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ABSTRACT

Sangpil, Kim Ph.D., Purdue University, December 2020. Deep Learning for Computer
Vision and its Application to Machine Perception of Hand and Object. Major
Professor: Karthik Ramani.

The advances in computing power and artificial intelligence have made applica-

tions such as augmented reality/virtual reality (AR/VR) and smart factories possible.

In smart factories, robots interact with workers and, AR/VR devices are used for skill

transfer. In order to enable these types of applications, a computer needs to recog-

nize the users hand and body movement with objects and their interactions. In this

regard, machine perception of hands and objects is the first step for human and com-

puter integration. This is because personal activity is represented by the interaction

of objects and hands. For machine perception of objects and hands, vision sensors

are widely used in a wide range of industrial applications since visual information

provides non-contact input signals. For these reasons, computer vision-oriented ma-

chine perception has been researched extensively. However, due to the complexity of

object space and hand movement, machine perception of hands and objects remains

a challenging problem.

Recently, deep learning has been introduced with groundbreaking results in the

computer vision domain, which address many challenging problems and significantly

improves the performance of AI in many tasks. The success of deep learning algo-

rithms depends on the learning strategy and the quality and quantity of the training

data. Therefore, in this thesis, we tackle machine perception of hands and objects

with four aspects: learning underlying structure of 2D data, fusing surface and volume

content of a 3D object, developing an annotation tool for mechanical components,

and using thermal information of bare hands. More broadly, we improve the ma-



xvii

chine perception of interacting hand and object by developing a learning strategy

and framework for large-scale dataset creation.

For the learning strategy, we use a conditional generative model, which learns

conditional distribution of the dataset by minimizing the gap between data distribu-

tion and the model distribution for hands and objects. First, we propose an efficient

conditional generative model for 2D images that can traverse the latent space given

a conditional vector. Subsequently, we develop a conditional generative model for

3D space that fuses volume and surface representations and learns the association of

functional parts. These methods improve machine perception of objects and hands for

not only 2D images but also in 3D space. However, the performance of deep learning

algorithms has positive correlation with the quality and quantity of datasets, which

motivates us to develop the a large-scale dataset creation framework.

In order to leverage the learning strategies of deep learning algorithms, we develop

annotation tools that can establish a large-scale dataset for objects and hands and

evaluate existing deep learning methods with extensive performance analysis. For

the object dataset creation, we establish a taxonomy of mechanical components and

a web-based annotation tool. With this framework, we create a large-scale mechan-

ical components dataset. With the dataset, we benchmark seven different machine

perception algorithms for 3D objects. For hand annotation, we propose a novel data

curation method for pixel-wise hand segmentation dataset creation, which uses ther-

mal information and hand geometry to identify and segment the hands from objects

and backgrounds. Also, we introduce a data fusion method that fuses thermal infor-

mation and RGB-D data for the machine perception of hands while interacting with

objects.
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1. INTRODUCTION

Advancement of deep learning in computer vision greatly increased the performance

of machine perception of objects and hands and the interest in computer vision ap-

plications in many diverse areas such as a smart factory, AR/VR devices for skill

transfer, and robotics. In particular, human computer integration, machine percep-

tion of objects and hands with visual signal which is contactless is crucial because

it is low cost and easy to move around. The development of vision-based machine

perception of objects and hands is a crucial research topic in the computer vision

literature and industry. Therefore, the goal of this thesis is improving visual machine

perception of objects and hands based on deep learning.

1.1 Inspiration

Everyday people interact with outside of the world with their hands which is

one of the most complex body part, and people use eyes to recognize environments.

From this natural behavior of human, machine perception of objects and hands with

computer vision is widely studied in the literature and industry. Advancement of

computation power enables the usage of deep neural networks in real time applications

in three-dimensional space for AR/VR applications. Additionally, the improvement

of vision sensors, a low-cost depth camera, and a thermal sensor has led us to develop

data fusion method of multi-source visual signals for deep neural networks.

Even though the success of the deep learning significantly improved the perfor-

mance of objects and hands recognition, it is excessively challenging problems because

of their complicated structure and curse of dimensionality as well as the infinite kinds

of object space. Therefore, modeling loss functions for training the deep neural net-

works and designing efficient structure of the neural networks have become extremely-
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important tasks to overcome these problems. Although the extensive research works

have been conducted in the last decade including utilizing multi-modal information of

visual sensors and developing robust perception algorithms for the objects and hands,

there are no ultimate solutions for the problem.

1.2 Research Aims and Objectives

The research goal is developing a robust deep learning based vision algorithms

for hand and object recognition. To achieve the research goal, we split the research

area in two parts: developing learning strategies and dataset curation. For improving

learning strategies, we develop conditional generative models which learn the under-

line data structure of objects for distinguishing an object from others. To improve

the efficiency of the model, we make the model to be fully-convolutional and fused

surface and volumetric representations of objects. The other important thing is the

dataset for deep learning which is a data driven method, and the performance is

upper bounded by the size and quality of the dataset. Therefore, we develop ro-

bust data curation methods for both rigid and non-rigid objects. For rigid object,

we establish a large-scale annotated mechanical components dataset by establishing

mechanical components taxonomy and web-based interactive annotator. With this

dataset we benchmark seven different deep learning oriented shape descriptors by

measuring performances of classification and retrieval tasks. From the benchmark

experiment, orientation invariant property is critical for mechanical components in

both retrieval and classification task. For non-rigid object dataset curation, We de-

velop labeling pipeline for pixel-wise hand segmentation in first-person view videos.

We use body temperature to narrow down the search space in the scene and refine

the labels with hand geometry. For using hand geometry, we use deep learning based

tracking algorithms which use hand geometry. Furthermore, we collect sequences

of thermal, depth, and color images in single shot. With this multi-modal videos,

we introduce a data fusion method that fuses thermal, depth, and color information
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spaces for machine perception of hands, resulting significant improvement of machine

perception of hand while interacting with complex objects.

1.2.1 Learning strategies

The generative model is adequate for representing complex, structured datasets

and generating realistic samples from underlying data distributions [1, 2]. Therefore,

the generative model can sample syntactic data within parametric distribution, which

should be ideally identical with the data distribution. Extension of the generative

model is a conditional generative model that can sample objects from conditional

distribution in order to allow selectivity of generated objects [3,4]. We use conditional

generative models for synthesizing novel views of objects from a reference view, which

has a variety of practical applications in computer vision, graphics, and robotics. We

propose a fully-convolutional conditional generative model, which is much faster than

the conventional conditional generative model.

Many works [5, 6] have shown that jointly solving multiple tasks, named multi-

task learning [7], helps to improve the generalizability of estimation models. From

these observations, multi-task learning is adopted to increase the performance of

the generative model. To be more specific, two distinct representations were fused

as a multi-task learning approach, which has not been well-examined for learning

compact object representations and synthesizing objects. Surface representation im-

poses boundary and connectivity information of each part of an object [8–10], and

volumetric representation determines interior geometry which is used for heat flow

calculation [11,12]. Knowing both surface and volumetric representations are crucial

for learning not only a perceptual set of attributes but also the connectivity of each

part of the objects and the details of local interior regions, hence reducing defects in

synthesized objects. The model learns surface properties to learn the interior volu-

metric representations of objects and vice-versa [7]. Additionally, the model learns

not only the data distribution but also the geometric properties of the objects. By
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learning the geometry properties, the generative models do not tend to collapse in a

specific mode, increasing the sampled objects’ diversity.

1.2.2 Dataset curation

The performance of deep learning algorithms depends on the quantity and qual-

ity of the training dataset. This is because the deep neural network learns features

of objects with stochastic gradient descent method by observing objects iteratively.

While iteratively observing the object, the model captures the functionality of objects

and distinct shapes. For this reason, a large-scale annotated dataset is required to

find an optimal model that can extract features of objects for recognizing multiple

objects. For example, there have been extensive works for developing feature extrac-

tors for common objects that can be used for object classification and retrieval tasks.

However, researches on mechanical components shape descriptors are elusive. This

is because there are no large-scale annotated datasets. From this motivation, we es-

tablish a large-scale mechanical components dataset by establishing the taxonomy of

mechanical components and developing a web-based annotation tool for mechanical

components. This dataset is impactable in many areas, in particular smart factories.

Nowadays, in smart factories, robots co-work with people, and the AR device helps

people in assembling task by overlapping the guidance of instruction in 3D space.

Therefore, vision-based perception algorithms for mechanical components are highly

demanding.

Data fusion of multiple sensors from multiple sources reduces the uncertainty of

the machine perception of hands and objects since diverse information provides more

informative features than unimodal information. For example, an RGB camera can-

not capture thermal information but can effectively capture the geometry and textures

of hands. In contrast, a thermal sensor can capture thermal information but cannot

capture color-oriented patterns and textures. We also noticed that human body tem-

perature is bounded in a specific range, which can be used as distinct characteristics to
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distinguish hands from other objects. With this observation, the thermal information

was fused along with RGB images to reduce the model’s uncertainty that segments

hands in pixel-level from holding objects and backgrounds. Therefore, we propose a

framework that is jointly using a thermal camera and an RGB camera. The thermal

camera captures the body temperature to restrict the search space in the scene and

an RGB image is used to capture the hands’ geometry to remove the objects within

a similar temperature range of hands. The framework efficiently identifies hands in

pixel-level with the first-person view. We further propose a data fusion method with

deep neural networks for a pixel-wise hand segmentation task by inputting thermal,

RGB, and depth modality into deep neural networks. The proposed data fusion

method significantly increases the performance of the model for the pixel-wise hand

segmentation task.

1.3 Contributions

The main contributions are summarized as the following:

1. A fully-convolutional generator was introduced by utilizing conditional transfor-

mation unit, with a family of modular filter weights, to learn high-level mappings

within a low-dimensional latent space.

2. A novel framework was proposed for 3D object view synthesis which separates

the generative process into distinct network components dedicated to learning

i) coarse pixel value estimates, ii) pixel refinement map, and iii) the global RGB

color balance of dataset.

3. The generalizability of 3D object synthesizer was improved by jointly estimating

surface and volumetric representations as multi-task learning.

4. A learning method of part geometry was proposed, which improves the fidelity of

each part of the synthesized objects. Learning part geometry was done explicitly

by optimizing the model which estimates the geometry of each part of objects.
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5. A hierarchical taxonomy of mechanical components was established based on

the international classification for standards.

6. A large-scale mechanical components benchmark was annotated and collected,

seven deep learning-based classifiers were benchmarked, and their performances

were analyzed with the dataset.

7. A framework was developed that can significantly reduce segmentation efforts by

leveraging hand temperature for creating pixel-wise hand segmentation ground

truth when a person is holding tools. The method does not require hand pose

labels nor a hand mesh model.

8. Large-scale action videos in a first-person view and pixel-wise hand segmen-

tation labels, which contains LWIR, RGB, depth, and IMU information, was

collected. The dataset can be used for hand segmentation research using mul-

tiple modalities.

9. The effectiveness of multiple modalities for hand segmentation task with deep

neural networks was analyzed, and the optimal combination which is fusing

thermal (LWIR), RGB, and depth modalities was found.

1.4 Thesis overview

To cover the details of all above contributions, the rest of the thesis is organized

as the following. Chapter two reviews the background information and related works

in deep learning area on generative models, 3D object representations, data fusion,

and pixel-wise segmentation methods. Then, a conditional generative model as an

application for a novel view synthesis is described in chapter three, proposing a novel

layer that traverses the latent space and task-dived decoder. In chapter four, the

deep learning framework that fuses surface and volumetric representations of the

conditional generative model is presented. The 3D object space is further explored in

chapter five by establishing a large-scale mechanical components dataset and bench-
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marking seven deep learning shape descriptors with the dataset. Chapter six shows

data fusion method for deep learning to be applied for a pixel-wise hand segmenta-

tion while interacting with objects. Finally, in chapter seven, the contributions are

summarized, and the future research directions are discussed in detail.
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2. BACKGROUND

2.1 Generative Model

Generative models have been widely studied in the field of computer vision. There

are two types of well-known generative models: Variational Auto-Encoder (VAE) [13]

and Generative Adversarial Network (GAN) [14]. VAE consists of an encoder and

decoder. The encoder encodes input information into a low dimensional vector which

is perturbed by the Gaussian noise. In GAN, the model is optimized to mimic a data

distribution by playing a minimax game to find a Nash equilibrium [15] between the

generator and discriminator; the generator is optimized to fool the discriminator by

generating realistic data, and the discriminator is optimized to identify faked data

from the generator.

