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ABSTRACT 

The incidence of Metabolic Syndrome (MetS) is increasing worldwide and accompanied by 

elevated risks for cardiovascular disease (CVD) and other subsequent comorbidities. MetS is 

associated with increased circulating triglycerides. A key enzyme involved in triglyceride (TG) 

clearance is lipoprotein lipase (LPL) whose activity is modulated by a variety of factors.  

Recent literature has identified the importance of angiopoietin-like proteins (ANGPTL) as 

regulators of LPL activity and has hypothesized a model in which three of these proteins interact 

with LPL to regulate the partitioning of TG metabolism from adipose to skeletal muscle. The work 

detailed in this dissertation adds to the model of ANGPTL regulation of LPL by establishing how 

ANGPTL8 modulates the ability of ANGPTL3 and ANGPTL4 to inhibit LPL activity in the 

bloodstream and localized environments, respectively.  

In the updated model, elevated insulin concentrations result in increased hepatic 

ANGPTL3/8 secretion and increased ANGPTL4/8 in adipose tissue. ANGPTL3/8 works as an 

endocrine molecule to inhibit skeletal muscle LPL from hydrolyzing circulating TG. 

Simultaneously, ANGPTL4/8 works in a paracrine mechanism to bind LPL on the endothelial 

vasculature adjacent to adipose tissue to alleviate ANGPTL4-mediated LPL inhibition and also 

prevent ANGPTL3/8 inhibition of localized LPL. Thus, in the postprandial state free fatty acids 

(FFA) from the hydrolysis of TG are directed into adipocytes for storage.  

Under fasting conditions, ANGPTL8 production is decreased in adipocytes and hepatocytes. 

This decreased production results in diminished ANGPTL4/8 and ANGPTL3/8 secretion from 

their respective tissues. As a result, ANGPTL4 inhibits adipocyte localized LPL activity while 

ANGPTL3 at physiological concentrations has minimal effect on LPL activity. Furthermore, any 

ANGPTL3/8 which is produced has its LPL-inhibitory ability diminished by the circulating 

apolipoprotein ApoA5. LPL is more active in skeletal muscle compared to adipose tissue where 

energy is shunted towards utilization in the muscle and away from storage in adipose tissue. A 

complete understanding of LPL regulation by ANGPTL proteins can potentially provide 

therapeutics targets for MetS. 
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 INTRODUCTION 

1.1 Triglycerides 

Triglycerides (TG), also known as triacylglycerols, are comprised of three fatty acids 

connected via ester bonds to a glycerol backbone (1). TG play an important role in maintaining 

human homeostasis – especially for the storage of excess energy. In fact, up to 85% of stored 

energy is in the form of TG (1). More importantly, fatty acids (FA) in TG provide around 70% of 

the energy needs for the heart (2). Because of their hydrophobicity, TG circulate as part of 

triglyceride rich lipoprotein particles (TRL) – most commonly as very low density lipoprotein 

(VLDL) and chylomicrons (3). VLDL is produced in the liver whereas chylomicrons are TRL 

derived from dietary fats (4-6). However, in certain conditions, such as Metabolic Syndrome 

(MetS), dysregulation of TG homeostasis is associated with cardiovascular disease (CVD). 

1.2 Metabolic Syndrome and associated hypertriglyceridemia 

 MetS is a compilation of risk factors, such as hypertension, elevated TG, and reduced high-

density lipoprotein cholesterol (HDL-C), which have all been directly correlated to CVD (7). MetS, 

also known as Syndrome X or Insulin-resistance Syndrome, has been shown to increase the risk 

for CVD by 235% (8) Identified over six decades ago, MetS has only recently garnered attention 

from public health professionals as the consequences of MetS slowly expand into a worldwide 

epidemic (8).  

Over the past three decades, the definition for MetS has changed multiple times. While first 

called Syndrome X in 1988, MetS or Insulin-resistance Syndrome was clinically defined by the 

World Health Organization (WHO) in 1998. Subsequently, this initial definition was modified by 

the European Group for the Study of Insulin Resistance (EGIR) (9, 10). EGIR identified insulin 

resistance as the major cause of MetS and required it for diagnosis (10). The EGIR definition 

included elevated circulating insulin levels along with two additional comorbidities (abdominal 

obesity, hypertension, elevated TG, reduced HDL-C, or elevated glucose) (9). The National 

Cholesterol Education Program’s Adult Treatment Panel III altered this definition by no longer 

requiring the presence of insulin-resistance in all cases, but rather needing three factors 

concomitantly (abdominal obesity, elevated TG, reduced HDL-C, elevated blood pressure, and 
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increased fasting glucose) (7). In 2003, the American Association of Clinical Endocrinologists 

further altered the definition to re-instate insulin resistance as the primary cause. Then in 2005, the 

International Diabetes Foundation determined that abdominal obesity was required for diagnosis 

of MetS along with two other comorbidities (elevated TG, reduced HDL-C, elevated blood 

pressure, and increased fasting glucose) (7). Currently, diagnosis of MetS requires TG above 150 

mg/dL, blood glucose above 100 mg/dL, HDL-C below 40 mg/dL in men or below 50 mg/dL in 

women, systolic blood pressure above 130 mm Hg with a diastolic blood pressure above 85 mm 

Hg, and waist circumference greater than 40 inches in men or greater than 35 inches in women (3, 

7, 11). 

Obesity, as found in MetS and which strongly correlates with insulin resistance, has been 

increasing in the United States where approximately two-thirds of the population is obese and a 

third of the population have MetS (6, 7, 9). Moreover, as obesity becomes more endemic in 

adolescents (17% prevalence), current trends in the United States demonstrate that MetS is also 

increasing in adolescents – a risk which only increases with age (11-13). 

MetS treatments are specifically targeted to reduce the risk for CVD and decrease obesity 

(7). The primary approach is implementation of lifestyle changes designed to reduce consumed 

calories and to increase regular physical activity (11, 14). The recommended dietary guidelines 

call for reductions in fat and simple sugars combined with increases in dietary fiber (11). If such 

changes are insufficient, therapeutic approaches to reduce hyperlipidemia, diabetes, and 

hypertension are attempted (7). Pharmacologic approaches have utilized fibrates and nicotinic acid 

which can raise HDL-C and reduce TG. In extreme cases, bariatric surgery may provide beneficial 

improvements (15). 

Within MetS, hypertriglyceridemia (HTG) is a common finding (6). In essence, HTG is a 

result of a decrease in TG-rich lipoprotein lipolysis, an increase in TG-rich production, or a 

combination of both (3). The Endocrine Society has defined moderate HTG as fasting TG levels 

from 200 to 999 mg/dL and severe HTG for 1000 to 1999 mg/dL. Anything above 2000 mg/dL is 

defined as very severe HTG (3, 6). HTG can be defined as primary or secondary HTG. In relation 

to obesity and insulin resistance, HTG is categorized as secondary (3). While most measurements 

of HTG are performed when the patient is fasting, recent publications have demonstrated that non-

fasting HTG is more predictive of CVD and its associated events, including death (16, 17). 
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Similar to the treatment of MetS, HTG treatment focuses on lifestyle changes prior to the 

addition of therapeutics. Of the possible therapeutics, fibrates, niacin, and n-3 fatty acids are 

pursued (3). Fibrates can reduce TG somewhat but have not demonstrated a reduction in CVD 

events or deaths (3). Fibrates increase lipoprotein lipase (LPL) synthesis and decrease very low 

VLDL (3). n-fatty acids have been found to reduce CVD risk in two trials (Cardiovascular Events 

with Icosapent Ethyl–Intervention Trial [REDUCE-IT] and Japan EPA Lipid Intervention Study 

[JELIS]) (18, 19). 

1.3 Lipoprotein Lipase  

TG are hydrolyzed by LPL to produce monoacylglycerol and non-esterified free fatty acids 

(FA) (2, 5, 20-22). Originally, described in dogs given heparin, active LPL, or clearing factor 

lipase, is a dimer of two glycosylated 55 kilodalton (kD) subunits arranged in a head-to-tail manner 

(2, 23-30). LPL consists of a signal sequence at the N-terminus, a catalytic domain consisting of 

Ser159, Asp183 and His226, a lid covering the active site, and a C-terminal domain (29-32). LPL 

is produced in parenchymal cells which include myocytes, adipocytes, and fetal hepatocytes. 

However, in the human adult liver, LPL is not produced (2, 29, 30). Lipase maturation factor 

promotes the maturation of LPL within the endoplasmic reticulum and is necessary for its post-

translational activation (6, 14, 33). Upon maturation, LPL is transported to the luminal side of 

capillary endothelium by glycosylphosphatidylinositol-anchored high-density lipoprotein-binding 

protein 1 (GPIHBP1) (5, 6, 20, 34, 35). GPIHBP1 stabilizes LPL but does not activate it (36). LPL 

on the capillaries of skeletal and cardiac muscle allows for hydrolysis of TG-rich lipoproteins for 

energy utilization and, in adipose tissue, integration for energy storage (5). 

In adipose tissue, LPL is upregulated by cortisol, dexamethasone, insulin, peroxisome 

proliferator-activated receptor gamma (PPARγ), and gastric inhibitory peptide (GIP) (5, 37-39). 

However, during fasting, LPL activity in skeletal and cardiac muscle is increased (5, 37-39). An 

increase in endothelial LPL is found throughout the body during times of fasting (37, 40).  

LPL expression has also been shown to be elicited by insulin during the cephalic phase of 

insulin secretion. Insulin does not change LPL messenger ribonucleic acid (mRNA) expression 

dose dependently. However, insulin demonstrates a dose-dependent effect on LPL enzymatic 

activity (41, 42). The changes in LPL localization during fasting and postprandial states are not 

necessarily due to increased mRNA expression, but rather due to sequestration of circulating 
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unbound LPL (43). The mechanism for how insulin alters LPL enzymatic activity is the underlying 

focus of this dissertation.  

The first human mutation in LPL was identified in 1989, and since then over 114 mutations 

have been described. Most commonly, LPL related genetic disorders occur in exons coding the 

catalytic domains and result in the elimination of LPL activity and subsequent development of 

HTG (2, 44). Some of these loss-of-function (LOF) variants have also been linked to increased 

risk for CVD events (6, 45). For example, the Asn291Ser mutation has been linked to a 31% 

increase in TG and a reduction in HDL-C (2). In line with such findings, animal models which 

have null mutations in LPL have HTG (30- to 50-fold above normal) and die shortly after birth 

(46-48). Conversely, overexpression of LPL reduces TG by 75% and prevents diet-induced HTG 

(49, 50). S447X is a mutation which initially was believed to be a gain of function mutation with 

respect to TG metabolism. Individuals with this mutation have reductions in circulating TG, lower 

VLDL, increased HDL-C, and a reduced risk for CVD events (51-55). However, S447X does not 

affect the TG hydrolysis activity of LPL, but rather enhances hepatic lipoprotein cholesterol uptake 

(55). The decrease in cholesterol containing particles likely drives the reduction of CVD risk.  

GPIHBP1, the protein required for translocation of LPL to the endothelial luminal surface, 

has been shown to be important for LPL localization and function (34, 56-59). Knockout (KO) 

GPIHBP1 mice exhibit chylomicronemia, severe HTG, and reduced LPL activity (60, 61). 

Reported in 15 families, the Q115P GPIHBP1 mutation, is associated with HTG due to 

chylomicronemia (62, 63). This mutation alters how GPIHBP1 is able to bind with LPL (36, 63). 

Other mutations in GPIHBP1 have been shown to be associated with increased HTG (61, 63). 

GPIHBP1 transcription was found to be increased in heart and adipose tissue during fasting and 

reduced after refeeding (60, 61). High fat diets tend to increase GPIHBP1 expression in adipose, 

skeletal, and hepatic tissues (60). These findings have suggested that while GPIHBP1 is increased 

during fasting, other mechanisms must control how the associated LPL functions in these different 

tissues (60). 

Most regulation of LPL activity appears to be post-transcriptional with striking differences 

occurring upon fasting, postprandial uptake, and exercise (5, 64, 65). This regulation is most 

apparent in skeletal and adipose tissue (64, 66, 67). Of the proteins which can regulate LPL, 

apolipoproteins (Apo) C1, C2, C3, A5, and E are currently being studied. ApoC2 activates LPL 

and is a component of VLDL (4, 68-70). ApoC1 and ApoC3 are inhibitors of LPL (3, 6, 71). 
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Another group of proteins named the angiopoietin-like proteins (ANGPTL) also regulate LPL – 

specifically ANGPTL3, ANGPTL4, and ANGPTL8  and are the focus of my research (5, 6). 

1.4 Angiopoietin-like Proteins 

1.4.1 ANGPTL3 and ANGPTL4 

ANGPTL3 and ANGPTL4, have both been shown to be inhibitors of LPL. They  are secreted 

proteins with 31% homology (72-76). They both contain an N-terminal coiled-coil domain 

containing the specific epitope 1 (SE1) region known to inhibit LPL enzymatic activity (77, 78). 

They also both contain a C-terminal fibrinogen-like domain and are found both as full length and 

truncated N-/C- terminal fragments in plasma (72, 73, 78-80). Both proteins circulate as higher 

order oligomers (79, 81, 82). 

ANGPTL3 and ANGPTL4 KO mice display hypotriglyceridemia due to increased LPL 

activity and hydrolysis of VLDL from the circulation (74, 76, 78, 83-86). In contrast, 

overexpression of ANGPTL3 or ANGPTL4 led to HTG and increased cholesterol (75, 87, 88). 

LPL activity is elevated in both ANGPTL3 KO (postprandially) and ANGPTL4 KO mice (fasting 

and postprandial) (74, 80, 89). However, each protein, works via an independent mechanisms as 

ANGPTL4 KO demonstrated lower TG when a monoclonal antibody to ANGPTL3 was 

administered (mAb 5.50.3) and an ANGPTL3 KO demonstrated similar results with a monoclonal 

antibody to ANGPTL4 (14D12) (90). Based on in vitro assays, ANGPTL4 is a more potent 

inhibitor of LPL (~100x) compared to ANGPTL3 (90). In fact, the concentrations of ANGPTL3 

required for substantial inhibition of LPL are supraphysiological (91). This conundrum regarding 

the relatively weak inhibition of ANGPTL3 in comparison to ANGPTL4 will be addressed in 

Chapter 2 of this dissertation.  

GPIHBP1 decreases the inhibition from ANGPTL3 and ANGPTL4 (36). It reduces the 

ANGPTL4 inhibition by 20% and ANGPTL3 by 40% (36). GPIHBP1 KO mice have elevated TG 

levels as LPL is likely destabilized. However, when one functional ANGPTL4 allele is knocked 

out in these mice, TG levels drop by 33% relative to the GPIHBP1 KO mice. When both 

ANGPTL4 alleles are nonfunctional in the GPIHBP1 KO mice, TG drop 93% relative to the 

GPIHBP1 KO mice with two functional ANGPTL4 alleles. Taken together, this data suggests that 

without GPIHBP1, ANGPTL4 can suppress LPL enzymatic activity to a large extent and that 
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GPIHBP1 acts as a protector against ANGPTL4 mediated LPL inhibition. (36). However, the TG 

concentrations of ANGPTL3 and GPIHBP1 double KO animals were only slightly lower than 

GPIHBP1 KO alone suggesting that ANGPTL3 is not as profound of an inhibitor of LPL. 

Administration of neutralizing antibodies to ANGPTL3 or ANGPTL4 in GPIHBP1 KO mice 

reinforced the findings from analysis of the genetic models (36). When double ANGPTL3 and 

ANGPTL4 KOs are generated, there is a loss in progeny and an increase in perinatal mortality. 

Surviving double KO mice did not live past 2 months and had nearly undetectable TG levels (74). 

ANGPTL3 was discovered through investigation of the KK/San obese mouse. These mice 

display abnormally low lipid levels despite an obese/diabetic profile (83, 92). ANGPTL3 is a 460 

amino acid protein which, as stated above, contains the N-terminal SE1 domain, a linker region, 

and a C-terminal fibrinogen binding domain (72). ANGPTL3 appears to be constitutively 

expressed in the liver and is inducible by liver X receptor (LXR) ligands (93-95). ANGPTL3 

mRNA does not appear to be altered by nutritional state but is upregulated in human subjects with 

insulin-resistance (96). Interestingly, ANGPTL3 does not appear to correlate with circulating TG, 

but it does appear to regulate TG uptake in peripheral tissues postprandially (97, 98). 

Two ANGPTL3 mutations have been associated with hypolipidemia: E129X and S17X. 

Individuals with either of these mutations exhibit losses in low density lipoprotein cholesterol 

(LDL-C), HDL-C, and low TG (99, 100). The presence of a loss of function ANGPTL3 variant 

provides a 34-41% lowered risk of CVD, depending on the study (101-103). In the Dallas Heart 

Study population, individuals (5% of African Americans in the study) expressing the M259T 

mutation had lower TG. Moreover, this M259T variant failed to suppress LPL activity (100). 

Mimicking human findings, ANGPTL3 KO mice have lower TG and post-heparin LPL activity 

(104). Mice overexpressing ANGPTL3 demonstrate postprandial HTG(74, 104). In ANGPTL3 

KO mice, peripheral LPL activity was 9-fold higher postprandially – this effect was not seen during 

fasting (74). Two monoclonal antibodies against ANGPTL3, REGN1500 and mAb 50.5.3 reduced 

serum TG in a manner similar to ANGPTL3 KO mice (77, 105). Together, these data on 

ANGPTL3 demonstrate its role in inhibiting LPL; however, these data do not address why 

ANGPTL3 therapeutic interventions and knockouts predominantly affect postprandial TG levels.  

ANGPTL4 has gone by other monikers including peroxisome proliferator-activated receptor 

(PPAR) angiopoietin related protein, fasting-induced adipose factor, and hepatic fibrinogen 

angiopoietin-related protein (73, 76, 106, 107). ANGPTL4 is predominantly expressed in the 
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intestine and adipose tissue with some expression detected in cardiac, hepatic, and renal tissues 

(73, 106, 107). 

Fasting increases ANGPTL4 in adipose tissue where it is released as a full-length protein 

(82, 108). ANGPTL4 mRNA is upregulated by PPAR agonists and by hypoxia whereas its mRNA 

is repressed by leptin (73, 106, 107, 109-112). Interestingly, ANGPTL4 expression increases in 

acute exercise in non-exercised tissue to shunt fatty acid energy utilization to exercising tissue 

(113, 114). 

The reduction in adipose LPL activity during fasting is a direct result of ANGPTL4 

expression (115). The mechanism whereby ANGPTL4 inhibits LPL is still debated. Some research 

points to ANGPTL4 inducing a conformational unfolding of the catalytic hydrolase domain (80, 

116). Other researchers have identified that ANGPTL4 dissociates the LPL dimer creating inactive 

monomers (90, 117). Still others have said that ANGPTL4 is a reversible, non-competitive 

inhibitor of LPL (118). Regardless, the mechanism of how ANGPTL4 inhibits LPL predominantly 

during the fasting state remains unclear and will be addressed in Chapter 2 of this dissertation.  

ANGPTL4 associations with circulating TG are debatable – often due to discrepant 

commercial enzyme linked immunosorbent assays (ELISA) (119). However, genetic studies have 

identified correlations. One ANGPTL4 mutation, E40K, which is present in approximately 3% of 

European Americans, is associated with lower TG and higher HDL-C. Depending on the study, 

the E40K mutation was associated with a 15-30% reduction in circulating TG (120). Upon in vitro 

investigation, the E40K mutation blunts the ability of ANGPTL4 to associate with and inhibit LPL 

(77, 90, 116). 

Overexpression of ANGPTL4 in animal models results in increased TG regardless of 

mechanism (e.g. adenoviral or transgene) (74, 76, 81, 87, 121, 122). Overexpression of ANGPTL4 

resulted in decreased clearance of chylomicrons 24 hours postprandially and increased TG-rich 

VLDL (74, 81, 87, 88). Similarly, infusion with recombinant ANGPTL4 increases TG by 3- to 5-

fold after 30 minutes. Interestingly, organ specific overexpression of ANGPTL4 has suggested a 

paracrine effect for ANGPTL4 inhibition of LPL (74, 121). 

ANGPTL4 KO mice demonstrate a 65-90% lowering in fasting TG and a 70% postprandial 

TG reduction (74, 84, 123). Animals treated with 14D12, a monoclonal neutralizing antibody 

against ANGPTL4, lowered fasting TG by 50% (77, 84). However, both ANGPTL4 KO mice and 
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those receiving the therapeutic antibody demonstrated lipogranulomatous lesions in intestinal 

lymph nodes (84).  

It is important to note that ANGPTL4 is expressed throughout the small intestine where it 

may be involved in the regulation of luminal intestinal/pancreatic lipase by ANGPTL4 (124). 

Pancreatic lipase hydrolyzes dietary TG to allow released FA to be absorbed by enterocytes where 

they will be repackaged into TG and subsequently packaged into chylomicrons containing ApoB48 

(125, 126). Afterwards, chylomicrons are released into surrounding lymph to enter circulation at 

the thoracic duct (125, 126).  

Taken together, it appears that ANGPTL4 may inhibit pancreatic lipase to regulate the influx 

of FA into the enterocytes (124). ANGPTL4 KO mice demonstrated enhanced intestinal lipase 

activity. However, these mice exhibited no change in TG release from the intestine into circulation. 

Thus, inhibition or deletion of ANGPTL4 results in enhanced dietary TG uptake by the intestine 

without a corresponding change to TG secretion – in turn, leading to the accumulation of fat in 

intestinal lymph nodes. 

1.4.2 ANGPTL8 

 In 2012, three separate groups identified another protein responsible for modulating LPL 

activity, ANGPTL8 (also known as TD26, hepatocellular carcinoma associated gene, C19orf80, 

refeeding-induced fat and liver betatropin, and lipasin) (127-129). ANGPTL8 shares 20% of its 

N-terminal domain with ANGPTL3 and ANGPTL4 but lacks the C-terminal fibrinogen-binding 

domain (127, 129). ANGPTL8 is expressed in hepatic and adipose tissue. Its expression appears 

to be nutritionally regulated as reductions are seen upon fasting and raised by refeeding (128, 129). 

However, correlations of ANGPTL8 with MetS parameters has been difficult to ascertain (130-

133).  

