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ABSTRACT

Dale, Ashley S. MSECE, Purdue University, December 2020. 3D Object Detection
Using Virtual Environment Assisted Deep Network Training. Major Professor:
Lauren Christopher.

An RGBZ synthetic dataset consisting of five object classes in a variety of vir-

tual environments and orientations was combined with a small sample of real-world

image data and used to train the Mask R-CNN (MR-CNN) architecture in a variety

of configurations. When the MR-CNN architecture was initialized with MS COCO

weights and the heads were trained with a mix of synthetic data and real world data,

F1 scores improved in four of the five classes: The average maximum F1-score of

all classes and all epochs for the networks trained with synthetic data is F ∗
1 = 0.91,

compared to F1 = 0.89 for the networks trained exclusively with real data, and the

standard deviation of the maximum mean F1-score for synthetically trained networks

is σ∗
F1 = 0.015, compared to σF1 = 0.020 for the networks trained exclusively with real

data. Various backgrounds in synthetic data were shown to have negligible impact

on F1 scores, opening the door to abstract backgrounds and minimizing the need for

intensive synthetic data fabrication. When the MR-CNN architecture was initialized

with MS COCO weights and depth data was included in the training data, the net-

work was shown to rely heavily on the initial convolutional input to feed features into

the network, the image depth channel was shown to influence mask generation, and

the image color channels were shown to influence object classification. A set of latent

variables for a subset of the synthetic datatset was generated with a Variational Au-

toencoder then analyzed using Principle Component Analysis and Uniform Manifold

Projection and Approximation (UMAP). The UMAP analysis showed no meaningful



xiv

distinction between real-world and synthetic data, and a small bias towards clustering

based on image background.
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1. INTRODUCTION

The usefulness of a machine learning approach to potential computer vision tasks has

been widely demonstrated, including computer vision tasks such as traffic analysis

(with implications for autonomous vehicles) [1–3], quality control during manufactur-

ing (with implications for task automation) [4–6], and face recognition [7–9]. Indepen-

dently, these applications represent another incremental improvement in performance

for each task; collectively they present evidence of a machine learning revolution,

where artificial intelligence is developing the capability to compete with human vi-

sion.

In the normative model of vision, a pair of eyes provide visual data (comprised

of color and depth information) to the brain for analysis [10]. Keeping pace with the

improvement in hardware, computer vision data has transitioned from grayscale [11]

to color [12] and, with the introduction of the Microsoft Kinect in 2010, now frequently

includes depth data [13–15].

Historically, image depth data has been captured through the use of paired stereo-

scopic images, essentially reproducing the view from each eye in the vision model,

and much effort has been invested in accurately inferring depth from stereoscopic

images [16–20]. However, the introduction of the Microsoft Kinect opened the door

to a relatively low cost, widely available method of mass gathering depth data di-

rectly, without an additional depth-inference step. The algorithm is now freed from

the burden of inferring depth and may instead dedicate all computational resources

to the task of processing the additional information.

In fact, the issue of limited resources (i.e. time, data, computational power)

continues to hinder progress in accomplishing computer vision tasks, with significant

literature dedicated to the subject of resource optimization by decreasing training

time and required computational power and implementing data augmentation [21–29].
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Recent progress in transfer learning shows that it may be possible to comprehensively

train a single network once, then tune the generalized network for a specific task by

relaxing the weights on specific layers [30,31], reducing the long term training burden

and reducing the required computational resources needed during the training process.

Similar advances in virtual environment creation alleviate the need to obtain large

data sets from real-world environments subject to unpredictable weather, lighting,

and other factors [32–34]. Reducing the overhead cost of machine learning computer

vision solutions by using these approaches allows potential solutions to be more widely

implemented.

However, throughout all of these resource optimization approaches the final goal

remains the same: the reproduction of vision capabilities in real-world environments.

To that end, it is worth testing if transfer-learning and synthetic data approaches may

be combined, the effectiveness of combining the approaches, and the improvement in

overall performance over previous methods.

The task chosen is the detection and subsequent classification of the following

objects: plane, hang glider, kite, quadcopter, and eagle. Object classification refers

to the labeling of a pre-localized object in an image, whereas object detection refers

to the localization of an object within an image followed by the correct classification.

Two data sets were created using these objects: The first data set consists of real-

world images gathered from the internet, and is denoted as the RGB data set. The

second data set consists of virtual objects modeled after the real-world but placed

in an entirely synthetic, virtual world, and is denoted RGB*. Since the virtual en-

vironment allows for complete control over the data gathering process, a subset of

the RGB* data set containing virtual z-depth maps was created; the synthetic data

set containing these depth maps is denoted RGBZ*. The RGB data did not include

depth information, so to enable comparison between RGB data and the RGBZ* data

depth maps were created for each RGB image by hand: This RGB data set expanded

with the artificial depth maps is termed RGBZ. The RGB and RGBZ* data sets
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were used to study the impact of synthetic data from virtual environments on the

performance of a machine learning algorithm for object detection.

In the following sections of this chapter, an overview of the state of the art on ob-

ject detection machine learning algorithms and the metrics used to evaluate network

performance are presented to provide context for this work. In subsequent chapters,

the effects of including synthetic data with real world data and the effects of including

depth data during training are presented with the necessary details, and an attempt

at understanding how these results arise from data set features is presented.

1.1 Machine Learning Algorithms for Object Detection

As recently as 2015, every state-of-the-art machine learning algorithm relied solely

on 2D image data [35]. Challenges such as the ImageNet Large Scale Visual Recogni-

tion Challenge (ILSVRC) popularized the use of Deep Neural Networks (DNNs) for

object detection tasks, where many of the DNN architectures implemented convolu-

tional layers [36] and are therefore termed Convolutional Neural Networks (CNNs).

Although many fascinating and capable CNN architectures and algorithms have

been developed in the past decade, the focus for the following sections is narrowed

to the R-CNN family of architectures and the VGG-ResNet CNNs culminating in

the introduction of Mask R-CNN in 2017. Since the Mask R-CNN architecture is a

combination of the R-CNN and ResNet architectures, brief histories and descriptions

of the R-CNN and ResNet architectures are presented since the Mask R-CNN archi-

tecture is a combination of both architectures, while the Mask R-CNN architecture

is presented in detail in section 1.1.3.

1.1.1 The R-CNN Network Architectures

In 2014, Girshick et al. focused attention on feature-based object classification

through the introduction of a machine learning network architecture consisting of a
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region proposal architecture with a backbone of convolutional layers named “Regions

with CNN features” or R-CNN [37].

Fig. 1.1.: The architectures for R-CNN [37], Fast R-CNN [38], and Faster
R-CNN [39]. Each architecture gains capability as complexity increases; while

R-CNN basically consists of only a CNN and modified input, Fast R-CNN
comprises several sub-networks, and Faster R-CNN includes the Region Proposal
Network (labeled RPN and shaded gray) and the entire Fast R-CNN architecture.

Before R-CNN, the most successful image classification and object detection al-

gorithms relied on finding various pixels of interest within an input image, then

searching surrounding pixels to create a set of features associated with the detected

object [11, 12, 40]. These algorithms achieved a mean Average Precision (mAP) of

approximately 30% on standard classification tasks; in comparison, through the use

of convolutional layers, R-CNN achieved an astounding 53.7% [37].

Girshick et al. drew inspiration from the visual system to combine this region-

based approach with the insight that—-in the visual system—-object detection and

classification occur at several different levels along the vision pathway. Accordingly,

R-CNN divides the object detection and classification task into two components:

localization by generating proposal regions-of-interest (RoIs), and feature detection
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through the use of CNNs. To tune R-CNN to a specific task (transfer learning), the

classification layer is replaced and the rest of the architecture is left unaltered [37].

R-CNN was supplanted in 2015 when Girshick introduced Fast R-CNN [38]. Train-

ing Fast R-CNN is at minimum 9x faster than R-CNN, an achievement accomplished

by computing a convolutional feature map once, then sharing the map with all fu-

ture computations (thereby reducing the computational burden) [38]. While R-CNN

innovated the region proposal with the convolutional layer, Fast R-CNN introduced

multiple innovations such as multi-task loss and updating all layers during train-

ing (specifically convolutional layers), eliminating the need for writing features to

disk [38]. The Fast R-CNN paper also describes the protocol for adapting the net-

work for transfer learning with pre-trained networks: the max pooling layer is replaced

with an RoI pooling layer compatible with the pre-trained network, the last fully con-

nected layer and softmax layer are replaced with layers of the same kind but specific

to the new task, and the network input is modified to accept a list of images and a

list of the image RoIs [38].

One further improvement was made to the Fast R-CNN network architecture

in 2015 with the introduction of the Region Proposal Network (RPN), effectively

eliminating the region proposal computational burden, allowing detections in real-

time, and giving the world Faster R-CNN [39]. The RPN accepts any size image

as input to a convolutional layer, uses a small network as a sliding window over the

convolutional layer feature map, and maps the sliding window to a lower dimensional

vector which is then fed into the CNN backbone [39].

The architectures for R-CNN, Fast R-CNN, and Faster R-CNN are shown in

Figure 1.1. These architectures addressed many of the major issues (speed, memory,

data, accuracy, etc.) hindering machine learning object detection and classification

algorithms with innovations now widely implemented in other network architectures.

