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ABSTRACT 

Dysautonomia is the dysfunction of the Autonomic Nervous System (ANS) that 

frequently occurs in individuals with spinal cord injuries (SCI), stroke, diabetes, or Parkinson’s 

disease. Dysautonomia after SCI that results in tetraplegia most commonly presents as 

autonomic dysreflexia (AD). AD can be triggered by different stimuli below the level of injury 

resulting in paroxysmal hypertension. If not properly managed, AD can have severe clinical 

consequences, leading to stroke and potentially death. AD is currently detected in-clinic through 

continuous monitoring of blood pressure using a cuff-based system. However, existing 

techniques are time-consuming, obtrusive, lack automated detection capabilities, and have low 

temporal resolution. Thus, a wearable diagnostic tool was developed that could detect the onset 

of AD using non-invasive physiological sensors through repeatable machine learning and data 

science techniques.    

 

This work presents a novel, multimodal system that can quantitatively characterize and 

distinguish unique signatures of AD. We used rodent models of SCI to detect finer temporal 

changes in the sympathetic and parasympathetic branches of the ANS due to AD. Signal 

processing and feature selection techniques were used to determine five features which were 

most significant to characterizing AD. This allowed us to characterize a concomitant increase in 

sympathetic activity followed by an increase in vagal activity during the onset of AD. 

Additionally, we used the unique signature to train a neural network to detect the onset of AD 

with an accuracy of 93.4%.  We developed a model that can distinguish between reactions of 

sympathetic hyperactivity due to different stimulus triggers above and below the level of injury. 

The system could serve as a complementary tool to the clinically accepted gold standard of 

determining AD using solely blood pressure, providing a method for universally detecting the 

onset of AD and discriminating the different triggers for sympathetic stress for improved 

management of AD in individuals with SCI. 
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1 INTRODUCTION 

1.1 The Autonomic Nervous System  

The mammalian nervous system has evolved to become a unique system which can 

perform a number of complex thought processes and actions. It receives millions of bits of 

information every minute from various sensory nerves and organs and integrates them to 

determine the responses to be made by the body [1]. The nervous system consists of the Central 

Nervous System (CNS), with over 100 billion neurons including those in the brain and spinal 

cord, and the Peripheral Nervous System (PNS), which connects the CNS to every other part of 

the body. The PNS can be further divided into the somatic nervous system, which is associated 

with voluntary control of body movements through skeletal muscles, and the autonomic nervous 

system (ANS), which is associated with involuntarily regulating bodily functions [2]. The ANS 

is largely responsible for involuntarily maintaining internal physiologic homeostasis [3]. The 

ANS functions as a reflex circuit and uses sensory feedback from the organs to modify and adapt 

the output of the ANS to adjust the physiological state of the body [2]. It helps to control arterial 

pressure, gastrointestinal motility, urinary bladder emptying, thermoregulation and various other 

activities. The ANS can rapidly modify the intensity and speed of visceral functions such as heart 

rate[3], [4].  The ANS comprises of two antagonistic sets of nerves, the sympathetic and the 

parasympathetic nervous system, which innervate three major types of muscle (cardiac muscle, 

smooth muscle and the glands) and various effector organs (Figure 1). The activity of each organ 

innervated by the sympathetic and parasympathetic nerve fibers depends on the interaction and 

balance between the signals from both systems[5], also known as the sympatho-vagal balance.  

 

The activation of the sympathetic nervous system (SNS) leads to reactions of alarm, often 

referred to as the “fight or flight” response. The most obvious phenomena of SNS activation 

include pupil dilation, piloerection (‘goosebumps’), sweating, increased cardiac activity in the 

form of increased blood pressure (BP) and heart rate (HR), and inhibition of the urinary and 

genital functions[4]. Sympathetic nerves originate in the vertebral column and are located in the 

thoracolumbar spinal cord (T1-L2 segments).  
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The parasympathetic nervous system (PSNS) is related to functions of protection and 

conservation, often known as the “rest or digest” responses. It works in direct contrast with the 

SNS and regulates the functioning of visceral organs such as the liver, kidney and heart. 

Stimulation of the PSNS leads to pupillary constriction, decreased heart rate, promoted digestion, 

urinary activity and genital activity. The PSNS, also known as the vagal system, originates from 

the craniosacral region and innervates the thoracic and abdominal regions of the body through 

the vagus nerve, which contains 75% of all the parasympathetic nerves fibers 

 

Figure 1: Innervation of the ANS- including the sympathetic and parasympathetic nervous system.  

The ANS primarily regulates the functions of the cardiovascular and sudomotor systems. 

The sympatho-vagal interaction allows control of the HR and BP of an individual. The 

sympathetic nerves control vasomotor tone and cardiac output, which are directly proportional to 

the arterial BP and stimulation of the SNS results in an increase in HR and BP. In contrast, 

stimulation of the PSNS leads to a lowering of HR and BP [6]. Due to the influence of the ANS 

on the cardiovascular function, the evaluation of cardiovascular measures such as heart rate 

variability and fluctuations in BP allow clinicians to develop a better understanding and 

diagnosis of ANS function. In addition, the ANS regulates sudomotor function and ensures 

thermoregulation[7]. The eccrine sweat glands are innervated by nerves from the hypothalamus 

and thoracolumbar segments of the spinal cord. 



 

13 

1.2 Dysautonomia: Dysfunction of the Autonomic Nervous System  

Dysfunction of the ANS, commonly referred to as dysautonomia, is an umbrella term for 

several medical conditions which lead to malfunctioning of the ANS. Dysautonomia often gives 

rise to impaired control of cardiovascular activity including regulation of blood pressure (BP) 

and  heart rate (HR), impaired bowel, bladder and gastrointestinal function, and impaired 

thermoregulation[8]. Dysautonomia ranges from transient episodes to progressive ANS 

dysfunction resulting from spinal cord injury (SCI),  Parkinson’s disease (PD), diabetes and 

stroke [9]–[11].  Dysautonomia is correlated with poor rehabilitation outcomes, significant 

reduction in the quality of life, and in severe cases, increased morbidity or mortality[12], [13]. 

Diseases which lead to dysautonomia often affect different components of the central autonomic 

network, pre- and post-ganglionic neurons and their target organs. Symptoms include 

fluctuations in BP,  abnormal heart rates, gastroparesis, anhidrosis, blurred vision and in severe 

cases, death[14]. In some cases the signs of dysautonomia can be subjectively disabling and 

uncomfortable, but in some diseases, dysautonomia can make the prognosis of the disease 

unfavorable[15]. 

 

Dysautonomia in PD has been recognized since the original description of the disease by 

James Parkinson in 1817[16]. Almost a third of all individuals with PD experience symptoms of 

dysautonomia[17], although a wide variation has been found in studies which report prevalence 

of dysautonomia in PD ranging from 5% to almost 90% [18]–[21]. This may be due to the wide 

variation of the presentation of dysautonomia in individuals with PD. Dysautonomia may be 

caused by the presence of Lewy bodies in the autonomic regulatory regions including the 

hypothalamus, SNS and PSNS [22]–[24]. Until recently symptoms of dysautonomia were 

attributed as side-effects of anti-parkinsonian drugs such as Levadopa, but recent studies have 

identified that dysautonomia is part of the disease process itself [21], [24].  

 

In most cases, dysautonomia occurs as a secondary health condition in diseases such as 

spinal cord injuries (SCI)[25], stroke[10], [26], and diabetes[27]. In diabetes, dysautonomia is 

among the least recognized and understood complications[28]. Cardiovascular autonomic 

neuropathy (CAN) is one of the most common manifestations of dysautonomia [29], [30] and is 

caused by damage to the autonomic nerve fibers which innervate the heart and blood vessels. 
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CAN causes resting tachycardia, postural hypotension, orthostatic hypotension and myocardial 

infarctions. CAN was reported in 16.8% of all individuals with type 1 diabetes and 22.1% of 

individuals with type 2 diabetes[31]. While it is possible to identify early stages of CAN with 

careful measurement of autonomic function, it is the significant cause of morbidity and mortality 

associated with sudden death[15], [26]. Dysautonomia is caused by the metabolic disorders of 

diabetes which lead to widespread damage to the ANS, including a metabolic insult to the nerve 

fibers causing nitrosative stress which damages endothelium and neurons[32], [33]. Lastly, 

cerebrovascular diseases such as stroke affect crucial control sites for autonomic function 

including the insular cortex, amygdala and lateral hypothalamus[34]. The insular cortex is an 

important cortical area in the middle cerebral artery which controls sympathetically and 

parasympathetically mediated cardiovascular regulation[35]–[37]. The insult to the insular cortex 

leads to more severe cardiovascular presentations of dysautonomia in stroke.  

 

Gastrointestinal disturbances due to dysautonomia are also common and severely 

disabling. Gastrointestinal dysfunction in the form of dysphagia occurs in almost 80% of patients 

with PD during the course of the disease[38] and in 50% of patients with acute stroke. 

Constipation and difficult defecation are the most-common gastrointestinal symptoms among PD 

patients[39]. Other gastrointestinal manifestations of dysautonomia include swallowing problems 

such as drooling, motility disorders, gastroparesis, constipation, vomiting and diarrhea[20], [23], 

[38], [40], [41]. In diabetics, gastrointestinal disturbances are more common in patients who 

have been diagnosed for long periods of time with poorly controlled blood glucose level but are 

frequently overlooked and left untreated [42]. Control of blood glucose levels in diabetics often 

leads to an improvement of the gastric motor dysfunction 

 

Over 70 million people worldwide live with various forms of dysautonomia [14] and 

while there is currently no cure for dysautonomia, a variety of treatments are available for the 

symptoms caused by the disorder. Alternately, treatments of the underlying disease which cause 

dysautonomia can also help with symptom management. While some treatments are available to 

improve quality of life through medications and lifestyle changes/adaptations, many patients 

with dysautonomia experience disabling symptoms which significantly reduce their quality of 

life. Despite the prevalence of dysautonomia, a lack of awareness amongst the public and within 
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the medical profession often leads to a delayed diagnosis for most patients, sometimes even 

several years[24]. This leads to the need for a reliable recognition of the signs of dysautonomia 

through quantitative analysis tools. However, there is currently a lack of simple techniques 

which can detect anomalies in the functioning of the ANS early.  

1.3 Dysautonomia in Individuals with Spinal Cord Injuries 

In the United States, there are currently 280,000 individuals who live with a diagnosis of 

SCI with an incidence rate of approximately 64 cases per million population [43]. Young adults 

are often the age group with the highest risk of SCIs and individuals with SCI often fall between 

18 and 30 years of age. High level SCIs have a considerable impact on the lives of the individuals 

who are injured as well as their families. Despite the low incidence of SCIs compared to health 

conditions such as heart disease and stroke, persons with SCI are most likely to live with paralysis 

and other consequences of SCI for longer periods of time [44]. The most frequent age of injury is 

19 and with a near normal life expectancy of individuals with chronic SCI due to advances in 

medicine in the past few decades. The economic consequences and impacts on the quality of life of 

living with a SCI are substantial. For an individual with tetraplegia, estimated yearly direct costs 

such as healthcare and living expenses, and indirect costs including loss of wages, fringe benefits 

and productivity are $1.1 million and  $0.8 million per individual, respectively [45].  

 

In addition to the severe medical risks during acute management of SCI, there is a life-

long risk of secondary health complications. Every year 30-50% of persons with SCI are re-

hospitalized due to secondary health complications. Post SCI health conditions include skin 

pressure sores, urinary tract infections, orthostatic hypotension, deep vein thrombosis and most 

frequently, autonomic dysreflexia (AD), which occurs in almost 70% of the SCI population [46]–

[48]. After SCI in the cervical or high thoracic vertebral regions parasympathetic control is often 

preserved after the injury; however, there is a lack of supraspinal control of the SNS leading to 

profound effects of SNS dysfunction[49], [50]. Due to the disproportionate activity of the SNS 

and the PSNS in SCI, there is a loss of synergy between the two systems resulting in 

dysautonomia.  

 



 

16 

Autonomic dysreflexia (AD) and orthostatic hypotension (OH), are two of the most 

common manifestations of dysautonomia. AD leads to uncontrolled systolic hypertension over 

200mm Hg [51], [52] in individuals with SCI. It is a potentially life threatening syndrome caused 

by hyperreflexia of the SNS and occurs in about 70% of individuals with an SCI above the sixth 

thoracic (T6) level of the spine[53], [54]. AD is initiated by irritation or noxious stimuli below 

the level of injury or triggers with 85% of cases of AD being triggered by urinary tract infections 

or impacted bowels [55], [56]. Other AD triggers include pressure sores below the level of injury, 

restrictive clothing, wounds, exercise, or sexual function[57]. AD causes debilitating symptoms 

including pounding headaches, acute anxiety, chills, blurred vision, flushing, and sweating above 

the level of injury [58]. If left untreated, AD can cause a dangerous increase in blood pressure 

that can lead to possible cerebral hemorrhage and even death [59], [60]. In a study of life-

threatening instances of AD, 22% of cases resulted in death [61].  

1.4 Relevance of Dysautonomia Detection  

Late stages of dysautonomia also increases the cost of care for individuals and has a 

significant negative impact on the quality of life, with an estimated 25-50% of diabetic patients 

with symptomatic dysautonomia dying within 5-10 years of diagnosis[12], [13], [43], [47], [48]. 

There is a need to recognize the importance of dysautonomia in individuals and identify methods 

to improve management of symptoms. Similarly, recognition of the various autonomic 

abnormalities of PD is important to ensure that effective treatment may be available which can 

measurably improve quality of life for individuals with PD. This makes the detection of 

autonomic function early on in the disease states is crucial for improvement of quality of life of 

individuals with disease states and their caregivers.  

 

The severity of stroke has also been associated with autonomic function, wherein more 

severe strokes lead to a progressive loss of overall autonomic modulation, decline in 

parasympathetic tone, and progressive shift toward sympathetic dominance[34], [62]. Diagnosis 

of dysautonomia early post-stroke can be used as an indicator for stroke severity[63] allowing 

necessary therapeutic interventions to be provided. Moreover, dysautonomia has also been 

associated with increased in-hospital neurological complications[63] and adverse clinical 

outcomes[64] such as cardiac complications, hyperglycemia, immune depression, sleep 
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disordered breathing, and malignant edema[65]–[68]. While ANS function can gradually return 

to normal range within six months post-stroke, in several cases there is no improvement in the 

ANS function in patients with atypical, definite or severe autonomic dysfunction two months to a 

year after ischemic stroke[69], [70]. Thus, earlier diagnosis of dysautonomia can offer valuable 

insights to clinicians regarding decisions made about prognosis and the subsequent therapy[71]. 

Similarly, autonomic function has also been used as clinical predictive biomarkers for severity of 

PD[72]–[75], and regular testing of autonomic function could allow therapeutic interventions to 

slow the progression of the disease.  

 

The majority of patients with stroke experience incomplete recovery of motor deficits 

despite having received some type of rehabilitation, with up to 60% having impaired manual 

dexterity six months following the stroke[76]. Likewise, in patients with SCI, approximately half 

of the motor recovery occurs within the first two months after the injury and is assumed to be 

complete two years after the injury[77]. Quantitative measurements of dysautonomia form the 

groundwork for successive treatment of various stroke-related autonomic disorders[78], [79], 

making determination of dysautonomia to gauge somatomotor-sympathetic coordination early in 

the rehabilitation process critical to successful recovery of locomotor function. 