Insulin increases ANGPTL8 mRNA in both adipocytes and hepatocytes in a dose dependent 

manner at concentrations as low as 1 nM (127, 134). Insulin combined with elevated glucose 

increased ANGPTL8 mRNA more dramatically than insulin only (134). ANGPTL8 expression in 

hepatocytes is also increased with palmitic acid, tunicamycin, and T0901317 (liver X receptor 

alpha [LXRα] agonist) (134, 135). ANGPTL8 mRNA, however, is very unstable and expression 

is altered rapidly when fasting and postprandially. While LXRα induces mRNA expression, 



 
 

24 

glucocorticoid receptor (GR) appears to downregulate mRNA transcription (135). The effect of 

LXR agonism on TG levels will be investigated in Chapter 3 of this dissertation.  

In 2013, ANGPTL8, then termed betatrophin, was identified as a hormone which induced 

pancreatic beta cell proliferation (136). This paper was later retracted after multiple studies 

demonstrated that both KO mice and mice overexpressing hepatic ANGPTL8 maintained normal 

beta cell expansion (137, 138). These studies, however, did identify that ANGPTL8 KO animals 

have lower TG levels whereas overexpression of hepatic ANGPTL8 increases TG (128, 137, 138). 

For animals in which ANGPTL8 was overexpressed, the increase in TG was more pronounced 

during fasting (139). Using different methods to induce ANGPTL8 KO animals, it has been 

demonstrated that the reduction in body weight and plasma TG coincide with increases in β-

oxidation in skeletal muscle (140). 

Further validation of these animal models came from human genetic studies which identified 

a rare (~1 in 1000 individuals) loss of function mutation Q121X (141). Carriers of this mutation 

demonstrated a 15% reduction in TG and increased HDL; however, it is unclear if the mutation is 

cardioprotective due to the study being underpowered (141). Moreover, no change in fasting 

glucose or risk for type 2 diabetes mellitus (T2DM) was seen in these individuals possibly for the 

same aforementioned reason (142). Another mutation, R59W, was identified in three populations 

and correlated with reduced LDL-C and HDL-C. However, this mutation is not associated with 

circulating TG (129). 

Antibodies which neutralize ANPGTL8 have been shown to reduce TG. In 2017, Regeneron 

demonstrated that its ANGPTL8 antibody (REGN3776) decreased TG, body weight, and fat 

content in mice expressing humanized ANGPTL8 and duplicated the effect in dyslipidemic 

cynomolgus monkeys (143, 144). Specifically, REGN3776 reduced serum TG by 60% in the 

humanized mice and 65% in dyslipidemic monkeys (143, 144). Another antibody, AB-2, was 

found to reduce postprandial TG by 40% via increased LPL activity in the heart and skeletal muscle 

(139).  

Interestingly, recombinant ANGPTL8 fails to inhibit LPL to a great degree despite 

containing a similar SE1 region as ANGPTL3 and ANGPTL4 (144, 145). However, ANGPTL8 

has been shown to circulate as a part of a large protein complex (129). In line with these findings, 

when LPL binding fragments of ANGPTL8 and ANGPTL3 are refolded together, a 3-fold increase 

is seen on LPL inhibition when compared to ANGPTL3 alone. Conversely, when fragments of 



 
 

25 

ANGPTL8 and of ANGPTL4 are refolded together,ANPGTL4 had less ability to inhibit LPL 

activity (117). Interestingly, the ANGPTL3 and ANGPTL8 complex (ANGPTL3/8) inhibits LPL 

activity by 80% - the same magnitude as ANGPTL4 alone (117). It is suggested that ANGPTL3 

changes the confirmation of ANGPTL8 so that the ANGPTL8 SE1 region is available to inhibit 

LPL or that ANGPTL8 activates ANGPTL3 (129, 144). This ANGPTL3/8 complex appears to be 

formed within the cell and then secreted into the circulation (91). Further clarification of 

ANGPTL8 and its interactions with other ANGPTL proteins will be investigated in Chapter 2 of 

this dissertation.  

While overexpression of ANGPTL8 increases TG, ANGPTL8 expression in ANGPTL3 KO 

mice fails to elicit any change in TG (129, 144). Interestingly, expression of ANGPTL3 in 

ANGPTL8 KO mice slowly increased plasma TG due to ANGPTL3’s latent LPL inhibitory 

potential (144). Overexpression of both ANGPTL3 and ANGPTL8 induce HTG to a greater extent 

than that seen with ANGPTL3 overexpression alone (144). Liver- and adipose-specific ANGPTL8 

KO mice display different phenotypes (146). When hepatically knocked out, ANGPTL8 does not 

appear in circulation – a finding similar to that found in systemic ANGPTL8 KO mice (146). TG 

were also reduced in the liver-specific ANGPTL8 KO mice. However, postprandial TG levels 

were increased in the adipose-specific KO mice despite post-heparin LPL activity remaining 

similar to that of wildtype animals (146). Together these complex genetic and pharmacological 

data surrounding the functions of ANGPTL8 suggest a role in which ANGPTL8 activity is 

preferential for muscle or adipocyte localized LPL depending on nutritional status. It also strongly 

suggests that ANGPTL3 may be a key component necessary for the LPL inhibition result from 

ANGPTL8 overexpression. The work outlined in Chanter 2 of this dissertation will further explore 

the nutritional regulation of ANGPTL8.  

1.5 Conclusions 

Taken together, the data presented in the literature hints at a regulated system for 

postprandial TG metabolism through interactions with the ANGPTLs and LPL. Postprandially, 

ANGPTL8 appears to act in concert with ANGPTL3 to circulate and inhibit LPL in an endocrine 

manner (4, 146, 147). Conversely, in the fasted state, ANGPTL4 appears to be upregulated but 

only inhibits adipose LPL. The purported ANGPTL3/8 complex is downregulated during fasting 
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allowing skeletal and cardiac utilization of circulating TG/VLDL (4, 127, 146, 147).  A complete 

understanding of this system remains unknown.  

The work outlined in this thesis details experiments which expound upon the function and 

regulation of ANGPTL8 during both fasting and fed states. In Chapter 2, we will demonstrate with 

certainty that ANGPTL8 interacts with ANGPTL3 and ANGPTL4 separately postprandially. 

Increased by postprandial insulin and glucose-dependent insulinotropic peptide (GIP), the 

ANGPTL4 and ANGPTL8 complex inhibits LPL in a localized manner around adipocytes due to 

interactions with heparin proteoglycans. This complex also appears to prevent circulating 

ANGPTL3 complexed with ANGPTL8 from inhibiting adipocyte localized LPL. In Chapter 3, we 

will expound upon how another protein apolipoprotein A5 can interact with the ANGPTL3-4-8 

system to further regulate the partitioning of fatty acids. We will also explore how LXR agonists 

cause HTG after administration.  
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 ANGIOPOIETIN-LIKE PROTEIN 8 DIFFERENTIALLY 
REGULATES ANGPTL3 & ANGPTL4 DURING POSTPRANDIAL TISSUE 

PARTITIONING OF FATTY ACIDS 

A modified version of this chapter has already been published in the Journal of Lipid Research. 
[Chen YQ, Pottanat TG, Siegel RW, Ehsani M, Qian YW, Zhen EY, Regmi A, Roell WC, Guo H, 
Luo MJ, Gimeno RE, Van't Hooft F, Konrad RJ. Angiopoietin-like protein 8 differentially 
regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids. J Lipid Res. 
2020 Aug;61(8):1203-1220. doi: 10.1194/jlr.RA120000781.] 

2.1 Introduction 

As humans evolved, the greatest survival threat was insufficient caloric intake (148-152). 

Our predecessors therefore relied on mechanisms that during times of starvation could direct fatty 

acids (FA) toward skeletal muscle to provide energy to hunt for food. Similarly, they relied on 

mechanisms that, during relatively rare periods of caloric availability, could reduce FA uptake into 

skeletal muscle and shift FA toward adipose tissue for storage as triglycerides (TG) to prepare for 

future periods of famine. These mechanisms allowed hominids to survive food scarcity. In a 

modern world of caloric abundance, however, the result is an unprecedented increase in metabolic 

syndrome and its related co-morbidities (153-156).  

Metabolic syndrome includes elevated TG, decreased high density lipoprotein (HDL), 

obesity, hypertension, and insulin resistance/impaired glucose tolerance (156). This constellation 

of abnormalities predisposes not only to type 2 diabetes and increased cardiovascular disease, but 

also to an increased risk of peripheral vascular disease, non-alcoholic fatty liver disease, and 

several types of cancer (157-164). It is currently estimated that two-thirds of the US population is 

overweight, and that one-third suffers from metabolic syndrome (165-170). At its most basic level, 

metabolic syndrome manifests as dysregulated lipid metabolism resulting in increased TG with 

excessive FA storage (as TG) in adipose tissue (171). Increased TG are associated with decreased 

HDL, although the exact mechanisms have not been fully elucidated (172, 173). The excess 

adiposity causes insulin resistance (mainly in skeletal muscle through incompletely understood 

mechanisms) and hypertension (by increasing the arterial resistance) (174-184).  

In the present study, we examine the role that angiopoietin-like protein 8 (ANGPTL8), a 

novel protein implicated in TG metabolism (4, 91, 127, 128, 138-140, 143, 144, 185, 186), plays 
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in metabolic syndrome. ANGPTL8 is the most recently discovered member of the ANGPTL3/4/8 

family of proteins involved in lipoprotein lipase (LPL) regulation (91, 128, 129, 139, 144, 145). 

LPL is the enzyme responsible for conversion of TG (contained in lipoproteins) into FA that can 

be taken up into tissues such as skeletal muscle and fat (22, 187-190). In general, increased LPL 

activity is thought to be beneficial as it would decrease circulating TG. ANGPTL3 and ANGPTL4 

have been previously described as LPL inhibitors, and their inhibitory mechanisms have been at 

least partially characterized (4, 36, 77, 116, 129, 191-198). In addition, ANGPTL3 has been shown 

to be an inhibitor of endothelial lipase (EL), the enzyme which hydrolyzes phospholipids (PL) in 

PL-rich HDL (86, 191).  

ANGPTL3 knockout mice have been characterized as having decreased circulating TG (97, 

104). In humans, ANGPTL3 knockout mutations are associated with decreased TG, decreased 

HDL (possibly due to increased EL activity), and decreased low-density lipoprotein cholesterol 

(LDL-C) via unknown mechanisms (99, 102, 199). Humans with ANGPTL3 mutations have a 

reduced risk of cardiovascular events, presumably due to decreased TG and LDL-C (199, 200). 

ANGPTL4 knockout mice demonstrate decreased TG and an increased risk of intestinal lymphatic 

toxicity when placed on a high fat diet (likely due to ANGPTL4 protecting against excessive 

saturated fatty acid uptake) (84, 201, 202). In humans, the ANGPTL4 E40K mutation has been 

associated with decreased TG, increased HDL, and a decreased risk of cardiovascular events (203-

206). In a large human genetic study, review of medical records found no evidence of intestinal 

lymphadenopathy in 17 individuals homozygous for the ANGPTL4 E40K mutation, while no 

subjects were identified that were either homozygotes or compound heterozygotes for ANGPTL4 

complete loss of function mutations (207).  

ANGPTL8 was originally described as an atypical ANGPTL protein lacking the fibrinogen-

like C-terminal domain present in other ANGPTL members (129). Subsequent reports showed that 

its overexpression in mice resulted in increased TG and that the effect was dependent upon 

ANGPTL3, indicating that the two proteins may work together in some way (91, 144). ANGPTL8 

knockout mice were described as having decreased circulating TG (especially after re-feeding) as 

well as reduced fat mass (138, 140). In humans, an ANGPTL8 knockout mutation has been 

associated with decreased TG, decreased LDL-C, and increased HDL. However, because the 

mutation is very rare, the study was not sufficiently powered to assess cardiovascular protection 

(141). Recently, Zhang described an elegant ANGPTL3/4/8 model in which the three proteins are 
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postulated to work together to move FA either toward the adipose tissue or skeletal muscle under 

feeding or fasting conditions, respectively (4). Using a mammalian expression system, Chi and 

colleagues demonstrated that ANGPTL8 complexed with ANGPTL3, greatly enhanced the ability 

of ANGPTL3 to bind to and inhibit LPL, and required complex formation to be secreted efficiently 

(91). Very recently, Kovrov and colleagues built upon these concepts by further exploring possible 

ideas for how ANGPTL8 might work together with both ANGPTL3 and ANGPTL4 to partition 

FA between adipose tissue and skeletal muscle (117).  

In our current study, we examine the mechanisms by which ANGPTL8 acts as a key 

regulator of both ANGPTL3 and ANGPTL4 to direct FA toward adipose tissue after feeding. We 

show that in humans, ANGPTL8 increases with feeding and is present in ANGPTL3/8 and 

ANGPTL4/8 complexes, which can be measured in serum. Levels of these complexes correlate 

inversely with HDL and directly with all other markers of metabolic syndrome. In addition, we 

demonstrate that these complexes have dramatically opposite effects on LPL activity, with 

ANGPTL3/8 being over 100 times more potent than ANGPTL3 alone, while ANGPTL4/8 was 

more than 100-fold less potent than ANGPTL4 alone. We also show that ANGPTL4/8 can prevent 

ANGPTL3/8 from inhibiting LPL, thereby providing a mechanism to allow for LPL in the adipose 

tissue to be protected from increased postprandial circulating ANGPTL3/8 levels. Together, our 

data demonstrate how increased ANGPTL8 levels that occur following feeding can decrease LPL 

activity in the skeletal muscle while increasing LPL activity in the fat, thus directing postprandial 

uptake of FA into adipose tissue.  

2.2 Results 

Result sections denoted with * after the subsection heading were addressed through my personal 

contributions. 

2.2.1 Characterization of ANGPTL complexes* 

Based on reports that ANGPTL8 may interact with other ANGPTL proteins (91, 117, 129, 

144), we immunoprecipitated ANGPTL8, ANGPTL3, and ANGPTL4 (using an N-terminal 

ANGPTL4 antibody) from human serum and identified co-immunoprecipitating proteins via 

Western blotting. As Figure 2.1A shows, ANGPTL3 and ANGPTL4 did not co-immunoprecipitate 
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with each other, while each co-immunoprecipitated with ANGPLT8, indicating the presence of 

ANGPTL3/8 and ANGPTL4/8 complexes. The existence of these complexes was confirmed via 

mass spectrometry. As Figure 2.1B demonstrates, the amount of ANGPTL8 present in the 

ANGPTL3/8 and ANGPTL4/8 complexes was similar to the total amount of ANGPTL8 observed, 

suggesting that most ANGPTL8 in serum was present in either ANGPTL3/8 or ANGPTL4/8 

complexes. While human serum contained ANGPTL3 at roughly 200 ng/mL, much less N-

terminally intact (active) ANGPTL4 was present. Other than N-terminally intact ANGPTL4 

present in ANGPTL4/8 complex, very little non-complexed (free), active ANGPTL4 was observed. 

The main free circulating form of ANGPTL4 was subsequently determined by separate 

immunoassay experiments (Figure 2.2B) to be C-terminal domain-containing (CTDC) ANGPTL4. 

We also utilized a mass spectrometry LC-MRM method with stable-isotope-labeled peptides 

(SIL) to ascertain the molar ratios of the respective proteins in the recombinant ANGPTL3/8 and 

ANGPTL4/8 complexes. The protein ratios in the ANGPTL3/8 and ANGPTL4/8 complexes were 

found to be 3:1 and 1:1, respectively (Table 1). In addition, endogenous ANGPTL3/8 and 

ANGPTL4/8 complexes were immunoprecipitated from human serum and similarly characterized. 

The protein ratios in the endogenous ANGPTL3/8 and ANGPTL4/8 complexes were also found 

to be 3:1 and 1:1 respectively (Table 1), consistent with the ratios for the recombinant complexes. 

2.2.2 Measurement of ANGPTL proteins & complexes in human serum*  

We used recombinant ANGPTL proteins and complexes (Figure 2.2A) to develop dedicated 

immunoassays to measure human serum levels of ANGPTL3, ANGPTL4, ANGPTL8, 

ANGPTL3/8 complex, and ANGPTL4/8 complex. For ANGPTL4, an assay using two N-terminal 

ANGPTL4 antibodies enabled measurement of full-length ANGPTL4 and N-terminal ANGPTL4 

fragment (collectively referred to as active ANGPTL4). Likewise, an assay using C-terminal 

ANGPTL4 antibodies enabled measurement of full-length ANGPTL4 and (inactive) ANGPTL4 

C-terminal fragment, collectively referred to as C-terminal domain-containing (CTDC) ANGPTL4. 

As Figure 2.2B shows, active ANGPTL4 levels of roughly 0.1 ng/mL were more than three log 

orders lower than the ANGPTL3 concentrations and more than two log orders lower than those 

for C-terminal domain-containing ANGPTL4.
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Figure 2.1. ANGPTL8 circulates in ANGPTL3/8 and ANGPTL4/8 complexes.  

A: Anti-ANGPTL8, anti-ANGPTL4, and anti-ANGPTL3 antibodies covalently coupled to beads, 
with heavy and light chains further cross-linked, were used to immunoprecipitate (IP) human serum. 
Proteins were separated on a 12% Bis-Tris gel and transferred to PVDF. Co-immunoprecipitating 
proteins were visualized via Western blotting. Results are representative of two independent 
experiments.  

B: ANGPTL8, ANGPTL4, and ANGPTL3 were immunoprecipitated from human serum. Beads 
were washed using PBS, and bound proteins were reduced with DTT and alkylated. Following 
digestion, digests were acidified, and co-immunoprecipitating proteins were quantified using a mass 
spectrometry LC-MRM method. Results are shown as the mean ± SEM (n = 3) from one experiment 
representative of two independent experiments. 
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Table 1 Determination of ANGPTL3/8 and ANGPTL4/8 protein ratios by mass spectrometry.  

ANGPTL3/8 and ANGPTL4/8 complexes were digested using trypsin and Lys-C. Identical molar 
amounts of stable-isotope-labeled (SIL) peptides were spiked into samples during digestion, and the 
ratio of unlabeled to labeled peptides was determined. Stoichiometries of protein complexes were 
determined by comparing the averaged ratios derived from 2 peptides per protein. Data for 
recombinant complexes were derived from a single preparation performed in triplicate. Data for 
endogenous complexes were derived from a serum pool from 20 healthy donors and performed in 
duplicate. Standard deviations (SD) are shown for each peptide in the technical replicates and for 
the protein ratios in the respective complexes 
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        Sample 

Molar ratio of ANGPTL3  
compared to labeled 

peptides 

Molar ratio of ANGPTL4  
compared to labeled 

peptides 

Molar ratio of ANGPTL8  
compared to labeled 

peptides 

Protein ratio for each 
 respective complex 

Peptide 
#1 

Peptide 
#2 Average Peptide 

#1 
Peptide 

#2 Average Peptide 
#1 

Peptide 
#2 Average ANGPTL3/8 ANGPTL4/8 

R
ec

om
bi

na
nt

 c
om

pl
ex

es
 

ANGPTL3/8 
Sample #1 9.60 12.96 11.28    3.64 2.92 3.28 3.4  

ANGPTL3/8 
Sample #2 9.19 13.74 11.47    3.64 3.04 3.34 3.4  

ANGPTL3/8 
Sample #3 8.06 13.45 10.75    3.23 2.92 3.08 3.5  

ANGPTL3/8 
SD 0.80 0.40 0.37    0.24 0.07 0.14 0.03  

ANGPTL4/8 
Sample #1    0.71 0.81 0.76 0.88 0.74 0.81  0.9 

ANGPTL4/8 
Sample #2    0.54 0.67 0.60 0.68 0.57 0.62  1.0 

ANGPTL4/8 
Sample #3    0.68 0.92 0.80 0.74 0.62 0.68  1.2 

ANGPTL4/8 
SD    0.09 0.13 0.11 0.11 0.09 0.10  0.13 

E
nd

og
en

ou
s c

om
pl

ex
es

 ANGPTL3/8 
Sample #1 1.27 1.34 1.31    0.37 0.38 0.37 3.5  

ANGPTL3/8 
Sample #2 1.25 1.27 1.26    0.37 0.36 0.36 3.4  

ANGPTL3/8 
SD 0.02 0.05 0.03    0.004 0.01 0.01 0.08  

ANGPTL4/8 
Sample #1    0.041 0.055 0.048 0.062 0.058 0.060  0.8 

ANGPTL4/8 
Sample #2    0.043 0.052 0.048 0.059 0.062 0.061  0.8 

 ANGPTL4/8 
SD    0.002 0.002 0.00 0.002 0.003 0.01  0.01 



 
 

35 

Because levels of ANGPTL4 measured by this assay were so much less than ANGPTL4/8 

levels, this assay likely did not detect ANGPTL4 present in ANGPTL4/8 complexes to any 

appreciable extent. These data confirmed our mass spectrometry-based observations and indicated 

that most free, circulating ANGPTL4 consisted of inactive C-terminal fragment, a concept 

consistent with our subsequent LPL activity data. Concentrations of ANGPTL8, ANGPTL3/8, and 

ANGPTL4/8, averaged 4 ng/mL, 20 ng/mL, and 23 ng/mL respectively. 

 Overall, the protein concentrations obtained using our immunoassays compared reasonably 

well to the mass spectrometry-based estimates, especially considering the multiple steps required 

for mass spectrometry assessments. Levels of each of the respective proteins and complexes were 

also compared with serum TG concentrations. Interestingly, only ANGPTL8, ANGPTL3/8, and 

ANGPTL4/8 were significantly positively correlated with circulating TG (R-values of 0.47, 0.51, 

and 0.36 respectively and p-values of 0.0007, 0.0002, and 0.01 respectively). There was no 

significant correlation of ANGPTL3, active ANGPTL4, or C-terminal domain-containing (CTDC) 

ANGPTL4 with serum TG.  

Based on these findings, we used our immunoassays to measure levels of ANGPTL3, ANGPTL8, 

ANGPTL3/8, and ANGPTL4/8 in serum samples collected from normal subjects while fasting and 

one and two hours following a mixed meal challenge. As shown in Figure 2.2C, ANGPTL3 

concentrations did not change meaningfully in the postprandial state. In contrast, ANGPTL3/8, 

and ANGPTL4/8 both increased significantly postprandially, consistent with increases observed 

in ANGPTL8.  

We further explored circulating ANGPTL3/8 and ANGPTL4/8 levels by measuring these 

complexes in 352 control subjects from the SCARF cardiovascular outcomes study (208-210). The 

average ANGPTL3/8 level in the SCARF samples was 17 ng/mL, while the average ANGPTL4/8 

level was 23 ng/mL. These levels were similar to those observed in the previously studied healthy 

subjects. As Table 2 shows, circulating ANGPTL3/8 and ANGPTL4/8 levels were inversely 

correlated with HDL-cholesterol (HDL-C) and directly correlated with TG, fasting glucose, fasting 

insulin, waist to hip ratio, and BMI, as well as systolic and diastolic blood pressure. In addition, 

ANGPTL3/8 concentrations (but not ANGPTL4/8 concentrations) were also positively correlated 

with total cholesterol (TC) and LDL-C. Finally, ANGPTL3/8 and ANGPTL4/8 were also directly 

correlated with each other (R = 0.39, p < 0.0001).  
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Figure 2.2 ANGPTL3/8 and ANGPTL4/8 complexes increase with feeding.  

