

optimization problems arising from real-world application areas, including machine learning

and power systems. Numerical experiments using both synthetic and real large-scale data

sets are implemented on massive parallel distributed computing units to demonstrate real-

world performance and for the purpose of comparison with other algorithms.

1.3 Thesis Outline

The remainder of the dissertation is organized as follows. In Chapter 2, we propose an ex-

tended N -block PCPM algorithm to solve N -block convex optimization problems with both

linear and nonlinear coupling constrains. We establish the global convergence under mild

assumptions, and further establish the algorithm’s linear convergence rate under stronger

conditions. Numerical experiments demonstrate its performance. Moreover, we also propose

an asynchronous N -block PCPM algorithm with the standard bounded delay assumption,

first for linearly constrained N -block convex optimization problems as a starting point. We

establish the global sub-linear convergence rate with the additional assumption of strong

convexity of the objective function. The proposed algorithm is applied to solve a graph

optimization problem arising from spatial clustering. The numerical results demonstrate the

convergence and the efficiency of the asynchronous iterative scheme.

In Chapter 3, we propose a Jacobi-style distributed algorithm to solve convex quadrat-

ically constrained quadratic programs (QCQPs), using a novel idea of predictor-corrector

primal-dual update with an adaptive step size. The algorithm enables distributed storage of

data as well as parallel distributed computing. We establish the conditions for the proposed

algorithm to converge to a global optimum, and implement our algorithm on a computer

cluster with multiple nodes using Message Passing Interface (MPI). The numerical experi-

ments are conducted on data sets of various scales from different applications, and the results

show that our algorithm exhibits favorable scalability for solving large-scale problems.

In Chapter 4, we apply the N -block PCPM algorithm to solve electricity capacity expan-

sion models, formulated as a multi-scale, multi-stage stochastic program. Different from the

15

traditional scenario decomposition method, we propose a hybrid scenario-node-realization

decomposition method, with extended nonanticipativity constraints, that can decompose

the large-scale problem under various uncertainties with different temporal scales. While

applying the N -block PCPM algorithm to solve the resulting deterministic, large-scale N -

block convex optimization problem, we exploit a technique of orthogonal projection, which

greatly simplifies the iteration of the N -block PCPM algorithm and save the communication

among all computing units. The proposed simplified N -block PCPM algorithm, along with

the hybrid decomposition method, is applied to solve a capacity expansion model with both

synthetic and historical data, and is implemented on a multi-node computer cluster using

MPI. We compare the performance with the ADMM algorithm and the PHA algorithm, and

the numerical results demonstrate the scalability of the proposed algorithm when solving the

resulting large-scale block-separable optimization problems.

Chapter 5 summarizes the results of the dissertation and concludes with some discussions

of interesting future research.

16

2. DISTRIBUTED AND ASYNCHRONOUS ALGORITHMS

FOR N-BLOCK CONVEX OPTIMIZATION WITH COUPLING

CONSTRAINTS

2.1 Introduction

In this work, we focus on designing a distributed algorithm for solving block-separable

convex optimization problems with both linear and nonlinear coupling constraints, discussed

in Section 1.1 . More specifically, we consider the following problem:

minimize
x1,...,xN

f(x1, . . . , xN) =
N∑

i=1
fi(xi)

subject to xi ∈ Xi, i = 1, . . . , N,

N∑
i=1

Aixi = b,

gj(x1, . . . , xN) =
N∑

i=1
gji(xi) ≤ 0, j = 1, . . . , M,

(2.1)

where each block of decision variable xi ∈ Rni is constrained by a closed and convex set

Xi ⊂ Rni for all i = 1, . . . , N , and ∑N
i=1 ni = n. The objective function f : Rn → R is

block-separable, and each function fi : Rni → R is assumed to be continuous and convex

for all i = 1, . . . , N . All blocks xi’s are coupled in a linear equality constraint, where each

Ai ∈ Rm×ni is a given matrix for all i = 1, . . . , N , and b ∈ Rm is a given vector. All blocks

xi’s are also coupled in a system of nonlinear inequality constraints, where each constraint

function gj : Rn → R is also block-separable and each function gji : Rni → R is assumed to

be continuous and convex for all i = 1, . . . , N and j = 1, . . . , M . A wide range of application

problems can be mathematically formulated as optimization problems of the form (2.1),

arising from the areas including optimal control [10], network optimization [11], statistical

learning [3] and etc.

The alternating direction method of multipliers (ADMM) [3], as well as its variants [12]–

[14], is an efficient distributed algorithm for solving convex block-separable optimization

17

problems with linear coupling constraints, but problems of (2.1) with nonlinear coupling

constraints can not be directly handled by ADMM-typed algorithms.

To overcome the above-mentioned limitations of the ADMM-typed algorithms, we first

extend the 2-block PCPM algorithm to solve an N -block convex optimization problem with

both linear and nonlinear coupling constraints. We further extend the N -block PCPM

algorithm to an asynchronous iterative scheme, where a maximum tolerable delay is allowed

for each distributed unit, and apply it to solve an N -block convex optimization problem with

general linear coupling constraints.

The remainder of the chapter is organized as follows. In Section 2.2 , we present an

extended N -block PCPM algorithm for solving general constrained N -block convex opti-

mization problems. We first establish global convergence under mild assumptions, and then

prove the linear convergence rate with slightly stronger assumptions. In Section 2.3 , we

further extend the N-block PCPM algorithm to an asynchronous scheme with the bounded

delay assumption. We establish both convergence and global sub-linear convergence rate un-

der the conditions of strong convexity. Section 2.4 presents the numerical results of applying

the proposed algorithms to solve a graph optimization problem arising from an application

of housing price prediction. Finally, Section 2.5 concludes this chapter with discussions of

the limitations of the algorithms and possible future research directions.

2.2 Extending the PCPM Algorithm to Solving General Constrained N-block
Convex Optimization Problems

2.2.1 N-block PCPM Algorithm for General Constrained Convex Optimization

Problems

In the 2-block PCPM algorithm presented in Section 1.1 , we observe that the intro-

duction of the predictor variable eliminates the quadratic term in the proximal augmented

Lagrangian function and make the primal minimization step parallelizable again, which is a

18

major difference from the ADMM algorithm. For an N -block convex optimization problem

with additional nonlinear coupling constraints:

minimize
x1,...,xN

N∑
i=1

fi(xi)

subject to xi ∈ Xi, i = 1, . . . , N,

N∑
i=1

Aixi = b, (λ)

N∑
i=1

gji(xi) ≤ 0, j = 1, . . . , M, (µj)

(2.2)

the potential coupling caused by the quadratic term ‖∑N
i=1 gji(xi)‖2

2 could be even worse.

Using the same technique of introducing the predictor variable, we extend the 2-block PCPM

algorithm for solving (2.2).

First, we make a blanket assumption on problem (2.2) throughout this chapter that the

Slater’s constraint qualification (CQ) holds.

Assumption 2.2.1 (Slater’s CQ). There exists a point (x̄1, . . . , x̄N) such that

x̄i ∈ relint(Xi), i = 1, . . . , N

∣∣∣∣∣∣
∑N

i=1 Aix̄i = b∑N
i=1 gji(x̄i) < 0, j = 1, . . . , M

,

where relint(Xi) denotes the relative interior of the convex set Xi for all i = 1, . . . , N .

To apply the PCPM algorithm to (2.2), at each iteration k, with a given primal dual

pair,
(
xk

1 , . . . , xk
N , λk, µk := (µk

1, . . . , µk
M)T

)
, we start with a predictor update:

(predictor update) :

γk+1 = λk + ρ
(N∑

i=1
Aixk

i − b
)

,

νk+1
j = ΠR+

[
µk

j + ρ
N∑

i=1
gji(xk

i)
]
, j = 1, . . . , M,

(2.3)

where ΠZ(z) denotes the projection of a vector z ∈ Rn onto a set Z ⊂ Rn, and R+ refers to

the set of all non-negative real numbers.

19

After the predictor update, we update the primal variables (xk+1
1 , . . . , xk+1

N) by minimiz-

ing the Lagrangian function L(x1, . . . , xN , γk+1, νk+1) evaluated at the predictor variable(
γk+1, νk+1 := (νk+1

1 , . . . , νk+1
M)T

)
, plus the proximal terms. The primal minimization step

can be decomposed as

(primal minimization) :

xk+1
i = argmin

xi∈Xi

fi(xi) + (γk+1)T Aixi +
M∑
j=1

νk+1
j gji(xi) + 1

2ρ
‖xi − xk

i ‖2
2,

i = 1, . . . , N.

(2.4)

A corrector update is then performed for each Lagrangian multiplier (λk+1, µk+1):

(dual corrector) :

λk+1 = λk + ρ
(N∑

i=1
Aixk+1

i − b
)

,

µk+1
j = ΠR+

[
µk

j + ρ
N∑

i=1
gji(xk+1

i)
]
, j = 1, . . . , M.

(2.5)

The overall structure of N -block PCPM algorithm is presented in Algorithm 1 below.

Algorithm 1 N -PCPM
1: Initialization choose an arbitrary starting point (x0

1, . . . , x0
N , λ0, ν0).

2: k ← 0.
3: while termination conditions are not met do
4: (Predictor update)

update (γk+1, νk+1) according to (2.3);
5: (Primal minimization)

update (xk+1
1 , . . . , xk+1

N) according to (2.4);
6: (Corrector update)

update (λk+1, µk+1) according to (2.5);
7: k ← k + 1
8: return (xk

1 , . . . , xk
N , λk, νk).

2.2.2 Convergence Analysis

We make the following additional assumptions on the optimization problem (2.2).

20

Assumption 2.2.2 (Lipschitz Continuity). For all j = 1 . . . M and i = 1 . . . N , each single-

valued function gij : Xi → R is Lipschitz continuous with modulus of Lji, i.e., ‖gji(x1) −

gji(x2)‖2 ≤ Lji‖x1 − x2‖2 for any x1, x2 ∈ Xi.

Assumption 2.2.3 (Existence of a Saddle Point). For the Lagrangian function of (2.2):

L(x1, . . . , xN , λ, µ) :=
N∑

i=1
fi(xi) + λT

(N∑
i=1

Aixi − b
)

+
M∑
j=1

µj

N∑
i=1

gji(xi), (2.6)

we assume that a saddle point (x∗
1, . . . , x∗

N , λ∗, µ∗) exists; that is, for any xi ∈ Xi, i =

1, . . . , N , λ ∈ Rm and µ ∈ RM
+ ,

L(x∗
1, . . . , x∗

N , λ, µ) ≤ L(x∗
1, . . . , x∗

N , λ∗, µ∗) ≤ L(x1, . . . , xN , λ∗, µ∗). (2.7)

Note that coupled with the blanket Assumption 2.2.1 that Slater’s CQ holds for the op-

timization problem (2.2), the above assumption is equivalent to say that an optimal solution

of (2.2) is assumed to exist (see Corollary 28.3.1 in [4]).

Next, we derive some essential lemmas for constructing the main convergence proof. The

following lemma is due to Proposition 6 in [15], and for completeness, we provide the detailed

statements below.

Lemma 2.2.1 (Inequality of Proximal Minimization Point). Given a closed, convex set Z ⊂

Rn, and a continuous, convex function F : Z→ R. With a given point z̄ ∈ Z and a positive

number ρ > 0, if ẑ is a proximal minimization point; i.e. ẑ := arg min
z∈Z

F (z) + 1
2ρ
‖z − z̄‖2

2,

then we have that

2ρ[F (ẑ)− F (z)] ≤ ‖z̄− z‖2
2 − ‖ẑ− z‖2

2 − ‖ẑ− z̄‖2
2, ∀z ∈ Z. (2.8)

Proof. Denote Φ(z) = F (z) + 1
2ρ
‖z− z̄‖2

2. By the definition of ẑ, we have 0 ∈ ∂zΦ(ẑ). Since

Φ(z) is strongly convex with modulus 1
ρ
, it follows that 2ρ

[
Φ(z)− Φ(ẑ)

]
≥ ‖ẑ− z‖2

2 for any

z ∈ Z.

21

Lemma 2.2.2. The update steps (2.3) and (2.5) are equivalent to obtaining proximal min-

imization points as follows:

(γk+1, νk+1) = argmin
λ∈Rm,µ∈RM

+

−L(xk
1 , . . . , xk

N , λ, µ)

+ 1
2ρ
‖λ− λk‖2

2 + 1
2ρ
‖µ− µk‖2

2,

(λk+1, µk+1) = argmin
λ∈Rm,µ∈RM

+

−L(xk+1
1 , . . . , xk+1

N , λ, µ)

+ 1
2ρ
‖λ− λk‖2

2 + 1
2ρ
‖µ− µk‖2

2.

(2.9)

Similar to the convergence analysis of the PCPM algorithm in [7], we now establish

some fundamental estimates of the distance at each iteration k between the solution point

(xk+1
1 , . . . , xk+1

N , λk+1, µk+1) and the saddle point (x∗
1, . . . , x∗

N , λ∗, µ∗).

Proposition 2.2.3. Let (x∗
1, . . . , x∗

N , λ∗, µ∗) be a saddle point of the optimization problem

(2.2). For all k ≥ 0, we have that

N∑
i=1
‖xk+1

i − x∗
i ‖2

2 ≤
N∑

i=1
‖xk

i − x∗
i ‖2

2 −
N∑

i=1
‖xk+1

i − xk
i ‖2

2

+2ρ
[
(λ∗ − γk+1)T

N∑
i=1

Aixk+1
i +

M∑
j=1

(µ∗
j − νk+1

j)
N∑

i=1
gji(xk+1

i)
] (2.10)

and
‖λk+1 − λ∗‖2

2 + ‖µk+1 − µ∗‖2
2 ≤ ‖λk − λ∗‖2

2 + ‖µk − µ∗‖2
2

−‖γk+1 − λk+1‖2
2 − ‖νk+1 − µk+1‖2

2 − ‖γk+1 − λk‖2
2 − ‖νk+1 − µk‖2

2

+2ρ
[
(γk+1 − λk+1)T

N∑
i=1

Aixk
i +

M∑
j=1

(νk+1
j − µk+1

j)
N∑

i=1
gji(xk

i)

+ (λk+1 − λ∗)T
N∑

i=1
Aixk+1

i +
M∑
j=1

(µk+1
j − µ∗

j)
N∑

i=1
gji(xk+1

i)
]

(2.11)

Proof. The details of the proof are provided in Section 2.6.1 .

22

Theorem 2.2.4 (Global Convergence). Assume that Assumption 2.2.1 to Assumption 2.2.3

hold. Given a scalar 0 < ε < 1, choose a step size ρ satisfying

0 < ρ ≤ min

 1− ε

Amax + MLmax

,
1− ε

NAmax

,
1− ε

NLmax

, (2.12)

where Amax := maxN
i=1{‖Ai‖2}, and Lmax := maxM

j=1

{
maxN

i=1{Lji}
}
.

Let {xk
1 , . . . , xk

N , λk, µk} be the sequence generated by Algorithm 1 , with an arbitrary point

(x0
1, . . . , x0

N , λ0, µ0); then the sequence converges globally to a saddle point (x∗
1 . . . x∗

N , λ∗, µ∗)

of the optimization problem (2.2).

Proof. Please see Section 2.6.2 for details.

To establish convergence rate, we need to make an additional assumption on Problem

(2.2), as follows.

Assumption 2.2.4 (Lipschitz Inverse Mapping). Assume that there exists a unique saddle

point (x∗
1, . . . , x∗

N , λ∗, µ∗) such that, given an inverse mapping S−1 : Rn × Rm × RM → R:

S−1(u1, . . . , uN , v)

= arg min
(x1,...,xN)∈

∏N

i=1 Xi

max
λ∈Rm,µ∈RM

+

L(x1, . . . , xN , λ, µ)−
N∑

i=1
xT

i ui + λT v + µT w

,
(2.13)

and a fixed positive real number τ > 0, we have

N∑
i=1
‖xi − x∗

i ‖2
2 + ‖λ− λ∗‖2

2 + ‖µ− µ∗‖2
2 ≤ a2

(N∑
i=1
‖ui‖2

2 + ‖v‖2
2 + ‖w‖2

2

)

for some a ≥ 0, whenever the point (x1, . . . , xN , λ, µ) ∈ S−1(u1, . . . , uN , v, w) and

N∑
i=1
‖ui‖2

2 + ‖v‖2
2 + ‖w‖2

2 ≤ τ 2.

The above assumption states that the inverse mapping S−1 is Lipschitz continuous at

the origin with modulus a. By Proposition 2 in [16], to obtain a plausible condition for the

23

Lipschitz continuity of S−1 at the origin, we appeal to the strong second-order conditions for

optimality which are comprised of the following properties:

(i) There is a saddle point (x∗
1, . . . , x∗

N , λ∗, µ∗) of the optimization problem (2.2) such that

x∗
i ∈ int(Xi) for all i = 1 . . . N , where int(Xi) denotes the interior of the convex set Xi.

Moreover, for all i = 1 . . . N and j = 1, . . . , M , function gji(xi) is twice continuously

differentiable on a neighborhood of x∗
i .

(ii) Let J denote the set of active constraint indices at the point of (x∗
1, . . . , x∗

N): J =
{

j =

1, . . . , M
∣∣∣∣∑N

i=1 gji(x∗
i) = 0

}
. Then µ∗

j > 0 for all j ∈ J , and
{∑N

i=1∇xigji(x∗
i)
}

j∈J
∪{∑N

i=1 Aix∗
i

}
forms a linearly independent set.

(iii) The Hessian matrix H := ∇2
(x1,...,xN)L(x∗

1, . . . , x∗
N , λ∗, µ∗) satisfies yT Hy > 0 for any

y :=

 y1...
yN

 ∈
y 6= 0

∣∣∣∣∣∣
∑N

i=1 Aiyi = 0∑N
i=1 yT

i

[
∇xigji(x∗

i)
]

= 0, ∀j ∈ J

.

We now establish the linear convergence rate of Algorithm 1 .

Theorem 2.2.5 (Linear Convergence Rate). Assume that Assumption 2.2.1 to Assump-

tion 2.2.4 hold. Let ρ satisfy (2.12) and let {xk
1 , . . . , xk

N , λk, µk} be a sequence generated by

Algorithm 1 , with an arbitrary starting point (x0
1, . . . , x0

N , λ0, µ0); then the sequence con-

verges linearly to the unique saddle point (x∗
1, . . . , x∗

N , λ∗, µ∗). More specifically, there exists

an integer k̄ such that, for all k ≥ k̄, we have:

N∑
i=1
‖xk+1

i − x∗
i ‖2

2 + ‖λk+1 − λ∗‖2
2 + ‖µk+1 − µ∗‖2

2

≤θ2
(N∑

i=1
‖xk

i − x∗
i ‖2

2 + ‖λk − λ∗‖2
2 + ‖µk − µ∗‖2

2

)
,

(2.14)

where 0 < θ < 1.

Proof. Please see Section 2.6.3 for details.

24

2.2.3 Numerical Experiments

Consider the following 20-dimensioned, block-separable convex optimization problem

with 17 nonlinear coupling constraints, modeling a decentralized planning of an economic

system and suggested by [17]:

minimize
x1,...,x20

x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + (x11 − 9)2

+10(x12 − 1)2 + 5(x13 − 7)2 + 4(x14 − 14)2 + 27(x15 − 1)2 + x4
16

+(x17 − 2)2 + 13(x18 − 2)2 + (x19 − 3)2 + x2
20 + 95

subject to 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

1
2(x1 − 8)2 + 2(x2 − 4)2 + 3x2

5 − x6 − 30 ≤ 0

x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

4x1 + 5x2 − 3x7 + 9x8 − 105 ≤ 0

10x1 − 8x2 − 17x7 + 2x8 ≤ 0

3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

− 8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

x1 + x2 + 4x11 − 21x12 ≤ 0

x2
1 + 15x11 − 8x12 − 28 ≤ 0

4x1 + 9x2 + 5x2
13 − 9x14 − 87 ≤ 0

3x1 + 4x2 + 3(x13 − 6)2 − 14x14 − 10 ≤ 0

14x2
1 + 35x15 − 79x16 − 92 ≤ 0

15x2
2 + 11x15 − 61x16 − 54 ≤ 0

5x2
1 + 2x2 + 9x4

17 − x18 − 68 ≤ 0

x2
1 − x2 + 19x19 − 20x20 + 19 ≤ 0

7x2
1 + 5x2

2 + x2
19 − 30x20 ≤ 0 (2.15)

25

A minimum function value of 133.723 can be obtained at the point of (2.18, 2.35, 8.77, 5.07,

0.99, 1.43, 1.33, 9.84, 8.29, 8.37, 2.28, 1.36, 6.08, 14.17, 1.00, 0.66, 1.47, 2.00, 1.05, 2.06).

1

Applying Algorithm 1 and decomposing the original problem into 19 small sub-problems, we

achieve the following convergence results, presented in Figure 2.1 .

0 0.2 0.4 0.6 0.8 1

Number of Iterations 103

2

2.5

3

3.5

4

L
o
g

1
0
f(

x
k
)

Convergence of Objective Function Value

0 0.2 0.4 0.6 0.8 1

Number of Iterations 103

-10

-5

0

5

L
o
g

1
0
(

j=
1

1
7

|
jk
|2

 |
g

j(x
k
)|

2
)1

/2

Convergence of Complementarity

0 0.2 0.4 0.6 0.8 1

Number of Iterations 103

-10

-8

-6

-4

-2

0

2

L
o
g

1
0
|x

k
 -

 x
* |

Convergence of Solution

0 0.2 0.4 0.6 0.8 1

Number of Iterations 103

0.8

1

1.2

1.4

1.6

|x
k
+

1
 -

 x
* |/

|x
k
 -

 x
* |

Convergence Rate

Figure 2.1. Convergence Results of Applying Algorithm 1 to Problem (2.15)
with ρ = 0.009.

Next, by replacing the term of x4
16 in the objective function of (2.15) with x2

16 and

the term of x4
17 in the 15-th constraint with x2

17, we make the modified problem satisfy

Assumption 2.2.4 . A minimum function value of 133.687 can be obtained at the point of

(2.18, 2.34, 8.76, 5.07, 0.99, 1.43, 1.34, 9.84, 8.30, 8.36, 2.27, 1.36, 6.08, 14.17, 1.00, 0.64,

2.00, 2.00, 1.04, 2.06). An additional linear convergence rate of applying Algorithm 1 is

observed in the following convergence results, presented in Figure 2.2 .
1The solution is obtained using the nonlinear constrained optimization solver filter of Neos Solver at

 https://neos-server.org/neos/solvers/ .

26

https://neos-server.org/neos/solvers/

0 0.2 0.4 0.6 0.8 1

Number of Iterations 103

2

2.5

3

3.5

4

L
o
g

1
0
f(

x
k
)

Convergence of Objective Function Value

0 0.2 0.4 0.6 0.8 1

Number of Iterations 103

-10

-5

0

5

L
o
g

1
0
(

j=
1

1
7

|
jk
|2

 |
g

j(x
k
)|

2
)1

/2

Convergence of Complementarity

0 0.2 0.4 0.6 0.8 1

Number of Iterations 103

-8

-6

-4

-2

0

2

L
o
g

1
0
|x

k
 -

 x
* |

Convergence of Solution

0 0.2 0.4 0.6 0.8 1

Number of Iterations 103

0.8

0.85

0.9

0.95

1

|x
k
+

1
 -

 x
* |/

|x
k
 -

 x
* |

Convergence Rate

Figure 2.2. Convergence Results of Applying Algorithm 1 to the Modified
Problem (2.15) with ρ = 0.009.

2.3 Extending the N-block PCPM Algorithm to an Asynchronous Scheme

As a starting point, we first consider the following N-block convex optimization problem

with only linear coupling constraints:

minimize
x1,...,xN

N∑
i=1

fi(xi)

subject to xi ∈ Xi, i = 1 . . . N,

N∑
i=1

Aixi = b.

(2.16)

The decision variables, the objective function and the constraints are the same as in the

optimization problem (2.1). When applying Algorithm 1 to solving the above problem,

each iteration can be interpreted as main-worker paradigm [18], shown in Figure 2.3 . At

27

Figure 2.3. Main-Worker Paradigm for Algorithm 1 .

each iteration k, a predictor update of γk+1 is first performed on a main processor and is

broadcast to each worker processor, which is called a pre-processing task. Upon receiving

the updated predictor variable from the main processor, each worker processor solves the

decomposed sub-problem in parallel and send its updated primal decision variable xk+1
i back

to the main processor, which is called a worker task. After gathering all updated decision

variables, a corrector update is then performed on the main processor, which is called a

post-processing task.

The speed of the algorithm is significantly limited by the slowest worker processor, since

the post-processing task can not start until all worker tasks are finished and the results

are sent back to the main processor. For large-scale problems, with the number of worker

processors increasing, the issue of node synchronization can be a major concern for the

performance of synchronous distributed algorithms. While in an asynchronous scheme, the

main processor can proceed with only part of worker tasks finished. Figure 2.4 shows an

example of 1 main processor and 4 worker processors with different lengths of computation

and communication delays. In the asynchronous scheme, the main processor starts a new

iteration whenever receives the results from at least 2 worker processors, which leads to much

faster iterations than the synchronous scheme.

28

Figure 2.4. Illustration of how asynchronous scheme iterates faster than
synchronous scheme.

In this section, we extend the N -block PCPM algorithm to an asynchronous scheme to

solve the linearly constrained N -block convex optimization problem (2.16).

2.3.1 Asynchronous N-block PCPM Algorithm for Convex Optimization Prob-

lems with Linear Coupling Constraints

To achieve the convergence of the asynchronous N -block PCPM algorithm, similar to [19],

[20], we require that the asynchronous delay of each parallel worker processor is bounded.

Let k ≥ 0 denote the iteration index on the main processor. At each iteration k, let Ak ⊆

{1, . . . , N} denote the subset of worker processors from whom the main processor receives

the updated decision variable x̂i, and let A{
k ⊆ {1, . . . , N} denote the rest of the worker

processors, whose information does not arrive.

Definition 2.3.1 (Bounded Delay). Let an integer τ ≥ 1 denote the maximum tolerable

delay. At any iteration k ≥ 0, with a bounded delay, it must holds that i ∈ Ak ∪Ak−1 ∪ · · · ∪

Ak−τ+1 for all i = 1, . . . , N . When τ = 1, it’s a synchronous scheme.

29

At each each iteration k on the main processor, all worker processors are divided into

two sets Ak and A{
k, distinguished by whether their information arrives or not at the current

moment. Let di denote the number of iterations that each worker processor i is delayed.

If di < τ − 1 for each worker processor i ∈ A{
k, the main processor uses the partially

updated decision variables (xk+1
1 , . . . , xk+1

N) to perform both corrector and predictor updates

for the Lagrangian multiplier; otherwise, the main processor must wait until the worker

processors with di = τ−1 finish their tasks with information received by the master processor.

Consequently, new divide of worker processors into Ak and A{
k is generated, and the bounded

delay condition is then satisfied. The overall structure of the Asynchronous N -Block PCPM

algorithm for solving the linearly constrained convex optimization problem (2.16) is presented

in Algorithm 2 and Algorithm 3 .

Algorithm 2 AN-PCPM (Main Processor)
1: Initialization choose an arbitrary starting point λ0.
2: k ← 0, d1, d2, . . . , dN ← 0
3: wait until receiving {x̂i}i=1...N

4: update:
x0

i = x̂i, i = 1 . . . N (2.17)

5: broadcast γ̂ = λ0 + ρ(∑N
i=1 Aix0

i − b) to all worker processors
6: while termination conditions are not met do
7: wait until receiving {x̂i}i∈Ak

such that di < τ, ∀i ∈ A{
k

8: update:

xk+1
i =

x̂i, ∀i ∈ Ak

xk
i , ∀i ∈ A{

k

di =

0, ∀i ∈ Ak

di + 1, ∀i ∈ A{
k

(2.18)

9: update:

λk+1 = λk + ρ
(N∑

i=1
Aixk+1

i − b
)

(2.19)

10: broadcast γ̂ = λk+1 + ρ
∑N

i=1 Aixk+1
i to the worker processors in Ak

11: k + +
12: return (xk

1 , . . . , xk
N , λk)

30

Algorithm 3 AN-PCPM (Woker Processor)
1: send x̂i = x0

i to the main processor
2: while not receiving termination signal do
3: wait until receiving γ̂
4: calculate:

yi = argmin
xi∈Xi

fi(xi) + γ̂T Aixi + 1
2ρ
‖xi − x̂i‖2 (2.20)

5: update: x̂i = yi
6: send x̂i to the main processor

2.3.2 Convergence Analysis

Different from the synchronous N -block PCPM algorithm, the convexity of fi is not

enough to achieve the global convergence due to the asynchronous delay in the system. We

make the following additional assumption on problem (2.16).

Assumption 2.3.1 (Strong Convexity). For all i = 1 . . . N , each fi : Xi → R is a continuous,

strongly convex function with modulus σi > 0.

Accordingly, we extend Lemma 2.2.1 to functions with strong convexity.

Lemma 2.3.1 (Inequality of Proximal Minimization Point with Strong Convexity). Given

a closed, convex set Z ⊂ Rn, and a continuous, strongly convex function F : Z → R with

modulus σ. With a given point z̄ ∈ Z and a positive number ρ > 0, if ẑ is a proximal

minimization point; i.e. ẑ := arg min
z∈Z

F (z) + 1
2ρ
‖z− z̄‖2

2, then we have that

F (ẑ)− F (z) ≤ 1
2ρ
‖z̄− z‖2

2 − (σ

2 + 1
2ρ

)‖ẑ− z‖2
2 −

1
2ρ
‖ẑ− z̄‖2

2, ∀z ∈ Z. (2.21)

Proof. Denote Φ(z) = F (z) + 1
2ρ
‖z− z̄‖2

2. By the definition of ẑ, we have ∂zΦ(ẑ) = 0. Since

Φ(z) is strongly convex with modulus σ + 1
ρ
, it follows that Φ(z)−Φ(ẑ) ≥ (σ

2 + 1
2ρ

)‖ẑ− z‖2
2

for any z ∈ Z.

Now, we present the main convergence result.

31

Theorem 2.3.2 (Sub-linear Convergence Rate). Let Assumption 2.2.1 , Assumption 2.2.3

and Assumption 2.3.1 hold. Choose a step size ρ satisfying:

ρ ≤ σmin

25N(τ − 1)2Amax

, (2.22)

where σmin := minN
i=1{σi}. Denote x̄k

i = 1
k

∑k
k′=1 xk′

i for all i = 1, . . . , N , where {(xk
1 , . . . , xk

N)}

is the sequence generated by Algorithm 2 and Algorithm 3 , then for all k > 0, it holds that:

∣∣∣∣ N∑
i=1

fi(x̄k
i)−

N∑
i=1

fi(x∗
i)
∣∣∣∣ ≤ δλC1 + C2

k
,

∥∥∥∥ N∑
i=1

Aix̄k − b
∥∥∥∥

2
≤ C1

k
, (2.23)

where δλ = ‖λ∗‖2 and C1, C2 are some finite constants.

Proof. Please see Section 2.7.1 for details.

2.4 Numerical Experiments

2.4.1 An Optimization Problem on a Graph

In this subsection, we consider an optimization problem on a graph, arising from the

training process of regressors with spatial clustering, proposed by [11]. Traditional regressors

obtains a parameter vector x via solving the following optimization problem on a training

data set:

minimize
x∈X

N∑
i=1

fi(x) + r(x), (2.24)

where N is the number of data points, X ⊂ Rn describes the constraints on the parameter

vector, each function fi : Rn → R denotes the loss function on each training data point for

all i = 1, . . . , N , and r : Rn → R denotes some type of regularization function.

When the spatial information is accessible, such as the latitude and longitude data, a map

of data points then becomes available. Instead of using a global regressor with a common

parameter vector x for the whole data set, a local regressor can be built at each data point

i = 1, . . . , N with a local parameter vector xi ∈ Rn. Let dij denote the distance between the

data point i and j (i 6= j). Different from distributed learning, where a consensus constraint

should be satisfied for all local variables, we require that the difference between two local

32

parameter vectors ‖xi − xj‖2
2 decreases as the distance dij decreases. Let Nε(i) denote a set

of data points within a neighborhood of point i, i.e., Nε(i) := {j = 1, . . . , N |j 6= i, dij ≤ ε}.

If any data point is regarded as a vertex and any two data points within a neighborhood

are connected through an edge, a graph is then constructed as G = (V , E), where V denotes

the set of vertices with N = |V| and E denotes the set of edges with p = |E|. Consider the

following optimization problem on the graph:

minimize
x1,...,xN

∑
i∈V

[
fi(xi) + r(xi)

]
+ ω

∑
(j,k)∈E

wjk‖xj − xk‖2
2

subject to xi ∈ Xi, i = 1, . . . , N.

(2.25)

Different from [11], we use ‖·‖2
2 instead of ‖·‖2. The parameter wjk along each edge (j, k) ∈ E ,

describing the weight of the penalty term of the difference between the two connected vertices,

increases as djk decreases. The global parameter ω describes the trade-off between minimizing

the individual loss function on each data point and agreeing with neighbors. When ω = 0,

x∗
i is simply the solution to the optimization problem: minimize

xi∈Xi
fi(xi) + r(xi), obtained

locally at each vertex i. When ω → +∞, the model reduces to a traditional regressor without

spatial clustering.