These issues were addressed by placing the CNN architectures (typically VGG-16) into

a new computational setting, adopting a modular approach that combined the best

CNN for the job with additional sub-networks specific to the task at hand [37,37,39].
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However, accuracy was not yet 100%, and the R-CNN architectures by definition

relied on CNN architectures which were still struggling with their own set of training

issues and challenges.

1.1.2 ResNet

Thanks to successes at challenges such as ILSVRC, multi-layer CNNs continued

to grow deeper and deeper, which introduced the question how deep is too deep? [41].

The Visual Geometry Group (VGG) at the University of Oxford designed two

CNNs specifically to answer this question [41]. The first architecture known as VGG-

16 included sixteen convolutional layers, while the second architecture VGG-19 in-

cluded nineteen convolutional layers [41]. However, machine learning practitioners

discovered that as the networks grew deeper accuracy plateaued then quickly de-

graded [42].

A solution for the accuracy degradation was found in 2016, when He et al. in-

troduced ResNet, a variation on the VGG architectures [42]. VGG architectures

implement a sequential flow through each network layer; ResNet created shortcuts,

allowing inputs to slip past groups of layers and therefore “survive” to affect the train-

ing of deeper network layers [42]. The improvement with the ResNet architecture was

drastic, allowing a 1001 layer network to be trained [42,43] and winning first place at

the ILSVRC 2015 Classification task with a 152 layer CNN [42].

In total, He et al. introduced four ResNet architectures: ResNet-34, ResNet-

50, ResNet-101, and ResNet-152 with 34, 50, 101, and 152 layers respectively [42].

ResNet-34 was the least accurate of the four architectures, and in general, deeper

networks once again produced higher quality results [42]. Unsurprisingly, there was

a shift away from using VGG-style architectures as the convolutional backbones for

network architectures, including a reworking [44].
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1.1.3 Mask R-CNN

By 2017, the Faster R-CNN architecture with various CNN backbones was state-

of-the-art for object detection and classification tasks. However, a comparison of

Faster R-CNN with VGG-16, ResNet-50, googLeNet, and caffeNet backbones high-

lights that, while Faster R-CNN/ResNet-50 had the highest accuracy, it also had the

slowest computational time [44], and therefore fell short of truly real-time image anal-

ysis. Faster R-CNN was also incapable of instance segmentation tasks, specifically the

pixel-by-pixel detection and labeling of an occluded object [45]. To address these is-

sues, He et al. added a new sub-network to the Faster R-CNN architecture specifically

for the task of predicting a segmentation mask on each RoI (following the modular

approach begun with Fast R-CNN and continued with Faster R-CNN) and dubbed

the modified architecture Mask R-CNN (MR-CNN) [45]. The new sub-network runs

in parallel with the network heads, as shown in Figure 1.2.

Fig. 1.2.: Mask R-CNN Architecture with Feature Pyramid Network (FPN)
variant [45]. For this work, ResNet-50 and ResNet-101 CNN backbones were

implemented. An example RGBZ image is shown for illustrative purposes; training
was conducted with independent RGB(*) and RGBZ* data sets. Transfer learning
with Mask R-CNN required excluding specific layers from the pre-trained weights
(shown in blue). When transfer learning with depth data, an additional layer was

excluded from the pre-trained weights; this layer is shown as blue stripes.
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The MR-CNN paper evaluates several different backbone/head configurations by

combining the ResNet and ResNeXt -50 and -101 CNNs with an additional convolu-

tional layer used to extract features from the final convlutional layer of the fourth-

stage or with a Feature Pyramid Network (FPN) [45]. The FPN helps keep scale

invariance by taking advantage of the fact that the CNN backbone already extracts

features at various scales, essentially re-creating a feature pyramid as a byproduct of

the main computational stream by sampling the convolutional layers at various points.

This provides a significant improvement in overall performance at low computational

cost [45, 46].

As of writing, MR-CNN continues to be state-of-the-art for machine learning tasks

requiring object detection from images. Accordingly for this work, MR-CNN with a

ResNet-(50,101) backbone and the FPN option was implemented from the Matterport

GitHub repository [47].

Transfer learning with RGB* data is discussed in detail in Chapter 2, followed by

a discussion of transfer learning with RGBZ* data in Chapter 3 and analysis of the

data set feature space in Chapter 4.

1.2 Evaluation Metrics

When evaluating input data, the Mask R-CNN network returns detections with

a mask, a box extracted from the mask, and a confidence score per class for each

detected instance. The detected instance is assigned to the class with the highest

confidence score.

Additional evaluation is required to determine if the returned results are valid.

False detections, poorly fitting masks/boxes, and incorrect class assignments must all

be identified to quantify network performance.

Two metrics were used to evaluate network performance: the Frame Detection

Accuracy (FDA) metric and the F1-score. The FDA metric was used to evaluate

each detection as either a true-positive detect or a false-positive detect based on
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various user-defined input parameters. This true/false designation was then used to

calculate the F1-score for each class and the data set in its entirety. Together, the

FDA and F1-score quantify the Mask R-CNN performance on the entire RGB(Z*)

data set.

1.2.1 Frame Detection Accuracy Metric

The Video Analysis and Content Extraction (VACE) metrics introduced two dis-

tinct measures to evaluate detection and tracking [48]. The Frame Detection Accuracy

(FDA) metric evaluates the performance of the network detection on a single frame,

while the Sequence Frame Detection Accuracy (SFDA) considers how the network

performed across a sequence [48]. For this study, the FDA metric was implemented

to evaluate the quality of the results returned by the classifier.

To implement the FDA metric, first the overlap ratio per image is determined by

summing the Intersection over the Union (IoU) of detected objects with ground truth

objects using the relation

Overlap Ratio =

N
(t)
mapped∑
i=1

∣∣G(t)
i ∩D

(t)
i

∣∣∣∣G(t)
i ∪D

(t)
i

∣∣ (1.1)

where, for input image t, G
(t)
i is the ith ground-truth object and D

(t)
i is the ith

detected object.

The VACE overlap ratio allows for omitting detections with IoU values below a

given threshold. If a detection has an IoU below the threshold, it is considered to

be a false-positive detection and does not contribute to the overlap ratio. Detections

with an IoU above the threshold are considered a true-positive detection. The overlap

ratio is then used to determine the accuracy of detections per image using the VACE

FDA metric defined as

FDA = FrameDetectionAccuracy =
Overlap Ratio
1
2
(N

(t)
G +N

(t)
D )

(1.2)
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where N
(t)
G is the number of ground truth objects and N

(t)
D is the number of

detections in image t.

In this implementation, the class assigned to the detection must match the class

of the ground truth for the IoU to return a true-positive value. The number of

missed detections (false-negatives) was simultaneously determined with the FDA by

comparing the true-positives to the ground-truth. The true-positives, false-positives,

and false-negatives were then used to determine the F1-score. A lenient IoU threshold

of 30% was set to emphasize class labeling accuracy in the reported statistics to allow

study of where the network architecture failed to return a highly tuned mask and

bounding box.

1.2.2 F-Score

The F-score is used in conjunction with the VACE detection metric to evaluate

the network’s ability to classify detections correctly. Also known as the “F-metric” or

“F1-score” when β = 1, this measure is ubiquitous within machine learning algorithm

evaluation as a single-number measure of network performance. Mathematically, the

F1-score is the harmonic mean of precision and recall where

P = precision =
Ncorrect

Ncorrect +Nincorrect

(1.3)

R = recall =
Ncorrect

Npossible

(1.4)

and

Fβ =
(β + 1)PR

β2P +R
(1.5)

where β = 1.

Although multi-class versions of the F1-score exist, in this study the F1-score

considers each class independently. When calculating precision and recall, the values

for Ncorrect and Npossible are taken from the ground truth within a particular class.
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However, Nincorrect includes all relevant misclassifications from every class. E.g., for

two classes [bird = 10 instances, plane = 10 instances], if 3 instances of bird are

mislabeled as plane, and 9 instances of plane are mislabeled as bird, when the F1-

score for the plane class is determined, Nincorrect = 3, Ncorrect = 1, and Ntotal = 10. As

a result, the precision contains all the information from every class that is mapped to a

single class whether erroneous or not, while the recall is class specific. This method of

calculating the F1-score allows for evaluation of the interplay between classes during

training.

The F1-score has been criticized for weighting precision and recall equally [49,50]

and for its inability to distinguish between classes [50,51]. In this study, evaluation of

the network’s ability to recall features determined from synthetic data and/or depth

data is of equal relevance to the network’s ability to correctly classify an instance by

applying learned features. Therefore, an equal weighting of precision and recall is a

benefit of the F1-score, not a detriment.
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2. REAL WORLD AND VIRTUAL WORLD: INCLUSION

OF SYNTHETIC DATA DURING TRAINING

2.1 Introduction

The role of synthetic data in augmenting real-world data to improve machine

learning results is of great interest to artificial intelligence researchers. With appli-

cations ranging from determining local order in spatial regimes [52] to aiding in the

prevention of money laundering [53] or phenotyping tumors [54], combining synthetic

data with real-world data has been shown to introduce diversity into a data set to

prevent overfitting [55] and reduce the manual labor required to create and annotate

data sets [32].

We show that it is possible to achieve outstanding machine learning results by

combining a very small set of real-world data with a large set of synthetic data when

using the Mask-RCNN architecture and transfer learning on the Microsoft Common

Objects in Context (MS COCO) data set.