1.5 Current Methods of Dysautonomia Detection 

Several diagnostic tools have been adopted in routine clinical evaluation and include both 

invasive and non-invasive tests. Since cardiovascular dysfunction is one of most common 

manifestations of dysautonomia, several clinical tests are based on the evaluation of 

cardiovascular reflexes to triggering maneuvers. These include stimuli which raise BP and 

mainly activate the sympathetic outflow. Among the batteries of tests, the Ewing battery is the 

most popular and commonly used in diagnosis of autonomic function and comprises deep 

breathing, orthostatic testing, and Valsalva maneuver[80].  

1.5.1 Cardiovascular testing 

The Valsalva maneuver allows an evaluation of the baroreceptor sensitivity and the 

body’s ability to compensate for changes in the amount of blood that returns to the heart. The 
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maneuver is performed by asking the subject to blow into a tube to maintain a column of 

mercury at 40mm Hg for 15 seconds and measuring the ECG response[81]–[83]. The changes in 

the BP and thoracic pressure during the activity can be divided into four phases (Error! 

Reference source not found.). The Valsalva ratio is derived from the longest RR interval in 

phase IV divided by the shortest RR interval in phase II and at the very beginning of phase III. 

The ratio reflects parasympathetic activity and a value lower than 1.21 is considered abnormal 

[84], [85], often requiring further evaluation of the healthy, able-bodied participant.  

 

Figure 2: Blood pressure and heart rate during the Valsalva maneuver. In phase II, blood pressure 
normally increases from its lowest, and in phase IV blood pressure overshoots baseline prior to the 

maneuver. 

The Valsalva maneuver can also reliably assess sympathetic function by measuring 

changes in heart rate and blood pressure through several repetitions of the test and the rate of 

return to baseline values. However, the test can be intrusive, and results are affected by age, sex, 

body position and medications[79]. Moreover, individuals with stroke, SCI and PD may not have 

the mobility required to perform the maneuver. 

 

Several tests use electrocardiogram (ECG) measurements, and a common measure is the 

fluctuation of the mean interval between two R waves on the ECG (RR interval). Heart Rate 

Variability (HRV) provides a measure of the RR interval which is a resulting factor of the 

sympatho-vagal interaction[81], [86], [87]. Due to the ability to non-invasively determine HRV 

through ECG measurements, it has recently become a popular clinical methodology to detect 

dysautonomia[81], [88]. ECG based evaluation of HRV can be performed through frequency and 

time-based domain analyses as well as non-linear techniques. The analysis is often based on 24 

hour Holter recordings or on shorter ECG recordings ranging from 0.5 to 5 minutes[89]. Time 
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domain analyses of HRV from ECG recordings have the widest application in routine clinical 

evaluation. Parameters such as the SDNN, derived from measurements of the standard deviation 

of the Normal to Normal (NN) intervals, square root of the mean of the sum of the squares of 

differences between adjacent NN interval (RMSSD), and the percentage difference between 

adjacent NN intervals that are greater than 50 ms (pNN50) allow determination of the function of 

the ANS[88]–[91]. The SDNN reflects overall variability but RMSSD and pNN50 

predominantly reflect the parasympathetic modulation of the heart, which often decreases due to 

dysautonomia. However, the various time-domain based HRV parameters do not reflect the 

sympathetic modulation of the heart.  

 

Frequency based analysis of the HRV through Fast Fourier transformation (FFT) 

separates the frequency components of the HRV into three major components: high frequency 

(HF) ranging from 0.15-0.4Hz, low frequency (LF) ranging from 0.04-0.15Hz, and very low 

frequency (VLF) which is below 0.04Hz. LF power is often interpreted as a measure of a 

combination of sympatho-vagal activity[91]–[93]. Other measures of sympatho-vagal balance 

include the LF/HF ratio[2], [81], wherein a higher ratio indicates an increased sympathetic 

activity, while a lower ratio indicates an increased parasympathetic activity[94], [95]. In a 

normal adult in resting conditions, the LF/HF ratio is between 1 and 2. While the powers of 

signal oscillations in the frequency-domain analyses are considered to reflect the sympatho-vagal 

influence, they cannot be considered an absolute measure of the SNS or PSNS outflow [96], [97]. 

There are also established correlations between the time and frequency domain analyses wherein 

pNN50 and RMSSD values correlate between themselves and HF power which reflect vagal 

activity [87], [95], [98].  

 

HRV values vary significantly with age and are influenced by factors including body 

position, circadian rhythm, respiration, gender or diet[87], [88]. The clinical application of HRV 

assessment through time domain analyses are further limited by a lack of consensus on the most 

accurate HRV parameter for clinical use[99]. On the other hand, while frequency-domain 

analysis provides a better understanding of the sympatho-vagal balance, it is time consuming and 

requires long, nearly artifact free recordings as well as specific software and computer 
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techniques. These may not be readily available in the clinical setting to allow immediate 

diagnosis of dysautonomia. 

1.5.2 Sudomotor testing 

The testing of sudomotor function tests the cholinergic system of the ANS and reflects 

the function of small, unmyelinated fibers to determine any neuropathies in the small fibers[86]. 

Sudomotor testing is one of the earliest detectable neurologic abnormalities in dysautonomia and 

these tests may be abnormal in patients without any cardiovascular abnormalities[100].  

 

Sympathetic skin response (SSR) is a measure of electrodermal activity and is based on 

the temporary change to electrical resistance due to stimuli which leads to a change in skin 

potential. SSR provides a surrogate measure of sympathetic cholinergic sudomotor function. To 

determine SSR, the potential difference between the skin over the front and back of the hand or 

foot is measured via surface electrodes[101]. The stimuli used are physiological (loud noise, 

flash, touch, inspiratory gasps) or electrical (peripheral nerve stimulation – median, tibial, 

peroneal, supraorbital nerve) and changes in SSR are measured. SSR is considered abnormal if 

amplitudes between the left and right side differ by at least 50% or if one of four limb responses 

is absent[102]. SSR measurements have also been used to determine dysautonomia in individuals 

with SCI with a relatively high accuracy[103], [104]. Despite being easy to perform, the 

technique requires an increasing stimulus intensity as the response habituates to allow continuous 

detection of ANS function, which often leads to discomfort.  

1.5.3 Other testing methods 

While sudomotor and cardiovascular measures are most commonly used in clinical 

settings, other symptoms of dysautonomia can also be used to assess the function of the ANS. 

Techniques such as video cinefluoroscopy[12], [100], endoscopy[105], [106], gastric emptying 

studies[107], [108] and intraluminal pressure recordings can be used to determine the impact of 

dysautonomia on the gastrointestinal system. Similarly, testing of the urinogenital system 

through techniques such as penile plethysmography[100], intracavernosal papaverine[100], and 

urodynamic studies[109] also provide an insight into the level of dysfunction of the ANS in 
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individuals. However, due to the invasive nature of these tests and the discomfort caused by 

them, they are more commonly used in research settings and less adopted by clinicians. 

1.5.4 Gap in Autonomic Testing 

While the various tests to detect autonomic function are built on well understood 

physiological basis, they are often difficult, time consuming and require specific instruments and 

personnel with a great deal of training and experience[81], [110]. Multiple factors influence 

autonomic function testing including age, gender, body position, emotional state, ingested food 

and medicines[111], and even time of testing (morning as compared to evening)[112], [113]. 

Factors such as room temperature, humidity and other background noise also affect the results of 

the testing[86], [110], [114]. Moreover, the current techniques require a degree of dexterity or 

movement from the patient, which is not usually possible in patients with acute stroke and SCI, 

making it mandatory to develop a simpler method to assess autonomic dysfunction[15].  

 

There is also no single test which reflects the function of the ANS, requiring a battery of 

tests to be run. This can be time consuming and laborious for the patient. Moreover, the 

interpretation of the tests is based on pre-determined thresholds which do not account for 

individual differences. While these thresholds inform a clinician of the dysfunction of the ANS,  

there is a lack of a scale which allows evaluation of the level of severity of the symptoms[65]. A 

scale would allow the determination of the severity of the symptoms and allow clinicians to 

provide customized rehabilitation plans. Clinical studies have detected the onset of AD and OH 

by measuring changes in physiological parameters [46], [115] including changes in BP, heart 

rate or abnormal sweating. However, there is currently no gold standard for measuring the 

severity and completeness of autonomic dysfunction. This leads to technical difficulties while 

administering tests to patients and can be a major concern for clinical practice.  

1.6 Machine Learning Applications in Healthcare  

Machine learning (ML) has been applied to various areas of healthcare and has enormous 

potential to improve detection of disease [116]–[119], help clinicians with making decisions 

(decision support system)[120]–[122] and improve the quality of life of individuals. Current 



 

22 

healthcare practices revolve around human expert assessments of correlations between symptoms 

and diagnoses. However, there is a growing trend in the medical community to use automated or 

semi-automated systems to monitor the well-being of individuals in their care[123].  This section 

will focus on applications of machine learning approaches using physiological data and not 

explore the advances of machine learning in domains such as imaging or natural language 

processing for electronic health records.  

 

With an increase in availability of wearable sensing technologies, such as the Appleâ 

Watch, Fitbitâ , there is an increasing amount of healthcare data available to clinicians and others 

in the field of healthcare. ML techniques can contribute to finding patterns and trends that 

contribute to the knowledge about different disease states as well as help diagnose them 

early[124]. ML algorithms can be divided into three main categories: supervised, unsupervised 

and reinforcement learning. Supervised methods are among some of the most common 

approaches used in clinical setting due to the large amount of annotated data which is 

available[123]. Some applications of ML to healthcare settings include automated arrhythmia 

analysis tools using physiological data such as electrocardiogram (ECG) or alerts for low oxygen 

saturation using photoplethysmography (PPG)[125]–[128]. Additionally sensors such as 

electroencephalography (EEG)[129]–[131] and electromyography (EMG) [132]–[134] have also 

been used to develop datasets and machine learning models which enable researchers and 

clinicians to make better decisions about the well-being of individuals who are able-bodied as 

well as those with different forms of disabilities.   

 

Supervised ML methods have three main steps [135]. The first step is 

extracting/collecting the n-dimensional features vector in order to reflect different aspects of the 

conditions (features) with a class label attached. The second step of this machine learning 

approach is application of the ML methods (classifier) for prediction of the class label of the 

features input. The third step is measuring the performance of the prediction method and its 

validity using approaches such cross validation technique and independent evaluation (IE) 

datasets. Feature extraction is the process of reducing a set of raw/preprocessed data into a 

smaller set of features which represent the key qualities of the data. Features are chosen so that 
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they possess different qualities for different classes. Feature extraction in healthcare data is often 

guided by physiological understanding of the mammalian system[136]–[138].  

 

Once features have been identified from the data, various machine learning models can 

be trained. Classification models are commonly used when class labels are available and are 

discrete in nature. Several models have been used in the classification of healthcare data- 

particularly physiological data[137], [138]. These include logistic regression, decision trees, 

ensemble approaches, and deep neural networks. Each technique differs in its underlying 

objective function and constraints, thus requiring exploration in order to identify the best 

performing algorithm. Additionally, performance metrics of algorithms need to be established 

ahead of using particular algorithms - these include keeping in mind the clinical task of interest. 

These metrics allow determination of whether accuracy is sufficient for the task, or if other 

metrics need to be evaluated. Despite its strengths, ML cannot identify relationships that are not 

present in the data; therefore, data veracity plays an important role in the development of any 

ML model. Moreover, ML does not replace the need for standard statistical analyses or 

randomized, control trials[123].  

 

In the investigation of spinal cord injuries, ML tools have been employed to investigate 

the changes in walking ability due to rehabilitation[139], [140],  activity recognition[141], [142], 

pain and well-being predictions[143], [144]. However, there is a dearth in research which has 

been conducted in the identification of co-morbidities or secondary health conditions post-SCI.  

1.7 Goal for this Project 

There is currently no technique to detect dysautonomia non-intrusively in real time. 

Through this research, we will focus on developing a multimodal detection system which can 

detect changes in physiology due to dysautonomia in SCI. Particularly, we will investigate 

dysautonomia due to the onset of autonomic dysreflexia (AD).  We propose to develop a non-

invasive, multi-parametric system to detect AD using the most efficient machine learning 

method to differentiate sympathetic stressors. We propose to 1) develop a sensitive, non-invasive, 

multi-parametric approach to detect key physiological manifestations of AD, 2) develop a 

machine learning model that can distinguish between the onset of AD and other sympathetic 
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activity, and 3) test the performance of the model to optimize specificity of sympathetic 

activation due to different triggers.  

1.8 Specific Aim 1: Characterizing unique signatures of Autonomic Dysreflexia through 
non-invasive sensing.  

We will study the onset of AD using a rat model with high thoracic compression SCI that 

we have adapted. The rat models enable us to perform controlled studies and using large subject 

samples has previously been difficult to achieve in naturally occurring instances of dysautonomia 

in humans.  Rat models of SCI are typically preferable in order to mimic human pathology of 

SCI and are most widely used to study SCI [145], [146] 

1.8.1 Research Questions  

1) Do readings by novel, non-invasive physiological sensors change in accordance with 

what is expected due to sympathetic activation as a result of the onset of AD?  

 

An array of sensors, including skin nerve activity (skNA), ECG, blood pressure and skin 

temperature, were used in the development of the new AD detection system (ADDS). Rate and 

patterns of change in the physiological data will be correlated and mapped to the initiation and 

progression of AD in rats to further evaluate sympathetic activity related to AD. Different 

classifiers will be explored through extensive feature engineering and selection. We will 

determine an optimal combination of noninvasive sensors to detect the onset of AD episodes.  

 

2) Can we characterize AD through a combination of these sensors? 

 

Machine learning models will be built using the data collected from the rat model. These 

will be binary classifiers which can distinguish between AD and non-AD states. In addition to 

standard classifiers, feature engineering will provide strong and ideally simple relationships 

between new input features and the output feature for the supervised learning algorithm to model. 

This will enable the development of an ideal machine learning model which can detect AD and 

identify characteristics of the onset of AD. 
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1.8.2 Anticipated Outcome 

 We anticipated that a combination of the sensors that detect activity of a paravertebral 

ganglion and other non-invasive sensors would detect AD. Moreover, we anticipated that the 

machine learning model would be able to distinguish between the physiological parameters 

which are associated with AD events. The models developed with this data would enable 

understanding of specific features, which will provide a deeper insight into understanding the 

ability to identify the onset of AD. 

1.9 Specific Aim 2: Distinguishing physiological signatures due to AD and other 
sympathetic stressors.  

Having identified unique signatures of AD in Specific Aim 1, confounders to the model 

need to be identified. Since AD is a sympathetic response to a trigger below the level of injury, it 

is important to identify the difference in response between AD and other sympathetic responses. 

This includes triggers above and below the level of injury.  

 

Through this aim, different stimuli are explored, and machine learning models are built to 

differentiate between a true AD event and other sympathetic triggers.   

1.9.1 Research Questions  

1) Can we distinguish between the onset of AD and other sympathetic stimuli?  

 

Physiological responses to the onset of AD and other sympathetic stimuli will be 

compared. A machine learning model generated using the sensor data acquired during Aim 1 will 

be used to automatically detect the onset of AD and other stimuli by extracting features from the 

normalized physiological time-series data collected. The observation of patterns in the data is 

independent of the physiological differences across animals.  

 

2) Can we optimize the developed machine learning model to distinguish between the 

different sympathetic stimuli?  
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Modifications will be made to the machine learning model developed in S.A. 1 to 

optimize for the detection of specific sympathetic stimuli due to different triggers. Feature 

selection techniques will allow for better discernment in understanding the physiological changes 

occurring as a result of the different sympathetic stimuli. 

1.9.2 Anticipated Outcome 

We anticipated an ability to discern differences in sympathetic activity as a result of 

different sympathetic/nociceptive triggers, as well as long-term progression of SCI on baseline 

sympathetic activity.  

