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ABSTRACT

Ankit, Aayush Ph.D., Purdue University, December 2020. Hardware-Software Code-
sign for Efficient Machine Learning using In-Memory Computing. Major Professor:
Kaushik Roy.

General-purpose computing systems have benefited from technology scaling for

several decades but are now hitting a performance/energy wall. This trend has led to

a growing interest in domain-specific accelerators. Machine Learning (ML) workloads

in particular have received tremendous attention because of their pervasiveness across

applications. ML workloads tend to be data-intensive and perform many matrix

operations. Their execution on digital CMOS hardware is typically characterized

by high data movement costs. To overcome this limitation, in-memory computing

primitives (CMOS, NVM) have been demonstrated to perform matrix operations

with high efficiency by overcoming the low memory bandwidth and high memory

energy issues. While such primitives have shown tremendous potential at the device-

circuit levels, the system-level implications remain unclear, as they are not a drop-in

replacement for traditional memory structures (register file, caches etc.).

First, this thesis explores the potential of in-memory computing towards domain-

specific accelerators for inference, sparse inference, and training. To improve inference

efficiency PUMA is proposed, which is a spatial architecture built with Non-Volatile

Memory (NVM) crossbars. PUMA leverages the high on-chip storage density and ana-

log computation capabilities of NVM to accelerate a wide range of ML applications.

It supplements NVM crossbars with CMOS digital units, an instruction execution

pipeline, and a specialized ISA to enable efficient coverage across different ML work-

loads and enhance programmability. It also includes a hardware-software codesign

to optimize data movement. The evaluations show that PUMA achieves significant
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energy and latency improvements for ML inference compared to the state-of-the-art

GPUs, CPUs, and ASICs. Subsequently, the proposed accelerator is extended for

sparse inference. The over-parametrized nature of typical ML models has motivated

model-compression techniques such as network pruning to improve the inference ef-

ficiency. However, sparse models obtained by typical network pruning lead to ineffi-

cient execution particularly on in-memory hardware. To address this, TraNNsformer

is proposed which prunes the connectivity matrix while forming clusters with the re-

maining connections during the training process to transform the original model into

an optimally pruned and maximally clustered mapping. Next, the applicability of the

proposed in-memory accelerator (PUMA) is explored for ML training. Despite the

storage density and analog computing benefits, NVMs suffer from high write cost,

which is detrimental for ML training because of weight updates being a common

case. To address this, a bit-slicing technique is proposed that enables performing

high-precision analog outer-products on NVM crossbars to realize the weight up-

date without using typical reads and writes. This technique is incorporated into an

ISA-programmable architecture namely PANTHER, which enables different training

algorithms and different layers types.

Despite the effectiveness of domain-specific accelerators for ML acceleration, general-

purpose systems such as General Purpose Graphics Processing Unit (GPGPU) have

continued to play an important role in ML inference and training owing to their

wider availability and lower engineering costs for hardware-software developments.

Subsequently, modern GPGPUs have introduced domain-specific units for matrix

multiplication namely tensor core to meet the growing performance demands of ML.

However, even with the improved throughput, tensor cores are inherently limited by

the bandwidth of large register file sizes in GPGPU. To this effect, the implication

of in-memory computing based tensor cores on GPGPU is explored. We show that

GPGPU augmented with in-memory tensor cores enables overcoming the bandwidth

limitation of register file, and provides the required flexibility for emerging application

trends such as quantization and sparsity.
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1. INTRODUCTION

1.1 Machine Learning and its Computational Challenges

Machine Learning (ML) is the scientific study of computation models that learn

to perform specific tasks without requiring explicit instructions, as defined by Arthur

Samuel in 1959. This is inspired from the magnificent ability of the human brain

to perform myriad tasks by just learning from the environment. On the contrary,

traditional computer programs built for specific purpose exhibit a behavior defined

by the hand-crafted heuristics that statically define their behavior. Consequently, the

overarching goal of ML has been to achieve human brain-level intelligence.

The past decade has seen a tremendous surge in the usage of the ML algorithms

across different application domains such as image and video processing [1,2], speech

and language processing [3, 4], medical imaging [5], gameplay [6] and robotics [7].

More recently ML algorithms have also superseded human brain capabilities in specific

applications, for example Google’s AlphaGo [1] and Baidu’s DeepSpeech2 [8]. The

increasing abilities in terms of accuracy has led to the successful proliferation of ML

based personal assistants in commercial products used in day-to-day life such as Siri,

Alexa and Google Now.

While these algorithmic feats are remarkable, the ever increasing hardware costs

driving these developments are alarming. For instance, the AlphaGo algorithm runs

on hundreds of KiloWatts of power which is about four orders of magnitude higher

than the human brain. Consequently, the algorithm performance is moving closer to

the human brain whereas the hardware cost is moving farther. Furthermore, aspi-

rations have always grown faster than the technology available to satisfy them. To

this effect, there is a need to look beyond today’s general purpose systems in order

to bridge the huge disparity in the hardware costs of ML algorithms and the brain.
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Fig. 1.1. Increase in the performance density of CMOS hardware [13]

1.2 Analog In-memory Computing

Owing to the high computational needs of ML particularly Matrix Vector Multi-

plication (MVM) operations, there has been active research in ML accelerator archi-

tectures built with CMOS digital technology. Several projects such as DianNao [9],

Tensor Processing Unit [10] and Brainwave [11] have proposed ML hardware that

achieve orders of magnitude higher efficiency compared to general purpose systems

(CPU, GPU). However, the trends in increase in the performance density of digital

CMOS hardware (Figure 1.1) and the computation requirements of ML (Figure 1.2),

clearly highlight that ML models are growing at a faster rate than conventional CMOS

hardware (or digital CMOS). Furthermore, ML workloads tend to be data-intensive

and their execution on digital CMOS hardware is typically characterized by high data

movement costs relative to compute [12]. To this end, analog in-memory computing

using memristive and SRAM technologies have shown tremendous potential owing to

their efficient dot product computation capabilities.

Memristive crossbars can store a matrix with high storage density and perform

MVM operations with very low energy and latency [14–20]. Each crosspoint in the

crossbar stores a multi-bit value in one memristor device, which enables high storage
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Fig. 1.2. Increase in the computational requirements of ML models [13]

density [21]. Upon applying an input voltage at the crossbar’s rows, we get the MVM

result as output current at the crossbar’s columns based on Kirchhoff’s law. A cross-

bar thus performs MVM in one computational step – including O(n2) multiplications

and additions for an n×n matrix – which typically takes many steps in digital logic.

It also combines compute and storage in a single device to alleviate data movement,

thereby providing intrinsic suitability for data-intensive workloads [22, 23]. Several

recent works have also demonstrated such in-memory MVM capability in SRAM

technology [24, 25]. While SRAM technology has lower storage density compared to

memristive technology, its high endurance, reliability and efficient writes makes it an

attractive choice for augmenting existing systems such as CPU, GPU with in-memory

computing capabilities.

1.3 Dissertation Overview

Thesis Statement

This dissertation proposes an ISA-programmable accelerator architecture built

with memristive crossbars for ML inference called PUMA and shows that hybrid
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CMOS-memristive technologies can achieve orders of magnitude higher efficiency than

CMOS systems (CPUs, GPUs and ASICs) [26]. In addition to that, it also proposes a

software optimization called TraNNsformer to enable efficient inference of emerg-

ing ML workloads namely sparse DNNs [27]. Subsequently, it proposes PANTHER

which extends the PUMA architecture for performing ML training as well. Lastly, it

proposes an in-memory tensor core (TIMON ) for General Purpose Graphics Pro-

cessing Unit (GPGPU) to improve the efficiency of conventional architectures for ML

workloads.

Layout

The rest of the dissertation is organized as follows. Chapter 2 discusses the

prior works in ML accelerators, software optimization (weight pruning) for ML, and

GPGPU tensor cores. Chapters 3 and 4 cover the proposed PUMA accelerator ar-

chitecture [26,28] and TraNNsformer software optimization [27,29]. Chaper 5 covers

the proposed extensions for training - PANTHER [30]. Chaper 6 covers in-memory

computing in GPGPU register file - TIMON.
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2. RELATED WORK AND BACKGROUND

In this section we review the research on ML accelerator architectures, software opti-

mizations for ML, and GPGPU tensor cores and register file. We also look into how

the proposed PUMA: inference accelerator architecture, TraNNsformer: software op-

timization, PANTHER: training accelerator architecture, and TIMON: in-memory

tensor core distinguish from the related works.

2.1 Inference Accelerator Architectures

Owing to the ever increasing computation demands of machine learning and its

growing pervasiveness across application domains, past years have seen significant

body of research in accelerators for machine learning. In this section, we review some

of these implementations for CMOS Digital, and Memristor-based Analog accelera-

tors. Finally, we discuss the manufacturability and non-ideality concerns associated

with memristor technology.

2.1.1 CMOS Digital In-/Near-memory Accelerators

Sze et al. [31] provide a thorough survey of the many neural network accelerators

and the differences between them. In the digital realm, accelerators can be classi-

fied as weight stationary spatial architectures (such as NeuFlow [32], Sankaradas

et al. [33], Chakradhar et al. [34], Gokhale et al. [35], Origami [36], and Paer et

al. [37]), output stationary spatial architectures (such as Peemen et al. [38], ShiD-

ianNao [39], and Gupta et al. [40]), spatial architectures with no local reuse (such

as DianNao [9], DaDianNao [41], and Zhang et al. [42]), and row stationary spatial

architectures (such as Eyeriss [43]). Many accelerator designs have also proposed
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support for optimizations and features including weight pruning and exploiting spar-

sity such as in Minerva [44], Cnvlutin [45], EIE [46], SCNN [47], Cambricon-X [48],

Chung et al. [49], Pragmatic [50], and CirCNN [51], reducing precision such as in

Stripes [52] and YodaNN [53], layer fusing such as in Alwani et al. [54], leveraging

stochastic computing such as in Kim et al. [55] and SC-DNN [56], and adaptation

to meet QoS and QoR requirements such as ELNA [57]. Accelerators vary in their

degree of flexibility, ranging from custom accelerators specialized for a particular

field such as Murray et al. [58] and Yazdani et al. [59] to accelerators that are fully

programmable via an instruction set architecture such as PuDianNao [60], Cambri-

con [61], Cambricon-X [48], ScaleDeep [62], and Google’s TPU [10]. Besides ASICs,

accelerators have also been generated for FPGAs such as in CNP [63], Peemen et

al. [38], Zhang et al. [42], DeepBurning [64], Tabla [65], DNNWeaver [66], and Shen

et al. [67]. All these works remain in the digital domain, while PUMA focuses on

hybrid digital-analog computing.

Chung et al. [11] propose Brainwave, which is a spatial accelerator built with

FPGAs. Compared to Brainwave, a PUMA core performs 0.26 million 16-bit ops,

equivalent to 1.04 million 8-bit ops, per coalesced MVM instruction. A Brainwave

NPU performs 1.3million 8-bit ops per instruction. Therefore, PUMA and Brainwave

have comparable control granularity while PUMA has 40.8x higher storage-density

(Brainwave Stratix10 estimate).

Near-memory computing using DRAM has been proposed in past accelerators

such as Neurocube [68], TETRIS [69], DRISA [70], and RAMANN [71]. PUMA uses

non-volatile memristive crossbars for acceleration.

2.1.2 Memristor-based Analog In-/Near-memory Accelerators

The use of memristive crossbars for accelerating neural networks has received

much attention in recent years [72–75]. Accelerators leveraging memristive crossbars

include Hu et al. [76], SPINDLE [77], DNP [78], RENO [79], Memristive Boltz-
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mann Machine [80], ISAAC [23], Prime [22], PipeLayer [81], TIME [82], Group

Scissor [83], and RESPARC [84]. These accelerators have been demonstrated on

several types of networks including BSBs [76], MLPs [77, 79, 82], SNNs [78, 84–87],

Boltzman Machines [80], and CNNs [22, 23, 81–83]. Some accelerators support infer-

ence only [22, 23, 76, 77, 79, 84] while others also support training [78, 80–82]. NEU-

TRAMS [88] provides a framework for transforming neural networks to configure

such accelerators. These accelerators vary in their degrees of flexibility, but even the

most flexible rely on datapath configuration and have only been demonstrated on a

few types of networks. PUMA is the first memristor-based accelerator for machine

learning inference that is ISA-programmable and general-purpose.

Fujiki et al. [89] propose an ISA-programmable memristor-based accelerator. Their

accelerator is a data-parallel accelerator whereas PUMA is a data-flow accelerator

with more capability for producer-consumer synchronization. Moreover, their accel-

erator optimizes crossbars for vector operations in general-purpose workloads whereas

PUMA optimizes crossbars for MVM operations prevalent in machine learning and

uses digital VFUs for vector operations rather than crossbars.

2.1.3 Memristor Manufacturability and Non-ideality

There have been concerns in the community about memristor manufacturabil-

ity. We distinguish between medium-density embedded memristor applications and

high-density storage-class memory (SCM). Memristors in PUMA use 1T1R configu-

ration which have been shown to have good manufacturability [90]. They are very

different from SCM, where the selector transistor may be replaced with an in-line

two-terminal selector device for higher density which complicates manufacturability.

Panasonic formed a joined venture with UMC foundry in 2017 to enable integration

of memristors to UMC 40nm CMOS process with first samples planned in 2018 [91].

TSMC also completed development of their own memristor technology that entered

risk production in 40nm ULP CMOS process node at the end of 2017 [92].
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Memristor technology suffers from non-idealities such as read/write noise, asym-

metric non-linearity in conductance vs programming pulses, IR-drop, source and sense

resistances; stuck-at-faults; and process variations. These can lead to significant

degradation in the classification accuracy [93]. Past research has shown that the iter-

ative nature of DNN training and careful re-training enables recovering the accuracy

loss from non-idealities [94–97], faults [98] and variations [99]. Furthermore, PUMA

uses low bit-resolution memristor cells to gain higher noise margin for mitigating the

accuracy degradation from non-idealities.

2.2 Software Optimizations (Weight Pruning)

Weight pruning has been proposed to achieve significant reduction in DNN size,

while maintaining the required accuracy [12,100–103]. A reduction in the number of

weights at the algorithm level opens up the potential to leverage this weight spar-

sity for efficient DNN execution at the hardware level. Consequently, this leads to

two orthogonal research directions geared towards CMOS architectures 1) specialized

accelerators for sparse DNNs, and 2) software transformations. Several specialized

accelerators have been proposed to maximize the DNN efficiency for resource and

energy constrained platforms [46, 48, 104–107], which have explored novel techniques

to store the sparse matrix for reducing the memory requirements as well as exploiting

the weight sparsity to save unnecessary computations. The software transformation

approaches have explored techniques to obtain sparsity in a structured or regular

manner, such that these sparse DNNs can be executed on CPU, GPU as well as

general-purpose ML accelerators [105,108–113] efficiently.

While the past works on designing specialized accelerators have shown signifi-

cant improvements for DNN execution on CMOS hardware, these techniques are not

amenable to crossbar-based architectures. The separability between storage and com-

putation available on CMOS systems enables designing specialized CMOS accelerators

to leverage sparsity. Herein, the sparse matrix can be stored in a compressed format
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(in off-chip memory), which can be later decompressed during computations to enable

correct computations (in SIMD units). However, a crossbar performs in-memory pro-

cessing, where the computations are performed by the same crossbar which stores the

weight matrix. This does not involve explicit memory fetches for the weight matrix,

thereby removing the flexibility to store data in a compressed manner. Further, owing

to the difference in the computation nature of CMOS and crosbar-based hardware,

the software transformations for CMOS systems are not suitable to MCA systems.

Recently, software transformation approaches for crosbsar-based architectures have

been proposed [114–116]. [114] focuses on clustering the synapses after the training

process finishes i.e. offline clustering. [115] proposes pruning of convolution layers to

reduce the throughput overhead by implementing pruning based on semi-folded map-

ping scheme. [116] uses the approach of hierarchical clustering to map DNNs on 3D

ICs. TraNNsformer distinguishes from the prior works as it proposes an integrated

training framework for optimizing fully connected layers of DNNs.

2.3 Training Accelerator Architectures

Various ReRAM-based training accelerators [81,82] have been proposed, but they

rely on expensive serial reads and writes to accomplish weight updates. We avoid

these reads and writes by leveraging the in-crossbar OPA operations [117, 118], and

extending their precision for practical trainability. Our crossbar architecture can be

used to enhance existing accelerators.

ReRAM-based accelerators have also been proposed for DNN inference [22, 23,

26, 80], graph processing [119], scientific computing [120], and general purpose data

parallel applications [89]. Our work focuses on DNN training.

Analog [121, 122] and DRAM-based [68–70] accelerators have been proposed as

alternatives to digital-CMOS accelerators. Our work uses ReRAM as an alternative.

Many accelerators use digital CMOS technology for accelerating DNNs, including

those that mainly target inference [43,45,46,48,52,54,57,59,104,123–131] or also target
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training [41, 61, 132–135]. Frameworks that assist with designing such accelerators

deal with challenges such as power optimizations [44], stochastic computing [55, 56],

pruning [49], targeting FPGAs [64–66,136,137], and scaling [138].

Many accelerators use digital CMOS technology for accelerating DNNs, including

those that mainly target inference [31] or also target training [135]. Our work uses

hybrid digital-analog computation based on ReRAM crossbars, not just CMOS.

Recent works have explored training DNNs with reduced precisions in floating-

point arithmetic domain such as bfloat16 [139], float8 [140] as well as fixed-point

arithmetic domain [141, 142]. While floating-point arithmetic is not amenable to

ReRam-based hardware (without modifications), the reductions in fixed-point preci-

sion can be exploited in PANTHER by reducing the MCU width (number of slices)

to improve training energy and time.

ReRAM technology suffers from imprecise writes due to non-idealities (noise and

non-linearity) and manufacturability issues (stuck-at-faults and process variations).

However, the iterative nature of DNN training and careful re-training helps recover the

accuracy loss from non-idealities [94], faults [98], and variations [143]. Re-training is

a fine-tuning process (typically 1 epoch) with insignificant cost compared to training.

2.4 GPGPU Tensor Core

Inference Accelerators: Domain-specific architectures for inference have been

explored both in industry [10, 144] and academia [31, 43, 129]. Many works also

support model compression techniques such as quantization [46, 145, 146], and spar-

sity [104, 147–152]. Alike Nvidia GPU tensor cores1, majority of these accelerators

leverage data reuse to overcome the memory bandwidth/energy limitations. However,

the key difference lies in the amount of data reuse obtained at the area (thereby power)

cost. GPU tensor cores operate at computational intensity of about 2 Ops/Byte (Sec-

tion 6.3) and consume 0.21mm2 die area per sub-core at 45nm node (Section 6.7.5).

1leverages data reuse by using local buffers in tensor cores to reduce register file access (Section 6.3).
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On the other hand, Eyeriss, a custom architecture, achieves an order of magnitude

higher computation intensity, and consumes 5.87 mm2 die area at 45nm node [153].

The 28× higher area requirement is because the higher data reuse comes at the cost

of significantly higher buffer size and computation units. As a result, the smaller area

versions of such accelerators incorporated as tensor core in GPGPUs have low data

reuse, and are limited by low bandwidth and high energy of GPGPU register file.

Register File Optimizations: Several past works have explored optimizations to

reduce dynamic energy and leakage energy in GPGPU register files by caching [154],

virtualization [155], emerging memory technologies [156, 157], and fine-grained ac-

cess control [158]. These techniques reduce energy consumption, but do not improve

inference performance.

Past research have also explored compiler optimizations such as register pack-

ing [159], and register coalescing [160] to reduce the register file bandwidth require-

ments for workloads with lower bit-width operands such as 1/2/3 bytes. These tech-

niques can improve inference on quantized workloads, but the improvements obtained

are linear at best due to linear reduction in register file accesses with bit-width reduc-

tion. Since quantization reduces the number of computations quadratically (bit-serial

multiplier [146]), it would be ideal to obtain quadratic benefits in inference perfor-

mance as well.

GPGPU Tensor Cores: Nvidia GPUs recently introduced tensor cores for in-

ference acceleration in 2018 (Turing [161]). As mentioned before, they suffer from

register file bandwidth/energy limitations. Further, existing tensor cores do not offer

the required flexibility for model compression techniques. Recently, [162] explored

accelerating workloads with structured sparity on tensor cores. However, it does not

improve the performance on dense GEMMs, or support the more commonly used

model compression techniques such as quantization, and unstructured sparsity.

TIMON leverages in-memory computing to overcome GPGPU register file band-

width and energy limitations to achieve higher efficiency compared to existing GPGPU
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tensor core on dense GEMMs. Further, TIMON enables flexible support for irregular

quantization, and unstructured sparsity.
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3. PUMA - INFERENCE ACCELERATOR

ARCHITECTURE

3.1 Introduction

ML workloads tend to be data-intensive and perform a large number of Matrix

Vector Multiplication (MVM) operations. Their execution on digital CMOS hardware

is typically characterized by high data movement costs relative to compute [12]. To

overcome this limitation, memristive crossbars can store a matrix with high storage

density and perform MVM operations with very low energy and latency [14–19].

Each crosspoint in the crossbar stores a multi-bit value in one memristor device,

which enables high storage density [21]. Upon applying an input voltage at the

crossbar’s rows, we get the MVM result as output current at the crossbar’s columns

based on Kirchhoff’s law. A crossbar thus performs MVM in one computational

step – including O(n2) multiplications and additions for an n × n matrix – which

typically takes many steps in digital logic. It also combines compute and storage in

a single device to alleviate data movement, thereby providing intrinsic suitability for

data-intensive workloads [22,23].

Memristive crossbars have been used to build special-purpose accelerators for Con-

volutional Neural Networks (CNN) and Multi Layer Perceptrons (MLP) [22, 23, 79],

but these designs lack several important features for supporting general ML work-

loads. First, each design supports one or two types of neural networks, where layers

are encoded as state machines. This approach is not scalable to a larger variety

of workloads due to increased decoding overhead and complexity. Second, existing

accelerators lack the types of operations needed by general ML workloads. For ex-

ample, Long Short-Term Memory (LSTM) [163] workloads require multiple vector

linear and transcendental functions which cannot be executed on crossbars efficiently
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and are not supported by existing designs. Third, existing designs do not provide

flexible data movement and control operations to capture the variety of access and

reuse patterns in different workloads. Since crossbars have high write latency [164],

they typically store constant data while variable inputs are routed between them

in a spatial architecture. This data movement can amount to a significant portion

of the total energy consumption which calls for flexible operations to optimize the

data movement. Fourth, some designs use deep pipelines [23] which are not suitable

for general workloads with control flow. Finally, other designs [22] make optimistic

assumptions about precision which may not be suitable for all types of workloads.

To address these limitations, we present PUMA, a Programmable Ultra-efficient

Memristor-based Accelerator. PUMA is a spatial architecture designed to preserve

the storage density of memristive crossbars to enable mapping ML applications using

on-chip memory only. It supplements crossbars with an instruction execution pipeline

and a specialized ISA that enables compact representation of ML workloads with

low decoder complexity. It employs temporal SIMD units and a ROM-Embedded

RAM [165] for area-efficient linear and transcendental vector computations. It in-

cludes a microarchitecture and ISA co-designed to optimize data movement and

maximize area and energy efficiency. To the best of our knowledge, PUMA is the

first programmable and general-purpose ML inference accelerator built with hybrid

CMOS-memristor technology.

A näıve approach to generality is not viable because of the huge disparity in

compute and storage density between the two technologies. CMOS digital logic has

an order of magnitude higher area requirement than a crossbar for equal output

width (∼20×, see Table 3.5). Moreover, a crossbar’s storage density (2-bit cells)

is 160MB/mm2, which is at least an order of magnitude higher than SRAM (6T,

1-bit cell) [23]. A 90mm2 PUMA node can store ML models with up to 69MB of

weight data. Note that the PUMA microarchitecture and ISA are equally suitable

to crossbars made from emerging technologies other than memristors such as STT-

MRAM [20], NOR Flash [166], etc.
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We make the following contributions:

• A programmable and highly efficient architecture exposed by a specialized ISA

for scalable acceleration of a wide variety of ML applications using memristive

crossbars.

• A detailed simulator which incorporates functionality, timing, and power models

of the architecture.

• An evaluation across ML workloads showing that PUMA can achieve promising

performance and energy efficiency compared to state-of-the-art CPUs, GPUs,

TPU, and application-specific memristor-based accelerators.