Once the optimal solution (x∗
1, . . . , x∗

N) is obtained, for any new node i′, the local regressor

can be evaluated with the local parameter vector xi′ , estimated through the interpolation of

the solution:

minimize
xi′ ∈Xi′

∑
j∈Nε(i′)

wi′j‖xi′ − x∗
j ‖2

2. (2.26)

2.4.2 Two Problem Reformulations

To apply N -block PCPM algorithm to solve the graph optimization problem (2.25), we

first need to reformulate it into the block-separable form as in (2.16).

Similar to [11], for each pair of connected vertices (xj, xk) along the edge (j, k) ∈ E ,

introducing a copy (zjk, zkj), we can rewrite the graph optimization problem (2.25) as

33

• Problem Reformulation 1

minimize
x1,...,xN

∑
i∈V

[
fi(xi) + r(xi)

]
+ ω

∑
(j,k)∈E

wjk‖zjk − zkj‖2
2

subject to xi ∈ Xi, ∀i ∈ V ,

xi − zij = 0, ∀j ∈ Nε(i), ∀i ∈ V .

(2.27)

The reformulated problem can be decomposed into N sub-problems on vertices and p sub-

problems along edges, using N -block PCPM algorithm. One small issue is that the objective

function of the edge sub-problem, ‖zjk − zkj‖2
2, is not strongly convex.

To overcome this limitation, we propose an alternative way of rewriting (2.25). For

each edge (j, k) ∈ E , introducing a slack variable zjk = xj − xk, we can rewrite the graph

optimization problem (2.25) as

• Problem Reformulation 2

minimize
x1,...,xN

∑
i∈V

[
fi(xi) + r(xi)

]
+ ω

∑
(j,k)∈E

wjk‖zjk‖2
2

subject to xi ∈ Xi, ∀i ∈ V ,

xj − xk − zjk = 0, ∀(j, k) ∈ E .

(2.28)

The reformulated problem can also be decomposed into N sub-problems on vertices and p

sub-problems along edges. However, in this way of rewriting (2.25), the objective function of

each decomposed sub-problem enjoys the nice property of strong convexity. When applying

N -block PCPM algorithm, a linear convergence rate is expected for synchronous iteration

scheme, and a sub-linear convergence rate is expected for an asynchronous scheme.

2.4.3 Housing Price Prediction

In this subsection, we present an application example of the graph optimization prob-

lem, where the housing price is predicted based on a set of features, including the number of

bedrooms, the number of bathrooms, the number of square feet, and the latitude and longi-

tude of each house. We use the same data set as [11], a list of 985 real estate transactions

34

over a period of one week during May of 2008 in the Greater Sacramento area. All data is

standardized with zero mean and unit variance, and all missing data is then set to zero. We

randomly select a subset of 193 transactions as our test data set, and use the rest as our

training data set.

The graph is constructed based on the latitude and longitude of each house. The rule of

selecting neighbors is slightly different from [11]. For each house, we connect it with all the

other houses within a distance of 1.0 mile. If the number of connected houses is less then 5,

we connect more nearest houses until the number of neighbors reaches 5. The resulting graph

has 792 vertices and 4303 edges. Thus, the graph optimization problem can be decomposed

into 792 + 4303 = 5095 sub-problems, using N -block PCPM algorithm.

At each data point i = 1 . . . 792, the decision variable is xi = (xi0, xi1, xi2, xi3). The

predicted price for each house is:

xi0 + xi1 × (num_bed)i + xi2 × (num_bath)i + xi3 × (num_sq_ft)i,

where (num_bed)i, (num_bath)i and (num_sq_ft)i are the number of bedrooms, the num-

ber of bathrooms and the number of square feets for each house respectively. At each vertex

i, the objective function

fi(xi) = ‖xi0 + xi1 × (num_bed)i + xi2 × (num_bath)i + xi3 × (num_sq_ft)i − (price)i‖
2
2

is strongly convex, as well as the regularization function

r(xi) = µ
(
‖xi1‖2

2 + ‖xi2‖2
2 + ‖xi3‖2

2

)
,

where (price)i is the actual sales price for each house, and µ is a constant regularization

parameter, fixed as µ = 0.1.

2.4.4 Numerical Results of Synchronous N-block PCPM Algorithm

We first apply Algorithm 1 to solve the two reformulated problem (2.27) and (2.28), and

compare the performance. The convergence results are shown in Figure 2.5 . Due to the

35

0 0.5 1 1.5 2

Number of Iterations 104

1.5

2

2.5

3

3.5

4

L
o
g

1
0
f(

x
k
)

Convergence of Objective Function Value

Convex

Strongly Convex

0 0.5 1 1.5 2

Number of Iterations 104

-7

-6

-5

-4

-3

-2

-1

0

L
o
g

1
0
(|

A
x

k
-b

|)
/m

1

Convergence of Averaged Constraint Residual

Convex

Strongly Convex

0 0.5 1 1.5 2

Number of Iterations 104

-7

-6

-5

-4

-3

-2

-1

0

L
o
g

1
0
|x

k
 -

 x
* |

Convergence of Solution

Convex

Strongly Convex

0 0.5 1 1.5 2

Number of Iterations 104

0.88

0.9

0.92

0.94

0.96

0.98

1

|x
k
+

1
 -

 x
* |/

|x
k
 -

 x
* |

Convergence Rate

Convex

Strongly Convex

Figure 2.5. Convergence Results of Applying Algorithm 1 to solve Reformu-
lated Problems (2.27) and (2.28) with ω = 1.0 and ρ = 0.06.

strong convexity of the reformulated problem (2.28), the algorithm converges much faster

than solving the reformulated problem (2.27).

We also plot the mean square error (MSE) on the testing data set using various values

of ω, shown in Figure 2.6 . When ω = 1.0, a minimum MSE of 0.27 can be obtained on the

testing data set. We fixed ω = 1.0 for all the numerical experiments.

2.4.5 Numerical Results of Asynchronous N-block PCPM Algorithm

We apply Algorithm 2 and Algorithm 3 to solve the reformulated problem (2.28) with

a maximum delay τ = 4. The convergence results of are shown in Figure 2.7 . A sub-linear

convergence rate is observed.

36

-2 -1 0 1 2 3

Log
10

0.25

0.3

0.35

0.4

0.45

M
S

E

MSE using Different Value of

Figure 2.6. MSE for Testing Data Set with ω Varying from 10−2 to 103 and µ = 0.1.

While implementing the algorithm as a sequential code, we simulate the elapsed wall-

clock time on the main processor. As illustrated in Figure 2.4 , the computation delay of

the main processor is set as 1.0 second, the computation delay of each worker processor

for solving vertex sub-problem is set as 1.2 second, the computation delay of each worker

processor for solving edge sub-problem is set as 0.6 second, and the communication delay

of each worker processor is uniformly drawn from a range of 0.0 to 1.0 second. Under these

settings, we simulate the elapsed wall-clock time on the main processor for the different

values of maximum delay τ = 1, 2, 4, 7, shown in Figure 2.8 . We observe that, with a larger

number of maximum delay, the number of iterations, used for the asynchronous algorithm

to converge, increases but the simulated elapsed wall-clock time decreases, which implies a

faster convergence with more short-time iterations.

2.5 Conclusion and Future Works

In this chapter, we first proposed an N -block PCPM algorithm to solve N -block convex

optimization problems with both linear and nonlinear constraints, with global convergence

established. A linear convergence rate under the strong second-order conditions for opti-

mality is observed in the numerical experiments. Next, for a starting point, we proposed

an asynchronous N -block PCPM algorithm to solve linearly constrained N -block convex

37

0 0.5 1 1.5

Number of Iterations 106

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

L
o
g

1
0
f(

x
k
)

Convergence of Objective Function Value

 = 4

0 0.5 1 1.5

Number of Iterations 106

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

L
o
g

1
0
|A

x
k
-b

|/
m

1

Convergence of Averaged Constraint Residual

 = 4

0 0.5 1 1.5

Number of Iterations 106

-2.5

-2

-1.5

-1

-0.5

0

L
o
g

1
0
|x

k
 -

 x
* |

Convergence of Solution

 = 4

0 0.5 1 1.5

Number of Iterations 106

0.99965

0.9997

0.99975

0.9998

0.99985

0.9999

0.99995

1

|x
k
+

1
 -

 x
* |/

|x
k
 -

 x
* |

Convergence Rate

 = 4

Figure 2.7. Convergence Results of Applying Algorithm 2 and Algorithm 3

to Solve the Reformulated Problem (2.28) with τ = 4 and ρ = 0.0005.

optimization problems. The numerical results demonstrate the sub-linear convergence rate

under the bounded delay assumption, as well as the faster convergence with more short-time

iterations than a synchronous iterative scheme.

However, the performance of real asynchronous implementation of N -block PCPM al-

gorithm is unknown, and thus in the future, more experiments (probably with much larger

problem sizes) will be conducted on a multi-node computer cluster using MPI functions with-

out blocking communication, such as MPI_Isend and MPI_Irecv. Also, the extension of

the asynchronous N -block PCPM algorithm to solve N -block convex optimization problems

with both linear and nonlinear constraints is worth to be explored.

38

0 0.5 1 1.5

Number of Iterations 106

0

1

2

3

4

5

6

E
la

p
s
e
d
 W

a
ll-

c
lo

c
k
 T

im
e
 (

s
e
c
o
n
d
) 106 Elapsed Wall-clock Time

 = 1

 = 2

 = 4

 = 7

Figure 2.8. Simulated Elapsed Wall-clock Time on the Main Processor with
Various Maximum Delay τ and a Same ρ = 0.0005.

2.6 Proofs in Section 2.2.2

2.6.1 Proof of Proposition 2.2.3

We first prove the inequality (2.10). From the primal minimization step (2.4), we know

that (xk+1
1 , . . . , xk+1

N) is the unique proximal minimization point of the Lagrangian function

evaluated at the predictor variable: L(x1, . . . , xN , γk+1, νk+1). Applying Lemma 2.2.1 with

ẑ = (xk+1
1 , . . . , xk+1

N), z̄ = (xk
1 , . . . , xk

N) and z = (x∗
1, . . . , x∗

N), we have:

2ρ
[
L(xk+1

1 , . . . , xk+1
N , γk+1, νk+1)− L(x∗

1, . . . , x∗
N , γk+1, νk+1)

]

≤
N∑

i=1
‖xk

i − x∗
i ‖2

2 −
N∑

i=1
‖xk+1

i − x∗
i ‖2

2 −
N∑

i=1
‖xk+1

i − xk
i ‖2

2.
(2.29)

Since (x∗
1, . . . , x∗

N , λ∗, µ∗) is a saddle point of the Lagrangian function L(x1, . . . , xN , λ, µ),

i.e., L(x∗
1, . . . , x∗

N , pk+1) ≤ L(x∗
1, . . . , x∗

N , λ∗) ≤ L(xk+1
1 , . . . , xk+1

N , λ∗), we have:

2ρ
[
L(x∗

1, . . . , x∗
N , γk+1, νk+1)− L(xk+1

1 , . . . , xk+1
N , λ∗, µ∗)

]
≤ 0. (2.30)

Adding the above two inequalities yields the inequality (2.10) in Proposition 2.2.3 .

39

To prove the second inequality, (2.11), in Proposition 2.2.3 , we use a similar approach

as above. By Lemma 2.2.2 , we know that (γk+1, νk+1) is the unique proximal minimization

point of the function −L(xk
1 , . . . , xk

N , λ, µ). Applying Lemma 2.2.1 with ẑ = (γk+1, νk+1),

z̄ = (λk, µk) and z = (λk+1, µk+1), we have:

2ρ


[
− L(xk

1 , . . . , xk
N , γk+1, νk+1)

]
−
[
− L(xk

1 , . . . , xk
N , λk+1, µk+1)

]
≤‖λk − λk+1‖2

2 + ‖µk − µk+1‖2
2

−‖γk+1 − λk+1‖2
2 − ‖νk+1 − µk+1‖2

2 − ‖γk+1 − λk‖2
2 − ‖νk+1 − µk‖2

2. (2.31)

By Lemma 2.2.2 , we also know that (λk+1, µk+1) is the unique proximal minimization point

of the function −L(xk+1
1 , . . . , xk+1

N , λ, µ). Applying Lemma 2.2.1 with ẑ = (λk+1, µk+1),

z̄ = (λk, µk) and z = (λ∗, µ∗), we have:

2ρ


[
− L(xk+1

1 , . . . , xk+1
N , λk+1, µk+1)

]
−
[
− L(xk+1

1 , . . . , xk+1
N , λ∗, µ∗)

]
≤‖λk − λ∗‖2

2 + ‖µk − µ∗‖2
2

−‖λk+1 − λ∗‖2
2 − ‖µk+1 − µ∗‖2

2 − ‖λk+1 − λk‖2
2 − ‖µk+1 − µk‖2

2. (2.32)

Adding the above two inequalities yields the inequality (2.11) in Proposition 2.2.3 .

2.6.2 Proof of Theorem 2.2.4

By adding the two inequalities (2.10) and (2.11) in Proposition 2.2.3 , we have:

N∑
i=1
‖xk+1

i − x∗
i ‖2

2 + ‖λk+1 − λ∗‖2
2 + ‖µk+1 − µ∗‖2

2

≤
N∑

i=1
‖xk

i − x∗
i ‖2

2 + ‖λk − λ∗‖2
2 + ‖µk − µ∗‖2

2

−
N∑

i=1
‖xk+1

i − xk
i ‖2

2 − ‖γk+1 − λk+1‖2
2 − ‖νk+1 − µk+1‖2

2 − ‖γk+1 − λk‖2
2 − ‖νk+1 − µk‖2

2

+
N∑

i=1
2ρ(λk+1 − γk+1)T Ai(xk+1

i − xk
i)︸ ︷︷ ︸

(a)i

+
M∑
j=1

N∑
i=1

2ρ(µk+1
j − νk+1

j)
[
gji(xk+1

i)− gji(xk
i)
]

︸ ︷︷ ︸
(b)ji

. (2.33)

40

Before we continue with the proof, we first show an extension of the Young’s inequality

2

on vector products that will play a key role in the following proof. Given any two vectors

z1, z2 ∈ Rn, we have that

zT
1 z2 =

n∑
j=1

z1jz2j =
n∑

j=1

(1
δ

z1j

)(
δz2j

)
≤

n∑
j=1

∣∣∣∣1δ z1j

∣∣∣∣∣∣∣∣δz2j

∣∣∣∣,
where δ is a non-zero real number. Applying Young’s inequality on each summation term

with p = q = 2, we obtain that

zT
1 z2 ≤

n∑
j=1

[
1
2

(1
δ

z1j

)2
+ 1

2

(
δz2j

)2
]

= 1
2δ2‖z1‖2

2 + δ2

2 ‖z2‖2
2. (2.34)

Applying (2.34) on each term (a)i yields

(a)i ≤2ρ
[1
2δ2‖γ

k+1 − λk+1‖2
2 + δ2

2 ‖Ai(xk+1
i − xk

i)‖2
2

]
≤2ρ

[1
2δ2‖γ

k+1 − λk+1‖2
2 + δ2

2 ‖Ai‖2
2‖xk+1

i − xk
i ‖2

2

]
,

(2.35)

and letting δ2 = 1
‖Ai‖2

yields

(a)i ≤ρ‖Ai‖2

(
‖γk+1 − λk+1‖2

2 + ‖xk+1
i − xk

i ‖2
2

)
≤ρAmax

(
‖γk+1 − λk+1‖2

2 + ‖xk+1
i − xk

i ‖2
2

)
.

(2.36)

Applying (2.34) on each term (b)ji yields

(b)ji ≤2ρ
[1
2δ2‖ν

k+1
j − µk+1

j ‖2
2 + δ2

2 ‖gji(xk+1
i)− gji(xk

i)‖2
2

]
≤2ρ

[1
2δ2‖ν

k+1
j − µk+1

j ‖2
2 + δ2

2 L2
ji‖xk+1

i − xk
i ‖2

2

]
,

(2.37)

2Young’s inequality states that if a and b are two non-negative real numbers, and p and q are real numbers
greater than 1 such that 1

p + 1
q = 1, then ab < ap

p + bq

q .

41

and letting δ2 = 1
Lji

yields

(b)ji ≤ρLji

(
‖νk+1

j − µk+1
j ‖2

2 + ‖xk+1
i − xk

i ‖2
2

)
≤ρLmax

(
‖νk+1

j − µk+1
j ‖2

2 + ‖xk+1
i − xk

i ‖2
2

)
.

(2.38)

Substituting (2.36) and (2.38) into (2.33) yields

N∑
i=1
‖xk+1

i − x∗
i ‖2

2 + ‖λk+1 − λ∗‖2
2 + ‖µk+1 − µ∗‖2

2

≤
N∑

i=1
‖xk

i − x∗
i ‖2

2 + ‖λk − λ∗‖2
2 + ‖µk − µ∗‖2

2

−(1− ρAmax − ρMLmax)
N∑

i=1
‖xk+1

i − xk
i ‖2

2 − (1− ρNAmax)‖γk+1 − λk+1‖2
2

−(1− ρNLmax)‖νk+1 − µk+1‖2
2 − ‖γk+1 − λk‖2

2 − ‖νk+1 − µk‖2
2 (2.39)

Since 0 < ρ ≤ min
{

1−ε
Amax+MLmax

, 1−ε
NAmax

, 1−ε
NLmax

}
, we have:

N∑
i=1
‖xk+1

i − x∗
i ‖2

2 + ‖λk+1 − λ∗‖2
2 + ‖µk+1 − µ∗‖2

2

≤
N∑

i=1
‖xk

i − x∗
i ‖2

2 + ‖λk − λ∗‖2
2 + ‖µk − µ∗‖2

2

−ε
(N∑

i=1
‖xk+1

i − xk
i ‖2

2 + ‖γk+1 − λk+1‖2
2 + ‖νk+1 − µk+1‖2

2

+ ‖γk+1 − λk‖2
2 + ‖νk+1 − µk‖2

2

)
. (2.40)

It implies that for all k ≥ 0:

0 ≤
N∑

i=1
‖xk+1

i − x∗
i ‖2

2 + ‖λk+1 − λ∗‖2
2 + ‖µk+1 − µ∗‖2

2

≤
N∑

i=1
‖xk

i − x∗
i ‖2

2 + ‖λk − λ∗‖2
2 + ‖µk − µ∗‖2

2

≤
N∑

i=1
‖xk−1

i − x∗
i ‖2

2 + ‖λk−1 − λ∗‖2
2 + ‖µk−1 − µ∗‖2

2

42

≤ · · · ≤
N∑

i=1
‖x0

i − x∗
i ‖2

2 + ‖λ0 − λ∗‖2
2 + ‖µ0 − µ∗‖2

2. (2.41)

It further implies that the sequence
{∑N

i=1‖xk
i − x∗

i ‖2
2 + ‖λk −λ∗‖2

2 + ‖µk −µ∗‖2
2

}
is mono-

tonically decreasing and bounded below by 0; hence the sequence must be convergent to a

limit, denoted by ξ:

lim
k→+∞

N∑
i=1
‖xk

i − x∗
i ‖2

2 + ‖λk − λ∗‖2
2 + ‖µk − µ∗‖2

2 = ξ. (2.42)

Taking the limit on both sides of (2.40) yields:

lim
k→+∞

N∑
i=1
‖xk+1

i − xk
i ‖2

2 = 0,

lim
k→+∞

‖γk+1 − λk+1‖2
2 = 0, lim

k→+∞
‖νk+1 − µk+1‖2

2 = 0,

lim
k→+∞

‖γk+1 − λk‖2
2 = 0, lim

k→+∞
‖νk+1 − µk‖2

2 = 0.

(2.43)

Additionally, (2.42) also implies that {(xk
1 , . . . , xk

N , λk, µk)} is a bounded sequence, and

thus there exists a sub-sequence {(xkj
1 , . . . , xkj

N , λkj , µkj)} that converges to a limit point

(x∞
1 , . . . , x∞

N , λ∞, µ∞). We next show that the limit point is indeed a saddle point and

is also the unique limit point of {(xk
1 , . . . , xk

N , λk, µk)}. Applying Lemma 2.2.1 with ẑ =

(xk+1
1 , . . . , xk+1

N), z̄ = (xk
1 , . . . , xk

N) and any z = (x1, . . . , xN) ∈ ∏N
i=1Xi, we have:

2ρ
[
L(xk+1

1 , . . . , xk+1
N , γk+1, νk+1)− L(x1, . . . , xN , γk+1, νk+1)

]

≤
N∑

i=1
‖xk

i − xi‖2
2 −

N∑
i=1
‖xk+1

i − xi‖2
2 −

N∑
i=1
‖xk+1

i − xk
i ‖2

2

≤
N∑

i=1

(
‖xk

i − xk+1
i ‖2 + ‖xk+1

i − xi‖2
)
−

N∑
i=1
‖xk+1

i − xi‖2 −
N∑

i=1
‖xk+1

i − xk
i ‖2 = 0

∀(x1, . . . , xN) ∈
N∏

i=1
Xi. (2.44)

43

Taking the limits over an appropriate sub-sequence {kj} on both sides and using (2.43), we

have:

L(x∞
1 , . . . , x∞

N , λ∞, µ∞) ≤ L(x1, . . . , xN , λ∞, µ∞), ∀(x1, . . . , xN) ∈
N∏

i=1
Xi. (2.45)

Similarly, applying Lemma 2.2.1 with ẑ = (λk+1, µk+1), z̄ = (λk, µk) and any z = (λ, µ ∈

Rm2
+), we have:

2ρ
[
L(xk+1

1 , . . . , xk+1
N , λ, µ)− L(xk+1

1 , . . . , xk+1
N , λk+1, µk+1)

]
≤‖λk − λ‖2 − ‖λk+1 − λ‖2 − ‖λk+1 − λk‖2

+‖µk − µ‖2 − ‖µk+1 − µ‖2 − ‖µk+1 − µk‖2

≤
(
‖λk − λk+1‖2 + ‖λk+1 − λ‖2

)
− ‖λk+1 − λ‖2 − ‖λk+1 − λk‖2

+
(
‖µk − µk+1‖2 + ‖µk+1 − µ‖2

)
− ‖µk+1 − µ‖2 − ‖µk+1 − µk‖2 = 0, ∀µ ∈ Rm2

+ . (2.46)

Taking the limits over an appropriate sub-sequence {kj} on both sides and using (2.43), we

have:

L(x∞
1 , . . . , x∞

N , λ, µ) ≤ L(x∞
1 , . . . , x∞

N , λ∞, µ∞), ∀µ ∈ Rm2
+ . (2.47)

Therefore, we show that (x∞
1 , . . . , x∞

N , λ∞, µ∞) is indeed a saddle point of the Lagrangian

function L(x1, . . . , xN , λ, µ). Then (2.42) implies that

lim
k→+∞

N∑
i=1
‖xk

i − x∞
i ‖2

2 + ‖λk − λ∞‖2
2 + ‖µk − µ∞‖2

2 = ξ. (2.48)

Since we have already argued (after Eq. (2.43)) that there exists a bounded sequence of

{(xk
1 , . . . , xk

N , λk, µk)} that converges to 0; that is, there exists {kj} such that

lim
kj→+∞

N∑
i=1
‖xkj

i − x∞
i ‖2

2 + ‖λkj − λ∞‖2
2 + ‖µkj − µ∞‖2

2 = 0,

which then implies that ξ = 0. Therefore, we show that {(xk
1 , . . . , xk

N , λk, µk)} converges

globally to a saddle point (x∞
1 , . . . , x∞

N , λ∞, µ∞).

44

2.6.3 Proof of Theorem 2.2.5

Letting

uk
i = AT

i (λk+1 − γk+1) +
m2∑
j=1

(µk+1
j − νk+1

j)∇xigji(xk+1
i)− 1

ρ
(xk+1

i − xk
i), ∀i = 1 . . . N,

vk = −1
ρ

(λk+1 − λk),

wk = −1
ρ

(µk+1 − µk),
(2.49)

we first show that (xk+1
1 , . . . , xk+1

N , λk+1, µk+1) ∈ S−1(uk
1, . . . , uk

N , vk, wk). By the primal

minimization step (2.4), we have, for all i = 1 . . . N :

−∇xifi(xk+1
i)−

[
AT

i γk+1 +
M∑
j=1

νk+1
j ∇xigji(xk+1

i) + 1
ρ

(xk+1
i − xk

i)
]

︸ ︷︷ ︸
∆ui

∈ NXi(xk+1
i), (2.50)

where NXi(xk+1) := {y ∈ Rn1 |yT (x − xk+1) ≤ 0,∀x ∈ Xi} denotes the normal cone to the

set Xi at the point xk+1
i for all i = 1, . . . , N . Plugging

∆ui = AT
i λk+1 +

M∑
j=1

µk+1
j ∇xigji(xk+1

i)− uk
i

into the above expression, we have that, for all i = 1, . . . , N :

−∇xifi(xk+1
i)− AT

i λk+1 −
M∑
j=1

µk+1
j ∇xigji(xk+1

i) + uk
i ∈ NXi(xk+1

i), (2.51)

which implies

(xk+1
1 , . . . , xk+1

N)

∈ argmin
(x1,...,xN)∈

∏N

i=1 Xi

L(x1, . . . , xN , λk+1, µk+1)−
N∑

i=1
xT

i uk
i + (λk+1)T vk + (µk+1)T wk.

(2.52)

45

Similarly, by the interpretation of (λk+1, µk+1) in Lemma 2.2.2 , we have:

∇λL(xk+1
1 , . . . , xk+1

N , λk+1, µk+1) +
[
− 1

ρ
(λk+1 − λk)

]
︸ ︷︷ ︸

vk

= 0,

∇µL(xk+1
1 , . . . , xk+1

N , λk+1, µk+1) +
[
− 1

ρ
(µk+1 − µk)

]
︸ ︷︷ ︸

wk

∈ NRm2
+

(µk+1),
(2.53)

which imply

(λk+1, µk+1) ∈ argmax
λ∈Rm,µ∈RM

L(xk+1
1 , . . . , xk+1

N , λ, µ)−
N∑

i=1
(xk+1

i)T uk
i + λT vk + µT wk. (2.54)

The first-order optimality conditions (2.52) and (2.54) together imply that

(xk+1
1 , . . . , xk+1

N , λk+1, µk+1) ∈ S−1(uk
1, . . . , uk

N , vk, wk).

By (2.43), we have limk→∞(uk
1, . . . , uk

N , vk, wk) → 0. Choose in integer k̄ such that, for all

k ≥ k̄, ‖(uk
1, . . . , uk

N , vk, wk)‖2 ≤ τ , then by Assumption 2.2.4 , we have:

N∑
i=1
‖xk+1

i − x∗
i ‖2

2 + ‖λk+1 − λ∗‖2
2 + ‖µk+1 − µ∗‖2

2

≤a2
(N∑

i=1
‖uk

i ‖2
2 + ‖vk‖2

2 + ‖wk‖2
2

)

≤a2
(

NA2
max‖γk+1 − λk+1‖2

2 + NL2
max‖νk+1 − µk+1‖2

2 + 1
ρ2

N∑
i=1
‖xk+1

i − xk
i ‖2

2

+ 1
ρ2‖λ

k+1 − λk‖2
2 + 1

ρ2‖µ
k+1 − µk‖2

2

)

≤a2

 1
ρ2

N∑
i=1
‖xk+1

i − xk
i ‖2

2 + NA2
max‖γk+1 − λk+1‖2

2 + NL2
max‖νk+1 − µk+1‖2

2

+ 1
ρ2

(
‖λk+1 − γk+1‖2

2 + ‖γk+1 − λk‖2
2

)

+ 1
ρ2

(
‖µk+1 − νk+1‖2

2 + ‖νk+1 − µk‖2
2

)

46

≤a2

 1
ρ2

N∑
i=1
‖xk+1

i − xk
i ‖2

2

+ (NA2
max + 1

ρ2)‖γk+1 − λk+1‖2
2 + (NL2

max + 1
ρ2)‖νk+1 − µk+1‖2

2

+ 1
ρ2‖γ

k+1 − λk‖2
2 + 1

ρ2‖ν
k+1 − µk‖2

2


≤a2(Nα2 + 1

ρ2)
(N∑

i=1
‖xk+1

i − xk
i ‖2

2 + ‖γk+1 − λk+1‖2
2 + ‖νk+1 − µk+1‖2

2

+ ‖γk+1 − λk‖2
2 + ‖νk+1 − µk‖2

2

)

≤
a2(Nα2 + 1

ρ2)
ε

(N∑
i=1
‖xk

i − x∗
i ‖2

2 + ‖λk − λ∗‖2
2 + ‖µk − µ∗‖2

2

)

−
(N∑

i=1
‖xk+1

i − x∗
i ‖2

2 + ‖λk+1 − λ∗‖2
2 + ‖µk+1 − µ∗‖2

2

). (2.55)

The last inequality is due to (2.40), and α := max{Amax, Lmax}. We further derive

N∑
i=1
‖xk+1

i − x∗
i ‖2

2 + ‖λk+1 − λ∗‖2
2 + ‖µk+1 − µ∗‖2

2

≤θ2
(N∑

i=1
‖xk

i − x∗
i ‖2

2 + ‖λk − λ∗‖2
2 + ‖µk − µ∗‖2

2

)
,

(2.56)

where θ =
√

1
1+β

< 1 and β = ε
a2(Nα2+ 1

ρ2) > 0.

2.7 Proofs in Section 2.3.2

2.7.1 Proof of Theorem 2.3.2

For all k ≥ 0, we can equivalently write the update steps in Algorithm 2 and Algorithm

 3 as

xk+1
i =


argmin

xi∈Xi

fi(xi) + (2λk̂i+1 − λk̂i)T Aixi + 1
2ρ
‖xi − xk̂i+1

i ‖2, ∀i ∈ Ak

xk
i , ∀i ∈ A{

k

, (2.57)

47

λk+1 = λk + ρ
(N∑

i=1
Aixk+1

i − b
)
, (2.58)

γ̂ = λk+1 + ρ
(N∑

i=1
Aixk+1

i − b
)

= 2λk+1 − λk, (2.59)

where k̂i is the last iteration when the main processor receives x̂i from the worker processor

i ∈ Ak before iteration k. For each worker processor i ∈ A{
k, we denote k̄i ∈ (k− τ, k) as the

last iteration when the main processor receives x̂i from the worker processor i before iteration

k, and further denote ¯̄ki ∈ [k̄i − τ, k̄i) as the last iteration when the main processor receives

x̂i from the worker processor i before iteration k̄i. We can rewrite the primal minimization

step as

xk+1
i =


arg min

xi
fi(xi) + (2λk̂i+1 − λk̂i)T Aixi + 1

2ρ
‖xi − xk̂i+1

i ‖2, ∀i ∈ Ak

xk̄i+1
i = arg min

xi
fi(xi) + (2λ

¯̄ki+1 − λ
¯̄ki)T Aixi + 1

2ρ
‖xi − x

¯̄ki+1
i ‖2, ∀i ∈ A{

k

. (2.60)

At each iteration k ≥ 0, for any i ∈ Ak, applying Lemma 2.3.1 with ẑ = xk+1
i , z̄ = xk̂i+1

i ,

and z = x∗
i , we have:

fi(xk+1
i)− fi(x∗

i) + λT
(
Aixk+1

i − Aix∗
i

)
+ (σi

2 + 1
2ρ

)‖xk+1
i − x∗

i ‖2
2

+ 1
2ρ
‖xk+1

i − xk̂i+1
i ‖2

2 −
1
2ρ
‖xk̂i+1

i − x∗
i ‖2

2

+(λk+1 − λ)T
(
Aixk+1

i − Aix∗
i

)
+ (2λk̂i+1 − λk̂i − λk+1)T

(
Aixk+1

i − Aix∗
i

)
≤ 0. (2.61)

At each iteration k ≥ 0, for any i ∈ A{
k, applying Lemma 2.3.1 with ẑ = xk+1

i , z̄ = x
¯̄ki+1
i ,

and z = x∗
i , we have:

fi(xk+1
i)− fi(x∗

i) + λT
(
Aixk+1

i − Aix∗
i

)
+ (σi

2 + 1
2ρ

)‖xk+1
i − x∗

i ‖2
2

+ 1
2ρ
‖xk+1

i − x
¯̄ki+1
i ‖2

2 −
1
2ρ
‖x

¯̄ki+1
i − x∗

i ‖2
2

+(λk+1 − λ)T
(
Aixk+1

i − Aix∗
i

)
+ (2λ

¯̄ki+1 − λ
¯̄ki − λk+1)T

(
Aixk+1

i − Aix∗
i

)
≤ 0. (2.62)

48

Summing (2.61) over all i ∈ Ak and (2.62) over all i ∈ A{
k yields

N∑
i=1

fi(xk+1
i)−

N∑
i=1

fi(x∗
i) + λT

N∑
i=1

(
Aixk+1

i − Aix∗
i

)
︸ ︷︷ ︸

(a)

+σmin

2

N∑
i=1
‖xk+1

i − x∗
i ‖2

2

+ 1
2ρ

N∑
i=1
‖xk+1

i − x∗
i ‖2

2︸ ︷︷ ︸
(b)

+ 1
2ρ

[∑
i∈Ak

(
‖xk+1

i − xk̂i+1
i ‖2

2 − ‖x
k̂i+1
i − x∗

i ‖2
2

)
+
∑

i∈A{
k

(
‖xk+1

i − x
¯̄ki+1
i ‖2

2 − ‖x
¯̄ki+1
i − x∗

i ‖2
2

)]
︸ ︷︷ ︸

(c)

+ (λk+1 − λ)T
N∑

i=1

(
Aixk+1

i − Aix∗
i

)
︸ ︷︷ ︸

(d)

+
∑

i∈Ak

(2λk̂i+1 − λk̂i − λk+1)T
(
Aixk+1

i − Aix∗
i

)
+
∑

i∈A{
k

(2λ
¯̄ki+1 − λ

¯̄ki − λk+1)T
(
Aixk+1

i − Aix∗
i

)

≤ 0. (2.63)

The term (a) can be rewritten as:

(a) = λT
(N∑

i=1
Aixk+1

i −
N∑

i=1
Aix∗

i

)
= λT

(N∑
i=1

Aixk+1
i − b

)
. (2.64)

The term (b) + (c) can be rewritten as:

(b) + (c) = 1
2ρ

∑
i∈Ak

(
‖xk+1

i − x∗
i ‖2

2 + ‖xk+1
i − xk̂i+1

i ‖2
2 − ‖x

k̂i+1
i − x∗

i ‖2
2

)
+ 1

2ρ

∑
i∈A{

k

(
‖xk+1

i − x∗
i ‖2

2 + ‖xk+1
i − x

¯̄ki+1
i ‖2

2 − ‖x
¯̄ki+1
i − x∗

i ‖2
2

)

≥ 0. (2.65)

49

The term (d) can be rewritten as:

(d) = (λk+1 − λ)T
(N∑

i=1
Aixk+1

i −
N∑

i=1
Aix∗

i

)
= 1

ρ
(λk+1 − λ)T (λk+1 − λk). (2.66)

We substitute (2.64), (2.65) and (2.66) into (2.63), and sum it over k = 0 . . . K − 1. Taking

the average yields

1
K

K−1∑
k=0

N∑
i=1

fi(xk+1
i)−

N∑
i=1

fi(x∗
i) + 1

K
λT
(K−1∑

k=0

N∑
i=1

Aixk+1
i − b

)

≤ −σmin

2K

K−1∑
k=0

N∑
i=1
‖xk+1

i − x∗
i ‖2

2

− 1
ρK

K−1∑
k=0

(λk+1 − λ)T (λk+1 − λk)︸ ︷︷ ︸
(e)

+ 1
K

K−1∑
k=0

∑
i∈Ak

(λk̂i + λk+1 − 2λk̂i+1)T
(
Aixk+1

i − Aix∗
i

)
︸ ︷︷ ︸

(f)

+ 1
K

K−1∑
k=0

∑
i∈A{

k

(λ
¯̄ki + λk+1 − 2λ

¯̄ki+1)T
(
Aixk+1

i − Aix∗
i

)
︸ ︷︷ ︸

(g)

. (2.67)

The term (e) in (2.67) can be rewritten as:

(e) =1
2

k−1∑
k=0

(
‖λk+1 − λ‖2

2 − ‖λ− λk‖2
2 + ‖λk+1 − λk‖2

2

)

=1
2‖λ

K − λ‖2
2 −

1
2‖λ

0 − λ‖2
2 + 1

2

K−1∑
k=0
‖λk+1 − λk‖2

2.