A: Recombinant human ANGPTL proteins and complexes used for immunoassays were 
characterized via electrophoresis. One microgram of each recombinant protein or complex was 
analyzed using gradient gel electrophoresis with a 4–20% Tris-glycine gel, followed by Coomassie 
Blue staining.  

B: Active ANGPTL4 (defined as full length ANGPTL4 or the N-terminal fragment of ANGPTL4), 
CTDC ANGPTL4, ANGPTL3, ANGPTL8, ANGPTL3/8, and ANGPTL4/8 were measured in 50 
normal donors using dedicated sandwich immunoassays.  

C: ANGPTL3/8, ANGPTL4/8, ANGPTL3, and ANGPTL8 were measured using dedicated 
sandwich immunoassays in 10 normal donors during fasting conditions and 1 and 2 h following a 
mixed meal challenge. Results are shown as the mean ± SEM. Significance for the feeding effect 
on ANGPTL proteins and complexes was assessed using a paired t-test.
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Table 2 Circulating ANGPTL3/8 and ANGPTL4/8 are highly correlated with metabolic syndrome markers. 

ANGPTL3/8 and ANGPTL4/8 complexes were measured in fasting serum samples from SCARF 
subjects (n=352), and their associations with various metabolic parameters were assessed. 

2.2.3 ANGPTL3/8 inhibition of LPL facilitated hepatic VLDL cholesterol uptake 

After analyzing the SCARF samples and noting that ANGPTL3/8 was positively correlated 

with LDL-C, we turned our attention toward understanding why this might be the case. In so doing, 

we examined the ability of ANGPTL3/8 to affect LPL-facilitated hepatocyte VLDL-C uptake. We 

chose ANGPTL4/8 as the control for these experiments after observing that 1) ANGPTL3 showed 

no correlation with TG in clinical samples, 2) serum levels of active ANGPTL4 were negligible 

compared to those of ANGPTL3/8 and ANGPTL4/8, and 3) we could not detect any effect of 

ANGPTL8 alone on LPL activity. As Figure 2.3 shows, addition of LPL to VLDL-C-containing 

media significantly increased Huh7 hepatocyte uptake of VLDL-C, consistent with previous 

reports (51, 55, 189, 211). When ANGPTL3/8 was pre-incubated with LPL prior to addition of 

LPL to the media, however, hepatocyte VLDL-C uptake was reduced nearly to levels observed in 

the absence of LPL. In contrast, when ANGPTL4/8 was pre-incubated with LPL prior to addition 

of LPL to the media, there was no significant effect on LPL-facilitated VLDL-C uptake by the 

hepatocytes. Together, these results suggested that ANGPTL3/8 may inhibit the ability of LPL to 

facilitate hepatic uptake of cholesterol containing lipoproteins. An important caveat in interpreting 

Phenotype 
ANGPTL3/8 ANGPTL4/8 

R-value p-value R-value p-value 

Triglyceride (TG) 0.485 <0.0001 0.261 <0.0001 

HDL-cholesterol (HDL-C) -0.279 <0.0001 -0.247 <0.0001 

LDL-cholesterol (LDL-C) 0.218 <0.0001 0.062 0.24 (NS) 

Total cholesterol (TC) 0.233 <0.0001 0.072 0.18 (NS) 

Body mass index (BMI) 0.484 <0.0001 0.377 <0.0001 

Waist-hip ratio 0.351 <0.0001 0.240 <0.0001 

Fasting glucose 0.282 <0.0001 0.215 <0.0001 

Fasting Insulin 0.635 <0.0001 0.473 <0.0001 

Systolic blood pressure 0.187 0.0005 0.196 0.0003 

Diastolic blood pressure 0.286 0.0002 0.234 <0.0001 
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these data, however, is that the results reflect VLDL particle uptake by multiple different receptors 

(including LDLR and VLDLR), with several required steps (including lipolysis, attachment, and 

internalization). Therefore, reduced uptake in this assay could be due to both direct effects on 

particle uptake as well as indirect effects on VLDL clearance mechanisms. 

 
Figure 2.3 ANGPTL3/8 blocks LPL-facilitated hepatocyte VLDL-C uptake.  

Cholesterol uptake in Huh7 hepatocytes was measured in the absence or presence of LPL pre-
incubated with vehicle, ANGPTL3/8 complex, or ANGPTL4/8 complex for 1 h before mixing with 
fluorescent-labeled VLDL, followed by addition to the Huh7 hepatocytes for 30 min. The media 
was then replaced with fixative. Cells were fixed for 20 min, washed twice with PBS, and covered 
with PBS. Fluorescence at 495/525 nm was measured, with VLDL uptake calculated as relative 
fluorescent units at 525 nm. Results are shown as the mean ± SEM (n = 3). 

2.2.4 Binding of ANGPTL complexes to LPL* 

To understand better the potential differences in LPL interactions with ANGPTL3/8 and 

ANGPTL4/8, we examined the in vitro binding of purified ANGPTL3, ANGPTL4, ANGPTL3/8, 

and ANGPTL4/8 to LPL using bio-layer interferometry. As Figure 2.4A shows, ANGPTL3 

demonstrated weak binding to LPL, whereas ANGPTL3/8 demonstrated markedly increased 

binding, similar to that observed with ANGPTL4 alone (Figure 2.4B). In contrast, ANGPTL4/8 

demonstrated a very different binding pattern, with a much slower off-rate than what was observed 

for either ANGPTL3/8 or ANGPTL4. Table 3 shows a summary of the LPL-binding kinetics for 

ANGPTL3, ANGPTL3/8, ANGPTL4, and ANGPTL4/8. 
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Figure 2.4 ANGPTL3/8 and ANGPTL4/8 manifest different binding patterns to LPL.  

A: The ability of ANGPTL3 and ANGPTL3/8 to bind LPL was assessed with bio-layer 
interferometry. Avidin-tagged LPL was immobilized on streptavidin biosensors and incubated with 
ANGPTL3 or ANGPTL3/8 and transferred to buffer-only wells to monitor dissociation. The left 
side of the graph shows the association of ANGPTL3 and ANGPTL3/8 with LPL. The right side 
shows their respective dissociations. Results are representative of three independent experiments.  

B: The ability of ANGPTL4 and ANGPTL4/8 to bind LPL was assessed with bio-layer 
interferometry. Avidin-tagged LPL was immobilized on streptavidin biosensors and incubated with 
ANGPTL4 or ANGPTL4/8 and transferred to buffer-only wells to monitor dissociation. The left 
side of the graph shows the association of ANGPTL4 and ANGPTL4/8 with LPL. The right side 
shows their respective dissociations. Results are representative of three independent experiments
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Table 3 LPL-binding characteristics of ANGPTL proteins and complexes.  

The Kd, kon and koff for ANGPTL3, ANGPTL3/8, ANGPTL4, and ANGPTL4/8 binding to LPL 
were determined using bio-layer interferometry. 

 

2.2.5 Effect of ANGPTL3, ANGPTL3/8, ANGPTL4, & ANGPTL4/8 on LPL activity* 

We next examined the effect that ANGPTL8 had on the ability of ANGPTL3 to inhibit LPL 

enzymatic activity (188, 194). On its own, ANGPTL3 demonstrated inhibition of LPL with an 

IC50 of 26 nM (Figure 2.5A). When ANGPTL8 was present together with ANGPTL3 in an 

ANGPTL3/8 complex, however, the inhibition increased markedly, with ANGPTL3/8 

demonstrating a 186-fold increase in potency compared to ANGPTL3 alone (IC50 of 0.14 nM). 

ANGPTL4 was then evaluated in the LPL activity assay (Figure 2.5B) and demonstrated inhibition 

with an IC50 of 0.29 nM (similar to that observed for ANGPTL3/8). In stark contrast to the results 

obtained with ANGPTL3, when ANGPTL8 was combined with ANGPTL4 to form ANGPTL4/8 

complex, potency was reduced 128-fold (IC50 of 37 nM), indicating that ANGPTL8 was 

drastically decreasing the ability of ANGPTL4 to inhibit LPL. In light of the marked decrease in 

LPL inhibitory activity of ANGPTL4/8 versus ANGPTL4, we performed an additional VLDL 

substrate-based activity assay to confirm this result (Figure 2.5C). In this assay, ANGPTL4/8 

showed a 239-fold decrease in potency of LPL inhibition compared to ANGPTL4 alone (IC50 of 

105 nM versus 0.44 nM, respectively). Table 4 summarizes these results. 

2.2.6 ANGPTL4/8 blocking of ANGPTL3/8 & ANGPTL4 mediated inhibition of LPL 

The studies presented in Figure 2.5 indicated that binding of ANGPTL8 to ANGPTL3 

markedly enhanced the inhibitory effect of ANGPTL3 on LPL activity In contrast, while 

ANGPTL4 alone had an inhibitory effect comparable to that of the ANGPTL3/8 complex on LPL 

activity, the binding of ANGPTL8 to ANGPTL4 markedly reduced this inhibitory effect of 

ANGPTL protein or complex Kd (nM) Kon (1/Ms) Koff (1/s) 

ANGPTL3 343.0 3.2 x 104 1.2 x 10-3 

ANGPTL3/8 6.4 6.9 x 104 4.4 x 10-3 

ANGPTL4 17.7 9.7 x 105 1.7 x 10-3 

ANGPTL4/8 < 0.001  4.8 x 104  < 1 x 10-7 
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Figure 2.5 ANGPTL8 markedly increases ANGPTL3 inhibition of LPL but dramatically decreases ANGPTL4 
inhibition of LPL.  

A: The ability of ANGPTL3 or ANGPTL3/8 to inhibit LPL was assessed using LPL-stable 
expression cells incubated with ANGPTL3 or ANGPTL3/8 prior to the addition of lipase substrate. 
Fluorescence was monitored at 1 and 30 min to correct for background. ANGPTL3/8 showed a 186-
fold increase in LPL inhibition compared to ANGPTL3 alone (IC50 values of 0.14 nM versus 26 
nM, respectively). Results are shown as the mean ± SEM (n = 5).  

B: The ability of ANGPTL4 or ANGPTL4/8 to inhibit LPL was similarly assessed. ANGPTL4/8 
showed a 128-fold decrease in LPL inhibition compared to ANGPTL4 alone (IC50 values of 37 nM 
versus 0.29 nM, respectively).
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Table 4 LPL inhibition summary for ANGPTL3 versus ANGPTL3/8 and ANGPTL4 versus ANGPTL4/8. 

IC50 concentrations were determined for ANGPTL3 versus ANGPTL3/8 and ANGPTL4 versus 
ANGPL4/8 in LPL activity assays. 

 

ANGPTL4 on LPL activity. These data suggested that when bound to LPL, the ANGPTL4/8 

complex might also act as a ‘bodyguard’ to protect LPL from the inhibitory effect of the 

ANGPTL3/8 complex.  

We thus hypothesized that the tight binding of the ANGPTL4/8 complex to LPL and its slow 

dissociation rate might prevent LPL inhibition by ANGPTL3/8. This prompted us to assess the 

ability of ANGPTL3/8 to inhibit LPL activity after pre-incubation of LPL with ANGPTL4/8. In 

these experiments, increasing amounts of ANGPTL4/8 proportionally decreased the ability of 

ANGPTL3/8 to inhibit LPL (Figure 2.6A). 

After obtaining these results, we performed experiments to determine if increasing amounts 

of ANGPTL4/8 could also decrease the ability of ANGPTL4 to inhibit LPL. As shown in Figure 

2.6B, this proved to be the case. Together, these results indicated that ANGPTL4/8 can effectively 

compete with both ANGPTL3/8 and ANGPTL4 for binding to LPL and in so doing block the 

ability of ANGPTL3/8 and ANGPTL4 to inhibit LPL. In these experiments, pre-incubation of LPL 

with 10 nM of ANGPTL4/8 was required to completely block the inhibition of LPL by 1 nM 

ANGPTL3/8 (and 1 nM ANGPTL4), indicating that high local concentrations of ANGPTL4/8 

may be required to prevent circulating ANGPTL3/8 from inhibiting LPL in the fat.  

These observations suggested a mechanism by which ANGPTL4/8 localized in adipose 

tissue could block circulating ANGPTL3/8 from inhibiting LPL in the fat, thus ensuring that 

increased ANGPTL3/8 after feeding inhibits LPL mainly in skeletal muscle. This concept is 

consistent with the serum levels observed for ANGPTL3/8 and ANGPTL4/8.

Enzyme Substrate ANGPTL 
Protein 

IC50 

(nM) 
ANGPTL 
Complex 

IC50 

(nM) 
Change 

Direction 
Fold 

Change 

LPL BODIPY-TG ANGPTL3 26 ANGPTL3/8 0.14 Increase  (+) 186 

LPL BODIPY-TG ANGPTL4 0.29 ANGPTL4/8 37 Decrease  (-) 128 

LPL VLDL ANGPTL4 0.44 ANGPTL4/8 105 Decrease  (-) 239 
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Figure 2.6 ANGPTL4/8 blocks ANGPTL3/8- and ANGPTL4-mediated inhibition of LPL.  

A: To study the ability of ANGPTL4/8 to protect LPL from ANGPTL3/8 inhibition, various 
concentrations of ANGPTL4/8 were pre-incubated with LPL-stable expression cells for 1 h. 
Afterward, 1 nM of ANGPTL3/8 was added for a further 1 h incubation, prior to the addition of 
lipase substrate. Fluorescence was monitored as in Fig. 5A. Results are shown as the mean ± SEM 
(n = 4). 

B: To study the ability of ANGPTL4/8 to protect LPL from ANGPTL4 inhibition, various 
concentrations of ANGPTL4/8 were pre-incubated with LPL-stable expression cells for 1 h. 
Afterward, 1 nM of ANGPTL4 was added for a further 1 h incubation, prior to the addition of lipase 
substrate. Fluorescence was monitored as in Fig. 5A. Results are shown as the mean ± SEM (n = 6). 

 

ANGPTL3/8 would be expected to act in an endocrine manner as its serum level falls midway on 

its LPL inhibition curve. In contrast, circulating ANGPTL4/8 levels are far lower than those 

required to block the ability of circulating ANGPTL3/8 to inhibit LPL, consistent with 

ANGPTL4/8 acting more in an autocrine/paracrine manner. 

2.2.7 Insulin stimulated release of ANGPTL3/8 from hepatocytes* 

We next turned our attention to the source of increased postprandial ANGPTL3/8 that we 

observed in human serum. Based on previous reports that hepatic ANGPTL8 mRNA increases in 

the fed state, we hypothesized that insulin might stimulate the secretion of ANGPTL3/8 from the 

liver (138). To test this hypothesis, we measured ANGPTL3/8 at multiple time points in insulin-

naïve patients treated for 52 weeks with basal insulin peglispro (BIL), a hepato-preferential insulin 

(212, 213). Mean baseline ANGPTL3/8 and ANGPTL4/8 levels in these type 2 diabetes patients 

were 19 and 45 ng/mL respectively. As Figure 2.7A shows, the hepato-selective insulin 

significantly increased ANGPTL3/8 circulating concentrations. In comparison, there was little 

change in circulating ANGPTL4/8 levels, suggesting that the source of increased postprandial 
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ANGPTL4/8 was not the liver. To confirm further that insulin stimulated the release of 

ANGPTL3/8 (but not ANGPTL4/8) from hepatocytes, we also incubated human primary 

hepatocytes in the absence or presence of 1 nM insulin and measured levels of secreted 

ANGPTL3/8 and ANGPTL4/8 complexes. As Figure 2.7B shows, insulin stimulation significantly 

increased hepatocyte release of ANGTL3/8, while not affecting the release of ANGPTL4/8. 

Together with the in vivo BIL data, these results confirmed that insulin stimulates hepatic secretion 

of ANGPTL3/8.  

 
Figure 2.7 Insulin stimulates human hepatocyte secretion of ANGPTL3/8.  

A: Insulin-naïve patients (n = 279) were administered the hepatic-preferential insulin BIL, and 
serum samples were obtained under morning fasting conditions over the course of 1 year of BIL 
treatment. ANGPTL3/8 and ANGPTL4/8 levels were measured at baseline and after 12, 26, and 52 
weeks of BIL administration. Results are shown as the mean ± SEM (*P < 0.0001 versus week 0).  

B: Human primary hepatocytes obtained in the HepatoPac platform were washed in serum-free 
application media and pre-incubated in application media in the absence of insulin. Following 
aspiration, cells were incubated with application media in the absence or presence of 1 nM of insulin. 
ANGPTL3/8 and ANGPTL4/8 levels in the media were measured using sandwich immunoassays, 
with the results shown as the mean ± SEM (n = 8). 

2.2.8 Insulin stimulated release of ANGPTL4/8 from adipocytes* 

The above observations indicated that insulin did not increase ANGPTL4/8 release from the 

liver and caused us to hypothesize that insulin-stimulated secretion of ANGPTL4/8 might occur 

from the fat. We considered previous reports describing that while ANGPTL8 mRNA was highly 

insulin-responsive in human adipocytes, levels of the secreted protein did not increase upon insulin 

treatment (214, 215). We hypothesized that there might be two reasons for this. The first could be 

that a further confounding factor might prevent the ability of adipocytes to release the ANGPTL4/8 

complex in vitro. The second could be that another signal in addition to insulin might be required 
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for maximal ANGPTL4/8 secretion from adipocytes. In this latter scenario, in order for 

postprandial increases in ANGPTL4/8 to occur, increased insulin levels alone might not be 

sufficient, but rather an additional stimulus might be required. If a second signal beyond insulin 

was indeed required for optimal ANGPTL4/8 secretion from adipose tissue, we believed a likely 

candidate would be glucose-dependent insulinotropic peptide (GIP), an incretin secreted by K-

cells in the gut in response to fat and carbohydrate intake, as the GIP receptor is highly expressed 

in adipocytes (216). Further influencing our thinking was the fact that we had shown in a previous 

study that postprandial increases in GIP manifested a pattern very similar to those observed for the 

postprandial ANGPTL4/8 increases observed in our current study (216).  

We therefore turned our attention to measuring insulin-stimulated secretion of ANGPTL4/8 

from adipocytes. As shown in Figure 2.8A, we confirmed that exposure of human adipocytes to 

insulin increased levels of ANGPTL8 mRNA. In contrast, ANGPTL4 mRNA levels did not change 

with insulin treatment (Figure 2.8B). We also observed that ANGPTL3 mRNA levels were 

undetectable, consistent with previous reports that adipocytes do not express ANGPTL3 (217). To 

understand why previous researchers were unable to measure insulin stimulated ANGPTL8 release 

from adipocytes, we considered that ANGPTL8 might be secreted as part of an ANGPTL4/8 

complex that could remain tightly bound to plasma membranes via interaction with heparin sulfate 

proteoglycans, thereby preventing release into the media. To understand if this might be the case, 

we first expressed ANGPTL8 and ANGPTL4 in HEK293 cells in the absence or presence of 0.1 

mg/ml dextran sulfate (a heparin-like compound). Interestingly, the addition of dextran sulfate, 

greatly increased the release of ANGPTL4 and ANGPTL8 (Figure 2.8C), causing us to conduct 

subsequent experiments in adipocytes in the presence of heparin.  

We thus treated adipocytes in heparin-containing media with insulin in the absence or presence of 

GIP and measured release of ANGPTL4/8. Under these conditions, insulin dose-dependently 

increased the secretion of ANGPTL4/8, and this dose-dependent increase was greatly augmented 

by the addition of GIP (Figure 2.8D). In the absence of GIP, 1, 10, and 100 nM insulin increased 

adipocyte ANGPTL4/8 secretion by 2.1, 6.5 and 7.7-fold respectively compared to control, 

whereas in the presence of GIP, 1, 10, and 100 nM insulin increased adipocyte ANGPTL4/8 

secretion by 14.4, 22.7, and 27.4-fold respectively. 
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Figure 2.8 Insulin stimulates ANGPTL4/8 secretion from human adipocytes.  

A: Human adipocytes were incubated in the absence or presence of insulin, and 1 µg of total RNA was reverse 
transcribed. ANGPTL8 transcript levels were quantitated. Insulin treatment resulted in an approximate 8-fold increase 
in ANGPTL8 mRNA levels. Results are shown as the mean ± SEM (n = 3).  

B: ANGPTL4 transcript levels were quantitated in the human adipocytes in A. Results are shown as the mean ± SEM 
(n = 3).  

C: Flag-tagged ANGPTL4 and HIS-tagged ANGPTL8 constructs were transfected into HEK293 cells. Afterward, 
dextran sulfate was added, media were harvested, and equal volumes from each condition were immunoblotted with 
anti-Flag or anti-HIS antibody.  

D: Human adipocytes were treated in heparin-containing media supplemented with 0–100 nM insulin in the absence 
and presence of 10 nM GIP. Media were collected and analyzed for ANGPTL4/8. Results are shown as the mean ± 
SEM (n = 6, *p < 0.0001 versus control)
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In contrast, no ANGPTL4/8 was measurable in the absence of heparin, indicating that 

ANGPTL4/8 secreted by adipocytes may remain mostly localized in the adipose tissue in vivo. 

This suggests that ANGPTL4/8 present in the circulation likely reflects adipose tissue 

ANGPTL4/8 concentrations, with ANGPTL4/8 entering the circulation from blood flow through 

the adipose capillary beds. Of note, we also attempted to measure ANGPTL3/8 secreted from the 

adipocytes stimulated with insulin but were unable to detect any ANGPTL3/8 in the media, 

consistent with undetectable adipocyte ANGPTL3 mRNA levels.  

Together, these results indicated that by staying mainly localized in the adipose tissue, 

increased postprandial ANGPTL4/8 may prevent the increased postprandial circulating 

ANGPTL3/8 (as well as localized ANGPTL4) from inhibiting LPL in the fat. This suggests a 

mechanism for the elevated circulating ANGPTL3/8 that occurs after feeding to act mainly in the 

skeletal muscle and not the adipose tissue, thereby ensuring that conflicting LPL inhibitory signals 

are not sent to both tissues simultaneously.  