3.2 Workload Characterization

This section characterizes different ML inference workloads with a batch size of

one. The characteristics are summarized in Table 3.1. The section’s objective is

to provide insights on the suitability of memristive crossbars for accelerating ML

workloads and highlight implications on the proposed architecture.

3.2.1 Multi-Layer Perceptron (MLP)

MLPs are neural networks used in common classification tasks such as digit-

recognition, web-search, etc. [167, 168]. Each layer is fully-connected and applies

a nonlinear function to the weighted-sum of outputs from the previous layer. The

weighted-sum is essentially an MVM operation. Equation 3.1 shows the computations

in a typical MLP (act is nonlinear):

O[y] = act(B[y] +

n−1∑
x=0

I[x]×W [x][y]) (3.1)

MLPs are simple, capturing the features common across the ML workloads we

discuss: dominance of MVM operations, high data parallelism, and use of nonlinear

operations.
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Table 3.1.
Workload Characterization

Characteristic MLP LSTM CNN

Dominance of MVM Yes Yes Yes

High data parallelism Yes Yes Yes

Nonlinear operations Yes Yes Yes

Linear operations No Yes No

Trancendental operations No Yes Yes

Weight data reuse No Yes Yes

Input data reuse No No Yes

Bounded resource Memory Memory Compute

Sequential access pattern Yes Yes No

Dominance of MVM

MVM operations are O(n2) in space and computational complexity, whereas the

nonlinear operations are O(n), where n is the matrix dimension (layer size). MVMs

are therefore the dominant operation in MLPs (and other ML workloads). This

property makes memristive crossbars suitable for acceleration since they perform

analog MVMs with low energy/latency.

High data parallelism

MLPs (and other ML workloads) have massive amounts of data parallelism. More-

over, practical model sizes are larger than the typical on-chip storage that can be pro-

vided by SRAM. For this reason, CMOS implementations suffer from costly DRAM

accesses which are particularly taxing due to the absence of data reuse to amortize

them. On the other hand, crossbars have extremely high area efficiency which allows

deploying many of them on a single chip. Doing so not only captures the high data

parallelism in these workloads, but it also provides high storage density to fit models

on-chip and bypass costly DRAM accesses.
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Nonlinear operations

In addition to MVM operations, MLPs (and other ML workloads) perform non-

linear vector operations (e.g., ReLU). Since these operations cannot be performed

in crossbars, an implication on the architecture is the need to provide digital func-

tional units to support them. Such functional units consume significantly more area

(∼20×) than crossbars for equal output width (see Table 3.5). The challenge is to size

these units appropriately to provide sufficient throughput without offsetting crossbar

area/energy efficiency.

3.2.2 Long Short-Term Memory (LSTM)

LSTMs are the state-of-the-art technique for sequence processing tasks like speech

processing, language modelling, etc. [163]. Each layer is fully connected and performs

linear and nonlinear operations on the weighted-sum of outputs and the previous

state. These operations translate into two MVMs followed by multiple (typically four)

vector arithmetic operations and (typically four) nonlinear functions. Equations 3.2

to 3.4 show the computations in a typical LSTM:

F t[y] = act(B[f ] +
n−1∑
x=0

(H, I)[x]×W f[x][y]) (3.2)

Ct[y] =

n−1∑
x=0

(f t[y]× Ct-1[y] + gt[y]× Cpt-1[y]) (3.3)

Ht[y] =

n−1∑
x=0

(ht[y]× Ct[y]) (3.4)

To the best of our knowledge, PUMA is the first memristor-based accelerator demon-

strated with LSTMs.

Linear and transcendental operations

Unlike MLPs, LSTMs also perform linear vector operations. Moreover, the typical

nonlinear vector operations in LSTMs are transcendental (e.g. tanh, sigmoid). Sup-
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porting these operations has the same implication on the architecture as discussed

in Section 3.2.1 for nonlinear operations. Transcendental operations are particularly

challenging due to their high complexity.

Weight reuse

Another key distinction of LSTMs compared to MLPs is data reuse. LSTM inputs

consist of a sequence of vectors processed across multiple time-steps with the same

weights. This feature benefits CMOS architectures by amortizing DRAM accesses

for loading weights, but is not advantageous to memristive crossbars. That said, the

scope of weight reuse in LSTMs is only over a few inputs so the workload remains

memory-bound. It still suffers in CMOS hardware from insufficient amortization of

DRAM accesses.

3.2.3 Convolutional Neural Network (CNN)

CNNs are widely used for image recognition and classification [169]. They typ-

ically include several convolutional, pooling, and response normalization layers. A

convolution layer consists of weight kernels strided across the input image in a sliding

window fashion. It exhibits a non-sequential memory access pattern since a window

of the input consists of parts of the input image from different rows. Equation 3.5

shows the computations in a typical convolutional layer of a CNN:

O[m][x][y] = act(B[m]+

R−1∑
i=0

S−1∑
j=0

C−1∑
k=0

I[k][Ux + i][Uy + j]×W [m][k][i][j])
(3.5)

Input reuse and compute intensity

Convolution layers exhibit both weight and input data reuse. They can be mapped

to matrix-matrix multiplications which successively apply weight kernels on different
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input windows. Matrix-matrix multiplications are compute-bound which makes them

well-suited for CMOS hardware since there is enough data reuse to amortize DRAM

access cost. However, memristive crossbars can still perform well on matrix-matrix

operations by treating them as successive MVMs. An implication on architecture is

the opportunity to take advantage of input reuse to minimize data movement within

the chip. Another implication is that iterating over inputs creates the need for control

flow to represent the workload compactly without code bloat.

Non-sequential access

Unlike MLPs and LSTMs, CNNs exhibit non-sequential accesses due to the way

inputs are traversed as well as the behavior of non-convolutional layers such as pooling

and response-normalization. An implication on the architecture is the need to support

fine-grain/random access to memory, which is not needed for MLPs and LSTMs where

it is sufficient to access data at the granularity of the input/output vectors to each

layer.

3.2.4 Other ML Workloads

Other workloads, both supervised and unsupervised, can be represented using a

combination of the patterns in the three applications in this section. Logistic Regres-

sion [170] and Linear Regression [171] compute weighted-sums which are passed to

activation functions to generate probabilities and continuous values respectively. Sup-

port Vector Machine (SVM) [172] and Recommender Systems [173] compute weighted-

sums followed by nonlinear functions. Their computations are similar to MLP. Recur-

rent Neural Networks (RNNs) [174] used for sequence processing compute weighted-

sums on input and previous state. They are similar to LSTMs but without vector

operations. Generative Adversarial Networks (GANs) are composed of two neural

networks (MLP, LSTM, CNN, etc.) which compete to reach equilibrium [175]. Re-

stricted Boltzmann Machines (RBM) [176] and Boltzmann Machines (BM) [177] are
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commonly used in unsupervised learning tasks for energy-minimization. While RBM

involves weighted-sums of previous state and inputs, BM uses inputs only. Their

computations have similarities to MLPs and LSTMs as well.

3.3 Core Architecture

We propose a programmable architecture and ISA design that leverage memristive

crossbars for accelerating ML workloads. PUMA is a spatial architecture organized in

three-tiers: cores, tiles, and nodes. Cores consist of analog crossbars, functional units,

and an instruction execution pipeline. Tiles consist of multiple cores connected via

a shared memory. Nodes consist of multiple tiles connected via an on-chip network.

Subsequently, nodes can be connected together via a chip-to-chip interconnect for

large-scale execution.

While this hierarchical organization is common in related work [23, 41], our key

contributions lie in the core architecture (this section) and tile architecture (Sec-

tion 3.4) that bring programmability and generality to memristive crossbars without

compromising their energy and area efficiency. An overview of the core architecture

is shown in Figure 3.1. The following subsections discuss the components of the core

architecture and the insights behind their design.

3.3.1 Instruction Execution Pipeline

Existing memristor-based accelerators [22, 23, 79] are limited to one or two ML

workloads. They use state machines that can be configured to compose a small set of

functional blocks (e.g., convolution block, pooling block, etc.). While this approach

works well when the scope of workloads is small, supporting a larger variety of work-

loads creates high decoding complexity. For this reason, our core architecture breaks

functionality down to finer-grain instructions and supplements memristive crossbars

with an instruction execution pipeline. Our approach is based on the observation
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Table 3.2.
Instruction Set Architecture Overview

Category Instruction Description Operands

Compute

MVM Matrix-Vector Multiplication mvm, mask, -, filter, stride, -, -

ALU

Vector arithmetic/logical (add, subtract, multiply, divide, shift, and, or, invert)

alu, aluop, dest, src1, src2, src3, vec-widthVector non-linear (relu, sigmoid, tanh, log, exponential)

Other (random vector, subsampling, min/max)

ALUimm Vector arithmetic immediate (add, subtract, multiply, divide) alui, aluop, dest, src1, immediate, vec-width

ALUint Scalar arithmetic (add, subtract) - Compare (equal, greater than, not equal) alu-int, aluop, dest, src1, src2, -, -

Intra-Core set Register initialization set, -, dest, immediate, -, -

Data Movement copy Data movement between different registers copy, -, dest, src1, -, ld-width, vec-width

Intra-Tile load Load data from shared memory load, -, dest, immediate, -, -

Data Movement store Store data to shared memory store, -, dest, src1, count, st-width, vec-width

Intra-Node send Send data to tile send, memaddr, fifo-id, target, send-width, vec-width

Data Movement receive Receive data from tile receive, memaddr, fifo-id, count, rec-width, vec-width

Control
jmp Unconditional jump jmp, -, -, -, -, pc

brn Conditional jump brn, brnop, -, src1, src2, pc

in Section 3.2 that despite the large variety of ML workloads, these workloads share

many low-level operations.

The instruction execution pipeline is an in-order pipeline with three stages: fetch,

decode, and execute. Keeping the pipeline simple saves area to avoid offsetting the

crossbars’ area efficiency. The ISA executed by the pipeline is summarized in Ta-
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ble 3.2. Instructions are 56-bits wide. The motivations for wide instructions are

discussed in Sections 3.3.3 and 3.3.4. The ISA instruction usage is shown in Sec-

tion 3.3.6. More ISA details are discussed in Section 5.5.2.

The instruction execution pipeline supports control flow instructions (jmp and brn

in Table 3.2), as motivated in Section 3.2.3. It also includes a Scalar Functional Unit

(SFU) that performs scalar integer operations (ALUint in Table 3.2) to support the

control flow instructions.

3.3.2 Matrix-Vector Multiplication Unit (MVMU)

The MVMU (illustrated in Figure 3.1) consists of memristive crossbars that per-

form analog MVM operations, and peripherals (DAC/ADC arrays) that interface

with digital logic via the XbarIn and XbarOut registers. XbarIn registers provide

digital inputs to the DACs which feed analog voltages to the crossbar. ADCs convert

crossbar output currents to digital values which are stored in the XbarOut registers.

This crossbar design is similar to ISAAC [23].

Figure 3.2(a) shows how memristive crossbars can be used to perform analog MVM

operations. DACs convert the input vector to analog voltages applied at crossbar
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rows. The matrix is encoded as conductance states (gij) of the devices that constitute

the crossbar. The currents at crossbar columns constitute the MVM result. They are

integrated (converted to voltage) then converted to digital values with ADCs.

Precision Considerations

Practically realizable crossbars provide 2-6 bits of precision per device [16]. We

conservatively use 2 bits per device, and realize 16-bit MVM operations by combining

8 crossbars via bit-slicing [23], illustrated in Figure 3.2(b). ADCs are reused across

columns to save area. The impact of precision on inference accuracy is evaluated in

Section 3.8.6.

Crossbar Co-location and Input Sharing

Crossbar peripherals have an order of magnitude higher area than the crossbar.

Since all eight 2-bit crossbars of a 16-bit MVM operation are used simultaneously

on the same input, we co-locate these 2-bit crossbars on the same core in the same

MVMU, which allows us to use the same XbarIn registers and DAC array to feed

them with minimal routing congestion. This co-location and input reuse is provided

transparently in the ISA, which exposes a full 16-bit MVM operation in a single

instruction (MVM in Table 3.2).

Input Shuffling

As motivated in Section 3.2.3, ML workloads with sliding window computations

typically reuse large portions of the input across successive MVM operations (∼80%

for convolutional layers with filter size 5 and unit stride). However, reused input values

may come at different positions in the input vector. To avoid moving data around

in XbarIn, the MVM instruction provides operands (filter/stride in Table 3.2) that
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re-route XbarIn registers to different DACs, enabling logical input shuffling without

physical data movement.

Multiple MVMUs per Core

A core may have multiple MVMUs, in which case it is desirable to activate them

in parallel since MVMs are heavy operations. The in-order pipeline does not capture

the Instruction-Level Parallelism (ILP) between MVM instructions automatically.

Instead, the ISA exposes an operand (mask in Table 3.2) to allow a single MVM

instruction to activate multiple MVMUs at once. Compiler optimizations that use

this operand are discussed in Section ??.

Crossbar Writes

PUMA is an inference accelerator, so crossbars are initialized with weights using

serial writes at configuration time prior to execution and are not written to throughout

execution. In this sense, PUMA is a spatial architecture where data is routed between

crossbars, each crossbar storing a different portion of the model. Larger models

therefore require more area, and may scale to multiple nodes.

3.3.3 Vector Functional Unit (VFU)

The VFU executes linear and nonlinear vector operations (ALU and ALUimm in

Table 3.2), as motivated by Sections 3.2.1 and 3.2.2. An important aspect of designing

vector instructions and the VFU is choosing the vector width. Since ML workloads

have high data parallelism, they execute wide vector operations, which motivates

having wide vector instructions. Wide vector instructions have the benefit of reducing

instruction count, and consequently, fetch, decode, and instruction storage overhead.

On the other hand, hardware considerations motivate having narrow VFU vector

width to avoid offsetting the area efficiency of crossbars as discussed in Section 3.2.1.
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To balance the tension between workloads favoring wide vector width and hard-

ware favoring narrow vector width, we propose a VFU design based on temporal

SIMD. Temporal SIMD uses a narrow width VFU to execute wide vectors over multi-

ple cycles. The vector instruction operands specify the starting address of the vectors

in the register file as well as the vector width (vec-width in Table 3.2). The operand

steer unit holds the decoded instruction and reads the operands from the register file

over subsequent cycles to feed the VFU. The additional vec-width operand required

by temoral SIMD motivates our wide instruction design.

Provisioning the adequate width for VFUs maintains crossbar area efficiency bene-

fits without the VFU becoming a bottleneck and compromising throughput. A narrow

VFU is possible because typical ML workloads compute O(n) more operations per

MVM instruction than per vector instruction. Section 3.8.6 evaluates the impact of

VFU width on efficiency.

3.3.4 Register File

We propose a register file design that uses ROM-Embedded RAM [165] to ac-

complish two objectives: (1) harboring general purpose registers, and (2) providing

area-efficient transcendental function evaluations as motivated in Section 3.2.2.

Implementing transcendental functions

Area-efficient function evaluations are crucial for preserving crossbar storage den-

sity. For this reason, we use a ROM-Embedded RAM structure [165] which adds

a wordline per row to embed a ROM that is used to store look-up tables without

increasing the array area or RAM latency. Alternative digital implementations to

support transcendental functions are prohibitive due to their high area requirements,

especially in light of the large number of transcendental function types used in ML.

Transcendental function evaluations also use temporal SIMD (Section 3.3.3) to min-

imize fetch/decode energy consumption.
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Figure 3.3 details the operation of a ROM-Embedded RAM. In RAM mode, both

wordlines (WL1 and WL2) are activated, followed by precharging or driving the

bitlines for read or write operations, respectively (similar to typical SRAM). In ROM

mode, since a ROM access overwrites the RAM data, the first step is to buffer the

RAM data. Subsequently, 1 is written to all cells with both wordlines activated.

Next, 0 is written to all cells while keeping the WL1 deactivated, which writes 0 to

a cell only if its AXL is connected to WL2. Therefore, cells with AXL connected

to WL1 and WL2, will store a ROM value of 1 and 0, respectively. A read with

both wordlines activated is done to retrieve the ROM data, followed by restoring the

original RAM contents.

Sizing the register file

The register file enables buffering data in general purpose registers to avoid higher-

cost access to shared memory. However, if the register file were too large, it would
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degrade core storage density. A key point to observe is that the majority of ML

kernels are such that data is consumed within 1-2 instructions after being produced.

This property is preserved via proper instruction scheduling by the compiler to reduce

register pressure (Section ??). Therefore, we provision a per-core register file size of

2*(crossbar dimension)*(# crossbars per core). This size retains storage density while

addressing the buffering requirements in the common case as shown in Section 3.8.6.

For window-based computations such as pooling layers that have a large number of

intervening instructions (due to non-sequential data access across rows), the compiler

spills registers to tile memory (Section ??).

ISA implications

To accommodate the large register file required to match crossbar size, long

operands are used in ISA (src and dest in Table 3.2), which is another motivation for

the wide instruction design. To accommodate moving data between general purpose

registers and XbarIn/XbarOut registers, a copy instruction is included.

3.3.5 Memory Unit (MU)

The MU interfaces the core with the tile memory via load and store instructions.

These instructions can be executed at 16-bit word granularity to support random

access as motivated in Section 3.2.3. However, the instructions also take a vec-width

operand for wide vector loads caused by sequential access patterns. Vector loads also

use temporal SIMD (Section 3.3.3) to minimize fetch/decode energy consumption.

3.3.6 Static Instruction Usage

Figure 3.4 shows the breakdown of the static instruction count for six different ML

workloads. The breakdown demonstrates that MVM alone is insufficient to support

all types of workloads, and that the ISA and functional units proposed can be used
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to bridge that gap. The ratio of instructions requiring MVMU versus VFU varies

depending on the number of matrix versus vector transformation layers in the network.

CNNs additionally use control flow instructions as discussed in Section 3.2.3. Deeper

(or wider) versions of the same networks tend to have a similar instruction breakdown,

except for data movement instructions which tend to be higher to implement larger

matrices spanning multiple cores and tiles.

3.3.7 Summary

In summary, the core architecture provides programmability while maintaining

crossbar area efficiency. It features an instruction pipeline exposed by an ISA to

support a wide variety of ML workloads. The use of temporal SIMD and ROM-

Embedded RAM enable linear, nonlinear, and transcendental vector operations. Data

movement optimizations are enabled via input shuffling, proper sizing of the register

file, and flexible memory access instructions.
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3.4 Tile Architecture

Figure 3.5 illustrates the architecture of a tile. A tile is comprised of multiple

cores connected to a shared memory. The tile instruction memory holds send and

receive instructions that move data between tiles. The shared memory and receive

buffer are described in the following subsections.

3.4.1 Shared Memory

The shared memory facilitates communication across cores and tiles. Our shared

memory design follows two key principles: (1) enabling inter-core synchronization,

and (2) sizing the shared memory to preserve storage density.

Inter-core synchronization

Synchronization between cores happens when the output of one layer is sent as

input to the next layer. It also happens within a layer if a large weight matrix

is partitioned across multiple cores and tiles and partial MVM results need to be
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Table 3.3.
Shared memory sizing

Workload Type Required size without Required size with

inter-tile pipelining inter-tile pipelining

MLP-L4 MLP 6 kB 6 kB

NMT-L5 LSTM 101 kB 2 kB

LSTM-2048 LSTM 216 kB 10 kB

Vgg19 CNN 1,176 kB 74 kB

aggregated together. To enable synchronization, we augment the shared memory

with an attribute buffer that has two attributes per data entry: valid and count.

The use of valid and count is illustrated in Figure 3.6. This mechanism enables

consumer cores to block until producer cores have written their values, and ensures

that producer cores do not overwrite data until it is consumed.

Sizing the shared memory

ML workloads may require buffering large number of inputs to utilize their weight

reuse pattern. However, a large shared memory degrades the crossbar storage density.

PUMA’s spatial architecture enables programming inter-core/tile pipelines that ex-

ploit the inter-layer parallelism in ML workloads with weight reuse. These pipelines

can be used to maintain throughput while keeping the shared memory size small. The
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pipeline parallelism is based on the observation that we do not require all the out-

puts of previous layer to start the current layer computation. For example, LSTMs

process a sequence of vectors with S ∗N inputs per layer, where S is the number of

vectors per input sequence and N is vector size. A layer can begin its computation as

soon as its first N inputs are available. Table 3.3 shows the shared memory size re-

quirement for four state-of-the-art ML workload types (described later in Section 3.7)

with and without inter-tile pipelining. Note that MLP does not benefit from inter-tile

pipelining because it does not exhibit any weight reuse (Section 3.2.1). Section 3.8.5

discusses the impact of shared memory sizing on energy consumption.

3.4.2 Receive Buffer

The receive buffer is an N ×M structure with N FIFOs, each with M entries.

FIFOs ensure that data being sent from the same source tile is received in the same

order. Having multiple FIFOs enables multiple source tiles to send data concurrently

using different FIFOs. It also enables data to be received through the network in-

dependently of receive instruction ordering in the program. This independence is

important because receive instructions are executed in program order in a blocking

manner for hardware simplicity.

Each send and receive instruction has a fifo-id operand that specifies the receiving

FIFO to be used for incoming data. Using the FIFO ID instead of the sender tile ID

provides additional flexibility for the compiler to apply FIFO virtualization, where a

FIFO can be used by different sender tiles in different programs or program phases

while keeping the number of physical FIFOs small. The key insight is that a typical

ML layer will receive inputs from the tiles mapped to the previous layer only. There-

fore, using 16 FIFOs (despite the node having 138 tiles) supports workloads with up

to (16 tiles)*(8 cores)*(2 MVMU)*128 previous layer activations, which suffices for

large-scale ML workloads.
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3.4.3 Summary

In summary, PUMA tiles enable inter-core synchronization, inter-core/tile pipelines

to contain shared memory size, and FIFO virtualization for efficient inter-tile com-

munication.

3.5 Node Architecture

Figure 3.7 illustrates the organization of a PUMA node, consisting of multiple

tiles connected by an on-chip network. Multiple PUMA nodes can be connected

with a suitable chip-to-chip interconnect, such as CCIX [178], Gen-Z [179] or Open-

CAPI [180], thereby enabling scalable acceleration of workloads with varying sizes.

Note that the data movement cost in PUMA across the spatial hierarchies (core,

tile, node) is analogous to data movement across the memory hierarchy in traditional

systems (CPUs, GPUs). Here, the cost increases from intra-core to intra-node data

movements as shown in Table 3.4.



33

Table 3.4.
Data Movement Cost

16-bit Data Transfer Energy (pJ) Normalized cost

Intra-core (copy) 0.954 1

Intra-tile (load, store) 3.009 3

Intra-node (send, receive) 18.045 19

3.6 Instruction Set Architecture

PUMA’s instruction set is a domain specific ISA for implementing ML workloads

on architectures with memristive crossbars, consisting of two components: core in-

structions and tile instructions (Table 3.2).

3.6.1 Core Instructions

Core instructions are categorized into compute, data movement, and control flow,

and use a 56-bit format (Figure 3.8).

Computation Instructions

Figure 3.8(a) shows the ISA encoding of the MVM instruction. The MVM in-

struction invokes the MVMU(s) with the matrix preloaded on the crossbar and the

vector in Xbar In memory (see Figure 3.1). The xb-nma operand specifies a mask

for the MVMUs in the core that will be active during the MVM operation (recall

that a core can have multiple MVMUs). Since MVMs are long operations, this mask

allows MVMUs to execute in parallel when multiple matrices are used. It also allows

MVMUs to be disabled when not used to save energy. The src1 and src2 register ad-

dresses are used to specify the kernel and stride sizes for input sharing across adjacent

convolutions in CNNs.
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Fig. 3.8. ISA Encoding of Core Instructions

Figure 3.8(b) shows an alu instruction that either uses the VFU for vector arith-

metic/logical operations or the ROM-embedded-RAM for transcendental operations.

The aluop operand specifies the type of vector operation. Table ?? shows a list of

all vector operations supported. The dest, src1 and src2 operands are references to

the destination and two source operand locations in the core data memory respec-

tively. The src3 operand is used to specify the third operand for left and right shift

operations. The vec-width operand specifies the vector width of the alu instruction.

Successive computations within a vector instruction use contiguous destination and

source addresses.