(2.68)

The term (f) in (2.67) can be bounded as:

K−1∑
k=0

∑
i∈Ak

(λk̂i + λk+1 − 2λk̂i+1)T
(
Aixk+1

i − Aix∗
i

)

=
K−1∑
k=0

∑
i∈Ak

(λk̂i − λk̂i+1)T
(
Aixk+1

i − Aix∗
i

)
+

K−1∑
k=0

∑
i∈Ak

(λk+1 − λk̂i+1)T
(
Aixk+1

i − Aix∗
i

)

50

=
K−1∑
k=0

∑
i∈Ak

k̂i∑
l=k̂i

(λl − λl+1)T
(
Aixk+1

i − Aix∗
i

)

+
K−1∑
k=0

∑
i∈Ak

k∑
l=k̂i+1

(λl+1 − λl)T
(
Aixk+1

i − Aix∗
i

)

≤
∑

i∈Ak

K−1∑
k=0

k̂i∑
l=k̂i

(1
2δ2‖λ

l − λl+1‖2
2 + δ2‖Ai‖2

2
2 ‖xk+1

i − x∗
i ‖2

2

)

+
∑

i∈Ak

K−1∑
k=0

k∑
l=k̂i+1

(1
2δ2‖λ

l+1 − λl‖2
2 + δ2‖Ai‖2

2
2 ‖xk+1

i − x∗
i ‖2

2

)

≤
N∑

i=1

K−1∑
k=0

(τ − 1)
(1

2δ2‖λ
k − λk+1‖2

2 + δ2‖Ai‖2
2

2 ‖xk+1
i − x∗

i ‖2
2

)

+
N∑

i=1

K−1∑
k=0

(τ − 1)
(1

2δ2‖λ
k+1 − λk‖2

2 + δ2‖Ai‖2
2

2 ‖xk+1
i − x∗

i ‖2
2

)

≤(τ − 1)N
δ2

K−1∑
k=0
‖λk+1 − λk‖2

2 + (τ − 1)δ2A2
max

K−1∑
k=0

N∑
i=1
‖xk+1

i − x∗
i ‖2

2, (2.69)

where the first inequality is obtained by (2.34), and the second inequality is due to the fact

that the term ‖λk+1 − λk‖2
2 does not appear more than τ − 1 times for each iteration k.

Similarly, the term (g) in (2.67) can be bounded as:

K−1∑
k=0

∑
i∈A{

k

(λ
¯̄ki + λk+1 − 2λ

¯̄ki+1)T
(
Aixk+1

i − Aix∗
i

)

=
K−1∑
k=0

∑
i∈A{

k

(λ
¯̄ki − λ

¯̄ki+1)T
(
Aixk+1

i − Aix∗
i

)
+

K−1∑
k=0

∑
i∈A{

k

(λk̄i+1 − λ
¯̄ki+1)T

(
Aixk+1

i − Aix∗
i

)

+
K−1∑
k=0

∑
i∈A{

k

(λk+1 − λk̄i+1)T
(
Aixk+1

i − Aix∗
i

)

=
K−1∑
k=0

∑
i∈A{

k

¯̄ki∑
l=¯̄ki

(λl − λl+1)T
(
Aixk+1

i − Aix∗
i

)

+
K−1∑
k=0

∑
i∈A{

k

k̄i∑
l=¯̄ki+1

(λl+1 − λl)T
(
Aixk+1

i − Aix∗
i

)

+
K−1∑
k=0

∑
i∈A{

k

k∑
l=k̄i+1

(λl+1 − λl)T
(
Aixk+1

i − Aix∗
i

)

51

≤
∑

i∈A{
k

K−1∑
k=0

¯̄ki∑
l=¯̄ki

(1
2δ2‖λ

l − λl+1‖2
2 + δ2‖Ai‖2

2
2 ‖xk+1

i − x∗
i ‖2

2

)

+
∑

i∈A{
k

K−1∑
k=0

k̄i∑
l=¯̄ki+1

(1
2δ2‖λ

l+1 − λl‖2
2 + δ2‖Ai‖2

2
2 ‖xk+1

i − x∗
i ‖2

2

)

+
∑

i∈A{
k

K−1∑
k=0

k∑
l=k̄i+1

(1
2δ2‖λ

l+1 − λl‖2
2 + δ2‖Ai‖2

2
2 ‖xk+1

i − x∗
i ‖2

2

)

≤
N∑

i=1

K−1∑
k=0

(τ − 1)
(1

2δ2‖λ
k − λk+1‖2

2 + δ2‖Ai‖2
2

2 ‖xk+1
i − x∗

i ‖2
2

)

+
N∑

i=1

K−1∑
k=0

(τ − 1)
(1

2δ2‖λ
k+1 − λk‖2

2 + δ2‖Ai‖2
2

2 ‖xk+1
i − x∗

i ‖2
2

)

+
N∑

i=1

K−1∑
k=0

(τ − 1)
(1

2δ2‖λ
k+1 − λk‖2

2 + δ2‖Ai‖2
2

2 ‖xk+1
i − x∗

i ‖2
2

)

≤3(τ − 1)N
2δ2

K−1∑
k=0
‖λk+1 − λk‖2

2 + 3(τ − 1)δ2

2 A2
max

K−1∑
k=0

N∑
i=1
‖xk+1

i − x∗
i ‖2

2. (2.70)

By substituting (2.68), (2.69) and (2.70) into (2.67) and denoting

x̄K
i = 1

K

K−1∑
k=0

xk+1
i ,

for all i = 1 . . . N , we have:

N∑
i=1

fi(x̄K
i)−

N∑
i=1

fi(x∗
i) + λT

(N∑
i=1

Aix̄K
i − b

)

≤ 1
K

K−1∑
k=0

N∑
i=1

fi(xk+1
i)−

N∑
i=1

fi(x∗
i) + 1

K
λT

K−1∑
k=0

(N∑
i=1

Aixk+1
i − b

)

≤ 1
2ρK
‖λ0 − λ‖2

2 −
1

2ρK
‖λK − λ‖2

2

+(− 1
2ρK

+ 5(τ − 1)N
2δ2K

)
K−1∑
k=0
‖λk+1 − λk‖2

2

+(−σmin

2K
+ 5(τ − 1)δ2A2

max
2K

)
K−1∑
k=0

N∑
i=1
‖xk+1

i − x∗
i ‖2

2, (2.71)

52

where the first inequality is due to the convexity of fi for all i = 1 . . . N . By choosing

δ2 ≤ σmin
5(τ−1)A2

max
and ρ ≤ δ2

5(τ−1)N , which implies

ρ ≤ σmin

25N(τ − 1)2A2
max

,

we derive:

N∑
i=1

fi(x̄K
i)−

N∑
i=1

fi(x∗
i) + λT

(N∑
i=1

Aix̄K
i − b

)
≤ 1

2ρK
‖λ0 − λ‖2

2. (2.72)

Let λ = λ∗ +
∑N

i=1 Aix̄K−b
‖
∑N

i=1 Aix̄K−b‖2
, and note that by the duality theory, we have:

N∑
i=1

fi(x̄K
i)−

N∑
i=1

fi(x∗
i) + (λ∗)T

(N∑
i=1

Aix̄K
i − b

)
≥ 0. (2.73)

Then, we further derive:

∥∥∥ N∑
i=1

Aix̄K − b
∥∥∥

2

≤
N∑

i=1
fi(x̄K

i)−
N∑

i=1
fi(x∗

i) + (λ∗)T
(N∑

i=1
Aix̄K

i − b
)

+
∥∥∥ N∑

i=1
Aix̄K − b

∥∥∥
2

≤ 1
2ρK

∥∥∥∥∥∥λ0 −
(

λ∗ +
∑N

i=1 Aix̄K − b
‖∑N

i=1 Aix̄K − b‖2

)∥∥∥∥∥∥
2

2

, (2.74)

which implies ∥∥∥ N∑
i=1

Aix̄K − b
∥∥∥

2
≤ 1

K

[1
2ρ

max
‖γ‖2≤1

‖λ0 − λ∗ − γ‖2
2

]
∆= C1

K
.

On the other hand, let λ = λ∗, and note that:

N∑
i=1

fi(x̄K
i)−

N∑
i=1

fi(x∗
i) + (λ∗)T

(N∑
i=1

Aix̄K
i − b

)

≥
∣∣∣∣ N∑

i=1
fi(x̄K

i)−
N∑

i=1
fi(x∗

i)
∣∣∣∣− ‖λ∗‖2 · ‖

N∑
i=1

Aix̄K
i − b‖2.

(2.75)

53

Then, we have:

∣∣∣∣ N∑
i=1

fi(x̄K
i)−

N∑
i=1

fi(x∗
i)
∣∣∣∣ ≤ ‖λ∗‖2 · ‖

N∑
i=1

Aix̄K
i −b‖2 + 1

K
(1
2ρ
‖λ0−λ∗‖2

2)
∆= δλC1 + C2

K
, (2.76)

where δλ = ‖λ∗‖2 and C2 = 1
2ρ
‖λ0 − λ∗‖2

2.

54

3. A DISTRIBUTED ALGORITHM FOR LARGE-SCALE

CONVEX QUADRATICALLY CONSTRAINED QUADRATIC

PROGRAMS

3.1 Introduction

While in the last chapter, we propose distributed algorithms for solving block-separable

convex optimization problems with coupling constraints, in this work, we focus on developing

distributed algorithms for solving large-scale constrained convex optimization problems with

non-separable objective function and nonlinear coupling constraints. More specifically, we

consider the following constrained optimization problem:

minimize
x∈Rn1

1
2xT P0x + qT

0 x + r0

subject to 1
2xT Pix + qT

i x + ri ≤ 0, i = 1, . . . , m1,
(3.1)

where Pi ∈ Rn1×n1 , qi ∈ Rn1 , and ri ∈ R for i = 0, 1, . . . , m1 are all given. Such a prob-

lem is referred to as a quadratically constrained quadratic program (QCQP). (Note that

linear constraints are included with Pi = 0, a matrix of all 0’s, for some i.) If additionally,

P0, P1, . . . , Pm1 are all positive semidefinite (PSD) matrices, then the problem is convex.

Convex QCQPs arise from a wide range of application areas, including multiple kernel learn-

ing [21], signal processing [22], radar applications [23], computer vision [24], and electric

power system operation [25], to name a few. Small to medium-sized convex QCQPs can be

solved efficiently by the well-established interior-point method (IPM) [26], which has poly-

nomial running time for solving convex optimization problems. However, in order to write

out the barrier function in the IPM for the feasible domain of a QCQP, decomposition of

matrices Pi = F T
i Fi for i = 1, . . . , m1 is usually required [27], which may not be readily

available through the input data. For example, in kernel-based learning applications, each

quadratic constraint comprises a kernel matrix, whose components are directly defined by a

kernel function: Kjj′ = k(xj, xj′). The operations to obtain a matrix decomposition, such as

through Cholesky decomposition, typically have computational complexity of O(n3), which

could become very costly as the size of the matrices grows. When the scale of the QCQPs

55

increases dramatically due to huge amount of data, or when the data just cannot be all stored

in a central location, a centralized algorithm, such as the IPM, may no longer be applicable.

This directly motivates the proposed algorithm in this chapter, which facilitates distributed

storage of data to achieve memory efficiency, does not require any matrix decomposition,

and enables parallel computing even for QCQPs of non-separable constraints.

In addition to being a typical optimization problem, a convex QCQP is also a special

instance of a second-order cone program (SOCP), which is in turn a special form of semi-

definite program (SDP) [28]. When using commercial solvers, such as CPLEX, to solve a

convex QCQP, it is usually transformed into an SOCP through preprocessing [29], and then

a barrier-method-based optimizer is applied. To solve large-scale conic programs, [30] applies

an operator splitting method (such as the well-known ADMM algorithm) to the homogeneous

self-dual embedding, which is an equivalent convex feasibility problem involving finding a

nonzero point in the intersection of a subspace and a cone. There are also ADMM-based

distributed algorithms for solving large-scale SDPs proposed in [31], [32]; but they can only be

applied to a class of decomposable SDPs with special graph representations (chordal graphs,

for example). To translate a convex QCQP to either a standard SOCP or an SDP using the

Schur Complement to rewrite each quadratic inequality as a linear matrix inequality (LMI),

however, calls for matrix decomposition: Pi = F T
i Fi for i = 1, . . . , m1. As mentioned before,

such operations can be very expensive for large-scale matrices. There is another ADMM-

based distributed algorithm that decomposes a general QCQP with m constraints into m

single-constrained QCQPs using a reformulated consensus optimization form [33]. However,

even the size of the single-constrained QCQP can be very large in many applications, which

may still need further decomposition, making the overall algorithm’s efficiency in doubt.

There is also a recent approach to transform quadratic constraints into linear constraints

by sampling techniques and then to apply ADMM-based algorithms to solve the resulting

large-scale quadratic programs (QPs) [34]. This approach is studied only for QCQPs with all

matrices being positive definite (PD), and all the test problems shown in [34] are of a single

constraint. How would the sampling approach perform with PSD matrices in the constraints

or with multiple quadratic constraints is unknown.

56

To overcome the above-mentioned limitations of the existing algorithms, we propose a

novel first-order distributed algorithm, which decomposes a convex QCQP by a method in-

spired by the idea of the PCPM algorithm [7]. The advantages of our algorithm include

the following: (i) non-separable, quadratic functions can become naturally separable after

introducing the so-called predictor and corrector variables for both primal and dual vari-

ables, which greatly facilities distributed computing; while ADMM-type algorithms cannot

be directly applied to QCQPs without separable constraints; (ii) both the primal/dual pre-

dictor variables and corrector variables can be updated component-wise, making the method

well-suited for massively parallel computing, and each n-by-n Hessian matrix can be stored

column-wise in distributed computing units; (iii) no matrix decomposition or inversion is

needed.

Convergence of our algorithm to an optimal solution will be shown, along with various

numerical results. We first test the algorithm on solving standard QCQPs with randomly

generated data sets of different scales, and then apply it to solve large-scale multiple kernel

learning problems. Numerical experiments are conducted on a multi-node computer clus-

ter through message passing interface (MPI), and multiple nodes are used to highlight the

benefits of distributed implementation of our algorithm. Numerical results are compared

with those obtained from the commercial solver CPLEX (version 12.8.0, using the barrier

optimizer). The comparison will show that our algorithm can scale to very large problems

at the cost of consuming more cheap iterations to reach a high accuracy. With a modest

accuracy, our algorithm exhibits favorable scalability for solving large-scale QCQPs when

CPLEX fails to provide a solution due to memory limit or other issues.

The remainder of the chapter is organized as follows. In Section 3.2 , we briefly summa-

rize the original PCPM algorithm and highlight the novel idea in our proposed algorithm.

Section 3.3 provides convergence analyses of the algorithm, followed by discussions on how

to implement the algorithm in a distributed framework in Section 3.4 . Numerical perfor-

mance of various testing problems is reported in Section 3.5 . Finally, we conclude with some

discussions in Section 3.6 .

57

3.2 A Distributed Algorithm for Large-scale Convex QCQPs

Consider a convex QCQP problem in the following form:

minimize
x∈X, u∈Rn2

1
2xT P0x + qT

0 x + cT
0 u + r0

subject to 1
2xT Pix + qT

i x + cT
i u + ri ≤ 0, i = 1, . . . , m1, (λi)

Ax + Bu = b, (γ)

(3.2)

where Pi ∈ Rn1×n1 , qi ∈ Rn1 , ri ∈ R for i = 0, 1, . . . , m1, A ∈ Rm2×n1 , B ∈ Rm2×n2 and

b ∈ Rm2 are all given. Note that we introduce a new variable u ∈ Rn2 to explicitly write out

the linear-only terms cT
i u with coefficients ci ∈ Rn2 for i = 0, 1, . . . , m1, and also write out

a linear equality constraint Ax + Bu = b separately. While the generic set X can be any

polyhedral set, we consider specifically the box constraints here; that is, X = ∏n1
j=1 Xj ⊂ Rn1

of box constraint sets Xj = {xj ∈ R|0 ≤ xj ≤ X̄j} for j = 1, . . . , n1.

The specific QCQP formulation in (3.2) is not more general than the standard form (3.1).

The reason that we write out a QCQP in this specific form is to emphasize the fact that

when dealing with QCQPs with linear constraints (including box constraints), our algorithm

does not require the problem to be reformulated into the standard form in (3.1). This can

be convenient from implementation perspective, as several applications, including multiple

kernel learning, naturally lead to a QCQP in the form of (3.2).

To avoid technical difficulties, we make the blanket assumption throughout this chapter

that the Slater’s constraint qualification (CQ) holds; consequently, a Lagrangian multiplier

(λ, γ) = (λ1 · · ·λm1 , γ1 · · · γm2)T always exists for any feasible point (x, u) of (3.2). To apply

the PCPM algorithm to the QCQP in (3.2), at each iteration k, with a given primal-dual

pair, (xk, uk, λk, γk), we start with a dual predictor update:

(dual predictor) :

µk+1
i = ΠR+

(
λk

i + ρ
[1
2(xk)T Pixk + qT

i xk + cT
i uk + ri

])
, i = 1, . . . , m1,

νk+1
i = γk

i + ρ
[
Axk + Buk − b

]
i
, i = 1, . . . , m2,

(3.3)

58

where ΠZ(z) denotes the projection of a vector z ∈ Rn onto a set Z ⊂ Rn, and R+ refers to

the set of all non-negative real numbers.

After the dual predictor update, we update the primal variables (xk+1, uk+1) by minimiz-

ing the augmented Lagrangian function L(x, u, µk+1, νk+1) evaluated at the dual predictor

variable (µk+1, νk+1), plus the proximal terms. The primal minimization step can be written

as

xk+1 = argmin
x∈X

1
2xT P0x + qT

0 x +
m1∑
i=1

µk+1
i

(1
2xT Pix + qT

i x
)

+(νk+1)T Ax + 1
2ρ
‖x− xk‖2

2,

(3.4a)

uk+1 = argmin
u∈Rn2

cT
0 u +

m1∑
i=1

µk+1
i cT

i u + (νk+1)T Bu + 1
2ρ
‖u− uk‖2

2. (3.4b)

Introducing the dual predictors µ and ν allows parallel updating of the primal variables

x and u, exactly as in the general PCPM algorithm. However, the primal variable x =

(x1 . . . xj . . . xn1)T cannot be further decomposed into parallel updating of each component

xj, due to the coupling terms xT Pix, i = 0, . . . , m1, unless all Pi’s are diagonal matrices. To

realize parallel updating of xj’s, we propose a simple idea to use Pixk as a “predictor” for

Pix in the optimization (3.4a).

To illustrate the idea, it may be easier to consider the first-order optimality conditions

of (3.4a):

1
ρ

(xk − xk+1) ∈ P0xk+1︸ ︷︷ ︸
(∆0)

+q0 +
m1∑
i=1

µk+1
i

(
Pixk+1︸ ︷︷ ︸

(∆i)

+qi
)

+ AT νk+1 +NX(xk+1), (3.5)

where NX(xk+1) is the normal cone to the convex set X = ∏n1
j=1 Xj at the solution point

xk+1. By approximating each (∆i) using the predictor Pixk, i = 0, 1, . . . , m1, the first-order

optimality condition now becomes

1
ρ

(xk − xk+1) ∈ P0xk + q0 +
m1∑
i=1

µk+1
i

(
Pixk + qi

)
+ AT νk+1 +NX(xk+1). (3.6)

With (3.6), it is easy to see that xk+1 can be obtained through component-wise calculations.

(Note that the normal cone of box constraints has explicit algebraic expressions and can

59

also be decomposed component-wise with respect to xk+1.) Unfortunately, this simple idea

would not work theoretically in the sense that convergence to an optimal solution cannot be

established. This is mainly due to the difficulty to bound the error of ‖Pixk+1−Pixk‖ along

the iterations.

To overcome this hurdle, we propose a novel approach to split (3.6) into two steps by first

introducing “primal predictor” variable yk+1 for the primal decision variable xk, followed by

a corrector update:

step 1 (predictor) :
1
ρ

(xk − yk+1) ∈ P0xk + q0 +
m1∑
i=1

λk
i

(
Pixk + qi

)
+ AT γk +NX(yk+1);

(3.7a)

step 2 (corrector) :
1
ρ

(xk − xk+1) ∈ P0yk+1 + q0 +
m1∑
i=1

µk+1
i

(
Piyk+1 + qi

)
+ AT νk+1 +NX(xk+1).

(3.7b)

By focusing on box constraints for the generic set Xj, and using the notation [z]j to denote

the j-th component of a vector z, we can rewrite (3.7a) and (3.7b) component-wise as follows,

for each j = 1, . . . , n1:

(primal predictor of xk
j) :

yk+1
j := ΠXj

(
xk

j − ρ
[
P0xk + q0 +

m1∑
i=1

λk
i

(
Pixk + qi

)
+ AT γk

]
j

)
,

(3.8a)

(primal corrector of xk
j) :

xk+1
j = ΠXj

(
xk

j − ρ
[
P0yk+1 + q0 +

m1∑
i=1

µk+1
i

(
Piyk+1 + qi

)
+ AT νk+1

]
j

)
,

(3.8b)

where the projection onto the box constraint set X can be expressed as:

ΠXj(xj) : =


0, if xj < 0;

xj, if 0 ≤ xj ≤ X̄j;

X̄j, if xj > X̄j.

(3.9)

60

With (3.8a) and (3.8b), in addition to the apparent benefits of updating the variables

component-wise, which will allow massively parallel computing, the multiplications of Pixk

and Piyk+1, i = 0, . . . , m1 in (3.8a) and (3.8b) do not need to be carried out completely; only

the j-th column of each matrix Pi is needed to complete the updates for yk+1
j and xk+1

j . Such

an observation will allow distributed storage of the potentially huge-sized matrices. More

detailed discussions of this point are provided in Section 3.4.1 .

The update of the other primal variable, uk+1, can be performed in a similar fashion,

which is to split into two steps by first introducing a predictor variable vk+1 for uk, followed

by a corrector update:

(primal predictor of uk
j) :

vk+1
j : = uk

j − ρ
[
c0 +

m1∑
i=1

λk
i ci + BT γk

]
j
, j = 1, . . . , n2,

(3.10a)

(primal corrector of uk
j) :

uk+1
j = uk

j − ρ
[
c0 +

m1∑
i=1

µk+1
i ci + BT νk+1

]
j
, j = 1, . . . , n2.

(3.10b)

A dual corrector update is then performed for each Lagrangian multiplier (λk+1, γk+1):

(dual corrector) :

λk+1
i = ΠR+

(
λk

i + ρ
[1
2(yk+1)T Piyk+1 + qT

i yk+1 + cT
i vk+1 + ri

])
,

i = 1, . . . , m1,

γk+1
i = γk

i + ρ
[
Ayk+1 + Bvk+1 − b

]
i
, i = 1, . . . , m2.

(3.11)

The overall structure of the proposed algorithm, which we name it PC2PM, to reflect

the fact that two sets of predictors and correctors are utilized, is presented in Algorithm 4

below.

Note that the starting point of the PC2PD algorithm can be arbitrary, and is not required

to be feasible. To establish convergence of the algorithm, the specific rules to update the step-

size ρ are crucial, which is the main focus of the next section. The implementation details,

61

Algorithm 4 PC2PM
1: Initialization choose an arbitrary starting point (x0, u0, λ0, γ0).
2: k ← 0.
3: while termination conditions are not met do
4: (Adaptive step-size)

update the step-size ρk+1;
5: (Predictor update)

update (µk+1, νk+1), yk+1, and vk+1 according to (3.3), (3.8a) and (3.10a);
6: (Corrector update)

update xk+1, uk+1, and (λk+1, γk+1) according to (3.8b), (3.10b) and (3.11);
7: k ← k + 1
8: return (xk, uk, λk, γk).

including distributed data storage, parallel computing through Message Passing Interface

(MPI), and termination conditions, are provided in Section 3.4 .

3.3 Convergence Analysis

In this section, we establish sufficient conditions for the PC2PM algorithm to converge

to an optimal solution from any starting point. First, we make a standard assumption on

(3.2) about the existence of a saddle point.

Assumption 3.3.1 (Existence of a Saddle Point). For the Lagrangian function of (3.2):

L(x, u, λ, γ) :=1
2xT P0x + qT

0 x + cT
0 u + r0

+
m1∑
i=1

λi
(1

2xT Pix + qT
i x + cT

i u + ri
)

+ γT (Ax + Bu− b),
(3.12)

we assume that a saddle point (x∗, u∗, λ∗, γ∗) exists; that is, for any x ∈ X, u ∈ Rn2 ,

λ ∈ Rm1
+ and γ ∈ Rm2 ,

L(x∗, u∗, λ, γ) ≤ L(x∗, u∗, λ∗, γ∗) ≤ L(x, u, λ∗, γ∗). (3.13)

Note that coupled with the blanket assumption that Slater’s CQ holds for the QCQP

(3.2), the above assumption is equivalent to say that an optimal solution of (3.2) is assumed

to exist.

62

Next, we derive some essential lemmas for constructing the main convergence proof. For

the ease of presenting the next two lemmas, we first introduce a notation for the linear

approximation of the Lagrangian function (3.12).

Definition 3.3.1. With a given tuple (x′, λ′, γ ′) ∈ X×Rm1
+ ×Rm2 , we define the following

function R : X×Rn2 → R as a linear approximation of the Lagrangian function L(x, u, λ, γ)

evaluated at (x′, λ′, γ ′).

R(x, u; x′, λ′, γ ′) := (P0x′ + q0)T x + cT
0 u + r0

+
m1∑
i=1

λ′
i

[
(Pix′ + qi)T x + cT

i u + ri
]

+ (γ ′)T (Ax + Bu− b),
(3.14)

for any x ∈ X and u ∈ Rn2 .

Lemma 3.3.1. The update steps (3.3), (3.8a), (3.8a), (3.10a), (3.10b) and (3.11) are equiv-

alent to obtaining proximal minimization points as follows:

(µk+1, νk+1) = argmin
λ∈Rm1

+ , γ∈Rm2
− L(xk, uk, λ, γ)

+ 1
2ρk+1‖λ− λk‖2

2 + 1
2ρk+1‖γ − γk‖2

2; (3.15a)

(yk+1, vk+1) = argmin
x∈X, u∈Rn2

R(x, u; xk, λk, γk)

+ 1
2ρk+1‖x− xk‖2

2 + 1
2ρk+1‖u− uk‖2

2; (3.15b)

(xk+1, uk+1) = argmin
x∈X, u∈Rn2

R(x, u; yk+1, µk+1, νk+1)

+ 1
2ρk+1‖x− xk‖2

2 + 1
2ρk+1‖u− uk‖2

2; (3.15c)

(λk+1, γk+1) = argmin
λ∈Rm1

+ , γ∈Rm2
− L(yk+1, vk+1, λ, γ)

+ 1
2ρk+1‖λ− λk‖2

2 + 1
2ρk+1‖γ − γk‖2

2. (3.15d)

63

Since all the four optimization in (3.15a) – (3.15d) are convex optimization problems

with linear constraints, the proof follows directly from the first-order optimality conditions

of each of the optimization problems, and hence is omitted.

Lemma 3.3.2. At a saddle point (x∗, u∗, λ∗, γ∗) of the QCQP (3.2), the following inequality

holds for any x ∈ X, u ∈ Rn2 , λ ∈ Rm1
+ and γ ∈ Rm2 :

R(x∗, u∗; x, λ, γ)−R(x, u; x, λ, γ)

≤
m1∑
i=1

(λ∗
i − λi)

(1
2xT Pix + qT

i x + cT
i u + ri

)
+ (γ∗ − γ)T (Ax + Bu− b).

(3.16)

Proof. For any x ∈ X, u ∈ Rn2 , λ ∈ Rm1
+ and γ ∈ Rm2 , we have that L(x, u, λ∗, γ∗) ≥

L(x∗, u∗, λ, γ) by the saddle point inequality (3.13). We also have the inequality 1
2(x −

x∗)T P0(x− x∗) +∑m1
i=1 λi

[
1
2(x− x∗)T Pi(x− x∗)

]
≥ 0 due to the positive semi-definiteness of

each matrix P0, P1, . . . , Pm1 . Adding the two inequalities together completes the proof.

We next establish fundamental estimates of the distance between the solution point

(xk+1, uk+1, λk+1, γk+1) at each iteration k and the saddle point (x∗, u∗, λ∗, γ∗).

Proposition 3.3.3. Let (x∗, u∗, λ∗, γ∗) be a saddle point of the QCQP (3.2). For all k ≥ 0,

we have that

‖xk+1 − x∗‖2
2 + ‖uk+1 − u∗‖2

2

≤ ‖xk − x∗‖2
2 + ‖uk − u∗‖2

2

−
(
‖yk+1 − xk+1‖2

2 + ‖vk+1 − uk+1‖2
2 + ‖yk+1 − xk‖2

2 + ‖vk+1 − uk‖2
2

)
+ 2ρk+1

(yk+1 − xk+1)T P0(yk+1 − xk)

+
m1∑
i=1

µk+1
i (yk+1 − xk+1)T Pi(yk+1 − xk)

+
m1∑
i=1

(λ∗
i − µk+1

i)
[1
2(yk+1)T Piyk+1 + qT

i yk+1 + cT
i vk+1 + ri

]

+ (γ∗ − νk+1)T (Ayk+1 + Bvk+1 − b)

64

+
m1∑
i=1

(µk+1
i − λk

i)
[
(Pixk + qi)T (yk+1 − xk+1) + cT

i (vk+1 − uk+1)
]

+ (νk+1 − γk)T
[
A(yk+1 − xk+1) + B(vk+1 − uk+1)

], (3.17)

and

‖λk+1 − λ∗‖2
2 + ‖γk+1 − γ∗‖2

2

≤ ‖λk − λ∗‖2
2 + ‖γk − γ∗‖2

2

−
(
‖µk+1 − λk+1‖2

2 + ‖νk+1 − γk+1‖2
2 + ‖µk+1 − λk‖2

2 + ‖νk+1 − γk‖2
2

)
+ 2ρk+1


m1∑
i=1

(λk+1
i − λ∗

i)
[1
2(yk+1)T Piyk+1 + qT

i yk+1 + cT
i vk+1 + ri

]

+ (γk+1 − γ∗)T (Ayk+1 + Bvk+1 − b)

+
m1∑
i=1

(µk+1
i − λk+1

i)
[1
2(xk)T Pixk + qT

i xk + cT
i uk + ri

]

+ (νk+1 − γk+1)T (Axk + Buk − b)

. (3.18)

Proof. The details of the proof are provided in Appendix 3.7 .