Generative models with object priors

Generative models which synthesize 3D objects with object priors use an encoder-

decoder structure for generating objects. Achlioptas et al. [16] proposed the encoder-

decoder structure model, which learns point cloud representation by minimizing Earth

Movers Distance and Chamfer Distance with the supervision of objects’ class informa-

tion. However, this method cannot synthesize 3D objects from a noise distribution,

and must have reference models. Umetani et al. [17] synthesized deformed quad

meshes from reference objects by exploring the manifold of the parameterized mesh

surfaces with an encoder-decoder framework. Liu et al. [18] proposed a method that

reconstructs user inputted 3D objects by mapping them into the hidden latent space

and decoding it. Xie et al. [19] introduced an energy-based model which approxi-

mates the 3D shape probability distribution with Markov Chain Monte Carlo meth-

ods. Groueix et al. [20] generated the surface of 3D shapes with a generative model
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from point cloud objects or images. Kalogerakis et al. [21] and Carlson et al. [22]

synthesized new 3D objects by reassembling the parts which are retrieved from an

existing database with non-parametric approaches. These works require reference

objects to synthesize or deform objects. However, our proposed model synthesizes

objects without observing objects or images as prior information.

Generative models without object priors

Generative models without object priors use a decoder structure for generating

synthetic objects. Wu et al. [23] proposed a generative adversarial loss with 3D

volumetric convolution and synthesized novel 3D objects from normal distribution.

Smith et al. [24] improved 3D-GAN with Wasserstein GAN [25], which enhances

the stability of the learning process. The conditional generative adversarial network

(CGAN) [3] generates targeted images given a one-hot encoded class vector and noise

vectors. Chen et al. [26] generated colored 3D objects in voxel grids given shape

descriptions by jointly learning representations of the text description and 3D colored

shapes with metric learning. Conditional Variational Auto-Encoder (CVAE) [27]

has been used to learn specific patterns which are structured in the underlying data

distribution. Bao et al. [28] combined the CVAE framework and adversarial loss,

which performed fine-grained image generation. The conditional generative model

for 3D objects has not been well-explored, and thus, existing methods in the 3D

domain have no explicit controllability to sample a specific class of 3D objects with a

single pipeline. In our method, a single pipeline is used to generate targeted objects

given a targeted class one-hot vector.

Conditional Generative Model

Conditional generative models have been widely used in computer vision areas such

as geometric prediction [29–32] and non-rigid object modification such as human face

deformation [33–36]. Dosovitskiy et al. [37] has proposed a supervised, conditional

generative model trained to generate images of chairs, tables, and cars with specified

attributes which are controlled by transformation and view parameters passed to the
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network. MV3D [30] is pioneering deep learning work for object view synthesis which

uses an encoder-decoder network to directly generate pixels of a target view with

depth information in the loss function along with view point information passed as a

conditional term. The appearance flow network (AFN) [31] proposed a method for

view synthesis of objects by predicting appearance flow fields, which are used to move

pixels from an input to a target view. However, this method requires detailed camera

pose information and is not capable of predicting pixels which are missing in the

source views. CVAE-GAN [28] further adds adversarial training to the CVAE frame-

work in order to improve the quality of generated predictions. The work from Zhang

et al. [33] have introduced the conditional adversarial autoencoder (CAAE) designed

to model age progression/regression in human faces. This is achieved by concatenat-

ing conditioning information (i.e. age) with the input’s latent representation before

proceeding to the decoding process. The framework also includes an adaptive dis-

criminator with conditional information passed using a resize/concatenate procedure.

The conditional variational autoencoder (CVAE) incorporates conditioning informa-

tion into the standard variational autoencoder (VAE) framework [13] and is capable

of synthesizing specified attribute changes in an identity preserving manner [38, 39].

Other works have introduced a clamping strategy to enforce a specific organizational

structure in the latent space [34,40]; these networks require extremely detailed labels

for supervision, such as the graphics code parameters used to create each example,

and are therefore very difficult to implement for more general tasks (e.g. training

with real images).

2.2 Discriminative Learning in 3D Space

3D shape descriptors

Shape descriptors extract features for classifying or retrieving objects and trained

by discriminative learning approach. There are three different 3D representations:

(1) point clouds, (2) projected views, and (3) voxel grids, for representing 3D space
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with computer, which are used in deep learning. In this section, we illustrate the

deep learning based 3D shape descriptors on each representation for classifying the

3D objects.

Point Clouds A point cloud is a collection of points in Euclidean space. PointCNN [41]

relaxes irregularity of point clouds by approximating the transformation matrix with

multi-layer perception, which simultaneously weights and permutes the input features

for point cloud data feature learning. PointNet [42] learns a set of optimization func-

tions for selecting feature points that contain meaningful content, which canonicalizes

the input point clouds and aggregates all feature points to capture global point cloud

features. PointNet++ [42] is an advanced version of PointNet. This work focused on

recognizing fine-grained patterns with a hierarchical neural network which iteratively

applied on a nested partitioned point set. SpiderCNN [43] proposes a convolutional

layer, which is a product of a step function that captures local geodesic information

and a Taylor polynomial to convolve in point cloud.

Projected Views A 3D object can be represented as multiple-views that covers all

details of the object. View-based methods [44–46] extract features of 3D shape rep-

resentations by observing multi-view images of an object and jointly estimating their

poses. Their method successfully works for object classification and shape retrieval

tasks, but performed poorly on unknown orientation models. Su et al. [44] uses a

collection of multiple views of 3D objects, which is effective for learning their repre-

sentations. MVCNN [46] further improves Su et al. with cross-modal distillation and

adversarial inputs with a differentiable renderer.

Voxel Grids Three-dimensional objects can be discredited and represented in voxel

grids, and voxel-based classifiers use voxel grids as their inputs. DLAN [47] proposes

Rotation Normalized Grids (RNGs), which are samples of oriented point sets rotated

by PCA for shape retrieval. Multiple blocks of RNGs are converted into local fea-
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tures with 3D convolution, and these features are aggregated with average pooling as

object representations. VSL [48] learns the probabilistic manifold of the underlying

structure of voxelized 3D shapes with an auto-encoder in an unsupervised manner.

VoxNet [49] converts point clouds into voxels in voxel grids and extracts features

with a 3D convolution layer for the classification tasks. VRN [50] uses a series of 3D

convolutional layers to extract features for classifying objects compactly.

Large-scale 3D object datasets

General object dataset has been widely developed for 3D computer vision applica-

tions. The Princeton Shape Benchmark (PSB) [51] is an early work that collected

and annotated 3D objects for shape matching and classification benchmarking. It

collected 3D polygonal models from the World Wide Web and classified them based

on the method of construction, such as man-made and natural objects. ShapeNet [52]

is a large-scale dataset of high-quality 3D models of objects, which are widely used

in various tasks such as instance segmentation [53], shape retrieval [54], and shape

reconstruction [55]. ModelNet [56] consists of two datasets (a 10-class dataset and

a 40-class dataset) and demonstrates a comprehensive clean collection of 3D CAD

models of objects. PartNet [53] is a fine-grained, instance-level, hierarchical parts

dataset. It used 3D objects from ShapeNet and was annotated by 66 annotators.

There are not many engineering shape dataset compared with general objects

due to the lack of 3D models and requiring domain knowledge to annotate the me-

chanical components. Engineering shape datasets has been developed to improve the

shape-based retrieval of 3D data of mechanical parts [57]. The Engineering Shape

Benchmark (ESB) [58] is an annotated engineering shape dataset. It proposed an ap-

proach that defines the class by mechanical part’s name—not by functionality—and

benchmarked analytical shape descriptor. However, the number of models in the ESB

dataset is not sufficient for training a robust feature extractor, and classes are only

classified by their shape, which limits the usage of the dataset. The Actual Artifacts

Dataset (AAD) [59] consists of four datasets with a total around 700 models and pro-
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vides several classifications for engineering artifacts selected from the National Design

Repository (NDR) [60]. Recently, A Big Cad (ABC) Model Dataset [61] proposed

one million Computer-Aided Design (CAD) models dataset without annotations.

Part-aware / structure-aware 3D object learning

Shape structure is a relation of individual parts and a high-level representation

of object, which is crucial for object perception [62]. Generative models for 3D ob-

jects [63–66] have been developed based on learning the structure of objects by en-

coding parts to latent vectors with encoder networks and decoding the latent vectors

with decoder networks, which leverages the learning capability for object structure.

Dubrovina et al. [67] labeled parts given unlabeled shapes by decomposing each part

embedding with decoders and composing them with a spatial transformation net-

work. Mo et al. [68] used a hierarchical graph network which encodes part structures

of object to modify a source object into a target object. Schor et al. [69] generated

each part of an object and composed these parts into a novel object. The difference

between our work and above works is that networks explicitly learn part surface area

and volume of each part of object with their location in Cartesian coordinates for

learning local geometry and object structure. We also expand the learning space of

each part by deforming each part individually given hand crafted parameters.

3D Object reconstruction

Various methods have been proposed for object reconstruction in three-dimensional

domain. Dai et al. [70] reconstructed a corrupted distance field and state voxel grid

with an encoder-decoder model and a shape database. The final output of this method

was the reconstructed distance fields of 3D objects in the 3D space. Sung et al. [71]

used the structure of 3D objects as prior knowledge for shape completion given noisy

depth scans of objects. Surface and volumetric information is related and imposes

complementary information of objects. These works [70, 71] have not utilized the

correlation of surface and volumetric information of objects for object reconstruction.
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Our method jointly learns surface and volumetric information for object reconstruc-

tion.

2.3 Pixel-wise Segmentation

Deep learning based pixel-wise segmentation algorithms have been widely used for

segmenting objects in videos [72–75]. Deep-learning based methods use CNNs to pre-

dict each pixel in an image by extracting feature representations. One of the popular

structures is an encoder-decoder structure which projects a high-dimensional image

into the latent vector and decodes the latent vector into class-wise pixel space [76,77].

Indeed, making large-scale pixel-wise datasets is crucial for training the CNNs. Al-

though complex boundaries can be traced manually, labeling image/video datasets

with object masks in pixel-level is extremely time consuming [78]. A successful

method is to have a neural network produce polygon annotations of objects inter-

actively using humans-in-the-loop to improve the accuracy [79–81]. The machine can

provide the human with information to manipulate [82] and generate segments [83],

matting layers [84], or boundary fragments [85]. Sequences in video datasets consist

of similar frames which contain redundant information. For moving objects especially,

several notable and established annotation tools with auto-tracking demonstrate great

performance on efficiency improvement [86,87].

Researchers create hand segmentation datasets by manually drawing polygon or

coloring the hand on RGB frames [88, 88–91]. Other works use hardware sensors to

predict joint position and render with mesh models; however, the sensors are visible

in the RGB images [92, 93]. Alternatively, studies showed good performance when

utilizing hand pose estimation and mesh models to segment hands in frames [94,

95]. Our method doesn’t require training a hand pose network [96] to generate high

accuracy on hand pose estimation under heavily occluded situations.
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2.4 Data fusion

Data fusion of high-quality multimodal information from multi-source for machine

perception is one of the key concepts in machine perception. The mammal, in gen-

eral, can sense at least three essential sources: texture, vision, and sounds. These

three basic senses are processed in the brain to understand and perceive the world

around them. Similarly, the autonomous driving industrys advance uses a single-

modal sensor and multi-source and multiple sensors in 3D space. This is because

combining multimodal information reduces the uncertainty of machine perception.