The alui instructions (Figure 3.8(c)) also run on the VFU or ROM-embedded-

RAM depending on the aluop similar to alu instructions, but they use one immediate

operand instead. The alu-int instructions (Figure 3.8(d)) run on the SFU.
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Data Movement Instructions

Figure 3.8(e) shows a set instruction that writes an immediate to a data mem-

ory location. This instruction is used to initialize addresses used by load and store

instructions as well as fixed program parameters such as loop bounds.

Figure 3.8(f) shows a copy instruction that moves data between memories within

a core (data memory, Xbar In, Xbar Out). The src-type specifies if the source for

data is Xbar In or Xbar Out. This distinction is needed because we alias the memory

addresses for Xbar In and Xbar Out to reduce the total addressable locations on

the core, and the instruction bits needed to address them. This aliasing is feasible

because mvm is the only computation instruction that reads Xbar In and writes Xbar

Out. No instruction ever reads both simultaneously, or writes both simultaneously.

Figures 3.8(g) and (h) show load and store instructions respectively for mov-

ing data between core memory and tile data memory. The count field in the store

instruction contains the count attribute associated with a memory write used for

synchronization. The ld-width and st-width together with the vec-width specify the

length of data to be read or written.

Control Flow Instructions

Figures 3.8(i) and (j) respectively show the two supported control flow instruc-

tions, unconditional jump (jmp) and conditional branch (brn). Both take a pc with

the target instruction address. Additionaly, brn takes a brnop that specifies the

branch condition (equal, not-equal, etc.) and src1 and src2 which are operands for

the condition evaluation.

3.6.2 Tile Instructions

We support two 56-bit instructions at the tile level to enable data movement

between tiles, send and receive, shown in Figures 3.9(a) and (b). The memaddr



36

,

2 16 8 16 4 10

send memaddr vtile-id target sen-width vec-width

receive memaddr vtile-id count rec-width vec-width

(a)

(b)

Fig. 3.9. ISA Encoding of Tile Instructions

operand specifies the tile data memory location where the sent data resides or the

received is written. The vtile-id of a send instruction specifies the FIFO to which the

data will be written to in the destination tile’s receive buffer. In the corresponding

receive instruction, the same vtile-id designates the FIFO where the received data

is read from. The target operand in a send instruction specifies the target tile to

which the data is sent. The count operand in the receive instruction specifies the

count attribute for the tile data memory write performed by the receive. Finally,

the sen-width, rec-width, and vec-width specify the number of data packets to be

sent/received.

3.7 Evaluation Methodology

3.7.1 PUMA Simulator

We have implemented a detailed architectural simulator to evaluate the perfor-

mance and energy consumption of PUMA. PUMA simulator runs applications com-

piled to the PUMA ISA and provides detailed traces of execution. The simulator

incorporates functionality, timing, and power models of all system components. The

datapath for the PUMA core and tile was designed at Register-Transfer Level (RTL)

in Verilog HDL and mapped to IBM 45nm SOI technology using Synopsys Design

Compiler which was used to measure the area and power consumption. Subsequently,

these area and power numbers were added to the simulator for system-level evalua-

tions of workloads. For fair comparison with other application-specific accelerators,
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Table 3.5.
PUMA Hardware Characteristics

PUMA Tile at 1GHz on 32nm Technology node

Component Power (mW) Area (mm2) Parameter Specification

Control Pipeline 0.25 0.0033 # stages 3

Instruction Memory 1.52 0.0031 capacity 4KB

Register File 0.477 0.00192 capacity 1KB

MVMU 19.09 0.012 # per core 2

dimensions 128×128

VFU 1.90 0.004 width 1

SFU 0.055 0.0006 - -

Core 42.37 0.036 # per tile 8

Tile Control Unit 0.5 0.00145 - -

Tile Instruction Memory 1.91 0.0054 capacity 8KB

Tile Data Memory 17.66 0.086 capacity 64KB

technology eDRAM

Tile Memory Bus 7 0.090 width 384 bits

Tile Attribute Memory 2.77 0.012 # entries 32K

technology eDRAM

Tile Receive Buffer 9.14 0.0044 # fifos 16

fifo depth 2

Tile 373.8 0.479 # per node 138

On-chip Network 570.63 1.622 flit size 32

# ports 4

conc 4

Node 62.5K 90.638 - -

Off-chip Network 10.4K 22.88 type HyperTransport

(per node) link bandwidth 6.4 GB/sec

the datapath energy numbers have been scaled to the 32nm technology node. Mem-

ory modules are modelled in Cacti 6.0 [181] to estimate the area, power, and latency.

The on-chip-network is modelled using the cycle-level Booksim 2.0 interconnection

network simulator [182] and Orion 3.0 [183] for energy and area models. We use

a chip-to-chip interconnect model similar to DaDianNao’s [41] which has also been
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Table 3.6.
Benchmarking Platforms

Name Platform Characteristics

Haswell Intel Xeon E5-2650v3, 10-cores per socket, Dual Socket, 128GB DDR4

Skylake Intel Xeon 8180, 28-cores per socket, Dual Socket, 64GB DDR4

Kepler Nvidia Tesla K80, 2496 CUDA Cores, Dual GPUs (only 1 used), 12GB GDDR5

Maxwell Nvidia Geforce TitanX, 3072 CUDA Cores, 12GB GDDR5

Pascal Nvidia Tesla P100, 3584 CUDA Cores, 16GB HBM2

Table 3.7.
Benchmarks

DNN Type Application DNN Name # FC Layers # LSTM Layers # Conv Layers # Parameters Sequence Size

MLP Object MLPL4 4 - - 5M -

Detection MLPL5 5 - - 21M -

Deep Neural Machine NMTL3 1 6 (3 Enc.,3 Dec., 1024 cells) - 91M 50

LSTM Translation NMTL5 1 10 (5 Enc.,5 Dec., 1024 cells) - 125M 50

Wide Language BigLSTM 1 2 (8192 cell, 1024 proj) - 856M 50

LSTM Modelling LSTM-2048 1 1 (8192 cell, 2048 proj) - 554M 50

CNN Image Vgg16 3 - 13 136M -

Recognition Vgg19 3 - 16 141M -

adopted by other accelerators. The MVMU power and area models are adapted from

ISAAC [23]. The memristors have a resistance range of 100kΩ−1MΩ and read voltage

of 0.5V. The ADC is based on the Successive Approximation Register (SAR) design,

and its area and power were obtained from the ADC survey and analysis [184,185].

In the present study, we do not compromise ML accuracy as we conservatively

choose 2-bit memristor crossbar cells. Note that laboratory demonstrations have

shown up to 6-bit capabilities [16]. We use 16 bit fixed-point precision that provides

very high accuracy in inference applications [23, 41]. Table 3.5 shows the PUMA

configuration used in our analysis and lists the area-energy breakdown of PUMA

components.
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Fig. 3.10. Inference Energy and Latency Results

3.7.2 System and Workloads

We choose popular server grade CPUs and GPUs (listed in Table 3.6), Google

TPU [168] (CMOS-based ASIC) and ISAAC [23] (application specific memristor-

based accelerator) for evaluating PUMA. To measure power consumption of CPUs

and GPUs, we used management tools such as board management control (BMC)

and nvidia-smi respectively. For GPUs, we do not include full system power, just

the board/device power. We run multiple iterations of the benchmarks on the GPU,

discarding the longer warmup iterations and reporting results from the faster and

more stable iterations.

Torch7 [186] was used to execute the ML models for CPUs and GPUs. The PUMA

compiler was used to compile models for PUMA. These models used are listed in

Table 3.7.

3.8 Results

3.8.1 Inference Energy

Figure 3.10(a) shows PUMA inference energy compared to other platforms. PUMA

achieves massive energy reduction across all benchmarks for all platforms. Energy

improvements come from two sources: lower MVM compute energy from crossbars

and lower data movement energy by avoiding weight data movement.
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CNNs show the least energy reduction over CMOS architectures (11.7×-13.0×

over Pascal). Recall that CNNs have a lot of weight reuse because of the sliding

window computation (discussed in Section 3.2.3). Hence, CMOS architectures can

amortize DRAM accesses of weights across multiple computations. For this reason,

PUMA’s energy savings in CNNs come primarily from the use of crossbars for energy

efficient MVM computation.

MLPs and LSTMs have little or no weight reuse (discussed in Section 3.2). There-

fore, in addition to efficient MVM computation, PUMA has the added advantage of

eliminating weight data movement. For this reason, we see much better energy re-

ductions for MLPs (30.2×-80.1× over Pascal), Deep LSTMs (2,302×-2,446× over

Pascal), and Wide LSTMs (758×-1336× over Pascal).

LSTMs (both deep and wide) show better reductions than MLPs because they

have much larger model sizes (see # Parameters in Table 3.7). As model grows in

size, weight data grows at O(n2) and input data grows at O(n). For this reason, we

see an increasing disparity between CMOS architectures which move both weight and

input data, and PUMA which only moves input data.

Wide LSTMs have few layers (1-2) with very large matrices, whereas Deep LSTMs

have many layers (6-10) with smaller matrices. The large matrices in Wide LSTMs

span mutiple PUMA cores/tiles to compute one logical MVM, incurring higher intra-

layer data movement overheads. Hence, Deep LSTMs show higher energy benefits

than Wide LSTMs.

3.8.2 Inference Latency

Figure 3.10(b) shows PUMA inference latency compared to other evaluated plat-

forms. PUMA achieves latency improvements across all platforms except MLPs on

some GPUs. Latency improvements come from three sources: lower MVM com-

pute latency from crossbars, no weight data access latency, and spatial architecture

pipelining which exploits inter-layer parallelism.
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CNNs show the least latency improvement over CMOS architectures (2.73×-2.99×

over Pascal). Since CNNs are compute-bound, CMOS architectures can hide the

data access latency. Thus, PUMA’s primary latency improvements in CNNs come

from the use of crossbars for low-latency MVM computation and spatial architecture

pipelining.

LSTMs on the other hand are memory-bound. PUMA has the added advantage of

eliminating weight data access latency in addition to low-latency MVM computation.

For this reason, we see much better latency improvements for Deep LSTMs (41.6×-

66.0× over Pascal) and Wide LSTMs (4.70×-5.24× over Pascal) than we see for CNNs.

In comparing Deep and Wide LSTMs, Deep LSTMs have more layers than Wide

LSTMs, hence more inter-layer parallelism to exploit spatial architecture pipelining

(see #LSTM Layers in Table 3.7). Moreover, Deep LSTMs have less intra-layer

communication than Wide LSTMs, hence lower data access latency.

MLPs show slowdown compared to some GPU datapoints (0.24×-0.40× compared

to Pascal). The reason is that despite MLPs being memory-bound, the sizes of

MLPs are typically small enough. Hence, the memory bandwidth bottleneck is not

as pronounced, so they perform fairly well on GPUs. Moreover, MLPs have no inter-

layer parallelism so they do not exploit spatial architecture pipelining (Section 3.4.1).

Nevertheless, PUMA’s order of magnitude energy reduction is still beneficial for MLPs

in energy-constrained environments.

3.8.3 Batch Throughput and Energy

Inference applications are not usually intended for large batch sizes due to real-

time application requirements. Nevertheless, CMOS architectures perform well with

large batch sizes because of the weight reuse that data-batching exposes. For this

reason, we compare PUMA’s batch energy and throughput with the other platforms

in Figure 3.11(c) and (d) respectively. Batch sizes of 16, 32, 64, and 128 are used.



42

 0.01
 0.10
 1.00

 10.00
 100.00

 1,000.00
 10,000.00

 100,000.00
 1,000,000.00

B
1

6

B
3

2

B
6

4

B
1

2
8

B
1

6

B
3

2

B
6

4

B
1

2
8

B
1

6

B
3

2

B
6

4

B
1

2
8

B
1

6

B
3

2

B
6

4

B
1

2
8

B
1

6

B
3

2

B
6

4

B
1

2
8

B
1

6

B
3

2

B
6

4

B
1

2
8

B
1

6

B
3

2

B
6

4

B
1

2
8

B
1

6

B
3

2

B
6

4

B
1

2
8

L4 L5 L3 L5 BigLSTM LSTM-2048 Vgg16 Vgg19

MLP Deep LSTM Wide LSTM CNN

N
o

r
m

a
li

z
e
d

 T
h

r
o

u
g

h
p

u
t

(h
ig

h
er

 i
s 

b
et

te
r)

Haswell Skylake Kepler
Maxwell Pascal PUMA

 0.10
 1.00

 10.00
 100.00

 1,000.00
 10,000.00

 100,000.00
 1,000,000.00

B
1

6

B
3

2

B
6

4

B
1

2
8

B
1

6

B
3

2

B
6

4

B
1

2
8

B
1

6

B
3

2

B
6

4

B
1

2
8

B
1

6

B
3

2

B
6

4

B
1

2
8

B
1

6

B
3

2

B
6

4

B
1

2
8

B
1

6

B
3

2

B
6

4

B
1

2
8

B
1

6

B
3

2

B
6

4

B
1

2
8

B
1

6

B
3

2

B
6

4

B
1

2
8

L4 L5 L3 L5 BigLSTM LSTM-2048 Vgg16 Vgg19

MLP Deep LSTM Wide LSTM CNNN
o

r
m

a
li

z
e
d

 E
n

e
r
g

y
 S

a
v
in

g
s

(h
ig

h
er

 i
s 

b
et

te
r)
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Fig. 3.11. Batch Inference Throughput and Energy Results

PUMA continues to have superior energy efficiency across all benchmarks and

batch sizes. It also delivers better throughput in most cases, except when compared

to Pascal on MLPs and Wide LSTMs. The benefits slightly decrease with larger

batches because they expose more weight reuse which benefits CMOS architectures

while PUMA’s efficiency remains constant across batch sizes. Nevertheless, PUMA

continues to perform well even when the batch size is very large.

3.8.4 Comparison with ML Accelerators

Google TPU

Table 3.8 compares key technology features and efficiency metrics for TPU [168]

and PUMA. PUMA has 8.3× higher peak area-efficiency (TOPS/s/mm2) than TPU.

Since PUMA does not rely on weight reuse to improve throughput like CMOS archi-

tectures do, its area-efficiency remains constant across workloads and batch sizes. On

the other hand, TPU’s peak throughput is almost an order of magnitude lower for

applications with low data reuse due to its inability to amortize weight data move-
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Table 3.8.
Comparison with ML Accelerators

Platform PUMA TPU [168] ISAAC [23]

Year 2018 2017 2016

Technology CMOS(32nm)-Memristive CMOS(28nm) CMOS(32nm)-Memristive

Clock (MHz) 1000 700 1200

Precision 16-bit fixed point 16-bit fixed point 16-bit fixed point

Area (mm2) 90.6 330* 85.4

Power (W) 62.5 45 65.8

Peak Throughput (TOPS/s†) 52.31 23‡ 69.53

Peak AE (TOPS/s/mm2) 0.58 0.07 0.82

Peak PE (TOPS/s/W) 0.84 0.51 1.06

Best AE - MLP 0.58 0.009 -

Best AE - LSTM 0.58 0.003 -

Best AE - CNN 0.58 0.06 0.82

Best PE - MLP 0.84 0.07 -

Best PE - LSTM 0.84 0.02 -

Best PE - CNN 0.84 0.48 1.06

* Less than or equal to half of Haswell’s die area [168]

† Tera operations per second (multiply and add are counted as two separate operations)

‡ 92 TOPS for 8-bit arithmetic, scaled by 4 for 16-bit arithmetic [168]

Table 3.9.
Programmability Comparison with ISAAC

Platforms PUMA ISAAC

Architecture

Instruction execution pipeline,

flexible inter-core synchronization
Application specific state machine

Vector Functional Unit, ROM-Embedded RAM Sigmoid unit

Programmability Compiler-generated instructions (per tile & core) Manually configured state machine (per tile)

Workloads
CNN, MLP, LSTM, RNN, GAN, BM, RBM,

SVM, Linear Regression, Logistic Regression
CNN

ment. PUMA has 64.4×, 193×, and 9.7× higher area-efficiency than TPU for MLP,

LSTM, and CNN respectively for the best TPU batch size.
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PUMA has 1.65× higher peak power-efficiency (TOPS/s/W) than TPU, with sim-

ilar trends and reasoning as area-efficiency for specific workloads. We expect PUMA’s

power-efficiency advantage over TPU to grow by over 3×, as silicon processes scale

from 32nm to 7nm and 5nm. Thanks to PUMA’s higher peak throughput, we can

follow the power reduction scaling curve at constant performance. Conversely, to

narrow the performance gap, TPU would follow a scaling curve closer to the perfor-

mance increase curve at constant power. Note that the former scaling curve is much

faster (up to ∼40% power reduction per silicon node compared with ∼20% perfor-

mance increase). Further, ADC power efficiency has also been following similar and

very fast scaling trend with ∼2× power reduction per 1.8 years at the same sampling

rate [187]. Consequently, we project that our power-efficiency advantage over TPU

will increase by over 3× after scaling PUMA and TPU to 7nm.

ISAAC

Table 3.8 compares the peak area and power efficiency of PUMA with ISAAC [23],

a memristor-based accelerator customized for CNNs. PUMA has 20.7% lower power

efficiency and 29.2% lower area efficiency than ISAAC due to the overhead of pro-

grammability. Table 3.9 compares the programmability of PUMA and ISAAC.
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Table 3.10.
Evaluation of Optimizations

Workload

Input Shared Graph Register MVM

Shuffling Memory Sizing Partitioning Pressure Coalescing

(energy reduction, (energy reduction, (energy reduction, (% accesses from (latency reduction,

lower is better) lower is better) lower is better) spilled registers) lower is better)

MLPL4 - 0.70× 0.81× 0% 0.60×

MLPL5 - 0.66× 0.79× 0% 0.66×

NMTL3 - 0.65× 0.65× 0% 0.63×

NMTL5 - 0.63× 0.63× 0% 0.63×

BigLSTM - 0.58× 0.61× 0% 0.76×

LSTM-2048 - 0.58× 0.62× 0% 0.84×

Vgg16 0.84× 0.75× 0.37× 1.96% 0.69×

Vgg19 0.85× 0.75× 0.43× 1.71% 0.71×

PUMA with Digital MVMUs

To demonstrate the importance of analog computing for MVMU efficiency, we

compare PUMA with a hypothetical equivalent that uses digital MVMUs. A mem-

ristive 128×128 MVMU performs 16,384 MACs in 2304 ns consuming 43.97 nJ. A

digital MVMU would require 8.97× more area to achieve the same latency and would

consume 4.17× more energy. Using a digital MVMU would increase the total chip

area of the accelerator by 4.93× for the same performance and would consume 6.76×

energy (factoring in data movement energy due to increased area).

Tensor Cores

Nvidia V100 GPUs with tensor cores (FP16) can be up to 6×more energy-efficient

(architecture, tensor cores, and half-precision) than Pascal GPUs. Therefore, PUMA

can still achieve energy gains over GPUs with tensor cores, despite the technology

difference (PUMA: 32nm, V100: 12nm).
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3.8.5 Evaluation of Optimizations

Table 3.10 shows an evaluation of various optimizations described throughout

the paper. Input shuffling reduces energy consumed by data movement within

a core by leveraging input reuse in CNNs. Shared memory sizing keeps the

shared memory small by leveraging inter-core/tile pipelining. The baseline here,

sizes the shared memory with what would be needed without pipelining, which is

1×, 50.51×, 21.61×, and 15.91× larger for MLPs, Deep LSTMs, Wide LSTMs, and

CNNs respectively. Note that MLP does not benefit from inter-tile pipelining because

it does not exhibit any weight reuse (Section 3.2.1). Graph partitioning (compared

to a baseline that partitions the graph randomly) reduces the number of loads, stores,

sends, and receives, hence the overall energy. Register pressure is kept low by the

compiler with little or no accesses from spilled registers across benchmarks. MVM

coalescing runs MVMUs in parallel within a core which reduces latency.

3.8.6 Design Space Exploration

Figure 3.12 shows a PUMA tile’s peak area and power efficiency swept across

multiple design space parameters. For each sweep, all other parameters are kept at the

sweetspot (PUMA configuration with maximum efficiency). Efficiency is measured

using a synthetic benchmark: an MVM operation on each MVMU, followed by a VFU

operation, then a ROM-Embedded RAM look-up.

Increasing the MVMU dimension increases the number of crossbar multiply-

add operations quadratically and the number of peripherals linearly resulting in more

amortization of overhead from peripherals. However, larger MVMUs also require

ADCs with higher resolution and ADC overhead grows non-linearly with resolution,

which counter-balances the amortization. Increasing the # MVMUs per core

increases efficiency because of the high efficiency of memristive crossbars relative to

CMOS digital components. However, with too many MVMUs, the VFU becomes a

bottleneck which degrades efficiency. Increasing the VFU width degrades efficiency
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because of the low efficiency of CMOS relative to memristive crossbars. However, a

VFU that is too narrow becomes a bottleneck. The sweetspot is found at 4 vector

lanes. Increasing the # cores per tile improves efficiency until shared memory

bandwidth becomes the bottleneck. Increasing the register file size results in

lower efficiency, however a register file that is too small results in too many register

spills.

Figure 3.13 shows PUMA’s inference accuracy for different memristor bit precision

(bits per device) and write noise levels (σN). Higher precision can lead to larger

accuracy loss due to the reduction in noise margin. It can be seen that PUMA with

2-bit memristor performs well even at high noise levels. Real CMOS hardware follows

the σN = 0 noise level. Further, recent research have explored coding schemes for

reliable memristor computation at high precision [188,189].

3.9 Conclusion

PUMA is the first ISA-programmable accelerator for ML inference that uses hybrid

CMOS-memristor technology. It enhances memristive crossbars with general purpose

execution units carefully designed to maintain crossbar area/energy efficiency and

storage density. Our accelerator design comes with a complete compiler to transform

high-level code to PUMA ISA and a detailed simulator for estimating performance
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and energy consumption. Our evaluations show that PUMA can achieve significant

improvements compared to state-of-the-art CPUs, GPUs, and ASICs for ML acceler-

ation.
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4. TRANNSFORMER - SOFTWARE OPTIMIZATION

4.1 Introduction

Deep Neural Networks (DNNs) are the most popular class of ML workloads and

inspired from the hierarchy of neurons and synapses in the human brain. They have

achieved outstanding classification accuracies across myriad cognitive applications

including computer vision [169], speech recognition and natural language process-

ing [174]. Consequently, they have been adopted in variety of applications across

different computational platforms used in day-to-day life. For example, Siri, Google

Now, Cortana are intelligent personal assistants developed by Apple, Google and Mi-

crosoft respectively and run DNNs to recognize external inputs (image, voice etc.).

This tremendous pervasiveness has been possible due to the surge in the scale/size of

the DNNs, which has enabled it to obtain human-level cognitive abilities. However,

increasing DNN scale leads to high energy and resource requirements, thereby im-

peding their deployment in low-power and resource constrained platforms. This has

motivated extensive research on DNN compression using weight pruning [12] and has

shown upto 50%− 90% reduction in model sizes [12]. Subsequently, the reduction in

model size achieves highly efficient inference in CMOS ASICs [100], FPGS [51] and

general-prupose systems [110].

Weight pruning produces highly sparse DNNs, which can significantly reduce the

memory, and computation requirements. However, such algorithmic approaches in-

duce irregular sparsity which is incompatible with memristive crossbars due to the

in-memory nature of MVM operations. A memristive crossbar maps the weights

as well as performs the MVMs. Pruning a weight mapped onto a crossbar merely

makes the crosspoint (of crossbar) unused. This is because each crosspoint physically

serves as a possible connection channel between an input activation (mapped to the
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row) and an output activation (mapped to the column). Consequently, realizations

of sparse DNNs obtained from weight pruning onto crossbar based systems results

in high area consumption. Typical crossbar based systems use several peripherals

namely analog-to-digital converters, buffers, communication etc. in order to execute

DNNs (discussed in Sections 3.3 and 3.4). Increasing the sparsity deteriorates the

crossbar utilization, which results in a peripheral dominated energy profile. Eventu-

ally, weight sparsity does not translate to commensurate area and energy savings in

a crossbar based system.