Now we are ready to present the main convergence result.

Theorem 3.3.4 (Global Convergence). Assume that the Slater’s CQ and Assumption 3.3.1

hold. With a given scalar 0 ≤ ε0 < 1, and a series of positive scalars εs > 0, s = 1, . . . , 8 that

satisfy ∑8
s=1 εs ≤ 1− ε0, we define the following function ρ : X×Rn2×Rm1

+ ×Rm2 → (0, +∞)

to update the adaptive step size ρk+1 in Algorithm 4 at each iteration k:

ρk+1 = ρ(xk, uk, λk, γk)

:= min
{
ρ1, ρ2(xk, uk, λk), ρ3(xk, λk, γk), ρ4, ρ5(xk), ρ6, ρ7, ρ8

}
,

(3.19)

where

65

(i) ρ1 =


ε1

‖P0‖F

, if ‖P0‖F 6= 0

ε1, if ‖P0‖F = 0,
with ‖·‖F representing the Frobenius norm of a matrix;

(ii) ρ2(xk, uk, λk) = mini{ρ2i(xk, uk, λk)}, where

ρ2i(xk, uk, λk) :=



−bi +
√

b2
i + 4aici

2ai
, if ai > 0

ci

bi
, if ai = 0, bi > 0

M, if ai = 0, bi = 0,

for all i = 1, . . . , m1, with ai = |12(xk)T Pixk + qT
i xk + cT

i uk + ri| ≥ 0, and bi = λk
i ≥ 0.

For ci, if ‖Pi‖F 6= 0, ci = ε2
m1‖Pi‖F

> 0; otherwise ci = ε2
m1

> 0. The constant M > 0 is

a given scalar;

(iii) ρ3(xk, λk, γk) =


min{2ε3,

−b +
√

b2 + 4ac

2a
}, if a > 0

min{2ε3,
c

b
}, if a = 0, b > 0

2ε3, if a = 0, b = 0,

where a = ‖P0xk + q0 + ∑m1
i=1 λk

i (Pixk + qi) + AT γk‖2 ≥ 0, b = 2‖xk‖2 ≥ 0 and

c = 2ε3
‖P ‖F

> 0 with P ∈ Rm1n1×n1 denoting the stacked matrix


P1...

Pm1

;

(iv) ρ4 =


ε4

‖Q‖F

, if ‖Q‖F 6= 0

ε4, if ‖Q‖F = 0
, where Q ∈ Rm1×n1 denotes matrix


qT

1...
qT

m1

, with the

qi’s being the vectors in the linear terms of x in the QCQP (3.2);

(v) ρ5(xk) =


ε5

‖xk‖2‖P‖F

, if ‖xk‖2 6= 0

ε5, if ‖xk‖2 = 0
;

66

(vi) ρ6 =


ε6

‖C‖F

, if ‖C‖F 6= 0

ε6, if ‖C‖F = 0
, where C ∈ Rm2×n2 denotes matrix


cT

1...
cT

m2

, with the

cj’s being the vectors in the linear terms of u in the QCQP (3.2);

(vii) ρ7 =


ε7

‖A‖F

, if ‖A‖F 6= 0

ε7, if ‖A‖F = 0
, where A is the matrix in the linear constraint Ax+Bu =

b in (3.2);

(viii) ρ8 =


ε8

‖B‖F

, if ‖B‖F 6= 0

ε8, if ‖B‖F = 0
, where B is the matrix in the linear constraint Ax +

Bu = b in (3.2).

Let {(xk, uk, λk, γk)} be the sequence generated by Algorithm 4 , with an arbitrary starting

point (x0, u0, λ0, γ0) ∈ Rn1 × Rn2 × Rm1 × Rm2 ; then the sequence converges to a saddle

point (x∗, u∗, λ∗, γ∗) of the QCQP (3.2).

Proof. Please see Appendix 3.7 for details.

While the rules to update the step size ρk+1 may appear to be very cumbersome, the

calculations are actually quite straightforward. Since the values of Frobenius norm of all

matrices can be obtained in advance, the values of ρ1, ρ4, ρ6, ρ7 and ρ8 are pre-determined.

Given a current solution (xk, uk, λk, γk), ρ2, ρ3 and ρ5 can also be easily calculated. The

minimum of all the ρs’s then determines the value of the adaptive step size ρk+1.

Another point we want to emphasize is that the convergence result is quite strong, in

the sense that the entire sequence, not just a subsequence, from the algorithm can be shown

to converge to an optimization solution, with an arbitrary starting point. Such a result can

help alleviate a strong assumption we made, which is to assume the feasibility of a convex

QCQP. While detecting if a (convex) QCQP is feasible or not can be as difficult as solving

the problem itself, from a practical perspective, our algorithm can just be blindly applied

to a QCQP. If the iterations appear to be diverging, then because of the whole sequence

convergence result in the above theorem, it likely indicates that the QCQP is infeasible.

67

3.4 Implementation

In this section, we discuss how to efficiently implement the PC2PM algorithm, especially

within a distributed framework.

3.4.1 Distributed Storage of Data and Parallel Computing

As mentioned in the introduction section, one key feature of the PC2PM algorithm for

solving convex QCQPs is that when implemented across multiple computing units, each

computing unit does not need to store entire matrices. Instead, only each primal computing

unit needs to store certain columns of the matrices (that is, the Hessian matrices in the

objective function and the constraints). To illustrate this point, we use the primal predictor

update (3.8a) as an example. Assume that ideally we have n1 primal computing units

dedicated to updating yj, j = 1, . . . , n1. To ease the argument, we write out the updating

rule again here:

yk+1
j = ΠXj

xk
j − ρ

[
P0xk + q0 +

m1∑
i=1

λk
i

(
Pixk + qi

)
+ AT γk

]
j

 . (3.20)

In each unit j, only the values of xk
j , [Pi]j, [qi]j for i = 0, 1, . . . , m1 and [A]j are needed to be

stored locally. To calculate [Pixk]j for i = 0, 1, . . . , m1, there is no need to store the entire Pi

matrices on each computing unit. Instead, the value of [Pixk]j can be obtained using MPI

to communicate among all primal computing units, each of which has one column of the Pi

matrices (and xk
j) stored locally. Here we use a simple example to illustrate the mechanism.

Let n1 = 3, Fig 3.1a shows how [P1xk]j, j = 1, 2, 3 are calculated in a distributed fashion

through MPI. First, each computing unit j completes a subtask of multiplying [P1]j and xk
j

using their locally stored information; then the intermediate results are summed up using

the MPI_Reduce function in a root process to get the value of P1xk. Each component of the

vector P1xk is then sent back to the corresponding computing unit j using the MPI_Scatter

function. After obtaining the values of [Pixk]j for i = 0, 1, . . . , m1 in this way, the update step

(3.20) can be carried out upon receiving the values of (λk
1, . . . , λk

m1) and γk from other dual

computing units dedicated for updating the dual variables using MPI_Send and MPI_Recv

68

(a) Calculating [P1xk]j for each computing unit j. (b) Calculating (xk)T P1xk.

Figure 3.1. Illustrations of matrix-vector multiplications using MPI functions.

functions, with the fact that [AT γk]j = [A]Tj γk. Such a feature will be particularly beneficial

for solving large-scale QCQPs from real world applications, as in many such cases the number

of variables (n1 for x and n2 for u) can be enormous.

In the 3-dimension example shown in Fig 3.1a , once each [P1xk]j is received by computing

unit j for j = 1, 2, 3, a subtask of multiplying xk
j and [P1xk]j is needed to calculate the value

of (xk)T P1xk for dual update, such as in (3.3):

µk+1
i = ΠR+

(
λk

i + ρ
[1
2(xk)T Pixk + qT

i xk + cT
i uk + ri

])
. (3.21)

Such a process is illustrated in Fig 3.1b , which shows that the locally-calculated intermediate

results are summed up using the MPI_Reduce function and sent to the corresponding dual

computing unit. Other matrix-vector (and vector-vector) multiplications in the update steps

of Algorithm 4 can all be calculated in a similar fashion.

1

1For more information, we refer the readers to our implementation codes programmed in C available online
at https://github.com/BigRunTheory/A-Distributed-Algorithm-for-Large-scale-Convex-QCQPs .

69

https://github.com/BigRunTheory/A-Distributed-Algorithm-for-Large-scale-Convex-QCQPs

Next, we examine the speedup of using multiple compute nodes for parallel distributed

computing. We run the PC2PM algorithm on a multi-node computer cluster, where each

node has multiple cores (20 in our case), through MPI for communication among all parallel

processes mapped to cores belonging to different nodes. For illustration purpose, we focus

on a single-constraint convex QCQP:

minimize
x∈Rn1

1
2xT P0x + qT

0 x + r0

subject to 1
2xT P1x + qT

1 x + r1 ≤ 0, (λ1)
(3.22)

which does not contain the block of decision variable u or linear constraint Ax + Bu = b.

We test the PC2PM algorithm for solving (3.22) with a randomly generated data set with

Pi ∈ Rn1×n1 , qi ∈ Rn1 and ri ∈ R for i = 0, 1. The dimension n1 is set at 1.7 × 104. Each

matrix Pi is randomly generated as a symmetric PD matrix in the form of Pi = QT DQ,

where Q ∈ Rn1×n1 is a randomly generated orthogonal matrix, and D = diag(d1, . . . , dn1) is

a randomly generated diagonal matrix with all positive entries. Since (d1, . . . , dn1) are also

the eigenvalues of each Pi, and the ratio of the largest eigenvalue dmax to the smallest one

dmin is the condition number κ of matrix Pi, we set κ(Pi) = 1.25 and choose dmin and dmax to

satisfy dmax/dmin = κ(Pi), and the remaining diagonal entries are uniformly drawn from the

range [dmin, dmax]. The components of each vector qi are uniformly generated from a random

range, and each scalar ri is generated as a random non-negative real number to guarantee

the feasibility of the constraint sets.

Since the number of Lagrangian multipliers is 1, the number of dual computing units

ndual-comp is also fixed as 1. The tasks of updating n1 components of the primal decision

variables x and y are evenly distributed among all the primal computing units with the

number nprimal-comp varying from 1 to 256 for comparison purpose. Each computing unit

occupies a single core; hence the total number of cores used is equal to nprimal-comp+ndual-comp.

The number of nodes needed is calculated as nnode = dncore/20e (where 20 is the number of

cores per node). The elapsed wall-clock time T with a tolerance τ equal to 10−3 and 10−6,

respectively, is listed in Table 3.1 , along with the calculated objective function values. (The

specific stopping criteria are given in Section 3.4.3 .)

70

Table 3.1. Elapsed clock time used by PC2PM for solving the single-
constraint convex QCQP (3.22).

PC2PM using multiple nodes (max. 20 cores per node)

nnode ncore
time time

τ = 10−3 τ = 10−6

1 1 + 1 5.53 h 13.84 h
1 2 + 1 2.59 h 6.46 h
1 4 + 1 1.60 h 3.86 h
1 8 + 1 1.01 h 2.50 h
1 16 + 1 0.77 h 1.86 h
2 32 + 1 0.55 h 1.37 h
4 64 + 1 0.45 h 1.08 h
7 128 + 1 0.42 h 1.02 h
14 256 + 1 0.47 h 1.01 h

obj. val. −498.544033 −498.543200

The computational speedup S is defined as the ratio of the elapsed run time taken by a

serial code to that taken by a parallel code for solving the same problem. More specifically,

S is defined as:

S := T (1 + 1)
T (nprimal-comp + 1) , nprimal-comp ≥ 2. (3.23)

The speedup of solving (3.22) is shown in Fig 3.2 . For this specific case, parallel computing

achieved linear speedup initially. However, due to communication overhead, the speedup

plateaued (or even decreased) when the number of computing units is too high. As such, we

suggest that a proper number of computing units needs to be carefully chosen when imple-

menting the PC2PM algorithm to balance between computation speedup and communication

overhead.

3.4.2 Adaptive Step Size with Auto-learned Allocation Weights

In establishing the global convergence of the PC2PM algorithm, it is not specified how the

values of εs, s = 1, . . . , 8 are chosen in order to calculate the eight components ρ1 – ρ8. Here

we develop a practical rule to help determine the values of εs’s along the iterations. The rule

may also help accelerate the algorithm’s performance, based on our numerical experiments.

71

Number of Primal Computing Units

2

4

6

8

10

12

14
S

p
e

e
d

u
p

Speedup with = 10
-3

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

Number of Primal Computing Units

2

4

6

8

10

12

14

S
p

e
e
d

u
p

Speedup with = 10
-6

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

Figure 3.2. Computational speedup of PC2PM for solving a single-constraint
convex QCQP (3.22).

Generally speaking, for first-order algorithms, of which the PC2PM algorithm also be-

longs to, the larger value a step size could take, the fewer number of iterations the algorithms

would take to converge. For the step-size formula (3.19), it is easy to observe that the value

of each ρs increases when the corresponding εs increases. However, the εs’s cannot be too

large as their summation is bounded by 1 − ε0 ≤ 1. A naive way to allocate the value of

each εs is to evenly distribute the upper bound of their summation; that is, εs = 1
8(1 − ε0)

for s = 1, . . . , 8, throughout the iterations. Alternatively, we introduce a weight variable

ws > 0 for each εs. At the beginning of the algorithm, they are all initialized to 1, indicating

an even allocation of the weights. At each iteration k = 1, 2, . . ., we calculate the values of

εk
1, . . . , εk

8 based on the following formulation:

εk
s = wk

s∑8
s=1 wk

s

(1− ε0), s = 1, . . . , 8. (3.24)

After the step size ρk+1 is determined by min{ρk
1, . . . , ρk

8} according to (3.19), the values of

the weights wk+1
1 , . . . , wk+1

8 are updated according to the ratio of ρk+1 to each ρk
s :

wk+1
s = ρk+1

ρk
s

wk
s , s = 1, . . . , 8. (3.25)

72

The idea of the above updating rule is to make sure that all the values of the ρs’s will have

a chance to be increased, avoiding the possibility that a particularly small ρs would always

be chosen to determine the step size ρk+1, which would slow down the whole algorithm.

For illustration purpose, we use the PC2PM algorithm with the step-size updating rule

of (3.19), (3.24) and (3.25) to solve the same single-constraint convex QCQP (3.22) in the

previous subsection. We test the algorithm on a data set of matrix Pi, vector qi and scalar

ri randomly generated in the same way as in the previous subsection for i = 0, 1, but with

n1 = 1024, and implement it on a single core as a series code. Since it contains neither

the decision variable u nor the linear equality constraint Ax + Bu = b, only ρk
1, . . . , ρk

5

need to be calculated at each iteration. We compare the performance of the algorithm using

equally allocated weights versus using the adaptive weight updating in (3.25). The number of

iterations and the elapsed wall-clock time used by the algorithm to converge with a tolerance

τ = 10−3 are listed in Table 3.2 . We also test using different values of ε0, including a fixed

Table 3.2. Number of iterations and elapsed wall-clock time used by PC2PM
for solving a single-constraint convex QCQP (3.22) with different settings of
(ε0, . . . , ε5).

Equal Weight Allocation Adaptive Weight Allocation
Value of ε0 num. iter. time num. iter. time

0.5 23619 598 s 10742 272 s
10−1 13119 331 s 5972 151 s
10−2 11926 301 s 5430 138 s
10−3 11819 300 s 5381 137 s
10−4 11808 297 s 5376 136 s
10−5 11807 298 s 5375 136 s
10−6 11807 298 s 5375 136 s

0 11807 289 s 5375 131 s
diminishing 12024 303 s 5519 139 s

value varying from 0.5, 10−1, . . . , 10−6 to 0 and a diminishing value of 1√
k+1 . The numerical

results of this specific instance suggest that by using auto-learned allocation weights, the

number of iterations is cut by more than half. Comparing each rows, we also observe that

the smaller the value of ε0 is, the faster the algorithm converges.

73

3.4.3 Stopping Criteria

Since we consider a convex QCQP and assume that the Slater’s CQ holds, the first-order

optimality conditions (aka the KKT conditions) are both necessary and sufficient. More

specifically, for an optimal solution (x∗, u∗) of the QCQP (3.2) and its corresponding dual

solution (λ∗, γ∗), the following conditions are satisfied:

−
[
P0x∗ + q0 +

m1∑
i=1

λ∗
i (Pix∗ + qi) + AT γ∗

]
j
∈ NXj(x∗

j), j = 1, . . . , n1 (3.26)

c0 +
m1∑
i=1

λ∗
i ci + BT γ∗ = 0 (3.27)

0 ≤ λ∗
i ⊥ −

1
2(x∗)T Pix∗ − qT

i x∗ − cT
i u∗ − ri ≥ 0, i = 1, . . . , m1 (3.28)

Ax∗ + Bu∗ − b = 0. (3.29)

Conversely, any primal-dual pair (x∗, u∗; λ∗, γ∗) satisfying the above equations is optimal to

the primal and dual of the QCQP (3.2), respectively.

Based on the optimality conditions (3.26) – (3.29), we choose stopping criteria for our

algorithm to measure both the primal and dual feasibility, as well as complementarity. More

specifically, at each iteration k, we measure the following two residuals:

resk
1 =

√√√√ 1
n1 + n2

[n1∑
j=1

(
resk

1_xj
)2

+ ‖c0 +
m1∑
i=1

λk
i ci + BT γk‖2

2

]
, and (3.30)

resk
2 =

√√√√√√√√√
1

m1 + m2

[m1∑
i=1

[
λk

i

∣∣∣12(xk)T Pixk + qT
i xk + cT

i uk + ri

∣∣∣]2
+ ‖Axk + Buk − b‖2

2

] , (3.31)

where resk
1_xj in (3.30) depends on the actual form of the constraint set X. Again, for box

constrains 0 ≤ xj ≤ X̄j, j = 1, . . . , n1, we have that

resk
1_xj : =



min{0,
[
gradx

]
j
}, if xk

j = 0[
gradx

]
j
, if 0 < xk

j < X̄j

max{0,
[
gradx

]
j
}, if xk

j = X̄j,

, (3.32)

74

where gradx = P0xk + q0 +∑m1
i=1 λk

i (Pixk + qi) + AT γk. We terminate our algorithm when

both of the two residuals drop below a pre-specified tolerance. Note that the residuals defined

in (3.30) and (3.31) are based on the average residuals of all the constraints. Other forms

of residual metric, such as using the maximum residuals of all the constraints, can also be

used.

3.5 Numerical Experiments

In this section, we present more numerical results for solving large-scale convex QCQPs

using our algorithm. We first conduct numerical experiments of applying the PC2PM al-

gorithm to solve convex QCQPs of the standard form (3.1), with randomly generated data

sets of various sizes. We then solve convex QCQPs with explicit linear constraints as in

(3.2), which naturally arise from multiple kernel learning applications. For both sets of

experiments, we compare the performance of our algorithm with the current state-of-the-

art commercial solver CPLEX 12.8.0, which uses the barrier optimizer for solving convex

QCQPs. We implement PC2PM with multiple compute nodes on Purdue University’s Rice

cluster through MPI, called from a C program. Each compute node on the cluster has two

10-core Intel Xeon-E5 processors (that is, 20 cores per node) and 64 GB of memory. CPLEX

12.8.0 is also called using a C program and implemented on a single compute node (with 20

cores). Note that CPLEX alone, as a centralized algorithm, cannot be run on multiple com-

pute nodes through MPI, but it does allow multiple parallel threads that can be invoked by

the barrier optimizer. More specifically, CPLEX has a parameter, CPXPARAM_Threads,

to call for multithread computing [35]. When CPXPARAM_Threads is set to be 1, CPLEX

is single threaded; when it is set to be 0, CPLEX can use up to 32 threads, or the number

of cores of the machine (with each core being a thread), whichever is smaller. In our exper-

iments, we always set CPXPARAM_Threads as 0, which gives CPLEX 20 threads (since

each of our compute node has 20 cores).

75

3.5.1 Solving Standard-Form Convex QCQPs

We first apply PC2PM to solve convex QCQPs of the standard form (3.1), without the

decision variables u or the explicit linear constraints Ax + Bu − b = 0. The input data

consist of matrix Pi, vector qi and scalar ri for i = 0, 1, . . . , m1, all of which are randomly

generated in the same way as in Section 3.4.1 . The only difference here is that instead of

keeping the matrices’ condition number fixed, we increase it from 1.25 to 100 to all matrices.

The decision variable’s dimension n1 is set at 1.7 × 104, and the number of constraints m1

increases from 1 to 16.

To balance between the computation speedup and communication overhead, we imple-

ment our algorithm with 128 cores allocated for primal variables’ updating: (3.8a) (3.10a),

(3.8b) and (3.10b), and m1 (the number of quadratic constraints) cores for dual updating:

(3.3) and (3.11). The total number of compute nodes needed is calculated as nnode = dncore
20 e

= d128+m
20 e. The stopping criteria we use are defined in (3.30) and (3.31), with the tolerance

set at τ = 10−3. Table 3.3 reports the elapsed wall-clock time used by the PC2PM algo-

rithm, along with the maximal amount of memory used by each compute node and the final

objective function value, with respect to increasing condition number κ. The performance of

CPLEX 12.8.0 with the same convergence tolerance is also presented in Table 3.3 for com-

parison. In the first group of tests with m1 = 1, our algorithm converges much faster than

CPLEX, and also uses much less memory. For the rest groups of test cases, CPLEX fails

to provide a solution (actually fails to complete even a single iteration) due to running out

of memory; while PC2PM still converges within a reasonable amount of time. As the scale

of the problem increases, our algorithm exhibits favorable scalability, due to its distributed

storage of data and the capability of massively parallel computing. Another interesting ob-

servation from Table 3.3 , though we do not know the underlying reason, is that the when the

number of quadratic constraints (m1) is small, PC2PM’s run time appears to be sensitive to

the condition number of matrices (i.e., the Hessian matrices of the objective function and

the constraints); yet when m1 becomes larger, the effect of condition numbers on the run

time appears to be subdued.

We also plot the two residuals resk
1 and resk

2 in Fig 3.3 , with resk
1 corresponding to the

76

Table 3.3. Comparison of PC2PM with CPLEX 12.8.0 for solving standard-
form, large-scale convex QCQPs.

n1 m1 κ nnode ncore
max. mem. time obj. val.

/node

1.7× 104 1

1.25 PC2PM
7 128 + 1 2.1 GB

0.37 h −418.621946
10 0.69 h −425.943254
100 (τPC2PM = 10−3) 3.87 h −420.620978
1.25 CPLEX 12.8.0

1 20 40.6 GB
6.42 h −418.559064

10 6.15 h −425.947242
100 (τBarrier = 10−3) 6.17 h −420.644988

1.7× 104 2

1.25 PC2PM
7 128 + 2 2.5 GB

0.77 h −326.237771
10 0.85 h −330.950122
100 (τPC2PM = 10−3) 2.10 h −322.231765
1.25 CPLEX 12.8.0

1 20 N.A. N.A. N.A.10
100 (τBarrier = 10−3)

1.7× 104 4

1.25 PC2PM
7 128 + 4 3.1 GB

1.03 h −250.572460
10 1.13 h −254.314644
100 (τPC2PM = 10−3) 1.28 h −243.154365
1.25 CPLEX 12.8.0

1 20 N.A. N.A. N.A.10
100 (τBarrier = 10−3)

1.7× 104 8

1.25 PC2PM
7 128 + 8 4.5 GB

1.83 h −188.497033
10 1.88 h −190.964860
100 (τPC2PM = 10−3) 2.20 h −189.945073
1.25 CPLEX 12.8.0

1 20 N.A. N.A. N.A.10
100 (τBarrier = 10−3)

1.7× 104 16

1.25 PC2PM
8 128 + 16 6.5 GB

2.54 h −148.730182
10 2.95 h −144.870372
100 (τPC2PM = 10−3) 3.15 h −147.309600
1.25 CPLEX 12.8.0

1 20 N.A. N.A. N.A.10
100 (τBarrier = 10−3)

gradient of the Lagrangian function, and resk
2 corresponding to the feasibility and comple-

mentarity conditions. The three plots in a same row are with the same number of constraints

m1, but different condition numbers of the Hessian matrices. As seen in Fig 3.3 , from left

to right, as the condition number κ increases, more iterations are required for the PC2PM

algorithm to converge. Another observation is that when the number of constraints increases

(i.e., from top to bottom), the convergence of the residuals becomes more smooth.

77

0 0.5 1 1.5 2

Number of Iterations 10
4

-6

-4

-2

0

2
L
o
g

1
0
(r

e
s

1
,
re

s
2
)

m
1
 = 1, = 1.25

res
1

res
2

0 1 2 3 4

Number of Iterations 10
4

-8

-6

-4

-2

0

2

L
o
g

1
0
(r

e
s

1
,
re

s
2
)

m
1
 = 1, = 10

res
1

res
2

0 5 10 15 20

Number of Iterations 10
4

-8

-6

-4

-2

0

2

L
o
g

1
0
(r

e
s

1
,
re

s
2
)

m
1
 = 1, = 100

res
1

res
2

0 0.5 1 1.5 2

Number of Iterations 10
4

-8

-6

-4

-2

0

2

L
o
g

1
0
(r

e
s

1
,
re

s
2
)

m
1
 = 4, = 1.25

res
1

res
2

0 0.5 1 1.5 2

Number of Iterations 10
4

-8

-6

-4

-2

0

2
L
o
g

1
0
(r

e
s

1
,
re

s
2
)

m
1
 = 4, = 10

res
1

res
2

0 1 2 3

Number of Iterations 10
4

-10

-8

-6

-4

-2

0

2

L
o
g

1
0
(r

e
s

1
,
re

s
2
)

m
1
 = 4, = 100

res
1

res
2

0 0.5 1 1.5

Number of Iterations 10
4

-10

-8

-6

-4

-2

0

2

L
o
g

1
0
(r

e
s

1
,
re

s
2
)

m
1
 = 16, = 1.25

res
1

res
2

0 0.5 1 1.5 2

Number of Iterations 10
4

-10

-8

-6

-4

-2

0

2

L
o
g

1
0
(r

e
s

1
,
re

s
2
)

m
1
 = 16, = 10

res
1

res
2

0 0.5 1 1.5 2

Number of Iterations 10
4

-10

-8

-6

-4

-2

0

2
L
o
g

1
0
(r

e
s

1
,
re

s
2
)

m
1
 = 16, = 100

res
1

res
2

Figure 3.3. Convergence of residuals.

3.5.2 Multiple Kernel Learning in Support Vector Machine

In this subsection, we briefly introduce how the Support Vector Machine (SVM) with

multiple kernel learning can be formulated as a convex QCQP, and present numerical results

of using our algorithm to solve large-scale instances. As discussed in [36], SVM is a dis-

criminative classifier proposed for binary classification problems. Given a set of ntr pairs of

78

independently and identically distributed training data points {(dj, lj)}ntr
j=1, where dj ∈ Rnd

is the nd-dimensional input vector and lj ∈ {−1, 1} is its class label, SVM searches for a

hyperplane that can best separate the points from two classes. The hyperplane is defined

as {d ∈ Rnd |f(d) = βT d + β0 = 0}, where β ∈ Rnd is a unit vector with ‖β‖2 = 1, and

β0 ∈ R is a scalar. The points belonging to either class should be separated as far away

from the hyperplane as possible, while still remain on the correct side. When the data

points cannot be clearly separated in the original space Rnd , we instead search in a fea-

ture space Rnf , and map the input data space Rnd to the feature space through a function

Φ : Rnd → Rnf . For example, a 2-dimension data space can be lifted to a 3-dimension feature

space. Using the function mapping Φ, we can define a kernel function k : Rnd ×Rnd → R as

k(d, d′) :=< Φ(d), Φ(d′) > for any d, d′ ∈ Rnd , where <, > denotes an inner product. The

resulting discriminant function G : Rnd → {−1, 1} that SVM searches for can be expressed

as:

G(d) = sign
(ntr∑

j=1
αjljk(dj, d) + b

)
, ∀d ∈ Rnd , (3.33)

where α ≡ (α1, . . . , αntr)T is the weight vector and b is the bias. The popular choices of

kernel functions in the SVM literature include the linear kernel function kLIN , the polynomial

kernel function kP OL and the Gaussian kernel function kGAU :

kLIN(d, d′) := dT d′, ∀d, d′ ∈ Rnd (3.34a)

kP OL(d, d′) := (1 + dT d′)2, ∀d, d′ ∈ Rnd (3.34b)

kGAU(d, d′)) := e−
‖d−d′‖2

2
2σ2 , σ > 0,∀d, d′ ∈ Rnd . (3.34c)

Instead of using a single kernel function, [21] explores SVM using a kernel function

that is expressed as a non-negative combination of a pre-specified set of kernel functions

{k1, . . . , km}, with the non-negative coefficients λ1, . . . , λm to be allocated; that is, k(d, d′) =∑m
i=1 λiki(d, d′) for any d, d′ ∈ Rnd with λ1, . . . , λm ≥ 0. The allocation process can be ex-

pressed as solving a convex QCQP, where each λi is the Lagrangian multiplier corresponding

to each quadratic constraint. The formulation of the convex QCQP, as provided in [21], is

as follows:

79

(i) 1-norm Soft Margin SVM learns the coefficients through solving the following

convex QCQP:

minimize
α∈Rntr ,α0∈R

− eT α + Rα0

subject to 1
2αT

[1
Ri

Gi(Ki,tr)
]
α− α0 ≤ 0, i = 1, . . . , m, (λi)

ntr∑
j=1

ljαj = 0, (γ)

0 ≤ αj ≤ C, j = 1, . . . , ntr, (3.35)

(ii) 2-norm Soft Margin SVM learns the coefficients through solving the following

convex QCQP:

minimize
α∈Rntr

+ ,α0∈R

1
2αT

[1
C

Intr

]
α− eT α + Rα0

subject to 1
2αT

[1
Ri

Gi(Ki,tr)
]
α− α0 ≤ 0, i = 1, . . . , m, (λi)

ntr∑
j=1

ljαj = 0, (γ) (3.36)

where the vector e denotes an ntr-dimensional vector of all ones. Given a labeled training

data set Str = {(dj, lj)}ntr
j=1 and an unlabeled test data set St = {dj}nt

j=1, a matrix Ki ∈

R(ntr+nt)×(ntr+nt) can be defined on the entire data set Str ∪ St as

Ki :=

 Ki,tr Ki,(tr,t)

KT
i,(tr,t) Ki,t

 . (3.37)

The submatrix Ki,tr ∈ Rntr×ntr is a square symmetric matrix, whose jj′-th element is directly

defined by a kernel function: [Ki,tr]jj′ := ki(dj, dj′) for any dj, dj′ in Str. The submatri-

ces Ki,(tr,t) ∈ Rntr×nt and Ki,t ∈ Rnt×nt are defined in the same way but with different

input vectors. The matrix Gi(Ki,tr) ∈ Rntr×ntr in the quadratic constraint of (3.35) and

(3.36) is a square symmetric matrix with its jj′-th element being [Gi(Ki,tr)]jj′ = ljlj′ [Ki,tr]jj′ .

Note that each kernel matrix Ki,tr is a symmetric PSD matrix (see Proposition 2 in [21]),

80

then each Gi(Ki,tr) is also a symmetric PSD matrix, since Gi(Ki,tr) = LKi,trL, where

L := diag(l1, . . . , lntr). Let Ri denote trace(Ki) for i = 1, . . . , m, and R = ∑m
i=1 λiRi can

be fixed as a given number. The parameter C is a fixed positive scalar from the soft margin

criteria.

Once the optimal primal-dual solution (α∗; λ∗
1, . . . , λ∗

m) is found from either (3.35) or

(3.36), combining with those pre-specified ki’s, it can be used to label the test data set

according to the following discriminant function GMKL : Rnd → {−1, 1}:

GMKL(dj′) = sign
(ntr∑

j=1
α∗

j lj
[m∑

i=1
λ∗

i ki(dj, dj′)
]

+ b
)

, ∀dj′ ∈ St. (3.38)

Compared with (3.33), the only difference is the replacement of a non-negative combination

of ki’s with coefficients λ∗
1, . . . , λ∗

m. The test set accuracy (TSA) can then be obtained by

measuring the percentage of the test data points accurately labeled according to the function

(3.38).

The formulation (3.35) and (3.36) provide instances of convex QCQPs in the form of

(3.2), and we apply the PC2PM to solve them. The input data set is artificially generated as

specified in [37], which is also used in [21]; however, our data set has a much larger size than

in [21]. We first generate 6, 880 data points, with each data point a 20-dimension vector,

which are drawn from a multivariate normal distribution with a unit covariance matrix and

the mean of (a, . . . , a). These data points form the first class that are all labeled with 1.

Another 6, 880 points of 20-dimension vectors are drawn from another multivariate normal

distribution with a unit covariance matrix and the mean of (−a, . . . ,−a), which form the

second class that are all labeled with −1. The value of a is set as 3.0. We use a set of pre-

specified kernel functions {k1, . . . , k5} that contains all Gaussian kernel functions defined in

(3.34c) whose σ2 equal to 0.01, 0.1, 1, 10 and 100 respectively. Each matrix Ki is normalized

and Ri = trace(Ki) is set to be 1.0 for i = 1, . . . , 5. Then R = ∑5
i=1 λiRi = ∑5

i=1 λi, is

restricted to be 5.0. The value of C is set at 2.0 for both two soft margin SVMs. Numerical

results of both 1-norm and 2-norm soft margin SVMs using the above five kernel functions

are summarized in Table 3.4 . The data set of a total number of 6, 880 + 6, 880 = 13, 760

81

Table 3.4. Comparison of PC2PM with CPLEX 12.8.0 for solving multiple
kernel learning problems using 5 Gaussian kernel functions.