2.3 Discussion 

In this study, we show that ANGPTL8 is an insulin-responsive mediator of FA uptake that 

directs the storage of calories from food into the fat for future energy needs. ANGPTL8 does this 

by forming ANGPTL3/8 and ANGPTL4/8 complexes with respective protein ratios of 3:1 and 1:1. 

By forming an ANGPTL3/8 complex, ANGPTL8 markedly increases ANGPTL3 inhibition of 

LPL to decrease skeletal muscle LPL activity and thus decrease skeletal muscle FA uptake. 

Through forming an ANGPTL4/8 complex, ANGPTL8 markedly decreases ANGPTL4 inhibition 

of LPL to increase LPL activity in the fat to facilitate adipose tissue FA uptake. Through its tight 

binding to adipocyte-associated LPL, ANGPTL4/8 may also block the ability of circulating 

ANGPTL3/8 (and localized ANGPTL4) to inhibit LPL in adipose tissue. These properties of 

ANGPTL8 allow for the postprandial increase of LPL-inhibitory activity of ANGPTL3/8 to occur 

mainly in the skeletal muscle so that FA are taken up mostly into the fat after feeding. 

This system provides a mechanism to ensure that LPL in adipose tissue is active after feeding 

while LPL in muscle is inhibited, thus allowing for proper storage of dietary lipids and preventing 

ectopic fat deposition. ANGPTL4/8 present in the circulation probably comes from localized 

ANGPTL4/8 in the fat that becomes detached as a result of the capillary flow across luminal 

surfaces of the adipose endothelium. In our experiments in HEK293 cells and adipocytes, 
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ANGPTL4/8 was only released in vitro in the presence of dextran sulfate or heparin. These in vitro 

models, however, are unable to mimic the dynamic capillary flow that may cause some localized 

ANGPTL4/8 to enter the circulation. In addition, we cannot rule out the possibility, that some 

ANGPTL4/8 (as well as some ANGPTL4) that we detected in the circulation might come from 

skeletal muscle where ANGPTL4 has also been shown to be expressed. (218)  

In our study, ANGPTL3/8 demonstrated more than a 100-fold increased potency of LPL 

inhibitory activity compared to ANGPTL3, while ANGPTL4/8 showed at least a 100-fold 

decreased potency of LPL inhibitory activity compared to ANGPTL4. The changes in potency 

suggest that these proteins and their complexes exist in a symmetrically modifiable system. 

ANGPTL4 is a much more potent inhibitor of LPL than ANGPTL3. Formation of the ANGPTL4/8 

complex greatly diminishes ANGPTL4’s LPL inhibitory activity to the point that it becomes 

similar to that of ANGPTL3. In contrast, formation of the ANGPTL3/8 complex greatly increases 

ANGPTL3’s LPL inhibitory activity, resulting in an LPL inhibition profile comparable to that of 

ANGPTL4. An important caveat, however, is that our in vitro functional experiments were 

performed in conditions bearing little resemblance to capillary endothelial surfaces, where LPL 

acts in vivo. This is potentially important because several proteins (including APOC2, APOC3, 

and GPIHBP1) can affect LPL activity and stability, and may modulate the effects of ANGPTL 

proteins and complexes (22, 187-190). Nevertheless, our data showing that circulating levels of 

active (N-terminally intact) ANGPTL4 are negligible compared to ANGPTL3/8 are consistent 

with our in vitro functional observations. Because active ANGPTL4 inhibits LPL as potently as 

ANGPTL3/8, it would be difficult for the system to operate properly if both active ANGPTL4 and 

ANGPTL3/8 reached the skeletal muscle at comparable levels.  

Our study is the first to examine in detail the circulating levels of ANGPTL3/8 and 

ANGPTL4/8 complexes in man. Our data are consistent with the idea that most, if not all, 

ANGPTL8 released from hepatocytes is secreted as part of the ANGPTL3/8 complex. In contrast, 

our data also indicate that while some ANGPTL3 is secreted by the liver as part of an ANGPTL3/8 

complex, most ANGPTL3 is secreted as free ANGPTL3 not complexed with ANGPTL8. 

Interestingly, ANGPTL3/8 and ANGPTL4/8 circulate at similar levels (roughly 20 ng/mL). For 

ANGPTL3/8, these levels are close to the IC50 we observed for the ANGPTL3/8 complex on LPL 

activity, consistent with the idea that circulating ANGPTL3/8 works in an endocrine manner. In 

the case of ANGPTL4/8, however, these levels are well below those required for a direct effect on 
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LPL activity or for blocking the LPL-inhibitory effects of ANGPTL4 and ANGPTL3/8, further 

supporting the idea that the ANGPTL4/8 complex acts mainly in an autocrine/paracrine manner. 

In our competition experiments, pre-incubation of LPL with ANGPTL4/8 blocked the 

inhibition of LPL by ANGPTL3/8, indicating that localized ANGPTL4/8 may prevent circulating 

ANGPTL3/8 from inhibiting LPL in the fat. These results suggest a mechanism by which 

ANGPTL4/8 localized in adipose tissue could block circulating ANGPTL3/8 from inhibiting LPL 

in the fat, thus ensuring that increased ANGPTL3/8 after feeding inhibits LPL mainly in skeletal 

muscle. We also contemplated examining the effect of active ANGPTL4 on ANGPTL3/8 mediated 

LPL inhibition, however because active ANGPTL4 and ANGPTL3/8 inhibit LPL to almost the 

same extent, it would have been extremely difficult to sort out ANGPTL4-mediated inhibition of 

LPL versus that caused by ANGPTL3/8.  

In our in vitro binding experiments, ANGPTL4 and ANGPTL3/8 had similar, relatively high 

off rates with regard to their LPL binding. In contrast, ANGPTL4/8 demonstrated a very low off 

rate. In spite of this, ANGPTL4/8 showed much less inhibition of LPL than did ANGPTL4, 

causing us to reflect on how ANGPTL4/8 could bind to LPL with comparable or higher affinity 

compared to ANGPTL4 but without inhibiting it to the same degree. It is possible that ANGPTL4 

and ANGPTL4/8 might bind to different domains of LPL, with ANGPTL4 binding causing 

marked LPL inhibition while ANGPTL4/8 binds to a somewhat different domain, resulting in 

much less inhibitory effect. This concept is consistent with the idea that binding alone, even high 

affinity binding, does not necessarily guarantee inhibition. Understanding exactly why 

ANGPTL4/8 can bind LPL with comparable or higher affinity than ANGPTL4 binds LPL, but 

without inhibiting it to the same extent, will be an important area of future study.  

Additional novel findings in our study are the inverse correlations of ANGPTL3/8 and 

ANGPTL4/8 with HDL, and the direct correlations of both complexes with all other metabolic 

syndrome markers. For ANGPTL3/8, the positive correlation with TG and other markers of 

metabolic syndrome was not surprising. In the case of ANGPTL4/8, however, it was less obvious 

why despite relieving ANGPTL4-mediated LPL inhibition, ANGPTL 4/8 was also positively 

correlated with serum TG. One possibility might be that by blocking ANGPTL3/8 inhibition of 

LPL in the fat, ANGPTL4/8 shifts more ANGPTL3/8 to the skeletal muscle, where it inhibits LPL 

activity and thus decreases FA uptake into skeletal muscle, resulting in increased circulating TG. 

Further experiments will be needed to test this idea. Interestingly, we noted that ANGPTL3/8 was 
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directly correlated with LDL-C, while ANGPTL4/8 was not. This could be related to LPL-

facilitated uptake of cholesterol-containing lipoprotein particles into the liver via VLDL and 

related receptors (55, 219-223). Our data demonstrating that ANGPTL3/8 inhibited LPL-

facilitated hepatocyte VLDL-C uptake might provide a possible explanation for the positive 

correlation of ANGPTL3/8 with LDL-C, but further mechanistic investigations along these lines 

will be needed.  

Our observations build upon those of Zhang (who proposed an ANGPTL3-4-8 model), 

Kovrov and colleagues (who incubated N-terminal ANGPTL3 and ANGPTL4 fragments with 

ANGPTL8 and showed approximate 4-fold activation of ANGPTL3 and 4-fold inhibition of 

ANGPTL4), and Chi and colleagues (who showed that ANGPTL8 complexed with ANGPTL3 

and enhanced its ability to bind and inhibit LPL) (4, 91, 117). Importantly, the study by Chi and 

colleagues also showed that ANGPTL8 required complex formation in order to be efficiently 

secreted. This helps explains why, in our present study, almost all serum ANGPTL8 was observed 

in complexes with ANGPTL3 or ANGPTL4.  

Our observations in this study are also consistent with the observed ANGPTL knockout 

phenotypes (84, 205, 224). Humans with ANGPTL3 knockout mutations have decreased TG and 

LDL-C and decreased cardiovascular risk (199). These mutations might reduce circulating 

ANGPTL3/8, resulting in increased LPL activity and uptake of FA into skeletal muscle, thus 

lowering TG levels. Decreased circulating ANGPTL3/8 complex might also result in less 

inhibition of LPL-mediated cholesterol uptake by the liver, thereby lowering LDL-C levels. In 

contemplating why an ANGPTL4 knockout or E40K mutation would be beneficial, one possibility 

might be that reduction of ANGPTL4 in the fat causes increased adipose LPL activity, directly 

lowering TG. Another possibility could be that less ANGPTL4/8 in the adipose tissue is available 

to block ANGPTL3/8-mediated inhibition of adipose LPL. This might shift FA uptake more 

toward skeletal muscle for oxidation, thereby decreasing TG. It is hard to know which, if either, 

of these mechanisms is correct, and further study will be required to address these possibilities.  

In the case of the human ANGPTL8 knockout (121X) mutation, decreased circulating 

ANGPTL3/8 complex should result in decreased TG, which has been reported (141). The 

ANGPTL8 121X mutation should provide cardiovascular protection, as ANGPTL8 knockout mice 

have decreased TG and decreased fat mass (138). The mutation in humans, however, is so rare that 

even the extensive genetic study probing this question was underpowered (141). In retrospect, this 
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is not surprising, as the ANGPTL8 121X mutation would have been extremely disadvantageous 

in a world of caloric insufficiency. 

Taken together, our data explain how ANGPTL8 responds to caloric intake to steer FA away 

from skeletal muscle and toward adipose tissue for storage as TG, as shown by the possible model 

in Figure 2.9. Under fasting conditions (Figure 2.9A), ANGPTL8 levels are low, and low levels 

of ANGPTL3/8 and ANGPTL4/8 complexes are made. As a result, LPL is inhibited locally in the 

fat by ANGPTL4, leading to minimal adipose tissue FA uptake, with most FA uptake occurring in 

skeletal muscle. Feeding dramatically changes this dynamic by stimulating release of ANGPTL8 

in two different complexes to shift FA away from skeletal muscle and toward adipose tissue 

(Figure 2.9B). Postprandial increases in insulin stimulate hepatic secretion of ANGPTL3/8, which 

potently inhibits LPL activity. The circulating ANGPTL3/8 complex reaches the skeletal muscle 

to inhibit LPL and prevent FA uptake. At the same time, postprandial increases in both insulin and 

GIP stimulate ANGPTL4/8 secretion from adipocytes. When ANGPTL8 is present in this 

localized complex with ANGPTL4, it drastically decreases the potency of ANGPTL4’s LPL 

inhibitory activity. The increased, localized ANGPTL4/8 in the adipose tissue not only preserves 

LPL activity but also blocks the ability of circulating ANGPTL3/8 and localized ANGPTL4 to 

inhibit LPL, with the net result of these actions being increased FA uptake into the adipose tissue 

for storage as TG.  

When viewed holistically, it becomes apparent that the major metabolic problem in our 

developed world is that, unlike our ancestors, we hardly ever go through any periods of prolonged 

fasting. Instead, our constant feeding chronically increases our ANGPTL3/8 and ANGPTL4/8 

levels. Increased levels of these complexes lead to elevated circulating TG and excessive FA 

storage in our adipose tissue, which in turn lead to obesity, hypertension, insulin resistance, and 

ultimately type 2 diabetes. Ironically, in a world of caloric abundance, the same ANGPTL8 protein 

that likely protected our ancestors from starvation now predisposes us to metabolic syndrome.
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Figure 2.9 A possible model for how ANGPTL8 shifts FA toward adipose tissue after feeding. 

A: While fasting, ANGPTL8 levels are low. Localized ANGPTL4 inhibits adipose tissue LPL to 
minimize FA uptake into the fat for storage, and FAs are mainly taken up into skeletal muscle for 
use as energy.  

B: During feeding, ANGPTL8 forms a circulating complex with ANGPTL3 that increases its ability 
to inhibit LPL, thus minimizing FA uptake into skeletal muscle. ANGPTL8 also forms a mostly 
localized complex with ANGPTL4 in adipose tissue that decreases the ability of ANGPTL4 to 
inhibit LPL. The ANGPTL4/8 complex also protects LPL in the fat from inhibition by circulating 
ANGPTL3/8 and localized ANGPTL4, thereby preserving adipose tissue LPL activity to promote 
FA uptake into the fat for storage as TG.
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2.4 Data availability  

All study data are contained within the manuscript and the Supplementary Data File. All 

primary mass spectrometry data have been deposited at PeptideAtlas (Server name: 

ftp.peptideatlas.org) as follows: full URL, ftp://PASS01578:NM8576fr@ftp.peptideatlas.org/; 

data identifier, PASS01578; dataset type, SRM; dataset tag, ANGPTL; dataset title, SRM 

quantification of ANGPTL3/4/8 proteins. 
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 THE MECHANISM OF ACTION OF APOLIPOPROTEIN 
A5 - SUPPRESSION OF ANGPTL3/8 COMPLEX-MEDIATED 

INHIBITION OF LPL ACTIVITY 

A modified version of this chapter has been submitted for publication approval in the Journal of 
Lipid Research. 

3.1 Introduction 

Control of triglyceride (TG) metabolism to enable delivery of fatty acids (FA) to target 

tissues such as muscle and fat involves a number of different proteins and is incompletely 

understood. We have recently shown that the angiopoietin-like protein 3/4/8 (ANGPTL3/4/8) 

family of proteins is critical in regulating circulating TG levels through modulation of lipoprotein 

lipase (LPL) activity in adipose tissue and skeletal muscle (225). In particular, we demonstrated 

that ANGPTL8 serves as the critical insulin-responsive protein in this system by forming 

complexes with ANGPTL3 and ANGPTL4 to increase and decrease markedly their respective 

LPL-inhibitory activities. ANGPTL8 forms a circulating ANGPTL3/8 complex that dramatically 

increases ANGPTL3 inhibition of LPL in the skeletal muscle, resulting in increased circulating 

TG that can be routed to the fat, where LPL inhibition is simultaneously decreased through 

formation of a localized ANGPTL4/8 complex. The localized ANGPTL4/8 complex also protects 

LPL in the adipose tissue from circulating ANGPTL3/8 to ensure that adipose tissue LPL is active 

after feeding. Together, these properties of ANGPTL8 result in increased LPL-inhibition in the 

skeletal muscle and decreased LPL inhibition in the adipose tissue so that FA are taken up into the 

fat postprandially and not deposited ectopically (146, 225). As elegant as this remarkable system 

of proteins is, the above observations cannot fully explain the control of TG metabolism, as several 

other proteins are known to influence TG concentrations. These include apolipoprotein C2 (ApoC2) 

(which is thought to activate LPL), ApoC3 (which is thought to inhibit LPL), and the atypical 

apolipoprotein, ApoA5 (226-232). 

Interestingly, while there is clear agreement that ApoA5 potently decreases TG levels, its 

mechanism of action has remained obscure despite the fact that it was discovered in 2001. The 

gene for ApoA5 was identified through experiments searching for open reading frames in the 

ApoA1-ApoC3-ApoA4 gene cluster located on human chromosome 11q23 (228-232). The new 
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gene that emerged from this search coded for a novel apolipoprotein with greatest homology to 

ApoA4, and the corresponding apolipoprotein was appropriately named ApoA5. It soon became 

clear that ApoA5 was crucial in controlling circulating TG levels. When human ApoA5 was 

overexpressed in mice, it decreased TG concentrations by 50–75%, and when the mouse ApoA5 

gene was knocked out, TG concentrations increased approximately 4-fold (228-232). In addition, 

a number of ApoA5 mutations were reported in humans that correlated with circulating TG (233-

236). It was also shown that mRNA expression of ApoA5 was regulated by peroxisome 

proliferator-activated receptor-α (PPAR-α) agonists, and that administration of a PPAR-α agonist 

increased circulating ApoA5 levels, suggesting that this class of compounds may reduce serum 

TG by increasing ApoA5 (237-239). Together, these initial observations clearly established 

APOA5 as a critical player in TG metabolism. 

Despite these compelling early data, however, no clear consensus has emerged for how 

ApoA5 actually acts at the molecular level to decrease TG. Current hypotheses include suggestions 

that it may directly stimulate LPL activity, facilitate TG-containing lipoprotein particle uptake by 

the liver, or intracellularly regulate the secretion of hepatic TG (240-242). One potential clue that 

the mechanism of action might be unusual came when we measured human serum levels of ApoA5 

and found that it circulated as a 39 kD monomer at levels of 24-406 ng/mL, which are much lower 

than those of other apolipoproteins (243, 244). To put this in perspective, the molar concentration 

of ApoA5 is approximately 4-6 nM, compared with approximately 40 μM for ApoA1 and 2 μM 

for ApoB. Yet when transgenic mice had both ApoA5 and ApoC3 either knocked-out or 

overexpressed, the result was essentially normal TG concentrations, even though ApoC3 levels 

during overexpression were approximately 500-fold higher than those of over-expressed ApoA5, 

thus confirming the potent ability of ApoA5 to reduce serum TG (232). 

In light of these observations regarding ApoA5 as well as our own and other groups’ recent 

studies on the ANGPTL3/4/8 system of proteins (4, 117, 146, 225), we sought to understand better 

the possible connections between these two important regulators of TG metabolism. In our present 

study, we demonstrate that ApoA5 associates with ANGPTL3/8 in human serum and present 

evidence that ApoA5 works through selective suppression of the LPL-inhibitory activity of the 

ANGPTL3/8 complex. Using functional LPL assays, we show that ApoA5 has no direct effect on 

LPL activity, and that it does not affect the LPL-inhibitory activities of ANGPTL3, ANGPTL4, or 

the ANGPTL4/8 complex. Importantly, we also demonstrate that the suppression of ANGPTL3/8-
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mediated LPL-inhibition occurs at a molar ratio that is consistent with that of the molar 

concentrations of ApoA5 and ANGPTL3/8 in human serum. Upon obtaining these data, we also 

considered reports of liver X-receptor (LXR) agonists decreasing ApoA5 expression and causing 

increases in TG (245, 246). We observed that the prototypical LXR agonist T0901317 actually 

caused modest increases in hepatocyte ApoA5 secretion, but markedly stimulated ANGPTL3/8 

secretion. We also observed that the addition of insulin to T0901317 attenuated ApoA5 secretion 

while further increasing T0901317-stimulated ANGPTL3/8 secretion. Taken together, our results 

shed light on a novel intersection of ApoA5 and the ANGPTL3/4/8 family of proteins in the 

regulation of TG metabolism and also provide a possible explanation for LXR agonist-induced 

hypertriglyceridemia. 

3.2 Results 

Result sections denoted with * after the subsection heading were addressed through my personal 

contributions. 

3.2.1 Association of ApoA5 with ANGPTL3/8 complex in human serum* 

To determine which circulating proteins associate with ANGPTL3/8, we incubated 

immobilized ANGPTL3/8 with human serum. After washing, bound proteins were eluted, reduced, 

and alkylated prior to trypsin digestion. Tryptic peptides were separated chromatographically, and 

the MS/MS spectra of each peptide was searched against a human database. Seventeen peptide 

ions were positively identified from ApoA5, and these 17 ions contained 12 unique peptide 

sequences covering 52% of the protein sequence. The mean AUCs for these 17 peptide ions from 

ANGPTL3/8-coated wells and control wells are shown in Figure 3.1A. Database search results 

and mean AUC for the ApoA5 peptide ions are listed in Supplemental Table B1, and extracted ion 

chromatograms are shown in Supplemental Figures A1-A17. Of the 17 ApoA5 ions, 3 ions present 

at a much lower level also registered positive AUC values in the control samples when extracting 

with a 2 ppm mass tolerance window. Detailed analyses, however, revealed that these were 

interference ions with a different isotope pattern compared to the corresponding ApoA5 ions. 

Statistical analysis revealed that ApoA5 was the only protein enriched greater than 5-fold (p 

< 0.001) compared to control. Under these conditions, no other proteins were enriched greater than 
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5-fold, indicating that the main protein associated with ANGPTL3/8 in human serum was ApoA5. 

To verify this observation, we coupled anti-ANGPTL3/8, anti-ApoA5, and irrelevant control 

antibodies to beads, incubated the beads with human serum, separated bound proteins via 

electrophoresis, transferred the proteins to PVDF, and performed Western blotting with anti-

ApoA5 antibody. As Figure 3.1B shows, ApoA5 co-immunoprecipitated with ANGPTL3/8, 

confirming the association observed via mass spectrometry. 

 

Figure 3.1 ApoA5 associates with ANGPTL3/8 in human serum. 

(A) ANGPTL3/8 complex was coupled to beads incubated with human serum. Bound proteins were 
reduced, alkylated, and digested with trypsin. The means (from triplicate samples) of the areas under 
the curve (AUC) for peptide ions significantly different from control (p < 0.05 and fold change > 5) 
were plotted in a scatter dot plot. Only ApoA5 peptide ions met these criteria. The AUC was 
extracted for each ion with a mass tolerance of 2 ppm. Results shown are representative of 3 
independent experiments.  

(B) An irrelevant control antibody, an anti-ANGPTL3/8 antibody, and an anti-ApoA5 antibody were 
covalently coupled to beads, with heavy and light chains further cross-linked, and were used to 
immunoprecipitate human serum. Proteins were separated on a 12% Bis-Tris gel and transferred to 
PVDF membrane. The blot was stained with anti-ApoA5 antibody. Results are representative of 2 
independent experiments. 

3.2.2 Generation of recombinant ApoA5 protein 

Initial attempts to express human ApoA5 (residues 24-366) were unsuccessful, with the 

recombinant protein proving to be unstable. We therefore took a new approach and expressed 

ApoA5 coupled to HIS tag-mature human serum albumin (HSA) at either the N-terminus (HSA-

ApoA5) or the C-terminus (ApoA5-HSA) of ApoA5. The ApoA5 could then be used either as an 

intact ApoA5 fusion protein or could undergo PreScission cleavage to generate HSA and ApoA5 
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immediately prior to use in LPL assays. Figure 3.2 shows a Coomassie-stained gel, with ApoA5-

HSA, HSA-ApoA5, and HSA alone evaluated either without or with PreScission cleavage. As the 

figure demonstrates, this approach provided large quantities of very pure ApoA5 suitable for 

subsequent experiments. 