In this work, we present TraNNsformer which is an integrated training framework

for dynamically learning clustered connections during training. This is motivated by

the observation that pruning at the crossbar granularity, instead of a weight granu-

larity, can preserve the benefits of weight sparsity at the hardware level for crossbar

based systems. Our approach efficiently prunes the model by dynamically making

pruning decisions from accuracy perspective (removing unnecessary connections to

maximize sparsity) as well as clustering perspective (removing unclustered weights to

maximize crossbar utilization) thereby producing trained models that can efficiently

utilize the benefits of memristive technology. Further, our proposed transformation is

technology agnostic as it enables mapping of connectivity structures using any MCA

size permitted by the memristive technology for reliable operations.

Note that this work focuses on transformations for Fully Connected (FC) layers.

Majority of the image processing and computer vision applications run CNNs, which

are comprised of several convolution layers followed by a few FC layers. However,

many CNNs have more than 96% of the weights are in the FC layers [46]. Furthermore,

FC layers are widely used in different types of DNNs namely MLP, RNN, Long Short

Term Memory (LSTM) [190] and SNN [191].

In summary, this work makes the following contributions:

1. A Size-Constrained Iterative Clustering (SCIC) algorithm for efficiently map-

ping dense matrices on crossbar sizes permissible by the memristive technology.
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2. A training framework leveraging the SCIC algorithm to enable mapping large-

scale DNNs on crossbar systems.

3. An evaluation on a range of image recognition benchmarks to study the area

and energy improvements.

4.2 TraNNsformer Framework

(a)

(1): Prune effort – controls the rate of 
pruning at the synapse-granularity 
(2): Cluster effort – controls the formation of 
clusters
(3): Cluster prune – controls when the 
framework begins to prune already formed 
clusters in order to boost the overall sparsity.

Control Knobs:

(b)

Untrained 
DNN

Train 
synapses

Network 
Prune

Cluster 
Prune

Clustering 
(SCIC)

Trained 
DNN

Connectivity
Matrix

(synapses)

Clustered
Synapses

- New trained 
synapses

- Pruned 
synapses

- Unpruned 
synapses

- Clustered (group of) 
synapses

- Unclustered
synapses

(c)

Fig. 4.1. (a) Illustration of Network pruning and TraNNsformer: pruning
leads to irregular sparsity, TraNNsformer forms smaller clusters that are
mapped efficiently to crossbars (1/0 only represents presence/absence of
connection), (b) Description of control knobs in the framework, (c) Logical
flow of TraNNsformer during DNN training.

Fig. 4.1 illustrates the logical flow of the framework with examples of how each

execution stage affects the connectivity matrix of one particular layer during a training
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iteration. In total there are 4 execution stages: (1) single training epoch of weights,

(2) network pruning, (3) cluster formation, and (4) cluster pruning.

The first stage is the conventional way of training DNNs using feed-forward propa-

gation of inputs and back-propagation of gradients to update weights for one training

epoch. Each epoch results in a new set of weights, which forms the connectivity ma-

trix of a layer (as shown in the example of Fig. 4.1(c)). Note that this can also result

in the revival of weights pruned in earlier training epochs.

The second stage is network pruning which prunes some of the weights in the

connectivity matrix based on the prune effort control knob. Here, the connectivity

matrix is composed of both weights which were left after the pruning and clustering

stages of the previous training iteration as well as the ones which were “revived”

during the last training step. The blue and grey dots in Fig. 4.1(c) represent unpruned

and pruned weights respectively. This stage is responsible for sparsity at weight

granularity.

Cluster formation creates clusters from unpruned weights based on the cluster

effort control knob. Cluster formation is implemented by the Size Constrained Iter-

ative Clustering (SCIC) algorithm. The weights leading to cluster formation (shown

as green dots in Fig. 4.1(c)) are masked such that they are less susceptible to pruning

in the next training epoch than the unclustered weights (black dots in Fig. 4.1(c)).

Cluster pruning stage prunes the already formed clusters thereby, creating sparsity

at the cluster granularity. The Cluster prune control knob manages the activation of

this stage. We observed that initiating cluster pruning during the final 10 − 20% of

training epochs, achieves maximal benefits.

TraNNsformer framework is the iterative execution of stages 1-4 in each train-

ing epoch until the DNN training converges (in terms of accuracy) and an efficient

mapping (in terms of crossbar requirements) is achieved. The following subsections

discuss each stage in detail and discuss the impact of Trannsformer on crossbar-based

architectures.
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Algorithm 1 Spectral Clustering (SC)

Input: Similarity matrix S ∈ Rn×n for the graph (a row in S corresponds to a graph node),

K clusters to construct

1: Compute the degree matrix: D

2: Compute the normaized laplacian matrix: L

3: Perform an eigenvalue decomposition: L = UΣUT

4: Extract the K columns of U corresponding to the K smallest eigenvalues to form: Ũ

5: Cluster the row vectors of Ũ using K-means algorithm

Output: K clusters - a row vector of Ũ corresponds to a row of S

4.2.1 Spectral Clustering

Spectral Clustering (SC) [192] is a graph clustering algorithm that produces a

set of disjoint graph nodes such that intra (inter) cluster associativity is maximized

(minimized). We adopt spectral clustering to cluster the connectivity matrix for a

FC layer of DNN where the input and output activations are the graph nodes and a

weight corresponds to a graph edge. As shown in Algorithm 1, a symmetric matrix (L)

is defined on the graph (connectivity matrix) using the adjacency matrix (S) and de-

gree matrix (D). Subsequently, it undergoes an eigenvalue decomposition followed by

dimensionality reduction. Finally, the remaining row vectors are clustered using the

K-means algorithm. The intra-associativity maximization produces clusters that can

be mapped to crossbars with high utilization factor. Furthermore, inter-associativity

minimization enables low overhead or high throughput (number of activations com-

puted per cycle) integration of crossbars outputs for generating the output activa-

tion. This is because the weights corresponding to a particular output activation can

be spread across multiple clusters (mapped to multiple crossbars across cores/tiles).

Eventually, the outputs from multiple crossbars are integrated to generate the output.

Hence, minimizing the inter-cluster associativity results in a commensurate decrease

in the inter crossbar interaction, thereby maximizing throughput.
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4.2.2 Size Constrained Iterative Clustering (SCIC)

SCIC is an iterative algorithm based on SC, that minimizes the number of un-

clustered weights while ensuring cluster generation with higher utilization factors.

Connectivity matrix (C) is a (0, 1)-matrix that represents the current morphology of

a layer in the DNN such that a value C ij being one corresponds to a non-zero weight

between the ith input activation and jth output activation. Utilization factor is then

defined as the fraction of used (mapped) cross-points in a memristive crossbar. A

zero value in a cluster results in an unused cross-point. As shown in Algorithm 2,

each iteration of SCIC algorithm runs SC on the remaining connectivity matrix based

on the user defined parameters for crossbar and base/minimum utilization factors.

[Algorithm 2. Lines 1-3] Since SCIC is iterative algorithm, the cluster set is ini-

tialized to be the remaining connectivity matrix (cluster set). However, the clusters

(in cluster set) are filtered to form the final set of sub clusters (qual sub clusters)

based on two requirements: (1) cluster size ≤ crossbar size, and (2) clusters quality

should be within an acceptable range. Note that the term sub clusters is used to

differentiate the qualified clusters from the main pool of clusters.

[Algorithm 2. Line 4] Crossbar size (crossbar size) reflects the crossbar size. This

parameter dictates the sub cluster size formed by SC (by dividing clusters of the initial

cluster set) and allows the algorithm to perform technology aware mapping.

[Algorithm 2. Lines 5-17] Base (base util factor) and minimum (min util factor)

utilization factors are used to set a range of quality thresholds for filtering the formed

sub clusters. Since utilization factor is the fraction of mapped cross-points on a

crossbar, high quality sub clusters are the sub clusters that map to crossbars with

high utilization factor. Sub clusters formed by SC are greedily selected based on the

quality threshold. The threshold starts from the base utilization factor and decays

towards the minimum value, if no sub clusters satisfying the current threshold can

be obtained. Since utilization factor is a normalized value, the value of base and

minimum utilization factor as well as of quality thresholds lie in the range [0, 1].
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Algorithm 2 Size Constrained Iterative Clustering (SCIC)

Input: Connectivity matrix C ∈ Rm×n (m and n are number of input and output neurons

respectively), crossbar size, base util factor, min util factor, k

1: Initialize: cluster set = C, qual sub clusters = ∅

2: while ∆cluster set 6= 0 do

3: for all cluster in cluster set do

4: if size of (cluster) > crossbar size then

5: s clusters found ← ∅

6: util factor = base util factor

7: while s clusters found ≡ ∅ do

8: if util factor < min util factor then

9: break

10: else

11: C̃ = connectivity matrix of cluster

12: construct similarity matrix S from C̃

13: s clusters temp = spectral clustering(S, k)

14: for all s cluster in s clusters temp do

15: if quality of (s cluster) ≥ util factor then

16: s clusters found ← s clusters found + s cluster

17: decay (util factor)

18: update C to reflect unclustered weights

19: qual sub clusters ← qual sub clusters +s clusters found

Output: qual sub clusters - the set of qualified sub clusters

[Algorithm 2. Lines 18-19] Such greedy and iterative approach synergistically

ensures efficient clustering to produce high quality sub clusters. Other sub clusters

(below quality threshold) are ignored and merged with the existing connectivity ma-

trix to explore new clustering avenues in the subsequent iterations.
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4.2.3 Integrated Training Approach

As shown in Algorithm 3, each training iteration (back-propagation) is accom-

panied with pruning followed by SCIC. Pruning removes the weights that do not

affect the accuracy. The result of pruning is encoded as a prunemap which is a (0,

1)-matrix (similar to the connectivity matrix) where 0s′ represent a pruned weight.

0s in the prune map correspond to Accuracy Don’t Cares (ADCs). Subsequently,

clusters produced in SCIC are used to form a clustermap that denotes if a weight

in the connectivity matrix is part of a previously formed cluster. 0s in the cluster

map represent Clustering Don’t Cares (CDCs). The union of cluster map and prune

map is masked from being pruned in the subsequent iterations. Weights belonging to

both the ADC and CDC set, are aggressively pruned to maximize pruning without

affecting the cluster quality. The subsequent training iteration tries to recover the

accuracy loss incurred due to pruning.

Although SCIC generates high quality clusters, it leaves a large fraction of weights

unclustered. This results in large number of crossbars with low utilization factors

being mapped to the unclustered weights, thereby diminishing the benefits of SCIC.

Consequently, a training algorithm based on offline clustering i.e. clustering the

weights at the end of the training process will suffer from inefficiencies resulting

from higher fraction of unclustered weights. However, it is interesting to note that

subsequent pruning of the weights belonging to the intersection of ADC and CDC set

removes several unclustered weights. Furthermore, this pruning exposes new avenues

for SCIC to generate high quality clusters from the remaining unclustered weights.

Thus, TraNNsformer allows to dynamically learn the DNN structure in a clustered

manner during the training process in order to produce an optimized network for

crossbar-based architectures.

It is worth noting that TraNNsformer favors cluster formation in the beginning to

minimize the fraction of unclustered weights. Once the unclustered weights have been

significantly reduced, TraNNsformer initiates cluster pruning (as shown in Algorithm
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Algorithm 3 TraNNsformer
1: Train the connectivity for an epoch

2: if num unclustered weights < threshold then

3: if training error < training error previous then

4: cluster prune()

5: else

6: if training error < training error previous then

7: Prune and update prune map

8: Run SCIC on unclustered synpases and update cluster map

9: connectivity matrix ← (prune map ∪ cluster map)

10: Go to 1 if convergence is not reached

3). Cluster pruning incrementally prunes an entire cluster based on a combined

score that quantifies cluster quality and the cluster’s contribution to output accuracy.

Although, cluster pruning may lead to accuracy degradation, subsequent training

iteration ensures a graceful recovery of the lost accuracy. It is worth noting that

cluster pruning does not affect the overall crossbar utilization as it entirely removes

the mapped crossbar. Thus, cluster pruning allows achieving higher network sparsity

(comparable to network pruning) while ensuring the clustered structure of the DNN’s

connectivity matrix.

4.3 Impact on Crossbar-based Architecture

Crossbar-based architectures are comprised of cores each of which consists of cross-

bars and peripherals associated namely buffers, communication and control logic (dis-

cussed in Section 3.3). Hence, the number of cores (num core) has a linear dependence

on the number of crossbars (num crossbar) as shown in Equation 4.1 (where “k” is a

microarchitecture dependent constant).

num core =
num crossbar

k
(4.1)
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TraNNsformer enables technology aware optimization to learn an optimally clus-

tered network structure such that a learnt cluster can be mapped onto a crossbar with

high utilization factor. Consequently, it ensures that the network sparsity efficiently

translates to reduction in the number of crossbars required to map the transformed

DNN with respect to the original DNN. This results in a commensurate reduction in

the number of cores thereby leading to area savings.

The energy profile of a crossbar-based architecture is comprised of crossbar energy

and peripheral energy components. Hence, the total energy consumption for a single

inference can be defined as Equation 4.2.

Total Energy =

all cores∑
i=0

Crossbar Energy + Peripheral Energy (4.2)

An increase in weight sparsity results in a corresponding decrease in the cross-

bar energy component irrespective of the connectivity structure. However, the total

peripheral energy component depends on the number of crossbars being used. As dis-

cussed before, weight pruning does not lead to significant reductions in the number of

crossbars due to the irregular nature of sparsity pattern, thereby not affecting the to-

tal peripheral energy. This reduces the overall energy benefits that can be obtained by

highly sparse connectivity structures. Additionally, the total energy profile becomes

peripheral energy dominated, which would prevent harnessing the energy benefits

from further efficient memristive technologies. On the contrary, TraNNsformer helps

to obtain commensurate reductions in crossbar energy as well as the peripheral energy

component, which in turn results in significant savings in total energy consumption.

Consequently, the energy profile shows a favorable distribution between the crossbar

and peripheral energy components.
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Table 4.1.
MLP benchmarks

Application Dataset Layers Neurons Synapses

Digit MNIST 3 2410 2392800

Recognition

House SVHN 4 3610 4120800

Recognition

Object CIFAR-10 4 3610 4120800

Recognition

4.4 Experimental Methodology

TraNNsformer framework was designed using MATLAB by utilizing the relevant

components from MATLAB Neural Network and Parallel Computing Toolboxes and

a custom DeepLearn [193] Toolbox.

Algorithmic benefits of the framework were analyzed on MLP based Spiking Neu-

ral Networks (SNN). Recall, MLPs are comprised of fully connected layers only (Sec-

tion 3.2). Applying TraNNsformer on MLPs updates the connectivity matrices be-

tween all layers of the network. In order to study the algorithm’s scalability, we

evaluate TraNNsformer on MLPs ranging in the number of layers and layer sizes.

We use a range of applications, namely Digit Recognition (MNIST dataset [194]),

House Number Recognition (SVHN dataset [195]) and Object Classification (CI-

FAR10 dataset [196]). For each application, an MLP architecture commensurate to

the dataset complexity is chosen (shown in Table 4.1), to achieve high classification

accuracy.

Although we analyze our results for SNN based benchmarks, the algorithmic bene-

fits would be similar for Artificial Neural Networks (ANNs). This is because TraNNs-

former works on optimizing the connectivity structure between layers in a DNN, which

is similar for both SNN and ANN. Note that ANN and SNN (used in our case) differ

only in the way inputs are transmitted between layers.
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We used the architecture proposed in [84] for studying the system-level benefits of

TraNNsformer on post-CMOS crossbar-based architectures. The crossbar size used

to evaluate the proposed framework was 64 × 64 i.e. 64 rows and 64 columns. For

the memristive devices, we used a resistance range of 20KΩ − −200KΩ with 16

levels (4 bits) for weight-discretization – typical of memristive technologies such as

Phase Change Memory (PCM), Ag-Si [197]. We considered an operating voltage of

V dd/2 for the crossbar as it is interfaced with CMOS neurons [198]. To analyze

the system level benefits on CMOS based general-purpose architectures, we use the

energy numbers for arithmetic operations in a 45nm CMOS process shown in [12].

The memory for weight storage was modeled using CACTI [199].

TraNNsformer is targeted to improve the area and energy consumption of DNNs

during inference phase but can have higher training effort in terms of time and en-

ergy consumption than typical DNN training (no pruning/clustering). This is because

TraNNsformer can prune connections learned in the previous training epochs, to guide

the training process towards crossbar aware connectivity structures. Thanks to the

error-healing nature of training, TraNNsformer achieves iso-accuracy compared to

non transformed networks. Network pruning also requires higher training effort than

typical DNN training for the same reason. Note that, typical DNNs are trained very

infrequently but used for testing/inference for much longer times. Hence, the signifi-

cant benefits obtained for inference phase makes TraNNsformer extremely attractive

for edge devices.

4.5 Results

In this section, we present the results of various experiments that demonstrate

the benefits of TraNNsformer (at algorithm and system level) for DNN acceleration

on post-CMOS crossbar-based systems. Note that we have used normalized values to

report the area and energy benefits. This is because the benefits from our proposed
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Fig. 4.2. Comparison of crossbar utilization (cluster quality) between
Offline Clustering and TraNNsformer

framework are orthogonal to the benefits obtained from any particular choice/design

of crossbar-based architecture.

4.5.1 Algorithm-level Analysis

Figure 4.2 shows the fractional distribution of clusters formed with respect to

the cluster qualities for two different training approaches namely TraNNsformer and

offline clustering on SVHN dataset. In both approaches, DNNs are trained to achieve

iso-accuracies. Cluster quality represents the number of non-zero weights present in

a cluster. Hence, a cluster with higher cluster quality will map to a crossbar with

high utilization factor. Recall, higher crossbar utilization helps to achieve higher area

and energy efficiency. Figure 4.2 shows the crossbar utilization for a DNN with 70%

average sparsity (across all layers) for offline clustering. Utilization for a DNN trained

with weight pruning (pruned DNN) is almost uniform across all crossbars required

for mapping. Consequently, the pruned DNN maps to crossbars with 0.3 utilization

factor. As shown in Figure 4.2, the pruned DNN upon undergoing offline clustering

significantly improves the utilization across all the layers. It can also be seen that

TraNNsformer further improves the utilization by a significant factor across all layers
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Fig. 4.3. Comparison of fraction of unclustered weights between Offline
Clustering and TraNNsformer (the data points correspond to the layers of
DNN). Note that the last fully connected layer consists of a small fraction
of weights (<1%), thereby having insignificant effect on overall unclustered
synapse comparison.

in comparison to the offline clustering approach. This underscores the fact that

dynamic cluster formation during the training process helps to get highly structured

DNN connectivities in comparison to both pruning and offline clustering.

Figure 4.3 shows that the fraction of unclustered weights remaining after the train-

ing process in offline clustering approach is significantly higher than TraNNsformer

across all the layers. A large number of unclustered weights is undesirable, as their

mapping results in large number of poorly utilized crossbars. However, TraNNsformer

leads to much smaller fraction of unclustered weights across all the layers in the DNN

(except the last layer).

Both lower fraction of unclustered weights and higher cluster quality are equally

important factors in reducing the number of crossbars. A DNN with low cluster

quality would map the clustered weights across a large number of crossbars. Simi-

larly, a DNN with higher fraction of unclustered weights consumes a large number of

crossbars to map the unclustered weights. Thus, TraNNsformer optimizes both these

factors concurrently to reduce the total number of crossbars required. Note that sim-

ilar results for cluster quality distribution and fraction of unclustered weights were

obtained for MNIST and CIFAR10 as well thereby underscoring the scalability ben-



63

(a)

(b)

Fig. 4.4. Comparison of area consumption on crossbar based architecture
for different DNN training approaches

efits of the proposed training framework with respect to DNN size (number of layers,

number of weights in each layer).

4.5.2 Area and Energy Comparisons for Crossbar-based Architecture

Figure 4.4 (a) shows the area consumption on crossbar-based architecture for

DNNs with iso-accuracies trained using four different approaches namely 1) Original

i.e. typical back-propagation 2) Pruning (weight pruning) 3) Offline clustering and 4)

TraNNsformer. The area consumption has been normalized with respect to the area

consumption of the original DNN for each dataset. It can be seen that TraNNsformer

achieves area savings of 28%− 55% (39% on average) compared to the original DNN
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across all datasets. Furthermore, TraNNsformer also achieves significant area reduc-

tions of 28% − 49% (37% on average) with respect to the pruned DNNs across all

datasets. This underscores the effectiveness of the proposed framework in preserving

the benefits of sparsity at the hardware level. As mentioned before, DNN trained

with weight pruning has irregular (unstructured) sparsity resulting in a large number

of crossbars with low utilizations. Consequently, the benefits of weight sparsity does

not improve a DNN’s area efficiency. It can be seen that the area consumption for

DNNs trained with offline clustering is significantly higher than TraNNsformer across

all benchmarks. This justifies the importance of a clustering driven DNN training

approach towards achieving efficient implementation on crossbar based systems. It is

also worth noting that the area consumption in offline clustering case is irregular i.e.

lower or comparable to network pruning in some cases (CIFAR10) while being higher

in other cases (MNIST and SVHN). This is because the larger fraction of unclus-

tered weights remaining after clustering in SVHN gets mapped to a large number of

crossbars with very low utilization factors thereby, worsening the area consumption.

Figure 4.4 (b) shows the energy consumption per inference for the four training

approaches. The energy consumption has been normalized with respect to the energy

consumption of the original DNN for each dataset. It can be seen that TraNNsformer

achieves significant energy improvements of 49% − 67% (56% on average) across all

datasets. Furthermore, it also achieves 15% − 29% (20% on average) energy reduc-

tion with respect to the pruned DNNs across all datasets. As mentioned before,

pruning decreases the crossbar energy component only while having minimal effect

on the peripheral energy component. However, TraNNsformer based network spar-

sity translates to commensurate savings for both crossbar as well as peripheral energy

components thereby, leading to greater energy savings. It can also be seen that of-

fline clustering approaches have higher energy consumption (MNIST, SVHN) than

the pruned DNNs owing to the higher fraction of unclustered weights.
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4.6 Conclusions

The intrinsic compatibility of memristive technology with ML has ushered the

usage of memristive crossbar based MVMUs to accelerate DNN inference with high

efficiency. However, DNNs have multiple static (known before training) connectivity

patterns (for instance, CNN, MLP, RNN) which are primarily application depen-

dent. Further, techniques to optimize a DNN by obtaining highly sparse connectivity

(network pruning) adds a high degree of dynamic variability (not known before train-

ing) to the connectivity pattern. This variability in connectivity pattern requires

hardware-aware mapping algorithms to maximize the area and the energy benefits

for crossbar-based architectures. While rule based mapping techniques can address

the static variability, dynamic connectivity patterns are much more challenging to

map owing to the large degree of irregularity. Additionally, an inefficient mapping al-

gorithm prevents the algorithmic benefits of sparsity to be preserved at the hardware

level. In this work, we proposed TraNNsformer an integrated training framework

that learns connectivity structures, which can be efficiently mapped to crossbars

while preserving the algorithmic benefits of weight sparsity. We also developed a

technology-aware clustering approach to produce efficient mappings for any crossbar

size, permissible by the technology for reliable operations. Our results on a range of

image recognition applications suggest that TraNNsformer is a promising framework

to implement DNNs, providing a scalable solution to designing large-scale neuromor-

phic systems.
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5. PANTHER - TRAINING ACCELERATOR

ARCHITECTURE

5.1 Introduction

Deep Neural Networks (DNNs) have seen wide adoption due to their success in

many domains such as image processing, speech recognition, and natural language

processing. However, DNN training requires substantial amount of computation and

energy which has led to the emergence of numerous special-purpose accelerators [31].

These accelerators have been built using various circuit technologies, including dig-

ital CMOS logic [41, 128] as well as hybrid digital-analog logic based on ReRAM

crossbars [22, 23].

ReRAM crossbars are circuits composed of non-volatile elements that can per-

form Matrix-Vector Multiplication (MVM) in the analog domain with low latency

and energy consumption. Since MVM operations dominate the performance of DNN

inference and training, various inference [22, 23, 26] and training [81, 82] accelerators

have been built using these crossbars. However, while inference algorithms do not

modify matrices during execution, training algorithms modify them during the weight

gradient and update step (weight gradient computation followed by the weight up-

date). For this reason, training accelerators [81, 82] require frequent reads and write

to crossbar cells to realize weight gradient and update operations. These reads and

writes to ReRAM crossbars are performed one row at a time (like a typical memory

array), and are referred to as serial reads and writes in this chapter.