1.10 Overview of the Document’s Structure  

This chapter introduced the basis for the thesis and the motivation behind it as well as an 

overview of the literature on topics related to this research. Chapter 2 provides some more 

background specific to this work which has been done previously regarding AD detection 

research in humans. Chapter 3 provides an overall signal processing and machine learning 

methodology used to answer the different research questions posed in this thesis. Chapter 4 

discusses the animal model used in this thesis. Chapter 5 discusses the research questions posed 

in Specific Aim 1 to discern the onset of AD. Chapter 6 discusses the research questions posed in 

Specific Aim 2 to discriminate AD from other sympathetic stressors. Finally, in Chapter 7, 

conclusions and future work are discussed.  
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2 BACKGROUND WORK  

2.1 Current Gold Standards of AD detection  

The standard approach for managing AD for newly injured tetraplegics is for them learn 

to recognize their own symptoms and triggers and how to manage them [147]. However, only 41% 

of persons with SCI and their family had heard of AD even though 22% of individuals with SCI 

reported symptoms consistent with unrecognized AD [148]. Meticulous monitoring of telltale 

symptoms of AD can prevent the rapid escalation of AD-induced hypertension and reduce risks 

to personal health if managed quickly. However, learning to recognize AD symptoms can take 

time and identifying the source of noxious stimuli occurring in paralyzed parts of the body may 

be difficult [61], [149] at the potential risk of the individual, especially for those who are newly 

adapting to living with paralysis. Additionally, 35-43% of individuals with SCI experience 

asymptomatic or ‘invisible’ AD [150].  

 

Clinically, medical professionals use blood pressure monitoring to diagnose AD (at least 

20 mmHg above baseline levels)[55]. However, continuously monitoring blood pressure through 

ambulatory blood pressure monitoring (ABPM) systems is not practical for long-term use. It 

restricts individuals’ activities and data quality can be affected by movements such as wheeling 

or transferring.  The tactile and sonorous stimuli to measure blood pressure can be distracting, 

interrupting activities of daily living (ADLs) or sleep [71]. Moreover, the sampling rate of 

measuring blood pressure is quite low (maximum every two minutes). 

 

The interpretation of the ABPM data requires a trained clinician as well as an analyst 

who is trained with computer and data processing software. This hinders widespread adoption of 

ABPM in the SCI community [151]. Thus, there is a need for a sensitive yet noninvasive method 

of detecting the onset of AD, which can be adopted easily into clinical practice and for at home 

use.  
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2.2 Autonomic Dysreflexia Detection System Developed in Human Models  

Prior work has been performed by us in human models of SCI to develop a continuous, 

wearable AD detection system. The initial development of the ADDS in the human model was 

presented in a Master’s thesis titled ‘A Physiological Telemetry System to Detect the Onset of 

Autonomic Dysreflexia in Individuals with Spinal Cord Injuries’. 

 

We developed a proof of concept ADDS that showed that AD symptoms can be reliably 

detected across a sample of individuals with chronic, high-level SCI using noninvasive 

physiological sensors (Error! Reference source not found.). The system used a combination of 

wearable, commercially available sensors, alternative to blood pressure, to continuously monitor 

AD episodes for eight hours or more while the user maintains an active lifestyle. The ADDS 

employed a cloud-based universal classifying machine learning model to automatically recognize 

AD in real-time[152].  

 

 

Figure 3: Overview of ADDS used to collect data and predict onset of 
AD symptoms in individuals with SCI 

2.2.1 Development of the sensors and machine learning model  

The system continuously measured skin temperature, heart rate and galvanic skin 

response (GSR) (sweating) through sensors available in a Microsoft Band™, a wrist-worn 

smartwatch (Error! Reference source not found.). It was chosen for its wearability, ability to 
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develop custom applications and controlled sampling rate [153] The physiological data whose 

data are wirelessly streamed to a mobile application over the internet [103], [154]. 

 

 A mobile application was developed and deployed on an Android® tablet via Bluetooth, 

to receive data from the watch and alert the users when AD is detected.  In this study, we rely on 

the individuals’ ability to self-report symptoms of AD (Error! Reference source not found.a). 

This is supported by studies in which participants were asked to self-report AD symptoms which 

showed high correlation between self-reported frequency and the objectively assessed number of 

AD events [155]. Data was collected from eleven participants with cervical and thoracic injuries 

(mean age: 35.3±11.2) using the system for 8 hours a day for period of a week.  

 

Figure 4 :  The Microsoft Band and its sensors for GSR, heart rate, and skin temperature.  

 

 

Figure 5: The Android Sensor Recorder application with features for the user to; (a) 
report the onset of AD, (b) stop recording data 
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A support vector machine (SVM) model with a radial basis function (RBF) kernel was 

trained using this physiological data collected from the MS Band. Four different models were 

trained using various combinations of physiological sensor data (GSR, skin temperature and 

heart rate) as features. Each model was trained and tested using a 5-fold cross validation to 

determine its accuracy, sensitivity and specificity of each model (Error! Reference source not 

found.). The model with the highest accuracy and lowest false negative rate was chosen as the 

optimal model for the detection of AD in real time. The combination of data collected from the 

GSR and skin temperature sensors led to the development of the most accurate and error free 

machine learning model.  (Error! Reference source not found.). When tested with naïve 

participants whose data was not used in the training of the test model, the model detected AD 

with an accuracy of 94.1% and a false negative rate of 3.8% [156].  

 

 

Figure 6: The optimal model developed with an RBF kernel to 
distinguish between AD and non-AD data 

Table 1: Representation of the Confusion Matrix for AD Detection.  

 Predicted AD Predicted Non-AD 

Actual AD True Positive 

(TP) 

False Negative 

(FN) 

Actual Non-

AD 

False Positive 

(FP) 

True Negative 

(TN) 

Sensitivity: True positive rate; Specificity: True Negative rate 



 

31 

2.2.2 Developing a model with optimally weighted features   

In addition to the machine learning algorithm developed to differentiate between AD and 

non-AD events, we investigated the impact of weighting the different parameters on the 

performance of the system. The data collected from the 11 participants in Section 1 were used a 

linear SVM for the feature weighting and classification. Each sample xi, i = 1,...,m consists an N 

by 3 feature vectors, where N refers to the length of the data, and two class labels yi ∈ {+1, −1} 

wherein +1 represents the onset of AD symptoms and -1 represents a lack of AD symptoms. Our 

support vector can be characterized by the following equations 

 

w T xi + b ≥ 1 for xi with class 

+1 (

1) wT xi + b ≤ -1 for xi with 

class -1 

 

 

The resulting weight vector w encodes the contributions of all features to the classifier.  

 

 

 

Figure 7: The process diagram of determining the optimal weights of the different features.  

 

Two different methods were used to identify the weights of the features. An ideal set of 

weights with each of the methods was determined by evaluating the training accuracy of the 

models.  
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a) Feature Importance 

Feature importance was estimated through bagged decision trees such as Random Forest 

and Extra Trees. The bagging methods reduce the variance of the base estimator and allow 

tuning of the parameters to maximize the performance of the algorithm. The feature weights 

were constructed based on the nodes of the decision tree as well as the features used to build this 

tree. Each node was assigned to a split point on a given feature which was then used to determine 

the importance of the feature[157].     

b) Recursive Feature Elimination 

The Recursive Feature Elimination (RFE) model works by recursively removing features 

and building a model with features that remain. It is a backward feature deletion method which 

ranks the features in the order in which the feature is removed wherein the top ranked features 

are removed in the last iteration and are the most important [158].We identified that the best 

performing model for prediction of AD was one in which GSR was given the highest importance, 

followed by skin temperature and the least importance given to heart rate. This is in agreement 

with our prior work where we developed an accurate model using a combination of GSR and 

skin temperature data [159]. While training the model with 100% weightage on GSR data 

allowed a reasonably high accuracy, distributing weights to heart rate and skin temperature led to 

much higher performance through an almost 6% increase in accuracy of detection, as well as 

4.53% increase in the sensitivity and 12.42% increase in specificity.   

 

The corresponding weights and training accuracies based on the two feature weighting 

techniques is presented in the Error! Reference source not found. below and the highest 

training accuracy was determined to be the one where all three features contributed to the model 

(Extra trees).  
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Table 2. Weights of the different parameters determined by the feature weighting strategies.  

Feature 
Selection 
Strategy 

GSR HR ST Training 
Accuracy 

RFE 1 1.00 0.00 0.00 94.17% 
RFE 2 0.00 1.00 0.00 91.49% 
RFE 3 0.00 0.00 1.00 91.24% 
RFE 4 0.333 0.333 0.333 91.72% 
Extra trees 0.556 0.105 0.340 94.44% 
Random Forest 0.616 0.094 0.290 94.43% 
     

 

When models were developed with the weights determined through the techniques, the 

highest sensitivity, specificity and AUC-ROC were identified for the models which were 

developed with the weights identified through the extra trees method. This model was built using 

a weighted combination of GSR, heart rate (HR) and skin temperature (ST) data with the highest 

importance given to GSR, followed by skin temperature. This model led to development of a 

linear SVM which clearly separates AD data from non-AD data (Error! Reference source not 

found.). The poorest performance was of the model that was developed using only heart rate 

data, which has been shown to be highly variable in persons with SCI. 

Table 3. Performance measures of the Weighted linear models developed  
Feature 

Selection 
Strategy 

Accuracy Sensitivity Specificity AUC-ROC 

RFE 1 92.59% 82.25% 82.26% 0.884 
RFE 2 90.85% 57.26% 52.94% 0.620 
RFE 3 91.67% 64.95% 71.71% 0.700 
RFE 4 91.38% 56.20% 85.50% 0.983 
Extra trees 97.38% 86.78% 94.68% 0.987 
Random 
Forest 98.39% 85.50% 92.46% 0.983 
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Figure 8: Linear SVM model developed using a weighted combination of features allows 
separation of AD and non- AD data 

The choice of weights can be explained by the physiological signs of AD. AD is most 

commonly characterized by cold, clammy skin due to sweating above the level of injury as well 

as alterations in heart rate. Since GSR allows the characterization of sympathetic sudomotor 

function[160]–[162],which is disrupted by AD and sweating leads to an overall decrease in skin 

temperature, the higher weights assigned can be justified.  In a prior model developed in Error! 

Reference source not found., heart rate data was eliminated from the development of the 

optimal model due to variations of the data between individuals during the onset of AD. 

Bradycardia and tachycardia are both observed in individuals during the onset of AD symptoms 

[163]–[165] thereby preventing a consistent detection of AD. However, through the elimination 

of heart rate data, there is a possibility of discarding potentially useful data which may allow 

deduction of the cause of AD, such as exercise or other cardiovascular events. In the current 

model the low weightage given to heart rate data may be due to a consideration of the presence 

of change in heart rate values rather than an overall increase or decrease. Through the inclusion 

of heart rate data, further analysis could help us improve the detection of symptoms of AD and 

possibly determine the trigger.   
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2.2.3 Limitations of the ADDS 

The ADDS model was developed with self-reported symptoms of AD as the ground truth 

rather than the clinical gold standard of measuring systolic blood pressure. While developing the 

ADDS in the human model, it was established that there were difficulties with controlling the 

onset of AD. The trigger of AD was not controlled, and variations in the timing of the onset of 

AD have led to confounders in the data. In prior studies, AD has been induced in humans 

through urodynamic assessments. However, it poses a risk to the individual since AD can have 

long term effects. Additionally, it is difficult to study the onset of AD in humans with acute SCI 

since there are other complications which require urgent care during the rehabilitation phase after 

the injury. 

 

The rat model explored in this thesis enables a more controlled study of a specific 

triggers of AD. Moreover, it enables using large subject samples has previously been difficult to 

achieve in naturally occurring instances of AD in humans. 
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3 DATA ANALYSIS METHODOLOGY   

In this chapter, we will discuss the various data analysis techniques used in the 

determination of changes in physiological data collected. The specifics of the rat model used in 

this thesis will be discussed in the next chapter.  

3.1 Sensors for collection of Physiological Data  

We collected electrocardiography (ECG), skin nerve activity (skNA), blood pressure 

(BP) and skin temperature data from the rodent model before and after SCI. The system uses 

commercially available medical research equipment (Powerlab Bioamplifier) to detect changes 

in cardiovascular activity. In addition to measures of cardiovascular function such as heart rate 

and blood pressure, we measure stellate ganglion sympathetic nerve activity through electrodes 

placed on the skin. skNA is a novel technique developed to estimate the stellate ganglion nerve 

activity and has been validated in humans[166] and canine models[167][168]. The skin nerves in 

the upper extremities and thorax originate in the cervical and stellate ganglia allowing 

measurements to estimate stellate ganglion activity[169]. 

 

ECG and skNA were measured through a pair of disposable, gel-based electrodes placed 

on the level of the right and left third ribs in the rats in a Lead I configuration with the electrode 

placed at the right leg serving as a reference electrode (Figure 9A). The electrodes were placed 

on the rat prior to being restrained as will be discussed in Chapter 4.2. The electrodes were 

connected to the bio-amplifier on the Power Lab 26T (AD Instruments, USA). The signals were 

digitized at a sampling rate of 10kHz with a recording bandwidth set at 10Hz to 3kHz[167].  

 

A CODA 6-Channel High Throughput Non-Invasive Blood Pressure system (Kent 

Scientific, USA) was used to measure the blood pressure in the rats[170]. The Coda system 

provides measurements of the systolic, diastolic and mean blood pressure. The system comprises 

an occlusion cuff and a volume-pressure recording (VPR) cuff which are placed on the tail of the 

animal. Recordings of blood pressure were collected two times per minute. The blood pressure 
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system comprises an occlusion cuff placed at the base of the tail and a volume-pressure 

recording (VPR) cuff which is placed 2 inches from the base of the rat’s tail (Figure 9B). 

 

A DS18B20 waterproof digital temperature probe was used to measure skin temperature 

from the shaved back of the rats. The temperature probe is connected to an Arduino and provides 

up to 12 bits of temperature data from the onboard digital to analog controller[171]. In 

conjunction with the Dallas temperature control Arduino library, the temperature sensor logs 

data with a sampling rate of 0.03Hz (2 samples per second)[172]. The temperature probe was 

calibrated prior to experimentation to confirm its sensitivity using hot and iced water 

(temperature was validated through infrared temperature sensor). 

 

Figure 9: A) Non-invasive ECG sensors placed in Lead I configuration B) Tail-cuff placed on rat’s tail to 
measure blood pressure C) Temperature probe placed on the shaved back to measure skin temperature.  

 

Figure 10: Schematic of the sensors. Noninvasive electrodes placed on the ventral skin surface of a rat in 
Lead I configuration, the Coda® Blood Pressure system with occlusion and VPR cuff and a temperature 

probe connected to an Arduino®.  

                  
          A                             B                C 
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3.2 Signal Processing and Feature Extraction  

The signals collected from each sensor are processed to ensure that there are no artefacts 

resulting from motion or respiration of the animal. The objective of signal processing is to 

produce an output that can facilitate the subsequent extraction of features from the signal. Each 

cleaned signal was then segmented using an overlapping windowing method of fixed lengths to 

create sub-sections of the signal from which features could be extracted. Different window 

lengths were investigated, and forty-one features were extracted from the cleaned signals to 

allow the development of a machine learning model as well as selection of features which best 

resembled the stimulus. Figure 11 is a flowchart of the data collection, signal processing, feature 

extraction and model development. 

 

Figure 11: Pipeline of data processing approach taken for the detection of AD.   