Rand. SVM max. mem. time λ∗
1 λ∗

2 λ∗
3 λ∗

4 λ∗
5 TSA

Part. /node

1

SM1 PC2PM 2.0 GB 4.84 h 0.00 0.00 0.00 0.00 5.05 99.75%
SM2 3.31 h 0.00 0.00 0.00 0.00 5.03 99.85%
SM1 CPLEX 12.8.0 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
SM2 52.0 GB 2.12 h 0.00 0.00 0.00 0.35 4.64 99.85%

2

SM1 PC2PM 2.0 GB 5.44 h 0.00 0.00 0.00 0.00 5.07 99.89%
SM2 2.85 h 0.00 0.00 0.00 0.00 5.03 99.93%
SM1 CPLEX 12.8.0 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
SM2 52.0 GB 2.08 h 0.00 0.00 0.00 0.35 4.65 99.93%

3

SM1 PC2PM 2.0 GB 5.88 h 0.00 0.00 0.00 0.00 5.01 99.67%
SM2 3.04 h 0.00 0.00 0.00 0.00 5.03 99.89%
SM1 CPLEX 12.8.0 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
SM2 52.0 GB 2.15 h 0.00 0.00 0.00 0.37 4.62 99.89%

4

SM1 PC2PM 2.0 GB 5.22 h 0.00 0.00 0.00 0.00 5.07 99.60%
SM2 2.92 h 0.00 0.00 0.00 0.00 5.03 99.89%
SM1 CPLEX 12.8.0 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
SM2 52.0 GB 2.30 h 0.00 0.00 0.00 0.35 4.64 99.89%

5

SM1 PC2PM 2.0 GB 5.52 h 0.00 0.00 0.00 0.00 5.03 99.78%
SM2 2.80 h 0.00 0.00 0.00 0.00 5.03 99.85%
SM1 CPLEX 12.8.0 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
SM2 52.0 GB 2.21 h 0.00 0.00 0.00 0.34 4.66 99.85%

data points is randomly partitioned into 80% for training and 20% for testing. The reported

results are over five different random partitions.

We implement PC2PM using 128 cores for primal updates and 5 cores for dual updates,

which amount to a total of 7 compute nodes on Purdue’s Rice cluster. The elapsed wall-clock

time used by PC2PM to converge with a tolerance τ = 10−3 is presented in Table 3.4 , along

with the maximal amount of memory used by each node. We also report in Table 3.4 the

learned non-negative coefficients λ∗
1, . . . λ∗

5, as well as the TSA. The performance of CPLEX

12.8.0 with the same tolerance is also presented in Table 3.4 for comparison. As shown by the

value of the coefficients learned, the Gaussian kernel function k5 with σ2 = 100.0 is selected

by the models of both two soft margin SVMs. For 2-norm soft margin SVM, while PC2PM

uses more time to converge than CPLEX, it uses much less memory (as expected). For TSA,

both PC2PM and CPLEX obtain the same value, calculated using their own optimal solution

82

point (α∗, λ∗
1, . . . , λ∗

m). For 1-norm soft margin SVM, CPLEX fails to provide a solution due

to running out of memory, while PC2PM still solves the problem.

While the numerical experiments so far have demonstrated the scalability of the PC2PM

algorithm due to its distributed data storage and natural decomposition to facilitate parallel

computing, in the following experiments, we show the benefits of the PC2PM algorithm for

not requiring any matrix decompositions. In this test, we use three kernel functions, instead

of five, to solve (3.35) and (3.36). The three kernel functions consist of k1 – the Gaussian

kernel function with σ2 = 100.0, k2 – a linear kernel function defined in (3.34a), and k3 – a

polynomial kernel function defined in (3.34b). All the other settings remain the same as in

the previous experiment (except for the value of R, which is set as 3.0). The numerical results

are reported in Table 3.5 . For all groups of tests, CPLEX returns an error stating that the

Table 3.5. Comparison of PC2PM with CPLEX 12.8.0 for solving multiple
kernel learning problems using 3 kernel functions. (For 1-norm soft margin
SVM, PC2PM converges with a tolerance τ = 4× 10−3 instead of 10−3.)

Rand. SVM max. mem. time λ∗
1 λ∗

2 λ∗
3 TSA

Part. /node

1

SM1 PC2PM 1.7 GB 6.24 h 0.00 3.41 0.00 99.85%
SM2 3.52 h 0.00 3.10 0.00 99.85%
SM1 CPLEX 12.8.0 N.A. N.A. N.A. N.A. N.A. N.A.
SM2

2

SM1 PC2PM 1.7 GB 6.56 h 0.00 3.41 0.00 99.93%
SM2 3.53 h 0.00 3.10 0.00 99.93%
SM1 CPLEX 12.8.0 N.A. N.A. N.A. N.A. N.A. N.A.
SM2

3

SM1 PC2PM 1.7 GB 6.37 h 0.00 3.41 0.00 99.89%
SM2 3.84 h 0.00 3.10 0.00 99.89%
SM1 CPLEX 12.8.0 N.A. N.A. N.A. N.A. N.A. N.A.
SM2

4

SM1 PC2PM 1.6 GB 6.68 h 0.00 3.41 0.00 99.85%
SM2 3.70 h 0.00 3.10 0.00 99.85%
SM1 CPLEX 12.8.0 N.A. N.A. N.A. N.A. N.A. N.A.
SM2

5

SM1 PC2PM 1.7 GB 6.27 h 0.00 3.41 0.00 99.85%
SM2 3.73 h 0.00 3.10 0.00 99.85%
SM1 CPLEX 12.8.0 N.A. N.A. N.A. N.A. N.A. N.A.
SM2

quadratic constraint containing G3(K3,tr) is not convex, which is theoretically impossible

83

because each matrix Gi(Ki,tr) is at least a PSD matrix as we discussed previously; while

PC2PM solves all the instances without any issues. The error returned by CPLEX is created

likely by the failure of matrix decomposition of a large-scale PSD matrix due to precision

limit. Once we reduce the size of the matrices in (3.35) and (3.36), CPLEX can then solve the

instances without error messages. This numerical experiment illustrates that not requiring

matrix decomposition in the PC2PM is not just of computational convenience; it can indeed

make the algorithm more robust to solve large-scale problems without facing potential issues

caused by floating point arithmetic.

3.6 Conclusion and Future Works

In this chapter, we propose a novel distributed algorithm, built upon the original idea

of the PCPM algorithm, that can solve non-separable convex QCQPs in a Jacobi-fashion

(that is, parallel updating). Numerical results show that our algorithm, termed as PC2PM,

exhibits much better scalability when compared to CPLEX, which uses the IPM to solve

convex QCQPs. The superiority of algorithm’s scalability is attributed to the three key

features of the algorithm design: first, the PC2PM algorithm can decompose primal (and

dual) variables down to the scalar level and update them in parallel, even when the quadratic

constraints are non-separable; second, when implementing the algorithm, only the related

columns of all the Hessian matrices need to be stored locally, instead of the entire matrices on

each of computing unit in a parallel computing setting; third, our algorithm does not need

any matrix decomposition (unlike any semi-definite-programming-based approach), which

can improve the algorithm’s robustness, especially when solving convex QCQPs with PSD

matrices, as demonstrated in our numerical experiments summarized in Table 3.5 . The

second and the third feature together make our algorithm particularly suitable to solve

extreme-scale QCQPs, which likely will cause memory issues for other algorithms.

In addition to the scalability of the PC2PM algorithm, its ability to solve non-separable,

quadratically constrained problems in Jacobi-fashion should also be emphasized, as in general

it is very difficult to design distributed algorithms with Jacobi-style update (as opposed

to the sequential Gauss-Seidel update) to solve optimization problems with non-separable

constraints. Whether the algorithm idea from PC2PM can be extended to solve more general

84

convex problems is certainly worth of exploring. There are several other lines of research that

can be done to improve the current work. First, while we proved convergence of PC2PM,

we cannot prove its convergence rate as of now. The numerical results in Figure 3.3 suggest

that the convergence rate is likely to be linear, but whether this is true for QCQPs with PSD

Hessian matrix in the objective function is unknown. Second, while the parallel updating of

the primal variables is a nice property of PC2PM, it is still a synchronous algorithm in the

sense that the algorithm needs to wait for all primal and dual updates to be done before it

can move to the next iteration. An asynchronous implementation of the algorithm will no

doubt make it even more suitable for distributed computing, and we defer it to our future

work. Third, there have been increasing works on solving large-scale non-convex QCQPs.

As mentioned in the introduction section, one algorithm idea is to solve it with a sequence

of convexified QCQPs, where our algorithm is then applicable. This naturally leads to an

algorithm with nested loops, where the outer loop lays out sequential convexification, and the

inner loop invokes our algorithm. It would be interesting to see how such a nested algorithm

performs in practice, especially with large-scale problems.

3.7 Proofs in Section 3.3

3.7.1 Proof of Proposition 3.3.3

We first prove the inequality (3.17). Consider the linear approximation of the Lagrangian

function of a QCQP, as defined in (3.14), with a given point ζk ≡ (xk, λk, γk). Let ẑ =

(yk+1, vk+1), the (k + 1)-th iteration of the primal predictor of xk and uk in the PC2PM

algorithm, as given in (3.8a) and (3.10a), respectively. By Lemma 3.3.1 , we know that ẑ is

the unique minimizer of the corresponding proximal minimization problem in (3.15b). By

defining z̄ = (xk, uk) and z = (xk+1, uk+1), and using Lemma 2.2.1 , we have that

2ρk+1

R(ẑ; ζk)−R(z; ζk)
 ≤ ‖z̄− z‖2

2 − ‖ẑ− z‖2
2 − ‖ẑ− z̄‖2

2,

85

which leads to the following expanded inequality

2ρk+1

(P0xk + q0)T yk+1 + cT
0 vk+1 + r0

+
m1∑
i=1

λk
i

[
(Pixk + qi)T yk+1 + cT

i vk+1 + ri
]

+ (γk)T (Ayk+1 + Bvk+1 − b)


−2ρk+1

(P0xk + q0)T xk+1 + cT
0 uk+1 + r0

+
m1∑
i=1

λk
i

[
(Pixk + qi)T xk+1 + cT

i uk+1 + ri
]

+ (γk)T (Axk+1 + Buk+1 − b)


≤
(
‖xk − xk+1‖2

2 + ‖uk − uk+1‖2
2

)

−
(
‖yk+1 + xk+1‖2

2 + ‖vk+1 − uk+1‖2
2

− (‖yk+1 − xk‖2
2 + ‖vk+1 − uk‖2

2

)
. (3.39)

Now consider the R function at a different given point ζk+1 ≡ (yk+1,µk+1,νk+1). With a

slight abuse of notation, we now let ẑ = (xk+1, uk+1), the primal correctors at the (k + 1)-th

iteration of the PC2PM algorithm. Also letting z = (x∗, u∗), but keeping z̄ = (xk, uk), by

(3.15c) in Lemma 3.3.1 and Lemma 2.2.1 , we have that:

2ρk+1

R(ẑ; ζk+1)−R(z; ζk+1)
 ≤ ‖z̄− z‖2

2 − ‖ẑ− z‖2
2 − ‖ẑ− z̄‖2

2,

which leads to the following expanded inequality

2ρk+1

(P0yk+1 + q0)T xk+1 + cT
0 uk+1 + r0

+
m1∑
i=1

µk+1
i

[
(Piyk+1 + qi)T xk+1 + cT

i uk+1 + ri
]

+ (νk+1)T (Axk+1 + Buk+1 − b)



86

−2ρk+1

(P0yk+1 + q0)T x∗ + cT
0 u∗ + r0

+
m1∑
i=1

µk+1
i

[
(Piyk+1 + qi)T x∗ + cT

i u∗ + ri
]

+ (νk+1)T (Ax∗ + Bu∗ − b)


≤
(
‖xk − x∗‖2

2 + ‖uk − u∗‖2
2

)

−
(
‖xk+1 − x∗‖2

2 + ‖uk+1 − u∗‖2
2

)
−
(
‖xk+1 − xk‖2

2 + ‖uk+1 − uk‖2
2

)
. (3.40)

The final piece to derive inequality (3.17) is to utilize Lemma 3.3.2 . Let (x∗,u∗,λ∗,γ∗) be a

saddle point of QCQP (3.2), and again, ζk+1 = (yk+1, µk+1, νk+1). By Lemma 3.3.2 , we have

that
R(x∗, u∗; ζk+1)−R(yk+1, vk+1; ζk+1)

≤
m∑

i=1

[
(λ∗

i − µk+1
i)

(
1
2yk+1T

Piyk+1 + qT
i yk+1 + cT

i vk+1 + ri

)]

+(γ∗ − νk+1)T (Ayk+1 + Bvk+1 − b).

Multiplying both sides by 2ρk+1 and expanding the R function, we have that

2ρk+1

(P0yk+1 + q0)T x∗ + cT
0 u∗ + r0

+
m∑

i=1
µk+1

i

[
(Piyk+1 + qi)T x∗ + cT

i u∗ + ri
]

+ (νk+1)T (Ax∗ + Bu∗ − b)


−2ρk+1

(P0yk+1 + q0)T yk+1 + cT
0 vk+1 + r0

+
m∑

i=1
µk+1

i

[
(Piyk+1 + qi)T yk+1 + cT

i vk+1 + ri
]

+ (νk+1)T (Ayk+1 + Bvk+1 − b)



87

≤ 2ρk+1


m∑

i=1
(λ∗

i − µk+1
i)

[1
2(yk+1)T Piyk+1 + qT

i yk+1 + cT
i vk+1 + ri

]

+ (γ∗ − νk+1)T (Ayk+1 + Bvk+1 − b)

. (3.41)

Adding the three inequalities (3.39), (3.40) and (3.41) yields the inequality (3.17) in Propo-

sition 3.3.3 .

To prove the second inequality, (3.18), in Proposition 3.3.3 , we use a similar approach

as above, just replacing the linear approximation function R with the original Lagrangian

function L. More specifically, let ẑ = (µk+1, νk+1). By (3.15a) in Lemma 3.3.1 , we know

that

ẑ := (µk+1, νk+1)

= argmin
λ∈Rm1

+ , γ∈Rm2
− L(xk, uk, λ, γ) + 1

2ρk+1‖λ− λk‖2
2 + 1

2ρk+1‖γ − γk‖2
2.

Letting z̄ = (λk, γk) and choosing a specific z = (λk+1, γk+1), we use Lemma 2.2.1 to obtain

that

2ρk+1

(− L(xk, uk; ẑ)
)
−

− L(xk, uk; z)
 ≤ ‖z̄− z‖2

2 − ‖ẑ− z‖2
2 − ‖ẑ− z̄‖2

2,

which yields the following expanded inequality:

2ρk+1


m1∑
i=1

(λk+1
i − µk+1

i)
[

1
2(xk)T Pixk + qT

0 xk + cT
0 uk + ri

]

+ (γk+1 − νk+1)T (Axk + Buk − b)


≤
(
‖λk − λk+1‖2

2 + ‖γk − γk+1‖2
2

)
−
(
‖µk+1 − λk+1‖2

2 + ‖νk+1 − γk+1‖2
2

)
−
(
‖µk+1 − λk‖2

2 + ‖νk+1 − γk‖2
2

)
.

(3.42)

88

Similarly, again with some abuse of notation, letting ẑ = (λk+1, γk+1), by (3.15d) in Lemma

 3.3.1 , we have that

ẑ := (λk+1, γk+1)

= argmin
λ∈Rm1

+ , γ∈Rm2
− L(yk+1, vk+1, λ, γ) + 1

2ρk+1‖λ− λk‖2
2 + 1

2ρk+1‖γ − γk‖2
2.

By choosing z to be (λ∗, γ∗), while keeping z̄ at (λk, γk), we have from Lemma 2.2.1 that

2ρk+1

(− L(yk+1, vk+1; ẑ)
)
−

− L(yk+1, vk+1; z)


≤ ‖z̄− z‖2
2 − ‖ẑ− z‖2

2 − ‖ẑ− z̄‖2
2,

which yields the following expanded inequality:

2ρk+1


m1∑
i=1

(λ∗
i − λk+1

i)
[

1
2(yk+1)T Piyk+1 + qT

0 yk+1 + cT
0 vk+1 + ri

]

+ (γ∗ − γk+1)T (Ayk+1 + Bvk+1 − b)


≤
(
‖λk − λ∗‖2

2 + ‖γk − γ∗‖2
2

)
−
(
‖λk+1 − λ∗‖2

2 + ‖γk+1 − γ∗‖2
2

)
−
(
‖λk+1 − λk‖2

2 + ‖γk+1 − γk‖2
2

)
. (3.43)

Adding the two inequalities (3.42) and (3.43) leads to the second inequality, (3.18), in Propo-

sition 3.3.3 .

�

3.7.2 Proof of Theorem 3.3.4

By adding the two inequalities (3.17) and (3.18) in Proposition 3.3.3 , we have that

‖xk+1 − x∗‖2
2 + ‖uk+1 − u∗‖2

2 + ‖λk+1 − λ∗‖2
2 + ‖γk+1 − γ∗‖2

2

≤ ‖xk − x∗‖2
2 + ‖uk − u∗‖2

2 + ‖λk − λ∗‖2
2 + ‖γk − γ∗‖2

2

−
(
‖yk+1 − xk+1‖2

2 + ‖vk+1 − uk+1‖2
2 + ‖yk+1 − xk‖2

2 + ‖vk+1 − uk‖2
2

)

89

−
(
‖µk+1 − λk+1‖2

2 + ‖νk+1 − γk+1‖2
2 + ‖µk+1 − λk‖2

2 + ‖νk+1 − γk‖2
2

)
+ 2ρk+1(yk+1 − xk+1)T P0(yk+1 − xk)︸ ︷︷ ︸

(a)

+
m1∑
i=1

2ρk+1µk+1
i (yk+1 − xk+1)T Pi(yk+1 − xk)︸ ︷︷ ︸

(b)i

+ 2ρk+1
m1∑
i=1

(λk+1
i − µk+1

i)
[1
2(yk+1)T Piyk+1 − 1

2(xk)T Pixk
]

︸ ︷︷ ︸
(c)

+ 2ρk+1
m1∑
i=1

(λk+1
i − µk+1

i)qT
i (yk+1 − xk)︸ ︷︷ ︸

(d)

+ 2ρk+1
m1∑
i=1

(µk+1
i − λk

i)qT
i (yk+1 − xk+1)︸ ︷︷ ︸

(e)

+ 2ρk+1
m1∑
i=1

(µk+1
i − λk

i)(Pixk)T (yk+1 − xk+1)︸ ︷︷ ︸
(f)

+ 2ρk+1
m1∑
i=1

(λk+1
i − µk+1

i)cT
i (vk+1 − uk)︸ ︷︷ ︸

(g)

+ 2ρk+1
m1∑
i=1

(µk+1
i − λk

i)cT
i (vk+1 − uk+1)︸ ︷︷ ︸

(h)

+ 2ρk+1(γk+1 − νk+1)T A(yk+1 − xk)︸ ︷︷ ︸
(i)

+ 2ρk+1(νk+1 − γk)T A(yk+1 − xk+1)︸ ︷︷ ︸
(j)

+ 2ρk+1(γk+1 − νk+1)T B(vk+1 − uk)︸ ︷︷ ︸
(k)

+ 2ρk+1(νk+1 − γk)T B(vk+1 − uk+1)︸ ︷︷ ︸
(l)

(3.44)

Next, we establish an upper bound for each term of the term from (a) to (l) in (3.44) using

the adaptive step size ρk+1 = ρ(xk, uk, λk, γk), as defined in (3.19).

(a) First, we want to show that

(a) ≤ ε1

(
‖yk+1 − xk+1‖2

2 + ‖yk+1 − xk‖2
2

)
. (3.45)

90

To prove this (and several inequalities below), we first restate the Young’s inequality:

given any two vectors z1, z2 ∈ Rn, we have

zT
1 z2 ≤

n∑
j=1

[
1
2

(1
δ

z1j

)2
+ 1

2

(
δz2j

)2
]

= 1
2δ2‖z1‖2

2 + δ2

2 ‖z2‖2
2. (3.46)

Applying (3.46) on (a) yields

(a) ≤2ρk+1
(1

2δ2‖y
k+1 − xk+1‖2

2 + δ2

2 ‖P0(yk+1 − xk)‖2
2

)
≤2ρk+1

(1
2δ2‖y

k+1 − xk+1‖2
2 + δ2

2 |||P0|||22‖y
k+1 − xk‖2

2

)
≤2ρk+1

(1
2δ2‖y

k+1 − xk+1‖2
2 + δ2

2 ‖P0‖2
F‖yk+1 − xk‖2

2

)
.

(3.47)

The second inequality holds due to the property that given a matrix A ∈ Rm×n and

a vector z ∈ Rn, ‖Az‖2 ≤ |||A|||2‖z‖2 (see Theorem 5.6.2 in [38]), where we use the

notation |||·|||2 to denote the matrix norm |||A|||2 := sup
z 6=0

‖Az‖2
‖z‖2

. The last inequality holds

due to the property |||A|||2 ≤ ‖A‖F [39], where ‖A‖F :=
(∑m

i=1
∑n

j=1|Aij|2
) 1

2 denotes

the Frobenius norm.

From (3.47), if ‖P0‖F 6= 0, then letting δ2 = 1
‖P0‖F

yields

(a) ≤ ρk+1‖P0‖F

(
‖yk+1 − xk+1‖2

2 + ‖yk+1 − xk‖2
2

)
. (3.48)

Since ρk+1 ≤ ρ1 = ε1
‖P0‖F

, we obtain (3.45). If, on the other hand, ‖P0‖F = 0, then

letting δ2 = 1 yields

(a) ≤ ρk+1
(
‖yk+1 − xk+1‖2

2 + ‖yk+1 − xk‖2
2

)
. (3.49)

Since ρk+1 ≤ ρ1 = ε1, (3.45) is also obtained.

(b) Here we want to show that

m1∑
i=1

(b)i ≤ ε2

(
‖yk+1 − xk+1‖2

2 + ‖yk+1 − xk‖2
2

)
. (3.50)

91

Applying (3.46) on each term (b)i yields

(b)i ≤2ρk+1µk+1
i

(1
2δ2

i
‖yk+1 − xk+1‖2

2 + δ2
i
2 |||Pi|||22‖y

k+1 − xk‖2
2

)

≤2ρk+1µk+1
i

(1
2δ2

i
‖yk+1 − xk+1‖2

2 + δ2
i
2 ‖Pi‖2

F‖yk+1 − xk‖2
2

)
.

(3.51)

• If ‖Pi‖F 6= 0, then letting δ2
i = 1

‖Pi‖F
yields

(b)i ≤ρk+1µk+1
i ‖Pi‖F

(
‖yk+1 − xk+1‖2

2 + ‖yk+1 − xk‖2
2

)
≤ρk+1µ̃k+1

i ‖Pi‖F

(
‖yk+1 − xk+1‖2

2 + ‖yk+1 − xk‖2
2

)
,

(3.52)

where µ̃k+1
i := λk

i + ρk+1|12(xk)T Pixk + qT
i xk + cT

i uk + ri| ≥ µk+1
i . If we can bound

ρk+1µ̃k+1
i ≤ ε2

m1‖Pi‖F
, then we can achieve

(b)i ≤
ε2

m1

(
‖yk+1 − xk+1‖2

2 + ‖yk+1 − xk‖2
2

)
. (3.53)

By substituting ai = |12(xk)T Pixk + qT
i xk + cT

i uk + ri| ≥ 0, bi = λk
i ≥ 0 and

ci = ε2
m1‖Pi‖F

> 0, we can rewrite ρk+1µ̃k+1
i − ε2

m1‖Pi‖F
as ai(ρk+1)2 + biρ

k+1 − ci,

which is simply a quadratic function of ρk+1 with parameters ai, bi and ci. To

bound ρk+1µ̃k+1
i ≤ ε2

m1‖Pi‖F
is equivalent to find proper values of ρk+1 that keep

the quadratic function stay below zero.

– If ai = 0 and bi = 0, then ρk+1 ∈ (0, +∞).

– If ai = 0 and bi > 0, then ρk+1 ∈ (0, ci
bi

].

– If ai > 0, then ρk+1 ∈ (0,
−bi+

√
b2

i +4aici
2ai

].

Since ρk+1 ≤ ρ2(xk, uk, λk) ≤ ρ2i(xk, uk, λk), it satisfies all the above three con-

ditions, we then obtain (3.53), and hence (3.50).

• If ‖Pi‖F = 0, then letting δ2
i = 1 yields

(b)i ≤ρk+1µk+1
i

(
‖yk+1 − xk+1‖2

2 + ‖yk+1 − xk‖2
2

)
≤ρk+1µ̃k+1

i

(
‖yk+1 − xk+1‖2

2 + ‖yk+1 − xk‖2
2

)
.

(3.54)

92

Similarly, if we can bound ρk+1µ̃k+1
i ≤ ε2

m1
, then we can also achieve (3.53). By

substituting ai = |12(xk)T Pixk+qT
i xk+cT

i uk+ri| ≥ 0, bi = λk
i ≥ 0 and ci = ε2

m1
> 0,

we can rewrite ρk+1µ̃k+1
i − ε2

m1
as ai(ρk+1)2 + biρ

k+1 − ci. The same analysis can

be followed as discussed in the case of ‖Pi‖F 6= 0.

(c) Next, we want to show that

(c) ≤ ε3

(
‖λk+1 − µk+1‖2

2 + ‖yk+1 − xk‖2
2

)
. (3.55)

By using P to denote


P1...

Pm1

, we can rewrite

(c) = ρk+1
{

(λk+1 − µk+1)T
[
Im1×m1 ⊗ (xk + yk+1)T

]
P (yk+1 − xk)

}
, (3.56)

where ⊗ denotes the Kronecker product; that is, given a matrix A ∈ Rm1×n1 and a

matrix B ∈ Rm2×n2 , A ⊗ B :=


a11B · · · a1m1B

... ...
am11B · · · am1n1B

. Applying (3.46) to (3.56)

yields

(c) ≤ ρk+1
(1

2δ2‖λ
k+1 − µk+1‖2

2

+ δ2

2
∣∣∣∣∣∣∣∣∣Im1×m1 ⊗ (xk + yk+1)T

∣∣∣∣∣∣∣∣∣2
2
|||P |||22‖y

k+1 − xk‖2
2

)
≤ ρk+1

(1
2δ2‖λ

k+1 − µk+1‖2
2 + δ2

2 ‖x
k + yk+1‖2

2‖P‖2
F‖yk+1 − xk‖2

2

)
.

(3.57)

Since we have the property that |||A⊗B|||2 = |||A|||2|||B|||2 (see Theorem 8 in [40]), the

last inequality holds due to

∣∣∣∣∣∣∣∣∣Im1×m1 ⊗ (xk + yk+1)T
∣∣∣∣∣∣∣∣∣2

2
= |||Im1×m1|||

2
2

∣∣∣∣∣∣∣∣∣(xk + yk+1)T
∣∣∣∣∣∣∣∣∣2

2
,

together with |||Im1×m1|||2 = 1 and
∣∣∣∣∣∣∣∣∣(xk + yk+1)T

∣∣∣∣∣∣∣∣∣
2
≤ ‖(xk +yk+1)T‖F = ‖xk +yk+1‖2.

Note that ‖P‖F 6= 0, otherwise the QCQP is simply a QP.

93

• If ‖xk + yk+1‖2 6= 0, then letting δ2 = 1
‖xk+yk+1‖2‖P ‖F

yields

(c) ≤1
2ρk+1‖xk + yk+1‖2‖P‖F

(
‖λk+1 − µk+1‖2

2 + ‖yk+1 − xk‖2
2

)
≤1

2ρk+1‖xk + ỹk+1‖2‖P‖F

(
‖λk+1 − µk+1‖2

2 + ‖yk+1 − xk‖2
2

)
,

(3.58)

where ỹk+1
j := xk

j +ρ

∣∣∣∣[P0xk +q0 +∑m1
i=1 λk

i

(
Pixk +qi

)
+AT γk

]
j

∣∣∣∣ ≥ yk+1
j . If we can

bound ρk+1‖xk + ỹk+1‖2 ≤ 2ε3
‖P T ‖F

, then (3.55) can be obtained. We first bound

ρk+1‖xk + ỹk+1‖2 −
2ε3

‖P‖F

≤ρk+1
[
2‖xk‖2 + ρk+1‖P0xk + q0 +

m1∑
i=1

λk
i

(
Pixk + qi

)
+ AT γk‖2

]

− 2ε3

‖P‖F

.

(3.59)

By substituting a = ‖P0xk+q0+∑m1
i=1 λk

i

(
Pixk+qi

)
+AT γk‖2 ≥ 0, b = 2‖xk‖2 ≥ 0

and c = 2ε3
‖P ‖F

> 0, we can bound ρk+1‖xk+ỹk+1‖2− 2ε3
‖P ‖F

using a(ρk+1)2+bρk+1−c,

which is simply a quadratic function of ρk+1 with parameters a, b and c. Bounding

ρk+1‖xk + ỹk+1‖2 ≤ 2ε3
‖P ‖F

can be guaranteed by finding the proper values of ρk+1

that keep the quadratic function stay below zero.

– If a = 0 and b = 0, then ρk+1 ∈ (0, +∞).

– If a = 0 and b > 0, then ρk+1 ∈ (0, c
b
].

– If a > 0, then ρk+1 ∈ (0, −b+
√

b2+4ac
2a

].

Since ρk+1 ≤ ρ3(xk, λk, γk), it satisfies all the above three conditions, we obtain

(3.55).

• If ‖xk + yk+1‖2 = 0, then letting δ2 = 1 yields

(c) ≤ 1
2ρk+1

(
‖λk+1 − µk+1‖2

2 + ‖yk+1 − xk‖2
2

)
(3.60)

Since ρk+1 ≤ ρ3(xk, λk, γk) ≤ 2ε3, (3.55) is also obtained.

94

(d) To show that

(d) ≤ ε4

(
‖λk+1 − µk+1‖2

2 + ‖yk+1 − xk‖2
2

)
, (3.61)

by letting Q =


qT

1...
qT

m1

, we can rewrite that

(d) = 2ρk+1
[
(λk+1 − µk+1)T QT (yk+1 − xk)

]
. (3.62)

Applying (3.46) to (3.62) yields

(d) ≤2ρk+1
(1

2δ2‖λ
k+1 − µk+1‖2

2 + δ2

2 |||Q|||
2
2‖y

k+1 − xk‖2
2

)
≤2ρk+1

(1
2δ2‖λ

k+1 − µk+1‖2
2 + δ2

2 ‖Q‖
2
F‖yk+1 − xk‖2

2

)
.

(3.63)

• If ‖Q‖F 6= 0, then letting δ2 = 1
‖Q‖F

yields

(d) ≤ ρk+1‖Q‖F

(
‖λk+1 − µk+1‖2

2 + ‖yk+1 − xk‖2
2

)
. (3.64)

Since ρk+1 ≤ ρ4 = ε4
‖Q‖F

, we obtain (3.61).

• If ‖Q‖F = 0, then letting δ2 = 1 yields

(d) ≤ ρk+1
(
‖λk+1 − µk+1‖2

2 + ‖yk+1 − xk‖2
2

)
. (3.65)

Since ρk+1 ≤ ρ4 = ε4, (3.61) is also obtained.

(e) Similarly, to show

(e) ≤ ε4

(
‖µk+1 − λk‖2

2 + ‖yk+1 − xk+1‖2
2

)
, (3.66)

we can rewrite that

(e) = 2ρk+1
[
(µk+1 − λk)T Q(yk+1 − xk+1)

]
. (3.67)

95

Applying (3.46) to (3.67) yields that

(e) ≤2ρk+1
(1

2δ2‖µ
k+1 − λk‖2

2 + δ2

2 |||Q|||
2
2‖y

k+1 − xk+1‖2
2

)
≤2ρk+1

(1
2δ2‖µ

k+1 − λk‖2
2 + δ2

2 ‖Q‖
2
F‖yk+1 − xk+1‖2

2

)
.

(3.68)

• If ‖Q‖F 6= 0, then letting δ2 = 1
‖Q‖F

yields

(e) ≤ ρk+1‖Q‖F

(
‖µk+1 − λk‖2

2 + ‖yk+1 − xk+1‖2
2

)
. (3.69)

Since ρk+1 ≤ ρ4 = ε4
‖Q‖F

, we obtain (3.66).

• If ‖Q‖F = 0, then letting δ2 = 1 yields

(e) ≤ ρk+1
(
‖µk+1 − λk‖2

2 + ‖yk+1 − xk+1‖2
2

)
. (3.70)

Since ρk+1 ≤ ρ4 = ε4, (3.66) is also obtained.

(f) To show

(f) ≤ ε5

(
‖µk+1 − λk‖2

2 + ‖yk+1 − xk+1‖2
2

)
, (3.71)

we can rewrite

(f) = 2ρk+1
{

(µk+1 − λk)T
[
Im1×m1 ⊗ (xk)T

]
P (yk+1 − xk+1)

}
. (3.72)

Applying (3.46), we have that

(f) ≤2ρk+1
(1

2δ2‖µ
k+1 − λk‖2

2

+ δ2

2
∣∣∣∣∣∣∣∣∣Im1×m1 ⊗ (xk)T

∣∣∣∣∣∣∣∣∣2
2
|||P |||22‖y

k+1 − xk+1‖2
2

)
≤2ρk+1

(1
2δ2‖µ

k+1 − λk‖2
2 + δ2

2 ‖x
k‖2

2‖P‖2
F‖yk+1 − xk+1‖2

2

)
.