Multimodal visual information is widely used to capture robust features because of

color and texture invariance and its expression of an object in an explicit 3D infor-

mation [97–100]. Therefore, Long Wavelength InfraRed (LWIR) is widely used in

detecting objects [100] and controlling unmanned aerial vehicles due to its outstand-

ing ability of identifying objects with a distinct temperature from the surroundings

[101–103]. MFNet [104] showed that fusing LWIR and RGB frames significantly en-

hances the segmentation performance. Luo et al. [105] uses thermal information to

segment coarse point clouds scenes. Thus, many RGB pixels can not be labeled

from the coarse labeled point clouds. Many works with LWIR sensors are for scene

segmentation and autonomous driving system.
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3. LATENT TRANSFORMATIONS NEURAL NETWORK

View synthesis can be used to generate 3D point cloud representations of objects

from a single input image [30]; in the context of hand pose estimation algorithms,

generating additional synthetic views can also help reduce occlusion and improve the

accuracy of the estimated poses [106, 107]. However, synthesizing novel views from

a single input image is a formidable task with serious complications arising from the

complexity of the target object and the presence of heavily self-occluded parts.

To address this problem, we propose the latent transformation neural network

(LTNN) and provide a general framework for effectively performing inference with

conditional generative models by strategically controlling the interaction between con-

ditioning information and latent representations within a generative inference model.

In this framework, a Conditional Transformation Unit (CTU), Φ, is introduced

to provide a means for navigating the underlying manifold structure of the latent

space. The CTU is realized in the form of a collection of convolutional layers which

are designed to approximate the latent space operators defined by mapping encoded

inputs to the encoded representations of specified targets (see Figure 3.1). This is

enforced by introducing a consistency loss term to guide the CTU mappings during

training. In addition, a Conditional Discriminator Unit (CDU), Ψ, also realized

as a collection of convolutional layers, is included in the network’s discriminator.

This CDU is designed to improve the network’s ability to identify and eliminate

transformation specific artifacts in the network’s predictions.

The network has also been equipped with RGB balance parameters consisting of

three values {θR, θG, θB} designed to give the network the ability to quickly adjust

the global color balance of the images it produces to better align with that of the

true data distribution. In this way, the network is easily able to remove unnatural

hues and focus on estimating local pixel values by adjusting the three RGB parame-
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ters rather than correcting each pixel individually. In addition, we introduce a novel

estimation strategy for efficiently learning shape and color properties simultaneously;

a Task-divided Decoder (TD) is designed to produce a coarse pixel-value map along

with a refinement map in order to split the network’s overall task into distinct, dedi-

cated network components.

3.1 Latent Transformation Layer

In this section, we introduce the methods used to define the proposed LTNN

model. We first give a brief overview of the LTNN network structure. We then detail

how conditional transformation unit mappings are defined and trained to operate

on the latent space, followed by a description of the conditional discriminator unit

Fig. 3.1. The conditional transformation unit Φ constructs a collection of
mappings {Φk} in the latent space which produces object view changes
to the decoded outputs. The encoding lx of the original input image x is
transformed to l̂yk = Φk(lx) = conv(lx, ωk) and provides an approximation
to the encoding lyk of the attribute-modified target image yk.
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implementation and the network loss function used to guide the training process.

Lastly, we describe the task-division framework used for the decoding process.

The basic workflow of the proposed model is as follows:

1. Encode the input image x to a latent representation lx = Encode(x).

2. Use conditioning information k to select conditional, convolutional filter weights

ωk.

3. Map the latent representation lx to l̂yk = Φk(lx) =

conv(lx, ωk), an approximation of the encoded latent representation lyk of the

specified target image yk.

4. Decode l̂yk to obtain a coarse pixel value map and a refinement map.

5. Scale the channels of the pixel value map by the RGB balance parameters

and take the Hadamard product with the refinement map to obtain the final

prediction ŷk.

6. Pass real images yk as well as generated images ŷk to the discriminator, and

use the conditioning information to select the discriminator’s conditional filter

weights ωk.

7. Compute loss and update weights using ADAM optimization and backpropa-

gation.

3.1.1 Conditional transformation unit

Generative models have frequently been designed to explicitly disentangle the la-

tent space in order to enable high-level attribute modification through linear, latent

space interpolation. This linear latent structure is imposed by design decisions, how-

ever, and may not be the most natural way for a network to internalize features of
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Fig. 3.2. Selected methods for incorporating conditioning information;
the proposed LTNN method is illustrated on the left, and six conventional
alternatives are shown to the right.

the data distribution. Several approaches have been proposed which include nonlin-

ear layers for processing conditioning information at the latent space level. In these

conventional conditional generative frameworks, conditioning information is intro-

duced by combining features extracted from the input with features extracted from

the conditioning information (often using dense connection layers); these features are

typically combined using standard vector concatenation, although some have opted

to use channel concatenation.

In particular, conventional approaches for incorporating conditional information

generally fall into three classes: (1) apply a fully connected layer before and after

concatenating a vector storing conditional information [30, 31, 33, 40], (2) flatten the

network features and concatenate with a vector storing conditional information [29],

(3) tile a conditional vector to create a two-dimensional array with the same shape

as the network features and concatenate channel-wise [28, 108]. Since the first class

is more prevalent than the others in practice, we have subdivided this class into

four cases: FC-Concat-FC [33], FC-Concat-2FC [40], 2FC-Concat-FC [31], and 2FC-
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Concat-2FC [30]. Six of these conventional conditional network designs are illus-

trated in Figure 3.2 along with the proposed LTNN network design for incorporating

conditioning information.

Rather than directly concatenating conditioning information with network fea-

tures, we propose using a conditional transformation unit (CTU), consisting of a

collection of distinct convolutional mappings in the network’s latent space. More

specifically, the CTU maintains independent convolution kernel weights for each tar-

get view in consideration. Conditioning information is used to select which collection

of kernel weights, i.e. which CTU mapping, should be used in the CTU convolutional

layer to perform a specified transformation. In addition to the convolutional kernel

weights, each CTU mapping incorporates a Swish activation [109] with independent

parameters for each specified target view. The kernel weights and Swish parameters

of each CTU mapping are selectively updated by controlling the gradient flow based

on the conditioning information provided.

The CTU mappings are trained to transform the encoded, latent space represen-

tation of the network’s input in a manner which produces high-level view or attribute

changes upon decoding. In this way, different angles of view, light directions, and de-

formations, for example, can be generated from a single input image. In one embod-

iment, the training process for the conditional transformation units can be designed

to form a semi-group {Φt}t≥0 of operators:

i.e.

 Φ0 = id

Φt+s = Φt ◦ Φs ∀ t, s ≥ 0

(3.1)

defined on the latent space and trained to follow the geometric flow corresponding

to a specified attribute. In the context of rotating three-dimensional objects, for

example, the transformation units are trained on the input images paired with several

target outputs corresponding to different angles of rotation; the network then uses

conditioning information, which specifies the angle by which the object should be

rotated, to select the appropriate transformation unit. In this context, the semi-
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group criteria corresponds to the fact that rotating an object 10 degree twice should

align with the result of rotating the object by 20 degree once.

Since the encoder and decoder are not influenced by the specified angle of rotation,

the network’s encoding/decoding structure learns to model objects at different angles

simultaneously; the single, low-dimensional latent representation of the input contains

all information required to produce rotated views of the original object. Other em-

bodiments can depart with this semi-group formulation, however, training conditional

transformation units to instead produce a more diverse collection of non-sequential

viewpoints, for example, as is the case for multi-view hand synthesis.

To enforce this behavior on the latent space CTU mappings in practice, a con-

sistency term is introduced into the loss function, as specified in Equation 3.2. This

loss term is minimized precisely when the CTU mappings behave as depicted in Fig-

ure 3.1; in particular, the output of the CTU mapping associated with a particular

transformation is designed to match the encoding of the associated ground truth tar-

get view. More precisely, given an input image x, the consistency loss associated with

the kth transformation is defined in terms of the ground truth, transformed target

view yk by:

Lconsist =
∥∥Φk(Encode[x]) − Encode[yk]

∥∥
1

(3.2)

3.1.2 Conditional discriminator unit and loss function

The discriminator used in the adversarial training process is also passed condition-

ing information which specifies the transformation which the model has attempted

to make. The Conditional Discriminator Unit (CDU), which is implemented as a

convolutional layer with modular weights similar to the CTU, is trained to specif-

ically identify unrealistic artifacts which are being produced by the corresponding

conditional transformation unit mappings. This is accomplished by maintaining in-

dependent convolutional kernel weights for each specified target view and using the

conditioning information passed to the discriminator to select the kernel weights for
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the CDU layer. The incorporation of this context-aware discriminator structure has

significantly boosted the performance of the network (see Table 3.3). The discrimina-

tor, D, is trained using the adversarial loss term LDadv defined below in Equation 3.3.

The proposed model uses the adversarial loss in Equation 3.4 to effectively capture

multimodal distributions [110], which helps to sharpen the generated views.

LDadv = − logD(yk, ωk) − log
(
1−D(ŷk, ωk)

)
(3.3)

Ladv = − logD(ŷk, ωk) (3.4)

Reducing the total variation is widely used in view synthesis methods [29, 33].

In particular, the Lsmooth term is used to reduce noise in the generated images by

reducing the variation of pixels, which is inspired by total variation image denoising.

Experimental evidence shows that the inclusion of the Lsmooth loss term leads to

an improvement in the overall quality of the synthesized images (see Table 3.3).

We have experimented with various shift sizes and found that the shift size τ =

1 yields the best performance. Additional loss terms corresponding to accurate

structural reconstruction and smoothness [111] in the generated views are defined in

Equations 3.5 and 3.6:

Lrecon = ‖ ŷk − yk ‖22 (3.5)

Lsmooth =
∑

i∈{0,±1}

∑
j∈{0,±1}

∥∥ ŷk − τi,j ŷk
∥∥
1

(3.6)

where yk is the modified target image corresponding to an input x, ωk are the weights

of the CDU mapping corresponding to the kth transformation, Φk is the CTU mapping

for the kth transformation, ŷk = Decode
(
Φk

(
Encode[x]

))
is the network prediction,

and τi,j is the two-dimensional, discrete shift operator. The final loss function for the

encoder and decoder components is given by:

L = λ · Ladv + ρ · Lrecon + γ · Lsmooth + κ · Lconsist (3.7)

with hyperparameters typically selected so that λ, ρ � γ, κ. The consistency loss

is designed to guide the CTU mappings toward approximations of the latent space
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mappings which connect the latent representations of input images and target images

as depicted in Figure 3.1. In particular, the consistency term enforces the condition

that the transformed encoding, l̂yk = Φk(Encode[x]), approximates the encoding of

the kth target image, lyk = Encode[yk], during the training process.

3.2 Task-Divided Decoder

The decoding process has been divided into three tasks: estimating the refine-

ment map, pixel-values, and RGB color balance of the dataset. We have found this

decoupled framework for estimation helps the network converge to better minima to

produce sharp, realistic outputs without additional loss terms. The decoding pro-

cess begins with a series of convolutional layers followed by bilinear interpolation

to upsample the low resolution latent information. The last component of the de-

Fig. 3.3. Proposed task-divided design for the LTNN decoder. The coarse
pixel value estimation map is split into RGB channels, rescaled by the
RGB balance parameters, and multiplied element-wise by the refinement
map values to produce the final network prediction.
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coder’s up-sampling process consists of two distinct convolutional layers used for task

divided; one layer is allocated for predicting the refinement map while the other is

trained to predict pixel-values. The refinement map layer incorporates a sigmoidal

activation function which outputs scaling factors intended to refine the coarse pixel

value estimations; the pixel-value estimation layer does not use an activation so that

the output values are not restricted to the range of a specific activation function.

RGB balance parameters, consisting of three trainable variables, are used as weights

for balancing the color channels of the pixel value map. The Hadamard product, �,

of the refinement map and the RGB-rescaled value map serves as the network’s final

output:

ŷ = [ ŷR, ŷG, ŷB ] where

ŷC = θC · ŷ value
C � ŷ refine

C for C ∈ {R,G,B}
(3.8)

In this way, the network has the capacity to mask values which lie outside of the

target object (i.e. by setting refinement map values to zero) which allows the value

map to focus on the object itself during the training process. Experimental results

show that the refinement maps learn to produce masks which closely resemble the

target objects’ shapes and have sharp drop-offs along the boundaries. No additional

information has been provided to the network for training the refinement map; the

masking behavior illustrated in Figures 3.3 and 3.6 is learned implicitly by the network

during training, and is made possible by the design of the network’s architecture. As

seen in Figure 3.3, the refinement map produces a shape mask and mask out errors

in each pixels by masking values which lie outside of the target object (i.e. by setting

refinement map values to zero).