Figure 5.1 compares the energy and latency of CMOS and ReRAM technologies for

various primitive operations. As shown, MVM consumes ' 10.4× less energy and has

' 8.9× lower latency with ReRAM over CMOS (at same area) for a 32 nm technology

node. However, reading and writing the entire matrix consumes much higher energy
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and latency with ReRAM. Particularly, ReRAM writing energy and latency are an

order of magnitude higher due to the cost of the program-verify approach which

requires tens of pulses [200]. Therefore, the use of serial reads and writes during

training takes away the overall benefits gained from using ReRAM for acceleration.

To overcome this issue, recent demonstrations [117, 118] have shown that Outer

Product Accumulate (OPA) operations can be performed in crossbars to realize the

weight gradient and update operations without the use of serial reads and writes.

The OPA operation is performed by applying two input vectors at the rows and the

columns of a crossbar simultaneously, to update each cell depending on the inputs

at the corresponding row and column. However, these demonstrations are limited to

low-precision inputs/outputs (2-4 bits) and weights (2-5 bits) which is not sufficient

for the typical training workloads [141,201]. Moreover, they are confined to Stochastic

Gradient Descent (SGD) with batch size of one for fully-connected layers only.

To address these limitations, we propose a bit-slicing technique for achieving

higher precision OPA operations by slicing the bits of the output matrix weights

across multiple crossbars. While bit-slicing has previously been done for MVM op-

erations [23], bit-slicing matrices to also support OPA operations is substantially

different. For MVM, the rows and the crossbar cells are inputs and the columns are

outputs, whereas for OPA, the rows and the columns are both inputs and the out-

puts are the crossbar cells themselves. Moreover, bit-slicing OPA presents additional

constraints for the distribution of bits across the slices. First, weights are constant
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during MVM, but they change during OPA, which necessitates support for overflow

within each slice and accounting for saturation. Second, MVM favors fewer bits per

slice to reduce analog-to-digital Converter (ADC) precision requirements [23], but we

show that OPA favors more bits per slice. Third, MVM favors homogeneous slicing

of bits (equal number of bits per slice), but we show that OPA favors heterogeneous

slicing.

We incorporate our proposed technique for enhancing OPA precision into a cross-

bar architecture that performs both MVM and OPA operations at high precision.

We present three variants of the crossbar architecture that are catered to different

training algorithms: SGD, mini-batch SGD, and mini-batch SGD with large batches.

Using this crossbar architecture, we build PANTHER, a Programmable Architecture

for Neural Network Training Harnessing Energy-efficient ReRAM. We use PANTHER

to evaluate our design on different layer types (fully-connected, convolutional, etc.)

and training algorithms. Our design can also be integrated into existing training

accelerators in the literature to enhance their efficiency. Our evaluation shows that

PANTHER achieves up to 8.02×, 54.21×, and 2, 358× energy reductions as well as

7.16×, 4.02×, and 119× execution time reductions compared to digital accelerators,

ReRAM-based accelerators, and GPUs, respectively.

We make the following contributions:

• A bit-slicing technique for implementing high-precision OPA operations using

ReRAM crossbars (Section 5.3)

• A crossbar-based architecture, that embodies this bit-slicing technique, with

three variants for different training algorithms (Section 5.4)

• An ISA-programmable accelerator with compiler support to evaluate different

types of layers in neural networks and training algorithms (Section 5.5)

We begin with a background on the use of ReRAM crossbars for DNN training (Sec-

tion 5.2).
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5.2 Background

5.2.1 Deep Neural Network Training

Typical DNN training comprises of iterative updates to a model’s weights in order

to optimize the loss based on an objective function. Equations 5.1–5.4 show the

steps involved in DNN training based on the Stochastic Gradient Descent (SGD)

algorithm [202]. Equation 5.1 constitutes the forward pass which processes an input

example to compute the activations at each layer. Equation 5.2 computes the output

error and its gradient based on a loss function using the activations of the final layer.

Equations 5.3 constitutes the backward pass which propagates the output error to

compute the errors at each layer. Finally, equation 5.4 computes the weight updates

to minimize the error.

H(l+1) = W (l) X(l), X(l+1) = σ(H(l+1)) (5.1)

E = Loss(X(L), y), δH(L) = ∇E � σ′(X(L)) (5.2)

δH(l) = [(W l)T δH(l+1)]� σ′(X(l)) (5.3)

∂E

∂W l
(or δW l) = X(l) (δH(l+1))T, W l = W l − η ∗ ∂E

∂W l
(5.4)

5.2.2 Using Crossbars for Training

The most computationally intensive DNN layers that are typical targets for ac-

celeration are the fully-connected layers and the convolutional layers. We use fully-

connected layers as an example to show how ReRAM crossbars can be used to accel-

erate DNN training workloads.
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Fig. 5.2. FC Layer Matrix Operations in Crossbars

Overview of Fully Connected (FC) Layers

Figures 5.2(a) and (b) illustrate the operations involved during training in a FC

layer. The training involves three types of matrix operations: ¶ activation, · layer

gradients, and ¸ weight gradients. Activation corresponds to an MVM operation with

the weight matrix (W ), as shown in Equation 5.1. Layer gradients correspond to an

MVM operation with the transpose of the weight matrix (hereon denoted as MTVM),

as shown in Equation 5.3. Weight gradients correspond to an outer product operation,

the result of which is accumulated to the weight matrix based on the learning rate

(η), as shown in Equation 5.4. Therefore weight gradients and updates together can

be viewed as an Outer Product Accumulate (OPA) operation on the weight matrix.
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Activation and Layer Gradients in Crossbars

Figure 5.2(c) shows how a ReRAM crossbar can be used to compute activation

and layer gradients. The weights of the matrix (W ) are stored in the crossbar cells

as the conductance state [16]. The MVM operation is realized by applying the input

vector (X) as voltages on the rows of crossbar. Subsequently, the output vector (H) is

obtained as currents from the columns. The MTVM operation is realized by applying

the input vector (δH) as voltages on the columns of the crossbar. Subsequently, the

output vector (δX) is obtained as currents from the rows.

Both MVM and MTVM operations execute O(n2) multiply-and-accumulate op-

erations in one computational step in the analog domain (n is the crossbar size).

Therefore, ReRAM crossbars can be leveraged to design highly efficient primitives for

activation and layer gradient computations. For this reason, they have been exten-

sively considered for DNN inference [22,23,26] and training [81,82] accelerators.

Weight Gradients and Updates in Crossbars

Figure 5.2(d) shows how a ReRAM crossbar can be used to compute weight gra-

dients. The OPA operation can be realized by applying the inputs (X and δH) as

voltages on the crossbar’s rows and columns, respectively. The change (wij − wij) in

the value stored at a cross-point (i, j) is equal to the product of the voltage on row i

and column j (details in Section 5.3). Therefore, the outer product operation in the

crossbar is naturally fused with the weight matrix accumulate operation.

The OPA operation executes O(n2) multiply-and-accumulate operations in one

computational step in the analog domain. It avoids serial reads and writes to ReRAM

crossbar cells, which is important because reads and writes have orders of magni-

tude higher cost (energy and latency) than in-crossbar computations (MVM, MTVM,

OPA). Therefore, ReRAM crossbars can be leveraged to design highly efficient prim-

itives for weight gradient computation and weight update.
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The aforementioned technique has been demonstrated with low-precision inputs/outputs

(2-4 bits) and weights (2-5 bits) on the SGD training algorithm for FC layers only [117,

118]. In this chapter, we enhance the technique with architecture support to increase

its precision and cater to a multiple training algorithms and different layer types.

5.3 Enhancing ReRAM-based OPA Precision

DNN workloads require 16 to 32 bits of precision for training [141,201]. However,

input digital-to-analog converters (DACs), crossbar cells, and output ADCs cannot

support such levels of precision due to technology limitations and/or energy consid-

erations. For this reason, accelerators that use ReRAM crossbars for MVM/MTVM

operations typically achieve the required precision with bit-slicing [23, 26, 80], where

matrix bits are sliced across the cells of multiple crossbars, input bits are streamed

at the crossbar rows/columns, and shift-and-add logic is used to combine the output

bits at each column/row across crossbars (slices).

Bit-slicing matrices to also support OPA operations is different because both the

rows and columns are simultaneously applied as inputs and the outputs are the cross-

bar cells themselves. Moreover, bit-slicing for OPA operations presents additional

constraints for the choice of bit distribution across slices. This section describes

our technique for bit-slicing the OPA operation (Section 5.3.1), and discusses the

constraints it adds to the choice of bit distribution and how we address them (Sec-

tions 5.3.2 to 5.3.4).

5.3.1 Bit Slicing the OPA Operation

Figure 5.3(a) illustrates how the OPA operation is performed when 2-bit inputs

are applied at the rows and the columns. The digital row input is encoded in the time-

domain using pulse-width modulation. The digital column input is encoded in the

amplitude-domain using pulse-amplitude modulation. Both pulse-width and pulse-

amplitude modulations can be implemented using DACs. The weight change in a cell



73

ROFF

RON

Wij=0
-ΔWij

+ΔWij

Wij=0

ROFF

RON

+ΔWij

(e) Positive and Negative Gradients

𝑻𝑺𝟏𝟓:

Slice-7 Slice-6 Slice-5 Slice-4 Slice-3 Slice-2 Slice-1 Slice-0
Matrix weight (crosspoint) state 

across slices (crossbars) 0001
00

0010
00

0001
00

0100
00

1011
00

1010
00

1000
00

1111
00

1010

00

0110

00

0101

00 00

1110

00

1100

00 11

1011

11𝑾𝒏𝒆𝒘 = 𝑾𝒐𝒍𝒅+ 𝚫𝑾
(𝜟𝑾 = 𝒂 ∗ 𝒃)

11101100

𝑾𝒐𝒍𝒅 + (𝒂 ≪ 𝟎) ∗ 𝒃0

𝑾𝒑𝒓𝒆𝒗+ (𝒂 ≪ 𝟏𝟓) ∗ 𝒃𝟏𝟓

𝑾𝒑𝒓𝒆𝒗+ (𝒂 ≪ 𝒏) ∗ 𝒃𝒏

𝑻𝑺𝟎:

𝑻𝑺𝒏:

(d) 16-bit OPA Execution

W11 W12 W13 W14

W21 W22 W23 W24

W31 W32 W33 W34

W41 W42 W43 W44

10010…0

10110…1

11110…1

00110…0

00 01 10 11

0

1

1

0

1-bit

DAC

2-bit

DAC

(b) Streaming Row Input Bits

n-bit

Input 1

1

00 01 10 11

0001…1011

2-bit

DAC

1-bit

DAC

1
0
1
1
0
…
1

n-bit

Input 1 n-bit

Input 2

(c) Slicing Column Input Bits

Wij

sliceN

Wij

sliceN-1

Wij

slice1

Wij

slice0

W11 W12 W13 W14

W21 W22 W23 W24

W31 W32 W33 W34

W41 W42 W43 W44

00

01

10

11

00 01 10 11

2-bit DAC

(encode in time)

2-bitDAC

(encode in 

amplitude)

(a) 2-bit OPA

Column DAC 

Resolution (p)

Max Bits per 

Weight Slice

Total Bits for 

32-bit Weight

2 5 62

3 6 47

4 6 41

5 7 35

(f) Bit Usage for Different Resolutions

crossbarN crossbarN-1 crossbar1 crossbar0

New 

Weight

Old 

Weight

No negative 

update 

possible

T
im

e-
S

te
p
s 

(T
S

)

Fig. 5.3. Bit Slicing OPA to Enhance its Precision

depends on the duration and the amplitude of the pulses applied on the corresponding

row and column respectively, thereby realizing an analog OPA operation [117,118].

To perform an OPA operation with 16-bit inputs, naively increasing the DAC

resolution is infeasible because DAC power consumption grows rapidly with resolution

(N) as:

PDAC = β(2N/N + 1)V 2f clk [203] (5.5)

Instead, we propose an architectural scheme to realize a 16-bit OPA operation by

bit-streaming the row input bits, bit-slicing the column input bits, and bit-slicing the

matrix weights across multiple crossbars.

Figure 5.3(b) illustrates how we stream row input bits, m bits at a time over

16/m cycles. Meanwhile column input bits are left-shifted by m-bits every cycle.

Since the number of cycles decrease linearly with m while the cycle duration increases

exponentially with m due to pulse-width modulation of row input, we choose m = 1

to minimize total latency. Using m = 1 also means that the row DACs are just

inverters, thereby having low power consumption.
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Figure 5.3(c) shows how we slice column input bits across crossbars. Only one

weight W ij is shown for clarity. In each cycle, the left-shifted column input is divided

into chunks of p bits (p = 2 in this example) and each chunk is applied to the

corresponding crossbar.

Figure 5.3(d) illustrates the steps for a 16-bit×16-bit OPA operation at one cross-

point in the crossbar, resulting in a 32-bit output value for each matrix weight. It

puts together the bit-streaming of the row input vector b and bit-slicing of the column

input vector a with p = 4. Each dot represents a partial product (an.bn), and the

color corresponds to a specific weight slice (crossbar). Thus, the net accumulation to

a slice is the result of all partial products of the specific color. The updated weight

after a time step T n can be expressed as:

W updated = W old +
n∑

n=0

(a << n) ∗ bn (5.6)

Crossbars store data in unsigned form. To enable positive and negative weight

updates (δW ), we represent inputs in the signed magnitude representation. To enable

a symmetric representation of positive and negative weight updates, we bias each

device such that, a zero weight (W ij) is represented by the memory state (RON +

ROFF)/2, as shown in Figure 5.3(e). Hence, the signed magnitude computation and

biased data representation enable both positive and negative updates to weights. This

is important as both polarities of updates are equally important in DNN training.

Such a biased-representation can be implemented by adding an extra column per

crossbar (128 rows, 128 columns) with minimal area/energy cost [204].

5.3.2 Bits to Handle Overflow

For MVM/MTVM, the matrix weights are inputs to the operation and they do not

change. In contrast, for OPA, the matrix weights are accumulated with the values

resulting from the outer product. As a result, the weight slice stored in a crossbar cell

may overflow, either from multiple accumulations within one OPA or over multiple
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OPAs. We handle this overflow by provisioning weight slices with additional bits to

store the carry (shaded bits shown in Figure 5.3(d)).

Propagating carry bits to other slices would require serial reads and writes which

incur high overhead. For this reason, we do not propagate the carry bits immediately.

Instead, they are kept in the slice and participate in future MVM/MTVM and OPA

operations on the crossbar.

The carry bits cannot be kept in the weight slice indefinitely because eventually

the weight slice may get saturated i.e. crossbar cell at maximum/minimum state

for positive/negative update. Saturation is detrimental for trainability (desirable

loss reduction during training) because it freezes training progress due to the ab-

sence of weight change. For this reason, we employ a periodic Carry Resolution Step

(CRS) which executes infrequently to perform carry propagation using serial reads

and writes. We evaluate the impact of the number of bits provisioned per slice and

the CRS frequency on saturation and accuracy in Section 5.7.1.

5.3.3 Number of Slices vs. Bits Per Slice

When slicing matrix bits across multiple crossbars, there is a tradeoff between the

number of slices and the number of bits per cell in each slice. MVM operations favor

using more slices and fewer bits per slice. The reason is that energy increases linearly

with the number of crossbars, and non-linearly with the precision of a crossbar due

to the increase in ADC precision required to support it. Therefore, using more slices

with fewer bits each is better for energy consumption.

In contrast, OPA favors having fewer slices with more bits per slice. The reason

is that OPA introduces carry bits to each slice and having more slices with fewer bits

each increases the overhead from the carry bits. For example, Figure 5.3(f) shows

that with 2 bits per slice, 62 total bits are required to represent the 32-bit weight

while capturing the carry bits adequately.
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Fig. 5.4. Weight Gradients across Training Steps

To strike a balance, we choose p = 4, since p > 4 requires a device precision that

exceeds ReRAM technology limits [16]. A 4-bit DAC resolution is feasible because

DAC power does not increase rapidly at low resolution (Equation 5.5). By choosing

p = 4, our MVM/MTVM operations consume more energy than other ReRAM-based

accelerators. However, our more energy efficient OPA operations compensate because

they avoid the need for expensive serial reads and writes.

5.3.4 Heterogeneous Weight Slicing

MVM operations favor homogeneous bit-slicing. Increasing the precision of a slice

while decreasing the precision of another is always an unfavorable tradeoff because

energy increases nonlinearly with the precision of a crossbar. In contrast, for OPA

operations where crossbar values change, provisioning more bits for slices that experi-

ence more weight updates helps reduce the frequency of saturation, thereby ensuring

trainability at low CRS frequency.

Heterogeneous weight slicing provisions more bits for matrix slices that change

more frequently. The frequency of change is impacted by two factors: OPA asymme-

try and the small weight gradient range in DNNs. OPA asymmetry is illustrated in

Figure 5.3(d) where the central slices receive more partial products (dots) than the

edge slices, which motivates increasing precision for the central slices. Small weight

gradient range is shown in Figure 5.4 where weight updates form a very small fraction



77

(2%− 5%) of the overall weight range for >= 95% of training steps, which motivates

increasing precision of the lower slices. We evaluate the impact of heterogeneous

weight slicing on energy and accuracy in Section 5.7.2.

5.4 Matrix Computation Unit (MCU)

The techniques described in Section 5.3 are incorporated into a Matrix Compu-

tation Unit (MCU) for DNN training accelerators. This section first describes the

MCU’s organization (Section 5.4.1). It then describes the three variants of the MCU

optimized for SGD (Section 5.4.2), mini-batch SGD (Section 5.4.3), and mini-batch

SGD with large batches (Section 5.4.4).

5.4.1 MCU Organization

Figure 5.5 illustrates the organization of the MCU. Performing an MVM operation

with the MCU is illustrated by the red arrow. Digital inputs stored in the XBarIn

registers are fed to the crossbar rows through the Input Driver. The output currents

from the crossbar columns are then then converted to digital values using ADC and

stored in the XBarOut registers.

Performing a MTVM operation in the MCU is illustrated by the purple arrow in

Figure 5.5. The key difference compared to the MVM operation is the addition of

multiplexers to supply inputs to crossbar columns instead of rows and to read outputs

from crossbar rows instead of columns.

MVM and MTVM operations require 16 to 32 bits of precision for training [41].

We use 16-bit fixed-point representation for input/output data and 32-bit fixed-point

representation for weight data which ensures sufficient precision [201].

Performing an OPA operation in the MCU is illustrated by the blue arrow in

Figure 5.5. Digital inputs stored in the XBarIn registers are fed to the crossbar rows

through the Input Driver. Digital inputs stored in the XBarOut registers are fed to

the crossbar columns through the Input Driver. The effect of this operation is that
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Fig. 5.5. Matrix Computation Unit

the outer product of the input vectors is accumulated to the matrix stored in the

crossbar. To support positive and negative inputs, the input drivers in Figure 5.5 use

the sign bit (MSB) to drive the crossbar rows and columns with positive or negative

voltages.

5.4.2 Variant #1 for SGD Acceleration

SGD-based training performs example-wise gradient descent. First, an input ex-

ample performs a forward pass (MVM) to generate activations - H l. Next, the er-

ror computed with respect to the activation of the output layer is back propagated

(MTVM) to compute the layer gradients - δX l. Finally, the activations and layer

gradients are used to update (OPA) the weight matrix - W l, before the next input

example is supplied.

Table 5.1 illustrates the logical execution of matrix operations in three MCUs for

a three-layer DNN with an input example a0. Each time step shows the operations

executed on each MCU and their inputs/outputs. For example, at time step 0, MCU0

performs an MVM operation on input a0 to compute the output a1. The illustration

assumes that each layer maps on one MCU and does not show the interleaved nonlin-



79

Table 5.1.
Dataflow for SGD

Time

Step
MCU0 (Layer1) MCU1 (Layer2) MCU2 (Layer3)

0 MVM (a0) (a1)

1 MVM (a1) (a2)

2 MVM (a2) (a3)

3 MTVM (δh3) (δh2)

4 MTVM (δh2), (δh1) OP (a2 , δh3) (∇W3)

5 OP (a0, δh1) (∇W1) OP (a1, δh2) (∇W2)

ear operations for clarity. For a layer size larger than one MCU capacity (128× 128

matrix), the layer is partitioned across multiple MCUs (see Section ??).

Variant #1 of the MCU uses a single crossbar to perform all three matrix opera-

tions: MVM, MTVM, and OPA. This variant is suitable for SGD because, as shown

in Table 5.1, the three matrix operations are data dependent and will never execute

concurrently. However, this variant creates structural hazards for mini-batch SGD as

described in Section 5.4.3.

5.4.3 Variant #2 for Mini-Batch SGD Acceleration

Mini-batch SGD performs batch-wise gradient descent. Like SGD, each input

performs MVM, MTVM, and OPA to compute activations, layer gradients, and weight

gradients/updates, respectively. However, the weight update is only reflected at the

end of a batch to be used by the inputs of the next batch.

Table 5.2 illustrates the logical execution of matrix operations for a batch of five

inputs, where anm refers to the mth activation of nth input. MVM operations can

be executed for multiple input examples concurrently in a pipelined fashion (MVM

(a10) (a11), MVM (a01) (a02) in Table 5.2). Additionally, the MVM and MTVM

operations for different inputs in the batch can also execute in parallel during the
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Table 5.2.
Dataflow for Mini-Batch SGD

Time

Step
MCU0 (Layer1) MCU1 (Layer2) MCU2 (Layer3)

0
MVM (a00) (a01)

1
MVM (a10) (a11) MVM (a01) (a02)

2
MVM (a20) (a21) MVM (a11) (a12) MVM (a02) (a03)

3
MVM (a30) (a31) MVM (a21) (a22) MVM (a12) (a13)

MTVM (δh03) (δh02)

4
MVM (a40) (a41) MVM (a31) (a32) MVM (a22) (a23)

MTVM (δh02), (δh01) MTVM (δh13) (δh12)

5
MVM (a41) (a42) MVM (a32) (a33)

MTVM (δh12), (δh11) MTVM (δh23) (δh22)

6
MVM (a42) (a43)

MTVM (δh22), (δh21) MTVM (δh33) (δh32)

7
MTVM (δh32), (δh31) MTVM (δh43) (δh42)

8
MTVM (δh42), (δh41)

9-12
OP (an0, δhn1) (∇Wn1) OP (an1, δhn2) (∇Wn2) OP (an2, δhn3) (∇Wn3)

Iterate for n=1 to 4

same timestep, provided that there is no structural hazard on the MCU. The desire

to eliminate such structural hazards motivates Variant #2.

Variant #2 of the MCU eliminates structural hazards in mini-batch SGD by stor-

ing two copies of the matrix on different crossbars, enabling the MCU to perform

MVM and MTVM in parallel. This replication improves the energy-delay product

for a batch. With < 2× increase in area, we improve the batch latency by O(L),

where L is the number of layers. The ISA instruction for performing MVM/MTVM

(Section 5.5.2) is designed to enable the compiler (Section 5.5.3) to schedule these

two operations in parallel on the same MCU.
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The OPA operations are executed at the end of the mini-batch (steps 9-12 in

Table 5.2) to reflect the weight updates for the entire batch. These OPA operations

require that the vectors involved are saved until then. Variant #2 saves these vectors

in shared memory. However, if the batches are large, this approach puts too much

stress on the shared memory which motivates Vaiant #3 (Section 5.4.4).

5.4.4 Variant #3 for Mini-Batch SGD with Large Batches

For mini-batch SGD with very large batch sizes, saving the vectors in shared

memory requires large shared memory size which degrades storage density. Variant

#3 alleviates the pressure shared memory size by maintaining three copies of each

crossbar. The first two copies enable performing MVM and MTVM in parallel, similar

to Variant #2. The third copy is used to perform the OPA operation eagerly, as soon

as its vector operands are available, without changing the matrices being used by the

MVM and MTVM operations.

Performing OPA eagerly avoids saving vectors until the end, reducing the pressure

on the shared memory. However, using a third crossbar for OPA requires serial reads

and writes to commit the weight updates to the first and the second crossbars for

MVM and MTVM in the next batch. Section 5.7.6 discusses the impact of these

design choices.