 

Figure 3.2 Expression and purification of recombinant ApoA5 proteins.  

Recombinant human ApoA5-HSA, HSA-ApoA5, and control HSA protein (0.5 µg of each) were 
analyzed either without or with PreScission cleavage of the HSA tag. Proteins were separated via 
gradient gel electrophoresis using a 4-20% Tris-glycine gel and stained with Coomassie Blue. 

3.2.3 ApoA5 suppression of ANGPTL3/8-mediated LPL-inhibitory activity. 

Upon observing the association of ApoA5 with ANGPTL3/8 in human serum, we sought to 

determine if ApoA5 altered the ability of ANGPTL3/8 to inhibit LPL activity. To do this, we 

assessed the ability of increasing concentrations of ANGPTL3/8 to inhibit LPL activity in the 

presence of 0-300 nM ApoA5. Figure 3.3A shows the results of these experiments, in which HSA-

ApoA5 dose-dependently decreased the ability of ANGPTL3/8 to inhibit LPL activity. In contrast, 

when similar experiments were performed with ANGPTL4 (which inhibits LPL activity to roughly 

the same degree as ANGPTL3/8), there was no decrease observed in the ability of ANGPTL4 to 

inhibit LPL in the presence of increasing concentrations of ApoA5 (Figure 3.3B). Similarly, when 

the same experiments were performed with ANGPTL3 and ANGPTL4/8 (which are both relatively 

weak inhibitors of LPL), there was no ApoA5-mediated decrease in their ability to inhibit LPL 

(Figures 3.3C and 3.3D, respectively). 
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Comparable results to those in Figure 3.3 were also obtained when using ApoA5-HSA, 

PreScission-cleaved HSA-ApoA5, or PreScission-cleaved ApoA5-HSA. As Figure 3.4A shows, 

HSA-ApoA5 and ApoA5-HSA demonstrated similar suppression of ANGPTL3/8-mediated LPL-

inhibitory activity. Likewise, as shown in Figure 3.4B, PreScission-cleaved HSA-ApoA5 and 

PreScission-cleaved ApoA5-HSA also demonstrated comparable suppression of ANGPTL3/8-

mediated LPL-inhibitory activity. In addition, HSA itself had no effect on ANGPTL3/8-mediated 

LPL-inhibitory activity. Together, these data confirmed the results in Figure 3.3 and led us to 

conduct future LPL activity assays with HSA-ApoA5. 

 

Figure 3.3 ApoA5 selectively blocks the ability of ANGPTL3/8 to inhibit LPL activity. 

The ability of ANGPTL3/8, ANGPTL3, ANGPTL4, and ANGPTL4/8 to inhibit LPL activity in the 
presence of 0 nM (squares), 25 nM (triangles), 100 nM (diamonds) and 300 nM (circles) of ApoA5 
(HSA-ApoA5) was assessed using LPL-stable expression cells. All results are shown as the mean ± 
SD (n = 3 from 3 independent experiments). 

(A) ANGPTL3/8 was pre-incubated with ApoA5 prior to the addition of lipase substrate. 

(B) ANGPTL3 was pre-incubated with ApoA5 prior to the addition of lipase substrate. 

(C) ANGPTL4 was pre-incubated with ApoA5 prior to the addition of lipase substrate. 

(D) ANGPTL4/8 was pre-incubated with ApoA5 prior to the addition of lipase substrate.
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Figure 3.4 HSA-ApoA5 and ApoA5-HSA block ANGPTL3/8-mediated LPL inhibitory activity in a similar manner 
to PreScission-cleaved HSA-ApoA5 and ApoA5-HSA.  

(A) The ability of 100 nM HSA-ApoA5 (diamonds) and 100 nM ApoA5-HSA (circles) to inhibit 
LPL activity in the presence of increasing concentrations of ANGPTL3/8 was assessed using LPL-
stable expression cells. Control (squares) and HSA-His alone (triangles) conditions are also shown. 
Results are shown as the mean ± SD (n = 3 from 3 independent experiments). 

(B) The ability of 100 nM PreScission-cleaved HSA-ApoA5 (diamonds) and 100 nM PreScission-
cleaved ApoA5-HSA (circles) to inhibit LPL activity in the presence of increasing concentrations 
of ANGPTL3/8 was assessed using LPL-stable expression cells. Control (squares) and HSA-His 
alone plus PreScission cleavage (triangles) are also shown. Results are shown as the mean ± SD (n 
= 3 from 3 independent experiments). 

To confirm further the specific effect of ApoA5 on ANGPTL3/8 versus other ANGPTL 

proteins and complexes, we performed kinetic analyses of the LPL-inhibitory activity of 1.2 nM 

of ANGPTL3/8 complex in the presence of increasing concentrations of ApoA5. As Figure 3.5A 

shows, at a concentration of 25 nM ApoA5, a decrease in the ability of ANGPTL3/8 to inhibit LPL 

activity was clearly evident. At 100 nM of ApoA5, the ability of ANGPTL3/8 to inhibit LPL 

activity was more than cut in half. At 300 nM of ApoA5, the ability of ANGPTL3/8 to inhibit LPL 

activity was almost completely blocked. The effect of ApoA5 was thus more than half-maximal at 

concentrations of 100 nM ApoA5 and 1.2 nM of ANGPTL3/8, where the molar ratio was 83:1. 

This ratio is consistent with the approximate 60:1 molar ratio for the reported circulating 

concentrations of ApoA5 (6 nM) and ANGPTL3/8 (0.1 nM) (225, 243). 

To probe this concept further, we directly assessed the effect of increasing concentrations of 

ApoA5 on the ability of 0.3 nM ANGPTL3/8 (the approximately IC60 for ANGPTL3/8) to inhibit 

LPL. In these experiments, 0.3 nM of ANGPTL3/8 was first pre-incubated with increasing 

concentrations of ApoA5 prior to its evaluation in the LPL assay. As Figure 3.5B demonstrates, 

the EC50 for ApoA5 to block 0.3 nM ANGPTL3/8-mediated inhibition of LPL activity was 21 nM, 
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for a molar ratio of ApoA5:ANGPTL3/8 of 70:1. This ratio was very close to the 83:1 ratio 

estimated from the kinetic analyses, as well as the 60:1 ratio for the respective circulating molar 

concentrations of ApoA5 and ANGPTL3/8. 

 

Figure 3.5 Analyses of ApoA5 effect on ANGPTL3/8-mediated LPL inhibition.  

(A) The ability of 1.2 nM of ANGPTL3/8 to inhibit LPL activity in the presence of HSA-ApoA5 
was assessed via kinetic analyses using LPL-stable expression cells. ANGPTL3/8 was pre-incubated 
with 0 nM (red squares), 25 nM (green tringles), 100 nM (purple triangles) or 300 nM (orange 
diamonds) of HSA-ApoA5 prior to the addition of lipase substrate. The control condition (blue 
circles) indicates the absence of ANGPTL3/8. Results are representative of 3 independent 
experiments.  

(B) The effect of increasing concentrations of HSA-ApoA5 (circles) on the ability of 0.3 nM of 
ANGPTL3/8 (the IC60 of ANGPTL3/8) to inhibit LPL activity was assessed using LPL-stable 
expression cells. ANGPTL3/8 was pre-incubated with increasing concentrations of HSA-ApoA5 
prior to the addition of lipase substrate. The effect of HSA alone (triangles) was also evaluated. 
Results are shown as the mean ± SD (n = 4 from 2 independent experiments).   

In order to confirm that the observed effect of ApoA5 to suppress the LPL-inhibitory activity 

of ANGPTL3/8 was specific for ANGPTL3/8, we performed additional kinetic analyses of the 
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LPL-inhibitory activity of 1.2 nM of ANGPTL4, ANGPTL3, and ANGPTL4/8 in the presence of 

increasing concentrations of ApoA5. As Figures 3.6A-C demonstrate, ApoA5 did not suppress the 

ability of ANGPTL4, ANGPTL3, or ANGPTL4/8 to inhibit LPL activity (in the case of 

ANGPTL4/8 there was a very slight trend toward increasing the LPL-inhibitory activity). These 

experiments thus verified that the ability of ApoA5 to suppress the LPL-inhibitory activity of 

ANGPTL3/8 was specific for the ANGPTL3/8 complex and that this property was not shared with 

regard to any of the other ANGPTL proteins or complexes tested. Importantly, as Figure 3.6D 

shows, there was no ability of ApoA5 alone to stimulate LPL activity, indicating that ApoA5 on 

its own was not capable of directly increasing LPL activity, but rather could only act to increase 

LPL activity by decreasing the ability of ANGPTL3/8 to inhibit LPL. 

 

Figure 3.6 Kinetic analyses of the ApoA5 effect on LPL-inhibitory activities of ANGPTL4, ANGPTL3, and 
ANGPTL4/8.  

The ability of ANGPTL4, ANGPTL3, or ANGPTL4/8 (each at 1.2 nM) to inhibit LPL activity in 
the presence of different concentrations of ApoA5 at 0 nM (red squares), 25 nM (green triangles), 
100nM (purple triangles), and 300 nM (orange diamonds) was assessed using LPL-stable expression 
cells. The control condition (blue circles) indicates the absence of each respective ANGPTL protein 
or complex. All results are representative of 3 independent experiments  

(A) ANGPTL4 was pre-incubated with ApoA5 prior to the addition of lipase substrate.  

(B) ANGPTL3 was pre-incubated with ApoA5 prior to the addition of lipase substrate.  

(C) ANGPTL4/8 was pre-incubated with ApoA5 prior to the addition of lipase substrate.  

(D) The effect of ApoA5 alone at 0 nM (blue circles), 25 nM (green triangles), 100 nM (purple 
triangles), and 300 nM (orange diamonds) on LPL activity was assessed.



 
 

65 

3.2.4 Insulin & LXR agonist-stimulated secretion of ANGPTL3/8 and ApoA5 from 
hepatocytes* 

In light of the above results showing that ApoA5 selectively suppressed the LPL-inhibitory 

activity of ANGPTL3/8, we considered previous reports showing that LXR agonists cause 

hypertriglyceridemia and decrease expression of ApoA5 (245, 246). We hypothesized that the 

reported increases in TG levels following administration of LXR agonists might be due more to 

increased hepatic secretion of ANGPTL3/8 than to decreased ApoA5 secretion. We also 

considered that LXR agonist-induced increases in hepatic ANGPTL3/8 secretion might be further 

augmented by insulin since we previously demonstrated that insulin stimulated the secretion of 

ANGPTL3/8 from hepatocytes (225). 

To test these hypotheses, we first performed an insulin-response dose curve in primary 

human hepatocytes and measured secreted ANGPTL3/8 and ApoA5. Figure 3.7A shows the 

results from these experiments, in which insulin dose-dependently increased hepatocyte secretion 

of ANGPTL3/8 while dose-dependently decreasing the secretion of ApoA5. We next performed 

similar experiments with the LXR agonist T0901317. In these experiments shown in Figure 3.7B, 

T0901317 actually caused a modest dose-dependent increase in ApoA5 secretion, but stimulated 

a marked, dose-dependent increase in ANGPTL3/8 secretion that was far greater in magnitude 

than the effect observed for ApoA5. 

After obtaining these results, we next investigated the combined effects of T0901317 and 

insulin on hepatocyte secretion of ANGPTL3/8 and ApoA5. As Figure 3.8A shows, the 

combination of T0901317 and insulin stimulated ANGPTL3/8 secretion to a greater extent than 

was seen with either insulin or the LXR-agonist alone. When ApoA5 secretion was measured in 

the same experiments, however, a very different pattern emerged. As shown in Figure 3.8B, 

increasing amounts of insulin blocked the ability of T0901317 to stimulate hepatocyte ApoA5 

secretion, so much so that at 1 nM insulin, ApoA5 secretion was actually less than that of the 

control, even in the presence of the maximal concentration of T0901317 tested. Together, these 

results demonstrated that while T0901317-stimulated hepatocyte ANGPTL3/8 secretion was 

enhanced by insulin, T0901317-stimulated ApoA5 secretion from hepatocytes was simultaneously 

attenuated by insulin. 



 
 

66 

 

Figure 3.7 Effect of insulin or LXR agonist TO901317 on hepatocyte secretion of ANGPTL3/8 and ApoA5  

(A) Human primary hepatocytes were pre-incubated in application media in the absence of insulin. 
Following aspiration, cells were incubated with application media in the presence of 0-1 nM insulin. 
ANGPTL3/8 (filled circles) and ApoA5 (open circles) levels in the media were measured using 
immunoassays, with results shown as the mean ± SEM (n = 8 from 2 independent experiments, *p < 
0.01).  

(B) Human primary hepatocytes were pre-incubated in application media in the absence of insulin. 
Following aspiration, cells were incubated with application media in the presence of 0-10,000 nM 
TO901317. ANGPTL3/8 (filled circles) and ApoA5 (open circles) in the media were measured using 
sandwich immunoassays, with results shown as the mean ± SEM (n = 8 from 2 independent experiments, 
*p < 0.01). 

 
 

Figure 3.8 Effect of the combination of insulin and the LXR agonist TO901317 on hepatocyte secretion of 
ANGPTL3/8 and ApoA5  

(A) Human primary hepatocytes were pre-incubated in application media in the absence of insulin. 
Following aspiration, cells were incubated with application media in the presence of 0-1 nM insulin and 
0-10,000 nM TO901317. ANGPTL3/8 levels in the media were measured using an immunoassay, with 
results shown as the mean ± SEM (n = 8 from 2 independent experiments, *p < 0.001).  

(B) ApoA5 levels from the exact same media samples collected in Figure 3.8A were measured using an 
immunoassay, with results shown as the mean ± SEM (n = 8 from 2 independent experiments, *p < 0.01).
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3.3 Discussion 

The data in our study reveal a novel intersection of ApoA5 and ANGPTL3/4/8 protein family 

in the regulation of TG metabolism. Our results indicate that the likely mechanism through which 

ApoA5 lowers TG is through suppression of ANGPTL3/8-mediated LPL inhibition. Remarkably 

ApoA5 selectively suppressed the LPL-inhibitory activity of the ANGPTL3/8 complex while not 

decreasing the LPL-inhibitory activity of ANGPTL4, ANGPTL3, or ANGPTL4/8. Importantly, 

half-maximal ApoA5 suppression of ANGPTL3/8-mediated LPL-inhibitory activity occurred at 

an ApoA5:ANGPTL3/8 molar ratio consistent with the molar ratio observed in human serum (243). 

This supports the concept that the suppression of ANGPTL3/8 LPL-inhibitory activity by ApoA5 

observed in our in vitro functional assays occurs under conditions consistent with the normal 

physiological regulation of TG metabolism. 

Importantly, our data also reveal an additional mechanism by which insulin may direct the 

uptake of FA into adipose tissue. We previously demonstrated that insulin acts through ANGPTL8 

to direct the postprandial storage of FA from food into the fat for future energy needs (225). By 

increasing ANGPTL8, insulin stimulates the formation of a circulating ANGPTL3/8 complex that 

inhibits LPL in skeletal muscle and a localized ANGPTL4/8 complex in the fat that both reduces 

ANGPTL4-mediated inhibition of LPL and serves to block ANGPTL3/8 inhibition of LPL in the 

adipose tissue. In so doing, insulin thus directs the postprandial increase of LPL-inhibitory activity 

to occur mainly in the skeletal muscle while ensuring that adipose tissue LPL is active so that FA 

are taken up mostly into the fat after feeding. By decreasing hepatocyte secretion of ApoA5, insulin 

further accentuates this effect since ApoA5 blocks the LPL-inhibitory activity of the ANGPTL3/8 

complex. Thus, under postprandial conditions when insulin levels are high, both the absolute 

amount of ANGPTL3/8 and the relative extent of the LPL-inhibitory activity of ANGPTL3/8 are 

increased since insulin increases ANGPTL3/8 secretion from the liver and decreases hepatic 

secretion of ApoA5, thus causing less suppression of the LPL-inhibitory activity of the secreted 

ANGPTL3/8 complex. 

A caveat with regard to our findings is that our in vitro functional experiments were 

performed under conditions in which it is impossible to replicate completely the environment of 

capillary endothelial surfaces where LPL acts in vivo to hydrolyze TG into FA. This is potentially 

important because several different proteins (including ApoC2, ApoC3, and GPIHBP1) are 

thought to affect LPL activity and stability, and may possibly modulate the effect of ANGPTL3/8 
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on LPL activity (190, 226, 227, 247). In adipose tissue, LPL is transported from the underlying 

adipocytes across the capillary endothelial cells by GPIHPB1 and remains bound to GPIHBP1 in 

the capillary lumens, where GPIHBP1 appears to be important in shielding LPL and preserving its 

activity (190, 247). In addition, LPL activity in vivo is modulated by apolipoproteins including 

ApoC2, which is believed to be an important stimulator of LPL activity, and ApoC3, which is 

thought to be an inhibitor of LPL activity (226, 227). The binding of each of these proteins to LPL 

therefore may affect the stability and activity of LPL as well as its interactions with the 

ANGPTL3/8 complex, and these interactions cannot be replicated in the in vitro functional assays 

used to characterize LPL activity. 

Nevertheless, our data strongly suggest that the long-sought mechanism through which 

ApoA5 works to lower serum TG is by selectively suppressing the LPL-inhibitory activity of the 

ANGPTL3/8 complex. The unusual nature of this mechanism helps explain why despite being 

discovered almost 20 years ago and being recognized almost immediately as a key player in TG 

metabolism, the exact manner in which ApoA5 acts to decrease TG has remained stubbornly 

elusive. In retrospect, some hints did emerge relatively early on suggesting that the mechanism of 

ApoA5-mediated TG lowering was atypical. One of the first clues came with the discovery that 

circulating concentrations of ApoA5 were in the ng/mL range compared to other apolipoproteins 

such as ApoA1 which are present in the µg/mL range (243). Early suggestions that ApoA5 might 

act by inhibiting VLDL-TG production or directly stimulating LPL-mediated VLDL-TG 

hydrolysis proved difficult to reconcile with the idea that only a very small minority of VLDL 

particles would actually contain a molecule of ApoA5 (243). 

In addition to providing the mechanism through which ApoA5 lowers TG, our data also shed 

light on another long-standing area of investigation in the area of TG metabolism – the increases 

in serum TG that occur following administration of LXR agonists. For many years, LXR agonists 

have been studied in preclinical models of atherosclerosis. In these models, improvements in 

atherosclerotic lesion formation were seen, however, so too were undesired increases in circulating 

TG (248-251). The increases in TG were initially thought to be the result of increases in hepatic 

fatty acid synthesis and VLDL secretion and potentially surmountable, and the LXR agonist BMS-

852927 was even advanced into clinical testing (245). In a multiple ascending dose (MAD) study, 

however, TG elevations occurred in a dose-dependent manner with increases of up to 198% 



 
 

69 

observed at day 14, suggesting that LXR agonism could cause hypertriglyceridemia in humans 

(245). 

After considering these reports, and in light of our previous finding that insulin can stimulate  

secretion of ANGPTL3/8 from hepatocytes (225), we hypothesized that LXR agonists might cause 

hypertriglyceridemia by stimulating hepatic secretion of ANGPTL3/8. Supporting this hypothesis, 

LXR activation has been shown to increase ANGPTL3 and ANGPTL8 mRNA levels via sterol 

regulatory element-binding protein 1c (SREBP-1c), while insulin activation of SREBP-1c in 

hepatocytes can be blocked by LXR antagonists (95, 134, 252). With regard to ApoA5, LXR 

activation has been shown to down-regulate ApoA5 mRNA levels through SREBP-1c, and insulin 

has been demonstrated to decrease the expression of ApoA5 via the phosphatidylinositol 3-kinase 

pathway (246, 253). When viewed together, these observations suggested that LXR agonists might 

possibly stimulate hepatocyte ANGPTL3/8 secretion while potentially decreasing ApoA5 

secretion. 

Using primary human hepatocytes, we were able to demonstrate that the prototypical LXR 

agonist T0901317 caused an almost 6-fold increase in ANGPTL3/8 secretion in the absence of 

insulin and that this became an almost 8-fold increase in the presence of insulin. Somewhat 

surprisingly, we also found that T0901317 caused a modest, yet significant, increase in hepatocyte 

ApoA5 secretion in the absence of insulin. This potentially beneficial increase in ApoA5 secretion, 

however, was largely negated by the addition of insulin. Thus, it seems likely that the 

hypertriglyceridemia observed with LXR agonists is at least in part due to LXR agonist-induced 

hepatic secretion of ANGPTL3/8. 

In summary, our data shed important light on TG metabolism by showing that two key 

players known to be extremely important in the control of TG levels – the ANGPTL3/4/8 family 

of proteins and the apolipoprotein ApoA5 - are actually interconnected. Their unique intersection 

occurs through the ability of ApoA5 to selectively suppress the LPL-inhibitory activity of the 

ANGPTL3/8 complex. In uncovering this mode of action of ApoA5, we were able to determine 

that an additional mechanism through which insulin stimulates FA uptake into adipose tissue may 

be by decreasing hepatocyte secretion of ApoA5. Because ApoA5 is an inhibitor of ANGPTL3/8, 

the increased ANGPTL3/8 secreted by hepatocytes in response to insulin would be expected to 

have even greater LPL-inhibitory activity if ApoA5 secretion is also reduced. Similarly, we were 

also able to ascertain that a likely mechanism by which LXR agonists cause hypertriglyceridemia 
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is through stimulation of hepatic ANGPTL3/8 secretion. Together, these findings provide further 

novel insight into the regulation of TG metabolism while at the same time suggesting that 

additional investigation will be required to understand more fully the molecular basis for the 

suppression of ANGPTL3/8-mediated LPL-inhibitory activity by ApoA5. 

3.4 Data availability 

All data presented as part of this study are contained within the manuscript itself and the 

accompanying Supplemental Data File. 
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 DISCUSSION 

4.1 Updates to the ANGPTL3-4-8 model of triglyceride partitioning 

The data contained within this thesis describe how excessive caloric intake and minimal 

periods of fasting alter TG partitioning through modulation of the ANGPTL3-4-8 system. Frequent 

elevations in insulin either due to dietary patterns or as seen in the development of MetS result in 

increased circulating TG and may potentiate unwanted gains in adiposity. In turn, a dietary 

imbalance can further MetS progression and increase the likelihood for subsequent comorbidities.  