3.3 Architecture Details

The overview of the pipeline is shown in Figure 6.1. Input images are passed

through a Block v1 collaborative filter layer (see Figure 3.4) along with a max pool-

ing layer to produce the features at the far left end of the figure. At the bottle-neck

between the encoder and decoder, a conditional transformation unit (CTU) is applied
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to map the 2×2 latent features directly to the transformed 2×2 latent features on

the right. This CTU is implemented as a convolutional layer with 3×3 filter weights

selected based on the conditioning information provided to the network. The features

near the end of the decoder component are processed by two independent convolution

transpose layers for non-rigid object and bilinear interpolation for the rigid object:

one corresponding to the value estimation map and the other corresponding to the

refinement map. The channels of the value estimation map are rescaled by the RGB

balance parameters, and the Hadamard product is taken with the refinement map to

produce the final network output. For rigid object experiment, we added tangent hy-

perbolic activation function after the Hadamard product to bound the output values

range in [-1,1]. The CDU is also designed to have the same 3×3 kernel size as the

CTU and is applied between the third and fourth layers of the discriminator.

For the stereo face dataset [112] experiment, we have added an additional Block v1

layer in the encoder and additional convolutional layer followed by bilinear interpola-

tion in decoder to utilize the full 128×128×3 resolution images and two Block v1 lay-

Fig. 3.4. Layer definitions for Block v1 and Block v2 collaborative filters.
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ers and two convolutional layer followed by bilinear interpolation for the 256×256×3

resolution image of rigid object views.

The encoder incorporates two main block layers, as defined in Figure 3.4, which

are designed to provide efficient feature extraction; these blocks follow a similar de-

sign to that proposed by [113], but include dense connections between blocks, as

introduced by [114]. We normalize the output of each network layer using the batch

normalization method as described in [115]. For the decoder, we have opted for a

minimalist design, inspired by the work of [72]. Standard convolutional layers with

3 × 3 filters and same padding are used through the penultimate decoding layer,

and transpose convolutional layers with 1 × 1 filters for non-rigid objects and 5 × 5

for other experiments. We have used same padding to produce the value-estimation

and refinement maps. All parameters have been initialized using the variance scaling

initialization method described in [116].

Our method has been implemented and developed using the TensorFlow frame-

work. The models have been trained using stochastic gradient descent (SGD) and

Fig. 3.5. The proposed network structure for the encoder/decoder (left)
and discriminator (right). Features have been color-coded according to
the type of layer which has produced them.
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the ADAM optimizer [117] with initial parameters: learning rate = 0.005, β1 =

0.9, and β2 = 0.999 (as defined in the TensorFlow API r1.6 documentation for

tf.train.AdamOptimizer), along with loss function hyper parameters: λ = 0.8, ρ

= 0.2, γ = 0.000025, and κ = 0.00005 (as introduced in Equation 3.7). The dis-

criminator is updated once every two encoder/decoder updates, and one-sided label

smoothing [110] has been used to improve stability of the discriminator training pro-

cedure.

3.4 Experiments

We conduct experiments on a diverse collection of datasets including both rigid

and non-rigid objects. To show the generalizability of our method, we have conducted

a series of experiments: (i) hand pose estimation using a synthetic training set and

real NYU hand depth image data [118] for testing, (ii) synthesis of rotated views of

rigid objects using the 3D object dataset [52], (iii) synthesis of rotated views using

a real face dataset [112], and (iv) the modification of a diverse range of attributes

on a synthetic face dataset [119]. For each experiment, we have trained the models

using 80% of the datasets. Since ground truth target depth images were not available

for the real hand dataset, an indirect metric has been used to quantitatively evalu-

ate the model as described in Section 3.4.2. Ground truth data was available for all

other experiments, and models were evaluated directly using the L1 mean pixel-wise

error and the Structural Similarity Index Measure (SSIM) [120] used in [29,108]. To

evaluate the proposed framework with existing works, two comparison groups have

been formed: conditional inference methods, CVAE-GAN [28] and CAAE [33], with

comparable hourglass structures for comparison on experiments with non-rigid ob-

jects, and view synthesis methods, MV3D [30], M2N [108], AFN [31], and TVSN [29],

for comparison on experiments with rigid objects. Additional ablation experiments

have been performed to compare the proposed CTU conditioning method with other
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conventional concatenation methods (see Figure 3.2); results are shown in Figure 3.8

and Table 3.3.

3.4.1 Experiment on rigid objects

Rigid object experiment: We have experimented with novel 3D view synthesis

tasks given a single view of an object with an arbitrary pose. The goal of this

experiment is to synthesize an image of the object after a specified transformation or

change in viewpoint has been applied to the original view. To evaluate our method in

the context of rigid objects, we have performed a collection of tests on the chair and

car datasets. Given a single input view of an object, we leverage the LTNN model

to produce °360 views of the object. We have tested our model’s ability to perform

°360 view estimation on 3D objects and compared the results with the other state-

of-the-art methods. The models are trained on the same dataset used in M2N [108].

The car and chair categories from the ShapeNet [121] 3D model repository have been

rotated horizontally 18 times by °20 along with elevation changes of °0, °10, and °20.

Table 3.1.
FLOPs and parameter counts corresponding to inference for a single im-
age with resolution 256×256×3. These calculations are based on code
provided by the authors and the definitions prescribed in the associated
papers. Smaller numbers are better for parameters and GFLOPs/Image.

Model Parameters (Million) GFLOPs / Image

Ours 17.0 2.183

M2N 127.1 341.404

TVSN 57.3 2.860

AFN 70.3 2.671

MV3D 69.7 3.056
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Fig. 3.6. Qualitative comparison of °360 view prediction of rigid-objects.
A single image, shown in the first column of the “Ground” row, is used
as the input for the network. Results are shown for the proposed network
with and without task-division “w/o TD”.

The M2N and TVSN results are slightly better for the car category, however these

works have incorporated skip connections between the encoder layers and decoder lay-

ers, proposed in U-net [122], which substantially increases the computational demand

for these networks (see Table 3.1). As can be seen in Tables 3.1 and 3.2, the proposed

model is comparable with existing models specifically designed for the task of multi-

view prediction while requiring the least FLOPs for inference compared with all other

methods. The low computational cost of the LTNN model highlights the efficiency of

the CTU/CDU framework for incorporating conditional information into the network



30

Table 3.2.
Quantitative comparison for °360 view synthesis of rigid objects. Smaller
numbers are better for L1 and higher numbers are better for SSIM. We per-
formed ablation experiment with and without Task-divided Decoder (TD)
and compared with other methods.

Car Chair

Model SSIM L1 SSIM L1

Ours .902 .121 .897 .178

Ours (w/o TD) .861 .187 .871 .261

M2N .923 .098 .895 .181

TVSN .913 .119 .894 .230

AFN .877 .148 .891 .240

MV3D .875 .139 .895 .248

for view synthesis. Moreover, as seen in the qualitative results provided in Figure 3.6,

using a task-divided decoder helps to eliminate artifacts in the generated views; in

particular, the spokes on the back of the chair and the spoiler on the back of the car

are seen to be synthesized much more clearly when using a task-divided decoder.

3.4.2 Experiment on non-rigid objects

Hand pose experiment: To assess the performance of the proposed network on

non-rigid objects, we consider the problem of hand pose estimation. As the number

of available view points of a given hand are increased, the task of estimating the

associated hand pose becomes significantly easier [106]. Motivated by this fact, we

synthesize multiple views of a hand given a single view and evaluate the accuracy

of the estimated hand pose using the synthesized views. The underlying assumption

of the assessment is that the accuracy of the hand pose estimation will be improved

precisely when the synthesized views provide faithful representations of the true hand
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Fig. 3.7. Comparison of CVAE-GAN (top) with proposed LTNN model
(bottom) using the noisy NYU hand dataset [118]. The input depth-
map hand pose image is shown to the far left, followed by the network
predictions for 9 synthesized view points. The views synthesized using
LTNN are seen to be sharper and also yield higher accuracy for pose
estimation (see Figure3.10).

pose. Since ground truth predictions for the real NYU hand dataset were not

available, the LTNN model has been trained using a synthetic dataset generated

using 3D mesh hand models. The NYU dataset does, however, provide ground truth

coordinates for the input hand pose; using this we were able to indirectly evaluate

the performance of the model by assessing the accuracy of a hand pose estimation

method using the network’s multi-view predictions as input.

More specifically, the LTNN model was trained to generate 9 different views which

were then fed into the pose estimation network from Choi et al. [123] (also trained

using the synthetic dataset). For an evaluation metric, the maximum error in the

predicted joint locations has been computed for each frame (i.e. each hand pose in the

dataset). The cumulative number of frames with maximum error below a threshold

distance εD have then been computed, as is commonly used in hand pose estimation

tasks [123, 124]. A comparison of the pose estimation results using synthetic views

generated by the proposed model, the CVAE-GAN model, and the CAAE model are

presented in Figure 3.8, along with the results obtained by performing pose estimation

using the single-view input frame alone. In particular, for a threshold distance εD =

40mm, the proposed model yields the highest accuracy with 61.98% of the frames
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having all predicted joint locations within a distance of 40mm from the ground truth

values. The second highest accuracy is achieved with the CVAE-GAN model with

45.70% of frames predicted within the 40mm threshold.

A comparison of the quantitative hand pose estimation results is provided in

Figure 3.8 where the proposed LTNN framework is seen to provide a substantial

improvement over existing methods; qualitative results are also available in Figure 3.7.

Ablation study results for assessing the impact of individual components of the LTNN

model are also provided in Figure 3.8; in particular, we note that the inclusion of the

CTU, CDU, and task-divided decoder each provide significant improvements to the

performance of the network. With regard to real-time applications, the proposed

Fig. 3.8. Left figure shows Quantitative evaluation for multi-view hand
synthesis using the real NYU dataset. Right figure shows LTNN ablation
experiment results and comparison with alternative conditioning frame-
works using synthetic hand dataset. Our models: Conditional Transfor-
mation Unit (CTU), Conditional Discriminator Unit (CDU), Task-divide
Decoder (TD), and LTNN consisting of all previous components. Alter-
native concatenation methods: CHannel-wise Concatenation (CH Con-
cat), Fully Connected Concatenation (FC Concat), and Reshape fully
connected feature vector Concatenation (RE Concat).
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model runs at 114 fps without batching and at 1975 fps when applied to a mini-batch

of size 128 (using a single TITAN Xp GPU and an Intel i7-6850K CPU).

Real face experiment: We have also conducted an experiment using a real

face dataset to show the applicability of LTNN for real images. The stereo face

database [112], consisting of images of 100 individuals from 10 different viewpoints,

was used for experiments with real faces. These faces were first segmented using the

method of [125] and then we manually cleaned up the failure cases. The cleaned

faces have been cropped and centered to form the final dataset. The LTNN model

Fig. 3.9. Qualitative evaluation for view synthesis of real faces using the
image dataset [112].
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Fig. 3.10. Left figure shows quantitative evaluation with SSIM of model
performances for experiment on the real face dataset [112]. Higher values
are better. Right figure shows Quantitative evaluation with L1 of model
performances for experiment on the real face dataset [112]. Lower values
are better.

was trained to synthesize images of input faces corresponding to three consecutive

horizontal rotations. Qualitative results for the real face experiment are provided

in Figure 3.9; in particular, we note that the quality of the views generated by the

proposed LTNN model is consistent for each of the four views, while the quality of

the views generated using other methods decreases substantially as the change in

angle is increased. This illustrates the advantage of using CTU mappings to navigate

the latent space and avoid the accumulation of errors inherent to iterative methods.