5.5 Programmable Accelerator

The MCU described in Section 5.4 can be integrated with prior ReRAM-based

training accelerators [81,82] to improve their efficiency. We develop a programmable

training accelerator named PANTHERto evaluate our design by extending the PUMA

ReRAM-based inference accelerator [26]. This section describes PANTHER’s orga-

nization (Section 5.5.1), ISA considerations (Section 5.5.2), compiler support (Sec-

tion 5.5.3), and an example of how to implement convolutional layers (Section 5.5.4).
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Fig. 5.6. Architecture Overview

5.5.1 Accelerator Organization

PANTHERis a spatial architecture organized in three tiers: nodes, tiles, and cores.

A node consists of multiple tiles connected via an on-chip network, and a tile consists

of multiple cores connected to a shared memory, as illustrated in Figure 5.6(b). A

core consists of multiple MCUs for executing matrix operations, a digital CMOS-

based vector functional unit (VFU) for executing arithmetic operations and non-

linear functions, a register file, and a load/store memory unit. A core also features an

instruction execution pipeline making the accelerator ISA-programmable. To support

DNNs whose model storage exceeds a node’s total MCU capacity, multiple nodes can

be connected via an interconnect. This organization is similar to PUMA’s [26] and

is not a contribution of this chapter. The key distinction from PUMA is the MCU

which supports MTVM and OPA operations, not just MVM operations, as described

in Section 5.4.
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5.5.2 ISA Considerations

The PUMA [26] ISA includes mvm instructions executed by crossbars, arith-

metic/logic/nonlinear instructions executed by the VFU, load/store instructions to

access shared memory, send/receive instructions to communicate with other tiles, and

control flow instructions. We extend the PUMA ISA to also include a mcu instruction

for executing all three matrix operations (MVM, MTVM, OPA) on the MCU.

The mcu instruction takes six 3-bit masks, where each mask corresponds to one

of the MCUs on the core (up to six). The three bits in the mask correspond to the

three supported matrix operations (MVM, MTVM, OPA). If multiple bits are set,

then the instruction executes the operations concurrently. For example, if mask 0 is

set to ’110’ and mask 1 is set to ’011’, then MCU 0 will execute MVM and MTVM

simultaneously and MCU 1 will execute MTVM and OPA simultaneously. The incor-

poration of all three operations into a single instruction is important for being able to

execute them concurrently in order to leverage the parallelism in batch-wise training

on Variant #2 (Section 5.4.3) and Variant #3 (Section 5.4.4). Furthermore, having

separate masks for each MCU within a core helps leverage the parallelism across ma-

trix operations [26]. The mask is generated by fusing different MCU operations as

discussed in Section 5.5.3. The mcu instruction does not take source and destination

operands since these are implied to by XBarIn and XBarOut.

The semantic of the OPA operation is that it takes effect at the end of the execu-

tion when a special halt instruction is invoked. This semantic allows the same code

to work for any of the three MCU variants, making the choice of variant a microar-

chitectural consideration and the ISA agnostic to it. The implementation of the OPA

semantic on each of the variants is as follows. Consider the case when all three bits

of an MCU’s mask are set. In Variant #1, MVM and MTVM will be serialized on

the same crossbar, while the operands of OPA will be saved to shared memory then

applied to that crossbar when halt is invoked. In Variant #2, MVM and MTVM will

be executed in parallel on the two crossbar copies, while the operands of OPA will
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be treated like in Variant #1. In Variant #3, MVM and MTVM will be executed in

parallel on the first two crossbar copies, while the operands of OPA will be applied

to the third crossbar. The values of the third crossbar will then be copied to the first

two crossbars when halt is invoked.

5.5.3 Compiler Support

The PUMA [26] compiler provides a high-level programming interface in C++

that allows programmers to express models in terms of generic matrix and vector

operations. The compiler is implemented as a runtime library that builds a computa-

tional graph when the code is executed then compiles the graph to PUMA ISA code.

The compiler partitions matrices into sub-matrices and maps these sub-matrices to

different MCUs, cores, and tiles. It then maps the operations in the graph to dif-

ferent MCUs, cores, and tiles accordingly, inserting communication operations where

necessary. The compiler then linearizes the graph, creating an instruction sequence

for each core. It performs register allocation for each sequence, spilling registers to

shared memory if necessary. Finally, it generates ISA code for each core, collectively

comprising a kernel that runs on the accelerator.

We make the following extensions to the PUMA compiler to support PANTHER.

We extend the application programming interface (API) to allow programmers to

define training matrices that support MVM, MTVM, and OPA operations. We extend

the intermediate representation to represent these matrices and include them in the

partitioning. We also add an analysis and transformation pass for identifying MCU

operations in the graph that can be fused and fusing them. This pass fuses MCU

operations that do not have data dependences between them and that use different

MCUs on the same core or use the same MCU but are different types of operations

(MVM, MTVM, OPA). The fusing process is iterative because every time operations

are fused, new dependences are introduced to the graph. Finally, we extend the code

generator to support the new mcu ISA instruction.
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Fig. 5.7. Convolutional Layer Matrix Operations in Crossbars

Note that since the model weights are not updated until the halt instruction at

the end, the scope of a kernel is a single batch. Multiple batches are executed by

invoking the kernel multiple times on different input data.

5.5.4 Implementing Convolutional Layers

ReRAM-based OPA has one-to-one correspondence to the weight gradient/update

operation for FC layers (discussed in Section 5.2.2). By integrating this technique

into a programmable accelerator with compiler support, we enable the mapping of

more complex layers on top of it such as convolutional layers. This section describes

how convolutional layers can be implemented in our accelerator.

Figure 5.7(a) shows a typical convolution layer and the associated operations

during training. Like with FC layers, convolutional layers performs three types of
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matrix operations: ¶ activation, · layer gradients, and ¸ weight gradients. Unlike

FC layers, these operations are all convolutions (∗).

Activation and Layer Gradients

Figure 5.7(b) shows how the convolution operation for activation is implemented

in the crossbar on top of the MVM primitive. This approach is similar to that used

in existing accelerators [81]. The crossbar stores the convolution kernel in the form of

linearized filters (wk), where each column corresponds to the weights associated with

a specific output channel (hk). The convolution operation to compute activations is

implemented as an iterative MVM operation. An iteration is represented as a time

step (T1/T2) in Figure 5.7(b), and corresponds to a specific (i,j) pair. A block of input

features (X) is applied to the crossbar’s rows as convolution data in each iteration.

In a similar manner, the convolution operation for layer gradients (not shown in the

figure) is realized using iterative MTVM. The next layer’s errors (δH) are used as

the convolution data and flipped filters (vertically and horizontally) are used as the

convolution kernel.

Weight Gradients

Figure 5.7(c), shows our proposed technique for implementing the weight gradients

convolution operation and weight update in the crossbar on top of the OPA primitive.

The weight gradient computation uses input features (X) as the convolution data and

output feature’s errors (δH) as the convolution kernel. Each iteration is represented as

a time step (T1, T2) in Figure 5.7(c), and corresponds to a specific (i,j) pair. On every

iteration, the output feature’s errors are applied on the columns, in a depth major

order. Simultaneously, by applying the portion of input features that generate the

corresponding activations (H) on the rows, a partial convolution is obtained between

X and δH. Striding across the output feature’s errors and input features for n2

time steps, where n is size of one output feature map, realizes the full convolution
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operation. Convolutions for different output feature maps are performed in parallel

across the crossbar’s columns, using the same weight data layout as used in MVM and

MTVM operations. To the best of our knowledge, our work is the first to formulate

the weight gradients convolution operation in terms of outer products.

Comparison with Other Accelerators

Existing ReRAM-based training accelerators such as PipeLayer [81] do not com-

pute the weight gradient convolutions using outer products, but rather, they compute

them using MVM operations. This requires writing the convolution kernel (δH) on

the crossbar because the convolution operation here uses non-stationary data (δH)

as the convolution kernel. The drawback of this approach is that the latency and

energy consumption of the serial reads and writes is very high, taking away from the

overall efficiency provided by ReRAM-based MVMs.

5.6 Methodology

5.6.1 Architecture Simulator

We extend the PUMA [26] simulator to model the MCU unit and its associated

instructions. The PUMA simulator is a detailed cycle-level architecture simulator

that runs applications compiled by the compiler, in order to evaluate the execution of

benchmarks. The simulator models all the necessary events that occur in an execu-

tion cycle, including compute, memory and NoC transactions. To estimate power and

timing of the CMOS digital logic components, their RTL implementations are syn-

thesized to the IBM 32nm SOI technology library, and evaluated using the Synopsys

Design Compiler. For the on-chip SRAM memories, the power and timing estimates

are obtained from Cacti 6.0. Subsequently, the power and timing of each compo-

nent are incorporated in the cycle-level simulator in order to estimate the energy

consumption.
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(a) (b)

Fig. 5.8. Computational graph obtained using TensorBoard for (a) exam-
ple model (b) example model with PANTHER OPA

MCU Modelling. Since the MCU is built with analog components and cannot

be synthesized with publicly available libraries, we adopted the models from past

works [23,117] and ADC survey [185]. We use the ReRam crossbar array and sample-

and-hold circuit models in ISAAC [23]. We used capacitive DACs and Successive

Approximation Register (SAR) ADCs. The DAC area and power are estimated using

the equations described in Saberi et al. [205]. The ADCs for different precisions

namely 8-12 bits operating at a sampling frequency of 1GHz are obtained from the

ADC survey [185]. The ADC optimization technique in Newton [206] is incorporated

to avoid unnecessary ADC conversions.
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Table 5.3.
Summary of platforms

Parameter PANTHER (1 node) Basedigital (1 node) 2080-Ti (1 card)

SIMD lanes 108 M 108 M 4352

Technology CMOS-ReRam (32 nm) CMOS (32 nm) CMOS (12 nm)

Frequency 1 GHz 1 GHz 1.5 GHz

Area 117 mm2 578 mm2 750 mm2

TDP 105 W 839 W 250 W

On-Chip Memory 72.4 MB 72.4 MB 29.5 MB

5.6.2 Functional Simulator

We implement a functional simulator using TensorFlow that models PANTHER’s

bit-sliced OPA technique. This simulator enables performing design space exploration

(for accuracy) on large-scale DNNs to explore the bounds on heterogeneous weight

slicing and CRS frequency for trainability. Here, a layer’s weights are represented as

a multi-dimensional tensor of shape S ×M × N , where S corresponds to a weight

slice (discussed in Figure 5.3 (d)), and M and N correspond to the weight matrix’s

dimensions respectively. Each weight slice can have a unique bit-precision, to model

heterogeneous configurations (Section 5.3.4). The weight values beyond the range per-

missible by the bit-precision are clipped to model a slice’s saturation. Subsequently,

the weight update operation in native TensorFlow is modified to quantize and bit-

slice the computed weight gradients and then update the previous copy of weights

(already quantized and bit-sliced). Figures 5.8 (a) and (b) show the computational

graphs for an example neural network model, and the example model augmented with

PANTHER OPA operation (shown in red) respectively.

5.6.3 Baselines

We evaluate PANTHER against three weight-stationary ASIC baselines: Basedigital,

Basemvm, and Baseopa/mvm, as well as one NVIDIA GPU platform - Turing RTX 2080-

Ti (2080-Ti).
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Basedigital uses a digital version of the MCU where weights are stored in an SRAM

array within the core and matrix operations are performed with a digital VFU.

Basedigital is an adaptation of the digital baseline used in PUMA [26]. As shown in the

PUMA work, this digital baseline is an optimistic estimate of the Google TPU [128].

It is optimistic because it uses weight-stationary MVM computations similar to TPU,

but assumes that the entire model is mapped using on-chip SRAM, thereby avoiding

the off-chip memory access costs in TPU. Therefore, our comparisons with Basedigital

also serve as a lower-bound on PANTHER’s improvements compared to TPU. The

objective of comparing with Basedigital is to demonstrate the benefit of ReRAM-based

computing over pure digital approaches.

Basemvm uses ReRAM for MVM and MTVM, and a digital VFU for OPA with

serial reads/writes to the crossbar. Baseopa/mvm is a replication of PipeLayer’s [81]

approach described in Section 5.5.4 and only applies to convolutional layers. It uses

ReRAM for MVM and MTVM, and realizes OPA with ReRAM MVMs and serial

reads/writes. The objective of comparing with Basemvm and Baseopa/mvm is to demon-

strate the benefit of ReRAM-based OPA operations.

Configurations. Basemvm and Baseopa/mvm use 32-bit weights sliced across 16

slices with 2 bits each, which is optimal since crossbars only do MVM/MTVM. PAN-

THER uses heterogeneous weight slicing with 32-bit weights represented using 39

bits sliced across 8 slices distributed from MSB to LSB like so: 44466555 (unless

otherwise specified). For this reason, PANTHER consumes 17.5% higher energy for

MVM/MTVM than Basemvm and Baseopa/mvm due to higher ADC precision. We also

use a CRS frequency of 1024 steps (unless otherwise specified) which achieves similar

accuracy as the software implementation. For all three ASIC baselines and PAN-

THER, the hierarchical organization uses 138 tiles per node, with 8 cores per tile and

2 MCUs per core. Table 5.3 summarizes the platforms. Note that both Basemvm and

Baseopa/mvm have same platform parameters as PANTHER.
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Table 5.4.
Details of workloads

Layer C M H/W R/S E/F Wt (MB) In (MB) Ops/B

CNN-Vgg16

Conv1 3 64 32 3 32 0.003 0.006 368.640

Conv2 32 64 32 3 16 0.035 0.063 92.160

Conv3 64 128 16 3 16 0.141 0.031 209.455

Conv4 128 128 16 3 8 0.281 0.063 52.364

Conv5 128 256 8 3 8 0.563 0.016 62.270

Conv6 256 256 8 3 8 1.125 0.031 62.270

Conv7 256 256 8 3 4 1.125 0.031 15.568

Conv8 256 512 4 3 4 2.250 0.008 15.945

Conv9 512 512 4 3 4 4.500 0.016 15.945

Conv10 512 512 4 3 2 4.500 0.016 3.986

Conv11 512 512 2 3 2 4.500 0.004 3.997

Conv12 512 512 2 3 2 4.500 0.004 3.997

Conv13 512 512 2 3 1 4.500 0.004 0.999

Dense14 512 4096 - - - 4.000 0.001 1.000

Dense15 4096 4096 - - - 32.000 0.008 1.000

Dense16 4096 100 - - - 0.781 0.008 0.990

MLP-L4

Dense1 1024 256 - - - 0.500 0.002 0.996

Dense2 256 512 - - - 0.250 0.000 0.998

Dense3 512 512 - - - 0.500 0.001 0.998

Dense4 512 10 - - - 0.010 0.001 0.909

5.6.4 Workloads

We use a 4-layered MLP model and Vgg-16 CNN model on SVHN and CIFAR-

100 datasets, respectively. Table 5.4 details the layer details of the two models and

their computational intensity (operations to byte ratio). The individual layers of

the chosen MLP and CNN models span a wide range of computational intensity

observed across the spectrum of neural network workloads. Thus, our workloads are

well representative of the large variety of layer types found in neural network models

such as fully-connected, 2 D-convolution, point-wise convolution, etc.
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Fig. 5.9. Impact of Slice Bits and CRS Frequency on Accuracy

Similar to other ReRAM training accelerators [81, 82], we use fixed-point arith-

metic which has been shown to be successful for training large DNNs [141]. We use

the CIFAR-100 dataset for CNN which is comparable to the ImageNet dataset in

terms of training difficulty [207, 208]. However, ImageNet’s large image sizes make

it difficult to run the training flow without actual hardware (CIFAR-100 requires 2

days and ImageNet requires 1 month on the simulator).

5.7 Evaluation

5.7.1 Impact of Slice Bits and CRS Frequency on Accuracy

Figure 5.9 shows the impact of the number of bits used per slice (uniform weight

slicing) and CRS frequency for the CNN benchmark. We analyze the percentage of

saturated cells per slice for a lower order and higher order slice, and their implications

on CNN’s Top-5 training accuracy.

Using 3 bits per slice shows significantly higher percentage of saturated cells for

the lower order slice (Slice 0) than other configurations. Further, increasing the CRS

frequency does not reduce the saturation fraction of Slice 0 at 3-bits. Consequently,
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the training accuracy with 3-bits slices remains very low throughout the training

steps.

Using 4 bits per slice performs well at high CRS frequency (CRS every 64 steps),

but does not scale well at lower CRS frequencies. A high CRS frequency is undesirable

due to the high cost of serial reads and writes incurred during carry propagation

between discrete slices.

Slices with 5-bits and 6-bits are robust to repeated weight updates as they ex-

hibit lower saturation for both lower order and higher order slices even at low CRS

frequencies (every 1024 or 4096 steps). Note that the cost of a CRS operation at low

frequency (every 1024 steps) has negligible impact on overall energy and performance

(≤ 4.8%).

Figure 5.9 also motivates heterogeneous weight slicing because it shows that the

higher order slice has significantly lower saturation in general than the lower order

slice.
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Fig. 5.12. Mini-batch SGD Energy (high bars are clipped)

5.7.2 Impact of Heterogeneous Weight Slicing

Figure 5.10 shows the accuracy and energy of sixteen slicing configurations. Gen-

erally speaking, increasing the total number of bits improves accuracy by reducing

saturation, but it also increases energy because it requires higher precision ADCs

for MVM and MTVM. The graph shows that heterogeneous weight slicing enables

favourable accuracy-energy tradeoffs, enabling lower energy at comparable accuracy

or better accuracy at comparable energy. Provisioning ≥ 4 bits for the four higher

order slices (4− 7) and ≥ 5 bits for the four lower order slices (0− 3) ensures desir-

able accuracy. Any configuration using 3 bit slices (irrespective of total bits) leads to

significant accuracy degradation. Note that the configuration used in the rest of the

evaluation (44466555) is not a Pareto-optimal one, so our energy numbers in the rest

of the evaluation are underestimated.
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5.7.3 Variant #1 SGD Energy Comparison

Figure 5.11 compares the layer-wise energy consumption of PANTHER’s Variant

#1 to that of all three baselines for SGD.

Basedigital. Compared to Basedigital, we achieve 7.01×–8.02× reduction in energy.

This advantage is due to the energy efficiency of computing MVM, MTVM, and OPA

in ReRAM.

Basemvm. Compared to Basemvm, we achieve 31.03×–54.21× reductions in energy

for FC layers (Layers 1-4 in MLP and 14-16 in CNN) and 1.47×–31.56× for convo-

lution layers (Layers 1-13), with the later (smaller) convolution layers showing larger

reductions. Recall that Basemvm uses serial reads and writes to perform the OPA

operation with digital logic. While the large convolutional layers can amortize these

reads and writes, the FC layers and small convolutional layers do not have enough

work to do so which is why they suffer relatively. In contrast, PANTHER avoids

these reads and writes by performing OPA in the crossbar (11.37 nJ).

Baseopa/mvm. Baseopa/mvm behaves similarly to Basemvm. Recall that both base-

lines perform serial reads and writes to crossbars for OPA, but Basemvm uses CMOS

VFUs while Baseopa/mvm uses ReRAM MVMs. Since ReRAM MVMs and CMOS

OPAs have comparable energy consumption (35.10 nJ and 37.28 nJ respectively), the

overall energy of the two baselines is similar.

5.7.4 Variant #2 Mini-Batch SGD Energy

Figure 5.12 compares the layer-wise energy consumption of Variant #2 of PAN-

THER to that of all three baselines for Mini-Batch SGD with batch size 64. Compared

to SGD results (Figure 5.11), the key difference is that having multiple batches be-

fore weight updates amortizes the cost of serial reads and writes in Basemvm and

Baseopa/mvm (smaller blue bar). Our energy improvements therefore come mainly

from reducing OPA energy. Energy is reduced by 1.61×–2.16× for fully connected
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Fig. 5.13. Execution Time

layers for Basemvm and Baseopa/mvm. It is reduced by 1.18×–1.63× and 1.22×–2.45×

for convolutional layers for Basemvm and Baseopa/mvm, respectively.

For very large batch sizes such as 1,024 (not shown in the figure), ReRAM writes

can be completely amortized by Basemvm and Baseopa/mvm. In this case, PANTHER

reduces energy by ' 1.18× compared to Basemvm and Baseopa/mvm due to reducing

OPA energy. However, batch sizes preferred by ML practitioners for DNN training

(32, 64) are typically smaller than what is required to amortize the ReRAM memory

access costs because large batch sizes have adverse effects on DNN generalization [209].

5.7.5 Variant #2 Execution Time

Figure 5.13 compares the layer-wise execution time of Variant #2 to all three

baselines for different batch sizes.

Basedigital. Compared to Basedigital, we have consistently lower execution time

due to faster MVM, MTVM, and OPA operations in ReRAM.

Basemvm. For MLPs with small batch sizes, Basemvm significantly suffers because

the ReRAM write latency is not amortized. However, for larger batch sizes and for

CNNs, the ReRAM write latency is amortized. Nevertheless, we still outperform

Basemvm across all batch sizes because of lower latency ReRAM OPA. In fact, our
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advantage grows with batch size because OPA consumes a larger percentage of the

total time for larger batches since the forward and backward passes benefit from

pipeline parallelism whereas OPA operations are serialized at the end.

Baseopa/mvm. Baseopa/mvm behaves similarly to Basemvm for convolutional layers.

5.7.6 Comparing Variants #2 and #3

Increasing the batch size for mini-batch SGD increases Variant #2’s shared mem-

ory requirements for storing all activations and layer gradients in the batch, degrading

its storage density. Variant #3 uses a third crossbar for eagerly computing and storing

weight gradients, thereby keeping shared memory requirements low at the expense of

higher energy to commit the updates to the other crossbars at the end. Figure 5.14

shows that Variant #2 has better storage density and energy efficiency for small

batch sizes, while Variant #3 has better storage density for very large batch sizes at

comparable energy efficiency.

5.7.7 Comparison with GPUs

Figure 5.15 compares the energy consumption and execution time of Variant #2

with a 2080-Ti GPU for SGD (batch size 1) and Mini-Batch SGD (batch sizes 64 and

1k). Our design significantly reduces energy consumption and execution time due to

the use of energy-efficient and highly parallel ReRAM-based matrix operations.
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Fig. 5.15. PANTHER’s speedup and energy-efficiency compared to GPU

GPUs rely on data reuse to hide memory access latency. For this reason, their

relative performance is worse for MLP compared compared to CNN, and for smaller

batch sizes compared to larger ones. Our design enables efficient training for a wide

spectrum of batch sizes (small to large). Training based on small batch sizes is com-

mon in emerging applications such as lifelong learning [210] and online reinforcement

learning [211], where training does not rely on any earlier collected dataset.

5.7.8 Sensistivity to ReRAM endurance

ReRAM devices have finite switching (1 to 0, 0 to 1) endurance of 109 conservative

writes [212,213], which limits their applicability towards on-chip memories for typical

workloads. However, the small magnitude of typical weight updates make ReRAM

feasible for DNN training. Considering a 5% average conductance change per batch,

the lifetime of a chip will be ' 6 years (assuming 50% reduction from failed training

flows), for 1,000 trainings per year where each training is comprised of 100 epochs,

64 batch-size and 1M training examples (typical parameters in state-of-the-art image

recognition benchmarks [214]). While weight slicing makes lower order slices more

prone to degradation arising from limited endurance, adding redundancy at lower

order slices and higher endurance from technology improvements (currently shown in

spintronics [215]) can make the chip more robust.
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5.8 Conclusion

We propose a bit-slicing technique for enhancing the precision of ReRAM-based

OPA operations to achieve sufficient precision for DNN training. We incorporate our

technique into a crossbar architecture that performs high-precision MVM and OPA

operations, and present three variants catered to different training algorithms: SGD,

mini-batch SGD, and mini-batch SGD with large batches. Finally, to evaluate our

design on different layer types and training algorithms, we develop PANTHER, an

ISA-programmable training accelerator with compiler support. Our evaluation shows

that PANTHER achieves up to 8.02×, 54.21×, and 103× energy reductions as well

as 7.16×, 4.02×, and 16× execution time reductions compared to digital accelera-

tors, ReRAM-based accelerators, and GPUs, respectively. The proposed accelerator

explores the feasibility of ReRAM technology for DNN training by mitigating their

serial read and write limitations, and can pave the way for efficient design of future

machine learning systems.
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6. TIMON - GPGPU TENSOR CORE

6.1 Introduction

The pervasiveness of deep learning (DL) in myriad of applications [169, 216] and

their massive computational costs [10, 13] have led to a growing interest in domain-

specific accelerators [10, 43, 144, 217], particularly for inference tasks. Such acceler-

ators are designed to cater to the high latency-sensitivity and energy-efficiency de-

mands for inference [144,218]. Such an approach is also resonated by multiple industry

efforts such as Google TPU [10], Microsoft Brainwave [144], Nvidia Tensor Cores [161]

etc. Further, the growing usage of resource/power constrained edge devices (smart-

phones, wearables) to improve user experience and cater to emerging applications

(augmented/virtual reality) has amplified the need for inference efficiency [218].