3.2.1 ECG  

 Filtering the ECG signal  

The ECG was filtered within a bandwidth of 0.05 − 100 Hz and sampled at 10kHz. ECG 

data was collected from a commercially available Bioamplifier system which was shielded from 

the 60Hz electrical hum from other power systems in the experiment room. In addition to 

hardware-based filters, the ECG signal was processed using a 60Hz notch filter to remove any 
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power line interference. A seventh order Butterworth band-pass filter between 0.01- 30Hz was 

applied to remove movement artefacts [173], [174] and other high frequency noise. Smoothing 

plays a role in suppressing noise or interference in a signal and was done by using a moving 

average filter on the signal[175] (Figure 12).  

 

 

Figure 12: A) Raw ECG data collected from rats B) Processed with ECG without high frequency 
components and prominent R peaks. 

 Feature Extraction 

The ECG is a recording of the electrical activity of the heart during cardiac cycles and is 

characterized by the recurrent sequence of the P, QRS and T segments. The detection of the QRS 

complexes and the R-peaks provide the fundamentals basis for various automated ECG analytics 

[176].  

 

An algorithm was developed to extract the RR peaks of the ECG signal. This algorithm 

was based on the Pan-Tompkins algorithm – which highlights the QRS segment allowing 

automated retrieval of the R peaks as well as the S segments (Figure 13) [177]. To ensure 

detection accuracy, the derived RR peaks are further processed to ensure the minimum difference 

between two successive peaks is between 100-500ms (200bpm < HR <600bpm) to generate the 

normal to normal (NN) intervals[178]. The heart rate and medianNN are calculated from the NN 

intervals. The QRS interval which provides additional information about the cardiac condition 

was also extracted[179]. The P and T segments of the ECG were difficult to determine 

consistently through simple automated techniques and were not considered in this methodology.  
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Figure 13: Cleaned ECG signal with identified R (x) and S (o) segments  

 

 

Figure 14: The automated detection of the Q (•), R (+), S (¨) segments 
from an individual beat of the ECG signal.  

 

The standard deviation of NN beat intervals (SDNN), covariance of NN intervals (covNN), 

the square root of the mean of the squares of the successive differences between adjacent NNs 

(RMSSD), and the proportion of the number of pairs of successive NNs that differ by more than 

5 ms (NN5) divided by total number of NNs (pNN5) calculated over each window were used to 

represent the heart rate variability (HRV) measures based on the time–domain method. Time 

domain analyses of HRV from ECG recordings have the widest application in routine clinical 

evaluation. Parameters such as the SDNN, RMSSD, and pNN5 allow determination of the 
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function of the ANS [88]–[91]. The SDNN reflects overall variability but RMSSD and pNN50 

predominantly reflect the parasympathetic modulation of the heart, which often decreases due to 

dysautonomia. However, the various time-domain based HRV parameters do not reflect the 

sympathetic modulation of the heart.  

 

Frequency based analysis of the HRV through Fast Fourier transformation (FFT) separates 

the frequency components of the HRV into three major components: high frequency (HF) 

ranging from 0.15-0.4Hz, low frequency (LF) ranging from 0.04-0.15Hz, and very low 

frequency (VLF) which is below 0.04Hz. LF power is often interpreted as a measure of a 

combination of sympatho-vagal activity[91]–[93]. Other measures of sympatho-vagal balance 

include the LF/HF ratio[2], [81], wherein a higher ratio indicates an increased sympathetic 

activity, while a lower ratio indicates an increased parasympathetic activity[94], [95].For the 

spectral analysis, spectral power for HRV was analyzed on the windowed ECG segments. The 

total power (TP), VLF, LF, and HF components were extracted from an FFT performed on the 

ECG signal. The peak frequencies in VLF, LF, and HF components as well as the areas under 

these components were calculated. Additionally, the LF/HF ratio was also calculated.  

3.2.2 skNA  

Skin nerve activity (skNA) is the measurement of autonomic activity of the stellate ganglion 

which innervates the cardiovascular system[166] and can be used to estimate cardiac sympathetic 

tone.  The skNA has a frequency range of 0-2000Hz and can be derived from ECG signals by 

using a bandpass filter of 500-1000Hz (Figure 15A) to account for the larger bandwidth of the 

skNA signals compared to the ECG and myopotential[180].  

 Filtering skNA data  

A moving average filter is used to remove any artefacts which may occur in the skNA signal 

(Figure 15B). The high frequency range of the signal ensures that there are limited artefacts 

which commonly occur in the ECG signal. Since the skNA signal is a measurement of the 

sympathetic nerve which innervates the heart, the signal is contaminated with occurrences of the 

QRS interval of the ECG signal. In order to avoid any potential misclassification due to the QRS 

interference, the first step is to identify these intervals using the Pan-Tompkins algorithm[177] 
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(Figure 15C). Once the QRS interference is determined, the section of signal is replaced with the 

median value to generate a “cleaned” skNA signal (Figure 15D).   

 

 
Figure 15: A) Raw skNA signal captured from performing a bandpass filter on the raw ECG signal 

acquired. B) The skNA after a moving average filter has been applied to remove artefacts. C) 
Identification of the interference caused by the QRS interval- indicated by the grey dashed lines D) 

Cleaned skNA signal which is used for processing. iskNA and askNA calculations. 

  Feature Extraction  

To quantify the high-frequency discharges that are associated with nerve activity, the 

integrated nerve activity is calculated by integrating the amplitude of nerve activity over time.  

The skNA recording was also rectified and integrated (iskNA) over a 100-ms window using a 

leaky integrator and the results were displayed over time to simulate the display methods of 

microneurography (Figure 16). Additionally, we divide the absolute sum of the voltage values of 

the cleaned skNA signal over every window to generate the average skNA (askNA).  
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Figure 16: skNA signals are rectified and integrated over a 100ms window in order to generate the 
integrated skNA (iskNA) which is commonly used in microneurography.  

A prominent characteristic of nervous system activity is the prevalence of single spike 

activity and burst activity[180]. Often in microneurography, burst analysis is performed 

manually due to the shorter duration. In order to automate our detection of bursts in skNA- we 

devised an algorithm which uses a threshold value in order to gauge if bursts were occurring. In 

order to compute this threshold, a baseline value was first identified. This baseline was the mean 

value (µb) of the iskNA when the animal was at rest (pink dotted line in Figure 17). The standard 

deviation of the iskNA values (sb) at rest was also calculated and the threshold was determined 

to the mean plus three times the standard deviation of the baseline (µb+3sb).  Values above the 

threshold during the processing is considered a “burst” (red dots in Figure 17). We calculate the 

burst frequency (bursts/window) the duration of these bursts, burst amplitude (µV) and total 

burst area.   

 

In addition, in microneurography – spectral domain analyses also allow an understanding 

of the sympathetic nervous activity. Sympathetic neural circuits are capable of generating 

periodic activity patterns that range from 0.04 to 10 Hz[181]. Spectral analyses of the cleaned 

skNA signal were performed using a Fast Fourier transform. The total power (TP), peak power 

of low-frequency (LF; 0.04–2.5 Hz), high-frequency (HF; 2.5–5 Hz) and very high-frequency 
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(VHF; 5-10Hz) components were extracted from the FFT PSD. The peak frequencies in LF, HF 

and VHF components as well as the areas under these components were calculated.  

 

 

Figure 17: Bursts identified. The pink dotted line represents the mean value of the baseline iskNA(µb) 
collected from when the animal is at rest. The red dots shown represent the burst activity which are iskNA 

amplitudes higher than µb+3sb. The grey dotted lines represent the onset of stimulus.  

3.2.3 Skin Temperature  

Skin temperature data was collected using an Arduino and due to the differences in 

sampling rate between the sensors, a timestamp-based approach was used in order to accurately 

compare the data from the temperature sensor to the changes resulting from the skNA and ECG 

features. A moving average was used to remove any aberrant data points from the sensor data. 

The data was windowed and changes in temperature during each window, as well as mean and 

median temperature during the windows were extracted.  

3.2.4 Blood Pressure  

Blood pressure was used as the gold standard in our study to identify the onset of AD due 

to the stimulus. In order to investigate this- the blood pressure was broken down into systolic 

(SBP), diastolic (DBP) and mean arterial pressure (MAP). The change in SBP, DBP and MAP 

during the cycles when stimulus was present as the mean values of SBP, DBP and MAP were 

extracted from the data.  
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Table 4: All features Extracted from each window of sensor data 

Signal Features 

ECG 

Temporal:  

1. R-R Intervals (Heart rate)  

2. QRS interval 

3. MedianNN 

4. nn5 

5. pnn5  

6. stdNN  

7. covNN  

8. Root mean square of successive 

differences (RMSSD) 

Spectral: 

1. Peak LF & Power 

2. Peak HF & Power 

3. Peak VLF & Power 

4. Area under low 

frequency bands (ALF) 

5. Area under high 

frequency bands (AHF) 

6. ALF/AHF ratio 

skNA 

Temporal:  

1. Average skNA 

2. Average iskNA 

3. Burst duration  

4. Frequency of bursts  

5. Area under burst  

 

Spectral: 

1. Peak LF & Power 

2. Peak HF & Power 

3. Peak VHF & Power 

4. Area under low 

frequency bands (ALF) 

5. Area under high 

frequency bands (AHF) 

6. ALF/AHF ratio 

Skin Temperature 

1. ∆temperature 

2. Mean temperature 

3. Median temperature 

Blood Pressure 

1. ∆SBP  

2. ∆DBP  

3. ∆MAP 

4. Mean SBP  

5. Mean DBP  

6. Mean MAP   
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3.3 Dataset Preparation  

Each feature set extracted was associated with a window, animal and trial. To minimize 

inter-subject variability across the different rats, the physiological features extracted were 

normalized using a min-max scaling method for data collected from the same trial. The scaling 

of data enables comparison in the patterns of change observed in the physiological data collected 

by sensors for AD [104]. Additionally, several of the machine learning techniques described in 

the next section require input scaling. Missing values, though rare were also removed from the 

dataset.  

3.3.1 Outlier Removal  

Some machine learning models are quite sensitive to outliers and removing these outliers 

plays a crucial role in the development of the models, as well as the understanding of the 

physiological changes. We used the Z-score approach [182] wherein the mean (𝑌#) and standard 

deviation (s) of each feature was calculated. The Z-score was determined through equation 2 

below and outliers were defined as those with a score of greater than 3.  

𝑍! =	
"!	$	"%
&

  (2) 

Additional care was taken that the outlier removal did not drastically reduce the size of 

the dataset. This was done to ensure that there was sufficient data to train, test and validate the 

machine learning models.  

3.3.2 Dataset Augmentation  

Supervised machine learning models often perform best when large amounts of labelled 

data are available [183], [184].  . Using simpler classifiers or ensemble methods, which will be 

discussed in later sections, can help improve performance of the model. An alternative is to 

perform data augmentation which increases the number of data points available for the 

development of models. This is often done through resampling the available dataset.  

 Changing Window Lengths 
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We used different window lengths to extract the various features. Datasets were created 

with window lengths of 5, 10, 15, 30 and 60 seconds. This was done in order to ensure sufficient 

data points were available. The window length of 60 seconds led to the smallest dataset which 

comprised 300 data points for AD detection whilst the dataset with a window length of 5 seconds 

comprised 2200 data points. The selection of window size also plays a role in the interpretation 

of the features extracted from the ECG and skNA sensors. A window size that is too small could 

lead to a loss of discriminative information from the data [185].  

 Balanced and Imbalanced datasets  

Performance of the machine learning models is impacted when there is a skew in the 

dataset towards one of the classes, i.e., there is a higher occurrence of one class rather than the 

other. These datasets are “imbalanced” and can lead to misleading performance metrics with 

high performance. Deeper analysis of these models trained on imbalanced dataset shows that 

model is more likely to predict the class with higher occurrence.  

 

In order to prevent the development of imbalanced dataset, we under sampled from the 

data representative of the non-AD data. Due to the longer (2x) intervals of the non-AD data, 

features were extracted at twice the selected window size from non-AD intervals. Features which 

were impacted by the window length, such as number of NN intervals greater than 5ms (nn5) 

and number of bursts were adjusted to account for the differences in window length.  

3.4 Machine learning techniques employed  

Once a balanced dataset was developed, we used machine learning techniques in order to 

determine the trends and patterns in the data. Eleven different classifiers were used for the initial 

exploration of performance of the machine learning models on the dataset we had developed. We 

split the data into three stratified sets- the training set (70%), the test set (15%) and the validation 

set (15%).  10-fold cross-validation (CV) is used to create variations of the training, test and 

validation sets in order to avoid trends in the features getting misinterpreted and causing 

overfitting of the machine learning models.  
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3.4.1 Metrics of Evaluation  

We used various metrics to gauge the best performing algorithm for the identification of 

the target stimuli which will be discussed in later sections. These include accuracy, sensitivity, 

specificity, F-1 score and AUC-ROC which were discussed in Section 2.2.1. We developed 

binary and multi-class models, which will be discussed in greater detail in later chapters. For all 

implementations of the machine learning models, we used the scikit-learn library [186].   

3.4.2 Logistic Regression  

Logistic  regression is one of the more popular models for analysis of healthcare data 

[187]. The model fits a logistic (sigmoid) function to the data in order to calculate the class 

membership based on a posterior distribution. The logistic regression model uses maximum 

likelihood estimation in order to determine the best-fit sigmoid function which predicts the 

probability that the data point belongs to the different classes.  In our model, we use ℓ! 

regularization to reduce overfitting and minimize the cost function shown in equation 3, wherein 

w is the weight, yi is the labelled class in the training set, X is the input dataset and c is a 

constant.   

 

𝑚𝑖𝑛
",$

%
!
𝑤&𝑤 + 𝐶, log	(exp	(−𝑦'(𝑋'&𝑤 + 𝑐)) + 1)(

')%      (3) 

 

We used the robust large scale bound constrained optimization (LBFGS) optimizer to 

perform the cost optimization algorithm to enable prediction of the class of the data in the test 

and validation set. The advantage of the logistic regression model is that it is easy to implement 

and makes no assumptions about the distributions. However, if there are complex/non-linear 

relationships between the variables and the output target (class label), logistic regression does not 

perform very well[188].  

3.4.3 K-Nearest Neighbors (KNN)  

Classification based on the k-nearest neighbors algorithm uses a pre-defined number of 

samples closest in distance to determine the label of the data. It is a distance-based approach 

wherein the adjustable parameter of the model is k which is the number of nearest neighbors to 
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include in the estimate of class determination. Varying the k-parameter allows changes in the 

flexibility. In our model, we used the Euclidean distance as the metric to determine the closest 

samples and a majority vote of all the neighbors to allow prediction of the label. The model we 

developed used a k of 5 to determine the closest class label with uniform weight distribution of 

all points in the neighborhood. The advantages of a kNN model are the ease of interpretation and 

explanation of the model. However, the model is very dependent on the data that is being 

presented to it and is prone to overfit.  

3.4.4 Support Vector Machine (SVM)  

SVM has already been extensively discussed in Section 2.2.1. In this model, we 

developed a linear and an RBF SVM for investigation of the functionality of the machine 

learning models to detect the onset of AD. The advantages of SVMs are that they are effective in 

high dimensional spaces and all quite versatile. However, they do not provide direct estimates of 

probability estimates and need to be produced through extensive-cross validation.  

3.4.5 Decision Trees  

A decision tree is a non-parametric method for classification which creates a model that 

can predict the value of a target variable by learning decision rules from the features. The 

decision tree begins with a root node which then uses rule-based decisions to create new internal 

nodes. Each leaf node then continues to create further nodes and the label of the final node 

known as a leaf node is the predicted class of the instance.  The decision trees are inherently able 

to identify feature which can determines which feature allows the easiest separation between the 

classes. The decision tree splits the dataset which maximizes the separation of the data though 

decrease the level of entropy.[189]  

 

In our model, we developed a decision tree using the Gini impurity coefficient to measure 

the quality of the split – allowing a determination of the features which will form our root and 

leaf nodes. We set the maximum depth of the tree to 10 to ensure a faster implementation of the 

decision tree. Additionally, as will be discussed later after feature selection, only 5 features were 

used. Decision trees are easy to understand and interpret requiring lesser data preparation. 
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Additionally, it performs well even if assumptions about normality are violated and the model 

can be validated using statistical tests. They can create over-complex trees which may lead to 

overfitting, often requiring pruning of the features which leads to better performance. 