Moreover, as shown in Figures 3.10, the LTNN model provides substantial improve-

ments to alternative methods with respect to the SSIM and L1 metrics and converges

much faster as well.

3.4.3 Diverse attribute exploration

To evaluate the proposed framework’s performance on a more diverse range of

attribute modification tasks, a synthetic face dataset and other conditional generative

models, CVAE-GAN and CAAE, with comparable hourglass structures to the LTNN

model have been selected for comparison. The generated images from the LTNN
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model are available in Figure 3.11. These models have been trained to synthesize

discrete changes in elevation, azimuth, light direction, and age from a single image. As

shown in Table 3.4 and 3.5, the LTNN model outperforms the CVAE-GAN and CAAE

models by a significant margin in both SSIM and L1 metrics; additional quantitative

results are provided in Table 3.3, along with a collection of ablation results for the

LTNN model.

Multiple attributes can also be modified simultaneously using LTNN by com-

posing CTU mappings. For example, one can train 4 CTU mappings {Φlight
k }3k=0

corresponding to incremental changes in lighting and 4 CTU mappings {Φazim
k }3k=0

corresponding to incremental changes in azimuth. In this setting, the network predic-

tions for lighting and azimuth changes correspond to the values of Decode[Φlight
k (lx)]

and Decode[Φazim
k (lx)], respectively (where lx denotes the encoding of the original

input image). To predict the effect of simultaneously changing both lighting and

azimuth, we can compose the associated CTU mappings in the latent space; that is,

Fig. 3.11. Simultaneous learning of multiple attribute modifications. Az-
imuth and age (left), light and age (center), and light and azimuth (right)
combined modifications are shown. The network has been trained using
4 CTU mappings per attribute (e.g. 4 azimuth mappings and 4 age map-
pings); results shown have been generated by composing CTU mappings
in the latent space and decoding.
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Table 3.3.
Ablation/comparison results of six different conventional alternatives for
fusing condition information into the latent space and ablation study of
conditional transformation unit (CTU), conditional discriminator unit
(CDU), and task-divided decoder (TD). For valid comparison we used
identical encoder, decoder, and training procedure with synthetic face
dataset. CC, RC, and C stands for channel concatenation, reshape con-
catenation, and concatenation, respectively.

Elevation Azimuth Light Direction Age

Model SSIM L1 SSIM L1 SSIM L1 SSIM L1

LTNN .923 .107 .923 .108 .941 .093 .925 .102

LTNN w/o Lsmooth .918 .118 .921 .114 .935 .112 .911 .110

CTU + CDU .901 .135 .908 .125 .921 .121 .868 .118

CTU .889 .142 .878 .135 .901 .131 .831 .148

CC + Conv .803 .179 .821 .173 .816 .182 .780 .188

2-FC + C + 2-FC .674 .258 .499 .355 .779 .322 .686 .243

2-FC + C + FC .691 .233 .506 .358 .787 .316 .687 .240

FC + C + 2-FC .673 .261 .500 .360 .774 .346. .683 .249

FC + C + FC .681 .271 .497 .355 .785 .315. .692 .246

RC + FC .671 .276 .489 .357 .780 .318 .685 .251

we may take our network prediction for the lighting change associated with Φlight
i

combined with the azimuth change associated with Φazim
j to be:

ŷ = Decode[ l̂y ] where

l̂y = Φlight
i ◦ Φazim

j (lx) = Φlight
i

[
Φazim

j (lx)
] (3.9)

3.4.4 Near-Continuous Attribute Modification

Near continuous attribute modification is also possible within the proposed frame-

work; this can be performed by a simple, piecewise-linear interpolation procedure in
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Table 3.4.
Quantitative results for light direction and age modification on the syn-
thetic face dataset.

Light Direction Age

Model SSIM L1 SSIM L1

Ours .941 .093 .925 .102

CVAE-GAN .824 .209 .848 .166

CAAE .856 .270 .751 .207

Table 3.5.
Quantitative results for azimuth and elevation modification on the syn-
thetic face dataset.

Elevation Azimuth

Model SSIM L1 SSIM L1

Ours .923 .107 .923 .108

CVAE-GAN .864 .158 .863 .180

CAAE .777 .175 .521 .338

the latent space. For example, we can train 9 CTU mappings {Φk}8k=0 correspond-

ing to incremental °7 changes in elevation {θk}8k=0. The network predictions for an

elevation change of θ0 = °0 and θ1 = °7 are then given by the values Decode[Φ0(lx)]

and Decode[Φ1(lx)], respectively (where lx denotes the encoding of the input image).

To predict an elevation change of °3.5, we can perform linear interpolation in the

latent space between the representations Φ0(lx) and Φ1(lx); that is, we may take our

network prediction for the intermediate change of °3.5 to be:

ŷ = Decode[ l̂y ] where l̂y = 0.5 · Φ0(lx) + 0.5 · Φ1(lx) (3.10)
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More generally, we can interpolate between the latent CTU map representations

to predict a change θ via:

ŷ = Decode[ l̂y ] where l̂y = λ · Φk(lx) + (1− λ) · Φk+1(lx) (3.11)

where k ∈ {0, . . . , 7} and λ ∈ [0, 1] are chosen so that θ = λ·θk + (1−λ)·θk+1. In this

way, the proposed framework naturally allows for continuous attribute changes to be

approximated while only requiring training for a finite collection of discrete changes.

Qualitative results for near continuous attribute modification on the synthetic face

dataset are provided in Figure 3.12; in particular, we note that views generated by the

network effectively model gradual changes in the attributes without any noticeable

degradation in quality. This highlights the fact that the model has learned a smooth

latent space structure which can be navigated effectively by the CTU mappings while

maintaining the identities of the original input faces.

Fig. 3.12. Near continuous attribute modification is attainable using
piecewise-linear interpolation in the latent space. Provided a gray-scale
image (corresponding to the faces on the far left), modified images cor-
responding to changes in light direction (first), age (second), azimuth
(third), and elevation (fourth) are produced with 17 degrees of varia-
tion. These attribute modified images have been produced using 9 CTU
mappings, corresponding to varying degrees of modification, and linearly
interpolating between the discrete transformation encodings in the latent
space.
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3.5 Conclusion and Discussion

In this work, we have introduced an effective, general framework for incorporating

conditioning information into inference-based generative models. We have proposed a

modular approach to incorporating conditioning information using CTUs and a con-

sistency loss term, defined an efficient task-divided decoder setup for deconstructions

the data generation process into manageable subtasks, and shown that a context-

aware discriminator can be used to improve the performance of the adversarial train-

ing process. The performance of this framework has been assessed on a diverse range

of tasks and shown to perform comparable with state-of-the-art methods while re-

ducing computational operations and memory consumption.
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4. FUSING SURFACE AND VOLUMETRY OF OBJECTS

Technical advancement of 3D printing, virtual reality, and augmented reality has

greatly increased the interest of handling three-dimensional shapes such as three-

dimensional object synthesis [16,19,20], reconstruction [55,70], and classification [126],

which has been deeply studied in computer design communities [58,127–130]. Emer-

gence of neural networks and creation of large-scale three-dimensional object datasets [52,

56] inspired researchers to rediscover three-dimensional object representation learn-

ing and synthesis with view-based projections [45], polygon meshes [131, 132], point

clouds [16, 133], and voxelized three-dimensional objects in voxel grids [26, 134]. In

this work, we utilize complementary properties of surface and volumetric representa-

Fig. 4.1. Overview of PG-Net. The encoder encodes IV of the objects,
and the decoder synthesizes IV, MC, and ISA. A diverse 3D object from
a specified category is synthesized given a one-hot encoded class vector
and a noise vector from the normal distribution. During the test stage,
the encoder is removed from the pipeline. Noise vector z is concatenated
with a one-hot vector.
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tions to learn the features of shapes with a proposed framework named Part Geometry

Network (PG-Net) that synthesizes realistic objects as a conditional generative model.

Many works [5,6,135,136] have showed that jointly solving multiple tasks, named

multi-task learning [7], helps improving generalizability of estimation models. From

this motivation, we adopt multi-task learning to optimize PG-Net.

Surface representation imposes boundary and connectivity information of each

part of an object [8–10], and volumetric representation determines interior geometry

which is used for heat flow calculation [11,12]. However, using these two representa-

tions for multi-task learning has not been well-examined for learning compact object

representations and synthesizing objects. Surface and volumetric representations of

objects contain unique features that can be complementary.

We used these modalities for multi-task learning to enhance generalizability of the

model by designing the model to estimate surface and volumetric representations with

the encoder-decoder structure. Knowing both surface and volumetric representations

is crucial for learning not only a perceptual set of attributes but also the connectivity

of each part of objects and the details of local interior regions, hence reducing defects

in synthesized objects. In this way, the model learns surface properties to learn the

interior volumetric representations of objects and vice-versa [7].

Part geometry of objects is critical to learn object distribution with parametric

models [53,137,138] since objects are combinations of specific parts. However, learning

part geometry is not trivial because defining the boundary of each part is a complex

problem since parts can be connected in many different ways.

Each part has their own unique shape and location for their purpose [139], which

creates unique part geometry. Therefore, we propose Part-Identifier which learns

part geometry for learning each part as depicted in Figure 4.2 (a). Part-Identifier

shares the part geometry information with other networks through back-propagating

the meaningful gradients during training. With the understanding of part geometry,

PG-Net can generate realistic objects.
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Fig. 4.2. Part-Identifier and part interpolation. (a) Part-Identifier is opti-
mized to predict the location, volume, and surface area of parts. (b) Mesh
models are expanded by relocating vertices of parts that expand searching
space of optimization process.

However, current datasets [52, 56] have been assembled by collecting individual

objects, and therefore, each part of the objects are unique. For this reason, the

datasets can not effectively share the information of parts among similar models. This

makes it hard to learn connectivity between each part in the objects. To alleviate the

shortage of current datasets, we expanded the dataset [140] which has part-labeled

triangle mesh models by reshaping specific parts of objects as shown in Figure 4.2

(b). We also demonstrated ablation studies and comparison experiments with other

methods. We performed an object synthesis with a one-hot encoded class vector and a

vector from normal distribution. For evaluating shape representations obtained from

PG-Net, we performed two applications: object reconstruction and classification.

From our experiments our proposed method outperformed the other state-of-the-

art methods in three-dimensional object synthesis [24, 39], reconstruction [70], and

classification [16,23,141–144].

Intersected Surface Area (ISA), which calculates intersected area within a cubic

voxel for all voxels in defined voxel grids, was introduced by Yarotsky [131]. ISA



43

Fig. 4.3. Object representation modalities. (a) is the Intersected Sur-
face Area (ISA) in a cubic voxel, (b) is the final representation in voxel
grids of Mean Curvature (MC), and (c) is the Interior Volumetric (IV)
representations of an object.

Table 4.1.
Complementary properties of three different modalities.

Properties IV MC ISA

Surface area information X

Local curvature X

Volume information X

contains the surface area value of each voxel grid as depicted in Figure 4.3 (a). The

Mean Curvature (MC), noted as H, is the mean value of maximum and minimum

curvatures, which are extrinsic measures of curvature. We also tested 2-ring and 3-

ring neighborhoods of vertices for mean curvature calculation in triangle mesh models,

but the result was the best when using a 1-ring neighborhood. Therefore, we used 1-

ring neighborhood for mean curvature and assigned the values into voxel grids, which

are illustrated in Figure 4.3 (b).

Interior Volume (IV) is a collection of Boolean values in voxel grids as shown

in Figure 4.3 (c). In IV, if the cubic voxel is enclosed by the surface of an object;
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then, the voxel value is assigned as true. These three modalities have complimentary

properties, and it is listed in Table 4.1.

Generator is the combination of the decoder and refiner. H and isa are mean

curvature and intersected surface area in a voxel, respectively. pli, pvi and psi are a

{x, y, z} Cartesian coordinate of central location, volume, and surface area, respec-

tively, where the lower index i ∈ {Body, Wheel, ... Legs} is the index of each part of

objects. The noise vector z ∈ RK is a vector of µ+ r� exp(ε), where r ∼ N(0, 1), N

is normal distribution, and � is an element-wise multiplication. We experimentally

found that the model performs best when K is 200. The performance of the model

is slightly lower than when K is 100 or 300 as listed in Table 4.4. The normal dis-

tribution minimizes the mode collapse problem of GAN by incorporating VAE [28].