(3.73)

Similarly, the last inequality holds due to

∣∣∣∣∣∣∣∣∣Im1×m1 ⊗ (xk)T
∣∣∣∣∣∣∣∣∣2

2
= |||Im1×m1|||

2
2

∣∣∣∣∣∣∣∣∣(xk)T
∣∣∣∣∣∣∣∣∣2

2
.

96

• If ‖xk‖2 6= 0, then letting δ2 = 1
‖xk‖2‖P ‖F

yields

(f) ≤ ρk+1‖xk‖2‖P‖F

(
‖µk+1 − λk‖2

2 + ‖yk+1 − xk+1‖2
2

)
. (3.74)

Since ρk+1 ≤ ρ5(xk) = ε5
‖xk‖2‖P ‖F

, we obtain (3.71).

• If ‖xk‖2 = 0, then letting δ2 = 1 yields

(f) ≤ ρk+1
(
‖µk+1 − λk‖2

2 + ‖yk+1 − xk+1‖2
2

)
. (3.75)

Since ρk+1 ≤ ρ5(xk) = ε5, (3.71) is also obtained.

(g) To show

(g) ≤ ε6

(
‖λk+1 − µk+1‖2

2 + ‖vk+1 − uk‖2
2

)
, (3.76)

By letting C =


cT

1...
cT

m2

, we can rewrite

(g) = 2ρk+1
[
(λk+1 − µk+1)T C(vk+1 − uk)

]
. (3.77)

Applying (3.46), we have that

(g) ≤2ρk+1
(1

2δ2‖λ
k+1 − µk+1‖2

2 + δ2

2 |||C|||
2
2‖v

k+1 − uk‖2
2

)
≤2ρk+1

(1
2δ2‖λ

k+1 − µk+1‖2
2 + δ2

2 ‖C‖
2
F‖vk+1 − uk‖2

2

)
.

(3.78)

• If ‖C‖F 6= 0, then letting δ2 = 1
‖C‖F

yields

(g) ≤ ρk+1‖C‖F

(
‖λk+1 − µk+1‖2

2 + ‖vk+1 − uk‖2
2

)
. (3.79)

Since ρk+1 ≤ ρ6 = ε6
‖C‖F

, we obtain (3.76).

97

• If ‖C‖F = 0, then letting δ2 = 1 yields

(g) ≤ ρk+1
(
‖λk+1 − µk+1‖2

2 + ‖vk+1 − uk‖2
2

)
. (3.80)

Since ρk+1 ≤ ρ6 = ε6, (3.76) is also obtained.

(h) Next, we want to show that

(h) ≤ ε6

(
‖µk+1 − λk‖2

2 + ‖vk+1 − uk+1‖2
2

)
. (3.81)

Similarly, we can rewrite

(h) = 2ρk+1
[
(µk+1 − λk)T C(vk+1 − uk+1)

]
. (3.82)

Applying (3.46) on the above equality leads to

(h) ≤2ρk+1
(1

2δ2‖µ
k+1 − λk‖2

2 + δ2

2 |||C|||
2
2‖v

k+1 − uk+1‖2
2

)
≤2ρk+1

(1
2δ2‖µ

k+1 − λk‖2
2 + δ2

2 ‖C‖
2
F‖vk+1 − uk+1‖2

2

)
.

(3.83)

• If ‖C‖F 6= 0, then letting δ2 = 1
‖C‖F

yields

(h) ≤ ρk+1‖C‖F

(
‖µk+1 − λk‖2

2 + ‖vk+1 − uk+1‖2
2

)
. (3.84)

Since ρk+1 ≤ ρ6 = ε6
‖C‖F

, we obtain (3.81).

• If ‖C‖F = 0, then letting δ2 = 1 yields

(h) ≤ ρk+1
(
‖µk+1 − λk‖2

2 + ‖vk+1 − uk+1‖2
2

)
. (3.85)

Since ρk+1 ≤ ρ6 = ε6, (3.81) is also obtained.

(i) To show

(i) ≤ ε7

(
‖γk+1 − νk+1‖2

2 + ‖yk+1 − xk‖2
2

)
, (3.86)

98

we apply (3.46) on the rewriting of (i), which leads to

(i) ≤2ρk+1
(1

2δ2‖γ
k+1 − νk+1‖2

2 + δ2

2 |||A|||
2
2‖y

k+1 − xk‖2
2

)
≤2ρk+1

(1
2δ2‖γ

k+1 − νk+1‖2
2 + δ2

2 ‖A‖
2
F‖yk+1 − xk‖2

2

)
.

(3.87)

• If ‖A‖F 6= 0, then letting δ2 = 1
‖A‖F

yields

(i) ≤ ρk+1‖A‖F

(
‖γk+1 − νk+1‖2

2 + ‖yk+1 − xk‖2
2

)
. (3.88)

Since ρk+1 ≤ ρ7 = ε7
‖A‖F

, we obtain (3.86).

• If ‖A‖F = 0, then letting δ2 = 1 yields

(i) ≤ ρk+1
(
‖γk+1 − νk+1‖2

2 + ‖yk+1 − xk‖2
2

)
. (3.89)

Since ρk+1 ≤ ρ7 = ε7, (3.86) is also obtained.

(j) Similarly, to show

(j) ≤ ε7

(
‖νk+1 − γk‖2

2 + ‖yk+1 − xk+1‖2
2

)
. (3.90)

we apply (3.46) on the rewriting of (j), which yields

(j) ≤2ρk+1
(1

2δ2‖ν
k+1 − γk‖2

2 + δ2

2 |||A|||
2
2‖y

k+1 − xk+1‖2
2

)
≤2ρk+1

(1
2δ2‖ν

k+1 − γk‖2
2 + δ2

2 ‖A‖
2
F‖yk+1 − xk+1‖2

2

)
.

(3.91)

• If ‖A‖F 6= 0, then letting δ2 = 1
‖A‖F

yields

(j) ≤ ρk+1‖A‖F

(
‖νk+1 − γk‖2

2 + ‖yk+1 − xk+1‖2
2

)
. (3.92)

Since ρk+1 ≤ ρ7 = ε7
‖A‖F

, we obtain (3.90).

99

• If ‖A‖F = 0, then letting δ2 = 1 yields

(j) ≤ ρk+1
(
‖νk+1 − γk‖2

2 + ‖yk+1 − xk+1‖2
2

)
. (3.93)

Since ρk+1 ≤ ρ7 = ε7, (3.90) is also obtained.

(k) Next, to show

(k) ≤ ε8

(
‖γk+1 − νk+1‖2

2 + ‖vk+1 − uk‖2
2

)
, (3.94)

we apply (3.46) on the rewriting of (k):

(k) ≤2ρk+1
(1

2δ2‖γ
k+1 − νk+1‖2

2 + δ2

2 |||B|||
2
2‖v

k+1 − uk‖2
2

)
≤2ρk+1

(1
2δ2‖γ

k+1 − νk+1‖2
2 + δ2

2 ‖B‖
2
F‖vk+1 − uk‖2

2

)
.

(3.95)

• If ‖B‖F 6= 0, then letting δ2 = 1
‖B‖F

yields

(k) ≤ ρk+1‖B‖F

(
‖γk+1 − νk+1‖2

2 + ‖vk+1 − uk‖2
2

)
. (3.96)

Since ρk+1 ≤ ρ8 = ε8
‖B‖F

, we obtain (3.94).

• If ‖B‖F = 0, then letting δ2 = 1 yields

(k) ≤ ρk+1
(
‖γk+1 − νk+1‖2

2 + ‖vk+1 − uk‖2
2

)
. (3.97)

Since ρk+1 ≤ ρ8 = ε8, (3.94) is also obtained.

(l) Last, to show

(l) ≤ ε8

(
‖νk+1 − γk‖2

2 + ‖vk+1 − uk+1‖2
2

)
, (3.98)

we apply (3.46) on the rewriting of (l):

(l) ≤2ρk+1
(1

2δ2‖ν
k+1 − γk‖2

2 + δ2

2 |||B|||
2
2‖v

k+1 − uk+1‖2
2

)
≤2ρk+1

(1
2δ2‖ν

k+1 − γk‖2
2 + δ2

2 ‖B‖
2
F‖vk+1 − uk+1‖2

2

)
.

(3.99)

100

• If ‖B‖F 6= 0, then letting δ2 = 1
‖B‖F

yields

(l) ≤ ρk+1‖B‖F

(
‖νk+1 − γk‖2

2 + ‖vk+1 − uk+1‖2
2

)
. (3.100)

Since ρk+1 ≤ ρ8 = ε8
‖B‖F

, we obtain (3.98).

• If ‖B‖F = 0, then letting δ2 = 1 yields

(l) ≤ ρk+1
(
‖νk+1 − γk‖2

2 + ‖vk+1 − uk+1‖2
2

)
. (3.101)

Since ρk+1 ≤ ρ8 = ε8, (3.98) is also obtained.

The summation of terms (a) to (l) can now be bounded as:

(a) +
m1∑
i=1

(b)i + (c) + (d) + (e) + (f) + (g) + (h) + (i) + (j) + (k) + (l)

≤(ε1 + ε2 + ε4 + ε5 + ε7)‖yk+1 − xk+1‖2
2

+(ε1 + ε2 + ε3 + ε4 + ε7)‖yk+1 − xk‖2
2

+(ε6 + ε8)‖vk+1 − uk+1‖2
2 + (ε6 + ε8)‖vk+1 − uk‖2

2

+(ε3 + ε4 + ε6)‖µk+1 − λk+1‖2
2 + (ε4 + ε5 + ε6)‖µk+1 − λk‖2

2

+(ε7 + ε8)‖νk+1 − γk+1‖2
2 + (ε7 + ε8)‖νk+1 − γk‖2

2

≤(
8∑

s=1
εs)
[
‖yk+1 − xk+1‖2

2 + ‖yk+1 − xk‖2
2

+ ‖vk+1 − uk+1‖2
2 + ‖vk+1 − uk‖2

2

+ ‖µk+1 − λk+1‖2
2 + ‖µk+1 − λk‖2

2

+ ‖νk+1 − γk+1‖2
2 + ‖νk+1 − γk‖2

2

]
≤(1− ε0)

[
‖yk+1 − xk+1‖2

2 + ‖yk+1 − xk‖2
2

+ ‖vk+1 − uk+1‖2
2 + ‖vk+1 − uk‖2

2

+ ‖µk+1 − λk+1‖2
2 + ‖µk+1 − λk‖2

2

+ ‖νk+1 − γk+1‖2
2 + ‖νk+1 − γk‖2

2

]
. (3.102)

101

Substituting it back into (3.44), we have that for all k ≥ 0,

‖xk+1 − x∗‖2
2 + ‖uk+1 − u∗‖2

2 + ‖λk+1 − λ∗‖2
2 + ‖γk+1 − γ∗‖2

2

≤‖xk − x∗‖2
2 + ‖uk − u∗‖2

2 + ‖λk − λ∗‖2
2 + ‖γk − γ∗‖2

2

−ε0

[
‖yk+1 − xk+1‖2

2 + ‖yk+1 − xk‖2
2 + ‖vk+1 − uk+1‖2

2 + ‖vk+1 − uk‖2
2

+‖µk+1 − λk+1‖2
2 + ‖µk+1 − λk‖2

2 + ‖νk+1 − γk+1‖2
2 + ‖νk+1 − γk‖2

2

]
, (3.103)

which implies for all k ≥ 0:

0 ≤‖xk+1 − x∗‖2
2 + ‖uk+1 − u∗‖2

2 + ‖λk+1 − λ∗‖2
2 + ‖γk+1 − γ∗‖2

2

≤‖xk − x∗‖2
2 + ‖uk − u∗‖2

2 + ‖λk − λ∗‖2
2 + ‖γk − γ∗‖2

2

≤‖xk−1 − x∗‖2
2 + ‖uk−1 − u∗‖2

2 + ‖λk−1 − λ∗‖2
2 + ‖γk−1 − γ∗‖2

2

≤ · · · ≤ ‖x0 − x∗‖2
2 + ‖u0 − u∗‖2

2 + ‖λ0 − λ∗‖2
2 + ‖γ0 − γ∗‖2

2. (3.104)

It further implies that the sequence {‖xk−x∗‖2
2 + ‖uk−u∗‖2

2 + ‖λk−λ∗‖2
2 + ‖γk−γ∗‖2

2} is

monotonically decreasing and bounded below by 0; hence the sequence must be convergent

to a limit, denoted by ξ:

lim
k→+∞

‖xk − x∗‖2
2 + ‖uk − u∗‖2

2 + ‖λk − λ∗‖2
2 + ‖γk − γ∗‖2

2 = ξ. (3.105)

Taking the limit on both sides of (3.103) yields:

lim
k→+∞

‖yk+1 − xk+1‖2
2 = 0, lim

k→+∞
‖yk+1 − xk‖2

2 = 0,

lim
k→+∞

‖vk+1 − uk+1‖2
2 = 0, lim

k→+∞
‖vk+1 − uk‖2

2 = 0,

lim
k→+∞

‖µk+1 − λk+1‖2
2 = 0, lim

k→+∞
‖µk+1 − λk‖2

2 = 0,

lim
k→+∞

‖νk+1 − γk+1‖2
2 = 0, lim

k→+∞
‖νk+1 − γk‖2

2 = 0.

(3.106)

Additionally, (3.105) also implies that {(xk, uk, λk, γk)} is a bounded sequence, which further

implies that there exists a sub-sequence {(xkj , ukj , λkj , γkj)} that converges to a limit point

102

(x∞, u∞, λ∞, γ∞). We next show that the limit point is indeed a saddle point and is also

the unique limit point of {(xk, uk, λk, γk)}. Given any x ∈ X and u ∈ Rn2 , we have:

2ρk+1
[
L(xk+1, uk+1, µk+1, νk+1)− L(x, u, µk+1, νk+1)

]
=2ρk+1

{[1
2(xk+1)T P0xk+1 − 1

2xT P0x
]

+ qT
0 (xk+1 − x) + cT

0 (uk+1 − u)

+
m1∑
i=1

µk+1
i

[1
2(xk+1)T Pixk+1 − 1

2xT Pix
]

+
m1∑
i=1

µk+1
i qT

i (xk+1 − x)

+
m1∑
i=1

µk+1
i cT

i (uk+1 − u)

+νk+1A(xk+1 − x) + νk+1B(uk+1 − u)
}

= 2ρk+1
[
− 1

2(xk+1 − x)T P0(xk+1 − x)−
m1∑
i=1

µk+1
i

1
2(xk+1 − x)T Pi(xk+1 − x)

]
︸ ︷︷ ︸

(∆)

+2ρk+1
[
(P0xk+1 + q0)T (xk+1 − x) + cT

0 (uk+1 − u)

+
m1∑
i=1

µk+1
i (Pixk+1 + qi)T (xk+1 − x) +

m1∑
i=1

µk+1
i cT

i (uk+1 − u)

+νk+1A(xk+1 − x) + νk+1B(uk+1 − u)
]

≤2ρk+1
[
(P0xk+1 + q0)T (xk+1 − x) + cT

0 (uk+1 − u)

+
m1∑
i=1

µk+1
i (Pixk+1 + qi)T (xk+1 − x) +

m1∑
i=1

µk+1
i cT

i (uk+1 − u)

+νk+1A(xk+1 − x) + νk+1B(uk+1 − u)
]
. (3.107)

The positive semi-definiteness of each Pi for all i = 0, 1 . . . m guarantees the non-positiveness

of (∆), which makes the last inequality hold. Applying Lemma 2.2.1 on (3.15c) with ẑ =

(xk+1, uk+1), z̄ = (xk, uk) and z = (x, u) yields:

2ρk+1
{

(P0yk+1 + q0)T xk+1 + cT
0 uk+1 + r0

+
m1∑
i=1

µk+1
i

[
(Piyk+1 + qi)T xk+1 + cT

i uk+1 + ri

]

+ νk+1(Axk+1 + Buk+1 − b)
}

−2ρk+1
{

(P0yk+1 + q0)T x + cT
0 u + r0

103

+
m∑

i=1
µk+1

i

[
(Piyk+1 + qi)T x + cT

i u + ri

]

+ νk+1(Ax + Bu− b)
}

≤‖xk − x‖2
2 − ‖xk+1 − x‖2

2 − ‖xk+1 − xk‖2
2

+‖uk − u‖2
2 − ‖uk+1 − u‖2

2 − ‖uk+1 − uk‖2
2

≤
(
‖xk − xk+1‖2

2 + ‖xk+1 − x‖2
2

)
− ‖xk+1 − x‖2

2 − ‖xk+1 − xk‖2
2

+
(
‖uk − uk+1‖2

2 + ‖uk+1 − u‖2
2

)
− ‖uk+1 − u‖2

2 − ‖uk+1 − uk‖2
2 = 0. (3.108)

Adding the above two inequalities yields

2ρk+1
[
L(xk+1, uk+1, µk+1, νk+1)− L(x, u, µk+1, νk+1)

]
+2ρk+1

{
(yk+1 − xk+1)T P0(xk+1 − x)

+
m∑

i=1
µk+1

i

[
(yk+1 − xk+1)T Pi(xk+1 − x)

]}
≤ 0. (3.109)

Taking the limits over an appropriate sub-sequence {kj} on both sides and using (3.106), we

have:

L(x∞, u∞, λ∞, γ∞) ≤ L(x, u, λ∞, γ∞), ∀x ∈ X,∀u ∈ Rn2 . (3.110)

Similarly, given any λ ∈ Rm1
+ and γ ∈ Rm2 , applying Lemma 2.2.1 on (3.15d) with ẑ =

(λk+1, γk+1), z̄ = (λk, γk) and z = (λ, γ) yields

2ρk+1
[
L(yk+1, vk+1, λ, γ)− L(yk+1, vk+1, λk+1, γk+1)

]
≤‖λk − λ‖2

2 − ‖λk+1 − λ‖2
2 − ‖λk+1 − λk‖2

2

+‖γk − γ‖2
2 − ‖γk+1 − γ‖2

2 − ‖γk+1 − γk‖2
2

≤
(
‖λk − λk+1‖2

2 − ‖λk+1 + λ‖2
2

)
− ‖λk+1 − λ‖2

2 − ‖λk+1 − λk‖2
2

+
(
‖γk − γk+1‖2

2 − ‖γk+1 + γ‖2
2

)
− ‖γk+1 − γ‖2

2 − ‖γk+1 − γk‖2
2 = 0. (3.111)

Taking the limits over an appropriate sub-sequence {kj} on both sides and using (3.106), we

have:

L(x∞, u∞, λ, γ) ≤ L(x∞, u∞, λ∞, γ∞), ∀λ ∈ Rm1
+ ,∀γ ∈ Rm2 . (3.112)

104

Therefore, we show that (x∞, u∞, λ∞, γ∞) is indeed a saddle point of the Lagrangian func-

tion L(x, u, λ, γ). Then (3.105) implies that

lim
k→+∞

‖xk − x∞‖2
2 + ‖uk − u∞‖2

2 + ‖λk − λ∞‖2
2 + ‖γk − γ∞‖2

2 = ξ. (3.113)

Since we have already argued (after Eq. (3.106)) that there exists a bounded sequence of

{(xk, uk, λk, γk)} that converges to (x∞, u∞, λ∞, γ∞); that is, there exists {kj} such that

limkj→+∞‖xkj − x∞‖2
2 + ‖ukj − u∞‖2

2 + ‖λkj − λ∞‖2
2 + ‖γkj − γ∞‖2

2 = 0, which then implies

that ξ = 0. Therefore, we show that {(xk, uk, λk, γk)} converges globally to a saddle point

(x∞, u∞, λ∞, γ∞).

�

105

4. A DISTRIBUTED ALGORITHM FOR MULTI-STAGE

STOCHASTIC PROGRAMS WITH APPLICATION TO

ELECTRICITY CAPACITY EXPANSION

4.1 Decomposition Methods for Multi-stage Stochastic Program

In previous chapters, we propose distributed algorithms to address the issues of nonlinear

coupling constraints, asynchronous iterative scheme and non-separability in both objective

function and coupling constraints, when solving large-scale constrained convex optimiza-

tion problems. In this chapter, we apply the N -block PCPM algorithm to solve electricity

capacity expansion models under uncertainty in the form of multi-stage stochastic programs.

4.1.1 Multi-stage Stochastic Program

Multi-stage stochastic programs (MSPs) represent a framework for sequential decision

making under uncertainties, where a sequence of uncertain data (ξ1, . . . , ξT) is revealed

gradually over stages. The decision variables xt, corresponding to each stage for t = 1, . . . , T ,

should be made adaptive to this process. We assume that the sequence (ξ1, . . . , ξT) evolves

according to a known stochastic process, and can be regarded as a sequence of random

variables with a specified probability distribution. In each stage t, we use ξt to denote the

random data vector and ξt to denote a specific realization; similarly, we use ξ[t] := (ξ1, . . . , ξt)

to denote the history of the random sequence up to stage t and ξ[t] := (ξ1, . . . , ξt) to denote

a specific realization. The decision dynamics is as follows: in each stage t, a realization

ξt ∈ Rdt is observed and followed by a decision variable xt, whose value, depending on ξt

and xt−1 from previous stage, is determined to minimize the objective function value of the

current stage and the expected value of future stages. A T -stage stochastic program problem

can then be expressed into the following nested formulation:

min
x1∈D1

f1(x1) + Eξ2
[

min
x2∈X ξ2

2 (x1)
f ξ2

2 (x2) + Eξ3|ξ[2]
[
· · ·+ EξT |ξ[T −1]

[
min

xT ∈X ξT
T (xT −1)

f ξT
T (xT)

]]]
, (4.1)

where xt ∈ Rnt is the decision variable for each stage t = 1, . . . , T . f1 : Rn1 → R is a

continuous function, and f ξt
t : Rnt → R is a continuous convex function depending on ξt

106

for t = 2, . . . , T . D1 ⊂ Rn1 is a deterministic convex set, and the abstract constraint set

X ξt
t (xt−1) for t = 2, . . . , T can be written out explicitly, for example, as a linear equality

constraint:

X ξt
t (xt−1) = {xt ∈ Dt|Aξt

t xt−1 + Bξt
t xt = cξt

t },

where Dt ⊂ Rnt is a deterministic convex set, Aξt
t ∈ Rmt×nt−1 and Bξt

t ∈ Rmt×nt are matrices

depending on ξt, and cξt
t ∈ Rmt is a vector depending on ξt. Note that the explicit form

of X ξt
t (xt−1) is certainly not limited to linear equality constraints. However, as a starting

point, and for the ease of presenting the detailed design and implementation of our algorithm,

throughout this chapter, we only consider linearly constrained MSPs. The notation Eξt|ξ[t−1]

denotes the conditional expectation operation with respect to ξt given ξ[t−1] for t = 2, . . . , T .

Note that ξ1 is observed at the very beginning of the decision process and thus is regarded

as a deterministic data, so the conditional expectation Eξ2|ξ[1] [· · ·] is simply equivalent to

Eξ2 [· · ·].

4.1.2 Scenario Tree and Node Separability

Computational approach for solving MSPs (4.1) usually is based on a discretization of the

underlying stochastic process, or more specifically, an approximation with a finite number of

realizations, which can be depicted in the form of a scenario tree [41]. Such an approximation

may be constructed by various methods [42]–[45].

Let T denote the set of all nodes in a scenario tree associated with a discretized stochastic

process (ξ1, . . . , ξT). The tree has a set of a finite number of nodes organized at each level

corresponding to each stage for all t = 1, . . . , T , denoted as It. At level 1, there is only one

root node, associated with the deterministic data ξ1. From level 2, there are as many nodes

as many different observations of the random data ξt that may occur after each realization

of ξt−1 from the previous level. The tree is grown recursively in such a way up to level T .

Let t(i) denote the level containing each node i ∈ T , and the total number of nodes, denoted

by N , is finite.

Given a node i and its child node ic, an edge connecting them is associated with a

probability pi,ic , denoting the conditional probability of an observation of the random data

107

ξt(ic) at node ic, given a realization of ξ[t(i)] at node i. Let pnd
i denote the probability of each

node for all i = 1, . . . , N . Given that pnd
1 = 1, we obtain pnd

i = pnd
a(i) × pa(i),i for i = 2, . . . , N ,

where a(i) denotes the unique ancestor node. Take a 4-stage stochastic process as an example,

which is depicted in a scenario tree illustrated in Figure 4.1 . There are 16 nodes in the 4-level

Figure 4.1. An example of a 4-stage stochastic process depicted in the form
of a 4-level scenario tree.

tree and the probability of each node is calculated and shown in the figure.

A T -stage stochastic program of form (4.1) can then be reformulated as the following

deterministic, large-scale, constrained convex optimization problem with Node Separabil-

ity:

minimize
x1,...,xN

N∑
i=1

pnd
i fi(xi)

subject to xi ∈ Dt(i), i = 1, . . . , N,

Aixa(i) + Bixi = ci, i = 2, . . . , N,

(4.2)

108

where xi ∈ Rnt(i) is the decision variable associated with each node i = 1, . . . , N . fi : Rnt(i) →

R is a continuous convex function for all i = 1, . . . , N . Ai ∈ Rmt(i)×nt(a(i)) and Bi ∈ Rmt(i)×nt(i)

are deterministic matrices for i = 2, . . . , N , and ci ∈ Rmt(i) is a deterministic vector for

i = 2, . . . , N .

4.1.3 Nonanticipativity and Scenario Separability

At the final level T of a scenario tree, each node i ∈ IT is called a leaf node. A scenario

is a path from the root node to a leaf node. Let S denote the set of all scenarios, and the

total number of scenarios, denoted by S, is finite. Each scenario s ∈ S represents a possible

realization of the entire stochastic process (ξ1, . . . , ξT). The probability of each scenario,

denoted by psc
s , is the multiplication of probabilities associated with arcs visited along the

path from the root node to each leaf node. For example in Figure 4.1 , there are 8 scenarios

in total, corresponding to the 8 paths from the root node 1 to leaf nodes i = 9, . . . , 16. The

probability of each scenario is the same as of each leaf node.

Given a finite number of scenarios, we can regard the whole decision sequence (x1, . . . , xT)

as a mapping of each scenario to the whole decision space Rnseq , where nseq = ∑T
t=1 nt; that is,

assigning to each scenario a vector xs :=

 xs
1...

xs
T

 ∈ Rnseq for all s = 1, . . . , S, where xs
t ∈ Rnt

for all t = 1, . . . , T . Accordingly, the objective function for each scenario f s : Rnseq → R is

defined as f s(xs) := ∑T
t=1 f s

t (xs
t) for all s = 1, . . . , S, where f s

t : Rnt → R is a continuous

convex function for all t = 1, . . . , T . For each scenario s = 1, . . . , S, the constraint set of the

decision sequence xs can be denoted by

X s :=
{

xs ∈
T∏

t=1
Dt

∣∣∣∣As
txs

t−1 + Bs
t xt = cs

t , t = 2, . . . , T
}

,

where As
t ∈ Rmt×nt−1 and Bs

t ∈ Rmt×nt are deterministic matrices for t = 2, . . . , T , and

cs
t ∈ Rmt is a deterministic vector for t = 2, . . . , T .

The decision sequence xs for each scenario s = 1, . . . , S should also satisfy the nonan-

ticipativity constraints. At each stage t, the scenario set S can be partitioned into finitely

many disjoint subsets, where each scenario is observationally indistinguishable, based on the

109

realization up to stage t. Such a subset is called a scenario bundle and denoted by V . The

set containing all scenario bundles at stage t is denoted by Ut for all t = 1, . . . , T . The

nonanticipativity constraints basically require xs
t = xs′

t , given any two scenarios s, s′ ∈ V

and any scenario bundle V ∈ Ut for all t = 1, . . . , T . As illustrated in Figure 4.2 , there are

Figure 4.2. The decision sequence for each scenario of the 4-level scenario tree
in Figure 4.1 . Vertical dotted lines represent the nonanticipativity constraints.

8 decision sequences assigned to the 8 scenarios of the 4-level scenario tree in Figure 4.1 .

The vertical dotted lines represent the nonaticipativity constraints. For example, at stage

t = 3, U3 =
{
{1}, {2, 3, 4}, {5}, {6, 7}, {8}

}
; hence we have the nonantipativity constraints:

x2
3 = x3

3 = x4
3 and x6

3 = x7
3.

110

Let a vector ~x ∈ Rnsc denote decision sequences of all scenarios: ~x :=

 x1
...

xS

, and

nsc = S×nseq. Let N denote a subspace containing the vector ~x, where the nonanticipativity

constraints are satisfied:

N :=
{

~x ∈ Rnsc

∣∣∣∣xs
t = xs′

t , ∀s, s′ ∈ V , ∀V ∈ Ut, t = 1, . . . , T
}

.

Let J denote an operator that maps an arbitrary vector ~x ∈ Rnsc to a unique vector ~v := J~x,

which is of the same dimension as ~x and can be calculated as:

vs
t =

∑
s∈V xs

t

|V|
, ∀s ∈ V , ∀V ∈ Ut, t = 1, . . . , T,

where |V| denotes the total number of elements in the set V . For example, in Figure 4.2 ,

take V = {2, 3, 4} ∈ U3 at stage t = 3, and |V| = 3. Clearly, ~v ∈ N , and the linear

operator J is called an aggregation operator that maps from the space Rnsc to the subspace

N . The nonanticipativity constraints ~x ∈ N can then be reformulated as I~x = J~x, where I

denotes the identity operator. Denoting K := I−J , the nonanticipativity constraints can be

further rewritten as: K~x = 0, and the linear operator K can be represented using a matrix

(K1 · · ·KS) where Ks ∈ Rnsc×nseq for all s = 1, . . . , S.

A T -stage stochastic program of form (4.1) can be reformulated as the following deter-

ministic, large-scale, constrained convex optimization problem with Scenario Separability:

minimize
x1,...,xS

S∑
s=1

psc
s f s(xs)

subject to xs ∈ X s, s = 1, . . . , S,

S∑
s=1

Ksxs = 0.

(4.3)

4.1.4 Comparison of Node Decomposition and Scenario Decomposition

In the previous two subsections, we have showed the reformulated form of an MSP with

node separability (4.2) and scenario separability (4.3) respectively. In both of the two for-

111

mulations, the decision variables can be separated into multiple blocks, and the entire large-

scale problem can be decomposed into multiple sub-problems to be solved in parallel using

a distributed algorithm. For example, PHA [46] is widely used as a scenario decomposition

algorithm.

In this subsection, we make a comparison between the possible decomposition methods

based on the two different types of separability. As listed in Table 4.1 , in the node decompo-

Table 4.1. Comparison of Node and Scenario Decomposition
Node Decomposition Scenario Decomposition

Decompose By node scenario
Smallest xi xs

Decomposed Unit
Size of Smallest

nt(i) (pro) nseq =
∑T

t=1 nt (con)
Decomposed Unit

Number of
N = O(eT) S = O(eT)

Decomposed Unit
Coupled with

yes (con) no (pro)Stage Linking
Constraint?

Type of
implicit explicitNonanticipativity

Constraint

sition method, the large-scale problem can be decomposed all the way down by each decision

variable associated with a node; while in the scenario decomposition method, it can only be

decomposed down by each decision sequence assigned to a scenario, which has a much larger

size that might cause memory storage issues in big-data applications. However, the explicit

nonantipativity constraints make the decision sequences decoupled from the stage linking

constraints, which in return brings a notable benefit.

112

4.2 A Hybrid Decomposition Method for Multi-scale Multi-stage Stochastic
Program under Multi-scale Uncertainties

4.2.1 Additional Structures

In many real-world applications, the decision-making process can be mathematically

modeled as an MSP in the formulation of (4.1). Additionally, it may have other structures

that can lead to efficient algorithm design, such as the ones listed below.

(i) the decision vector xt can be separated into two sub-vectors as xt :=
 yt

zt

 for all

t = 1, . . . , T , where the sub-vector yt ∈ RnY
t is called aggregate level decision, the

sub-vector zt ∈ RnZ
t is called detailed level decision, and nt = nY

t + nZ
t ,

(ii) the feasible region Dt can be separated as Dt = DY
t × DZ

t for all t = 1, . . . , T , where

DY
t ⊂ RnY

t and DZ
t ⊂ RnZ

t are convex sets,

(iii) the objective function f1(x1) can be separated as f1(x1) = fY
1 (y1) + fZ

1 (z1), where

fY
1 : RnY

1 → R and fZ
1 : RnZ

1 → R are continuous convex functions, and the objective

function f ξt
t (xt) can be separated as f ξt

t (xs
t) = fY,ξt

t (yt) + fZ,ξt
t (zt) for t = 2, . . . , T ,

where fY,ξt
t : RnY

t → R and fZ,ξt
t : RnZ

t → R are continuous convex functions depending

on ξt,

(iv) the linear equality constraint Aξt
t xt−1 + Bξt

t xt = cξt
t can be rewritten as

 AY,ξt
t 0
0 0

 yt−1

zt−1

+
 BY,ξt

t 0
BLY,ξt

t BLZ,ξt
t

 yt

zt

 =
 cY,ξt

t

cL,ξt
t



for t = 2, . . . , T , where AY,ξt
t ∈ RmY

t ×nY
t−1 , BY,ξt

t ∈ RmY
t ×nY

t , BLY,ξt
t ∈ RmL

t ×nY
t and

BLZ,ξt
t ∈ RmL

t ×nZ
t are matrices depending on ξt, and cY,ξt

t ∈ RmY
t and cL,ξt

t ∈ RmL
t are

vectors depending on ξt.