2.2 Generation of Synthetic Data

Generation of the synthetic data set was completed by a team of Media Arts

and Science (MAS) students under the guidance of Albert William and Wen Krogg.

The MAS team used AutoDesk Maya, a fully featured modeling software capable of

simulating objects and environments with intricate textures, lighting, and physical

motion. This software was used to model various real-world objects, then render

images of these objects in two different approaches to generating synthetic data.

The first approach used by the MAS team was to create fully developed virtual

environments that mimic natural or urban landscapes. Houses, trees, cars, etc. were
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modeled in Maya, imported into a virtual Maya environment, then animated to pro-

duce a series of images with high verisimilitude to images sourced from the real world.

Each virtual environment contained two to five flying objects to be detected. The

sky, lighting, and weather were varied to resemble real world photographic conditions.

The result is a set of virtual images which closely emulate data obtained in real-world

environments under varying conditions. Example sea, farm, and neighborhood envi-

ronments may be found in Figures 2.1, 2.2 and 2.3.

Fig. 2.1.: Virtual Sea Environment

Generating these virtual environments required extensive labor and attention to

detail. Initially, the MAS team rendered each virtual environment sequence in the

form of a short film 1-5 seconds in duration (approximately 30 to 150 frames or

object instances per sequence). Although the network architecture does not evaluate

the data in a time-series context, the time-series feature was still present in the data

and there was an inherent continuity between object instances.

The virtual environment images may be rendered at arbitrarily high quality and

have complex features; an evaluation of what the network was capable of analyzing,

the abilities of the render farm, and the number of GPUs were all factors in the

decision to render each image once at 4k, then downsample to 1k images. However,
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Fig. 2.2.: Virtual Farm Environment

Fig. 2.3.: Virtual Neighborhood Environment

even with concessions as to image quality and scene complexity, it became difficult to

generate a large amount of training data in an efficient amount of time. Accordingly,

a second approach was required to generate bulk synthetic data.

In the second approach, a single object corresponding to one of the network classes

(e.g. airplane or kite) was modeled in Maya, then imported into an empty environ-

ment devoid of any real-world context. The 12-camera rig shown in Figure 2.4 was
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then placed around the object, then rotated 360-degrees about the x-y plane while

the object was rotated 360 degrees around the z-axis in an attempt to capture every

possible orientation of the object. These 360-degree captures were then rendered with

transparency behind the object. The result is a set of data containing a single object

at every possible angle and orientation, but without any context.

Fig. 2.4.: 360 Camera Rig used to generate bulk synthetic data of an object in every
orientation. The hang glider is shown in the center. The black background is not

rendered with the object.

To obtain context for each object, high quality HDR images of various real-world

and virtual scenes were imported into Maya separately, captured with the 360-degree

camera rig, and rendered to correspond exactly with the orientation of the 360-degree

renders of the object. These 360-background images could then be combined with

various 360-model images to create an extensive set of mix-and-match training images.

Any object could be paired with any background, and lighting adjustments could be

easily handled in post-processing. As an example, Figure 2.6 shows the same grass-

sky virtual background rendered with several different objects in various orientations

captured by the 360-rig.

The 360-rotation approach significantly decreased the amount of craftsmanship

required to generate the virtual environments of synthetic data. The comprehen-
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sive nature of the 360-rotation data encompasses the novelty and diversity of the

hand-crafted sequence through sheer volume. What the 360-rotation data lacks in

environmental complexity is recovered by including the virtual environment images

in the final training set.

The result of combining the complex virtual environment images with the bulk

360-rendered images is a large data set of 10,116 images, denoted as RGB*, consist-

ing of 8,640 rotational images (denoted 360-RGB*) and 1,476 virtual environment

images (denoted VW-RGB*). To further ensure that any noise or real-world com-

plexities absent from the virtual environment are maintained during transfer learning,

an additional 500 real-world images were sourced from various photo repositories on

the internet with a Creative Commons license. This set of extended real-world im-

ages is denoted as the RGB data set. The total data set used for training is then

RGB+RGB*, and consists of 10,616 training images.

2.2.1 Models and Classes

Five objects were chosen as classes for testing and training with the transfer

learning approach: plane, kite, glider, quadcopter and eagle. These objects were

chosen for the following criteria: First, relevance to the real-world application of

discriminating between similar flying objects. Second, similarity and dissimilarity

between objects. For example, the kite was purposely modeled to resemble a bird to

force a more rigorous classification between kites and birds; kites and hang-gliders

share a two-dimensional planar structure which makes the front profile views very

similar, etc. An example of four of the five objects with various virtual environments

is shown in Figure 2.5. Of these five classes, plane, kite, and bird (“eagle”) preexisted

in MS COCO as labels 5, 34, and 15 respectively.
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(a) (b) (c) (d)

Fig. 2.5.: (a) Plane in Farm Virtual Environment, (b) Glider in Farm Virtual
Environment, (c) Quadcopter in Neighborhood Virtual Environment, (d) Eagle in

Farm Virtual Environment

(a) (b) (c) (d)

Fig. 2.6.: (a) Quadcopter in 360-Rotation Virtual Environment, (b) Plane in
360-Rotation Virtual Environment, (c) Hang Glider in 360-Rotation Virtual

Environment, (d) Kite in 360-Rotation Finely Checkered Environment

2.2.2 360-Degree Rotations and Various Backgrounds

Two backgrounds were implemented in the 360-RGB* data. The first background

consisting of grass and sky has already been shown in Figure 2.6(a)-(c), and was used

in the plane, glider, quadcopter, and eagle classes.

For the kite class, a finely checkered background was chosen, with the hypothesis

that as the image is processed by the various convolutional layers, the checker would

eventually be “blurred” away and encourage the network to focus on the features of
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the kite, rather than on any background features. An example of the kite on the

checkered background is shown in Figure 2.6 (d).

2.3 Data

The RGB and the VW-RGB* data was hand labeled with boxes (top, bottom,

width, height). The 360-RGB* data was labeled using an automated blob detect on

the depth map to generate polygons (this algorithm is discussed further in Chapter

3.2.1). The automated approach to labeling data with polygons was intended to

improve the quality of the masks generated by the output layers.

The RGB+RGB* data set is shown broken down by number of instances per class

in Table 2.1. Note that the total number of instances is higher than the total number

of images due to multiple instances per image. The test set consisted exclusively of

the real-world RGB images discussed in Section 2.5.1.

Table 2.1.: RGB+RGB* Training and Testing Data Instances per Class

RGB+RGB* Data

Training Instances
Test Instances

(from RGB Test Data Set)

Plane 2083 51

Glider 2527 101

Kite 2161 43

Quadcopter 2225 65

Eagle 1953 96
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2.4 Methodology

The Mask R-CNN network with the ResNet-101 backbone was initialized using

the MS COCO weights excluding only the head, FPN, and mask sub-networks as

shown in Figure 1.2. The sub-networks were randomly initialized and allowed to

train for 25 epochs with the parameters shown in Table 2.2 as discussed in Section

2.5. An epoch was defined as the completion of a number of steps equal to the total

data set divided by the number of images per GPU minibatch. Training was repeated

ten times each on the RGB data set and RGB+RGB* data set.

Table 2.2.: RGB+RGB* Network Training Parameters

RGB+RGB* Training Details

GPU GE Force GTX 1080

IMAGES PER GPU 4

IMAGE MIN DIM 1024

IMAGE MAX DIM 1024

STEPS PER EPOCH 2738

DETECTION MIN CONFIDENCE 0.80

VALIDATION STEPS 2738

Early training attempts included randomly partitioning the VW-RGB* data (ex-

cluding the 360-RGB* data) into 50:50 training-testing sets, so that the test set

included 50% of all available virtual environment images. However, the virtual en-

vironment test data consistently performed poorly during testing. For example, in a

given 6 frame image sequence from the 360-RGB* set with only small difference in

object orientation, frames 1, 3, and 5 would be in the training set and frames 2, 4,

and 6 would be in the testing set. The network would have perfect recall on frames

1, 3, and 5, but fail to find a single detect in frames 2 and 4. Within the same testing
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set, the network would perform significantly better on all RGB images than on all

RGB* images. The conclusion is that the VW-RGB* data may be more challenging

for the network than the RGB data.

As a result, all available VW-RGB* data was included during training and the

network was evaluated solely by its performance on the RGB test data in Table 2.2.

Not only does this more-closely align with the network’s actual intended applica-

tion, the inclusion of complete RGB* time-series significantly improved the network’s

overall performance on RGB data. The results for training on all available virtual

environment data and testing exclusively on real-world data are presented in Figure

2.8, where the solid colors represent the RGB test results from RGB+RGB* training.

The architecture was trained again using exactly the same approach described

above, but with only the smaller 500 image RGB subset from the original RGB+RGB*

training set. These training parameters are presented in Table 2.3, and the results

presented in Figure 2.8 for comparison.

Table 2.3.: RGB Network Training Parameters

RGB Training Details (No RGB* data)

GPU GE Force GTX 1080

IMAGES PER GPU 4

IMAGE MIN DIM 1024

IMAGE MAX DIM 1024

STEPS PER EPOCH 125

DETECTION MIN CONFIDENCE 0.80

VALIDATION STEPS 125



21

2.5 Transfer Learning with Synthetic Data

The Microsoft Common Objects in Context (MS COCO) data set was released in

2015 as a response to the growing need for extensive, complex image training data

for real-world applications [56]. In its totality, the data set consists of 2.5 million

per-instance labels across 328k RGB images of 91 distinct objects [56]. MS COCO

emphasized multiple objects and multiple classes per image, with an average of 10k

instances per object class [56]. The ResNet pre-trained weights chosen for this work

used 80 of the original 91 object classes.