In this model (shown in Figure 4.1 and Figure 4.2), elevated insulin concentrations result in 

increased hepatic ANGPTL3/8 secretion (Figure 4.2 [1]) that works as an endocrine molecule to 

inhibit skeletal muscle LPL from hydrolyzing circulating TG (Figure 4.2 [4]).  Simultaneously, 

insulin results in increased ANGPTL4/8 in the adipose (Figure 4.2 [2]) where it works in a 

paracrine mechanism to attach to LPL on the endothelial vasculature adjacent to adipose tissue to 

alleviate ANGPTL4-mediated LPL inhibition (Figure 4.2 [3]). This results in increasing TG 

hydrolysis and FA are shunted into adipocytes for longer term storage. Under conditions of 

sustained elevations in insulin, adipocytes expand as they incorporate more FA for storage 

resulting in increased BMI and visceral adiposity.  

Additional factors such as ApoA5, LXR agonism via oxysterols, and GIP exacerbate the 

impact of insulin driven changes to this system. When fasting, lowered insulin levels allow for 

increased secretion of ApoA5 from the liver – an effect which is enhanced by LXR activation. As 

a result, ApoA5 binds to the already decreased, secreted ANGPTL3/8 reducing its capacity to 

inhibit LPL.  In relation to ANGPTL4/8 secretion, circulating GIP concentrations increase 

postprandially. GIP in the presence of insulin greatly stimulates the secretion of ANGPTL4/8 from 

adipocytes. This secretion heavily alters the balance of systemic LPL activity towards adipocytes 

ensuring that TG from the diet are stored in the fat and not deposited ectopically. 

During periods of fasting, lower insulin concentrations result in decreased production of 

ANGPTL8 from both the liver (Figure 4.1 [1]) and fat (Figure 4.1 [2]), while allowing for the 

simultaneous secretion of ApoA5 (Figure 4.1 [1]) ApoA5 binds to the small concentration of 

ANGPTL3/8 hepatically produced and decreases its LPL inhibitory potential (Figure 4.1 [4]). As 

a result, LPL around skeletal muscle can hydrolyze TG for energy utilization (Figure 4.1 [4]). The 
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diminished production of ANGPTL8 from adipocytes allows for ANGPTL4 to act on local LPL, 

prevent TG hydrolysis, and consequently, reduce FA uptake by adipocytes for storage (Figure 4.1 

[3]).  

Feeding, however, induces insulin and GIP secretion. Insulin causes ANGPTL3/8 to be 

released from the liver while suppressing the secretion of ApoA5 (Figure 4.2 [1]). Thus, fully 

active ANGPTL3/8 circulates, binds LPL adjacent to skeletal muscles, and reduces the amount of 

TG utilized for immediate energy needs (Figure 4.2 [4]). GIP acts in conjunction with insulin in 

the adipocytes to greatly enhance the amount of ANGPTL4/8 which is secreted. ANGPTL4/8 

binds to LPL and prevents circulating ANGPTL3/8 from inhibiting the enzyme (Figure 4.2 [3]). 

Thus, LPL around adipocytes is fully active allowing for TG hydrolysis and subsequent energy 

storage within the fat. The regulated secretion of these complexes heavily alters the balance of 

systemic LPL activity towards adipocytes ensuring that TG from the diet are stored in adipose 

tissue and not deposited ectopically.
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Figure 4.1 Triglyceride partitioning under fasting conditions. 

1) Without elevated concentrations of insulin, the liver produces minimal amounts of ANGPTL8 and increased amounts of ApoA5. The liver 
however continues to produce similar amounts of ANGPTL3 regardless of insulin concentration. Thus, ANGPTL3 is continually secreted while 
ANGPTL3/8 is now secreted at low levels but in combination with ApoA5. (2) Adipose tissue without the stimulation from insulin predominantly 
releases ANGPTL4. The paracrine ANGPTL4 blunts the ability of LPL to hydrolyze circulating TG containing molecules thereby denying FA 
to adipocytes for energy storage. (4) Circulating ANGPTL3/8 with ApoA5 still binds LPL, however; the ability of ANGPTL3/8 to inhibit LPL 
is negated. Thus, capillary LPL adjacent to skeletal muscle continues to hydrolyze TG. Thus, energy contained within TG is partitioned towards 
expenditure in muscle and away from storage.
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Figure 4.2 Triglyceride partitioning postprandially. 

(1) The liver when exposed to elevated insulin concentrations down regulates ApoA5 and increases the production of ANGPTL3/8. ANGPTL3/8 
is then secreted from hepatocytes into circulation. (2) Insulin also stimulates the production of ANGPTL4/8 from adipocytes. It is important to 
note that postprandially, GIP stimulation greatly enhances insulin driven secretion of ANGPTL4/8 from adipocytes. (3) This secreted 
ANGPTL4/8 acts to preserve LPL activity on the capillary endothelial lumen by blocking circulating ANGPTL3/8. Thus, LPL adjacent to 
adipocytes continues to hydrolyze TG, release FA for uptake, and enable adipocytes to store this released energy. (4) The endocrine ANGPTL3/8 
attaches to LPL localized at skeletal muscle capillaries and blunts LPL hydrolysis of TG. Thus, energy contained within TG partitioned towards 
storage and away from expenditure 
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4.2 Supportive Experiments 

Within this thesis, the mechanisms for this model are explained using data derived from 

human samples, recombinant proteins, and in vitro assays. Kovrov et al. first demonstrated that 

fragments of ANGPTL3 and ANGPTL8 form a complex when refolded together after expression. 

ANGPTL4 and ANGPTL8 fragments similarly combine during refolding (117). Moreover, the 

data suggested that the fragment ANGPTL3/8 enhanced LPL inhibition by ANGPTL3 and that 

ANGPTL4/8 did not inhibit LPL activity (117). Other groups had previously suggested that 

ANGPTL3 and ANGPTL8 had the potential to combine and be secreted as a complex (91, 129, 

144). Thus, our first experiments required verification of these complexes within human samples. 

Using non-cross-reactive antibodies which individually target ANGPTL3, ANGPTL4, and 

ANGPTL8, we demonstrated that ANGPTL8 is pulled down with ANGPTL3 and ANGPTL4 

immunoprecipitations. Furthermore, we demonstrated that ANGPTL3 and ANGPTL4 are 

immunoprecipitated using an ANGPTL8 antibody. This data was corroborated by both western 

blotting and mass spectrometry analyses. Mass spectrometry analysis further identified that 

ANGPTL3/8 exists in a 3:1 protein ratio (ANGPTL3:ANGPTL8) while ANGPTL4/8 exists in a 

1:1 protein ratio.  

After establishing the existence of circulating ANGPTL8 complexes, immunoassays were 

developed to measure the ANGPTL3/8 and ANGPTL4/8 moieties from human samples. First, 

recombinant ANGPTL complexes were created using mammalian cell lines and dual tag 

purifications. These complexes would allow for quantification of measured complexes in the 

immunoassays. The measurements helped identify positive correlations for both ANGPTL3/8 and 

ANGPTL4/8 with TG, BMI, and insulin. It is important to note that prior to these ANGPTL8 

complex assays, published data had been discrepant on the correlations between individual 

ANGPTL proteins and TG. These highly specific and appropriately sensitive assays enabled us to 

conduct correlations which are accurate and reliable.  

LPL functional assays were subsequently utilized to ascertain how these complexes alter 

hydrolysis activity. Using both cell based and recombinant systems, we found the addition of 

ANGPTL8 to ANGPTL3 increased the latter’s inhibitory capacity to be equivalent to that 

generated by ANGPTL4. Moreover, we found that by combining ANGPTL8 with ANGPTL4, the 

inhibitory capacity of ANGPTL4 was reduced. However, a question remained – if both proteins 

circulate, how does each control LPL at the sites of TG hydrolysis?  
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To understand this better, affinity and cell-based competition experiments were conducted. 

These experiments identified that when complexed to ANGPTL8, ANGPTL4 has a negligible off-

rate from LPL. Similarly, ANGPTL8 increases the affinity of ANGPTL3 to bind to LPL. Moreover, 

when LPL was pre-incubated with ANGPTL4/8, LPL inhibition mediated by ANGPTL3/8 or 

ANGPTL4 was able to be suppressed. In these competition experiments, a 10-fold excess of 

ANGPTL4/8 was able to prevent ANGPTL3/8- or ANGPTL4-mediated LPL inhibition.  

This data suggested that ANGPTL4/8 acts in a localized environment where concentrations 

can be higher than those seen in circulation. This notion of localized ANGPTL4/8 protection of 

LPL was supported through the generation of recombinant proteins as well as through work 

utilizing adipocytes. Only through the addition of dextran sulfate, to negate ANGPTL4/8’s ability 

to bind to heparin proteoglycans on cellular membranes, did we see measurable amounts of 

ANGPTL4/8 released into the media.  

Lastly, secretion of ANGPTL3/8 and ANGPTL4/8 was demonstrated. Several publications 

have referenced the ability of ANGPTL8 mRNA to be increased by insulin in adipocytes and 

hepatocytes (127, 134). However, none of these publications have demonstrated secretion of the 

protein complex. Thus, our experiments used primary human adipocytes and primary human 

hepatocytes to evaluate how insulin regulates these complexes.  

For ANGPTL4/8, exposure to insulin stimulates the release of the complex from adipocytes. 

Due to a lack of ANGPTL3 expression in adipocytes, no ANGPTL3/8 is present upon insulin 

stimulation. To further understand TG trafficking postprandially, GIP was utilized in conjunction 

with insulin to stimulate the ANGPTL4/8 secretion. Without GIP, a 7.7-fold increase in 

ANGPTL4/8 secretion was seen using 100 nM of insulin. However, GIP and 100 nM of insulin 

worked in conjunction to produce a 27.4-fold increase in ANGPTL4/8 secretion. Thus, after a meal, 

GIP and insulin work in conjunction to greatly upregulate ANGPTL4/8. This secreted complex 

remains localized on the cellular surface due to heparin proteoglycans and acts a paracrine 

molecule protecting LPL from inhibition by both ANGPTL4 and ANGPTL3/8.  

For ANGPTL3/8, exposure to insulin stimulates hepatocyte derived secretion in a dose 

dependent manner. Near maximal stimulation around 1 nM insulin results in roughly a 4- to 6-fold 

increase in ANGPTL3/8 secretion. It is important to note that this concentration is much lower 

than the respective increase in ANGPTL4/8 secretion seen from adipocytes using 1 nM of insulin 

(approximately 15- to 20-fold increase). This comparative increase helps support the notion of 
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elevated localized ANGPTL4/8 concentrations blocking ANGPTL3/8-mediated inhibition of LPL. 

Hepatic expression of ANGPTL4/8 did not change upon exposure to insulin.  

Further support of hepatic ANGPTL3/8 secretion came from analysis of subjects exposed to 

basal insulin peglispro (a hepato-preferential insulin) over the course of a year. After 52 weeks, 

ANGPTL3/8 increased ~1.3 fold from pre-exposure. This increase was highly statistically 

significant. ANGPTL4/8, however, did not increase during this period of treatment.  

The 4- to 6-fold increase in ANGPTL3/8 secretion produced using 1 nM of insulin can be 

further enhanced by the addition of an LXR agonist at concentrations as low as 100 nM. At 

maximal stimulation (1 nM insulin in conjunction with 1000 nM LXR agonist) an 8-fold increase 

in ANGPTL3/8 is produced. It is important to re-emphasize that oxysterols which can be absorbed 

via the diet or produced endogenously during the oxidation of cholesterol accumulate in response 

to increased insulin concentrations. Thus, in the development of MetS, increases in insulin and the 

associated accumulation of LXR agonists may result in greatly enhanced ANGPTL3/8 expression.  

Lastly using immunoprecipitation followed by western blotting and mass spectrometry 

analysis, ApoA5 was found to be associated with ANGPTL3/8. Assessed via LPL functional 

assays, ApoA5 reduces ANGPTL3/8 mediated LPL inhibition. However, ANGPTL3, ANGPTL4, 

and ANGPTL4/8 mediated alterations in LPL activity are not influenced by ApoA5 co-incubation. 

While LXR agonists alone can increase hepatic ApoA5 expression ~1.8-fold insulin, even at 

concentrations as low as 0.1 nM, can significantly decrease ApoA5 secretion. Moreover, whereas 

LXR and insulin act as additive stimuli to increase hepatic ANGPTL3/8 secretion, maximal 

stimulation by LXR and insulin together decrease ApoA5 release from hepatocytes. In this 

situation, ANGPTL3/8 is increased and more capable of inhibiting skeletal LPL as the 

ANGPTL3/8 suppressor, ApoA5, is decreased.  

4.3 Caveats and Potential Future Directions 

While we have attempted to minimize research caveats by using either primary human cells 

or by using human sera for analysis, our proposed mechanisms are based on in vitro data. To this 

extent, further innovative research is required to corroborate our findings. It is important to note, 

however, that many of the conclusions in this work have been validated using orthogonal in vivo 

methods by the Hobbs group (146). 
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LPL affinity experiments, while conducted with LPL co-expressed with GPIHBP1, were 

performed without other LPL activity modifying cofactors present. Similarly, LPL functional 

assays assessed how the ANGPTL proteins and complexes inhibited LPL in the absence of other 

molecules such as other apolipoproteins aside from ApoA5. For instance, how do LPL activation 

factors such as ApoC2 influence the affinities or LPL-inhibitory activities of the ANGPTL 

complexes? 

 To assess the functionality of ANGPTL4 and ANGPTL4/8, LPL was expressed on the 

surface of the cells and then exposed to these activity modifying factors by media exchange. 

However, LPL is normally an active participant in TG metabolism in the capillaries adjacent to 

the adipose tissue that are responsible for the release of these paracrine inhibitors. While LPL can 

be secreted from adipocytes, postprandially there is no increase in LPL expression but rather there 

is an increase in its localization (41-43). Thus, ANGPTL4 and ANGPTL4/8 must be released from 

adipocytes and, as paracrine molecules, must diffuse through interstitial space and translocate to 

the luminal surface of the capillary endothelium where functional LPL is sequestered. This 

complex process is not yet understood.  

The recycling of LPL after binding to any of these ANGPTL complexes has not yet been 

addressed. While LPL dimerization has an inherent dissociation rate, it remains unclear as to how 

the LPL head-to-tail dimer associated with ANGPTL4/8, a molecule with no appreciable 

dissociation rate, becomes recycled. Without adequate regulation of this uninhibited LPL-

ANGPTL4/8 moiety on the capillary lumen, adipose tissue should be able to continuously take up 

FA from TG-containing molecules. Understanding this aspect of LPL’s lifecycle is important to 

further clarify how TG metabolism is balanced between fat and aerobic tissue.  

The same questions raised about LPL recycling can also be asked of ANGPTL3/8. As an 

endocrine molecule, ANGPTL3/8 must be eliminated from circulation after its desired action is 

completed. In other words, ANGPTL3/8 which has increased secretion postprandially must be 

eliminated prior to periods of fasting to minimize LPL inhibition at skeletal and cardiac muscles. 

It would also be advantageous to clarify if circulating ANGPTL3/8 predominantly influences LPL 

located around skeletal muscle or affects all LPL around aerobic tissues. If ANGPTL3/8 inhibits 

LPL around all aerobic tissues, what mechanism compensates for the decreased availability of FA 

for cardiac tissue postprandially?  
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The effect of glucose on this insulin-sensitive, TG-partitioning system must also be explored. 

Specifically, how do both high glucose and high insulin concentrations work in conjunction to 

alter the downstream effects of LXR activation? Insulin is known to downregulate hepatic 

gluconeogenesis and promote lipogenesis via the LXR pathway (254). Our research has helped to 

understand how hepatic insulin receptor knockouts demonstrate reduced plasma TG (254-260). 

However, LXR activation has been shown to regulate lipogenesis, to respond to excess 

intracellular glucose, and to cause the efflux of excess cholesterol (254, 260-263).  

The role of glucose in relation to LXR agonism has not reached a consensus within the 

literature (264-266). However, numerous studies have indicated that glucose can activate SREBP-

1c possibly through direct LXR activation (267-271). For example, using human HepG2 cells, 

glucose at physiological concentrations can induce a 50-fold activation of LXR when cells are 

grown in glucose free media (271). Glucose caused LXR coactivator recruitment – a necessity to 

form the LXR-RXR heterocomplex required for downstream gene transcription (271-279). Further 

evidence was provided when insulin production was abolished through treatment of streptozotocin. 

In this animal model system, hyperglycemia was able to induce SREBP-1c mRNA (a downstream 

target of LXR), repress gluconeogenesis genes, and upregulate lipogenesis (270, 271, 280-284).  

Glucose may also indirectly modify LXR (e.g. O-GlcNAcylation during refeeding) to 

respond differently to other LXR agonists (280). LXR has been shown to target the carbohydrate 

response element-binding protein (ChREBP) gene (263). ChREBP is a transcription factor that is 

glucose sensitive and promotes the creation of lipids via conversion from excess glucose (285-

287). However, questions remain as to how excess glucose alters the production of ANGPTL3/8 

from hepatocytes.  

As we have shown in our research, some claims about LXR agonism are contrary to our 

findings from primary human hepatocytes. For example, LXR agonism was thought to down 

regulate ApoA5 production; however, this is only true in the presence of insulin (246). Without 

insulin, hepatic LXR agonism induces ApoA5 expression and secretion. In the presence of low 

levels of insulin, this is no longer true as insulin antagonizes the effect of LXR activation and 

reduces the amount of ApoA5 produced. Thus, an investigation of how elevated insulin 

concentrations in the presence of high glucose modulate hepatic secretion of ANGPTL3/8 and 

ApoA5 is warranted.  
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Insulin alone can dose-dependently increase ANGPTL8 mRNA expression (288). 

Furthermore, insulin in the presence of elevated glucose concentrations further stimulates 

expression of ANGPTL8 from adipocytes but not hepatocytes (288). As we have shown, this 

increased ANGPTL8 mRNA expression results in elevated hepatic ANGPTL3/8 secretion. Given 

our contradictory findings in hepatocytes regarding LXR-stimulated secretion of ApoA5, it is of 

interest to understand how high glucose and elevated insulin concentrations may have a 

combinatorial effect on the secretion of hepatic ANGPTL3/8 and of adipocyte derived 

ANGPTL4/8.  

Similar to assessing the effects of elevated glucose on this ANGPTL system, the 

consequences of other endocrine and paracrine molecules should be explored. For example, leptins 

may indirectly alter the sensitivity of adipocytes to insulin (289). Based on the presented data, this 

may further enhance ANGPTL4/8 production. Relevant to ANGPTL3/8 secretion, decreased 

thyroid hormone concentrations alter liver physiology to result in increased circulating TG (290). 

Many more hormones affect the liver and adipose tissue. As such, investigations into how these 

hormones, individually and in combination, alter the expression of the ANGPTL complexes should 

be enacted.  

Lastly, an investigation into the risk ratios for CVD events must be undertaken. Now that 

the levels of ANGPTL3/8 and ANGPTL4/8 can be ascertained accurately, understanding the 

relationship of these complexes with CVD outcomes is possible. In analyzing longitudinal fasting 

samples, such research could guide therapeutic interventions.  

4.4 Implications 

The model described above, in which insulin drives the secretion of hepatic ANGPTL3/8 

and adipocyte-derived ANGPTL4/8, emphasizes the necessity to maintain low to normal insulin 

levels. Consistently elevated insulin levels are detrimental to the partitioning of triglycerides and 

may increase the risk of future cardiac events. This, to an extent, holds with the idea of both the 

“thrifty” and the “drifty” genotype theories in which genes/physiological systems designed to 

promote energy storage in periods of nutritional excess have become disadvantageous in today’s 

current environment of excess caloric intake and decreased selective pressure (149, 291).  

Regardless of theory, the data outlined in this thesis provide a cohesive model for how excess 

circulating insulin levels lead to HTG and demonstrate the necessity to focus MetS treatments 
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toward decreasing the amount of circulating fasting insulin. Investigations into different diets such 

as intermittent fasting or low glycemic index foods may help derive the optimal non-therapeutic 

approach to MetS. However, if lifestyle alterations are not feasible or insufficient, therapeutic 

approaches must be created.  

Based on the data in this thesis, pharmacological interventions aimed at decreasing the 

expression of ANGPTL8 should be strongly advocated. By doing so, obesity should decrease as 

ANGPTL4/8 can no longer drive TG into adipose tissue and skeletal muscle should be able to 

continuously burn FA derived from TG-containing lipoproteins. However, if only one complex 

can be therapeutically targeted, ANGPTL3/8 should be the focus. Whereas ANGPTL4/8 is active 

locally, ANGPTL3/8 circulates. Oldoni et al. further corroborates this finding as adipocyte specific 

ANGPTL8 KO mice demonstrated no reductions in circulating ANGPTL8 and increased 

postprandial systemic TG. Conversely, liver specific KO demonstrated not only abolishment of 

circulating ANGPTL8 (ANGPTL3/8) but decreased postprandial TG likely due to elevated LPL 

activity around skeletal muscles (146). As a result, liver-specific therapies targeting ANGPTL3/8 

via small molecule inhibitors or small interfering RNA (siRNA) would enable a systemic decrease 

in LPL inhibition while preventing the undesirable TG increase which arises when ANGPTL8 is 

knocked out in adipocytes.  

An antibody against ANGPTL3/8 may be the most effective solution. Therapeutic targeting 

of ANGPTL3 has been shown to be effective during clinical trials.  During a Phase 1 trial in normal 

healthy individuals and in patients with homozygous familial hypercholesterolemia, 350 mg 

weekly subcutaneous administration of an ANGPTL3 antibody reduced triglycerides by 51.9%, 

whereas an 88.2% TG reduction was achieved with 20 mg/kg intravenous dosing (197). For a 

Phase 3 trial, Evinacumab, when administered at 15 mg/kg intravenously every four weeks, 

decreased LDL-C by roughly 45% TG by 55% (198, 292). As our work demonstrated, such large 

therapeutic dosing is required as a consequence of the high circulating concentrations of 

ANGPTL3 (198, 225). The cost to produce sufficient antibody for weekly intervention may make 

ANGPTL3 targeted therapies financially infeasible for patients. 

Antisense oligonucleotides have been attempted against ANGPTL3 mRNA. In a Phase 1 

study, 20 mg subcutaneous administration of antisense oligonucleotides led to a 63% reduction in 

TG compared to the placebo group (293). However, long term effects of inhibiting ANGPTL3 
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protein expression were unable to be assessed over this six-week study. Individually, ANGPTL3 

and ANGPTL8 may have other necessary physiological effects which are currently unknown. 