µ and ε are the mean and covariance of the latent vector from the encoder. pd is

data distribution, and pz is a prior distribution of the decoder. v ∈ Bn3
,where n

determines the resolution of the voxel grids, represents an object of Boolean voxels

from true data distribution. All values of v are initialized as zeros and iterates over

each voxel to assign one if a voxel is located at the inside of the closed surface or

intersected with the surface of the object.

4.1 Learning Strategies

4.1.1 Multi-task Learning

In PG-Net, the decoder estimates three modalities as multiple tasks. PG-Net

estimates MC and ISA which are surface modalities because recent works [145, 146]

showed that surface properties are informative for data-driven representation learn-

ing. As shown in section 4.4.2, unlike a volumetric-representation-alone framework,

consolidating surface knowledge penalizes inaccurate surface estimates. Therefore,

we designed the decoder to estimate MC and ISA of objects along with IV, which is

illustrated in Figure 4.1 b. We further experimented with surface normal vectors, but

the result was not better than using curvature and surface area information together.



45

This is because surface normal vectors are sensitive to orientation. As one of the

tasks, the decoder was optimized to learn the surface representation by minimizing

the cost function Lsurf :

∑
k

||îsa − isa||1 + λ ·
∑
k

||Ĥ −H||1 (4.1)

, where λ is a hyper-parameter and k ∈ {1, 2, 3 . . . n3}. n3 is the total number

of voxels in the voxel grid. Therefore, n represent the resolution of the voxel grids.

isa and H are intersection area and mean curvature per each voxel in the voxel

grid, respectively. îsa and Ĥ indicate that the values are sampled from the decoder.

Another task is estimating volumetric representation of objects. PG-Net learns

interior volume information of objects by minimizing sum of Sigmoid Cross-Entropy

loss Lvol:

−v log(D(z)) − (1− v) log(1−D(z)) (4.2)

In terms of the learning strategy, synthesizing IV, MC, and ISA with a single de-

coder solves multiple tasks. Expressed mathematically, encoder-decoder is optimized

to jointly minimize the cost functions Lmulti−task:

Lvol + κ · Lsurf (4.3)

,where κ is a hyperparameter. Jointly, learning both surface and volumetric repre-

sentations is an informative way to discriminate objects because they provide com-

plementary information of objects [147]. Therefore, PG-Net uses the knowledge of

surface and volumetric representations for learning object distribution in a three-

dimensional space.

4.1.2 Objective Function

Adversarial training has been remarkably successful for synthesizing images and

objects [29]. The goal of adversarial training is finding equilibrium between a genera-
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tor and discriminator by playing a minimax game between the generator and discrim-

inator. Motivated by adversarial training, we experimented with an adversarial loss

term [14] and found that high fidelity objects are generated. The discriminator dis-

criminates fake objects from model distribution and true objects from the database.

To enhance the stability of adversarial training, we used the least square adversarial

loss Lgan [148]:

Ldiscriminator = Ez∼pz(z)[(D(R(D(z))))2] + Ev∼pdata(v)[(D(v)− 1)2] (4.4)

Lgenerator = Ez∼pz(z)[(D(R(D(z)))− 1)2] (4.5)

Lgan = Ldiscriminator + Lgenerator (4.6)

Additionally, to synthesize objects given z, we minimize the gap between pz(z)

which is from normal distribution and three-dimensional object distribution in the

latent space [28] by minimizing LKL:

µTµ+ sum(exp(ε)− ε− 1) (4.7)

These losses are jointly minimized in Ltotal which is shown in Equation 4.10 and

minimizing process is described in Section 4.3.

The refiner is composed of an hourglass architecture [149] which is shown in Fig-

ure 4.1 c and refines coarse objects from the decoder by consolidating estimated three

modalities. We found that sometimes the estimation of three modalities are not ac-

curate or consistent. To avoid these problems, we designed the refiner to penalize

poorly estimated modalities from the decoder with Sigmoid Cross-Entropy loss Lref :

−v log(R(D(z))) − (1− v) log(1−R(D(z))) (4.8)
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For training the refiner, we jointly trained it with Part-Identifier by optimizing

the cost function Ltotal:

α · Lgan + β · LP + γ · Lref + LKL (4.9)

LP is defined as Equation 4.10. The refiner and discriminator are optimized with

Ltotal.

4.2 Object Geometry Constraints

Part geometry is an important factor to understand three-dimensional object

space [71]. From this motivation, we propose Part-Identifier for learning part ge-

ometry, which is shown in Figure 4.1 e. To expand the learning space of each part

of an object, we further augmented objects by interpolating the parts of the objects

such as wings of an airplane.

4.2.1 Part-Identifier

Part-Identifier in PG-Net estimates part geometry information, and the infor-

mation is back-propagated through the pipeline of PG-Net. For learning the part

geometry, we considered using point-wise segmentation of parts. However, it was

computationally expensive since it needs to add an additional decoder module with

3D de-convolutional layers, and therefore, we regressed the center location, surface

area, and the volume of each part. The position of the central coordinate, surface

area, and the volume of each part are normalized by dividing the resolution of voxel

grids, the surface area, and the volume of the object, respectively. Volume and sur-

face area of parts impose meaningful information of objects such as relations of each

part. Part-Identifier implicitly learns the relationship between different parts and

part geometry by estimating the locations, volumes and surface areas of parts. This
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module guides the generator towards lower local/global minima by minimizing the

Lp:

∑
i

||p̂li − pli||1 + ||p̂si − psi||1 + ||p̂vi − pvi||1 (4.10)

,where i ∈ {Body, Wheel, ... Legs}, the index of each part. Part-Identifier is opti-

mized by minimizing Lp.

4.2.2 Part expansion

The goal of part expansion is to capture part geometry effectively and broaden

the learning space for optimizing PG-Net. In order to create our dataset, named

Expanded, we augmented Projective dataset [140] which consists of mesh models that

were converted from the subset point cloud objects of the Scalable dataset [150].

Scalable dataset consists of 93,000 shape parts with semantic per-point region labels.

Projective dataset has part annotations that every vertices of object are labeled

by part indices. Therefore, by relocating the vertices belonging to specific part group

into the predefined direction, we augmented data while preserving the overall shape

of the original object as shown in Figure 4.

We carefully choose parts an group for part expansion in each class as illustrated

in Table 4.2. To preserve the overall shape of an object, we predefined the rescaling

direction and constraint of each part. For example, we rescale the top parts of tables

to (x, y) plane, and leg part to a direction z axis on Cartesian coordinate. Then we

filtered out expanded data based on the constraint that the horizontal surface area of

the top part cannot be smaller than the leg part. The detailed directions and scale

ratios for part expansion is explained in the supplementary document. Additionally,

we defined the sub-groups for specific parts vertices because the expansion direction

of each group should be different to preserve the part structure of the object. For

instance, the expansion direction of left-wing and right-wing in the Airplane class
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Fig. 4.4. Example of part expansion. Each part of tables is expanded
by relocating vertices of parts to share each part information within the
object. Parts are numbered based on their scaling proportion.

must be the opposite and the Wheel part of the Car class is a similar case. The

vertices in these parts share part labels but have more than one sub-groups. To

define different expansion directions for each group in the same parts, we further

sub-grouped the vertices within the same group. We applied Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) for these parts to grouping the

vertices. We filtered out clusters which do not fit into the major group. For example,
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when we perform DBSCAN on the wing part of airplane class, it must have two

clusters. Therefore, we left the largest two groups and filtered out the other groups.

After this process, we further manually validated clusters to ensure the structure of

object. This process help expansion because one mislabeled vertex ruins the shape of

the overall parts while expanding the parts. In the final stage, we manually filtered

out odd-looking expanded objects. After the dataset augmentation, we added the

Scalable dataset [140] to the Expanded to increase the diversity of objects. The

statistics of our dataset are detailed in Table 4.3.

Table 4.2.
Parts for Expanded dataset creation.

Classes Interpolated Parts

Airplane Body Wings

Bag Handle Case

Cap Crown Brim

Car Roof Wheel Hood

Chair Back Seat Leg

Lamp Legs Base Shade

Mug Cup Handle

Table Top Leg

4.3 Architecture Details

Implementation details

We used two NVIDIA TITAN Xp GPUs and an Intel i7-6850K CPU with 64GB

of RAM for all of our experiments. The artificial neural network was developed

with TensorFlow deep learning framework [151], which was accelerated by the CUDA

instruction for the GPU computation. The networks were optimized by using the
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Table 4.3.
Statistics of Expanded, Scalable [150], and Projective [140].

Classes Expanded (Ours) Scalable [150] Projective [140]

Airplane 36,018 2,690 500

Bag 666 76 76

Cap 477 55 55

Car 12,739 878 500

Chair 13,041 3,746 500

Lamp 13,014 1,546 500

Mug 1,629 184 184

Table 30,015 5,263 500

Total 107,599 14,438 2,815

ADAM optimizer [117] with the initial parameters: learning rate = 0.0025, β1 = 0.9,

and β2 = 0.999. For the hyper parameters, we used α = 0.5, β = 0.1, λ = 10−4, κ =

1, and γ = 0.1.

We trained PG-Net in two stages with a batch size of 16. In the first stage,

we trained the encoder and decoder separately from other networks with the cost

function Lmulti−task, which were converged approximately after 250 epochs. Then we

stacked the refiner, discriminator, and Part-Identifier for the second-stage training

and optimized the networks by minimizing Ltotal, which required approximately 200

epochs to converge. During the second-stage training, we did not update the encoder

and decoder. In order to improve the stability of training the discriminator, we

updated the refiner and Part-Identifier twice per each discriminator update to enhance

the stability of the learning process [15]. After training the second-stage, we jointly

updated all networks with the learning rate of 10−7, which required approximately

100 epochs to converge. We used the initial learning rates of 0.0005 and 0.0025 for

the first-stage and second-stage training, respectively. We dropped the running rate
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by half in every 25 epochs. For object synthesis, we synthesized the objects from z

∈ R200 which was sampled from a normal distribution N(0, 1) and a one-hot encoded

class vector.

The networks for synthesizing task convergence time of stage one and stage two

with Expanded dataset are 31 hours and 98 hours, respectively. Fitting time of

SVM classifier is 293 seconds on ModelNet40 and 46 seconds on ModelNet10. The

convergence time of the reconstruction application with EPN [70] dataset is 6 hours.

The synthesis, classification, and reconstruction inference time per object are 4.41

ms, 2.11 ms, and 6.72 ms, respectively. For inference time calculation, we averaged

the time of one thousand runs.

Network architecture specifications

Encoder consists of six Down Squeeze-and-Excitation Blocks (DSEB) shown in

the supplementary document with the numbers of output channels as {16, 32, 64,

128, 256, 512}. Zero padding is applied when the size of the output from a previous

layer is not divisible by two.

Decoder consists of three 2D convolution layers with bilinear interpolation, ker-

nel sizes {3, 3, 3}, stride sizes {1, 1, 1}, and output sizes {2×2×300, 5×5×150,

10×10×40}. The output from the last 2D convolution layer is passed into three Up

Squeeze-and-Excitation blocks shown in the supplementary document with output

sizes {64, 32, 3}. Between 2D convolution and 3D convolution layers, we reshape

10×10×40 tensor into 5×5×5×32 tensor.

Refiner is an hourglass structure. An encoder consists of three 3D convolution

layers with numbers of channels {8, 16, 32}, kernel sizes {3, 3, 3}, and stride sizes

{2, 2, 2}. We add batch normalization layer and Swish [109] activation function in

between the convolution layers. A decoder consists of three 3D convolution layers

with numbers of channels {32, 8, 1}, kernel sizes {3, 3, 3}, and stride sizes {1, 1, 1}.

We add batch normalization layer and Swish in between the convolution layers. 3D

interpolation is used to enlarge the output of the convolution layers by a factor of
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two. Swish is applied in between the interpolation layers and the convolution layers.