In the following sections, the RGB and RGB* test sets are evaluated using MS

COCO weights in the Mask R-CNN architecture without transfer learning.

2.5.1 Baseline Results with RGB Real World Data

To establish a baseline comparison for the various training approaches presented

in this work, the RGB (real-world only) test set was evaluated using the original

MS COCO trained network with a ResNet-101 backbone (no transfer learning). The

RGB test set includes three classes pre-existing in the MS COCO weights (eagle/bird,

airplane/plane, and kite), and two new classes (glider and quadcopter). The testing

results with a confidence threshold >80% are presented in Table 2.4.

Table 2.4.: Test results from MS COCO weights and
the RGB test data set without network training (transfer
learning) on the RGB(*) training data set.

Ground Truth/Network Result eagle plane glider quadcopter kite

bird 102 0 23 1 1

airplane 0 57 30 43 1

person 2 15 72 67 3

kite 0 0 67 0 62

car 0 8 0 11 0

continued on next page
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Table 2.4.: continued

Ground Truth/Network Result eagle plane glider quadcopter kite

umbrella 0 1 9 0 0

tennis racket 0 1 0 2 0

surfboard 0 1 2 0 0

skis 0 1 1 0 0

backpack 0 0 1 0 1

banana 1 0 0 0 0

boat 1 0 0 0 0

knife 2 0 0 0 0

chair 0 2 0 0 0

sink 0 2 0 0 0

stop sign 0 1 0 0 0

motorcycle 0 0 2 0 0

Frisbee 0 0 1 0 0

dog 0 0 1 0 0

truck 0 0 1 0 0

bicycle 0 0 0 8 0

traffic light 0 0 0 6 0

baseball bat 0 0 0 1 0

fire hydrant 0 0 0 1 0

cell phone 0 0 0 1 0

skateboard 0 0 0 1 0

dining table 0 0 0 1 0

refrigerator 0 0 0 1 0

bottle 0 0 0 1 0

NO DETECTION 0 1 4 6 0
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The baseline results show that the network behaves predictably well on pre-

existing classes, with few missed detections or misclassifications. The two new classes—

-glider and quadcopter—-are strongly represented by the other three classes in the

test set, implying that they share a large number of features with the pre-existing

classes (eagle, plane, and kite). It is also worth commenting on the diversity of the

misclassifications. Given the reasonably high confidence threshold, these misclassifi-

cations imply that the real-world image data contains strong features that are present

in the network, but not associated with the RGB class definitions.

Transfer learning with MS COCO and the RGB test set may then be thought of

as the attempt to divide the features in the two pre-existing classes among five test

classes, and re-assign features from an additional 26 MS COCO classes to five test

classes.

2.5.2 Baseline Results with RGB* Synthetic Data

It is useful to establish a baseline comparison for the various training approaches

in Chapters 2 and 3 using the RGB* (virtual-world only) test set. The test set was

evaluated in a manner identical to the one above. The RGB* test set omits the kite

class, resulting in two classes pre-existing in the MS COCO weights (eagle/bird and

airplane/plane), and two new classes (glider and quadcopter). The testing results

with a confidence threshold >80% are presented in Table 2.5.

Again, the MS COCO weights perform well on the pre-existing classes, and the

two new classes are strongly represented by the two pre-existing classes in the test

set. In contrast to Table 2.4, there are relatively few classes represented in the mis-

classifications and there are a higher number of missed detections.
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Table 2.5.: Test results from MS COCO weights and the RGB* test data set
without network training (transfer learning) on the RGB* training data set.

Ground Truth/Network Result eagle plane glider quadcopter

bird 214 0 51 5

airplane 10 246 176 304

kite 10 0 273 0

person 14 18 135 2

umbrella 0 0 14 3

surfboard 0 0 13 0

traffic light 0 1 0 3

bear 1 0 0 0

NO DETECTION 10 0 39 0
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2.5.3 Results of Transfer Learning RGB+RGB* Training

The mean F1-score per epoch along with the standard variation in F1-score for

network test results on RGB data is presented in Figures 2.7. In the plots for four

of the five classes (excluding eagle), the network converges more quickly with the

larger RGB+RGB* data set than with RGB data alone and achieves an F1-score

equal to or greater than the F1-score for RGB data alone. The only class to not show

improvement, eagle, pre-existed in the MSCOCO data set as “bird” and already had

an F1-score >0.95.

Although the network performed well on the RGB test set, the maximum of

the averaged F1-scores per epoch for the RGB-trained network is surpassed by the

maximum averaged F1-scores per epoch for the RGB+RGB*-trained network on four

out of the five classes as shown in Figure 2.8. The average maximum F1-score of

all classes and all epochs for the networks trained with synthetic data is F ∗
1 = 0.91,

compared to F1 = 0.89 for the networks trained exclusively with real data, and the

standard deviation of the maximum mean F1-score for synthetically trained networks

is σ∗
F1 = 0.015, compared to σF1 = 0.020 for the networks trained exclusively with

real data.

Example mask results from training are shown in Figure 2.9. It may be possible

to further improve mask results by freezing all layers except those generating the

mask. This would allow the mask to continue refinement without over-training the

classification output layers.

2.5.4 Impact of Various Synthetic Backgrounds

The effect of the convolutional layers in the ResNet backbone on image back-

grounds are examined using weights from the RGB+RGB* trained network. Two

images, shown in Figure 2.10 were used to test the ResNet-101 backbone. The kite

image series was rendered with a checkered background to test if 1) the background

could be convolved away entirely and 2) if an abstract background negatively im-
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Fig. 2.7.: Comparison of F1-scores from RGB+RGB* trained network and RGB
trained network from Section 2.5.1 for various classes using RW data. The lines

represent the mean F1 value from ten repeated trainings at each epoch, while the
shading around the line shows the standard deviation of the mean F1 value. The
solid line is the RGB+RGB* training results; the dotted, gray line is the RGB

training results.

pacted the network’s ability to detect an object—that is, if background contextual

clues were helpful during training. The checkered background is a high-frequency

but single frequency signal compared to the sky-grass background which contains a

distribution of both low and high frequencies as shown in the FFT information in

Figure 2.10.
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Fig. 2.8.: Comparison of F1-scores from RGB+RGB* trained network and RGB
trained network from Section 2.5.1. The maximum mean F1-score from ten

repeated network trainings is presented with error bars showing the max and min
standard deviation in the max score. The RGB+RGB* trained network beats the

RGB trained network in four out of five classes, including the three classes
pre-existing in MS COCO.

Fig. 2.9.: Example RGB test results from training with the RGB+RGB* data set.
From top left clockwise: eagle [57], plane [58], glider [59], kite [60] and

quadcopter [61].
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Fig. 2.10.: Two synthetic images used to test the ResNet-101 backbone with
RGB+RGB* transfer learning weights. (a) Input synthetic kite image with

checkered background. (b) Magnitude information from the FFT of image (a). (c)
Phase information from the FFT of image (a). (d) Input synthetic plane image with
sky-grass image. (e) Magnitude information from the FFT of image (d). (f) Phase

information from the FFT of image (d).

It is important to note that the entire image enters the network through the

layer conv1, rather than as individual RoIs taken from the image. Furthermore,

since both input images are already square with input dimensions 320x320x3, the

zero padding layer immediately preceding conv1 has no effect on the aspect ratio

of the image—leaving the image background undisturbed—but does up-sample the

input to 1030x1030x3. Finally, although the first sixteen layers of the output tensor

are returned in each of the following figures, it should not be assumed that the layer

samples are consistent from image to image (that is, the sample in the top left corner

of Figure 2.12 should not be assumed to be a direct alteration of the sample in the

top left corner of Figure 2.11).

The output of conv1 is a 512x512x64 tensor; Figure 2.11 shows the first sixteen

512x512 layers of the tensor returned for the kite and plane images. In all of these

images, the background is clearly discernible from object and recognizable from the

original input images.
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Fig. 2.11.: RGB* output of layer conv1 in the ResNet-101 backbone showing the
first sixteen 512x512 layers from the 512x512x64 tensor. Left: Kite. Right: Plane.

The output tensor was examined again at the output of layer res2c out, where

the first major residual block consisting of ten Conv2D layers ends. The output

tensor now has dimensions 256x256x256, and again the first sixteen 256x256 layers

are shown in Figure 2.12. The background still survives in both the checkered and

sky-grass form, and it also becomes apparent from looking at the red-blue-yellow

stripes on the kite that certain convolutional kernels are responsible for detecting

features based on color.

At the output of layer res3d out which ends the second large residual block con-

sisting of an additional twelve Conv2D layers, the tensor dimension is 128x128x512

and aliasing effects become visible as shown in Figure 2.13. However, the background

features still survive in both the checkered and sky-grass environment.