3.4.6 Naïve Bayes 

The Naïve bayes algorithm applies Bayes’ theorem using prior probability to determine 

the class of the data[189]. As shown in Equation 4, a Maximum A Posteriori (MAP) estimation 

is used to estimate the probability of the classified label, 𝑃(𝑦) and the probability of training data 

xi given the label (posterior), 𝑃(𝑥' ∣ 𝑦). The algorithm does not affect the order of the individual 

rules. Naïve Bayes has high bias and low variance. 

 

𝑃(𝑦 ∣ 𝑥%, … , 𝑥() ∝ 𝑃(𝑦)@ 𝑃(𝑥' ∣ 𝑦)
(
')%

⇓
𝑦
^
= arg	𝑚𝑎𝑥

+
𝑃(𝑦)@ 𝑃(𝑥' ∣ 𝑦)

(
')%

 (4) 

 

  We use a Gaussian Naïve Bayes classifier in the development of our model which 

makes assumptions that the likelihood of the features is Gaussian in nature thereby affecting the 

calculation of the posterior as shown in Equation 5 wherein the mean (𝜇+) and standard deviation 

(𝜎+) are estimated through maximum likelihood.  

𝑃( 𝑥' ∣∣ 𝑦 ) =
%

,!-.!"
exp H− (0#12!)"

!.!"
I (5) 

 

Naive Bayes classifiers can be extremely fast compared to more sophisticated methods. 

The decoupling of the class conditional feature distributions means that each distribution can be 

independently estimated as a one-dimensional distribution. However, the algorithm can be 

affected significantly by the dataset itself, and if the dataset is not completely representative of 

the phenomena being studied, it can lead to misclassifications.  
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3.4.7 Gaussian Process  

A Gaussian process is a Bayesian kernel classifier wherein the probability of belonging to 

a class label 𝑦'  for an input sample 𝑋'  is monotonically related to the value of some latent 

function 𝑓'. There is a prior which is characterized by zero mean and a covariance matrix which 

is placed on the latent function.  The algorithm allows interpolation of the observation, is 

probabilistic and versatile. Gaussian process classifier is often used because of its ability to 

choose hyperparameters and covariances directly from the training data However, they tend to 

lose efficiency in highly dimensional spaces. Additionally, they always assume that the 

parameters are normally distributed.  

3.4.8 Neural Network 

We used a feedforward neural network which learns a non-linear function approximator. 

As shown in Figure 18, the leftmost layer is the input layer comprising all the input features, 

with the rightmost layer being the output layer (predictor). Each neuron in the hidden layer 

transforms the values from the previous layer with weights W: 𝑤%𝑥% +𝑤!𝑥!+. . . +𝑤4𝑥4 and a 

non-linear activation function. The weights are adjusted through the backpropagation algorithm 

through continuous calculation of the gradient.  

 

The model we developed was a 5-layer MLP with a Rectified linear unit (ReLU) 

activation function. The neural network uses the adaptive moment estimation (ADAM) solver to 

optimize and update the weights for the different layers. ADAM computes the adaptive learning 

rates for each parameter and uses the momentum of learning of the neural network[190]. 

Additionally, an ℓ!  regularization is performed to ensure that the model is not overfit.  

Advantages of the neural network are that it works well with missing data and in order to train 

the neural network, the input data needs to be scaled appropriately. However, it is quite resource 

intensive and can often appear as a “black box”.  
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Figure 18: One hidden layer neural network [186] 

3.4.9 Quadratic Discriminant Analysis 

The quadratic discriminant analysis (QDA) algorithm makes an assumption that the data 

is Gaussian in nature and estimates the mean and variance for each feature for each class. 

Additionally, the QDA assumes that each class its own covariance matrix which is used to make 

predictions of the unknown input data.  QDA uses Bayes theorem to estimate the probability of 

the new set of inputs it encounters and the class with the highest probability is the output class of 

the input data. The QDA algorithm is quick to implement but relies heavily on the training data 

with a tendency to overfit.  

3.4.10 Ensemble Methods  

Ensemble methods combine the predictions from multiple models and are able to create a 

method which can decrease variance (bagging), bias (boosting) or improve predictions by 

stacking. These improve the overall performance and robustness.   

 Random Forest 

The random forest is an ensemble method built from decision trees and is often more 

flexible. Random forests build multiple decision trees through a “bootstrapped” dataset which 

comprises of a randomized dataset of the same size and randomly select features. Each iteration 

leads to a new decision tree being created from a new bootstrapped dataset and a randomly 
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selected set of features. When splitting each node during the construction of the tree- a best split 

combination is determined from all the input features.  

 

For our random forest classifier, we built ten decision trees with a maximum depth of 5 

nodes. In the model, we consider all the features instead of randomizing the feature subsets. The 

probabilistic decision of the predicted class label made by each tree is averaged and then a final 

class label is output. 

 

 AdaBoost  

The Adaboost algorithm fits a sequence of weak learners on modified versions of data. 

The predictions from each of the weak learners is combined through a weighted majority vote to 

determine the final prediction. The data modifications are performed through applying different 

weights to each training sample. For each iteration, the weights are modified, and the learning 

algorithm is applied on the data. This is repeated until the weak learners perform decently well.  

 

In our model, we use weaker decision trees and each tree only has a root node with two 

leaves (known as a ‘stump’). The performance of each stump affects the next with some stumps 

having more say in the prediction ability than others. Lastly, each subsequent stump learns from 

the errors of the previous stump and improves itself.   

Overall, ensemble methods improve the performance of the algorithms off which they are 

based.  However, they can be less interpretable when explaining them and may be more resource 

intensive.  

3.5 Feature Selection Techniques employed  

Feature selection is a technique where we choose features in the data that contribute most 

to the target variable – in our case, prediction of the onset of AD. These methods are intended to 

reduce the number of input variables to those that are believed to be most useful to a model in 

order to predict the target variable[117]. The best subset contains the least number of dimensions 

which contribute the most to the overall performance of a chosen machine learning model. The 

remaining unimportant features are discarded.  
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Feature selection reduces overfitting allowing an improved accuracy as well as a faster 

training of the machine learning model, and improves the interpretability of the outcomes for the 

model[182]. The feature selection process results in a subset of features which produce the 

optimal model. All implementations of the feature selection techniques were through the scikit-

learn library [186].   

3.5.1 Feature Distribution and Correlation   

Features extracted from the sensors can be highly correlated due to biological basis- such 

as the standard deviation (stdNN) and covariance (covNN) of NN intervals and RMSSD.  

However, when training a machine learning model, it is important to avoid training with features 

which are highly correlated. This is particularly applicable in the training of linear or logistic 

regression models which are vulnerable to multicollinearity.  

 

In datasets with correlated features, the requirements of model sparsity and of retrieving 

of all predictive features are in direct competition [191]. This leads to a higher variance in the 

weights of a model which could cause extreme sensitivity to data, which is unwanted. 

Additionally, in some models such as random forests, the interaction between features can be 

masked if there are highly correlated features. Lastly, a simpler model performs better – by 

removing highly correlated features, it is possible to reduce the complexity of a model.  

 

In our feature selection process, we calculated the Pearson correlation between each of 

the features which were extracted and plotted a heatmap (Figure 19). Only one of the features 

with very high/low correlations ( |r| < 0.7) were kept in the dataset.  
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Figure 19: Heatmap of correlation of the thirty-six different features. Highly correlated features are 
removed and not considered in the development of the machine learning models.  

3.5.2 Recursive Feature Elimination  

Recursive Feature Elimination (RFE) is a wrapper feature selection method. Wrapper 

methods evaluate multiple models using procedures that add and/or remove predictors to find the 

optimal combination that maximizes model performance.  The Recursive Feature Elimination 

(RFE) model works by recursively removing features and building a model with features that 

remain. It is a backward feature deletion method which ranks the features in the order in which 
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the feature is removed wherein the top ranked features are removed in the last iteration and are 

the most important [158]. This has been discussed in greater detail in Section 2.2.2b.   

 

RFE requires that an initial model be used to perform the iterative process. We chose a 

logistic regression model with an LBFGS optimizer to be fit to determine the best subset of 

features.  

3.5.3 Tree-based feature selection  

Tree-based estimators use the intrinsic abilities of the decision trees and the ensemble 

methods discussed in Section 3.4.5 and 3.4.10. These methods compute impurity-based feature 

importance which can be used to discard irrelevant features. The impurity score can help rank the 

features and the feature with the lowest impurity is often ranked the highest. This enables an 

understanding of which feature enables the best separation between the classes. We used the 

ExtraTrees ensemble classifier to rank and determine the best performing subset of features.  

 

The final dataset used to refine the machine learning models comprised a subset of the 

dataset developed in Section 3.3. The final features selected were those that were common 

through all the different feature selection methods and will be presented in the next few chapters 

of this thesis.   
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4 ANIMAL MODEL OF SPINAL CORD INJURY 

Rodent models have been used extensively in the investigation of the pharmacology and 

pathophysiology in neurogenerative disorders [192]. Rat models in particular, are widely used in 

SCI models due to the lower cost of care, a well understood anatomy  and well-established 

analysis techniques [145]. Measurements of the ANS play an important role in the evaluating the 

impact of the interventions on stress[193] as well as parameters such as the cardiovascular health 

of the animal or overall autonomic function[194], [195]. These physiological measurements of 

ANS function include measurements of ECG and derived features such as heart rate [196] or 

blood pressure [197], [198].   

 

Different approaches to measurement of the rat physiology have been adopted by 

researchers over the years. They can be broadly divided into invasive (in-dwelling catheters, 

sensors, etc.) and non-invasive measurements (tail-cuff/surface electrodes). Invasive techniques 

often include the use of radiotelemetry- which is considered the state of the art in the monitoring 

of physiological functions in awake and freely moving rats[199]. However, radio telemetry often 

requires highly invasive surgery to be performed on the animal in order to implant the 

transmitters, which may lead to a higher chance of infections[197]. Moreover, the animals need 

to be above a minimum bod weight to be implanted with the sensors, which prevents the study of 

younger animals[200]. Additionally, one transmitter is dedicated to a single animal for the 

duration of the study. With each transmitter being quite expensive , a large amount of capital is 

often required for the purchase of suitable equipment[201].  

 

Noninvasive approaches such as using tail-cuff sensors or surface-based electrodes can 

be accurate and consistent. Moreover, noninvasive techniques such as surface electrodes or tail-

cuff manometry for BP measurement are easier when monitoring physiological parameters in 

conscious animals [199]. The lack of reliance on a battery allows their use for an indefinite 

period of time throughout the study. Additionally, these non-invasive systems can be used  

between different animals in a study[197]. Lastly, they are significantly less expensive than radio 

telemetry devices.  However, non-invasive techniques often require a restraint mechanism which 

may lead to alterations in data due to restraint-induced stress artefacts [201], [202]. These can be 
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overcome through an acclimation protocol which can wane the responses in the rat elicited by a 

novel stimulus[203].  

4.1 Justification of Rat Model  

The human model of the ADDS was developed with self-reported symptoms of AD. 

While developing the ADDS in the human model, it was established that there were difficulties 

with controlling the onset of AD. The cause of the AD was not controlled, and neither was the 

timing of the onset of AD which may have led to confounders in the data [152]. In prior studies, 

AD has been induced in human studies through urodynamic assessments, but it often poses a risk 

to the individual since AD can have long term effects[189]. Furthermore, it is currently very 

difficult to study the onset of AD in humans with acute SCI since there are other complications 

which require urgent care during the rehabilitation phase after the injury[204]. The rat models 

enable us to perform controlled studies and using large subject samples has previously been 

difficult to achieve in naturally occurring instances of dysautonomia in humans. The rat models 

would enable greater investigation of the mechanisms of the onset of AD, determining its 

relative severity, and possible methods for intervention.  

4.2 Acclimation of rats to sensors 

Acclimation plays an important role in reducing the variability of behavior of the rats as 

it may mimic heightened anxiety, which can interfere with the measurements of the ANS [203]. 

Sympathetic activity is most commonly triggered in stressful situations. In order to reduce 

chances of confounders such as stress due to exposure to new settings, the animals were 

acclimated for eight weeks prior to the collection of relevant data as well as the SCI surgery. 

Several acclimation protocols have been created for different restraint mechanisms for varying 

measurement purposes. A large number of restraints are often animal holders in the form of 

plastic tubes produced by different companies. Some companies recommend that the animals are 

placed in the holder for atleast 10 to 15 minutes before non-invasive measurements[197]. 

Additionally, training of the animals for three consecutive days for 15 minutes prior to the 

beginning of measurements are recommended [205].  Mongue-Din and his colleagues include 

use of a simple tunnel in which the animals are placed five minutes prior to beginning of the 
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ECG recordings [200]. However, these techniques have not shown comparisons of the impact of 

long-term restraint acclimation on the physiological measurements. King et al place their animals 

in a “mock scanner” comprising of a plastic tube and simulated fMRI noises to acclimate the 

animals to the setup for up to 90 minutes per session for a week [206]. Gamaro et al restrained 

the animals for an hour daily for five days a week for 40 days to allow adjustment to the restraint 

and used a tail-flick technique to assess the habituation of the animals[207]. Similarly, Reed et 

al. acclimated their animals for five days prior to the fMRI experiment in an animal holder[208]. 

However, these techniques have only explored the impact of acclimation to a restraint using 

single sensors. There has not been any literature which details the acclimation protocols adopted 

by the different researchers in order to reduce stress experienced by animals during non-invasive 

measurements of ANS activity from multiple sensors.  

4.2.1 Acclimation Protocol 

We developed an acclimation to allow the rats to get acclimated to a restraint and a 

multimodal sensor. These are crucial in order to reduce the impact of stress on experiments 

which study the activation of the ANS. We have assessed the impact of acclimation to repeated 

restraint on the physiological measurements and stress levels experienced by the animals.  

 

The rats are acclimated in plastic holders with air holes, as used for tail-cuff 

measurements (HLD-RL model, Kent Scientific, USA). A darkened nose cone is used to limit 

the animal’s view and provide a dark environment the rat is comfortable in. The nose cone is 

adjusted such that the rat does not move excessively, and its nose protrudes from the front of the 

nose cone in order to allow comfortable breathing. Additionally, the plastic restraint was placed 

inside a blackout box which allowed for greater darkness, which is known to reduce stress 

experienced by the rats (Figure 20). 
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Figure 20: Plexiglas container to restrain the rat. The red box allows a perception of darkness to enable 
the rat to feel more comfortable. The restraint is tightened sufficiently to allow the rat to breathe 

comfortably but also reduce movement.  

The acclimation protocol developed comprises three phases which are incremental in 

nature. This is done in order to maximize the comfort of the animal and reduce stress as much as 

possible. The three phases include familiarization with the researchers, acclimation to the 

restraint and acclimation to the sensors used in the study.  

 Phase One: Acclimation to Researchers and Environment 

After the rats arrive in the housing facility from the breeding facilities, they were allowed 

three days to adjust to their new environment. On day three the researchers introduced 

themselves to the rats, starting with just a hand in the cage to familiarize the rats to the scent. The 

rats were then introduced to the yummy foods which would later be used as a reward 

mechanism These yummy foods include peanut butter, apple sauce and Ensure®[209]. The 

researchers began to tickle the rats on day four and continued this throughout the acclimation 

process[210]. This enabled easy handling of the animals and ensured that there was limited stress 

during the interaction between the researchers and the rats.   