In such a structure, it is observed that only the aggregated level decision yt’s are coupled

in the stage linking constraint: AY,ξt
t yt−1+BY,ξt

t yt = cY,ξt
t ; while each detailed level decision zt

is stagewise independent but coupled with yt at the same stage through a linking constraint

BLY,ξt
t yt + BLZ,ξt

t zt = cL,ξt
t .

113

4.2.2 Extended Nonanticipativity and Hybrid Scenario-node Decomposition

Using the similar ways we show in Section 4.1 , such an MSP can certainly be reformulated

into a deterministic, large-scale, constrained convex optimization problem with either node

or scenario separability, which has its own strength and shortcoming listed in Table 4.1 . To

reap the benefits of both methods, while overcoming their drawbacks, we propose a novel

reformulation where the y-part is with scenario separability and the z-part is with node

separability.

To each scenario of a scenario tree, we assign a decision sequence ys :=

 ys
1...

ys
T

 ∈
RnY

seq for all s = 1, . . . , S, and nY
seq = ∑T

t=1 nY
t . Accordingly, an objective function for each

scenario fY,s : RnY
seq → R is defined as fY,s(ys) := ∑T

t=1 fY,s
t (ys

t) for all s = 1, . . . , S, where

fY,s
t : RnY

t → R is a continuous convex function for all t = 1, . . . , T . For each scenario

s = 1, . . . , S, the constraint set of the decision sequence ys is denoted by

Ys :=
{

ys ∈
T∏

t=1
DY

t

∣∣∣∣AY,s
t ys

t−1 + BY,s
t yt = cy,s

t , t = 2, . . . , T
}

,

where AY,s
t ∈ Rmt×nt−1 and BY,s

t ∈ Rmt×nt are deterministic matrices for t = 2, . . . , T , and

cY,s
t ∈ Rmt is a deterministic vector for t = 2, . . . , T .

With each node i = 1, . . . , N in the scenario tree, a decision variable zi ∈ RnZ
t(i) and

a local copy ynd
i ∈ RnY

t(i) are associated, as well as a continuous convex objective function

fZ
i : RnZ

t(i) → R. The decision variables zi and ynd
i are denoted together by a vector wnd

i := ynd
i
zi

 ∈ Rnt(i) . The original linkage between the aggregated level decision yt and the

detailed level decision zt can then be absorbed in the single constraint set:

Wnd
i := {ynd

i ∈ RnY
t(i) , zi ∈ DZ

t(i)|BLY
i ynd

i + BLZ
i zi = cL

i }

for all i = 1, . . . , N , where BLY
i ∈ RmL

t(i)×nY
t(i) and BLZ

i ∈ RmL
t(i)×nZ

t(i) are deterministic matrices,

and cL
i ∈ RmL

t(i) is a deterministic vector. As a trade-off, the local copy ynd
i associated with

each node is additionally required to be equal to the value of ys
t ’s in a corresponding scenario

bundle.

114

Let us consider the 4-level scenario tree in Figure 4.1 again. As illustrated in Figure 4.3 ,

at each stage t, each scenario bundle V ∈ Ut is now vertically extended to a corresponding

Figure 4.3. The decision sequence for each scenario and the local copy at each
node of the 4-level scenario tree in Figure 4.1 . Vertical dotted lines represent
the extended nonanticipativity constraints.

node i at the same level. For example, the scenario bundle V = {6, 7} ∈ U3 at stage 3

is extended to a hybrid bundle Vsn = {s = 6, s = 7, n = 7}. Instead of simply requiring

y6
3 = y7

3, we now require y6
3 = y7

3 = ynd
7 . We call such a hybrid bundle a scenario-node bundle,

denoted by Vsn, and the set containing all scenario-node bundles at stage t is denoted by

U sn
t for all t = 1, . . . , T .

115

Let a vector ~ysn ∈ RnY
sc+nY

nd denote all y-variables: ~ysn :=



y1
...

yS

ynd
1...

ynd
N


, and nY

sc = S × nY
seq

and nY
nd = ∑N

i=1 nY
t(i). Let N sn denote a subspace containing the vector ~ysn, where the

extended nonanticipativity constraints are satisfied; namely,

N sn :=
{

~ysn ∈ RnY
sc+nY

nd

∣∣∣∣ ys
t = ys′

t , ∀s, s′ ∈ Vsn,

ys
t = ynd

i , ∀s, i ∈ Vsn,
∀Vsn ∈ U sn

t , t = 1, . . . , T
}

.

Let Jsn denote the aggregation operator that maps from the space RnY
sc+nY

nd to the subspace

N sn, and the mapped vector ~vsn := Jsn~ysn, of the same dimension as ~ysn, can be calculated

as:
vs

t =
∑

s∈Vsn ys
t +
∑

i∈Vsn ynd
i

|V| , ∀s ∈ Vsn,

vnd
i =

∑
s∈Vsn ys

t +
∑

i∈Vsn ynd
i

|V| , ∀i ∈ Vsn,
∀Vsn ∈ U sn

t , t = 1, . . . , T.

In a similar way as in Section 4.1.3 , the extended nonanticipativity constraints ~ysn ∈ N sn can

then be reformulated as I~ysn = Jsn~ysn. Denoting Ksn := I−Jsn, the extended nonanticipa-

tivity constraints can be further rewritten as: Ksn~ysn = 0, and the linear operator Ksn can

be represented using a matrix (K1, . . . , KS, Knd
1 , . . . , Knd

N) where each Ks ∈ R(nY
sc+nY

nd)×nY
seq

for all s = 1, . . . , S, and each Knd
i ∈ R(nY

sc+nY
nd)×nY

t(i) for all i = 1, . . . , N .

A T -stage stochastic program of form (4.1) with the additional structure stated in Sec-

tion 4.2.1 can then be reformulated as the following deterministic, large-scale, constrained

convex optimization problem with Hybrid Scenario-node Separability:

minimize
y1,...,yS

wnd
1 ,...,wnd

N

S∑
s=1

psc
s fY,s(ys) +

N∑
i=1

pnd
i fZ

i (zi)

subject to ys ∈ Ys, s = 1, . . . , S,

wnd
i ∈ Wnd

i , i = 1, . . . , N,

S∑
s=1

Ksys +
N∑

i=1
Knd

i ynd
i = 0.

(4.4)

116

Compared with the node-only and scenario-only decomposition methods, the hybrid

scenario-node decomposition inherits both of their strengths but none of their shortcomings,

as listed in Table 4.2 . The entire problem is decomposed all the way down by the smallest

Table 4.2. Comparison of Hybrid Scenario-node Decomposition with Node-
only and Scenario-only Decomposition

Node Scenario Hybrid Scenario-node
Decomposition Decomposition Decomposition

Decompose By node only scenario only scenario and node
Smallest (

y
z

)i (
y
z

)s

ys and wi
Decomposed Unit
Size of Smallest

nt(i) (pro) nseq =
∑T

t=1 nt (con) nY
seq =

∑T
t=1 nY

t and nt(i) (pro)
Decomposed Unit

Number of
N = O(eT) S = O(eT) S + N = O(eT)

Decomposed Unit
Coupled with

yes (con) no (pro) no (pro)Stage Linking
Constraint?

Type of
implicit explicit explicit and extendedNonanticipativity

Constraint

separate blocks of the decision variables, which are ys for all s = 1, . . . , S and wnd
i for all

i = 1, . . . , N . Note that the size of the aggregated level decision variable yt is usually much

smaller than that of the detailed level decision variable zt; i.e., nY
t � nZ

t . For example, in

an electricity capacity expansion model, yt represents the yearly planning variables while zt

represents the hourly operational variables, whose size can be 103 times of yt. In this case,

nY
seq = ∑T

t=1 nY
t � nt(i) = nY

t(i) + nZ
t(i). Each decomposed unit, either ys or wnd

i is not coupled

with any stage linking constraint, making the resulting deterministic problem suitable for

massive parallel computing.

4.2.3 Under Multi-scale Uncertainties

In many applications, not only the size of the detailed level decision variable is huge,

but also various uncertainties of different temporal scales are involved. At each node of a

scenario tree, assume that the decision variable zi additionally depends on an uncertainty ηi

117

of different temporal scale from ξt for all i = 1, . . . , N , which is further assumed to have a

finite number of realizations r = 1, . . . , Ri with probability prl
r .

Similarly, with each realization of ηi at node i, a decision variable zi,r ∈ RnZ
t(i) and a

local copy ynr
i,r ∈ RnY

t(i) are associated, as well as a continuous convex objective function

fZ
i,r : RnZ

t(i) → R for all r = 1, . . . , Ri and i = 1, . . . , N . The decision variables zi,r and ynr
i,r

are denoted together by a vector wnr
i,r :=

 ynr
i,r

zi,r

 ∈ Rnt(i) , subject to a constraint set:

Wnr
i,r := {ynr

i,r ∈ RnY
t(i) , zi,r ∈ DZ

t(i)|BLY
i,r ynr

i,r + BLZ
i,r zi,r = cL

i,r}

for all r = 1, . . . , Ri and i = 1, . . . , N , where BLY
i,r ∈ RmL

t(i)×nY
t(i) and BLZ

i,r ∈ RmL
t(i)×nZ

t(i) are

deterministic matrices, and cL
i,r ∈ RmL

t(i) is a deterministic vector.

Still consider the 4-level scenario tree in Figure 4.1 , and assume that ηi at each node i

has 4 possible realizations. As illustrated in Figure 4.4 , the scenario bundle V = {6, 7} ∈ U3

at stage 3 is further extended to a hybrid scenario-node-realization bundle Vsnr = {s = 6, s =

7, (i, r) = (7, 1), (i, r) = (7, 2), (i, r) = (7, 3), (i, r) = (7, 4)}. The extended nonanticipativity

constraints become: y6
3 = y7

3 = ynr
7,1 = ynr

7,2 = ynr
7,3 = ynr

7,4. The set containing all scenario-

node-realization bundles at stage t is denoted by U snr
t for all t = 1, . . . , T .

Similarly, let a vector ~ysnr ∈ RnY
sc+nY

nr denote all y-variables: ~ysnr :=



y1
...

yS

ynr
1,1...

ynr
N,RN


, and

nY
sc = S × nY

seq and nY
nr = ∑N

i=1

[
Rin

Y
t(i)

]
. Let N snr denote a subspace containing the vector

~ysnr where the extended nonanticipativity constraints are satisfied as follows:

N snr :=

~ysnr ∈ RnY
sc+nY

nr

∣∣∣∣∣∣
ys

t = ys′
t , ∀s, s′ ∈ Vsnr,

ynr
i,r = ynr

i,r′ , ∀(i, r), (i, r′) ∈ Vsnr,

ys
t = ynr

i,r , ∀s, (i, r) ∈ Vsnr,

∀Vsnr ∈ U snr
t , t = 1, . . . , T

.

(4.5)

118

Figure 4.4. The decision sequence for each scenario and the local copy for
each realization of the multi-scale uncertainty at each node of the 4-level sce-
nario tree in Figure 4.1 . Vertical dotted lines represent the extended nonan-
ticipativity constraints.

Let Jsnr denote the aggregation operator that maps from the space RSnY
seq+nY

nr to the subspace

N snr, and the mapped vector ~vsnr := Jsnr~ysnr, of the same dimension as ~ysnr, can be

calculated as:

vs
t =

∑
s∈Vsnr ys

t +
∑

(i,r)∈Vsnr ynr
i,r

|V| , ∀s ∈ Vsnr,

vnr
i,r =

∑
s∈Vsnr ys

t +
∑

(i,r)∈Vsnr ynr
i,r

|V| , ∀(i, r) ∈ Vsnr,
∀Vsnr ∈ U snr

t , t = 1, . . . , T.

119

In a similar way as in Section 4.1.3 , the extended nonanticipativity constraints ~ysnr ∈ N snr

can then be reformulated as I~ysnr = Jsnr~ysnr. Denoting Ksnr := I − Jsnr, the extended

nonanticipativity constraints can be further rewritten as: Ksnr~ysnr = 0, and the linear

operator Ksnr can be represented using a matrix (K1, . . . , KS, Knr
1,1, . . . , Knr

N,RN
) where each

Ks ∈ R(nY
sc+nY

nr)×nY
seq for all s = 1, . . . , S, and each Knr

i,r ∈ R(nY
sc+nY

nd)×nY
t(i) for all r = 1, . . . , Ri

and i = 1, . . . , N .

Under multi-scale uncertainties, a T -stage stochastic program of form (4.1) with the

additional structure stated in Section 4.2.1 can be reformulated as the following determin-

istic, large-scale, constrained convex optimization problem with Hybrid Scenario-node-

realization Separability:

minimize
y1,...,yS

wnr
1,1,...,wnr

N,RN

S∑
s=1

psc
s fY,s(ys) +

N∑
i=1

pnd
i

[Ri∑
r=1

prl
r fZ

i,r(zi,r)
]

subject to ys ∈ Ys, s = 1, . . . , S,

wnr
i,r ∈ Wnr

i,r , r = 1, . . . , Ri, i = 1, . . . , N,

S∑
s=1

Ksys +
N∑

i=1

Ri∑
r=1

Knr
i,r ynr

i,r = 0.

(4.6)

4.3 A Simplified PCPM Algorithm using Orthogonal Projection

The decision variables of the optimization problem (4.6) can be divided into two groups:

~y :=

 y1
...

yS

 and ~w :=

 wnr
1,1...

wnr
N,RN

. The vector ~y can be further separated into blocks of ys

for all s = 1, . . . , S, and the vector ~w can be further separated into blocks of wnr
i,r =

 ynr
i,r

zi,r


for all r = 1, . . . , Ri and i = 1, . . . , N . The objective function in problem (4.6) is the sum-

mation of a set of separable functions defined on all blocks, coupled by the extended nonan-

ticipativity constraints, which are linear equality constraints. We can apply the ADMM

algorithm or the PCPM algorithm to solve problem (4.6) in a distributed fashion.

120

Let ~λ ∈ RnY
sc+nY

nr denote the Lagrangian multiplier, associated with the extended nonan-

ticipativity constraint, in the form of ~λ =



λ1
...

λS

λnr
1,1...

λnr
N,RN


. The classic Lagrangian function

L :
(∏S

s=1 Ys

)
×
(∏N

i=1
∏Ri

r=1Wnr
i,r

)
× RnY

sc+nY
nr → R is defined as:

L(~y, ~w, ~λ) =
S∑

s=1
psc

s fY,s(ys) +
N∑

i=1

Ri∑
r=1

[
pnd

i prl
r fZ

i,r(zi,r)
]

+~λT
(S∑

s=1
Ksys +

N∑
i=1

Ri∑
r=1

Knr
i,r ynr

i,r

)
,

∀ys ∈ Ys, s = 1, . . . , S,

∀wnr
i,r ∈ Wnr

i,r , r = 1, . . . , Ri, i = 1, . . . , N.

(4.7)

It is well-known that for a convex problem of the specific form in (4.6), finding an opti-

mal solution is equivalent to finding a saddle point (~y∗, ~w∗, ~λ∗) such that L(~y∗, ~w∗, ~λ) ≤

L(~y∗, ~w∗, ~λ∗) ≤ L(~y, ~w, ~λ∗). We assume that such a saddle point always exists for problem

(4.6).

4.3.1 Apply the PCPM Algorithm

For the ease of argument, we write out again the deterministic equivalent formula from

an MSP below, which is the same as (4.6).

minimize
ys∈Ys

wnr
i,r∈Wnr

i,r

S∑
s=1

psc
s fY,s(ys) +

N∑
i=1

Ri∑
r=1

[
pnd

i prl
r fZ

i,r(zi,r)
]

subject to
S∑

s=1
Ksys +

N∑
i=1

Ri∑
r=1

Knr
i,r ynr

i,r = 0. (~λ)

(4.8)

121

To apply the PCPM algorithm, at each iteration k, with a given primal-dual pair, (~yk, ~wk, ~λk),

we start with a dual predictor update:

~pk+1 := ~λk + ρ
(S∑

s=1
Ksys,k +

N∑
i=1

Ri∑
r=1

Knr
i,r ynr,k

i,r

)
. (4.9)

After the dual predictor update, we update the primal variables (~yk+1, ~wk+1) by minimizing

the Lagrangian function L(~y, ~w, ~pk+1) evaluated at the dual predictor variable ~pk+1, plus

the proximal terms. The primal minimization step can be written as

ys,k+1 = argmin
ys∈Ys

psc
s fY,s(ys) + (~pk+1)T Ksys + 1

2ρ
‖ys − ys,k‖2

2, s = 1, . . . , S, (4.10a)

wnr,k+1
i,r = argmin

wnr
i,r∈Wnr

i,r

pnd
i prl

r fZ
i,r(zi,r) + (~pk+1)T Knr

i,r ynr
i,r + 1

2ρ
‖ynr

i,r − ynr,k
i,r ‖2

2

+ 1
2ρ
‖zi,r − zk

i,r‖2
2, r = 1, . . . , Ri, i = 1, . . . , N.

(4.10b)

A dual corrector update is then performed for each Lagrangian multiplier:

~λk+1 = ~λk + ρ
(S∑

s=1
Ksys,k+1 +

N∑
i=1

Ri∑
r=1

Knr
i,r ynr,k+1

i,r

)
. (4.11)

4.3.2 Orthogonal Projection

The convergence of the PCPM algorithm to an optimal solution under proper assump-

tions is well analyzed in [7]. However, we do find an implementation scheme that simplifies

the primal minimization step, based on a nice property of the aggregation operator Jsnr. We

first write out the well-known definition of an orthogonal projection in our context.

Definition 4.3.1 (Orthogonal Projection). Given a vector space V equipped with an inner

product and a subspace W, consider an operator P : V→W that maps a vector v ∈ V to a

unique vector u ∈ W. P is called a projection if P = P 2. P is further called an orthogonal

projection if v− Pv ⊥W for any v ∈ V, i.e., 〈v− Pv, w〉 = 0 for any v ∈ V and w ∈W.

Then, we present the following lemma, showing a nice property of the orthogonal pro-

jection.

122

Lemma 4.3.1. Given a vector space V equipped with an inner product and a subspace W,

if P : V→W is an orthogonal projection, then we have

〈Pv, v′〉 = 〈Pv, Pv′〉 = 〈v, Pv′〉, ∀v, v′ ∈ V.

Proof. The first equality holds because 〈Pv, v′〉 = 〈Pv, (v′−Pv′)+Pv′〉 = 〈Pv, v′−Pv′〉+

〈Pv, Pv′〉 = 〈Pv, Pv′〉. Similarly, the second equality also holds.

It is easy to check that the aggregation operator Jsnr is an orthogonal projection from

the space RnY
sc+nY

nr to the subspace N snr, where the extended nonanticipativity constraints

are satisfied. Also, Ksnr = I − Jsnr is an orthogonal projection from the space RnY
sc+nY

nr to

the subspace N snr⊥, where N snr⊥ denotes the subspace orthogonal to N snr.

4.3.3 A Simplified PCPM Algorithm

We observe that the term ~pT

(∑S
s=1 Ksys +∑N

i=1
∑Ri

r=1 Knr
i,r ynr

i,r

)
in primal minimization

steps (4.10a) and (4.10b) can be written as an inner product: 〈~p, Ksnr~ysnr〉. By Lemma 4.3.1 ,

〈~p, Ksnr~ysnr〉 = 〈Ksnr~p, ~ysnr〉, since Ksnr is an orthogonal projection. Denoting ~q := Ksnr~p,

the inner product 〈~p, Ksnr~ysnr〉 can be further rewritten as 〈~p, Ksnr~ysnr〉 = 〈Ksnr~p, ~ysnr〉 =

〈~q, ~ysnr〉 = ∑S
s=1(qs)T ys +∑N

i=1
∑Ri

r=1(qnr
i,r)T ynr

i,r .

The dual predictor update (4.9) can be written in the form of

~pk+1 = ~λk + ρKsnr~ysnr.

Applying the orthogonal projection on both sides, we obtain

Ksnr~pk+1 = Ksnr~λk + ρKsnrKsnr~ysnr,

which is equivalent to

~qk+1 =~γk + ρKsnr~ysnr

=~γk + ρ
(S∑

s=1
Ksys,k +

N∑
i=1

Ri∑
r=1

Knr
i,r ynr,k

i,r

)
,

(4.12)

123

where ~γ := Ksnr~λ ∈ N snr⊥ is the new Lagrangian multiplier. The primal minimization step

(4.10a) and (4.10b) can be simplified as

ys,k+1 = argmin
ys∈Ys

psc
s fY,s(ys) + (qs,k+1)T ys + 1

2ρ
‖ys − ys,k‖2

2, s = 1, . . . , S, (4.13a)

wnr,k+1
i,r = argmin

wnr
i,r∈Wnr

i,r

pnd
i prl

r fZ
i,r(zi,r) + (qnr,k+1

i,r)T ynr
i,r + 1

2ρ
‖ynr

i,r − ynr,k
i,r ‖2

2

+ 1
2ρ
‖zi,r − zk

i,r‖2
2, r = 1, . . . , Ri, i = 1, . . . , N.

(4.13b)

It can be easily observed that all the K-matrices in (4.10a) and (4.10b) no longer show up in

(4.13a) and (4.13b), which greatly simplifies the primal minimization steps. Originally, the

calculation of the term ~pT Ks or ~pT Knr
i,r needs values of all components of the Lagrangian

multiplier ~p, which are stored distributively, and hence requires extra communication among

all computing units. Now, for the update of each y-block or w-block, only the value of the

corresponding component qs or qnr
i,r is required and can be stored locally in the computing

unit responsible for ys or wnr
i,r . There is no need of any communication among all computing

units for the primal minimization step (4.13a) and (4.13b). Similarly to the dual predictor

update, applying the orthogonal projection on both sides of the dual corrector update (4.11)

yields

~γk+1 = ~γk + ρ
(S∑

s=1
Ksys,k+1 +

N∑
i=1

Ri∑
r=1

Knr
i,r ynr,k+1

i,r

)
. (4.14)

The overall simplified structure of the PCPM algorithm is presented in Algorithm 5

below.

4.4 Electricity Capacity Expansion under Multi-scale Uncertainties

We begin this section by presenting a co-optimization model where the long-term elec-

tricity capacity expansion is co-optimized with short-term generation and transmission con-

straints.

124

Algorithm 5 Simplified PCPM for solving (4.6)
1: Initialization choose an arbitrary starting point (~y0, ~w0, ~γ0).
2: k ← 0.
3: while termination conditions are not met do
4: (Dual Predictor Update)

update ~qk+1 according to (4.12);
5: (Primal Update)

update ~yk+1 and ~wk+1 according to (4.13a) and (4.13b);
6: (Dual Corrector Update)

update ~γk+1 according to (4.14);
7: k ← k + 1
8: return (~yk, ~wk, ~γk).

4.4.1 Capacity Expansion Planning

At the beginning of each year t = 1, . . . , T , a decision of an expanded capacity xg,t

for each power generator g ∈ G has to be made adaptive to a stochastic process, and a

cumulative capacity kg,t for each power generator g ∈ G is aggregated as kg,t = kg,t−1 + xg,t

for t = 2, . . . , T . We regard each year t as a stage in an MSP. Given a scenario tree with a set

of S scenarios, we describe the model of capacity expansion planning. All indices, sets and

functions are listed in Table 4.3 ; the decision variables are listed in Table 4.4 . The overnight

Table 4.3. Indices, Sets and Functions for Capacity Expansion Planning
S set of a finite number of scenarios, indexed s;
psc

s probability of each scenario s;
J set of substations, indexed j;
G set of power generators, indexed g;
Ĵ set of reserve margin regions, indexed ĵ;
J (j) function that maps a substation j ∈ J to a reserve margin region ĵ ∈ Ĵ;
T number of years in the planning horizon, indexed t;

Table 4.4. Decision Variables for Capacity Expansion Planning
xs

g,t expanded capacity of power generator g in year t for scenario s; [MW]
ks

g,t cumulative capacity of power generator g in year t for scenario s; [MW]

investment cost of an expanded capacity is calculated using a quadratic form: 1
2ICs

g,t(xs
g,t)2

125

and is levelized through Ng installments in the future for any g ∈ G and t = 1, . . . , T ,

where ICs
g,t is the quadratic coefficient for scenario s = 1, . . . , S. All parameters for capacity

expansion planning are listed in Table 4.5 . There’s also a fixed operation and maintenance

Table 4.5. Parameters for Capacity Expansion Planning
δ discount factor; 0 < δ < 1;
ICs

g,t quadratic coefficient for the overnight investment cost of power generator g in year t

for scenario s; [k$/MW2]
Ng number of years for power generator g to pay the overnight investment cost;
FOMg fixed O&M cost for power generator g; [k$/MW]
KGg existing capacity of power generator g; [MW]
DFg derating factor of power generator g; [%]
RMĵ reserve margin requirement for region ĵ; [%]
PKs

ĵ,t peak level of hourly load in reserve margin region ĵ during year t for scenario s. [MWh]

(O&M) cost of the cumulative capacity: FOMgks
g,t for any g ∈ G and t = 1, . . . , T . Then,

the total cost of capacity expansion planning is:

TCCE =
S∑

s=1
psc

s

∑
g∈G

T∑
t=1

δt
[(∑

t′:t−Ng≤t′≤t

1
Ng

1
2ICs

g,t′xs
g,t′

)
+ FOMgks

g,t

]. (4.15)

The decision variables have to satisfy the yearly cumulative constraints:

ks
g,1 = KGg,

ks
g,t = ks

g,t−1 + xs
g,t, t = 2, . . . , T,

∀g ∈ G, s = 1, . . . , S, (4.16)

a reserve margin requirement constraint:

∑
j∈J:J (j)=ĵ

∑
g∈G:G(g)=j

DFgks
g,t ≥ (1 + RMĵ)PKs

ĵ,t,

∀̂j ∈ Ĵ, t = 1, . . . , T, s = 1, . . . , S,

(4.17)

and the non-negativeness constraint:

xs
g,t, ks

g,t ≥ 0, ∀g ∈ G, t = 1, . . . , T, s = 1, . . . , S. (4.18)

126

Due to the presence of linkage between t and t + 1 in (4.16), the expanded capacity xg,t

and the cumulative capacity kg,t are regarded as aggregated level decisions, as discussed in

Section 4.2.1 .

4.4.2 Sub-hourly Economic Dispatch of Generation and Transmission

We divided the set G into two groups, where GSR denotes the set of power generators

that cannot change their generation output levels within an hour, while GF R denotes the set

of power generators that can change their output levels quickly within an hour (the so-called

fast ramping units).

In each year t = 1, . . . , T , the generation level pg,h,t of each slow-response generator g ∈

GSR has to be decided for each hour h = 1, . . . , H, and the generation level pg,m,t of each fast-

response generator g ∈ GF R has to be decided for for each sub-hour m = 1, . . . , M . Consider

a set of N nodes of the same scenario tree given in Section 4.4.1 , and for each node i =

1, . . . , N , consider a set of Ri realizations of uncertainty ηi. In this subsection, we describe the

model of sub-hourly economic dispatch of generation and transmission. Table 4.6 summarizes

all the indices, sets, and functions for the hourly/sub-hourly economic dispatch model; while

the corresponding decision variables are listed in Table 4.7 . The generation cost for slow-

response generators is: ∑g∈GSR

∑H
h=1 V OMgpg,h,i,r for all r = 1, . . . , Ri and i = 1, . . . , N , and

the generation cost for fast response generators is: ∑g∈GF R

∑M
m=1

1
M

V OMgpg,m,i,r for all r =

1, . . . , Ri and i = 1, . . . , N . All parameters for sub-hourly economic dispatch of generation

and transmission are listed in Table 4.8 . There is also a penalty cost for the electricity

outage if the generation supply could not meet the demand: ∑j∈J
∑M

m=1 PENoj,m,i,r for all

r = 1, . . . , Ri and i = 1, . . . , N . Then, the total cost of sub-hourly economic dispatch of

generation and transmission is:

TCED =
N∑

i=1
pnd

i


Ri∑

r=1
prl

r δt
[∑

g∈GSR

H∑
h=1

V OMgpg,h,i,r +
∑

g∈GF R

M∑
m=1

1
M

V OMgpg,m,i,r

+
∑
j∈J

M∑
m=1

PENoj,m,i,r

].

(4.19)

127

Table 4.6. Indices, Sets and Functions for Sub-hourly Economic Dispatch of
Generation and Transmission
T set of nodes in a scenario tree, indexed i;
pnd

i probability of each node i;
Ri number of realizations of uncertainty ηi at node i, indexed r;
prl

r probability of each realization r;
GSR set of slow-response generators;
GF R set of fast-response generators;
G(g) function that maps a power generator g to a substation j ∈ J;
W set of wind resources, indexed w;
W(w) function that maps a wind resource w to a substation j ∈ J;
D set of demand nodes, indexed d;
D(d) function that maps a demand node d to a substation j ∈ J;
L set of transmission lines connecting two substations, indexed l;
Lo(l) function that maps a transmission line l to an origin substation jo ∈ J;
Ld(l) function that maps a transmission line l to a destination substation jd ∈ J;
H number of hours in a year, indexed h;
M number of sub-hours in a year, indexed m;
M(m) function that maps a sub-hour m to an hour h.

Table 4.7. Decision Variables for Sub-hourly Economic Dispatch of Genera-
tion and Transmission

knr
g,i,r local copy of the cumulative capacity kg,t(i) of power generator g

for realization r at node i;
pg,h,i,r generation level of slow-response generator g ∈ GSR during hour h and year t(i)

for realization r at node i;[MW]
pg,m,i,r generation level of fast-response generator g ∈ GF R during sub-hour m and year t(i)

for realization r at node i;[MW]
f+

l,m,i,r transmission flow on line l from substation jo to jd during sub-hour m and year t(i)
for realization r at node i;[MW]

f−
l,m,i,r transmission flow on line l from substation jd to jo during sub-hour m and year t(i)

for realization r at node i;[MW]
θj,m,i,r phase angle at substation j during sub-hour m and year t(i)

for realization r at node i;[rad]
oj,m,i,r outage at at substation j during sub-hour m and year t(i)

for realization r at node i.[MW]

128

Table 4.8. Parameters for Sub-hourly Economic Dispatch of Generation and
Transmission
V OMg variable O&M cost for power generator g; [k$/MWh]
aw,m,i,r availability factor of wind resource w ∈W during sub-hour m and year t(i)

for realization r at node i;
RUg ramp-up rate of cumulative capacity of power generator g;[%]
RDg ramp-down rate of cumulative capacity of power generator g;[%]
KWw capacity of wind resource w; [MW]
Dd,m,i,r level of demand node d during sub-hour m and year t(i)

for realization r at node i;[MWh]
KLl capacity of transmission line l; [MW]
Bl percentage of energy loss of transmission line l; [%]
∆l susceptance of transmission line l, which equals the reciprocal of the reactance;
PEN penalty cost of electricity outage. [k$/MW]

The generation level of each power generator can not exceed its cumulative capacity:

0 ≤ pg,h,i,r ≤ knr
g,i,r, ∀g ∈ GSR, h = 1, . . . , H,

0 ≤ pg,m,i,r ≤ knr
g,i,r, ∀g ∈ GF R, m = 1, . . . , M,

r = 1, . . . , Ri, i = 1, . . . , N, (4.20)

while still satisfies the ramping constraints:

pg,h,i,r − pg,(h−1),i,r ≤ RUgknr
g,i,r,

pg,(h−1),i,r − pg,h,i,r ≤ RDgknr
g,i,r,

∀g ∈ GSR, h = 2, . . . , H, r = 1, . . . , Ri, i = 1, . . . , N, (4.21)

pg,m,i,r − pg,(m−1),i,r ≤
1

M
RUgknr

g,i,r,

pg,(m−1),i,r − pg,m,i,r ≤
1

M
RDgknr

g,i,r,

∀g ∈ GF R, m = 2, . . . , M, r = 1, . . . , Ri, i = 1, . . . , N. (4.22)

The Kirchhoff’s current law (KCL) has to be satisfied:

∑
d∈D:D(d)=j

Dd,m,i,r +
∑

l∈L:Lo(l)=j

1
M

f+
l,m,i,r +

∑
l∈L:Ld(l)=j

1
M

f−
l,m,i,r

129

=
∑

g∈GSR:G(g)=j

1
M

pg,H(m),i,r +
∑

g∈GF R:G(g)=j

1
M

pg,m,i,r +
∑

w∈W:W(w)=j

1
M

aw,m,i,rKWw

+
∑

l∈L:Ld(l)=j

1
M

(1−Bl)f+
l,m,i,r +

∑
l∈L:Lo(l)=j

1
M

(1−Bl)f−
l,m,i,r + oj,m,i,r,

∀j ∈ J, r = 1, . . . , Ri, i = 1, . . . , N, (4.23)

as well as the Kirchhoff’s Voltage law (KVL):

f+
l,m,i,r − f−

l,m,i,r = ∆l(θjo,m,i,r − θjd,m,i,r),

∀l ∈ L, m = 1, . . . , M, r = 1, . . . , Ri, i = 1, . . . , N.
(4.24)

The flow on each transmission line can not exceed its capacity:

0 ≤ f+
l,m,i,r ≤ KLl,

0 ≤ f−
l,m,i,r ≤ KLl,

∀l ∈ L, m = 1, . . . , M, r = 1, . . . , Ri, i = 1, . . . , N, (4.25)

and the phase angle and the electricity outage at each substation have to satisfy:

0 ≤θj,m,i,r ≤ 2π,

oj,m,i,r ≥ 0,
∀j ∈ J, m = 1, . . . , M, r = 1, . . . , Ri, i = 1, . . . , N. (4.26)

In spite of the operational coupling constraints, they are yearly independent, and hence are

detailed level decisions.