The outputs from the first and second layers of the encoder are concatenated with

the inputs of the third and second convolution layers of the decoder, respectively.

Part-Identifier consists of four DSEB layers with numbers of channels {64, 128,

256, 512}, kernel sizes {3, 3, 3, 3}, and stride sizes {4, 2, 2, 2}. Additionally, two

fully connected layers with output numbers {512, 100} are stacked onto the DSEB

layers.

Discriminator consists of four DSEB layers with numbers of channels {64, 128,

256, 512}, kernel sizes {3, 3, 3, 3}, and stride sizes {4, 2, 2, 2}. Additionally, two fully

connected layers with output numbers {512, 256} are stacked onto the DSEB layers.

The Swish activation function is replaced with the LeakyReLu activation function on

each DSEB layer.

4.4 Experiments

In this section, we present experimental validations and analysis of three-dimensional

object synthesis, classification, and reconstruction to validate the efficacy of PG-Net.

We used two standard large-scale three-dimensional object datasets: ModelNet [56]

and Expanded which is detailed in Table 4.3. For dataset splitting, we divided our

dataset into three sets: 70% as a training set, 10% as a validation set, and 20% as a

test set. We performed isosurface and Laplacian smoothing for object visualization

and used L1 metric for quantitative evaluation.

4.4.1 Dataset preprocessing

We preprocessed mesh models to ensure the existence of mean curvature per each

voxel grid. First, we voxelized the mesh models with the resolution of 403 voxel grids,

and then we used the marching-cubes algorithm [152] to regenerate triangle meshes

since voxelized objects are deformed from the original shape as depicted in Figure 4.5

Remeshed. We further smoothed the meshes with Laplacian smoothing [153] to re-



54

duce the variation of mean curvature as shown in Figure 4.5 Smoothed. From the

preprocessed meshes, we calculated MC and ISA and assigned in 403 voxel grids. For

the ISA extraction, we used SurfaceArea operation in a library [131] that computes

face areas within each cubic voxel. We obtained MC by calculating the average of

the minimum and maximum principal curvatures with 1-ring neighborhood distance.

After obtaining all data, we normalized and scaled them to be within the interval

[−1, 1].

Fig. 4.5. Comparing an original mesh with an isosurface from a vox-
elized object. The first column shows mean curvatures from an original
mesh. The second column shows mean curvatures from the mesh gener-
ated by marching-cubes algorithm given a voxelized object in 403 grids.
The third column shows mean curvatures from the smoothed mesh by
applying Laplacian smoothing with the second column mesh.
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Fig. 4.6. L1 loss plots of four experimental models on the test dataset.

4.4.2 Ablation study

Does multi-task and adversarial learning lead to the synthesis of better

quality objects? For the ablation study, we ran four experiments: (i) IV, which

only estimates volumetric representations of objects for training; (ii) IV+MC, which

estimates IV and MC; (iii) IV+MC+ISA, which estimates IV, MC and ISA; (iv)

(IV+MC+ISA) w/o Lgan, which is the same as (iii) but without Lgan. Figure 4.6

shows the performances of all experiments, quantitatively, and the qualitative results

in Figure 4.7 indicate that the network learns a structural correlation across the local

surface and volume descriptors to improve the fidelity of final outputs. This ablation

study validates the rationale of multi-task and adversarial learning with IV, MC, and

ISA modalities.
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Why learn the geometry of parts? Furthermore, we explored the efficacy of

learning part geometry as illustrated in Figure 4.8. Table 4.4 shows the quantitative

evaluation of the proposed method for the following baselines: (i) w/o Part-Identifier,

which does not have the part identifier; (ii) w/o Part interpolation, which is the same

pipeline as PG-Net but uses dataset without data augmentation with part interpo-

lation; (iii) w/o Refiner, which is trained without the refiner to evaluate the efficacy

of the refiner. From the result shown in Table 4.4, we verified that part identifier

Fig. 4.7. Effect of the multi-task learning with surface and volumetric
representations on object synthesis. The sampled objects on the left are
from the the model which was trained with IV + MC + ISA modalities,
and the sampled objects on the right are from the model which was trained
with IV only.

Fig. 4.8. Effect of the part geometric learning on object synthesis. Sam-
pled objects from the models w/ Part-Identifier and w/o Part-Identifier
given normal distribution and a one-hot encoded class vector.
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Table 4.4.
Quantitative results as L1 metric of baselines and other methods for 3D
object generation without 3D object references. Lower value is better. k
is the length of the latent vector z. k is set as 200 in PG-Net where @k is
not placed.

Seen Unseen

3D-CIWGAN [24] 0.225 0.232

3D-CVAE [39] 0.173 0.199

PG-Net w/o Part-Identifier 0.164 0.194

PG-Net w/o Part Interpolation 0.183 0.204

PG-Net w/o Refiner 0.112 0.135

PG-Net @k=300 0.088 0.123

PG-Net @k=200 (Ours) 0.083 0.117

PG-Net @k=100 0.090 0.131

improves the quality of synthesized objects since the L1’s of our PG-Net are lower

than those of w/o Part-Identifier. Also, our PG-Net gave lower metric scores than

w/o Part interpolation and w/o Refiner, which directly shows that the refiner and

part interpolation results in learning robust shape representations. As a conclusion,

PG-Net performs better than the other baselines, and each of our proposed methods

reduces artifacts and holes of synthesized objects.

4.4.3 Synthesizing 3D objects

We conditionally generated 3D objects from latent vectors and one-hot encoded

class vectors. We compared our method with 3D-CVAE [39] and 3D-CIWGAN [24].

For 3D-CVAE, we followed the CVAE base model in [39] and used the same en-

coder/decoder definitions as PG-Net. We combined 3D-IWGAN [24] and CGAN [3]

for 3D-CIWGAN. All methods used Expanded with a one-hot encoded class vector
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PG-Net (Ours) 3D-CVAE 3D-CIWGAN

A B C D E F G H I

3D-GAN

J                  K                 L

Fig. 4.9. Objects generated from the model given a one-hot encoded
class vector and a vector from the normal distribution without a reference
object. The resolution of the voxel grids was 403, and the objects were
binarized by the threshold of 0.5. We generated fifty objects per class and
randomly sampled three objects.

as a condition. For qualitative evaluation, we first generated 100 objects per class

and randomly sampled three objects. Figure 4.9 shows the synthesized objects from

our method and the others. Since we were sampling objects from noise distribution

without ground truth, displaying the exact same objects for each method was im-

possible. Each voxel value of the synthesized objects was binarized with a threshold

of 0.5. We visualized volumetric data after applying the marching-cubes algorithm

and Laplacian smoothing. To assess the performance of PG-Net, we have randomly

sampled objects from each class and compared the results with objects generated us-

ing alternative methods. The objects generated using PG-Net are seen to possess far
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Table 4.5.
Evaluating diversity of generated objects from the networks with inception
scores on each class. Higher number is better.

Method Inception Score

3D-CVAE [39] 6.12

3D-CIWGAN [24] 6.23

3D-GAN [56] 5.91

PG-Net(Ours) 6.51

Ground 8.21

fewer holes and artifacts than the objects generated using other existing methods. As

shown in Figure 4.9, for example, both the 3D-CVAE and 3D-CIWGAN models pro-

duce objects from the ”cap” class which contain unrealistic holes. The 3D-CIWGAN

results for the ”chair” class are also seen to contain a substantial amount of artifacts,

particularly in columns G and H. However, our proposed PG-Net method does not

suffer from these issues and produces objects from all classes which do not contain

unrealistic holes or any substantial artifacts. 3D-CIWGAN is not able to synthesize

the nose of the airplane, and 3D-CVAE was effective on airplanes but had many holes

in the table class. Unlike 3D-CVAE and 3D-CIWGAN, PG-Net preserved part ge-

ometry and well-defined surfaces. We also evaluated the diversity of the generated

objects with inception score [110] as listed in Table 4.5. Our method achieved the

highest scores than the others, which represents that our method generates more

diverse objects than the other methods.

4.4.4 3D Object classification

We evaluated object representations from PG-Net by performing 3D object clas-

sification on the ModelNet [56], which offers two kinds of datasets: ModelNet10 and
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Table 4.6.
The comparison on classification accuracy between PG-Net and the other
unsupervised methods. Higher number is better.

Method ModelNet10 ModelNet40

SPH [141] 79.8% 68.2%

Vconv-DAE [142] 80.5% 75.5%

ECC [143] 90.0% 83.2%

3D-GAN [23] 91.0% 83.3%

3D-DescripNet [19] 92.4% 83.8%

Primitive GAN [154] 92.2% 86.4%

FoldingNet [144] 94.4% 88.4%

GMPC [16] 95.4% 84.5%

PG-Net (Ours) 95.6% 89.1%

ModelNet40. ModelNet10 and ModelNet40 comprises 4,899 objects and 10 classes

and 12,331 objects and 40 classes, respectively. For unsupervised training, we used

the same method and a dataset for fine-tuning PG-Net from Achlioptas et al. [16].

The dataset consists of 57,000 objects from 55 categories in ShapeNet [52]. We fine-

tuned the optimized PG-Net without Part-Identifier since the parts’ labels are not

available in the dataset. After fine-tuning PG-Net, we extracted features from the last

two layers of encoder and concatenated them to create high-dimensional representa-

tions. Then we classified the representations with a linear SVM trained on the 3D

classification benchmark [56]. Our method outperforms other existing works which

are shown in Table 4.6. From the results, PG-Net extracts robust features which

can effectively distinguish objects, and therefore, PG-Net can be used as a feature

descriptor for the object analysis and other applications.
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4.4.5 Object reconstruction

We performed three-dimensional object reconstruction to evaluate the efficacy of

PG-Net and compared the results with 3D-EPN [70]. For our experiment, we used

a dataset with 5 classes with around 25,000 objects from the 3D-EPN project. We

interpolated the input objects from 323 voxel grids into 403 voxel grids to match

the input resolution of PG-Net. For the quantitative evaluation, we converted the

reconstructed objects into Boolean voxels with the threshold of 0.5. Then we counted

wrongly-estimated voxels and divided with the total number of occupied voxels in

ground truth. We used the pre-trained weights of EPN-unet w/ class version from

the 3D-EPN project page as a comparison. The quantitative results of PG-Net and

3D-EPN are compared in Table 4.7. The error values of PG-Net are lower than those

of 3D-EPN. As shown in Figure 4.10, PG-Net also shows better qualitative results as

compared to 3D-EPN. The quantitative and qualitative experiment results suggest

that PG-Net outperforms 3D-EPN in a large margin along the all classes. Therefore,

PG-Net trained with multi-task and part geometry learning methods effectively learns

object distribution and nicely reconstructs three-dimensional objects.

Table 4.7.
Comparison of the quantitative results of reconstruction task. Lower value
is better.

Class

(# of train / # of test )
3D-EPN [70] PG-Net (Ours)

Air. (3.3K / 0.8K) 0.226 0.202

Car (5K / 1K) 0.197 0.191

Chair (5K / 1K) 0.309 0.273

Lamp (1.8K / 0.5K) 0.407 0.392

Table (5K / 1K) 0.338 0.251

Total (20.1K / 4.3K) 0.286 0.249
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Fig. 4.10. Comparison of the qualitative results of three-dimensional ob-
ject reconstruction experiment.

4.5 Conclusion and Discussion

In this section we propose a conditional generative model PG-Net which is op-

timized with multi-task learning and part geometry learning for object synthesis.
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Results from our study suggest that multi-task learning increases the fidelity of gen-

erated objects and that learning part geometry enhances the realism of each part

of the synthesized objects. PG-Net exceeded the other state-of-the-art methods in

object synthesis, classification, and reconstruction. As limitations, 3D convolution

layers with voxels are computationally expensive and thus require ample memory.