 Phase Two: Acclimation to Restraint  

On day eight the rats started the familiarization process with the restraint. First the Codaâ 

plastic holder was placed in the cage with yummy food at the end of the nose cone. The rats were 

allowed to explore the holder without being restrained in it. The holder was placed for a duration 

of 10 minutes on day eight so the rats would enter the holder without any coercion.  On days nine 

and ten the rat was taken out of the cage and placed in the holder with a restraint inside a 

blackout box (Figure 2). The rat was allowed to voluntarily enter the holder and a restraining 
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piece was placed at the end of the holder to prevent the rat from leaving the restraint. The nose 

cone was adjusted to the appropriate size for each rat [197].  The rat was kept in the restraint for 

five minutes on day nine. This duration of time was incremented by an additional five minutes a 

day on days 10 and 11. While the rat was in the restraint, the researchers provided positive 

reinforcement through yummy foods, and disrupted the animal as minimally as possible. This 

included ensuring no additional sounds in the environment and keeping the baseline sound levels 

under 50dB. We monitored the animal was any forceful thrashing of the or any additional 

scurrying.  

 Phase Three: Acclimation to Sensors 

After the establishment of comfort within the restraint, the rats were acclimated to the 

wearable sensors starting from day 11. First the blood pressure tail cuff was introduced. On days 

11 and 12 both the occlusion and VPR cuffs were placed on the rat’s tail without any inflation. 

On days 13 and 14 the rats were introduced to the inflation of the cuff. Days 15 through 18 the 

rat was introduced to the entire system of sensors. To attach the electrodes the rats were placed 

under anesthesia and the hair where the electrodes were placed was removed through shaving 

and using hair removing cream (Nair™). The shaved area was cleaned with 70% alcohol, and the 

electrodes were placed with additional conductive gel. The rat was then placed in the restraint 

and the blood pressure cuff was added to the rat’s tail. All sensors were hooked up to the 

instrumentation and data was collected. The rat was placed in the restraint for incremental 

periods of time from days 15-18. After day 18, the rats were placed in the restraint for the entire 

duration of future studies (~30 minutes). This was continued until the rats were ready for surgery. 

4.2.2 Evaluating impact of acclimation  

The signal processing techniques discussed in Section 3.2 were used to extract features 

from each trial during Phase Three of the acclimation protocol (day 15 onward). We evaluated 

the changes in heart rate and blood pressure which are known measures of stress in the rodent, as 

well as measures of sympathetic activity (average values of skNA and Number of bursts). 

Significant changes over the course of acclimation were determined through an ANOVA test on 

the normalized feature values during each acclimation day. Heart rate and number of bursts were 

the only features which had statistical significance (p<0.05).   The changes are shown in Figure 
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21 below. The overall decrease shown in heart rate as well as the indication of reduction in 

sympathetic activity suggests that there is a reduction in the level of stress experienced by the rat 

as it acclimates to the sensor setup over the course of the final phase of the protocol.   

  

Figure 21: Decreases in normalized heart rate and the normalized number of bursts of iskNA over the 
course of the acclimation days suggests that there is lesser stress associated with the wearing of sensors. 
While this protocol does not eliminate all stress, it reduces the chances of confounders affecting the data.  

4.3 Validating the use of skNA to detect sympathetic activity  

An acoustic startle was used to elicit sympathetic activity in the rats [211]. A cycle of 

acoustic startle lasted 60 seconds. The cycle consists of three acoustic periods lasting 5 seconds 

each. Each period comprises three 1-second pulses of white noise.  The highest values of the 

acoustic startle ranged from 108 to 112 dB with background noise below 50dB[212].   Three 

cycles were repeated on each animal on two different days. The acoustic startle was played 

through a loudspeaker attached to a computer and was triggered through a button press.  

 

Five male Sprague Dawley rats aged 4 months (320-450 grams) were used in this 

experiment. All rats in the protocol had detectable changes a change in cardiovascular 

parameters and skNA in response to acoustic startle. A significant increase (p <0.05) in both 

systolic and diastolic blood pressure was observed during the acoustic startle. On average, the 

rats experienced and an increase in systolic blood pressure (SBP) of 21 mmHg with an increase 

in diastolic blood pressure (DBP) by 22 mmHg. During acoustic startle, all the animals showed a 

significant increase (p<0.05) in both heart rate and skNA. On average, the rats showed 

significant tachycardia of 30.2 ± 8.8 bpm during acoustic startle. Figure 22 is a representation of 

the increase in skNA, represented by iskNA and the heart rate of one animal. The resting skNA 

can be accounted to basal nerve activity in the stellate ganglion.  A 191.5% increase in iskNA 



 

63 

magnitudes was also observed during the acoustic startle. A positive correlation (r= 0.72) was 

found between skNA and heart rate in all animals due to the acoustic startle. The resting skNA 

can be attributed to basal nerve activity in the stellate ganglion.  

 

 

Figure 22: Representative graphs of showing A) increase in heart rate B) acceleration in raw skNA C) 
increase in iskNA due to acoustic startle (showed by dashed lines and different colors) 

The acoustic startle response (ASR) is a common, automatic reaction to a loud stimulus, 

and it occurs in vertebrates ranging from zebrafish to humans[213]. While ASR  is often 

measured as a motor response, it can be characterized through its autonomic components 

including cardiovascular responses[214], [215]. Studies have shown that acoustic startle often 

leads to tachycardia and an increase in blood pressure. This is in agreement with the observed 

results allowing us to validate the use of skNA as a viable option to detect sympathetic activity in 

rats. Prior research has shown the ability to identify skNA changes in dogs and humans. Through 

this work, we conclude that sympathetic activation can be detected through skNA in a rat model. 

skNA has been validated to be strongly correlated with the stellate ganglion nerve activity[166]. 

We observed a strong, positive correlation between heart rate and skNA and also observed a 

linear trend between the increased blood pressure, skNA and heart rate.  

4.4 High Thoracic Spinal Cord Injury Surgery  

Animal models play a key role in developing therapies and understanding cellular 

pathologies of SCI. A majority of experimental SCI research employ animal models with lower 

level SCIs including lower thoracic, and caudal[216](Figure 23). However, a majority of SCIs 

occur at higher levels and various complications, including AD are specific to higher level 

injuries[50], [217].  There is a relatively small group of researchers who focus on higher level 



 

64 

injuries due to the complications and comparatively higher mortality rate. In order to study AD 

effectively, we needed to develop an animal model with an injury level above T6. We developed 

a repeatable T3 level compression injury model which incorporates techniques presented by 

Ramsey et al[209], Blight[218] and Shi, Borgens [219], [220] .  

4.4.1 Surgery  

All SCIs were performed when the animals are approximately 4-5 months old and 

between 400-600 grams. The animals were firstly anesthetized using 4% isoflurane. They were 

then shaved closely and cleaned with Betadine. Once a plane of anesthesia was confirmed using 

a toe pinch reaction, the rats were moved under a dissecting microscope and draped under aseptic 

conditions. A plane of anesthesia was maintained using 2.5% isoflurane. The spinal cord was 

exposed through a midline incision (T1-T5) and a one-segment laminectomy at the T-3 level 

using a pair of rongeurs.  A dorsal hemisection or a right lateral hemisection can be produced 

using a micro-dissecting knife after the dura is removed with a pair of Dumont microsurgery 

forceps and Vannas spring scissors.  A specially designed pair of forceps was used for the 

compression injury.  The forceps are at a thickness of 1.2 mm and the length of compression is 

15 seconds.   The forceps cause ischemia and mimics common clinical injuries. The injury was 

verified through visual observation of the damage to the spinal cord determined by the ischemia 

and clotting patterns seen in the spinal cord. The laminectomy and skin incision were closed with 

4-0 prolene suture and the skin incision will be closed with Michel wound clips 7.5 mm.  
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Figure 23: A breakdown of animal models for SCI from a literature search conducted by authors of [216]. 
High thoracic was defined as injuries between T1-T6 and low-thoracic (T7 and caudal).  Studies 

employing models of SCI induced at levels below T7 outnumber studies of SCI at more rostral levels 

To validate the SCI, motor and sensory control in the hindlimbs is evaluated.  The 

animals were observed on an open tabletop to gauge their ability to support their weight and use 

their hindlimbs for movement. An uninjured animal would walk briskly with the hindlimbs 

beneath the body. Sensory control in the hindlimbs was evaluated through a toe pinch wherein 

the toes of an extended hindlimb was pinched using forceps. An uninjured animal would 

withdraw the limb in a flexion reflex.  

4.4.2 Care of Animals post-SCI 

The rats received multimodal analgesia- buprenorphine (0.1mg/kg SC) two times a day 

and Meloxicam (1- 2mg/kg SC) one time a day for 5 days post-surgery with regular bladder 

expression.  Urinary Tract Infections (UTI) have been noted as a complication post-op in rats 

with higher level spinal cord injuries. To reduce the chances of UTIs, the bladder of the animal 

was manually expressed 3-4 times a day for the first week post-op. We observed for clinical 

signs of UTI including cloudy, discolored or foul-smelling urine in addition to difficulty in 

manual expression. We would also increase our monitoring of animals which are suspected of 

having a UTI and increase manual bladder expression. Additionally, we provided more absorbent 

bedding for the rat post-SCI in order to reduce chances of UTI.  
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Weight loss is also a consequence of an SCI. We observed the animals’ weight daily 

post-op and while early weight loss is anticipated, we will begin oral gavage using diet gel or 

Ensure® nutrition powder at higher than 10% weight loss. A weight loss of greater than 20% is a 

humane endpoint and the animals will be euthanized immediately. In order to prevent excessive 

weight loss, multi-modal analgesia was provided for the first 3 post-operative days, and if there 

is no recovery in weight 5 days post-op, novel yummy food was introduced into the diet of the 

animal.  Dysstasia is sometimes seen in animals with a compression injury and care was taken to 

replace bedding every two days post-op to prevent urine scalding. 

 

The animals were euthanized in the event of intractable autophagic lesions, which may be 

expected in a small percentage of animals.  Minor superficial lesions were treated with cleaning, 

bandaging of the affected hind limb, in addition to appropriate antibiotic treatment. We also 

followed a composite score [209] to determine the post-op health of the animal. If they hit a 

score of 20, the animals were euthanized- determined by 20% loss in weight post SCI and other 

factors.  A detailed care manual is provided in Appendix A.   

4.5 Validating Extracted Features  

The impact of SCI on physiological parameters have been extensively explored in 

literature[204].  It is well established that sensorimotor and autonomic dysfunctions often occur 

after spinal cord injury.  Due to reduced sympathetic activity, patients with SCI may experience 

hypotension as well as cardiac dysrhythmias[221], [222].  This is particularly notable in the 

measurement of heart rate and blood pressure. However, few researchers have combined a 

multitude of sensors to develop a system which can identify these changes before and after a 

spinal cord injury.   

 

We compared the values of features extracted (Section 3.2)  from sensor data collected on 

last day of acclimation prior to spinal cord injury surgery to the baseline values collected five 

days post-surgery. This reduced any potentially confounding effects of the analgesic drugs 

provided to the animals post-surgery. A t-test was used to compare significant changes in the 

features between the data pre-SCI and post-SCI. The decrease in heart rate and systolic blood 

pressure (SBP) were significantly different (p<0.05), but the resulting change in mean arterial 
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blood pressure (MAP) was not significant. Additionally, there are significant decreases in the 

average value of the integrated skin nerve activity (iskNA) post-SCI which represents a decrease 

in sympathetic nerve activity post SCI. Similarly, there is also a significant decrease in the 

percentage of NN intervals which are greater than 5ms, suggesting a reduction in vagal activity 

post-SCI.  

 

Overall, we are able to observe an expected decrease in autonomic function post-SCI 

(Figure 24) which is in agreement with the extensive literature of expected changes in 

cardiovascular and neural function after SCI, allowing validation of the functionality and 

calculation of the relevant features.  

 

 

Figure 24: Expected decrease in autonomic function post-SCI represented through mean arterial pressure 
(MAP), systolic blood pressure (SBP), heart rate, sympathetic rate, sympathetic function (AUC iskNA) 

and the parasympathetic function (pnn5). * indicates significant difference (p<0.05).  
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5 CHARACTERIZING AUTONOMIC DYSREFLEXIA 

Research Question: Do readings by novel, non-invasive physiological sensors change in 

accordance with what is expected during the onset of AD? Can we characterize AD through a 

combination of these sensors? 

 

For this study, sensor data was collected from nineteen male Sprague-Dawley rats 

between the ages of 4-5 months (400-600g). The animals were received when they were 1 month 

old (~200 g) and acclimated to reduce confounding effects of stress on the characterization of 

AD. All animals were given dorsal laminectomies followed by an SCI due to compression at the 

T3 level [223] as discussed in Section 4.4. 

5.1 Hypothesis 

We hypothesize that the different sensors will display changes in electrophysiological 

signatures when AD is induced. We hypothesized these differences will be due to the individual 

neurophysiological and anatomical characteristics of the sympathetic outflow circuit. While the 

current clinical gold standard (change in blood pressure) is an indirect measure of sympathetic 

activation, skNA is a direct measure of the sympathetic nervous activity. We anticipate that a 

combination of the sensors which detect activity of a paravertebral ganglion and other non-

invasive sensors will detect AD rapidly and enable characterization of AD through alternate 

measures.   

5.2 Eliciting AD through colorectal distension 

Bladder and bowel related issues are often the most commonly reported triggers of AD in 

individuals with SCI. We used colorectal distension (CRD) in order to control the onset of AD in 

the rats post-SCI [223], [224]. Seven days post-injury, the rats were anesthetized with 4% 

isoflurane and outfitted with the sensors discussed in Section 3.1. A Foley catheter with a 

balloon (Figure 25) was inserted 2cm into the rectum of the animal. The animals were then 

placed in the plexiglass tube discussed in Section 4.2.1 and allowed to recover and acclimate for 

10 minutes. CRD was induced starting at 10 minutes by infusing 2ml of air into the catheter 
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causing distension of the colon and was maintained for 1 minute. CRD was repeated 3 times per 

trial with a minimum interval of 10 minutes between them. The CRD was performed on days 7, 

9, 11, and 14 post-surgery in order to mimic the most common onset of clinical AD in humans.   

 

Figure 25: A Foley catheter with a balloon was used for colorectal distension to induce AD.  

5.3 Data Analysis 

In order to ensure that the CRD trials led to the onset of AD, the corresponding change in 

systolic blood pressure was monitored. Only CRD trials which led to an increase of atleast 15 

mmHg in SBP were considered AD events [225]. From the 130 instances of CRD that were 

recorded from the rats, 91 led to onset of AD (70.6%). This is in agreement with literature which 

supports that between 48-82% of individuals with injuries above the T6 level with SCI 

experience AD[55], [226].  

 

Features were extracted from the cleaned signals collected from the selected trials 

through non-overlapping windows of 5-60 seconds as described in Section 3.2. The thirty-six 

features extracted from the time-series sensor data were normalized, and feature selection 

techniques described in Section 3.5 were used to narrow down features. A t-test was used to 

determine any significant changes in the features as a result of AD. These selected features 

characterize the minutia of physiological responses of sympathetic and parasympathetic activity, 

due to the onset of AD.  
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5.4 Signature Recognition through Feature Extraction  

As described in Section 3.5, feature selection enabled five features to be selected from the 

thirty-six features extracted. These five features were determined to be highly significant and 

relevant in the characterization of AD. The features are representative of the sympathetic activity 

through changes noted in the number of bursts of sympathetic nerve activity and average value 

of the integrated skNA (iskNA). Vagal activity was represented through changes in the median 

value of the NN intervals (medianNN), the root mean square of successive differences (RMSSD), 

the percentage of number of NN intervals greater than 5 ms (pnn5).  