The largest residual block unit consisting of 70 Conv2D layers ends with layer

res4w out, and outputs the tensor with size 64x64x1024 partially shown in Figure

2.14. Although the sampling of sixteen layers from the 1024 in the tensor is small,

the background texture seems to be largely gone, and the primary feature remaining

seems to be edges. This is to be expected, however even a superficial glance hints

that the edges of the kite are more uniformly presented in the sampling presented in
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Fig. 2.12.: RGB* output of layer res2c out in the ResNet-101 backbone showing the
first sixteen 256x256 layers from the 256x256x256 tensor. Left: Kite. Right: Plane.

Fig. 2.13.: RGB* output of layer res3d out in the ResNet-101 backbone showing the
first sixteen 128x128 layers from the 128x128x512 tensor. Left: Kite. Right: Plane.

Figure 2.14 than the edges of the plane. The sampling from the plane also contains

more noise in the background, indicating that the network is training on background

features.

The output of the final ten convolutional layers comes from layer res5c out, and

is shown in Figure 2.15. At this point, the tensor has dimensions of 32x32x2048 so

only the largest features should remain. Of the sixteen tensor arrays sampled, the
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Fig. 2.14.: RGB* output of layer res4w out in the ResNet-101 backbone showing the
first sixteen 64x64 layers from the 64x64x1024 tensor. Left: Kite. Right: Plane.

kite only remains recognizable in row 3, column 2. The plane is not recognizable in

any of the samples in Figure 2.15.

Fig. 2.15.: RGB* output of layer res5c out in the ResNet-101 backbone showing the
first sixteen 32x32 layers from the 32x32x2048 tensor. Left: Kite. Right: Plane.

Qualitatively, the checkered background seems to have little effect on the convo-

lutional feature maps compared to the sky-grass background. When the input im-

age tensors reach the res5c out layer, both backgrounds are equally unrecognizable,
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and since only sixteen of the 2,048 tensor layers are sampled, no conclusions should

be drawn as to whether the high-frequency background has more or fewer features

than the lower-frequency sky-grass background. Quantitatively, over the ten repeated

training runs with RGB+RGB* data, the max F1-score for the “kite” class improved

by 0.062 and while the standard deviation for the “kite” class decreased by 9.5E-

05 (effectively zero change) compared to the RGB training. For the “plane” class,

the max F1-score improved by 0.050 with RGB+RGB* training while the standard

deviation for the “plane” class decreased by 6.4E-03 (effectively zero change).

The similarity in training results seems to suggest that for this data set the differ-

ence in the checkered background had no effect compared to the sky-grass background.

However, when the synthetic data set was created by the MAS team, the virtual envi-

ronments required significantly more labor than the checkered background. Therefore,

it may be possible to reduce the effort required to produce an effective synthetic data

set by using context free backgrounds during training.

2.6 Conclusion

The original MS COCO data set used to create the initialized weights consisted

of over 328k real-world images [56], and was the source of all the features used during

classification. Accordingly, the role of the synthetic data was limited to assisting

in the reassignment of the pre-existing features to the new classes during transfer

learning. When compared with the baseline results presented in sections 2.5.1 and

2.5.2, it is clear that the synthetic data was successful in reassigning features to new

classes.

With a dedicated GPU and the AutoDesk Maya software, the final rendering of

10k 320x320 360-degree rotational RGB* images may be accomplished on a desktop

in less than 12 hours. The final rendering of virtual-environment 320x320 images

may be accomplished in a similar time scale of hours. This would seem to suggest

that suitable synthetic data is easily manufactured and produced. However, there
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is a considerable time and labor investment up front in the modeling, texture, and

construction of models and virtual environments that should not be discounted. For

360 rotational data, once the modeling and texturing is completed, generating new

data sets is indeed straightforward. In contrast, virtual-environment data has an

artistry and complexity that makes it difficult to mass produce, but adds value to the

training set.

The uniqueness of the checkered background in the 360-degree kite RGB* data

did not significantly affect the improvement in RGB+RGB* over RGB training–nor

did it significantly detract from the testing result; the gains are comparable to those

with the sky-grass background. This may imply that, in situations where an adequate

representation of a real-world environment does not exist, a simple abstract substitute

may be a viable option. The use of context-free backgrounds in 360-RGB* data may

also be useful in further reducing the effort in creating synthetic data sets.

The final training data set used during transfer learning consisted of a ratio of one

real-world image to approximately twenty synthetic images, and one virtual environ-

ment image to approximately six rotational images. The ultimate impression is that

the bulk of examples, rather than the overall quality (synthetic vs real, environmental

background vs checkered, etc.), enabled the improved F1-scores. More data, it would

seem, is still be better in this case as long as the class pre-existing in MSCOCO had

room for improvement. The eagle/bird class in MSCOCO already had a very high

F1-score, and the addition of synthetic data detracted from the pre-existing data set.

Accordingly, future consideration should be given to the ideal balance of real-world

images, synthetic rotational images, and synthetic environmental images to achieve

optimum network results with as little active labor on the data set as possible.
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3. TO Z OR NOT TO Z: IMPACT OF INCLUDING

DEPTH DATA ON TRAINING

3.1 Introduction

Although several large data sets are available that feature real-world (RW) depth

images paired with RGB images [62–64], they tend to focus on either outdoor data

or household objects; these classes do not overlap with the classes established early

in the project. Furthermore, since it is not the purpose of this work to evaluate

network architecture performance, but instead to consider how specific data features

affect training. Performing benchmark tests with previously published RGBZ data

is beyond the scope of this project. Accordingly, these data sets were not considered

for this work.

Instead, we focus on the role of synthetic depth data during training, with a

small amount of fabricated RW depth data paired to RGB images for comparative

purposes in Chapter 2. Section 3.2 discusses the creation of the depth component

for the extension of RGB+RGB* to RGBZ+RGBZ* in detail. An attempt was then

made to duplicate the studies presented in Chapter 2 with transfer learning on the

MS COCO weight initializations; these results are presented in Section 3.4.

3.2 Data

The RGB+RGB* data set discussed in Chapter 2 was expanded with depth maps

into the RGBZ+RGBZ* data set and used for the experiments presented in this

chapter. For the RGBZ* data discussed in Section 3.2.1, depth maps were gener-

ated in AutoDesk Maya by the Media Arts and Sciences (MAS) team. The RGBZ

data consists of hand-edited depth maps as discussed in Section 3.2.2. The total



35

RGBZ+RGBZ* data set is then exactly the images presented in Table 2.1, but with

an added depth channel.

3.2.1 Synthetic Depth Data

(a) (b) (c) (d)

Fig. 3.1.: Depth maps corresponding to the RGB* images presented in Figure 2.6.
(a) Quadcopter in 360-Rotation Virtual Environment, (b) Plane in 360-Rotation
Virtual Environment, (c) Hang Glider in 360-Rotation Virtual Environment, (d)

Kite in 360-Rotation Finely Checkered Environment

Maya Autodesk is capable of rendering a depth map of the distance from the object

to the camera separately from rendering a color 3-channel image. The MAS team had

the ability to render a synthetic depth map for every synthetic image discussed in

Chapter 2. Example depth maps corresponding to the RGB* images in Figure 2.6 are

shown in Figure 3.1. Autodesk Maya produces pixel values linearly scaled between

zero and one, where zero is the distance at infinity and one is the camera lens. There

is no constraint that the pixel values map to any RW depth unit or measurement.

The variability in depth scale is best understood by comparing the objects in

the depth images in Figure 3.2 to those in Figure 3.1. For each of the depth maps in

Figure 3.1, the depth value scale is optimized to preserve object features, and all other

features are placed at infinity. If the depth scale in Figure 3.2 was identical to Figure

3.1, the image would appear largely black, with most objects at some great distance

from the camera. Instead, the depth scale emphasizes the features of the virtual
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environment. Customizing the depth scale per image series enables more information

to be presented to the network during training, but the variability in depth scale may

prevent the network from learning an absolute depth scale.

(a) (b)

Fig. 3.2.: Example of a VW image and the corresponding image. (a) RGB* image
of VW Farm environment created by MAS team. (b) Corresponding synthetic

Z-depth as calculated by MAS team using AutoDesk Maya.

During depth image rendering, the zero-to-one depth scale is converted to uint8

values (0 to 255) for the output image. This places a further constraint on the depth

scaling; not only does the absolute range of depth change from image to image, but

the depth increments with varying step sizes as well.

Since the MR-CNN network architecture emphasizes scale invariance by imple-

menting the FPN, the changing depth units are presumed to be handled in approx-

imately the same manner as any other variance in object size. For any object, both

variation in depth across the object (as shown in the gray scale variance for the plane

in Figure 3.1) and constant depth across the object (as shown for the plane in the

upper right corner of Figure 3.2) are equally features of the object, just as a plane may

be colored blue or red but still be successfully classified as a plane. In practicality,
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the lack of consistent depth scaling admits the possibility that the data set is actually

training the network to ignore the depth scale entirely, and instead emphasizing other

depth map features such as edges.

Automated Labeling of 360-RGBZ* Data

(a) (b)

Fig. 3.3.: Effect of using the automated labeling algorithm. (a) Input depth map.
(b) Output image with object boundary shown in green.