In contrast to the individual ANGPTL proteins, ANGPTL3/8 is now well characterized. An 

antibody which specifically targets this complex may be beneficial. First, ANGPTL3/8 does not 

circulate at the same high concentrations seen with ANGPTL3. Hence, the amount of therapeutic 

required for treatment is less. Moreover, because of our understanding of the mechanism of action 

of ANGPTL3/8, we can be more assured that a blockade of ANGPTL3/8 will result in fewer 

unintentional side effects. A targeted therapeutic to ANGPTL3/8 is likely to create meaningful and 

lasting change for patients who struggle with lifestyle changes to reverse MetS.  

4.5 Conclusions 

This thesis presents a novel, unified model of TG trafficking which has only been hinted at 

within the literature. In our model, insulin drives hepatic ANGPTL3/8 secretion to inhibit skeletal 

muscle LPL while simultaneously inducing ANGPTL4/8 secretion from adipocytes to enhance FA 

storage in the fat. The systemic effects of ANGPTL3/8 and the paracrine action of ANGPTL4/8 

on LPL activity alter the balance of TG hydrolysis from skeletal muscle towards adipose tissue. 

As a result, energy is stored rather than utilized. When unbalanced, this system can predispose 

individuals to MetS. Progression to MetS can then lead into the development of T2DM and its 

subsequent comorbidities. This research will enable subsequent therapies for patients who struggle 

to treat MetS with lifestyle modifications.    
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 METHODS 

5.1 From Chapter 2: Angiopoietin-like protein 8 differentially regulates ANGPTL3 & 
ANGPTL4 during postprandial partitioning of fatty acids 

5.1.1 Normal human serum samples and SCARF control samples 

Sera were obtained (with consent) from healthy volunteers from the Eli Lilly Research Blood 

Donor Program. To study fasting and postprandial conditions, sera were obtained from 10 healthy 

volunteers after overnight fasting and 1 and 2 hours following a mixed-meal breakfast consisting 

of approximately 400 carbohydrate calories, 400 fat calories, and 100 protein calories. All samples 

were stored at −80°C. SCARF is a case-control study from northern Stockholm comprising 

consecutive, unselected MI survivors below age 60 and controls matched for age, sex, and area of 

residence (208-210). The study was approved by the Ethics Committee of the Karolinska 

University Hospital and conducted in agreement with the Declaration of Helsinki. All subjects 

gave informed consent to participate. Control subjects were interviewed regarding lifestyle 

characteristics, medical history, and medication, and a physical examination was performed. 

Samples were collected under fasting conditions and stored at -80oC. The Clinical Chemistry 

Laboratory of the Karolinska University performed standard serum analyses (208).  

5.1.2 Recombinant ANGPTL protein and complex generation   

Human sequences were as follows: ANGPTL8: NP_061157.3; ANGPTL3: NP_055310.1; 

ANGPTL4: NP_647475.1. Mature ANGPTL8 (residues 22-198) was produced in E. coli as 

inclusion bodies and refolded in vitro. C-terminal HIS-tagged ANGPTL4 and ANGPTL3 were 

produced stably in CHO cells and transiently in HEK293 cells, respectively. Both were purified 

through nickel-nitrilotriacetic acid (Ni-NTA) affinity, followed by size exclusion chromatography 

(SEC). ANGPTL3/8 complex was produced in HEK293 cells through transient co-transfection. 

Nucleotide sequences encoding mouse IgG kappa signal peptide-HIS tag-mature human serum 

albumin (HSA)-PreScission cleavage site-mature ANGPTL8 were inserted into a mammalian 

expression vector containing a cytomegalovirus (CMV) promoter, as were the nucleotide 

sequences encoding C-terminal Flag-tagged ANGPTL3. Protein expression was performed 

through transient co-transfection of both expression constructs in HEK293 cells cultured in serum-
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free media. Culture media were harvested 5 days post transfection and stored at 4oC for subsequent 

protein purification at 4oC.  Four liters of culture media were supplemented with 1 M Tris-HCl 

(pH 8.0) and 5 M NaCl to final concentrations of 25 mM and 150 mM, respectively. The media 

were incubated with 150 ml of Ni-NTA resin (Qiagen) overnight. The resin was then packed into 

a column and washed with buffer A (50 mM Tris-HCl, pH 8.0, 0.3 M NaCl). Elution was 

performed with a 0-300 mM imidazole gradient in buffer A. Fractions containing HIS-HSA-

ANGPTL3/8 complex were pooled, concentrated, loaded onto a HiLoad Superdex 200 column 

(GE Healthcare), and eluted with buffer A. Fractions containing HIS-HSA-ANGPTL3/8 were 

again pooled, concentrated, and digested with PreScission protease to remove HSA from the HIS-

HSA-ANGPTL8 fusion protein. The PreScission digested protein sample was loaded onto another 

HiLoad Superdex 200 column and eluted with storage buffer (20 mM HEPES pH 8.0, 150 mM 

NaCl). Fractions containing ANGPTL3/8 complex were pooled and concentrated. Protein 

concentrations were determined using a bicinchoninic acid (BCA) protein assay. 

During the ANGPTL3/8 purification process, it was important for the ANGPTL3/8 complex 

not to contain free proteins. To ensure purity, the initial Ni-NTA affinity purification first removed 

all free ANGPTL3. After SEC, purified HIS-HSA-ANGPLT3/8 complex and free HIS-HSA-

ANGPLT8 were obtained. PreScission digestion (which cleaved between HSA and ANGPTL8) 

resulted in ANGPTL3/8 complex, HIS-HSA, and free ANGPTL8. Free ANGPTL8 was 

precipitated out, leaving only ANGPTL3/8 complex and HIS-HSA. ANGPTL3/8 complex and 

HIS-HSA were separated with a second SEC step, resulting in highly purified ANGPTL3/8 

complex without any HIS-HSA contamination (as shown in Figure 2.2A). This strategy ensured 

that very pure ANGPTL3/8 complex was produced. The same approach was used for expression 

and purification of the ANGPTL4/8 complex. All proteins and complexes were maintained at a 

<0.01 EU/ug of endotoxin. One µg of each recombinant ANGPTL protein or complex was 

characterized using gradient gel electrophoresis with Bio-Rad 4-20% Mini-Protean Tris-glycine 

gels, followed by Coomassie Blue staining to verify the purity of the respective proteins and 

complexes, which were all stored at -80oC. For purposes of molar conversions, a molecular weight 

of 179 kD was used for ANGPTL3/8 (3:1 ratio), while a molecular weight of 64 kD was used for 

ANGPTL4/8 (1:1 ratio). 
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5.1.3 ANGPTL antibodies  

Anti-human ANGPTL8 antibodies (residues 22-198) were generated using hybridoma 

techniques by Precision Antibody Sciences. Anti-human ANGPTL4 antibodies were generated by 

immunization with recombinant ANGPTL4 (residues 26-161), or purchased commercially (R&D 

Systems, AF3485). Anti-human ANGPTL3 antibodies were generated after immunization with 

mammalian produced recombinant ANGPTL3 (residues 17-220) or purchased commercially 

(R&D AF3829). Clones of interest were screened for non-overlapping epitopes, and antigen-

specific variable heavy (VH) and light (VL) gene sequences were determined from extracted RNA 

using a mouse Ig primer set (EMD Millipore). Variable domains were transferred into separate 

murine constant region expression vectors for antibody production, transfected into CHO cells, 

and purified using protein A chromatography. Antibodies were biotinylated using a Pierce kit and 

ruthenium-labeled using a MesoScale Discovery (MSD) kit, with MALDI-TOF performed to 

verify appropriate labeling. Antibodies were diluted in 50% glycerol and stored at -20oC. 

5.1.4 Immunoprecipitation/Western blotting  

Anti-ANGPTL and control antibodies were covalently coupled to tosyl-activated beads 

(Thermo), with heavy and light chains further cross-linked using dimethyl pimelimidate (DMP). 

Fifty µL of beads containing 20 µg of antibody were added to 4 mL of pooled donor serum diluted 

1:2 with PBS and incubated at 4°C overnight. Beads were washed with PBS and boiled in sample 

buffer. Proteins were separated on a Novex 12% Bis-Tris gel and transferred to PVDF using an 

iBlot system (Thermo). Membranes were probed with biotinylated anti-ANGPTL antibodies. 

Visualization was performed with Alexa Fluro 680-conjugated streptavidin. Images were recorded 

using an Odyssey CLx image system (LI-COR Biosciences). 

5.1.5 Immunoprecipitation-mass spectrometry  

Proteins were immunoprecipitated from normal human serum using anti-ANGPTL8, 

ANGPTL4, or ANGPLT3 antibodies. The anti-ANGPTL4 antibody utilized was an N-terminal 

antibody. Irrelevant IgG was used as a negative control.  Biotinylated antibodies (10 µg) were 

added to 1 ml of human serum diluted with 1 ml of PBS, and samples were incubated at 4°C 

overnight. The next day, 30 µL of streptavidin magnetic beads (Thermo) were added, and tubes 
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were incubated at 4°C for 2 hours. Beads were washed using PBS, and bound proteins were 

reduced with DTT and alkylated with iodoacetamide. Proteins were digested using 1 µg of 

Trypsin/Lys-C (Promega) at 37°C for 4 hours. Digests were acidified using 5 µl of 10% 

trifluoroacetic acid (TFA). Stable-isotope-labeled (SIL) peptides (0.2 pmole) were spiked into each 

sample before analysis with a TSQ Quantiva (Thermo) using liquid chromatography–multiple 

reaction monitoring (LC–MRM). Peptides were separated using a Hypersil Gold C18 HPLC 

column (50 x 2.1 mm) with a Dionex Ultimate 3000 system at a flow rate of 250 μL/min. Solvent 

A consisted of 0.1% formic acid in water, and solvent B consisted of 0.1% formic acid in 

acetonitrile. For protein quantification, SIL peptides for each ANGPTL protein were synthesized 

with selected lysine or arginine residues labeled with 13C and 15N, and peptide content of SIL 

peptides was determined through amino acid analysis. Peak area ratios between the endogenous 

and corresponding SIL peptides were used to estimate protein concentrations after averaging 

results from two peptides for each protein analyzed. The specific SIL peptides used for quantitation 

are listed in Supplemental Figures A18-A24. 

5.1.6 Mass spectrometry assessment of ANGPTL complexes  

ANGPTL3/8 and ANGPTL4/8 were digested at 37°C for 4 hours using a mixture of 

Trypsin/Lys-C, after reduction with DTT and alkylation with iodoacetamide. Two peptides from 

each protein were used for quantitation as described in Supplemental Figures A18-A24 and Tables 

S2-5. For LC-MRM quantification, an identical molar amount of each SIL peptide was added to 

the protein digest, and samples were analyzed using a TSQ Quantiva triple quadrupole mass 

spectrometer. Xcalibur software (version 4.2.47, Thermo) was used to determine peak area ratios 

between the digested peptide and its corresponding SIL peptide. Detailed peak integration 

parameters used for the analysis are included in the Supplemental Figures A18-A24. Individual 

protein ratios in ANGPTL3/8 and ANGPTL4/8 were calculated using the average ratio from two 

SIL peptides for each protein in each complex. To assess the protein ratios of endogenous 

complexes, ANGPTL3/8 and ANGPTL4/8 were immunoprecipitated from human serum. Molar 

ratios for ANGPTL3:ANGPTL8 and ANGPTL4:ANGPTL8 were then calculated using spiked-in 

SIL peptide standards utilizing the methods described above for the recombinant complexes.  
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5.1.7 Mass spectrometry experimental design and rationale 

Peptides with robust ionization after tryptic digest analysis of ANGPTL proteins were 

selected for MRM experiments. Blast searches against the NCBI human database confirmed that 

these peptides were unique to the corresponding protein, with no known post-translational 

modifications (PTM). At least two transitions were selected for each peptide for MRM monitoring. 

The amino acid sequences of these peptides and specific transitions are listed in Supplemental 

Tables B2-B5. The transitions selected, the collision energy, and RF lens values were optimized 

by infusing the synthesized SIL peptides. No significant interference was detected at the 

corresponding retention time for each peptide in the negative controls. 

5.1.8 ANGPTL immunoassays  

We used dedicated immunoassays to measure each protein or complex of interest. For the 

ANGPTL8 assay, monoclonal antibodies directed against independent ANGPTL8 epitopes were 

used for capture and detection. Based on our mass spectrometry and immunoassay-based 

quantitation of human serum ANGPTL8, ANGPTL3/8 complex, and ANGPTL4/8 complex, 

ANGPTL8 measured by this assay was mainly present in either ANGPTL3/8 or ANGPTL4/8 

complexes, however, we could not rule out the possibility that a small amount of free ANGPTL8 

might also circulate. For ANGPTL3, a monoclonal antibody was used for capture and a polyclonal 

anti-ANGPTL3 antibody (R&D AF3829) was utilized for detection. The total level of ANGPTL3 

was found to be much greater than that of the ANGPTL3/8, suggesting that the vast majority of 

ANGPTL3 detected by this assay was free ANGPTL3. An assay employing two different 

monoclonal antibodies recognizing independent N-terminal epitopes of ANGPTL4 was used to 

measure active ANGPTL4 (defined as full-length ANGPTL4 or the N-terminal fragment of 

ANGPTL4). For measurement of C-terminal domain-containing (CTDC) ANGPTL4 (defined as 

full-length ANGPTL4 or the inactive C-terminal fragment of ANGPTL4), an R&D kit (Catalog # 

DY3485) was utilized. For the ANGPTL3/8 assay, the capture antibody recognized ANGPTL8, 

and the detection antibody recognized ANGPTL3. For the ANGPTL4/8 assay, the capture 

antibody recognized ANGPTL4, and the detection antibody recognized ANGPTL8. The 

ANGPTL4/8 complex assay could not distinguish between N-terminal ANGPTL4 fragment or 

full-length ANGPTL4 present in the ANGPTL4/8 complex.  
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For each assay, MesoScale Discovery (MSD) streptavidin plates were washed three times 

with TBST (Tris buffered saline containing 10 mmol/L Tris pH 7.40, 150 mmol/L NaCl, and 1 

mL/L Tween 20). Plates were blocked with TBS plus 1% bovine serum albumin (BSA) for 1 hour 

at room temperature (RT). After aspiration and washing, wells were incubated with biotinylated 

capture antibody for 1 hour. Following aspiration and washing, 50 μL of recombinant protein or 

complex (serially diluted to form a standard curve), were added to the wells in assay buffer (50 

mmol/L HEPES, pH 7.40, 150 mmol/L NaCl, 10 mL/L Triton X-100, 5 mmol/L EDTA, and 5 

mmol/L EGTA). Serum samples were diluted in assay buffer and added to their respective wells 

for a 2-hour incubation at RT. After aspiration, wells were washed three times, and 50 μL of 

ruthenium-labeled detection antibody were added for a 1-hour incubation at RT. Following 

aspiration, wells were washed three times, and 150 μL of MSD read buffer were added. 

Electrochemiluminescence from electrical excitation of ruthenium in the wells was detected using 

an MSD plate reader. Specificity of each novel assay was tested using the other proteins/complexes, 

and each had cross-reactivity of less than 1%. 

5.1.9 Very low-density lipoprotein-cholesterol (VLDL-C) uptake assay  

We adopted the method of Neher and colleagues (55). In this assay, VLDL particles are 

labeled with a fluorescent phospholipid probe, which is inserted into the outer phospholipid layer 

of the VLDL particle, and the assay measures the adherence of the fluorescence probe to Huh7 

cells. For labeling of VLDL (Lee Solutions) with 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-carboxyfluorescein (18:1 PECF, Avanti), 100 μL PECF (1 mg/ml in 

chloroform) was dried under argon. Next, 400 μL of VLDL (10 mg/ml TG, in PBS) was added to 

the vial, vortexed, and sonicated for 6 minutes to yield final concentrations of 10 mg/ml TG VLDL 

and 0.25 mg/ml PECF. Huh7 cells were plated at a density of 40,000 cells/well in a poly-D-lysine 

96-well plate in medium consisting of DMEM/F-12 3:1 (Gibco), 10% FBS (Gibco), 1% penicillin-

streptomycin (Gibco), and 20 mM HEPES (Gibco). Cells were grown overnight before medium 

was replaced with 150 μL of PBS for 2.5 hours. LPL (Sigma) was mixed with ANGPTL3/8 or 

ANGPTL4/8 and incubated at RT for 1 hour with gentle shaking. Mixtures were combined with 

equal volumes of VLDL-PECF (final concentrations of 11 U/mL LPL, 50 nM ANGPTL3/8 or 

ANGPTL4/8, 100 μg/ml VLDL-PECF), and 50 μL of the mixtures replaced the PBS. Cells were 

incubated at 37oC for 30 minutes. Media were then replaced with 150 μL/well of fixative. Cells 
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were fixed for 20 minutes, washed twice with 200 μL PBS and covered with 50 μL/well of PBS. 

Fluorescence at 495 nm/525 nm was measured using a SpectraMax3 plate reader, with VLDL 

uptake calculated as relative fluorescent units at 525 nm. 

5.1.10 Binding assessments  

ANGPTL interactions with LPL were assessed with bio-layer interferometry using Octet 

RED96e® (Molecular Devices). Avidin-tagged LPL was immobilized on streptavidin biosensors. 

Immobilized LPL (Sigma) was incubated with 50 nM of ANGPTL3, ANGPTL3/8, ANGPTL4, or 

ANGPTL4/8 and transferred into buffer-only wells to monitor dissociation.  

5.1.11 LPL stable expression cell line and activity assays  

The nucleotide sequence for human LPL (NP_000228.1) was inserted into pLenti6.3 vector 

(Invitrogen) to generate lentivirus, which was used to create a stable expression cell line confirmed 

by qPCR and enzymatic activities. The cell line was maintained in DMEM/F12 (3:1) (Invitrogen), 

10% FBS (Hyclone), and 5 µg/ml blasticidin (Invitrogen). The wild-type human LPL-stable 

expression cells were seeded at a density of 50,000 cells/well in a tissue culture-treated 96-well 

plates (Costar) in growth medium (3:1 DMEM/F12, 10% FBS, and 5 µg/ml blasticidin). After 

overnight incubation, medium was replaced with 80 µL of medium containing serially diluted 

ANGPTL proteins. Cells were incubated for 1 h before 20 µL of 5X working solution, freshly 

prepared with 0.05% Zwittergent detergent 3-(N,N-dimethyl-octadecylammonio)-

propanesulfonate (Sigma) and containing EnzChek lipase substrate BODIPY-dabcyl-labeled TG 

analog (Invitrogen), were added to achieve a final concentration of 1 µM (294). Fluorescence was 

monitored at 1 and 30 min with a Synergy Neo2 plate reader with an excitation wavelength of 485 

nm and emission wavelength of 516 nm to correct for background. To study the ability of 

ANGPTL4/8 to protect LPL from ANGPTL3/8 and ANGPTL4 inhibition, ANGPTL4/8 was first 

serially diluted in growth medium, and 60 µL of the medium containing ANGPTL4/8 were added 

to the cells for a 1 h incubation with gentle shaking. Afterward, 20 µL of 5 nM ANGPTL3/8 or 

ANGPTL4 working solution (5X) prepared in growth medium were added for a further 1 h 

incubation. Finally, 20 µL of EnzChek lipase substrate was added to start the reaction. 
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Fluorescence was monitored at 1 and 30 min with a Synergy Neo2 plate reader with an excitation 

wavelength of 485 nm and emission wavelength of 516 nm to correct for background.  

5.1.12 LPL activity assay with very low-density lipoprotein (VLDL) as substrate  

The assay was similar to those described above, except that Enzchek lipase substrate was 

replaced with 20 μL/well of (Lee Solutions) VLDL (2 mM TG, final 0.4 mM TG in the well), and 

non-esterified fatty acids (NEFA) released by LPL were measured using an NEFA-HR kit (Wako). 

Human LPL-stable expression cells were seeded at 50,000 cells/well in a poly-D-lysine coated 96-

well plate. Cells were grown overnight, and medium was replaced with 80 μL of medium 

containing serially diluted ANGPTL4 or ANGPTL4/8 complex. Cells were incubated for 1 hour 

with gentle shaking. Twenty μL of VLDL (2 mM TG) were added to each well, and the plate was 

incubated for 30 minutes, after which 5 μL of medium were used for NEFA measurement.  

5.1.13 Samples from patients treated with hepato-preferential insulin  

Basal insulin peglispro (BIL) is a pegylated version of insulin lispro with a large dynamic 

radius that restricts it from the periphery but allows it to pass through hepatic sinusoids, thus 

making it hepato-preferential (212). Clinical trial samples were obtained from a previously 

described study in which insulin-naïve patients were administered BIL for 52 weeks (213). These 

samples were from 279 patients at baseline and during 52 weeks of BIL treatment (all drawn under 

morning fasting conditions). Ideally, we would have analyzed samples from early time points, 

however, the only post-baseline sera available were those collected after 12, 26, and 52 weeks of 

treatment. Samples were stored at −80°C prior to analyses.  

5.1.14 Secretion of ANGPTL complexes from hepatocytes  

Human primary hepatocytes were obtained from BioIVT in the HepatoPac platform. Cells 

were incubated for 2 days in BioIVT maintenance media. Following aspiration, cells were washed 

in serum-free BioIVT application media. Afterward, cells were pre-incubated for one day in 

application media in the absence of insulin, then incubated overnight with application media in the 

absence or presence of 1 nM insulin. Media were collected and stored at -80oC prior to analyses.  
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5.1.15 Effect of dextran sulfate on ANGPTL protein release  

C-terminal Flag-tagged ANGPTL4 and C-terminal HIS-tagged ANGPTL8 mammalian 

expression constructs were transfected into HEK293 cells. At 24 hours post-transfection, 0 or 0.1 

mg/mL of dextran sulfate was added to the media. The media were harvested 5 days post-

transfection, and equal volumes from each treatment condition were used for immunoblotting with 

either anti-Flag or anti-HIS antibody.  

5.1.16 Adipocyte experiments  

Human adipose-derived stem cells were obtained from Zen-Bio and seeded in 96-well plates 

(160,000 cells/cm2 in 100 µL of EGM2-MV media, Zen-Bio). After 24 hours, media was replaced 

by PM1 (Zenbio) followed by replacement with DM2 (Zen-Bio) media. Fresh DM2 was added on 

the third day followed by replacement with AM1 (Zen-Bio) every 3-days until the cells were used. 