5.4.1 Characteristics of AD through signature changes 

AD is characterized by a hypertensive event triggered by hyperactivity of the sympathetic 

nervous system. This activity is centrally counteracted by baroreceptor mediated vagal activity 

leading to a decrease in heart rate and vasodilation above the level of the injury [227]. We were 

able to capture this co-activation of the sympathetic and parasympathetic branches of the ANS 

through statistically significant increases in features (Figure 26). 

 

We also observed a statistically significant decrease in the heart rate over the course of 

the AD event (Figure 27) which has been well-established in the literature. There were also 

statistically significant increases in SBP by an average of 19.8 mmHg, in DBP by 13.9 mmHg 

and in MAP by 15.2 mmHg during the AD events.  
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Figure 26: Significant increases observed in the five features due the onset of AD. MedianNN, Number of 
Bursts and Average iskNA characterize the increase in sympathetic activity whilst the RMSSD and pNN5 

represent the increase in parasympathetic activity. The y-axis is the normalized units of each feature. * 

significant difference (p < 0.01), ** very significant difference (p < 0.001) 

 

 

Figure 27: Significant decrease in the heart rate over the course of the AD event (indicated through the 
dashed lines) as a result of the vagally mediated response to the increase in the sympathetic activity. After 

the stimulus is removed, the heart rate returns to pre-AD levels.  
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  In addition to these well-established metrics of AD detection, we were able to observe 

the cascade of sympathetic and parasympathetic activity on a higher time-scale resolution of 15 

seconds (Figure 28) through our sensors. We observed an initial increase in sympathetic activity 

elicited by the onset of AD (dashed lines in Figure 28) characterized by the increase in values of 

the average iskNA and the number of bursts detected through the skNA sensors. This was 

followed by a subsequent increase in vagal activity characterized through the increase in the 

RMSSD and pnn5 features towards the end of the AD episode.   

 

 

Figure 28: Increase in sympathetic activity (average iskNA and Number of bursts) detected prior to the 
increase in parasympathetic activity (RMSSD and pnn5). The y-axis is the normalized units of each 

feature while the x-axis represents windows of 15 seconds each.  

5.4.2 Discriminating AD from non-AD using Machine learning  

Eleven classification algorithms described in Section 0 were trained using the dataset 

developed using the AD and non-AD data. AD events were labelled as 1 while non-AD events 

will be labeled as 0.  We performed a 10-fold cross validation algorithm, and evaluation of the 

various metrics generated by the different classifiers (Table 5). We determined that the best 

performing classification algorithm was a 5-layer neural network based on the accuracy as well 
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as specificity and sensitivity of the model. The neural network was able to distinguish AD from 

non-AD events with an accuracy of 93.4%, a sensitivity of 93.5% and a specificity of 93.3%. 

Additionally, it also had an AUC-ROC of 0.93 suggesting that the neural network was able to 

distinguish between the two classes with a high level of confidence.  

Table 5 : Performance Metrics for the different classifiers with the AD dataset.  

Name Accuracy (%) Sensitivity (%) Specificity (%) AUC-ROC 
Neural Network 93.4 93.5 93.3 0.93 

Adaboost 79.3 79.3 79.2 0.78 
Decision Tree 86.1 83.3 89.5 0.86 

Gaussian Process 91.7 88.9 94.4 0.92 
K Nearest Neighbor 86.5 83.3 89.5 0.86 

Linear SVM 62.2 30.1 86.7 0.61 
Logistic Regression 87.4 84.3 82.5 0.87 

RBF SVM 63.9 72.2 84.2 0.64 
Naïve Bayes 88.9 94.4 83.3 0.89 

Quadratic Discriminant 
Analysis 88.9 94.4 83.3 0.89 

Random Forest 63.9 72.2 84.2 0.64 

5.4.3 Impact of Repeated Induction of CRD on AD 

CRD was repeated in the animal four times on days 7, 9, 11 and 14 post-injury to mimic 

onset of AD through an equivalent of 1.5 years of human years post SCI [228], [229].  While 

there was a statistically significant difference between the features during AD and non-AD; we 

observed that there was no significant difference in the AD features across the days using a one-

way ANOVA (Figure 29). Similarly, there was no significant difference in the baseline (non-AD) 

features over the course of repeated onset of AD. This suggests that in the short-term (14 days 

post SCI), AD was still being triggered by CRD and its onset led to significantly different 

changes in ANS activity.   
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Figure 29: Repeated induction of AD over four trials caused no significant variation in the increase in the 
observed activation of the sympathetic and parasympathetic parameters over trials conducted on days 

7(blue), 9(orange), 11(green) and 14(red).   

5.5 Discussion  

This study demonstrated the following. 1) the onset of AD is characterized by a cascade 

of sympatho-vagal discharge wherein we see an initial sympathetic discharge followed by a 

subsequent concomitant vagal discharge towards the end of the AD episode.  2) A neural 

network can be trained to distinguish between AD and non-AD events and can detect the onset of 

AD with a 93.4% accuracy. This study provides us with a non-invasive, wearable system which 

can clearly quantify the onset of AD and provide further insight into the temporal changes during 

AD.  

5.5.1 Characterizing signatures of AD through non-invasive sensing 

The sympatho-vagal cascade due to the onset of AD is well understood in clinical 

literature [51], [55], [230]. The stimulus below the level of injury triggers sympathetic 

hyperactivity by stimulating the neurons in the intermediolateral gray mattery of the spinal cord. 

This sympathetic neural outflow generates the hypertensive blood pressure response during AD. 

This leads to vagal activity in response to the systemic changes occurring in the body. The 
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hypertension leads to the activation of the carotid and aortic baroreceptors leading to a decrease 

in heart rate through the vagus nerve. All signs and symptoms of AD are attributed to 

hyperactivity of the sympathetic impulses below the level of injury and the compensatory 

parasympathetic activation above the level of injury[231]. However, there is no tool which 

characterizes the resultant physiological cascade from the onset of AD through multiple sensing 

modalities, which may lead to better understanding for either improved diagnosis or therapeutic 

intervention.  

 

Currently AD is characterized clinically through stand-alone measurements of blood 

pressure through ambulatory blood pressure systems or arterial blood pressure telemetry 

devices[223]. However, these measurements of blood pressure do not monitor the beat-by-beat 

changes of other hemodynamic parameters associated with AD. Through our multimodal system, 

we characterized AD on a greater temporal resolution through the five ANS physiological 

features that we identified as most relevant to this sympatho-vagal cascade. The onset of AD was 

validated with traditional techniques of blood pressure measurement. AD triggered by colorectal 

distension led to clinically recognized increases in systolic, diastolic blood pressure, and mean 

arterial pressure[55] as well as the induced bradycardia (Figure 27). The features were extracted 

from the ECG and novel skNA sensors showed an overall increase in sympatho-vagal activity as 

well as an in-depth exploration of the sympatho-vagal cascade which occurs due to the onset of 

AD.  

 

Sympathetic activity was characterized principally by changes detected through the skNA 

sensors. skNA has been extensively validated as a non-invasive surrogate for stellate ganglion 

nerve activity [232]. The stellate ganglion is known to be an important source of cardiac 

sympathetic innervation and also gives rise to sympathetic nerves which innervate blood vessels 

and sweat glands in the skin [233], [234]. The cardiac preganglionic sympathetic fibers (T1-T4) 

synapse onto postganglionic neurons in the stellate ganglia in addition to other ganglia. 

Sympathetic preganglionic fibers originating from T5-T9 spinal cord levels bypass the 

paravertebral ganglia and synapse onto postganglionic neurons in the stellate ganglion[235].  

Increases in the average value of the iskNA suggest an increase in the sympathetic tone during 

the onset of AD. The increase in the number of spikes/bursts over the duration of the AD allow 
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assessment of the transient increase in synchronous firing of the stellate ganglion [236]. The 

sympathetic discharge occurs within 15 seconds of the introduction of the noxious trigger. 

However, one of the limitations of the skNA sensor is the inability to gauge parasympathetic 

activity[237]. 

 

Heart rate variability metrics from ECG have been extensively explored in the literature 

to identify changes in ANS function. While parasympathetic activity can be gauged through 

changes noted in the ECG data, they lack the temporal resolution to determine sympathetic tone 

on a second-by-second basis [238]. Towards the end of the AD episodes, a sharp increase is 

noted in the RMSSD and the pnn5.  RMSSD is a reflection of the beat-to-beat variance in the 

heart rate and often estimates the vagally mediated changes reflected in the heart rate 

variability[239]. Similarly, pnn5 is closely related to parasympathetic activity [240]. Both these 

metrics are often more reliable indices for parasympathetic activity for short-term measurements 

and are strongly correlated with spectral components of the ECG. The LF and HF spectral 

component of the heart rate variability often provide insight into the sympathetic and vagal 

activity respectively. However, due to the low temporal resolution and extremely short duration 

of recording of AD (~60 seconds), there are not sufficient bins which allow conclusive evidence 

to be drawn from the spectral data, thereby reducing the interpretability of the extracted spectral 

features.  

 

The combination of the non-invasive, wearable ECG and skNA sensors allow us to 

characterize the sympathetic and vagal co-activation during the onset of AD. The initial increase 

in sympathetic activity within seconds of introduction of the trigger is followed by 

parasympathetic activity towards the end of the AD episode. This signature coupled with the 

anticipated bradycardia and increase in blood pressure provides a quantitative understanding of 

the sympatho-vagal cascade which occurs during the onset of an AD episode. This unique 

characterization of AD has not been quantified on high temporal resolution prior to this work. 

This system can be used as a complementary tool to enable detection of AD earlier than the 

change in blood pressure, which is a result of sympathetic discharge.  
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5.5.2 Machine Learning as a Tool to characterize AD 

The neural network created using the dataset was able to discern the differences between 

AD and non-AD data with an overall high-performance across all the relevant metrics. The use 

of blood pressure changes as the ground truth, led to a more comparable model. We prioritized 

the development of model which was accurate and has a high sensitivity and specificity. A 

balance between the sensitivity and specificity in the detection of AD ensures low false negative 

rates. A high false negative rate wherein the model did not detect AD when it was occurring 

could lead to serious medical consequences. In contrast, the incidence of false positive errors 

would be more of an inconvenience to users rather than not detecting episodes of AD at all. The 

model’s high AUC-ROC (0.93) demonstrated the model’s ability to detect the onset of AD 

symptoms with high accuracy with an inclination towards low false negative rates.  

 

In our prior work, we used support vector machines with linear and RBF kernels to 

discern between AD and non-AD events[152], [159]. In the training of the SVMs we used a 

smaller dataset with four features. Additionally, the dataset had very limited overlapping data 

which allowed SVMs to perform well.  The dataset developed in this study was a magnitude of 

order larger than the previous study. Additional feature selection also made it possible to choose 

the best combination of features which led to higher performance. The strong performance of the 

neural network as a tool to characterize AD also validates the trends observed in the temporal 

data collected from the sensor data. There are currently no other studies which attempt to use ML 

as a tool to detect the changes in physiology due to the onset of AD.  

 

Through the neural network it is possible to translate the observed trends from a rodent 

model to a human analog. The model’s ability to discern the differences between the two classes- 

AD and non-AD could enable the development of a universal detection model. Neural networks 

often perform well with larger training data and lead to better scaling. They have been used 

extensively in the field of medicine ranging from the use in stroke detection[241] to detection of 

cancer, as well as diagnosis of Parkinson’s disease[242].  Future studies can leverage upon the 

dataset developed in this thesis to elicit a stronger performance from the model by introducing 

more data.   
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5.5.3 Impact and Relevance of the system  

Recognition and prevention of AD related signs and symptoms plays a critical role in 

avoiding escalation to more dire circumstances in clinical and non-clinical environments. 

Currently the standard approach for managing AD is to train persons with SCI to recognize their 

symptoms and to promptly alleviate the AD trigger, which can be difficult to identify and 

frequently requires the assistance of a caregiver. There is a need for a need for a sensitive yet 

noninvasive method of detecting the onset of AD, which can be adopted easily into clinical 

practice and for at home use[151]. Additionally, there is no continuous monitoring the onset of 

AD before symptoms become extreme and potentially dangerous.  

 

The major findings of this study suggest that there are alternate techniques to determining 

the onset of AD through non-invasive wearable sensing techniques. These could serve as 

complementary tools to ABPM in clinical and non-clinical settings if successfully translated to 

human trials. Additionally, a direct measurement of the sympathetic which leads to the increase 

of blood pressure, the current gold standard, could potentially lead to the ability of early 

detection of AD. The results presented in this research have demonstrated that skNA sensors can 

rapidly identify this change in sympathetic activity. The early detection of AD is critical as it 

mitigates shear stress on vasculature that develops during recurrent AD resulting in 

cardiovascular disease. A physiological-based AD detection system developed in this study can 

also allow the study of asymptomatic AD or ‘silent AD’, which can be equally harmful to 

cardiovascular end-organs due to a substantial rise in blood pressure without concomitant 

symptoms [150] 

 

A non-invasive sensor system that can detect the onset of AD, can improve independence 

and quality of life of individuals with an SCI. Additionally, the implementation of the early 

detection system could allow individuals with more time to identify and eliminate the trigger 

before escalation to dangerous hypertensive levels. The innocuous nature of many precipitants of 

AD, often make it difficult to avoid the occurrence of AD. Tetraplegics experienced AD ranging 

from several times a day [243] to a few times in a month[57]. By combining the AD detection 

system with wireless mobile connectivity caregivers can be automatically alerted when AD is 
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occurring. This would enable tetraplegics greater autonomy to work, go to school, and participate 

in their communities knowing that if an AD episode occurs there will be emergency oversight.  

5.6 Summary  

We developed a system which combines non-invasive, sensing techniques with signal 

processing and machine learning models to detect the onset of AD in a rodent model. We were 

able to determine a unique signature which characterized the onset of AD through the 

concomitant changes in the sympathetic and parasympathetic branches of the ANS. We 

quantified the cascade of sympatho-vagal activity as a result of AD on a higher temporal 

resolution, which has not been explored in prior research.  

 

We trained a neural network to distinguish between AD and non-AD events with high 

performance metrics. This machine learning model further developed in the next chapter can be 

translated to human models which would enable its use as a complementary tool in-clinic for the 

detection and management of AD in individuals with SCI.  
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6 DIFFERENTIATING SYMPATHETIC STIMULI  

Research Question: Can we distinguish between the onset of AD and other sympathetic 

stimuli? Can a machine learning model learn to specifically distinguish between different 

triggers of AD?  

 

For this study, data was collected from fifteen male Sprague-Dawley rats between the 

ages of 3-5 months (400-600g). The animals were received when they were 1 month old (~200 g) 

and acclimated to reduce confounding effects of stress on the characterization of AD. All 

animals were given dorsal laminectomies followed by an SCI due to compression at the T3 level 

[223] as discussed in Section 4.4. 

6.1 Sympathetic Triggers 

In addition to inducing AD through colorectal distension as described in Section 5.2, 

sympathetic responses were induced in the rats through other stimuli above and below the level 

of injury. The stimulus above the level of injury was induced through an acoustic startle. The 

acoustic startle was delivered in a similar fashion to the startle response in Section 4.3 with 1 

minute of intermittent startle at 108 - 112 dB.  The nociceptive stimulus below the level of injury 

was induced through a persistent tail pinch. The tail pinch was stimulated by a weight of 700g 

applied to the tail of the rat for a duration of one minute.  