The large number of 360-RGB* images generated require labeling for use dur-

ing supervised learning. Since each 360-Z* image contains a single object against

a black background, the following algorithm was implemented in MATLAB’s Image

Processing toolbox with great success to automate the labeling process:

1. Apply an adaptive binary threshold with sensitivity=0.6 to the depth image

2. Perform boundary detect with the constraint that there are “no holes”

3. Return the pixel boundary as (x,y) pairs in a list
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4. Format the pixel list as part of the ground truth label

An example input depth map and output boundary is shown in Figure 3.3. The

output region is exactly the mask desired as a final output of MR-CNN. This final

pixel boundary by definition is identical for the original 360-RGB* image, which

means that the depth maps may also be used to label the entire 360-RGB* data set

regardless of whether training actually implements depth data.

3.2.2 Real-World Depth Data

In order to approximate the work presented in Chapter 2, a RW depth image

approximation was hand fabricated for each image of the RGB training set using

Adobe Photoshop. Due to the input layer of the MR-CNN architecture, all input

images were required to have the same number of dimensions along the third axis: a

data set must therefore consist entirely of 3-channel images or entirely of 4-channel

images. By implementing depth maps, the RGB images and features were able to be

included in the data set of RGB(Z*) data. An example RGB image and the fabricated

depth are shown in Figure 3.4.

3.3 Methodology

For the first experiment, the Mask R-CNN network with the ResNet-50 backbone

was initialized using the MS COCO weights excluding only the head, FPN, mask sub-

networks, and initial convolutional layer conv1 as shown in Figure 1.2. The excluded

layers were randomly initialized and allowed to train with the parameters shown in

Table 2.2 to provide comparison with the work of Chapter 2.

3.4 Transfer Learning with Depth Data

Early results showed that the network struggled to learn all five classes from the

RGBZ+RGBZ* data set. In particular, a trade-off in performance was observed be-
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(a) (b)

Fig. 3.4.: Example of RGB image [65] from “eagle” class RW training set and
hand-fabricated depth map. (a) Original Image. (b) Fabricated depth map.

tween the kite class and the glider class such that training well on one class correlated

with decreased performance in the other. This is the data presented in Section 3.4.1.

A reduction to four classes still did not show the performance gains expected from

the inclusion of depth data. Training was repeated with the original five classes, and

the network layers initialized with MS COCO weights were updated during backprop-

agation. These results are then compared to a network with the ResNet-50 backbone

trained using RGB+RGB* data, and presented in Section 3.4.2. Further examina-

tion of the effect of the depth data is discussed in Section 3.4.3, where the effects of

the depth channel are traced through the ResNet-101 backbone. Transfer learning

repeatedly on the RGBZ* training/testing data set gives excellent performance on

pre-existing classes, but poor performance on new classes.

3.4.1 Results of Training Heads Only

When an RGBZ* image enters the network, the MxNx3 RGB* image is concate-

nated with the corresponding MxNx1 Z* image to create an MxNx4 image. To adapt
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the network to a four-channel RGBZ input during transfer learning, the initial 2D

convolutional layer conv1 is also randomly initialized. To use the pre-trained weights

for the layer would constrain it to 3-channel images since no transfer weights pre-

viously existed for RGBZ images and the MR-CNN architecture. The Matterport

implementation of the MR-CNN network included documentation for implementing

a fourth image channel in the form of an alpha channel; this documentation has been

adapted for various depth MR-CNN implementations, including some which use a

second, separate input for the depth image rather than concatenating the depth into

the fourth channel [66,67].

Fig. 3.5.: F1-scores by epoch for various classes when training MR-CNN heads with
depth data.

Due to the back propagation method in the Matterport implementation, the conv1

layer weights do not update during training when subsequent layers have frozen

weights. The result is that, while the heads and output layers are trained, the initial

convolutional layer remains frozen in its randomly-initialized state.
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The MR-CNN architecture was allowed to train with these constraints for 25

epochs, and training was repeated 10 times. The results are shown in Figure 3.5. In

general, the network did not perform well on the RGBZ test set, resulting in a large

standard deviation in F1-score, and little improvement in F1-score as the number of

epochs increases.

This data is interesting for two reasons: First, by failing to improve in any class

with training on the RGBZ+RGBZ* data the way MR-CNN results improved when

training with RGB+RGB* data, we see the impact of the initial convolutional layer.

The network architecture sees the same input features from the first training step to

the final training step. Since these input features are randomly filtered, the variation

in mean F1-score from class to class can be interpreted as the native performance of

the ResNet backbone at extracting features. Second, the very large standard deviation

shows that there is some random initialization that performs well on the RGBZ test

data without training. This confirms that the state of the network after initialization

has huge impact on the final training results, even when that initialization is random.

3.4.2 Results of Relaxing Transfer Weights

Stabilizing the performance of the conv1 layer requires allowing the network to

update the weights in every layer. Since the MS COCO weight initialization provided

all of the features up until this point, relaxing the network weights and tuning the

architecture allowed the features intrinsic to the network to evolve to something

closer to the training data. This allowed the opportunity to reintroduce the “kite”

class eliminated from training during Section 3.4.1.

The network was trained for 25 epochs, training was repeated ten times, and the

results are compared to RGB+RGB* trained networks (ResNet-50, heads only, no

weight relaxation) in Figure 3.6.

Allowing the initial convolution layer to train clearly improves the testing results.

In the majority of the five classes, the network undergoes exponential improvement
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Fig. 3.6.: F1-scores for RGBZ+RGBZ* data by epoch when allowing MR-CNN MS
COCO weights to relax plotted against the F1-scores by epoch for RGB+RGB*

trained networks (ResNet-50, heads only, no weight relaxation.

in F1-score before converging to a value close to the RGB+RGB* values. There is

also no longer a penalty for simultaneously including the “kite” and “glider” classes.

3.4.3 Impact of Depth Map on Training

Effect of Repeated Convolutional Layers on 4-channel Image

An average-performing weight set from the repeated trainings in Section 3.4.2

were connected to the MS COCO ResNet-101 backbone despite being trained with
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the ResNet-50 backbone. This allowed evaluation of the extreme effects of the depth

image based on the assumption (due to previous RGB+RGB* results) that all neces-

sary features for evaluating the depth maps are present in the ResNet-101 backbone

despite not tuning the network weights with the depth images. The same two images

from Section 2.5.4 were evaluated at the same points in the network, with results

presented in Figures 3.7 to 3.11.

Fig. 3.7.: RGBZ* output of layer conv1 in the ResNet-101 backbone showing the
first sixteen 512x512 layers from the 512x512x64 tensor. Left: Kite. Right: Plane.

Based on the RGB* results in Figures 2.11 to 2.13, the results shown in Figures

3.7 and 3.8 are expected, with background features and textures surviving multiple

convolutional layers into the network. However, the results of shown in Figure 3.9

begin to diverge from the RGB* data shown in Figures 2.13 and 2.14: background

features seem to completely disappear, and the most prominent features in the tensor

samples shown are edges. By the final convolutional layer in ResNet-101 shown in

Figure 3.11, there are few to no features left in the tensor sample shown. It is unlikely

that no object features survive in all of the other (not shown) 2,032 matrices from

the 32x32x2048 dimensional tensor at layer res5c out, but the effect of the depth

map in the sixteen sampled is remarkable. Since the data presented in Section 3.4
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Fig. 3.8.: RGBZ* output of layer res2c out in the ResNet-101 backbone showing the
first sixteen 256x256 layers from the 256x256x256 tensor.

Left: Kite. Right: Plane.

Fig. 3.9.: RGBZ* output of layer res3d out in the ResNet-101 backbone showing the
first sixteen 128x128 layers from the 128x128x512 tensor.

Left: Kite. Right: Plane.

implemented the ResNet-50 backbone, detections were made based on features similar

to those shown in Figure 3.10.
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Fig. 3.10.: RGBZ* output of layer res4w out in the ResNet-101 backbone showing
the first sixteen 64x64 layers from the 64x64x1024 tensor.

Left: Kite. Right: Plane.

Fig. 3.11.: RGBZ* output of layer res5c out in the ResNet-101 backbone showing
the first sixteen 32x32 layers from the 32x32x2048 tensor.

Left: Kite. Right: Plane.

Interdependence of RGB and Z Features During Detection

To test if the network was implementing the depth contribution correctly, two

example RGBZ* images were chosen, and the depth layers were swapped as shown
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in Figure 3.12. For illustrative purposes, the depth channel is rendered as an alpha-

channel such that pixels with a 0 value in the depth image (infinite distance) are

omitted from the color image. These mixed image pairs were then tested with the

tuned-weight version of the ResNet-50 MR-CNN implementation. When tested with

the ResNet-101 implementation, no detections resulted.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3.12.: Creation of image pairs used to test effect of depth data during detection,
where sub figures (c) and (e) were presented to the network. (a) RGB* plane. (b)
Z* Quadcopter (c) RGB*(plane)+Z*(quadcopter) where the depth map effect has

been interpreted as an alpha channel. (d, h) Network result on correct RGBZ*
pairing. (e) RGB* quadcopter. (f) Z* plane. (g) RGB*(quadcopter)+Z*(plane).

Examining a sampling of the tensors similar to those previously presented, Figures

3.13 to 3.17 show a remarkable dependence on the depth map, where the tensor sam-

ples seem to over-represent features recognizable from the single depth channel rather

than features from the three color channels. Then, the depth data does contribute to

the training independently from the color data, but in ways that cannot always be

anticipated. For example, when the wrong depth map is paired with an image the

network is not always capable of successfully classifying an object based off the RGB

or Z information alone.