Differentiated adipocytes were utilized between days 12 and 14. For adipocyte mRNA analyses, 

differentiated cells were treated for 8 hours in PM1 in the absence or presence of 100 nM insulin 

(Sigma) in DMEM/F12(3:1) (Gibco) containing 0.2% fatty acid free BSA (Thermo). RNA was 

extracted using a miRNeasy mini kit (Qiagen). One ug of total RNA was reverse transcribed using 

a high capacity cDNA kit (Applied Biosystems). The cDNA was diluted 1:10, and ANGPTL4 

(Applied Biosystems, taqman mix Hs01101127_m1) and ANGPTL8 (Applied Biosystems, 

taqman mix Hs00218820_m1) transcript levels were quantitated. For insulin-stimulated release of 

ANGPTL4/8 complex, adipocytes were cultured in DMEM (Gibco) containing 0.2% fatty acid 

free BSA (Thermo). Cells were treated overnight in media containing 20 units/mL heparin (Sigma) 

with 0-100 nM insulin in the absence and presence of 10 nM glucose-dependent insulinotropic 

peptide (GIP). Media were collected and stored at -80oC prior to analyses. 

5.1.17 Statistics  

For SCARF samples, variables that presented skewed distribution were logarithmically 

transformed, and associations between ANGPTL complexes and selected phenotypes were 

assessed using Spearman rank correlation coefficients. A four-parameter logistic non-linear 

regression model was used to fit curves for LPL activity assays, while MSD software was used for 

immunoassay calibration curves. Significance for the feeding effect on ANGPTL complexes was 
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assessed using a paired t-test. Significance for the effect of complexes on VLDL-C uptake and the 

effect of insulin on adipocyte ANGPTL4/8 secretion was assessed using an unpaired t-test. A 

Dunnett’s test was used for insulin stimulation of ANGPTL mRNA expression. Significance of 

insulin-stimulated ANGPTL3/8 and ANGPTL4/8 secretion from hepatocytes was calculated using 

a two-tailed parametric paired t-test. Significance for BIL effects on circulating ANGPTL3/8 and 

ANGPTL4/8 complex levels was assessed using a two-way ANOVA with Dunnett’s multiple 

comparisons test. 

5.2 From Chapter 3: The mechanism of action of apolipoprotein A5 - suppression of 
ANGPTL3/8 complex-mediated inhibition of LPL activity 

5.2.1 Generation of recombinant ANGPTL proteins and complexes and ApoA5 protein 

ANGPTL3, ANGPTL4, ANGPTL3/8, and ANGPTL4/8 were expressed as previously 

described (225). For ApoA5, the nucleotide sequences encoding 1) human ApoA5 

(NP_443200.2)-PreScission cleavage site-mature human serum albumin (HSA)-HIS tag, 2) mouse 

IgG kappa signal peptide-HIS tag-mature human serum albumin (HSA)-PreScission cleavage site-

mature human ApoA5 (residues 24-366), and 3) mouse IgG kappa signal peptide-mature human 

serum albumin (HSA)-HIS tag were each inserted into a mammalian expression vector containing 

a cytomegalovirus (CMV) promoter. Protein expression was performed through transient 

transfection in HEK293 cells cultured in serum-free media. Culture media were harvested 5 days 

post transfection and stored at 4oC for subsequent protein purification at 4oC. Two liters of culture 

media were supplemented with 1 M Tris-HCl (pH 8.0) and 5 M NaCl to final concentrations of 25 

mM and 150 mM, respectively. The media were then incubated with 20 ml of HisPur Ni-NTA 

resin (Thermo) overnight. The resin was packed into a column and washed with buffer A (50 mM 

Tris-HCl, 0.3 M NaCl, pH 8.0), and elution was performed with a 0-300 mM imidazole gradient 

in buffer A. Fractions containing the protein of interest were pooled, concentrated, and loaded onto 

a HiLoad Superdex 200 column (GE Healthcare), and eluted with PBS. Fractions of interest were 

pooled, and protein concentrations were determined using a bicinchoninic acid (BCA) protein 

assay. All proteins were maintained at a <0.01 EU/ug of endotoxin. Each protein (0.5 µg) was 

characterized with or without PreScission cleavage using gradient gel electrophoresis with Bio-

Rad 4-20% Mini-Protean Tris-glycine gels, followed by Coomassie Blue staining to verify purity. 

All proteins were stored at -20oC . 
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5.2.2 ApoA5 antibodies and ANGPTL3/8 complex-specific antibodies 

ApoA5 antibodies were generated as previously described (243). Briefly, peptides 

corresponding to N-terminal and the C-terminal regions of human ApoA5 were synthesized 

(Anaspec). Terminal cysteine residues were added for conjugation to carrier proteins and 

chromatography beads, and peptides were conjugated to activated carriers. Rabbits were 

immunized every 21 days with 100 μg of peptide carrier conjugates in Freund’s adjuvant and bled 

10 days after booster injections beginning after the third injection. Polyclonal anti-C-terminal 

antisera were pooled, and polyclonal anti-N-terminal antisera were pooled. Afterward, the 

antibodies were affinity-purified against their respective peptides, concentrated with an Amicon 

stir cell concentrator, diluted in 50% glycerol, and stored at -20oC . 

Anti-human ANGPTL3/8 complex specific antibodies were generated by immunizing mice 

with recombinant ANGPTL3/8 complex using hybridoma techniques. Clones of interest were 

screened for non-overlapping epitopes, and antigen-specific variable heavy (VH) and light (VL) 

gene sequences were determined from extracted RNA. Variable domains were transferred into 

separate constant region expression vectors for antibody production, transfected into CHO cells, 

and purified using protein A chromatography. Antibodies were tested for specificity to ensure that 

they bound only ANGPTL3/8 complex and not ANGPTL3 or ANGPTL8.  Antibodies were diluted 

in 50% glycerol and stored at -20oC. 

5.2.3 Identification of ANGPTL3/8 associated proteins by mass spectrometry 

Biotinylated anti-FLAG antibody in PBS was first captured on streptavidin-coated 96-well 

plates (Thermo). After washing way unbound antibody with PBS, ANGPTL3/8 complex 

containing a FLAG-tag sequence at the C-terminus of ANGPTL3 was added to selected wells. For 

control samples, no ANGPTL3/8 was added. Triplicate samples were incubated at room 

temperature (RT) for 2 hours with gentle shaking.  Afterward, wells were washed with PBS, and 

200 µl of pooled human serum (diluted 1:2 in PBS) were added to each well. The plate was 

incubated at 4⁰C overnight with gentle shaking. The next day, the plate was washed 10 times using 

ice-cold PBS, and bound proteins were eluted using 100 µl of 1% acetic acid.  The eluate was dried 

under nitrogen to remove acetic acid, and proteins were digested overnight at 37oC using trypsin, 



 
 

94 

after reduction and alkylation using triethylphosphine and iodoethanol, respectively (295). 

Digested peptides were desalted using micro Ziptips. 

Samples were analyzed with a Thermo Q Exactive HF-X mass spectrometer using a Thermo 

Easy 1200 nLC-HPLC system. Peptide separation was carried out with a 75 µm x 15 cm Easy-

Spray PepMap C18 column (Thermo) coupled to a Thermo Easy-Spray source.  Solvents A was 

0.1% formic acid in water (Thermo Fisher Scientific, Optima™ LC/MS Grade), and Solvent B 

was 80% acetonitrile with 0.1% formic acid (Thermo, Optima™ LC/MS Grade). The gradient was 

35 minutes using a flow rate of 250 nL/min, starting with a 32 min 5-45% B ramp, followed by a 

1 min 45-95% B ramp, and a 2 min hold at 100% B. The HF-X was run with the following settings: 

spray voltage: 1.9 kV; capillary temperature: 275 ⁰C; full scan at 120,000 resolution with AGC 

target at 3e6, max IT of 50 ms; dd-MS2 at 30,000 resolution with AGC target of 1e5, max IT of 

100 ms, loop count of 20, CE of 25, isolation window of 2.0 m/z. Peptide sequences were identified 

by searching MS/MS spectra against the NCBI human database (296). 

5.2.4 Immunoprecipitation and Western blotting 

An anti-ANGPTL3/8 antibody, an anti-ApoA5 C-terminal antibody, and an irrelevant 

control antibody were each covalently coupled to Tosyl-activated M-280 Dynabeads (Thermo), 

with heavy and light chains further cross-linked using dimethyl pimelimidate (DMP). Fifty µL of 

beads containing 20 µg of antibody were added to 2 mL of pooled donor serum (diluted 1:2 in 

PBS) and incubated at 4°C overnight. The following day, beads were washed with PBS and boiled 

in sample buffer. Proteins were separated on a Novex 4-12% Bis-Tris gel and transferred to PVDF 

using an iBlot system (Thermo). The membrane was fixed by incubation with cold acetone for 30 

min, incubated at 50°C for 30 min, and then probed with biotinylated anti-ApoA5 C-terminal 

antibody. Bands were visualized with Alexa Fluro 680-conjugated streptavidin using an Odyssey 

CLx image system (LI-COR Biosciences). PreScission-cleaved recombinant HSA-ApoA5 served 

as the positive control. 

5.2.5 ANGPTL3/8 and ApoA5 immunoassays 

ANGPTL3/8 was measured as previously described (225). ApoA5 was also measured as 

previously described but with some modifications, including the use of human recombinant HSA-
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ApoA5 for the calibration curve (243). For performing the ApoA5 assay, MesoScale Discovery 

(MSD) streptavidin plates were washed three times with TBST (Tris buffered saline containing 10 

mmol/L Tris pH 7.40, 150 mmol/L NaCl, and 1 mL/L Tween 20) and blocked with TBS plus 1% 

bovine serum albumin (BSA) for 1 hour at RT. After aspiration and washing, wells were incubated 

with biotinylated anti-N-terminal ApoA5 capture antibody for 1 hour. Following aspiration and 

washing, 50 μL of recombinant HSA-ApoA5 (serially diluted as a standard curve) were added to 

the wells in assay buffer (50 mmol/L HEPES, pH 7.40, 150 mmol/L NaCl, 10 mL/L Triton X-100, 

5 mmol/L EDTA, and 5 mmol/L EGTA). Samples were diluted in assay buffer and added to their 

respective wells for a 2-hour RT incubation. After aspiration, wells were washed three times, and 

50 μL of ruthenium-labeled anti-C-terminal ApoA5 detection antibody were added for a 1-hour 

RT incubation. Following aspiration, wells were washed three times, and 150 μL of MSD read 

buffer were added. Electrochemiluminescence of ruthenium was detected using a MSD plate 

reader. 

5.2.6 LPL activity assays 

LPL activity assays were performed as previously described with minor modifications to 

characterize LPL-inhibitory activities of ANGPTL proteins and complexes in the presence or 

absence of ApoA5 (225). After wild-type human LPL-stable expression cells were incubated 

overnight in growth medium, the medium was replaced with 80 µL of medium containing serially 

diluted ANGPTL proteins or complexes (that were previously pre-incubated in the absence or 

presence of ApoA5). Cells were incubated for 1 hour at 37oC before 20 µL of 5X working solution 

containing lipase substrate were added to achieve a final concentration of 1 µM of substrate. The 

incubation was then continued at 37oC for 60 minutes, and fluorescence was monitored at 1 and 

30 min with a Synergy Neo2 plate reader with an excitation wavelength of 485 nm and emission 

wavelength of 516 nm to correct for background. 

Kinetic analyses of LPL activity were performed with modifications to allow for continuous 

characterization of LPL-inhibitory activities of ANGPTL proteins and complexes in the absence 

or presence of ApoA5. After overnight incubation of LPL-stable expression cells in growth 

medium, the medium was replaced with 80 µL of medium containing ANGPTL proteins or 

complexes (previously pre-incubated in the absence or presence of ApoA5). Cells were incubated 

for 1 h at 37oC before 20 µL of 5X working solution were added to achieve a final concentration 
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of 1 µM substrate. The incubation was continued at 37oC for 60 minutes, and fluorescence was 

monitored every minute. 

5.2.7 Secretion of ANGPTL3/8 and ApoA5 from hepatocytes 

Human primary hepatocytes were obtained from BioIVT in the HepatoPac platform and 

were incubated for two days in BioIVT maintenance media (225). Following aspiration, cells were 

washed in serum-free BioIVT application media. Afterward, cells were pre-incubated for one day 

in application media in the absence of insulin, then incubated overnight with application media in 

the absence or presence of 0-1 nM insulin and/or 0-10,000 nM of the LXR agonist T0901317. 

Media were collected and stored at -80oC prior to subsequent analyses of secreted ApoA5 and 

ANGPTL3/8 via their respective immunoassays. 

5.2.8 Statistics 

A four-parameter logistic non-linear regression model was used to fit curves for LPL activity 

assays. For kinetic analyses of LPL activity assays, fluorescence was recorded every minute, and 

counts were plotted versus time to show the degree of LPL inhibition. For ANGPTL3/8 and 

ApoA5 assays, MSD software was used for fitting of the immunoassay calibration curves using a 

5-parameter fit with 1/y2 weighting. For mass spectrometry data, a Student’s t-test was used to 

compare the log2 mean AUC of the three replicates from control and ANGPTL3/8 samples. For 

those ions with an extract AUC below 1024, the log2 AUC was adjusted to the log2 of 10 prior to 

statistical analysis. Peptide ions in ANGPTL3/8 samples differing from the control samples with 

a p < 0.05 and a fold-change > 5 were considered to be significant. Significance for the effect of 

insulin and T0901307 on ANGPTL3/8 and ApoA5 secretion from hepatocytes was calculated 

using a one-way ANOVA. Significance for the combined effect of insulin and T0901307 on 

ANGPTL3/8 and ApoA5 secretion from hepatocytes was calculated using a two-way ANOVA. 
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APPENDIX A. SUPPLEMENTAL FIGURES 

Supplemental Figures A1- A17: Chromatograms for ApoA5 peptide ions from ANGPTL3/8 

and control samples. 

The peptide ion sequence and parent m/z value are listed on top of the corresponding figures. 

Oxidized methionine residues were denoted with [15.9949] at the sequences. The peaks were 

extracted using Freestyle software with a minimum S/N threshold of 2.0 and a mass tolerance 

window of 2 ppm.  For each ion, the ion intensity was globally normalized to the highest one in 

the group. For control samples, the peak areas were extracted within a window of ± 0.4 min of the 

mean retention times of the corresponding peaks detected in ANGPTL3/8 samples, as illustrated 

by the dashed lines. The ± 0.4 min window was selected based on evaluating the maximum 

retention time shift of landmark ions in the samples. 

 

 

Figure A1: KGFWDYFSQTSGDK; Parent m/z: 555.9234 

 



 
 

 

  
Figure A2: DSLEQDLNNM[15.9949]NK, Parent m/z: 718.8205 

 

  
Figure A3: LRPLSGSEAPR, Parent m/z: 394.8911 



 
 

 

  
Figure A4: LPQDPVGM[15.9949]R, Parent m/z: 514.7640 

 

  
Figure A5: RQLQEELEEVK, Parent m/z: 700.8737 

 



 
 

 

  
Figure A6: RQLQEELEEVK, Parent m/z: 467.5844 

 

  
Figure A7: M[15.9949]AEAHELVGWNLEGLR, Parent m/z: 614.3059 



 
 

 

 

 
Figure A8 AQLLGGVDEAWALLQGLQSR, Parent m/z 

 

 

Figure A9 AQLLGGVDEAWALLQGLQSR, Parent m/z: 709.0530 



 
 

 

 
Figure A10 ELFHPYAESLVSGIGR, Parent m/z: 887.9617 

 

 
Figure A11 ELFHPYAESLVSGIGR, Parent m/z: 592.3093 

 



 
 

 

 

Figure A12 IQQNLDQLR, Parent m/z 

 

 

Figure A13 IQQNLDQLREELSR, Parent m/z: 581.3115 

 



 
 

 

 

Figure A14 AFAGTGTEEGAGPDPQM [15.9949] LSEEVR, Parent m/z: 1183.0353 

 

 

Figure A15 AFAGTGTEEGAGPDPQM[15.9949]LSEEVR, Parent m/z: 789.0278 

 



 
 

 

 

Figure A16 LDDLWEDITHSLHDQGHSHLGDP, Parent m/z: 879.7406 

 

 

Figure A17 LDDLWEDITHSLHDQGHSHLGDP, Parent m/z: 660.0556



 
 

 

 
Figure A18 Chromatograms of protein ions detected in ANGPTL8 immunoprecipitation experiments.  

MRM data were quantified using Thermo Xcalibur (version 4.2.47) with ICIS peak detection 
algorithm.  The following parameters were used for peak integration:  Smoothing points: 7; Baseline 
window: 20; Area noise factor: 5; Peak noise factor: 10. Two peptides per protein were monitored. 
SIL peptides (0.2 pmole) were spiked into each replicate after digestion. The ratio between 
endogenous peptide and the corresponding SIL peptide was calculated and the amount of protein 
detected was determined using the molecular weight. All analyses were performed in triplicate. The 
SIL peptides used for quantitation of ANGPTL8 were: 133-138 and 148-153, those used for 
ANGPTL4 were 64-71 and 97-110, and those used for ANGPTL3 were 239-252 and 378-387. The 
Y-axis shows relative abundance, and the X-axis shows retention time in minutes, with grey shading 
indicating the integrated area. The integrated AUC values for each peptide ion and calculated protein 
concentrations are listed in Supplemental Table B2



 
 

 

 
Figure A19 Chromatograms of protein ions detected in ANGPTL4 immunoprecipitation experiments.  

MRM data were quantified using Thermo Xcalibur (version 4.2.47) with ICIS peak detection 
algorithm.  The following parameters were used for peak integration:  Smoothing points: 7; Baseline 
window: 20; Area noise factor: 5; Peak noise factor: 10. Two peptides per protein were monitored. 
SIL peptides (0.2 pmole) were spiked into each replicate after digestion. The ratio between 
endogenous peptide and the corresponding SIL peptide was calculated and the amount of protein 
detected was determined using the molecular weight. All analyses were performed in triplicate. The 
SIL peptides used for quantitation of ANGPTL4 were: 64-71 and 97-110, and those used for 
ANGPTL8 were 133-138 and 148-153. The Y-axis shows relative abundance, and the X-axis shows 
retention time in minutes, with grey shading indicating the integrated area. The integrated AUC 
values for each peptide ion and calculated protein concentrations are listed in Supplemental Table 
B2.



 
 

 

 
Figure A20 Chromatograms of protein ions detected in ANGPTL3 immunoprecipitation experiments. 

MRM data were quantified using Thermo Xcalibur (version 4.2.47) with ICIS peak detection 
algorithm.  The following parameters were used for peak integration:  Smoothing points: 7; Baseline 
window: 20; Area noise factor: 5; Peak noise factor: 10. Two peptides per protein were monitored. 
SIL peptides (0.2 pmole) were spiked into each replicate after digestion. The ratio between 
endogenous peptide and the corresponding SIL peptide was calculated and the amount of protein 
detected was determined using the molecular weight. All analyses were performed in triplicate. The 
SIL peptides used for quantitation of ANGPTL3 were 239-252 and 378-387, and those used for 
ANGPTL8 were 133-138 and 148-153. The Y-axis shows relative abundance, and the X-axis shows 
retention time in minutes, with grey shading indicating the integrated area. The integrated AUC 
values for each peptide ion and calculated protein concentrations are listed in Supplemental Table 
B2. 



 
 

 

 

Figure A21 Chromatograms for ANGPTL protein ions from recombinant ANGPTL3/8 digest. 

The peak detection methods are the same as described previously. All analyses were performed in 
triplicate from a single protein production preparation. Two peptides per protein were monitored. 
The SIL peptides used for quantitation were 239-252 and 378-387 for ANGPTL3 and 133-138 and 
148-153 for ANGPTL8. The Y-axis shows the relative abundance, and the X-axis shows retention 
time in minutes, with grey shading indicating the integrated area. The integrated AUC values for 
each peptide ion and the protein ratios for the complex are listed in Supplemental Table B2.



 
 

 

 

Figure A22 Chromatograms for ANGPTL protein ions from recombinant ANGPTL4/8 digest.  

The peak detection methods are the same as described previously. All analyses were performed in 
triplicate from a single protein production preparation. Two peptides per protein were monitored. 
The SIL peptides used for quantitation were 64-71 and 97-110 for ANGPTL4 and 133-138 and 148-
153 for ANGPTL8. The Y-axis shows the relative abundance, and the X-axis shows retention time 
in minutes, with grey shading indicating the integrated area. The integrated AUC values for each 
peptide ion and the protein ratios for the complex are listed in Supplemental Table B2.



 
 

 

 

Figure A23 Chromatograms for ANGPTL protein ions from endogenous ANGPTL3/8 digest. 

The peak detection methods are the same as described previously. All analyses were performed in 
duplicate from a sample composed of a pool of sera from 20 healthy donors. Two peptides per 
protein were monitored. The SIL peptides used for quantitation were 132-137 and 177-187 for 
ANGPTL3 and 133-138 and 148-153 for ANGPTL8. The Y-axis shows the relative abundance, and 
the X-axis shows retention time in minutes, with grey shading indicating the integrated area. The 
integrated AUC values for each peptide ion and the protein ratios for the complex are listed in 
Supplemental Table B2.



 
 

 

 

Figure A24 Chromatograms for ANGPTL protein ions from endogenous ANGPTL4/8 digest. 

The peak detection methods are the same as described previously. All analyses were performed in 
duplicate from a sample composed of a pool of sera from 20 healthy donors. Two peptides per 
protein were monitored. The SIL peptides used for quantitation were 64-71 and 97-110 for 
ANGPTL4 and 133-138 an 148-153 for ANGPTL8. The Y-axis shows the relative abundance, and 
the X-axis shows retention time in minutes, with grey shading indicating the integrated area. The 
integrated AUC values for each peptide ion and the protein ratios for the complex are listed in 
Supplemental Table B2. 

 



 
 

 

113 

 

APPENDIX B. SUPPLEMENTAL TABLES 

Table B1 ApoA5 peptide ions identified from mass spectrometry analysis & database search. 
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Table B2 ANGPTL protein MRM peptide characteristics 
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Table B3 MRM peptide AUCs for ANGPTL protein immunoprecipitations. 

Integrated AUC values for each peptide ion and calculated ANGPTL protein concentration are listed. 
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Table B4 MRM peptide AUCs for recombinant ANGPTL3/8 & ANGPTL4/8 protein complexes.  

Integrated AUC values for each peptide ion and the protein ratios for the recombinant ANGPTL3/8 and ANGPTL4/8 complexes are listed. 
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Table B5 MRM peptide AUCs for endogenous ANGPTL3/8 & ANGPTL4/8 protein complexes. 

Integrated AUC values for each peptide ion and the protein ratios for the endogenous ANGPTL3/8 and ANGPTL4/8 complexes are listed. 
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