6.2 Hypothesis  

We hypothesize that due to the different neural pathways involved, there will be a 

distinction in the features as a result of AD due to CRD and the sympathetic responses triggered 

by the acoustic startle and the persistent tail pinch. We expected these changes to be more 

evident in the sympathetic features rather in the parasympathetic features, as well as differences 

in the overall reactivity of the autonomic nervous system.  
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6.3 Varying Signatures due to different stimuli  

The thirty-six features were extracted from the physiological data as discussed in Section 

3.2.  All the features were normalized by trial to ensure that changes occurring over the course of 

SCI did not affect the observed results. A one-way ANOVA was performed to determine any 

significant differences in features due to the different sympathetic stimuli.  

 

AD led to a large increase in systolic, diastolic and the mean arterial blood pressure. The 

tail-pinch stimulus and startle also led to increases in observed blood pressure, but these changes 

were smaller compared to the hypertensive event observed due to the onset of AD (p < 0.05). 

When compared to baseline (non-stimulus) values of SBP, the AD and startle response led to 

significant increases while tail pinch did not lead to a statistically significant increase.  

Table 6: Changes in blood pressure due to the various stimuli. Largest changes were observed due to AD. 
* indicates significant difference (p < 0.01) compared to baseline values.  

Stimulus D Systolic Blood 
Pressure (mmHg) 

D Diastolic Blood 
Pressure (mmHg) 

D Mean Arterial 
Pressure (mmHg) 

AD +19.8* +13.9* +15.2* 
Tail-pinch +5.5 +0.4 +0.9 

Startle +7.1* +1.0 +2.1 
 

Additionally, there was a difference in the sympathetic and parasympathetic responses 

observed through three features extracted from the sensor data. Changes in the number of bursts, 

average value of iskNA and percentage of nn5 showed that there were statistically significant 

differences in sympathetic and parasympathetic responses that permitted the differentiation 

among the different sympathetic stimuli.  Startle led to tachycardia, while tail pinch did not result 

in significant changes in heart rate whereas AD led to bradycardia (Figure 30A).  

 

When compared to baseline values, all three stimuli led to an increase in sympathetic 

activity characterized by an increase in the number of bursts (Figure 30B) with AD and startle 

causing significantly higher changes than tell pinch and no stimulus (p<0.01) (Figure 30B). 

However, there was a statistically significant decrease from baseline values in parasympathetic 
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activity due to the tail pinch characterized by a decrease in pnn5, while there was a statistically 

significant increase from baseline during AD and startle (p<0.01) (Figure 30D).  

 

 

Figure 30: Changes in median values from non-stimulus of A) heart rate, B) number of bursts per minute 
C) pnn5 and D) average iskNA due to the different stimuli. * indicates significant difference (p<0.01) 

from baseline values 

A one-way ANOVA indicated significant differences in three of the features (pnn5, 

average iskNA and number of bursts) across the three stimuli. There was also an observed 

overlap when visualizing the three stimuli on a bivariate plot shown in Figure 31, but the 

differences in the different distributions suggest the ability for discernment between the three 

stimuli as well as the absence of a stimulus.  



 

83 

 

Figure 31: Bivariate plot representing the differences observed in the three statistically significantly 
different features due to the different stimuli. There is an observed overlap between the four classes but 
also some differences between the features which make them discernible. The y-axis are the normalized 

units of each feature.  

6.4 Multi-class Machine Learning Model    

We built upon the binary neural network discussed in Section 5.4.2 to develop a multi-

class classifier to distinguish between AD, non-AD and other sympathetic stimuli. The features 

extracted from non-stimulus events were labelled 0, AD events due to CRD were labelled ‘1’ 

while the features extracted during the tail pinch were labeled ‘2’, and startle was labelled ‘3’.   

 

70% of the dataset was used as training data with 15% of the dataset being used as a test 

set and 15% being used as a validation set. A 10-fold cross validation technique was used to test 

the performance of the neural network. However, unlike a binary classifier, the performance 

metrics gauged from the neural network were not accuracy and sensitivity. We instead reported 

the precision, recall and F-1 score as discussed in Section 3.4.1.  

 

When trained on the multi-stimulus dataset with the three selected features, the neural 

network had a weighted average performance of 79% accuracy. However, it performed the best 
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on the detection of tail-pinch data with a precision of 0.91 and worst on the non-stimulus data.   

As can be observed in Figure 32 , this performance is likely because the non-stimulus data is 

falsely classified as AD data or tail pinch data. This likely leads to false positives in the model.  

Table 7: Performance Metrics of a multiclass neural network built with multi-stimulus data.   

 Precision Recall F1-score 
No Stimulus 0.71 0.80 0.75 

AD 0.77 0.71 0.74 
Tail pinch 0.91 0.77 0.83 

Startle 0.82 0.90 0.86 
    

Accuracy   0.79 
Weighted Accuracy 0.80 0.80 0.80 
 

 

Figure 32: Confusion Matrix of the Multi-class neural network classifier 
trained on the data from the different triggers.  

6.5 Discussion  

There were differences in the physiological responses recorded from the various 

sympathetic stimuli above and below the level of injury. As expected, all stimuli led to an overall 

increase in the sympathetic activity detected by the sensors.  

 

The startle response, a trigger above the level of injury, led to a drastically higher 

sympathetic activation compared to the other triggers. The observed startle response is an 
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expected reaction to stimuli above the level of injury [244]. This is in agreement with prior 

research which shows  hypersensitivity to the acoustic startle reflex in individuals with spinal 

cord injuries [245], [246]. This is likely the result of the neuroplasticity observed post-injury 

wherein there is reorganization after SCI at cortical as well as brainstem levels [247]. The rats 

were subjected to the stimuli at least five days post-surgery allowing time for reorganization to 

occur in the neuronal pathways which result in the large sympathetic reflex.  

 

Both sympathetic and vagal branches of the autonomic nervous system likely contribute 

to the changes in BP and HR which vary within seconds after the nociceptive stimuli were 

presented to the animals. The co-activation of the sympathetic and vagal system was observed as 

a result of both AD and the startle response. However, this co-activation was missing in the tail 

pinch response, which is not perceived by supraspinal centers due to paralysis.  

 

The sympathetic surge in the tail pinch response was accompanied by a vagal inhibition. 

This is likely the result of a nociceptive pain response. Pain responses lead to an increase in 

sympathetic activity while causing a decrease in vagal activity [248]. This suggests that the rats 

may have regained some sensory control in their tail. Tail pinch has been used in prior research 

as a tool to induce AD [249]. However, we did not observe the accompanying increase in blood 

pressure to characterize the response as AD due to the nociceptive stimulus. While this may have 

been a limitation of the tail-cuff based blood pressure measurement technique used in this study 

it will be further explored in future studies. 

 

While the rats did not react to the toe or tail pinch acutely after SCI, the tail pinch 

response was elicited after five days of recovery. During this recovery period, it is possible for 

the rats to have regained some motor and neural control below the level of injury [250], [251]. 

This pain response differs from the response seen as a result of the onset of AD from CRD, 

which is also a noxious stimulus below the level of injury. Additionally, it may indicate that the 

crush injury which induced the SCI in our rats may have led to incomplete injuries which would 

require further investigation in future studies.  
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The neural network developed with the data collected from the various stimuli was able 

to distinguish the responses to the different stimuli with a 76% accuracy. We ensured balance 

between the different classes to prevent over-representation of one class which could skew 

performance. The precision is a measure of the positive predicted value which is the fraction of 

relevant instances among the retrieved instances while recall is the sensitivity of the model. 

Overall, the neural network had a good weighted accuracy suggesting that there was sufficient 

difference between the patterns observed in the features extracted from the sensor data to 

different triggers to enable discernment. The overlap between the classes shown in Figure 31 

could likely contribute to the poorer performance of the neural network to distinguish the non-

stimulus data from the responses due to the triggers.  

 

Additionally, the misclassification of non-stimulus data as tail pinch or AD response 

likely leads to false positives in the neural network leading to poorer precision and recall. These 

false positives could translate to alert fatigue which may cause poorer adherence when used by 

individuals with SCI (ref). More sympathetic stimuli response data could trigger a greater range 

of sympathetic responses in order to train the model better.   

 

Distinguishing various types of sympathetic stimuli, including exercise and emotional 

stress, from AD could play an important role in reducing the onset of false positives as a result of 

sympathetic activation. This would allow an improvement in the performance of the machine 

learning model when it is translated to humans and could also lead to a more in-depth 

understanding of the impact of other sympathetic stimuli on the health of individuals with SCI. 

In addition, the ability to discriminate between the triggers of AD would also prove to be 

valuable in assisting the management of AD by providing information about possible triggers.  

6.6 Summary  

The system developed using non-invasive sensors was able to discern the sympathetic 

and vagal responses to three different stimuli above and below the level of injury. The data 

collected from the different triggers allowed the development of a neural network which could 

distinguish between AD due to CRD, nociceptive pain, and startle responses with 76% accuracy. 
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7 CONCLUSIONS AND FUTURE WORK 

In this dissertation, we present a multi-parametric sensing system that can detect the onset 

of autonomic dysreflexia using an array of novel, non-invasive sensors when combined with 

machine learning models. This system comprises wearable ECG, skNA, blood pressure and skin 

temperature sensors. We used these sensors to gauge changes in physiology on rodent models of 

a crush T2/T3 level spinal cord injury. We stimulated AD in a controlled fashion through 

colorectal distension for a duration of one minute. We also induced responses to sympathetic 

triggers above and below the level of injury through an acoustic startle and tail pinch 

respectively. Physiologically relevant features were extracted and selected from windowed time-

series sensor data to quantify the sympathetic and parasympathetic responses to the onset of the 

different triggers.  

 

We determined five significant features that were representative of sympathetic and vagal 

activity, which best characterized the onset of AD. We characterized the sympatho-vagal cascade 

of AD through an increase in sympathetic activity determined by the skNA sensors followed by a 

vagal discharge determined by changes in the features extracted from the ECG sensors. After 

exploring eleven different binary classifiers, we were able to develop a five-layer neural network 

which could distinguish AD from non-AD episodes with a 93% accuracy. Additionally, when 

trained on data from other sympathetic triggers above and below the level of injury, the neural 

network was able to discern between them with an accuracy of 76%.  

 

Current methods to detect AD are not feasible for long-term use. Through this research, 

we have created a tool that enables rapid detection of AD. Moreover, we were able to study the 

onset of AD on a higher temporal resolution allowing determination of a unique signature 

through changes in the sympatho-vagal branches of the ANS during AD. Lastly, the use of 

machine learning enables an automated detection of the onset of AD as well as the other 

sympathetic triggers.  

  

The development of this system in rodent models allowed an exploration of a controlled 

study of AD which can be explored to a greater extent in the future.  



 

88 

7.1 Limitations 

Although we had consistency in the physiological parameters throughout the study, there 

may have been cofounding factors that could have potentially impacted the data. We minimized 

triggers which could have caused the spontaneous development of AD such as pressure sores, 

proper bowel and bladder care, and urinary tract infections (UTIs). Rats were monitored after 

SCI and received antibiotics if UTI is observed and pressure sores were immediately treated.  It 

is also possible that other confounding factors such as stress post-SCI or SCI-related 

cardiovascular/neural changes may have led to misclassifications in the machine learning 

algorithms 

 

Additionally, there could have been variability in the degree of injury – crush injuries 

may lead to variations in paralysis. Future studies can control for these by ensuring the 

completeness of the injury in the animal models.  

7.2 Future Studies  

Collecting blood pressure data concurrently with the ECG and skNA data using an 

implantable telemetry system could help determine the lag between the detection of sympathetic 

discharge through the skNA sensors and the resultant hypertensive episode. Such an early AD 

detection system could help those with SCIs to detect AD before symptoms escalate. The early 

detection of AD is critical as it mitigates shear stress on vasculature that develops during 

recurrent AD resulting in cardiovascular disease [252], [253]. A physiological-based AD 

detection system will also allow the study of asymptomatic AD or ‘silent AD’, which can be 

equally harmful to cardiovascular end-organs due to a substantial rise in blood pressure without 

concomitant symptoms [150]. This could potentially reduce chances of co-morbidities.   

 

The successful execution of this research has enabled the determination of a rat model 

that can be used for a multitude of research projects involving studies of AD. AD is a difficult 

disorder to study in human participants due to the high risks involved in inducing AD even in 

clinical settings. Through the development of this rat model, it would be possible to investigate 

even further the trigger of AD. This can be done through stimulating the onset of AD in rat 
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models using a variety of triggers (e.g., cutaneous nociception, exercise, bladder obstruction) and 

developing a pattern recognition model based on the type of trigger. This would enable the 

development of a system which could alert the user to the cause of AD (its trigger) and allow a 

quicker way to manage it.  

 

Moreover, future investigation of this approach would also make it possible to develop a 

better understanding of how artificial intelligence can be applied to the understanding of other 

SCI complications, such as the development of pressure sores and orthostatic hypotension. This 

research can be also applied to further study dysautonomia detection in different disease models 

such as Parkinson’s disease or diabetes.  
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APPENDIX A  

Rat care post T2/T3 SCI: Things that can go wrong and how to fix it 
 

Recommended antibiotic: Baytril (10mg/kg SC)  

Recommended gavage max: 20ml/kg  

 

Problem Proposed Solution 
Gastrointestinal failure Remove Ketamine+ Xylazine from surgery 

protocol, use only isoflurane. K+X seems to have a 
combinatorial effect on the GI tract which led to several 
animals’ untimely death.  

 
Blood in urine Will likely occur 2-4 days post-surgery. This is 

often due to hematuria which is common post-SCI. 
Usually clears up within first 6 days post-op. If doesn’t 
clear out, make sure to check if it is a UTI- and if so, 
start antibiotic treatment.  

 
Porphyrin around eyes 

and nose 
Some porphyrin is expected around the eyes and 

nose due to painful surgery. If the porphyrin doesn’t 
clear up and is showing signs of increasing, rat may be 
in pain. Would be good to check with vet, but can start 
antibiotics if there is no decrease within 7 days post-op.  

 
Lethargy (excessive) Some lethargy is common post-SCI, but if rat is 

not moving a lot, it is often the result of an infection/ 
other issue. Check to make sure the rat is hydrated. If 
the rat is also not eating and losing weight day 6 post-
op, start antibiotics.  

 
Inappetence (loss of 

appetite) 
Weight loss will occur for the first 5-7 days post-

op. If no weight gain or stabilization occurs, try bottle- 
feeding the rat Ensure. If the rat reaches > 10% weight 
loss, begin oral gavage of food to prevent further 
complications.  This also likely occurs with excessive 
lethargy, so would be good to start antibiotics.  

 
Continued weight loss 

past day 5 post-op 
Start the antibiotics and gavaging on day 6 post-

op. Can use a little bit of iso to knock them out a bit to 
help with gavage process.  

 



 

108 

Cold to touch Place hand warmers under cage, immediately 
after observation of cold to touch. Often a sign of 
deterioration and needs immediate care- might be good 
to give lactate ringers and warm the animal as much as 
possible.  

 
Skin doesn’t snap back 

after being pinched. 
This is usually a sign of dehydration- begin 

offering the rats more lactated ringers and saline. 
Increase frequency rather than amount.  

 
Unable to feel a 

bladder for expression. 
This happens once in a while, where the bladder 

is too small to express. Check the cage for wetness in 
the bedding. It’s possible that the rat might have enough 
neural control for urinary function. If not, give ringers 
and check in a few hours. Worst case, it might be a burst 
bladder.  

 
Eye turning cloudy This has occurred in the first few animals SCI 

was performed on. Not sure why this occurred but can 
often lead to an infection. Apply some ophthalmic 
antibiotic for 3 days 2 times daily. If it doesn’t clear out, 
reach out to vet- might need to be extracted.  

 
 

 