47

Fig. 3.13.: RGBZ* output of layer conv1 in the ResNet-50 backbone showing the
first sixteen 512x512 layers from the 512x512x64 tensor.

Left: RGB*(plane)+Z*(quadcopter). Right: RGB*(quadcopter)+Z*(plane).

Fig. 3.14.: RGBZ* output of layer res2c out in the ResNet-50 backbone showing the
first sixteen 256x256 layers from the 256x256x256 tensor.

Left: RGB*(plane)+Z*(quadcopter). Right: RGB*(quadcopter)+Z*(plane).

The interdependence of RGB* and Z* data is shown in Figure 3.18, where the

network returns a detection of “plane” with confidence score of 0.965 (out of 1) but

a mask that is entirely dependent on the quadcopter shape drawn from the depth
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Fig. 3.15.: RGBZ* output of layer res3d out in the ResNet-50 backbone showing the
first sixteen 128x128 layers from the 128x128x512 tensor.

Left: RGB*(plane)+Z*(quadcopter). Right: RGB*(quadcopter)+Z*(plane).

Fig. 3.16.: RGBZ* output of layer res4c out in the ResNet-50 backbone showing the
first sixteen 64x64 layers from the 64x64x1024 tensor.

Left: RGB*(plane)+Z*(quadcopter). Right: RGB*(quadcopter)+Z*(plane).

channel. In contrast, the complementary image of RGB*(quadcopter)+Z*(plane) in

Figure 3.12(g) returned no detection, was strongly classified as background and out

of the five classes had the highest confidence scores of 0.7 for the “eagle” class. When
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Fig. 3.17.: RGBZ* output of layer res5c out in the ResNet-50 backbone showing the
first sixteen 32x32 layers from the 32x32x2048 tensor.

Left: RGB*(plane)+Z*(quadcopter). Right: RGB*(quadcopter)+Z*(plane).

Fig. 3.18.: Network result on RGB*(plane)+Z*(quadcopter) image.

examining Figure 3.12(g), most of the color information surviving the depth channel

masking effect is indeed background.

3.5 Conclusion

Depth information can be considered to act as gain added to the color signal,

emphasizing important features and minimizing others. In cases like Figure 3.12(a)
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where the object to be detected is very close in frequency to the background, the

depth information as structured for this work does an admirable job of isolating the

object from the background and enabling a perfect detection and mask. In cases

where the depth features could themselves be important for detection, e.g. the shape

of the plane wings in Figure 3.12(f), avoiding any training examples where the depth

channel is binarized is recommended. In the RGBZ+RGBZ* data set, such binarized

depth maps represented at most 10% of all Z-depth training data, but it is possible

that this was still a large enough percentage to prevent the network from consistently

recognizing features only present in the depth data.

The depth data used for this work seemed to have the general effect of deleting

features. When comparing the convolutional layer effects on the RGBZ* image tensors

to the RGB* image tensors, features disappeared far earlier in the network than when

using RGB* data. The disappearing features makes the ResNet-101 backbone a poor

choice for this data, but without the extra convolutional layer features the testing

performance suffers. The network continues to emphasize color-channel information

for detection, but relies on edges for the mask generation. It is possible that a

shallower CNN architecture such as ResNet37 could achieve performance gains similar

to RGB* data with ResNet-101.
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Fig. 3.19.: Results in RGBZ environment.
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4. HOW REAL IS REAL? SIMILARITY OF

VIRTUAL-WORLD DATA TO REAL-WORLD DATA

4.1 Introduction

In Chapters 2 and 3, syntheti virtual-world (VW) data was implemented in train-

ing with the assumption that the synthetic data shared an adequate number of fea-

tures with real-world (RW) data to be useful. However, an analytical way of de-

termining whether synthetic data is representative of RW data is desirable for two

reasons: First, the effort to create the synthetic data set was by no means negligible,

and all possible considerations should be taken to make certain that the efforts are not

wasted in creating and/or using a synthetic data set with features not found in RW

data. Second, an understanding of what features are most relevant to the training the

network is useful when preparing both RW and synthetic data for network training;

since implementing synthetic data provides the opportunity to precisely control every

feature present in the data set, it is possible to more efficiently use RW data based

on a developed understanding of the data set feature space.

By encoding data set features into latent variables and performing latent dimen-

sionality analysis on each image in a data set, insight into the data set’s internal

structure becomes apparent. In the following sections, latent variables are generated

for a portion of the RGB+RGB* data set using a Variational Autoencoder (VAE),

then analyzed through Uniform Manifold Approximation and Projection (UMAP).

Images generated by the VAE are additionally classified using an average performing

network from Chapter 2.
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4.2 Encoding of Features in Latent Space

Latent dimensional variables are used in statistical analysis as a dimensionality

reduction technique to increase efficiency when building models for data. By defining

a set of latent variables for RGB+RGB* data in a common latent space, it is possible

to determine if RW and VW images share common features.

4.2.1 Data

The goal is not to analyze the entire RGB+RGB* data set feature space, but

rather to determine if features in the RGB data are also present in the RGB* data,

and if so, to what extent. We want to answer the question Does a latent space

embedding of RGB and RGB* data show a strong difference between RGB and RGB*

data? Accordingly, a subset of the complete RGB+RGB* data set was chosen, with

details presented in Table 4.1. First, all images were downsampled to 128x128x3

pixels to make the data easily manipulable within the VAE architecture. The subset

of the downsampled images was chosen such that objects with size less than 10x10

pixels were eliminated, the ratio of RGB to RGB* images increased, and image series

with a large amount of repetition were removed. During training, 15% of the data

was reserved as a validation data.

4.2.2 Variational Autoencoder Architecture

The Variational Autoencoder (VAE) architecture is presented in Figure 4.1. It

consists of an Encoding network coupled to a Decoding network. In the Encoding

network, the input layer for a 128x128x3 image which is reduced to a latent dimension

vector of size 256. The Decoding network accepts the latent dimension vector as

input, and computes an eigenimage for the Encoding network input. Training details

are presented in Figure 4.2. The VAE was particularly chosen due to the use of



54

Table 4.1.: RGB+RGB* VAE Training Instances per Class

RGB+RGB* VAE Data

RGB Instances RGB* Instances

Plane 93 405

Glider 97 711

Kite 97 303

Quadcopter 98 1038

Eagle 100 1424

a continuous Gaussian distribution, which allows for better interpolation between

different classes [68].

Table 4.2.: VAE Network Training Parameters

VAE Training Details

GPU GE Force GTX 1080

MINIBATCH SIZE 8

IMAGE DIMENSION 128x128

LEARNING RATE 0.001

EPOCHS 5000

VALIDATION DATA 0.15

The network epoch loss was calculated as a weighted sum between the Kullback-

Leibler (KL) loss and the Binary Cross Entropy (BCE) loss:

L = {(Image Dimensions)2 ∗ (Binary Cross Entropy)}+ (KL Loss) (4.1)
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Fig. 4.1.: Architecture of the Variational Autoencoder.
Left: Encoder Sub-architecture. Right: Decoder Sub-architecture

where

KL Loss = −1

2
{1 + z log var − z mean2 − exp z log var} (4.2)

.

In equation 4.2, the z log var and z mean terms are MxN tensors output at the

z mean and z log var layers of the encoder as shown in Figure 4.1, where M is the

number of images in the training set and N is the dimension of the latent space.

Since the Binary Cross Entropy is weighted by 1282, the epoch loss seeks to optimize

image reconstruction with negligible contributions from the KL loss. This is clearly

shown in Figure 4.2, where the epoch kl loss is on the order of 100, and the epoch loss

(containing the weighted BCE term) is on the order of 103.
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(a) (b)

Fig. 4.2.: VAE training losses over 5000 epochs. Pink line is validation data; blue
line is training data.

(a) KL Loss. (b) Reconstruction Loss with KL Loss.

4.2.3 Training Results

The distribution of reconstructed image losses are presented in Figure 4.3 (a) as

a histogram with loss value per image binned in increments of 300. The normal

distribution based on the mean image loss and variance in image loss values for

the whole training set is imposed on the histogram for comparison. The goal is to

move the entire distribution towards a lower image loss value. The original VAE

input images and the eigenimages output by the VAE were classified using an MR-

CNN trained with RGB+RGB* data to evaluate how similar the VAE data is to the

original RGB+RGB* training data. The F1 scores are presented in Figure 4.3(b),

and it is immediately obvious that the adjustments to the VAE input image set

(downsampling and rescaling to 128x128) caused significant changes to the data set

features, such that the VAE image set is no longer representative or the original

RGB+RGB* image set. When the output eigenimages from the VAE are classified

using the same RGB+RGB* MR-CNN, there is further decrease in F1 score in each

of the five classes except for the ”kite” class. This further decrease in F1 score implies

that the VAE latent space failed to capture most of the features important to MR-

CNN.
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(a) (b)

Fig. 4.3.: (a) Image Loss Histogram, showing distribution of loss scores per image.
A normal distribution with the same mean and variance is fitted (dotted line) for
comparison. (b) Comparison of F1 scores for VAE input images vs VAE output

images using an average performing MR-CNN trained with RGB+RGB*.