DL inference tends to be data-intensive and performs a large number of General

Matrix-Matrix Multiplication (GEMM) operations. As a result, GPGPUs are widely

used for this task given their suitability for data parallelism and dense GEMMs. To

meet the growing demands for efficiency, modern GPGPUs have introduced domain-

specific units namely tensor cores [161, 219]. Tensor cores execute small matrix-

multiplications (two 4× 4 matrices) by buffering operands accessed from register file

and reusing them across several multiply-and-accumulate (MAC) operations. This re-

duces the impact of low (high) register file bandwidth (energy) to enable GEMM exe-

cution with higher efficiency compared to SIMD cores [161]. Tensor cores have contin-

ually evolved with emerging inference trends such as 8-bit, 4-bit, 1-bit GEMMs [161].

Tensor cores consume nearly 62% of the overall runtime in inference (Section 6.3.1),

and therefore are a ripe target for further acceleration. Unfortunately, despite the

data reuse of tensor cores, they operate at nearly 50% of the peak throughput (Sec-

tion 6.3.2), thereby being inherently limited by the lower bandwidth and high energy
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cost of large register files in GPGPUs. The low bandwidth and high energy are

implications of GPGPUs favoring large register file. This enables large number of

active threads, which can help to hide the long latency of data accesses through

multithreading.

Besides runtime limitations in GPGPU tensor cores, they provide limited sup-

port for model-compression techniques such as quantization and sparsity pertinent to

edge inference. Often, leveraging the full potential of model compression results in

irregular quantization [220–222] i.e. different precision across data structures (weight,

activation) within and across layers; and unstructured sparsity [12,103,223]. Existing

tensor cores neither support irregular quantization (for eg. 5 bits, 7 bits etc.), nor

unstructured sparsity. Further, the inherent design of current tensor cores is based on

digital CMOS based computation units accessing the large register file in GPGPUs.

This limits their ability to leverage aggressive quantization and sparsity techniques

(Section 6.3.3).

In this work, we propose TIMON, an in-memory computing based tensor core ar-

chitecture which overcomes the limitations of GPGPU register files to execute dense

GEMMs with high efficiency. Past research have shown in-memory computing can

perform analog dot-product operations within the SRAM array [25,224,225]. Lever-

aging in-memory computing techniques, we develop a novel register file microarchitec-

ture that executes GEMMs within the register file using bit-serial arithmetic, while

preserving the conventional read/write functionality. We show that TIMON’s bit-

serial arithmetic coupled with in-memory GEMMs enables utilizing irregular and in-

dependent bit-precision reductions in activations and weights of DL models to reduce

register file access cost. Further, we develop a hardware-software codesign technique

that translates unstructured sparsity to reductions in peripheral (row and column pe-

ripherals) cost of SRAM sub-banks within the register file. We also present instruction

extensions that expose TIMON to the programming model. Our key contributions

are:
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• Analysis of DL inference, and corresponding sources of inefficiency in GPGPU

tensor cores (Section 6.3).

• Novel tensor core architecture named TIMON built by augmenting the conven-

tional register file to execute on-demand GEMM operations within the mem-

ory itself, and corresponding instruction extensions for programmability (Sec-

tions 6.4, 6.5).

• Flexible and scalable support for model compression techniques used in emerg-

ing DL inference, namely irregular quantization and unstructured sparsity (Sec-

tion 6.6).

6.2 Background

The key insight that motivates TIMON is the potential opportunity from in-

memory computing based circuits to perform dot-product operations (fixed-point

arithmetic) in the SRAM array itelf by activating multiple word-lines (K) in parallel.

A typical register file access (read/write) activates only one word-line. Subsequently,

the in-memory approach can potentially (i) reduce the number of serial accesses to

register file (read/write), and (ii) improve the bandwidth by K× (upper bound).

Thanks to the fixed-point arithmetic needs in inference (contrary to floating-point

arithmetic in training), a potential in-memory tensor core can lead to significant

performance and energy gains for inference.

6.2.1 Background on In-Memory Computing

In-memory computing has been widely explored at the circuits-level [24, 25, 226,

227] with the motivation of bringing computations closer to memory, thereby over-

come memory bandwidth/energy issues. In a typical in-memory primitive (or cir-

cuit), multiple word-lines (WLDAC) are activated simultaneously by applying volt-

ages (analog input) as shown in Figure 6.1. Typically, such primitives can operate
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Fig. 6.1. Illustration of in-memory computing primitive.

in two modes: i) current based, or ii) charge based. Based on the voltage applied on

WLDACs and the stored value in the memory cell (M ), different amount of charge or

current is accumulated on the bit-lines (analog output). The accumulated charge or

current is sensed by a sense amplifier circuit. These primitives are particularly useful

for dot-product computations, where an input vector X is applied on WLDACs and

memory cells store the elements of matrix Y . The accumulated charge/current on

bit-lines (BL) represent output vector Z.

Feasiblity: For CMOS technology, several kinds of in-memory computing prim-

itives [24, 226, 227] have been demonstrated over the past few years, including im-

plementations from industry such as TSMC [225] at scaled technology nodes (7nm).

They have achieved high throughput and energy efficiency compared to digital CMOS

units such as SIMD cores in GPGPU. Although most in-memory primitives have been

explored in the analog computing domain, initial works had also explored performing

digital operations [228–230]. Besides CMOS, in-memory primitives based on emerging

technologies have also been demonstrated [231–233].

This work focuses on CMOS in-memory primitives that perform analog computa-

tions. We show that in-memory primitives performing digital operations (as explored
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in [234, 235]) do not offer benefits over digital CMOS units for tensor core feature

(Section 6.7.4). Emerging technology based primitives suffer from endurance, high

write cost issues, thereby are not amenable for register file since they are written

frequently.

6.3 GPGPU Characterization

In this section, we analyze the GEMM kernel’s execution characteristics on GPGPU

with tensor cores for modern deep learning applications. Subsequently, we discuss the

corresponding inefficiency of existing tensor cores.

6.3.1 Workload Characterization

Runtime distribution of compute operations: Figure 6.2 shows the runtime

distribution of different operations in inference of Transformer [236] and ResNet-

18 [237] models on Nvidia RTX 2080 Ti GPU [161]. It can be observed that the

compute operations running on the tensor cores namely convolution (conv2d) and

matrix multiplication (matmul) constitute about 62% of the overall runtime. Thus,

tensor core operations are key compute primitives to accelerate in hard-

ware in order to improve the inference efficiency.

Quantization in GEMMs: Deep learning applications have extensively lever-

aged quantization of weights and activations to improve the inference efficiency on

edge devices. This is because quantization reduces the memory bandwidth and com-

pute requirements, while preserving the classification accuracy [220,221,237,238]. The

observed optimal quantization requirements (bit-widths) of weights and activations

are highly irregular i.e. lie in a wide range of 1-16 bits, as well as varies across differ-

ent layers of a model [220], different models [100], and datasets [238]. Thus, tensor

cores need flexibility to support irregular quantization and scalability to

efficiently trade-off energy and performance with bit-width.
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Fig. 6.2. Runtime distribution of tensor core operations (tensorop) com-
pared to other compute operations in RTX 2080 Ti for (a) Transformer,
and (b) ResNet-18.

Sparsity in GEMMs: Deep learning applications also leverage weight pruning

techniques to obtain sparse models in order to reduce the memory and compute re-

quirements, while retaining accuracy. Past research have shown models with upto 90%

weight sparsity [103]. Activation sparsity is inherently present owing to the ReLU,

dropout, and batch normalization layers. The commonly observed sparsity (weight

and activation) in deep learning applications is of unstructured nature [223]. Thus,

tensor cores need flexibility to leverage the irregular sparsity patterns in

weights and activations.

6.3.2 Inefficiency of GPU Tensor Cores

Background: Tensor cores are domain-specific units for matrix multiplication

in Nvidia GPUs that provide 8× higher peak throughput than the SIMD cores [161].

We found that the two key aspects associated with tensor core that lead to higher

throughput are data reuse enabled by a) CUDA WMMA (Warp Matrix Multiply and

Accumulate) API, and b) corresponding machine-level instruction - HMMA. The data

reuse from WMMA and HMMA overcome the shared memory bandwidth (64B/clock

per sub-core), and register file bandwidth (128B/clock) limitations respectively. Sub-

sequently, a high performance GEMM routine (C = A ∗ B) using tensor cores such
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as Nvidia CUTLASS [239] leverages a 3-level tiling to overcome memory limitations

from 1) global memory, 2) shared memory, and 3) register file.

Tensor Core Roofline: Figure 6.3 shows the roofline for SIMD core (extrap-

olated for FP16) and tensor core in Nvidia GPU, where the ridge point for tensor

core is 4 Ops/Byte1. Subsequently, the HMMA throughput for pure FP16 mode was

measured for V100 and RTX 2080 Ti GPUs using clock() function on a WMMA-

based micro-benchmark. The micro-benchmark was compiled with CUDA Toolkit

10.1 with gpu-architecture flag being sm 70 (Titan V) and sm 75 (RTX 2080 Ti).

We found that tensor cores in both Volta and Turing architectures are memory-bound

by the register file, thereby operating at about half of the peak hardware throughput

of 256 ops/clock. The measured throughputs closely match the theoretical estima-

tions based on HMMA’s data reuse. In the subsequent discussions, we will refer to a

matrix multiply and accumulate operation of form DM×N = AM×K ∗BK×N + CM×N

as GEMM shaped M ×N ×K. On Volta architecture, a WMMA instruction (PTX

level) computes a GEMM shaped 16× 16× 16, and consists of 8 HMMA instructions

(shown in disassembled SAAS instructions). Further, each HMMA instruction com-

1Volta HMMA with operation intensity of 2 Ops/Byte, runs at half of peak throughput.
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putes a GEMM shaped 8 × 8 × 4 and has one of the following instruction formats

with data reuse of 1.33 and 2 respectively (shown in Table 6.1):

• HMMA.884.F16.F16 RD,RA,RB,RC

• HMMA.884.F16.F16 RD,RA.reuse,RB.reuse,RC

Here, reuse signifies operand forwarding between subsequent HMMA instructions

to reduce register file accesses [240]. On Turing architecture, a WMMA instruction

can compute one of these GEMM shapes - 16 × 16 × 16 (A), 32 × 8 × 16 (B), or

8×32×16 (C) with each consisting of 4 HMMA instructions (shown in disassembled

SAAS instructions). Further, each HMMA instruction computes a GEMM shaped

16 × 8 × 8 with the following instruction format and data reuse of 2.28 (shown in

Table 6.1):

• HMMA.1688.F16 RD,RA,RB,RC

Thus, our analysis (measurements and theoretical) concludes that dig-

tal CMOS based tensor cores in current GPGPU are memory-bound by

the register file. While further improvement in such tensor cores may be obtained

by increasing the HMMA shapes, this comes at the cost of increased buffer require-

ments (and area), thereby limiting its applicability for edge. It is worth noting that

reaching the peak throughput with digital CMOS design would require HMMA shape

≥ 16 × 16 × 16, which is similar to register file requirement per WMMA at which

point it defeats the purpose of reusing register file accesses by using smaller buffers.

Quantization support: Tensor core in current GPGPUs support 16 bit, 8 bit,

4 bit, and 1 bit quantizations [161], where throughput increases nearly linearly with

quantization. The linear increase is an outcome of linear decrease in memory band-

width requirements with quantization. Furthermore, both weight and activations are

required to have same quantization. Thus, quantization support in GPGPU

tensor cores is restrictive in terms of 1) allowable bit-precisions, and 2)

independent weight and activation bit-precision optimizations.
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Table 6.1.
HMMA data reuse and resulting WMMA cycles. Ops = 2×M ×N ×K,
Bytes = 2× (2×M ×N +M ×K +N ×K).

HMMA Type #Ops #Bytes
Data

Reuse

Cycles

(theoretical)

Cycles

(measured)

884 w/o reuse 512 384 1.33 96
64

884 w reuse 512 256 2.0 64

1688 - A 2048 896 2.28 56 59

1688 - B 2048 896 2.28 56 56

1688 - C 2048 896 2.28 56 54
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Fig. 6.4. Efficiency of sparse GEMMs on GPGPUs

Sparsity support: GPUs support sparse GEMMs (one sparse and one dense

matrix) using NVIDIA cuSPARSE libraries which run on SIMD cores. Currently,

tensor cores do not support unstructured sparse GEMMs. We analyzed the impact of

unstructured sparsity on GEMM runtime on GPGPUs with 50%, 75%, and 88% spar-

sity in one of the matrix. It can be observed from Figure 6.4 that sparse GEMMs run

at significantly lower efficiency compared to equivalent shaped dense GEMMs. Thus,

sparsity support in current GPGPUs is not efficient towards leveraging

unstructured sparsity for hardware efficiency improvements.
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Fig. 6.5. Abstract view of TIMON’s compute unit

6.3.3 Summary

GPGPU tensor cores suffer from inefficiencies in multiple scenarios owing to their

digital CMOS design due to three key factors: a) register file bottleneck, b) limited

support for quantization, and b) conflicting design requirements for dense and sparse

GEMMs. First, low register file bandwidth limits the sustained throughput of tensor

cores even in presence of data reuse in HMMA instruction. Second, irregular quanti-

zation resulting from a) irregular bit-widths (3, 5, 6, etc.), or b) different bit-widths

of weights and activations do not inherently translate to reduction in bandwidth

requirement. While compiler optimization such as register packing [159], and coa-

lescing [160] can be used, such reductions with quantization is linear at best. Third,

dense GEMMs favor large tiles (in HMMA) for data reuse, but sparse GEMMs favor

small tiles for fine-grained skipping of computation. Note that while digital CMOS

tensor core can be redesigned as bit-serial unit [145, 146], its performance gain will

still be limited by register file bandwidth.
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Figure 6.5 shows an abstract view of TIMON’s compute unit which will be pre-

sented in detail in Section 6.4.

6.4 TIMON Architecture

In contrast to existing tensor core, TIMON uses bit-serial and in-memory comput-

ing in register file to execute GEMMs, and overcomes bandwidth/energy limitations

(Figure 6.3) along with flexible support for irregular quantization and unstructured

sparsity. We first discuss the baseline tensor core architecture in Nvidia GPU. Then,

we go through the design aspects of in-memory tensor core. Subsequently, we present

the modified register file architecture (TIMON ).

6.4.1 Baseline Tensor Core Architecture (Turing GPU)

Figure 6.6 shows a Nvidia GPGPU sub-core which consists of an instruction cache,

a warp scheduler, a dispatch unit connected to 4 SIMD datapaths, 2 tensor cores

(4 × 4 × 4 tensor/clk), a queue for memory instructions (MIO queue), and 64KB

register file. Four sub-cores connected to L1 instruction cache, data cache and shared

memory compose a streaming multiprocessor (SM). A typical WMMA API that exe-

cutes GEMM on tensor cores consists of 3 steps a) loading the data from shared mem-

ory to register file (load matrix sync), b) computation in tensor cores (mma sync),

and b) storing the data from register file to shared memory (store matrix sync). Sub-

sequently, a warp’s mma sync runs concurrently on both tensor cores leading to a

peak throughput of 128 tensor/clk or 2 GEMMs of shape 4× 4× 4 per clk [240].

6.4.2 TIMON Dataflow

Figure 6.7 (a) shows the overview of GPGPU register file with enhancements for

TIMON. TIMON re-purposes the register file to enable on-demand tensor core in ad-

dition to regular operand access (read/write) by augmenting the sub-bank with row
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Fig. 6.6. Nvidia GPGPU Sub-Core [241] enhanced with TIMON (dark
green). tensor consists of 2 ops - multiply, add.

and column peripherals as shown in Figure 6.7 (c). A regular register file read/write

accesses an entry across all 8 sub-banks of a bank and follows the conventional datap-

ath within a sub-bank: row decoder, SRAM access, sense amplifier. Next, we discuss

the mapping, and execution of tensor computation which depend on three parameters

(i) in-memory cell (IMC) bits, (ii) dac bits, and (iii) dot product (DP) width.

GEMM Mapping:

We illustrate the mapping using a GEMM shaped 1 × 64 × 4 on the example

configuration shown in Figure 6.7 (b)). The mapping is determined by (i) in-memory

cell (IMC) bits, (ii) dac bits, and (iii) dot product (DP) width. In this illustration,

we consider identical activation and dac bits; and identical weight and IMC bits for

simplicity. As shown in Figure 6.7 (c), the multiplier B4×64 which remains stationary

during execution is mapped to the SRAM array, while the multiplicand A1×4 is kept

streaming and is stored in the row peripheral. A row of B is mapped spatially across

all IMCs or slices in a row (here 64 IMCs ranging from BL 1 - BL 128). Multiple
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rows are mapped on adjacent word lines (here 4 ranging from WL 1 - WL 4). A

row of A (here 4) is temporally mapped to the corresponding wordlines over multiple

time-steps or streams (here 1). Subsequently, rows of A are processed one at a time.

Figure 6.7 (d) shows the stationary and streaming data mapping within a SRAM cell.

A storage cell consists of 1 bit, and multiple SRAM cells comprise an IMC (here 2),

thereby leading to a single slice of stationary data. The DAC bits (here 2) worth of

streaming data is applied (after conversion to analog voltage) to the RWL in read
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path. Figure 6.7 (e) extends the mapping for generic bit-widths of stationary data (>

slice width) and streaming data (> stream width) using shift and add logic commonly

referred as bit-serial arithmetic [23,234].

Tensor Core Execution:

A TMMA instruction (discussed in Section 6.5) executes a GEMM m×n×k on a

register file bank. The execution consists of 3 steps (i) load the streaming matrix from

bank to input register (IR) in row peripheral, (ii) in-memory compute within bank,

and (iii) store the output matrix from output register (OR) in column peripheral to

bank. While load (to IR) and store (from OR) use conventional read/write datapath

for the register file, in-memory compute uses the new datapath. The in-memory

compute datapath performs tensor computations in hybrid digital-analog domain

and is logically partitioned into 3 stages for each stream (i) analog vector generation

- row decoder (RD), row peripheral, (ii) analog computation - SRAM, scale and

reduce unit (SRU), and (iii) digital vector generation - column peripheral. DP width

specifies the number of concurrently activated during in-memory compute. Here, we

assume identical k and DP width for simplicity. The operations performed in each

stage are:

1. As shown in Figure 6.7 (f), a digital stream comprised of k elements is read from

IR, and is expanded to analog vector consisting of 128 elements using steer logic

and digital-to-analog converter (DAC) array. The row decoder output specifies

the k rows corresponding to the stationary matrix and ensures their selective

activation (other rows see 0 V).

2. Each SRAM cell on a BL computes an analog multiplication (DAC bits×1 bit)

followed by their analog reduction on the BL to yield a k-element dot product

per BL (single cycle). The BLs corresponding to an IMC are scaled and reduced

(analog) to obtain n dot-products. For example: out(IMC1) = 1×BL1 + 2×

BL2 (shown in Figure 6.7 (g)).
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3. As shown in Figure 6.7 (g), the analog-to-digital converter (ADC) produces n

digital outputs, which are subsequently stored in OR after shift and add logic.

6.4.3 TIMON Microarchitecture

The previous section illustrates that TIMON can increase the register file band-

width (upper bound DP Width×) by activating multiple WLs in parallel within the

SRAM array. However, the parallelism comes at a cost of significant increase in la-

tency from row and column peripherals leading to longer critical path: IR → OR

shown in Figure 6.7 (h). Even with the pipelined execution of streams (as illustrated

in Figure 6.7 (h)), TIMON’s latency can be significantly higher compared to a con-

ventional register file access (single cycle). This is due to (i) higher cycle time from

shared ADC to amortize the ADC area, and (ii) multiple cycles due to bit-serial

processing of streams. Further, the row and column peripherals expend significantly

higher energy in analog↔digital conversions compared to the conventional register

file access. Thus, designing an in-memory tensor core involves (i) balancing the la-

tency and parallelism to truly overcome bandwidth limitations, and (ii) amortizing the

peripheral overheads for energy-efficiency.

Sub-bank:

Sub-bank is the key component that affects TIMON’s dataflow and thereby its

throughput and energy (Section 6.4.2). In-memory tensor core design possesses inter-

dependent layers of complexity, namely, dot-product width, and input/weight data

mapping. Hence, we explore the impact of different hardware parameters that affect

sub-bank efficiency to understand their isolated impacts and interdependence.

Specification: The sub-bank (128 WL/BL) microarchitecture can be completely

specified by 3 parameters d − t − l where d, t, and l refer to DP, stream, and slice

widths. For example, within a computation step (or per stream) TIMON (i) converts

a digital stream of d elements (t bits each) to analog vector with 128 elements (ii)
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activates d WLs, 128 BLs, and scale-reduces groups of l BL outputs to generate 128/l

analog dot-products, and (iii) converts 128/l dot-products to digital outputs using

log2d+ t× l resolution ADC.

Modelling: As the objective of this work is not focused on circuit techniques, we

leverage the in-memory primitive (DAC, SRAM, SRU) from Jaiswal et al. [25] and

obtained circuit-level measurements from HSPICE. We obtain the ADC trendlines

(Figure 6.8) for energy, and latency (at constant area) per conversion using top-5 data

points at each resolution (4−12 bits) from the widely used survey [185] that comprises

of > 500 ADC designs published over the past 30 years. The digital components are

modelled at RTL level (Section 6.7).

Impact of DP width: Figure 6.9 shows TIMON’s energy/MAC and energy

distribution with varying DP width while keeping stream and slice widths constant

(= 1). It is evident that the energy/MAC is heavily dominated by column peripherals

at lower DP widths, with ADC being the top contributor. Upon doubling the DP

width the number of SRAM rows activated (or MACs) increase by 2× (linearly),

which leads to 1 bit increase in ADC resolution. The impact on row and column

peripheral (except ADC) remains nearly unchanged since they primarily depend on

stream and slice widths respectively for a fixed sub-bank dimensions (#WL and

#BL). As shown in Figure 6.8, the ADC energy increase with resolution is nearly
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quadratic at lower resolutions (≤ 8), and subsequently exponential. Hence, higher

DP widths are effective towards amortizing the high energy consumption of column

peripherals thereby improving energy/MAC.

Figure 6.9 also shows latency/MAC with varying DP widths, with stream and

slice widths kept constant (= 1). As shown in Figure 6.7 (h), TIMON’s datapath is

a 4-stage pipeline. Despite pipelining, the stage latency is significantly higher than

a register file access latency owing to the ADC conversion being bottleneck. This is

due to the shared ADC design necessitated by high area-cost of ADCs. For example,

the area cost of a eight typical 8-bit ADCs is comparable to an entire 2KB SRAM

(Section 6.7). Subsequently, a shared ADC is time-multiplexed across multiple analog

dot-products to compute digital outputs. The latency per input vector in IR can be

expressed as (#streams+ 3)× (#slices/#ADC)× adc latency. Alike ADC energy,

ADC latency shows a quadratic growth at lower resolutions, and exponential growth

subsequently (Figure 6.8). Consequently, higher DP widths are effective towards

amortizing the high latency from shared ADC thereby improving latency/MAC.
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Impact of Stream and Slice Widths: Figure 6.10 shows the individual im-

pact of stream and slice widths on TIMON’s energy/MAC (with distribution) and

latency/MAC. It is evident that an increase in either stream or slice width makes the

energy/MAC as well as latency/MAC worse. Increasing either the stream width or

slice width leads to a linear reduction in the number of time steps required per input

vector computation. However, at a constant DP width it also results in a commen-

surate increase in the ADC resolution thereby leading to quadratic (or exponential)

increase in ADC energy and ADC latency, which eventually outweighs the impact of

reduction in time steps. Thus, lower stream and slice widths are favorable for both

optimal energy and throughput.

6.4.4 TIMON Register Mapping

A baseline register file in GPGPU interleaves the register mapping across banks

to minimize bank-conflicts across warps. However, such register mapping is not

amenable to TIMON. As discussed in Section 6.4.2, the stationary matrix (Kt ×Nt)

is mapped on the register file such that the matrix columns are bit-aligned (same
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BL) in order to leverage in-memory computing. Thus, while TIMON overcomes the

bandwidth limitation of register file, it imposes strict constraint on register mapping.