4.4.3 A Co-optimization Model

Co-optimizing the long-term capacity expansion planning with the short-term sub-hourly

economic dispatch of generation and transmission leads to the following multi-scale, multi-

stage stochastic program:

minimize TCCE + TCED

subject to (4.16)− (4.18), (4.20)− (4.26)

130

S∑
s=1

Ksks
g +

N∑
i=1

Ri∑
r=1

Knr
i,r knr

g,i,r = 0, ∀g ∈ G, (4.27)

where ks
g := (ks

g,1 · · · ks
g,T)T for all s = 1, . . . , S. The last equality constraint is the extended

nonanticipativity constraint we proposed in Section 4.2.3 . Problem (4.27) is of the same form

as (4.6), and hence can be solved by the simplified N -block PCPM algorithm, proposed in

Algorithm 5 . Moreover, we observe that the constraint (4.17) can be removed for the decision

variables ks
g,t’s and added to the node decision variables knr

g,i,r’s as follows:

∑
j∈J:J (j)=ĵ

∑
g∈G:G(g)=j

DFgknr
g,i,r ≥ (1 + RMĵ)PKĵ,i,

∀̂j ∈ Ĵ, r = 1, . . . , Ri, i = 1, . . . , N.

(4.28)

Minimizing TCCE subject to (4.16) and (4.18) can then be decomposed by both power

generator g ∈ G and scenario s = 1, . . . , S. Minimizing TCED subject to (4.20) to (4.26),

as well as (4.28), can then be decomposed by both realization r = 1, . . . , Ri and node

i = 1, . . . , N .

4.5 Numerical Experiments

4.5.1 Data

We consider a planning horizon of T = 7 years, as well as a discount factor δ = 1
1.02 . For

each of 12 months in a year, we consider 1 representative day, which can be further divided in

24 hours or 288 5-minutes. Hence, the total number of hours in a year is: H = 12×24 = 288,

and the total number of sub-hours (5-minutes) in a year is M = 12× 288 = 3456.

We focus on a single reserve margin region with RM = 0.15. In this region, we consider:

17 substations, 11 generators, 1 wind resource, 14 demand nodes and 25 transmission lines,

which form a double-loop network plotted in Fig 4.5 . To generate the network, we use a

synthetic data set of Texas network

1
 for reference.

First, we partially select 17 substations from the north central area, as well as 11 power

generators, 14 demand nodes and 25 transmission lines, from the original data set. Then,
1The data can be found at https://electricgrids.engr.tamu.edu/ .

131

https://electricgrids.engr.tamu.edu/

Figure 4.5. A double-loop Network in a Reserve Margin Region.

we manually assign a technology type to each power generator, with parameters set based

on the historical data of EIA Annual Energy Outlook (EIA AEO)

2
 . The detailed values of

all parameters for the power generators can be found in Table 4.9 . A single wind resource is

manually added to Substation 16 with a capacity of KW = 8.0MW . To each demand node

d in the network, we assign a load fraction LFd, denoting the ratio of the hourly load at

node d to the total hourly load of the whole north central area of Texas, listed in Table 4.10 .

All detailed values of the parameters for the transmission lines can be found in Table 4.11 .

4.5.2 Scenario Tree Generation

The way of generating a scenario tree, presented in this subsection, is only to illustrate

the numerical performance of the proposed algorithm, which will be shown in the next

subsection. For more thorough studies on capacity expansion planning for a particular

region, we will be using a similar method as in [47], where the stochastic process is modeled
2The data can be found at https://www.eia.gov/outlooks/aeo/ .

132

https://www.eia.gov/outlooks/aeo/

Table 4.9. Data of Generation Sectors.
g Resp. j Type KGg Ng FOMg V OMg RUg RDg DFg

1 fast 2 Conventional CT 20.0 30 7.34 0.01545 100% 100%

1.0

2 fast 6 Concentional CC 40.0 30 13.17 0.0036 33.33% 33.33%
3 fast 9 Advanced CC 30.0 30 15.37 0.00327 50% 50%
4 fast 10 Advanced CT 10.0 30 7.04 0.01037 100% 100%
5 fast 11 Advanced CC 20.0 30 15.37 0.00327 50% 50%
6 fast 12 Advanced CT 10.0 30 7.04 0.01037 100% 100%
7 slow 15 Single Advanced PC 40.0 40 37.8 0.00447 0 25%
8 slow 15 Dual Advanced PC 60.0 40 31.18 0.00447 0 25%
9 slow 16 Single Advanced PC 40.0 40 37.8 0.00447 0 25%
10 slow 16 Dual Advanced PC 60.0 40 31.18 0.00447 0 25%
11 slow 17 Nuclear 180.0 40 93.28 0.00214 0 25%

Table 4.10. Data of Demand Nodes.
d j LFd d j LFd

1 1 0.00341506840912519 8 8 0.00154893798556277
2 2 0.0101280540133409 9 9 0.00261269311300064
3 3 0.003343230400519 10 10 0.00354824502507975
4 4 0.00296193635483998 11 11 0.000419423450246929
5 6 0.000911237509166254 12 12 0.000151412418139208
6 6 0.0000204462024494551 13 13 0.0000569178068187533
7 7 0.00826579179024186 14 14 0.000143123417146185∑14

d=1 LFd 0.0375265178956769

Table 4.11. Data of Transmission Lines.
l jo jd Bl ∆l KLl l jo jd Bl ∆l KLl

1 2 5 0.287% 126.524 150.0 14 3 17 13.934% 103.7115 1327.0
2 2 5 0.287% 126.524 150.0 15 6 17 31.84% 43.83385 1327.0
3 2 6 0.833% 43.62298 150.0 16 8 12 28.678% 64.59031 1327.0
4 2 6 0.833% 43.62298 150.0 17 8 15 30.816% 59.91346 1327.0
5 2 7 14.845% 201.1213 310.0 18 9 11 24.93% 56.07047 1327.0
6 4 17 0.683% 50.40032 150.0 19 9 12 45.045% 40.93052 1327.0
7 5 10 0.29% 125.1586 150.0 20 10 17 31.441% 44.39812 1327.0
8 5 10 0.29% 125.1586 150.0 21 12 14 58.379% 24.80828 1327.0
9 6 7 0.416% 82.76678 150.0 22 13 14 38.068% 36.6839 1327.0
10 6 7 0.416% 82.76678 150.0 23 13 15 12.077% 115.5839 1327.0
11 13 14 3.753% 6.12558 221.0 24 13 16 10.063% 119.5711 1494.0
12 1 6 22.561% 64.15568 1327.0 25 14 15 44.721% 31.2298 1327.0
13 1 11 9.567% 193.4949 1327.0

133

as a geometric browning motion with the parameters verified by the historical data. It will

be one of our future research tasks.

We consider a 7-level binary tree, where each node at level t = 1, . . . , 6 has only 2

child nodes, so there are S = 64 scenarios and N = 127 nodes in total. With each node

i = 1, . . . , 127, we associate the data vectors: ~IC i, PKNC
i , ~DNC,W KD

i and ~DNC,W KE
i , where

each component of ~IC i := (IC1,i · · · IC11,i)T denotes the quadratic coefficient ICg,i for each

generation sector g at node i, PKNC
i denotes the peak level of hourly load in the north

central area at node i, each component of ~DNC,W KD
i := (DNC,W KD

1,i · · ·DNC,W KD
12,i)T denotes

the average weekday load DNC,W KD
mon,i of month mon = 1, . . . , 12 in the north central area at

node i, and each component of ~DNC,W KE
i := (DNC,W KE

1,i · · ·DNC,W KE
12,i)T denotes the average

weekend load DNC,W KD
mon,i of month mon in the north central area at node i.

The probability of creating each child node ic from its ancestor node i at level t =

1, . . . , T − 1, denoted by pi,ic, has 2 different values, listed in Table 4.12 . We consider the

year of 2019 as the beginning of the planning horizon. At the root node 1, with probability

p1 = 1.0, the values of ~IC1 is obtained from the historical data of EIA AEO, and the value of

PKNC
1 is obtained by ERCOT hourly load data from the year of 2019, as well as the values of

~DNC,W KD
1 and ~DNC,W KE

1 . Each child node ic is created with a probability pic = pi×pi,ic . The

values of the data associated with each child node ic is calculated using the values associated

with its ancestor node times a ratio, also listed in Table 4.12 . The ratio ICg,ic
ICg,i

at each child

node ic is manually assigned. The ratio P KNC
i

P KNC
ic

at each child node ic is generated from the

ERCOT hourly load data for the year of 2002 to 2019, as well as the ratios
~DNC,W KD

ic
~DNC,W KD

i
and

~DNC,W KE
ic

~DNC,W KE
i

at each child node ic. Then, a 7-level binary tree can be generated. The values of

ICs
g,t can be found at the corresponding node, and PKi =

(∑14
d=1 LFd

)
× PKNC

i .

In our model, we also consider an uncertainty for the sub-hourly load and the wind

availability factor. At each node i = 1, . . . , 127, we consider 10 realizations with a equal

probability prl
r = 0.1. For each month mon = 1, . . . , 12, two data pools of 5-minute load

portions to a daily load are made for weekdays and weekend days respectively, using the

historical data of ERCOT. For each realization r, a sequence of 12 representative days in

each month is sampled. For each representative day in each month mon = 1, . . . , 12, a

sequence of total 288 5-minutes load portions in a day is drawn from a data pool, depending

134

Table 4.12. Probabilities and Ratios for Generating the Binary Scenario Tree.
Decreasing Increasing

pi,ic
p1

0.411765 0.588235 1.0
g

ICg,ic
ICg,i

ICg,1

1 0.999 1.07 4.87
2 0.999 1.06 1.48
3 0.999 1.04 2.56
4 0.999 1.05 3.22
5 0.999 1.04 2.56
6 0.999 1.05 3.22
7 0.999 1.08 4.99
8 0.999 1.09 2.26
9 0.999 1.08 4.99
10 0.999 1.09 2.26
11 1.0 1.0 2.48

P KNC
ic

P KNC
i

PKNC
1

0.962635 1.047867 25493.791364

mon
DNC,W KD

mon,ic
DNC,W KD

mon,i

DNC,W KE
mon,ic

DNC,W KE
mon,i

DNC,W KD
mon,ic

DNC,W KD
mon,i

DNC,W KE
mon,ic

DNC,W KE
mon,i

DNC,W KD
mon,1 DNC,W KE

mon,1

1 0.939811 0.922987 1.079484 1.095487 328060.997010 314257.280135
2 0.922397 0.933038 1.087484 1.086450 312898.959607 301457.547991
3 0.976826 0.964011 1.042382 1.049035 286408.897311 273070.060138
4 0.965699 0.946616 1.037831 1.055578 270477.852282 250265.200286
5 0.948244 0.928000 1.059238 1.075360 313919.847511 285299.536478
6 0.940542 0.937028 1.058858 1.073340 360777.718191 352160.898949
7 0.941563 0.933001 1.065955 1.072776 407644.239217 391658.771474
8 0.946417 0.936104 1.064896 1.072610 446160.028895 412306.627903
9 0.942981 0.928792 1.074786 1.092140 409638.432070 394556.334726
10 0.970548 0.953333 1.047375 1.062817 305789.782162 283395.415091
11 0.974836 0.966007 1.045072 1.052684 295388.955169 268610.114623
12 0.951374 0.936434 1.058845 1.073102 308500.818307 276917.790869

on the day type. Then, Dd,m,i,r is calculated by multiplying DNC,W KD
mon,i or DNC,W KE

mon,i , whose

month mon contains the sub-hour m, with the portion in sub-hour m and the load fraction

LFd. Similarly, for each representative day in each month mon = 1, . . . , 12, a sequence of

288 average wind availability factor during 5 minutes in a day is drawn from a data pool

135

corresponding to month mon, made by the historical data of WIND Toolkit from NREL

3
 .

The whole sequence of 12 months determines the values of am,i,r.

4.5.3 Numerical Results

We compare the performance of the simplified PCPM algorithm with that of the ADMM

algorithm and the PHA algorithm, shown in Table 4.13 . For both simplified PCPM and

Table 4.13. Numerical Results for Sub-hourly Modeling on a multi-node
computer cluster.

Algorithm Simplified PCPM ADMM PHA

decomposed by scenario and scenario and scenario only
node-realization node-realization

total number of 1334 1334 64
decomposed sub-problems

largest size of decision variable 312, 491 312, 491 21, 873, 754
in each decomposed sub-problem

largest number of constraints 211, 417 211, 417 14, 799, 204
in each decomposed sub-problem

total number of processors 1334 1334 64
total number of nodes 67 67 64

(maximum 20 cores per node)
maximum memory per node 6.8 GB 6.8 GB 20.4 GB
total elapsed wall-clock time 6.92 h 6.98 h 8.57 h

total number of iterations 1196 1228 6
τ 0.0001 0.0002 1.2150

total cost 233, 998.562 (k$) 234, 497.601 (k$) 235, 795.482 (k$)
outage penalty 0.025424 (k$) 0.030819 (k$) 7.961365 (k$)

ADMM, τ measures the average residual of the extended nonanticipativity constraints; that

is:

τ = 1√
nY

sc + nY
nr

∥∥∥∥ S∑
s=1

Ksys,k +
N∑

i=1

Ri∑
r=1

Knr
i,r ynr,k

i,r

∥∥∥∥
2
.

For PHA, τ measures the average residual of the original nonanticipativity constraints; that

is: τ = 1√
nsc

∥∥∥∥∑S
s=1 Ksxs,k

∥∥∥∥
2
.

Compared with PHA, simplified PCPM, as well as ADMM, decomposes the large-scale

problem by both scenario and node-realization, while PHA only decomposes the problem
3The data can be found at https://www.nrel.gov/grid/wind-toolkit.html .

136

https://www.nrel.gov/grid/wind-toolkit.html

by scenario. Using the hybrid decomposition method, the original problem is decomposed

into 1334 sub-problems, whose largest size of the decision variable is approximately 3× 105,

with a largest number of constraints being around 2 × 105. However, using only scenario

decomposition, the problem can only be decomposed into 64 sub-problems, causing a fact

that both the size of the decision variable and the number of constraints are almost 70 times

of that in the hybrid decomposition. A much larger-sized sub-problem not only requires

more amount of memory but also takes more time to be solved in each iteration.

Within a 9-hour usage of computing resources on a multi-node computer cluster, PHA

is implemented on 64 processors, each of which corresponds to a computing unit that solves

a sub-problem. The 64 processors are mapped to 64 nodes with 1 processor per node.

The memory usage on each node is about 20 GB. The algorithm terminates with a much

larger average residual, as well as much higher total cost and outage penalty, compared with

simplified PCPM and PHA.

Both simplified PCPM and ADMM are implemented on 1334 processors, each of which

solves a decomposed sub-problem. The 1334 processors are mapped to 67 nodes with maxi-

mum 20 cores per node. Compared with PHA, both two algorithms use much less memory

per node, which demonstrates the strengths of using hybrid decomposition. Additionally,

compared with ADMM, simplified PCPM converges with fewer number of iterations and

less elapsed wall-clock time, due to the benefits of exploiting the technique of orthogonal

projection. The algorithm also terminates with a smaller average residual, as well as lower

total cost and outage penalty.

4.6 Conclusion and Future Works

In this chapter, we apply the N -block PCPM algorithm to solve multi-scale multi-stage

stochastic programs, with the application to electricity capacity expansion models. Numer-

ical results show that the proposed simplified N -block PCPM algorithm, along with the

the hybrid decomposition method, exhibits much better scalability for solving the result-

ing deterministic, large-scale block-separable optimization problem, when compared with

the ADMM algorithm and the PHA algorithm. The superiority of algorithm’s scalabil-

ity is attributed to the two key features of the algorithm design: first, the proposed hybrid

137

scenario-node-realization decomposition method with extended nonanticipativity constraints

can decompse the original problem under various uncertainties of different temporal scales;

second, when applying the N -block PCPM algorithm to solve the resulting deterministic,

large-scale N -block convex optimization problem, the technique of orthogonal projection we

exploit greatly simplifies the iteration steps and reduce the communication overhead among

all computing units, which also contributes to the efficiency of the algorithm.

Numerical experiments with better ways of scenario generation will be conducted in the

future. Retirement of generators, as well as storage of electricity, will be considered in future

models. The number of substations will also be increased, when more computing resources

become available.

138

5. CONCLUDING REMARKS

5.1 Summary

This dissertation develops efficient and scalable distributed algorithms for solving large-

scale constrained convex optimization problems, with global convergence established. First,

an extended N -block PCPM algorithm is proposed to solve N -block convex optimization

problems with not only linear but also nonlinear coupling constrains, which cannot be directly

handled by ADMM-type or PCPM-type algorithms. Both sub-linear and linear convergence

rates are proved, under different conditions, by the numerical experiments. Secondly, an

asynchronous N -block PCPM algorithm is proposed to solve linearly constrained N -block

convex optimization problems, as a starting point, with a standard bounded delay assump-

tion. The proposed algorithm is applied to solve a graph optimization problem arising from

spatial clustering. A global sub-linear convergence rate is proved, with additional assumption

of strong convexity of the objective function. The efficiency of using asynchronous iterations

is demonstrated by the numerical results. Thirdly, a Jacobi-style distributed algorithm is

proposed to solve convex QCQPs, using a novel idea of predictor-corrector primal-dual up-

date with an adaptive step size, to deal with the non-separability of both objective function

and coupling constraints. Extensive numerical experiments on various large-scale data sets

are conducted on a multi-node computer cluster. Numerical results show that, compared

with the centralized algorithm, the proposed algorithm exhibits favourable scalability due

to its amenability to massive parallel computing, as well as distributed storage of data. Fi-

nally, the N -block PCPM algorithm is applied to solve a real-world application problem

of electricity capacity expansion, modeled as a multi-scale, multi-stage stochastic program.

By introducing extended nonanticipativity constraints, a hybrid scenario-node-realization

decomposition method is proposed, which decomposes the problem under uncertainties with

different temporal scales, and thus is ready for distributed algorithms with the ability of mas-

sive parallelization. A technique of orthogonal projection is also exploited to simplify the

iteration step and to reduce the communication overhead among all computing units, which

leads to a scalable algorithm for solving the resulting deterministic, large-scale optimization

problem.

139

5.2 Future Research

The algorithms proposed in this dissertation, as well as application to problems from ma-

chine learning and broad engineering areas, provide a convenient distributed framework for

solving large-scale constrained convex optimization problems. Useful extensions of this work

are to further enhance the ability of the distributed framework for large-scale constrained

optimization. A few possible areas for future research are discussed below.

• Constrained Multi-convex Optimization Problems

While the direct extension of the proposed distributed algorithms to solve constrained

non-convex optimization problems might be difficult, we can start with a constrained multi-

convex optimization problem instead. More specifically, we consider the following optimiza-

tion problem:
minimize

x1,...,xN
f(x1, . . . , xN)

subject to (x1, . . . , xN) ∈ X ,

(5.1)

where each xi ∈ Rni is a block of the decision variable for all i = 1, . . . , N , and n = ∑N
i=1 ni.

The objective function f : Rn → R is block multi-convex; that is, for each i = 1, . . . , N , the

function f(xi; x′
−i) : Rni → R is convex, given x′

−i is fixed, where x−i denotes all blocks of

decision variables except for xi. The abstract constraint set X is also block multi-convex;

that is, given a fixed x′
−i, the set

Xi(xi; x′
−i) :=

{
xi ∈ Rni

∣∣∣∣(x′
1, . . . , x′

i−1, xi, x′
i+1, . . . , x′

N) ∈ X
}

is convex for all i = 1, . . . , N . Such problems arise from many application areas, such as non-

negative tensor factorization [48], and weakly-constrained multi-task Learning [49]. In [48],

the authors present three types of distributed algorithms for such constrained multi-convex

optimization problem and analyze convergence with either Lipschitz differentiability or as-

sumption of strongly convexity. It is worth exploring if the (asynchronous) N -block PCPM

algorithm can be extended to solve problem (5.1), and if the global (linear) convergence can

be established under other possibly more mild conditions.

• Decentralized Algorithms

140

When applying (asynchronous) distributed algorithms to solve large-scale constrained

optimization problems, other than the specific main-worker paradigm presented in Sec-

tion 2.3 , we can consider more general graph topology among all computing units to de-

sign communication-efficient decentralized algorithms. A consensus-based decentralized al-

gorithms are proposed in [50], [51]. It’s of great interest to develop (asynchronous) decen-

tralized algorithms for optimization problems with general coupling constraints.

• Cloud Computing Resources

The use of cloud computing resources is also to be explored in the future, such as Amazon

Web Services (AWS), to test the performance of the proposed distributed algorithms on more

application problems with larger data sets.

141

REFERENCES

[1] J. Nocedal and S. Wright, Numerical Optimization. Springer, 2006.

[2] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley, “Notes on decomposition methods,”
Notes for EE364B, Stanford University, pp. 1–36, 2007.

[3] S. Boyd, N. Parikh, and E. Chu, “Distributed optimization and statistical learning via
the alternating direction method of multipliers,” Foundations and Trends® in Machine
learning, vol. 3, no. 1, pp. 1–122, 2011.

[4] R. T. Rockafellar, Convex Analysis. Princeton University Press, 2015.

[5] W. Deng and W. Yin, “On the global and linear convergence of the generalized al-
ternating direction method of multipliers,” Journal of Scientific Computing, vol. 66,
no. 3, pp. 889–916, 2016.

[6] M. Hong and Z.-Q. Luo, “On the linear convergence of the alternating direction method
of multipliers,” Mathematical Programming, vol. 162, no. 1-2, pp. 165–199, 2017.

[7] G. Chen and M. Teboulle, “A proximal-based decomposition method for convex min-
imization problems,” Mathematical Programming, vol. 64, no. 1-3, pp. 81–101, 1994.

[8] P. Giselsson, M. D. Doan, T. Keviczky, B. De Schutter, and A. Rantzer, “Accelerated
gradient methods and dual decomposition in distributed model predictive control,”
Automatica, vol. 49, no. 3, pp. 829–833, 2013.

[9] J. Dass, V. P. Sakuru, V. Sarin, and R. N. Mahapatra, “Distributed QR decomposition
framework for training support vector machines,” in 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), IEEE, 2017, pp. 753–763.

[10] H. Yu and M. J. Neely, “A simple parallel algorithm with an o(1/t) convergence rate
for general convex programs,” SIAM Journal on Optimization, vol. 27, no. 2, pp. 759–
783, 2017.

[11] D. Hallac, J. Leskovec, and S. Boyd, “Network lasso: Clustering and optimization in
large graphs,” in Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM, 2015, pp. 387–396.

[12] W. Deng, M.-J. Lai, Z. Peng, and W. Yin, “Parallel multi-block ADMM with o (1/k)
convergence,” Journal of Scientific Computing, vol. 71, no. 2, pp. 712–736, 2017.

[13] H. Wang, A. Banerjee, and Z.-Q. Luo, “Parallel direction method of multipliers,” in
Advances in Neural Information Processing Systems, 2014, pp. 181–189.

142

[14] X. Wang, M. Hong, S. Ma, and Z.-Q. Luo, “Solving multiple-block separable convex
minimization problems using two-block alternating direction method of multipliers,”
arXiv preprint arXiv:1308.5294, 2013.

[15] R. T. Rockafellar, “Monotone operators and the proximal point algorithm,” SIAM
Journal on Control and Optimization, vol. 14, no. 5, pp. 877–898, 1976.

[16] R. T. Rockafellar, “Augmented Lagrangians and applications of the proximal point
algorithm in convex programming,” Mathematics of Operations Research, vol. 1, no. 2,
pp. 97–116, 1976.

[17] J. Asaadi, “A computational comparison of some non-linear programs,” Mathematical
Programming, vol. 4, no. 1, pp. 144–154, 1973.

[18] S. Sahni and G. Vairaktarakis, “The master-slave paradigm in parallel computer and
industrial settings,” Journal of Global Optimization, vol. 9, no. 3-4, pp. 357–377, 1996.

[19] T.-H. Chang, M. Hong, W.-C. Liao, and X. Wang, “Asynchronous distributed ADMM
for large-scale optimization—part i: Algorithm and convergence analysis,” IEEE Trans-
actions on Signal Processing, vol. 64, no. 12, pp. 3118–3130, 2016.

[20] T.-H. Chang, W.-C. Liao, M. Hong, and X. Wang, “Asynchronous distributed admm
for large-scale optimization—part ii: Linear convergence analysis and numerical per-
formance,” IEEE Transactions on Signal Processing, vol. 64, no. 12, pp. 3131–3144,
2016.

[21] G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan, “Learn-
ing the kernel matrix with semidefinite programming,” Journal of Machine Learning
Research, vol. 5, no. Jan, pp. 27–72, 2004.

[22] Y. Huang and D. P. Palomar, “Randomized algorithms for optimal solutions of double-
sided qcqp with applications in signal processing,” IEEE Transactions on Signal Pro-
cessing, vol. 62, no. 5, pp. 1093–1108, 2014.

[23] O. Rabaste and L. Savy, “Mismatched filter optimization for radar applications using
quadratically constrained quadratic programs,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 51, no. 4, pp. 3107–3122, 2015.

[24] C. Aholt, S. Agarwal, and R. Thomas, “A qcqp approach to triangulation,” in European
Conference on Computer Vision, Springer, 2012, pp. 654–667.

[25] S. Bose, D. F. Gayme, K. M. Chandy, and S. H. Low, “Quadratically constrained
quadratic programs on acyclic graphs with application to power flow,” IEEE Transac-
tions on Control of Network Systems, vol. 2, no. 3, pp. 278–287, 2015.

143

[26] Y. Nesterov and A. Nemirovskii, Interior-point Polynomial Algorithms in Convex Pro-
gramming. SIAM, 1994.

[27] A. Nemirovski, “Interior point polynomial time methods in convex programming,”
Lecture Notes, 2004.

[28] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of second-order
cone programming,” Linear Algebra and Its Applications, vol. 284, no. 1-3, pp. 193–
228, 1998.

[29] IBM ILOG CPLEX optimization studio CPLEX User’s Manual, Version 12 Release
7, 1987-2017.

[30] B. O’donoghue, E. Chu, N. Parikh, and S. Boyd, “Conic optimization via operator
splitting and homogeneous self-dual embedding,” Journal of Optimization Theory and
Applications, vol. 169, no. 3, pp. 1042–1068, 2016.

[31] A. Kalbat and J. Lavaei, “A fast distributed algorithm for decomposable semidefinite
programs,” in 54th IEEE Conference on Decision and Control, 2015, pp. 1742–1749.

[32] S. K. Pakazad, A. Hansson, M. S. Andersen, and A. Rantzer, “Distributed semidefinite
programming with application to large-scale system analysis,” IEEE Transactions on
Automatic Control, vol. 63, no. 4, pp. 1045–1058, 2018.

[33] K. Huang and N. D. Sidiropoulos, “Consensus-ADMM for general quadratically con-
strained quadratic programming,” IEEE Transactions on Signal Processing, vol. 64,
no. 20, pp. 5297–5310, 2016.

[34] K. Basu, A. Saha, and S. Chatterjee, “Large-scale quadratically constrained quadratic
program via low-discrepancy sequences,” in Advances in Neural Information Processing
Systems, 2017, pp. 2297–2307.

[35] IBM ILOG CPLEX optimization studio CPLEX Parameters Reference, Version 12
Release 8, 1987-2017.

[36] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2009.

[37] L. Breiman et al., “Arcing classifier,” The Annals of Statistics, vol. 26, no. 3, pp. 801–
849, 1998.

[38] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press, 2012.

[39] G. H. Golub and C. F. Van Loan, Matrix Computations. Johns Hopkins University
Press, 2013.

144

[40] P. Lancaster and H. K. Farahat, “Norms on direct sums and tensor products,” Math-
ematics of Computation, vol. 26, no. 118, pp. 401–414, 1972.

[41] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on stochastic programming:
modeling and theory. SIAM, 2014.

[42] W. Römisch, “Scenario generation,” Wiley Encyclopedia of Operations Research and
Management Science, 2010.

[43] T. Pennanen, “Epi-convergent discretizations of multistage stochastic programs via
integration quadratures,” Mathematical Programming, vol. 116, no. 1-2, pp. 461–479,
2009.

[44] K. Høyland and S. W. Wallace, “Generating scenario trees for multistage decision
problems,” Management Science, vol. 47, no. 2, pp. 295–307, 2001.

[45] G. C. Pflug, “Scenario tree generation for multiperiod financial optimization by optimal
discretization,” Mathematical Programming, vol. 89, no. 2, pp. 251–271, 2001.

[46] R. T. Rockafellar and R. J.-B. Wets, “Scenarios and policy aggregation in optimization
under uncertainty,” Mathematics of Operations Research, vol. 16, no. 1, pp. 119–147,
1991.

[47] S. Jin, S. M. Ryan, J.-P. Watson, and D. L. Woodruff, “Modeling and solving a
large-scale generation expansion planning problem under uncertainty,” Energy Sys-
tems, vol. 2, no. 3-4, pp. 209–242, 2011.

[48] Y. Xu and W. Yin, “A block coordinate descent method for regularized multiconvex
optimization with applications to nonnegative tensor factorization and completion,”
SIAM Journal on Imaging Sciences, vol. 6, no. 3, pp. 1758–1789, 2013.

[49] J. Wang, L. Zhao, and L. Wu, “Multi-convex inequality-constrained alternating direc-
tion method of multipliers,” arXiv preprint arXiv:1902.10882, 2019.

[50] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence of the
ADMM in decentralized consensus optimization,” IEEE Transactions on Signal Pro-
cessing, vol. 62, no. 7, pp. 1750–1761, 2014.

[51] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order algorithm for
decentralized consensus optimization,” SIAM Journal on Optimization, vol. 25, no. 2,
pp. 944–966, 2015.

145

	TITLE PAGE
	COMMITTEE APPROVAL
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Motivation
	Objectives of the Thesis
	Thesis Outline

	DISTRIBUTED AND ASYNCHRONOUS ALGORITHMS FOR N-BLOCK CONVEX OPTIMIZATION WITH COUPLING CONSTRAINTS
	Introduction
	Extending the PCPM Algorithm to Solving General Constrained N-block Convex Optimization Problems
	N-block PCPM Algorithm for General Constrained Convex Optimization Problems
	Convergence Analysis
	Numerical Experiments

	Extending the N-block PCPM Algorithm to an Asynchronous Scheme
	Asynchronous N-block PCPM Algorithm for Convex Optimization Problems with Linear Coupling Constraints
	Convergence Analysis

	Numerical Experiments
	An Optimization Problem on a Graph
	Two Problem Reformulations
	Housing Price Prediction
	Numerical Results of Synchronous N-block PCPM Algorithm
	Numerical Results of Asynchronous N-block PCPM Algorithm

	Conclusion and Future Works
	Proofs in Section 2.2.2
	Proof of Proposition 2.2.3
	Proof of Theorem 2.2.4
	Proof of Theorem 2.2.5

	Proofs in Section 2.3.2
	Proof of Theorem 2.3.2

	A DISTRIBUTED ALGORITHM FOR LARGE-SCALE CONVEX QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMS
	Introduction
	A Distributed Algorithm for Large-scale Convex QCQPs
	Convergence Analysis
	Implementation
	Distributed Storage of Data and Parallel Computing
	Adaptive Step Size with Auto-learned Allocation Weights
	Stopping Criteria

	Numerical Experiments
	Solving Standard-Form Convex QCQPs
	Multiple Kernel Learning in Support Vector Machine

	Conclusion and Future Works
	Proofs in Section 3.3
	Proof of Proposition 3.3.3
	Proof of Theorem 3.3.4

	A DISTRIBUTED ALGORITHM FOR MULTI-STAGE STOCHASTIC PROGRAMS WITH APPLICATION TO ELECTRICITY CAPACITY EXPANSION
	Decomposition Methods for Multi-stage Stochastic Program
	Multi-stage Stochastic Program
	Scenario Tree and Node Separability
	Nonanticipativity and Scenario Separability
	Comparison of Node Decomposition and Scenario Decomposition

	A Hybrid Decomposition Method for Multi-scale Multi-stage Stochastic Program under Multi-scale Uncertainties
	Additional Structures
	Extended Nonanticipativity and Hybrid Scenario-node Decomposition
	Under Multi-scale Uncertainties

	A Simplified PCPM Algorithm using Orthogonal Projection
	Apply the PCPM Algorithm
	Orthogonal Projection
	A Simplified PCPM Algorithm

	Electricity Capacity Expansion under Multi-scale Uncertainties
	Capacity Expansion Planning
	Sub-hourly Economic Dispatch of Generation and Transmission
	A Co-optimization Model

	Numerical Experiments
	Data
	Scenario Tree Generation
	Numerical Results

	Conclusion and Future Works

	CONCLUDING REMARKS
	Summary
	Future Research

	REFERENCES