Images with the lowest, mean, and highest loss scores that have been encoded

and decoded by the VAE are presented in Figures 4.4 to 4.7. Additional images are

presented in Figure 4.7 to demonstrate overall VAE performance. In general, every

reconstructed image across the RW and VW data is similar to those presented here,

with the exception of a portion of the RGB* eagle images and every RGB eagle im-

age (which struggled in the VAE). Figure 4.8 contains images sampled directly from

the latent space embeddings, where the first and last images in a row are eigenim-

ages, and the intermediate images represent nine equally spaced increments in the

256-dimensional vector from the first eigenimage’s vector to the second eigenimage’s

vector.

4.3 Analysis of Features in Latent Space

The VAE produced a latent variable embedding for each image as a byproduct

of the image reconstruction process. These embeddings were analyzed using the

Tensorboard Projection functionality to examine the data set’s internal structure.
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Fig. 4.4.: VAE best results.
Left: Original Image. [69] Right: Reconstructed Image with loss=2237.146

Fig. 4.5.: VAE average result.
Left: Original Image. Right: Reconstructed Image with loss=8509.311

Fig. 4.6.: VAE worst result.
Left: Original Image. Right: Reconstructed Image with loss=12675.6

4.3.1 Methodology

Tensorboard automatically implements Principle Component Analysis (PCA) as

a preliminary dimensionality reduction step to 200 dimensions (from 256). For the

first time, the RGB+RGB* data set labels were adjusted to illustrate whether a point
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Fig. 4.7.: Examples of images encoded and decoded by the VAE.
Left: Original images: Biplane [70], Glider [71], Kite [72], Quadcopter [73]. Right:

VAE reconstructions.

Fig. 4.8.: Images from the latent space. The first image and last images in a row are
eigenimages. Intermediate images in row are generated from moving through the

256 dimensional latent space with equidistant steps from the first eigenimage vector
to the second eigenimage vector.

belongs to RGB or RGB* and which of the five classes in RGB or RGB* (total 10

labels). Tensorboard automatically assigns colors to the class labels; these colors and
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the numeric Tensorboard encodings are shown in Figure 4.9, along with the PCA.

The PCA shows a loose clustering by class, and an even looser bifurcation into two

multi-class groups.

Fig. 4.9.: Latent space dimensionality reduction with PCA and UMAP.
Left: Tensorboard color and label key. Middle: Tensorboard PCA of latent vectors.

Right: Tensorboard UMAP of latent vectors.

Following the PCA operation, the Uniform Manifold Approximation and Projec-

tion (UMAP) was created using the Tensorboard functionality and 15 neighbors, and

is also presented in Figure 4.9 on the far right. Unlike the PCA, the UMAP shows

fairly tight clustering within classes, and it also shows a stronger clustering into sev-

eral multi-class groups. This tight clustering is significant, in that (unlike PCA) the

distance between two data points on the manifold projection has meaning [74].

4.3.2 Latent Space Results

To provide better understanding of how data was clustered, each class label was

considered in terms of the high level class (“plane”, “glider”, “kite”, “quadcopter”,

“eagle”) and the respective RW and VW subclasses (”RW plane”, ”VW plane”, etc.).

The datapoints for these classes were highlighted in Tensorboard, and are presented

in Figures 4.10 to 4.14.
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Fig. 4.10.: UMAP analysis showing “plane” labels.
Left: all labels. Middle: RW plane labels. Right: VW plane labels.

It immediately becomes apparent that the predominant feature causing clustering

is something other than whether the datapoint in question is RW or VW. There

is some variation in whether the RW points for a class are clustered adjacent to

the VW points for a class, e.g. in Figure 4.14 the RW labels seem to be clustered

predominantly with the VW labels, while in Figure 4.13 the RW labels seem to be

dispersed away from the main VW clusterings.

Fig. 4.11.: UMAP analysis showing “glider” labels.
Left: all labels. Middle: RW glider labels. Right: VW glider labels.

In each of the UMAP analysis figures, the VW data seems to be more tightly

clustered than the RW data. In Figure 4.9, there are predominantly bright-green

clusters corresponding to VW Quadcopter and light-purple clusters corresponding to



62

VW Eagle, but there are no corresponding tightly clustered RW groups. Instead, the

RW image data for each class is more diffused across the manifold, implying that the

shared features are found across class labels.

Special note should be taken of how not all the VW images for a single class are

clustered together, either in the PCA or in the UMAP analysis. This can be partially

explained by inspecting the sprite image for the VAE RGB+RGB* data set presented

in Figure 4.15. A high-level glance immediately shows that the image backgrounds

in the data set consist of largely green backgrounds (where the object is captured

against the grass) and blue backgrounds (where the object is captured against the

sky). This background dominance would explain why the split in VW data appeared

beginning with the PCA in Figure 4.9 and persists through every class in the UMAP

analysis. The finely checkered background in the sprite image belongs specifically

to the VW kite class, and corresponds to the exclusively green “star” in the UMAP

shown in Figure 4.9.

Fig. 4.12.: UMAP analysis showing “kite” labels.
Left: all labels. Middle: RW kite labels. Right: VW kite labels. Note that the

”star” at the top of each UMAP corresponds to the finely-checkered kite
background, and no RW images are present in this ”star” cluster.
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Fig. 4.13.: UMAP analysis showing “quadcopter” labels.
Left: all labels. Middle: RW quadcopter labels. Right: VW quadcopter labels.

Fig. 4.14.: UMAP analysis showing “eagle” labels.
Left: all labels. MiddleL RW eagle labels. Right: VW eagle labels.

4.4 Conclusion

The analysis of latent dimension vectors generated by the VAE for the reduced

RGB+RGB* indicates that the synthetic data does share features with the real-

world data. Analysis of the UMAP distribution further indicates that color may be

the most predominant feature shared by the RW and VW data. However, while MR-

CNN largely ignores the background when making classifications, the UMAP analysis

of the output VAE images seems to almost exclusively cluster based on background

color. This implies that care should be taken that the color space mimics the RW

image data when generating synthetic image data, and that a VAE structure that
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Fig. 4.15.: Sprite image showing entire VAE input data set.
There is a clear bias to blue and green backgrounds.

encourages the latent space to ignore background features may be helpful in further

analyzing features relevant to the MR-CNN algorithm.

Continued training of the VAE may bring forward further features that distinguish

between the RW and VW data, but care should be taken that the VAE does not

minimize the differences between the RW and VW by minimizing the KL loss. In
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this work, the heavy weighting of the BCE loss made the contribution from the KL

loss negligible. Future work should consider a loss based on recreating perceptual

features such as a Gram matrix style loss, which allows context to play a role in

feature determination.
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5. SUMMARY

A synthetic data set consisting of five object classes in a variety of virtual environ-

ments and orientations was generated by a team of Media Arts and Sciences students.

Denoted RGB(Z)*, this data set was paired with a smaller set of real-world RGB(Z)

data and used to train the Mask R-CNN (MR-CNN) architecture in several configu-

rations.

With depth data omitted, the RGB+RGB* data set was used with transfer learn-

ing implementing the MS COCO weights and the ResNet-101 backbone to improve

the F1 scores of four out of the five object classes. The average maximum F1-score of

all classes and all epochs for the networks trained with synthetic data is F ∗
1 = 0.91,

compared to F1 = 0.89 for the networks trained exclusively with real data, and the

standard deviation of the maximum mean F1-score for synthetically trained networks

is σ∗
F1 = 0.015, compared to σF1 = 0.020 for the networks trained exclusively with real

data. The only class to not show improvement pre-existed in the MS-COCO classes,

and had a baseline F1 score > 0.95. This implies that synthetic data has the capabil-

ity to greatly improve network ability to learn and classify new data, especially where

the F1 score is low or the class does not exist in the data used for transfer learning.

Furthermore, the background of the RGB* data object was shown to have minimal

impact on object classification, opening the door to the use of abstract backgrounds

when realistic backgrounds are unavailable.

With depth data included, the RGBZ+RGBZ* data set was used with transfer

learning implementing the ResNet-50 backbone in MR-CNN and relaxing the MS

COCO weights throughout all the layers to allow the initial convolutional layers to

train. By studying how the depth channel was convolved with the RGB channels,

MR-CNN classifications were shown to primarily depend on the color features of an

object, while the mask generated was shown to have high dependence on the depth



67

channel. The importance of allowing the initial convolutional layer to train was shown

by demonstrating the failure of the network to train when this layer was frozen with

randomly initialized weights. Observations of decreased features in the ResNet-101

backbone when depth maps were included implies that shallower networks such as

ResNet-34 may use depth data more effectively than deeper networks, despite the

presence of additional features in a pre-trained ResNet-101 backbone.

Latent variables for a subset of the RGB+RGB* data set were generated using a

Variational Autoencoder (VAE), then analyzed using Principle Component Analysis

(PCA) and Uniform Manifold Approximation and Projection (UMAP). The latent

variables showed no qualitative distinction between RGB and RGB* data, but did in-

dicate a bias towards clustering based on image colorspace. This is consistent with the

RGBZ* results from the MR-CNN architecture, where color determined classification

when the RGB* channels were purposely mismatched with the Z* channel.

Future work should include intensive exploration of the specific depth features im-

plemented during classification and mask generation for MR-CNN, and quantification

as to the performance of shallower networks with more image channels. Real-world

depth information should replace the hand-fabricated RW depth maps to allow for

better analysis of the versimilitude of the synthetic depth data.

Additional explorations with the VAE are ongoing, including attempts to quantify

the exact manifold generated and the distance between two data points in the original

feature space rather than the latent dimesional space.
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