We enable the bit-alignment by (i) ensuring bank-conflicts within a warp, and (ii)

mapping different matrix rows on different warp registers as shown in Figure 6.11.

This may seem counter intuitive from the perspective of incurring more bank-conflicts

for non tensor operations. Since the operand collector can only read one register per

cycle, there is no loss in performance compared to the baseline where registers for a

warp instruction reside in different banks. Note that operand collector based register

file are common in GPGPUs [242]. Further, the new mapping has the same probability

of bank-conflicts across warps (1/#Bank) compared to the baseline on an average

basis, but it may increase the occurrence of corner cases. For instance, two warps

mapped to the same bank will always conflict if scheduled simultaneously. However,

we do not observe such corner cases across our benchmarks. Note that such bank-

conflict based register mapping have also been leveraged in past research for register

file optimizations such as register packing, register coalescing etc. [159,160].

6.5 TIMON Instruction Extension

SASS Extension: The in-memory datapath is exposed to the programming

model (WMMA) by extending the tensor core instruction set with TIMON MMA

(TMMA) instruction which performs 16-bit multiplication and 32-bit accumulation.

Alike Nvidia GPU’s HMMA instruction, TMMA is specified by the shape of the

corresponding GEMM it executes - Mt × Nt × Kt. However, while HMMA shape
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optimizes register file reuse, TMMA shape optimizes register utilization, and adc

reuse.

Mt: As discussed in Section 6.4.2, TIMON executes a GEMM as a sequence

of matrix vector multiplication, where the row vectors of the streaming matrix are

processed sequentially. Thus, we choose Mt = 1 without loss of generality.

Nt: Each row of the stationary matrix (Nt × 16 bits) is stored per warp register

(1024 bits), thereby Nt = 64 ensures efficient register utilization. However, a higher

value of Mt or Nt increases the register requirements per warp, and may lead to lower

warp occupancy. In order to reduce Nt, we partition the Kt × Nt stationary matrix

into s chunks each of dimensions Kt/s × Nt with a row across all chunks stored

per warp register. Each chunk computes an independent Kt/s-element analog dot

product, which are reduced by SRU (no scaling) before the ADC conversion. This

ensures the same ADC resolution (t ∗ l ∗ log2d) and efficient register utilization, but

increases the latency of Stage 1 in the TIMON pipeline (Figure 6.7 (h)) by a factor

of s. However, this does not impact the pipeline latency at lower values of s ≤ 8,

owing to the latency bottleneck from shared ADC. We choose s = 4 as 4-wide SRUs

are commonly demonstrated in in-memory circuits [25, 225], which leads to Nt = 16.

Note that chunking can lead to increase in energy/MAC from row peripheral (chunks

map across BLs), however the increase is insignificant at higher DP widths which is

the common case.

Kt: Kt represents DP width and higher DP widths achieve higher GEMM effi-

ciency. Hence, we choose Kt=32, 64, and 128 which outperform digital CMOS tensor

core’s efficiency (discussed in Section 6.7.3). DP widths ≥ 256 are not realizable due

to electromigration limits of CMOS technology [25].

Thus, TIMON has the following architectural variants (F32 denotes 32-bit accu-

mulation):

• K32:TMMA.1.16.32.F32 RD,RA,RB,RC

• K64:TMMA.1.16.64.F32 RD,RA,RB,RC
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• K128:TMMA.1.16.128.F32 RD,RA,RB,RC

PTX Extension: The CUDA programming model uses WMMA API to expose

tensor cores which is specified by the shape of the corresponding GEMM it executes

- Mw × Nw × Kw. WMMA shape optimizes for shared memory reuse. To optimize

TIMON’s WMMA shape for shared memory reuse, we analyze the roofline model

of the new datapath with respect to the shared memory bandwidth (Figure 6.12).

We choose Nw = Nt and Kw = Kt for simplicity since it preserves the efficient

register utilization enabled at TMMA. Subsequently, we optimize Mw to overcome

the shared memory bandwidth limitations. It can be seen that the WMMA shapes

shapes 8× 16× 32, 8× 16× 64, and 16× 16× 128 enable operating TIMON at peak

throughput for the three architectural variants K32, K64, K128 respectively.

Warp Occupancy: In general, GPGPUs prefer high warp occupancy, which

enables efficient multithreading to hide the latency of data access. However, TIMON’s

WMMA shapes have 1×, 1.5×, 2× higher register requirements (registers/thread)

compared to WMMA shapes for baseline tensor core. Thus, improving TIMON’s

efficiency by increasing Kt or DP width comes at the cost of an increase in the register

requirement, which may adversely affect warp occupancy.

We observe that TIMON’s higher register requirement does not degrade per-

formance. Typical GEMM kernels used in DL require large shared memory tiles
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(32× 128× 128, 64× 16× 128) to improve runtime (shown in Figure 6.13). A large

tile overcomes the global memory bottleneck to utilize the high throughput of tensor

cores, but requires larger shared memory per thread block. As a result, the warp

occupancy are low and remain limited by the shared memory requirement, thereby

largely unaffected by register requirement.

6.6 Supporting Model Compression

Model compression techniques namely quantization and sparsity reduce bit-widths

and parameters respectively. This can potentially lower memory (footprint, band-

width) and compute needs, thereby save resources, energy, and runtime. Thus, sup-

porting model compression techniques are particularly important for edge. TIMON

supports irregular quantization and unstructured sparsity which are widely used in

DL algorithms.

6.6.1 Irregular Quantization

A reduction in the bit-widths of activation and weight may lead to reduction in

the number of streams (ceil( act width
stream width

)) and slices (ceil( wt width
slice width

)) respectively per

TMMA instruction. This enables independent optimizations to activation and weight



122

Sparsity 

Controller

Register

Nt × 3 bits Shared ADC

SRU

Resolution

Scale*

*Scale is used for reducing reference voltage based 

on dynamic range.

1 1
1 1
1 1
1 1
1 1
0 0
0 0
0 0

1 1
1 1
1 1
0 0
0 0
0 0
0 0
0 0

1 1
1 1
1 1
1 1
1 0
0 0
0 0
0 0

1 1
1 1
1 0
0 0
0 0
0 0
0 0
0 0

n n n n n n-1 n-1 n-2

Baseline resolution

n n n-1 n-1

Resolution with 

tunable ADC
Resolution with tunable 

ADC + outlier rejection

(a) (b)

(c)

1/0 represents non-

zero/zero.

Fig. 6.14. (a) TIMON’s column peripheral with sparsity controller.
(b) Illustration of outlier rejection technique. (c) Impact of TIMON’s
hardware-software codesign on ADC resolution.

bit-widths. Further, low stream/slice widths are effective in translating bit-width

reductions to commensurate stream/slice reductions. Thanks to low stream/slice

widths leading to efficient TIMON configurations (Section 6.4.3), optimality is simul-

taneously achieved for efficiency and flexible support for irregular quantization. Thus,

TIMON’s bit-serial aspect seamlessly (without datapath change) translates bit-width

reduction to latency saving, and thereby energy saving.

6.6.2 Unstructured Sparsity

A higher count of zero values in a column of the stationary matrix reduces the

dynamic range of column’s analog dot-product commensurately: 0 − nz × d × 2t×l,

where nz is the fraction of non-zero values. For example, 50% and 75% sparsity lead

to dynamic range reductions of 1/2, and 1/4 respectively. A lower dynamic range of

analog dot-product can reduce the effective bit-width of digital output (MSBs being

0), thereby be leveraged to lower the ADC resolution. Since TIMON’s pipeline latency

is limited by ADC latency, and energy is dominated by ADC energy, reduction in

resolution can lead to significant latency, and energy savings. We propose a hardware-
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Role of threshold (th) in outlier rejection

Density Sparsity = 1 - Density

1 0

1/2 0.5

1/4 0.75

1/8 0.875

And so on.

Density to Sparsity reference.

Fig. 6.15. Illustration of outlier rejection methodology.

software codesign to leverage sparsity by using (i) tunable ADC, and (ii) outlier

rejection.

Tunable ADC: Typical successive approximation register (SAR) based ADCs

implement a binary search with n iterations to resolve the n output bits. Past research

have adapted SAR-ADC design to perform conversions at varying resolutions by

changing the reference voltage and subsequently terminating the search algorithm

early (n− 1 iterations for n− 1 resolution) [243,244]. This leads to linear reduction

in ADC latency, and thereby ADC energy with resolution. We adopt tunable ADC

approach in TIMON as shown in Figure 6.14 (a). The modified column peripheral

consists of a sparsity controller, which stores a 3-bit value per column of the stationary

matrix to encode 8 sparsity levels (50%, 75%, 87.5% and so on). At runtime, the

sparsity value controls the resolution and reference voltage of shared ADC depending

on the column being processed. The sparsity controller is initialized (Nt × 3 bits)

by the WMMA API before TMMA instructions’ execution, and doesn’t add to the

TMMA’s latency. Note that the sparsity values can be precomputed if the weight

matrix is kept stationary (and activation matrix kept streaming) since weights remain

constant in inference, thereby not resulting in overhead for computing sparsity values

at runtime.
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Outlier Rejection: We observed that typical unstructured pruning algorithms

namely global [245], layer-wise magnitude [103] based pruning can lead to wide vari-

ations in sparsity across columns of the weight matrix. For example, Figure 6.14

(b) shows a toy example of 50% sparse matrix where the column sparsity varies from

38%−62%. As a result, even with tunable ADC, a 50% sparse matrix does not trans-

late to ADC resolution reduction of all columns by 1 bit. This wastes ADC’s dynamic

range, which is an expensive component in TIMON. To address this, we augment un-

structured pruning algorithms with a simple outlier rejection technique as illustrated

in Figure 6.14 (b). Here, depending on a threshold and column’s sparsity some lower

magnitude weights (outliers) are pruned to further increase column sparsity if it im-

proves utilization of ADC’s dynamic range. As shown in Figure 6.14 (c), outlier

rejection complements the benefits from tunable ADC. The detailed methodology is

illustrated in Figure 6.15.

6.7 Evaluation Methodology and Results

6.7.1 Methodology

Tensor Core: For the baseline tensor core, we adapt the proposed microarchi-

tecture by Raihan et al. [162, 240] for Turing [161] (128 MAC, 4.6 KB buffer per

sub-core) and implement in RTL, synthesize at IBM 45nm SOI technology node, and

evaluate the area, and energy using Synopsys Design Compiler. Timing was measured

from RTX 2080 Ti GPU as discussed in Section 6.3.2. To incorporate the benefits of

quantization, we use the bit-serial multiplier from BISMO [146].

For TIMON (at 45nm), we use the in-memory circuit (DAC, SRAM, SRU) from

Jaiswal et al. [25] to obtain area, and perform circuit simulations to measure energy,

and timing using HSPICE. ADC is modelled using the widely used survey by Mur-

mann et al. [185] (Section 6.4.3). The digital components are implemented in RTL

as in the baseline tensor core.
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Table 6.2.
GEMM benchmarks.

Benchmarks Application Shapes

M N K

GNMT-1 Machine

Translation

128 2048 4096

GNMT-1 320 3072 4096

Transformer-1 Language

Understanding

84 8457 2560

Transformer-2 31999 1034 2560

DeepBench-1 Speech

Recognition

2560 64 2560

DeepBench-2 1760 128 1760

W/H R/S C/K

Conv2d-1

Image

Classification

14/14 3/3 256/512

Conv2d-2 7/7 3/3 512/512

ConvPoint-1 14/14 1/1 256/512

ConvPoint-2 7/7 1/1 512/1024

For TIMON configurations, we use stream/slice widths = 1 as it achieves highest

efficiency in terms of energy/MAC, latency/MAC (Section 6.4.3), and quantization

(Section 6.6). We use 32 shared ADCs which leads to 33.2% increase in register file

banks’ area (4 banks). We partition TMMA’s operation into 4 chunks as described

in Section 6.5. Alike Turing, we execute TMMA instructions one warp at a time.

Thus, for TMMA with 4 chunks, 1024 BLs are shared across 32 ADCs which leads to

TIMON pipeline’s stage latencies: Stage0/Stage1 being #chunk = 4 cycles, Stage2

being #BL/#ADC/#chunk = 8 cycles, and Stage 3 being #chunk = 4 cycles. Note

that Stage2 (ADC) latency is 2× higher than other stages.

Performance Model: We add the timing parameters for TIMON K32/64/128

configurations and the corresponding instructions in GPGPU-Sim simulator [240,246,

247]. We extend the WMMA API to support the new shapes. We use the simulator

configuration for RTX 2080 Ti which has 68 SMs each with 4 sub-cores, 8 Tensor

Cores, 256 KB register file [161].

Function Model: We develop a PyTorch [248] based function simulator to an-

alyze the impact of TIMON’s circuit non-idealities on inference accuracy. Here, the
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Fig. 6.16. (a) Comparison of GPGPU runtimes with different TIMON
configurations normalized to GPGPU with Turing tensor cores. (b) Run-
time distribution of WMMA API between Load, Compute, Store for seven
instances in Conv2d-2 benchmark on Turing tensor cores and TIMON con-
figurations. (c) Average runtime distribution on seven instances.

forward functions in conv2d, linear modules execute GEMM execution using TMMA’s

shapes. A TMMA execution uses the circuit-level model extracted from HSPICE [93].

DL Inference Benchmarks: We evaluate 10 benchmarks obtained from Trans-

former [236], GNMT [249], ResNet18 [237], DeepBench [250], and MobileNetV2 [251]

to cover wide range of GEMM shapes (shown in Table 6.2).

6.7.2 GPGPU performance analysis

Figure 6.16 (a) shows the runtime of the basline GPGPU architecture with differ-

ent TIMON configurations normalized to Turing tensor cores. K32, K64, and K128

refer to TIMON configurations with dot product widths 32, 64, and 128 respectively,

and corresponding TMMA shapes discussed in Section 6.5. K128-M8 and K128-M16

refer to TIMON’s K128 hardware configuration used with WMMA shapes 8×16×128,

and 16× 16× 128 respectively (refer Figure 6.12).

K32 and K64: It can be seen that K32 and K64 achieve significant runtime im-

provements of upto 9.7%, and 17.5% respectively. K64 achieves higher benefits than

K32 since increasing the DP width improves TIMON’s performance (latency/MAC)

as discussed in Section 6.4.3. Further, the reason for tensor core’s performance

improvements translating to overall runtime improvements can be observed in Fig-
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ure 6.16 (b), which shows the runtime distribution of seven different WMMA API

instances (load, store and compute) within the Conv2d-2 benchmark. Figure 6.16 (c)

averages this distribution for ease of visualization. For the baseline tensor core (Tur-

ing), on an average the runtime for tensor computations is nearly 3× higher compared

to loading data from shared memory to register file. Consequently, the improved ten-

sor core throughput in K32 and K64 helps to reduce the runtime of WMMA API,

thereby reducing the overall GEMM runtime.

K128: Figure 6.16 shows that further benefits in TIMON’s throughput from K64

to K128-M8 leads to minimal (nearly 1%) improvement in GEMM runtime. Despite

the higher peak throughput, K128-M8 is memory bound by the shared memory as

shown in Figure 6.12. As a result, it operates at lower sustained throughput, thereby

leading to rather small runtime benefits. This emphasizes the importance of op-

timizing the WMMA shapes towards utilizing the increased throughput offered by

TIMON. Interestingly, even with optimized WMMA shape for K128 (K128-M16) the

performance improvement over K64 is minimal. This is because increasing the tensor
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core throughput is eventually limited by the global memory bandwidth, for a given

shared memory tile size.

6.7.3 Tensor core analysis - TIMON versus Turning

Figure 6.17 (a) shows that TIMON’s improvements over Turing increases from

0.55× - 3.09×, and 0.85× - 3.91× for speedup and dynamic energy respectively, when

DP width goes from 4 - 128. This is because higher DP widths effectively amortize the

cost of row and column peripherals in TIMON, which leads to high energy efficiency

(energy/MAC) and latency (latency/MAC) (Section 6.4.3. This emphasizes that at

lower DP widths, in-memory computing performs worse compared to digital CMOS,

and thereby is not suitable for vector operations such as addition, or multiplication.

6.7.4 Model Compression on TIMON

Quantization: Figure 6.17 (b) shows TIMON’s speedup and dynamic energy

compared to Turing for different bit-widths of activation and weight. As discussed in

Section 6.6, reduction in activation/weight bits leads to a commensurate reduction in

#streams/#slices, which results in nearly quadratic reduction in TIMON’s latency,

and energy. As shown in Figure 6.17 (c), Turing’s dynamic energy is dominated by

memory components (register file, buffer). A reduction in bits leads to at most linear

reduction in number of memory accesses (Section 6.3.2), thereby leading to linear

reductions in memory energy, and register file bandwidth required. Consequently,

Turing tensor core’s energy efficiency, and performance increases nearly linear with

bit-widths. Thus, TIMON’s improvements over Turing increase significantly at low

bit-widths.

Sparsity: Figure 6.18 shows the distribution of column sparsity for TMMA’s

GEMMs executed in the conv2d-2 benchmark with 0.5 (or 50%) model sparsity,

and subsequently applying outlier rejection with thresholds - 0.25, 0.5, 1.0. A col-

umn density (1.0− sparsity) of 1/2, 1/4, 1/8 is ideal since it ensures full utilization
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Fig. 6.19. Impact of tunable ADC and outlier rejection on (a) ADC reso-
lution, (b) Tensor Core’s energy and runtime.

of ADC’s dynamic range. As discussed in Section 6.6, outlier rejection with higher

threshold can increase a column’s sparsity, thereby leading to higher utilization. Fig-

ure 6.18 shows that higher thresholds increase the fraction of columns with ideal

density thereby, improving the utilization of ADC’s dynamic range.

Figure 6.19 (a) shows the impact of tunable ADC on a sparse model (for eg.

sparse-0.50 denotes 50% model sparsity), and its corresponding versions obtained

using outlier rejection with different thresholds (th). We use TIMON’s K64 variant

since it achieves high efficiency over Turing for dense GEMMs (Section 6.7.2). A

baseline without tunable ADC uses 8 bit (8b) resolution for all operations. It is
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Table 6.3.
Area comparison of TIMON/Turing tensor cores.

TIMON IR SL DAC SRU ADC S&A OR Total

Area (mm2) 0.00077 0.00006 0.00017 -† 0.10560 0.00192 0.00019 0.1087

Turing MAC Buffer Total

Area (mm2) 0.2025 0.0042 0.2067

* SRU is logical unit for slice width 1. In absence of scaling, analog reductions occur on BLs itself.

Table 6.4.
TIMON’s accuracy under circuit non-idealities

Baseline Accuracy - 69.60% - ResNet20 - CIFAR-100

Configuration w/o retraining w/ retraining (#epochs)

K32 65.36 % 69.51 (1)

K64 63.47 % 68.80 (1), 69.58 (2)

evident that tunable ADC enables leveraging sparsity to reduce ADC resolutions

requirement. Further, outlier rejection complements tunable ADC to get further

reductions in ADC resolution requirements. As discussed in Section 6.4.3, TIMON’s

energy consumption is dominated by ADC energy, and pipeline latency is limited

by the ADC latency. For K64, ADC energy constitutes 59.6% of TIMON’s energy

(Figure 6.9), and the ADC stage has 2× higher latency than other pipeline stages

(Section 6.7.1). Consequently, as shown in Figure 6.19 (b), the reduction in ADC

energy/latency with sparsity translates to significant improvements in tensor core’s

energy consumption and runtime. We observe that outlier rejection incurs ≤ 1.01%

reduction in test accuracy compared to the baseline sparse models for all thresholds,

thereby emphasizing its efficacy.

6.7.5 Area Overheads and Circuit Non-Idealities

Table 6.3 shows the area breakdown of TIMON and Turing tensor core. It can

be seen that TIMON adds 53% lower area overhead to a baseline GPGPU (without
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tensor cores) to enable inference acceleration, thereby emphasizing its effectiveness.

Table 6.4 analyzes the impact of circuit non-idealities on TIMON’s test accuracy. We

observe that inference of a pretrained model (no retraining) on TIMON may incur

undesirable accuracy degradation. Higher DP widths lead to higher degradation due

to the higher volume of analog operations performed before conversion to digital

data. However, simple retraining for 1-2 epochs recovers the accuracy within 0.09%

and 0.02% of the baseline accuracy for K32 and K64 respectively. Thus, the impact

of circuit non-idealities in TIMON can be reliably mitigated with minimal retraining

overhead.

6.8 Conclusion

We propose TIMON, an ”in-memory” tensor core which overcomes bandwidth

and energy limitations of GPGPU register files to perform efficient dense GEMMs.

TIMON leverages in-memory computing within the register files to execute GEMMs

in a bit-serial fashion and reduces register file accesses even for irregular weight and

activation precisions. Further, we present a hardware-software codesign to utilize

sparsity, and develop instruction extensions to expose TIMON to the programming

model. Our results show that a GPGPU augmented with TIMON can achieve upto

195 Tensor TOPS at 53% lower area overhead and improve IPC upto 18%. Further,

these performance benefits are accompanied by a 74% reduction in tensor core energy.

Finally, TIMON achieves nearly quadratic and logarithmic performance gains with

bit-precision and sparsity, respectively.
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7. SUMMARY

General-purpose computing systems have benefited from technology scaling for several

decades but are now hitting a performance/energy wall. This trend has led to a

growing interest in domain-specific accelerators. Machine Learning (ML) workloads

in particular have received tremendous attention because of their pervasiveness across

applications. ML workloads tend to be data-intensive and perform many matrix

operations. Their execution on digital CMOS hardware is typically characterized

by high data movement costs. To overcome this limitation, in-memory computing

primitives (CMOS, NVM) have been demonstrated to perform matrix operations

with high efficiency by overcoming the low memory bandwidth and high memory

energy issues. While such primitives have shown tremendous potential at the device-

circuit levels, the system-level implications remain unclear, as they are not a drop-in

replacement for traditional memory structures (register file, caches etc.). This thesis

explores the implications of in-memory computing on domain-specific and general-

purpose architectures for ML. The key contributions are summarized below.

• In this thesis, we propose PUMA - the first ISA-programmable accelerator

for ML inference that uses hybrid CMOS-memristor technology. It enhances

memristive crossbars with general purpose execution units carefully designed to

maintain crossbar area/energy efficiency and storage density. Our accelerator

design comes with a complete compiler to transform high-level code to PUMA

ISA and a detailed simulator for estimating performance and energy consump-

tion. Our evaluations show that PUMA can achieve significant improvements

compared to state-of-the-art CPUs, GPUs, and ASICs for ML acceleration.

• This thesis explores training approaches that can learn connectivity structures,

which can be efficiently mapped to crossbars while preserving the algorithmic
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benefits of weight sparsity. We developed TraNNsformer a technology-aware

clustered pruning approach to produce efficient mappings for any crossbar size,

permissible by the technology for reliable operations. Our results on a range

of image recognition applications suggest that TraNNsformer is a promising

framework to implement DNNs, providing a scalable solution to designing large-

scale neuromorphic systems.

• In this thesis, we explore bit-slicing techniques for enhancing the precision of

ReRAM-based OPA operations to achieve sufficient precision for DNN train-

ing. We incorporate our technique into a crossbar architecture that performs

high-precision MVM and OPA operations, and present three variants catered

to different training algorithms: SGD, mini-batch SGD, and mini-batch SGD

with large batches. Finally, to evaluate our design on different layer types

and training algorithms, we develop PANTHER, an ISA-programmable train-

ing accelerator with compiler support. The proposed accelerator explores the

feasibility of ReRAM technology for DNN training by mitigating their serial

read and write limitations, and can pave the way for efficient design of future

machine learning systems.

• This thesis also proposes TIMON - an in-memory tensor core which overcomes

bandwidth and energy limitations of GPGPU register files to perform efficient

dense GEMMs. It leverages in-memory computing within the register files to

execute GEMMs in a bit-serial fashion and reduces register file accesses even

for irregular weight and activation precisions. Further, we present a hardware-

software codesign to utilize sparsity, and develop instruction extensions to ex-

pose TIMON to the programming model. Finally, the proposed tensor core

achieves nearly quadratic and logarithmic performance gains with bit-precision

and sparsity, respectively.
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