However, these limitations can be solved by using a recurrent neural network with

polygonal mesh vertices or point clouds representations. For a future work, fusing

surface and volumetric representations as an input with point clouds representation

could be further explored with a recurrent neural network.
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5. MECHANICAL COMPONENTS BENCHMARK

The application of machine learning is highlighted recently due to the improved

effectiveness of the deep neural networks [53, 133, 136, 155–157]. Along with deep

neural networks, data driven algorithms and the creation of a large-scale datasets

[52,56,158,159] have led to a series of breakthroughs in computer vision [14,123,160]

and graphics [40,161,162]. The development of ImageNet [158], which used the class

hierarchical structure from WordNet [163] to maximize the dataset coverage, showed

that a well-structured and annotated dataset is crucial for developing geometric fea-

ture descriptors. The pre-trained deep neural network descriptors using ImageNet

have been widely used to extract low-dimensional representations that are used in

tasks of object detection [155,164,165], semantic segmentation [72,76,122,166], image

caption generator [167,168], and image retrieval [44,45]. The creation of a large-scale

mechanical components dataset with well-organized hierarchical classes and annota-

tions is needed for developing and benchmarking geometric feature descriptors in the

manufacturing industry [58, 169]. Geometric features extracted from the descriptors

are fundamental cues to retrieve objects given the query object and classifying objects

given image, volumetric representation, or point clouds.

However, in the manufacturing, design, and supply chain areas, the classification

of mechanical components with deep neural networks has not been addressed due

to the lack of large-scale annotated datasets. Without a standardized dataset, it is

difficult to develop and compare learning algorithms on mechanical components [51].

Creating a large-scale mechanical component dataset is challenging due to the sig-

nificant difficulty of collecting 3D CAD models of mechanical components. Different

from common-object datasets [51–53,56], the accessibility of most mechanical compo-

nents is limited because of proprietary and ownership issues with specially designed

models. Products and manufacturing models are held by companies for commercial
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usages, resulting in a deficiency of open-source components datasets. The inconsis-

tency and incompatibility of mechanical components from available sources require

massive effort on filtering and annotating the data. Also, annotating mechanical

components is harder than common objects since it demands more knowledge and

expertise from annotators to properly annotate engineering components.

Wiper seals
Protective caps

Protective 
seals

Seals, glands

Boots, bellows, 
seals

Static seals

Guide strips
Stack seals

Rotating seals
Braids - Rings

Lobed seals

U seals
Dynamic seals

Composite seals
O-ring

Lip seals

Fig. 5.1. The hierarchy taxonomy of mechanical components based on the
International Classification for Standards.

To resolve this difficulty, we established a hierarchical semantic taxonomy as a

guideline based on the International Classification for Standards (ICS) published by

the International Organization for Standardization (ISO). The tree structure of our

proposed hierarchical taxonomy. Details are provided in the supplementary doc-

ument. To collect annotations, we developed a web application which reduce the
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difficulty of filtering and annotating (Figure 5.3). This application supports control-

lable viewing, displaying meta-information, annotation, and filtering parts by viewing

multiple parts as a tabular to visually see the consistent shape features within the

same class rather than viewing each individual part. These functionalities make the

benchmark creation faster and more accurate for fine-grained categories.

Furthermore, we benchmark seven state-of-the-art shape descriptors to analyze

the properties of mechanical components. Seven methods are carefully selected from

three different 3D object representations: (1) point clouds, (2) voxel girds, and (3)

view-based. From the benchmark results, the input representation is not the core

factor that determines the performance. DLAN [47], which uses voxel grids, and

PointCNN [41], which uses a point cloud input representation that focuses on local

shape features, perform relatively well on both retrieval and classification tasks. The

view-based methods are not robust on unseen orientation in shape retrieval tasks,

which is also observed in common object retrieval tasks [54]. However, the descrip-

tors [46,47,133] show significantly different results from common object classification

tasks, which indirectly indicates that topological and geometrical characteristics of

mechanical components are different from common objects. We report micro- and

macro-precision, recall, F-score, mAP, and NDCG to evaluate retrieval tasks. For

classification tasks, we report accuracy per class, accuracy per instance, F1 score,

and average precision.

5.1 Properties of Mechanical Components

Mechanical components, shown in Figure 5.4, have sharp edges, well-defined sur-

faces, and high genus, which distinguishes them from common objects. Since the

shape of mechanical parts represents their physical functions, the functionality of

machine elements is sensitive to small details, resulting in the difficulty in annota-

tion. Therefore, mechanical components are often categorized by their detailed shape,
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whereas common objects are mainly identified by their general shape. The shape and

location of detail features often determine the function of engineering parts.

The shape of the detail features and the function of engineering parts are usually

interdependent. For example, the only difference in shape between a thrust washer

and a lock washer is the split detail feature, as seen in Figure 5.2 (a), but they

possess distinct functionality. A thrust washer spreads fastener loads, while a split

lock washer uses the split feature to lock a nut and bolt in place. In another case,

a hex nut and a lock nut share a hexagonal shape. However, the lock nut has an

additional circular feature that houses a nylon insert, as seen in Figure 5.2 (b). A hex

nut mates with a bolt to fasten materials together, and while the lock nut performs

a similar function, the nylon insert keeps the nut from coming loose from the bolt.

In another application, a spur gear transfers power to other toothed surfaces, while

a timing pulley transfers power to a timing belt. Both parts’ shapes and functions

are similar, but small details in tooth shape and design differentiate the two parts,

as seen in Figure 5.2 (c). In contrast, changing the shape of common objects, like

using longer legs on chairs, may not change the function of the object. Because

these characteristics do not appear in common object datasets [52, 56], the existing

shape descriptors [41,54,133] need to be benchmarked on MCB to explore the shape

descriptors on mechanical components. This is because recently-proposed deep neural

networks descriptors are developed to capture the features from the common objects

but not validated on the mechanical components. In this sense, Koch et al. [61]

created a large CAD model dataset and benchmarked surface normal estimation, but

they could not benchmark object classification or shape retrieval because they are

not labeled.

An annotated benchmark dataset such as MCB can link the shape to the particular

representation inside product data management systems of CAD kernels. Our work

opens up ways for implementation of fine-grained searches with features of mechanical

components, semantic text, and mechanical meta-data.
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Table 5.1.
Comparison table of the MCB dataset with other datasets. CO and
MC stands for common objects and mechanical components, respec-
tively. ShapeNetCore, ShapeNetSem, and PartNet use models from the
ShapeNet.

Dataset # Class # Models Type

ModelNet [56] 40 12,311 CO

ShapeNet [52] 3,135 +3,000,000 CO

ShapeNetCore 55 51,300 CO

ShapeNetSem 270 12,000 CO

PrincetonSB [51] 92 6,670 CO

PartNet [53] 24 26,671 CO

ABC [47] N/A +1,000,000 MC

AAD [59] 9 180 MC

ESB [58] 45 867 MC

MCB (Ours) 68 58,696 MC
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(a) (b)

Thrust Washer

Lock Washer

Hex Nut

Lock Nut

(c)

Spur Gear

Timing Pulley

Fig. 5.2. Examples of detail features making categorical changes.

5.2 Dataset Creation

For the dataset creation, we first elaborate on the acquisition of mechanical com-

ponents and explain how we annotated them. We acquire models from online 3D

CAD repositories. To effectively annotate, CAD models are filtered and annotated

using web-based tools. We define classes by following the field ”Mechanical Systems

and Components” of the International Classification Standard (ICS).

5.2.1 Data acquisition

We collect mechanical components from online large 3D CAD repositories: Tra-

ceParts1, 3D Warehouse2, and GrabCAD3. 3D Warehouse and GrabCAD are large

online open repositories for professional designers, engineers, manufacturers, and stu-

dents to share CAD models. They provide numerous CAD models with various

classes, including mechanical components. The models from TraceParts are indus-

try standard components and shape variation within class is small. By merging the

1https://www.traceparts.com/
2https://3dwarehouse.sketchup.com/
3https://grabcad.com/
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models from different sources, we obtained 163K mechanical components before an-

notation and purification as shown in Table 5.2.

Fig. 5.3. Data acquisition and annotation overview for the creation of a
large-scale mechanical components benchmark.

5.2.2 Acquired dataset purification

We developed a web-based platform to manage large-scale dataset functioning,

collecting, viewing, filtering, and annotating data. The overview of the platform is

available in Figure 5.3. Web-based applications have the advantage that users are free

of installation and can easily access to the platform from any computer with internet

connection. This accessibility accelerated the annotation process. We utilized the

tool to trigger the scrapper collecting CAD models, also filtering and annotating

the data with intuitive user interfaces, which is available in Figure 5.3. A dataset

managing platform visualizes multi-view images of each engineering part, which gives

users a more comprehensive understanding of the mechanical part during filtering

and annotating. The data creation pipeline consists of consecutive three steps.

Step 1: Conversion / Multi-view image generation. The file format conversion

process is necessary to create a unified file format dataset, since collected CAD models

consist of various formats such as STL, STEP, and OFF. The converter module in the
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Table 5.2.
The number of data before and after filtering.

Data source
#Data

Before After

GrabCAD 22,703 5,301

3D Warehouse 20,478 12,737

TraceParts 120,665 40,658

Total 163,216 58,696

platform converts file format into OBJ format and captures projected images from

multiple viewpoints. For 3D data conversion, we used Open Asset Import Library

(Assimp) and Gmsh [170]. We used projected images for annotating engineering

parts.

Step 2: Filtering. We filter scrapped CAD models by deleting broken and du-

plicated models and capturing wrongly categorized models for re-annotation. Meta-

information (i.e. file size, file name, search keyword, and data source) tagged in the

process of scrapping step helps users to filter the data. Eight ME experts manually

filtered out the duplicates with our annotation tool. We group objects with similar

meta-information and these experts manually removed duplicates. An annotation

interface presents the models in a table format rather than one model at a time.

Several models can be viewed at one time, which increases the speed of filtering and

makes identifying duplicate models easier. A quantitative comparison of the dataset

between before and after filtering is shown in Table 5.2.

Step 3: Annotation. After filtering, we re-annotate the missed categorized models

to the correct category based on the tagged information and multi-view image. We

use a 3D viewer in the annotation interface to present a close-up look when the multi-

view image does not provide enough information for annotation. Some of the models

do not belong to any of our mechanical components categories but are still relevant to
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engineering parts. We defined these models as miscellaneous and labeled them into

new part categories as needed.

Articulations eyelets
& joints

Bearing accessories Bushes Cap nuts Castle nuts Castor Chain drives

Clamps Collars Conventional rivets Convex washer Cylindrical pins Elbow fitting Eye screws

Fan Flange nut Flanged
block bearing

Flanged
plain bearings

Grooved pins Helical
geared motors

Hexagonal nuts

Hinge Hook Impeller Keys and
keyways, splines

Knob Lever Locating pins

Locknuts Lockwashers Nozzles Plain guidings Plates,
circulate plates

Plugs Pulleys

Radial contact
ball bearings

Right
angular gearings

Right spur gears Rivet nut Roll pins Screws and bolts \w
countersunk head

Screws and bolts \w
cylindrical head

Screws and bolts \w
hexagonal head

Setscrew Slotted nuts Snap rings Socket Spacers Split pins

Spring washers Springs Square nuts Square Standard fitting Studs Switch

T-nut T-shape fittings Taper pins Tapping screws Threaded rods Thrust washers Toothed

Turbine Valves Washer bolts Wheel Wingnuts

Fig. 5.4. Randomly sampled mechanical components from the MCB.
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5.2.3 Statistics of the dataset

MCB has a total number of 58,696 mechanical components with 68 classes. The

exact name of the types and amount of data in each category are shown in Table 5.3.

Objects from TraceParts are aligned, but the objects from the other two sources

(30 % of the objects) are not consistently oriented. We did not perform additional

alignments as many object classes do not possess consistent orientations due to a

variety of continuous/discrete symmetries. On the other hand, having unaligned

models in shape classification and retrieval tasks helps to evaluate the generalization

of the shape descriptors [171]. Unlike 3D Warehouse and GrabCAD that provide

data from general usages, TraceParts stores data from the manufacturing companies.

The CAD models from manufacturing companies show a tiny variation because they

follow the parameterized catalogs for standardization. Therefore, to see the effect of

data that has dense distribution and orientation invariance, we built two datasets for

the experiment:

• Dataset A (MCB): Aggregated data from TraceParts1, 3D Warehouse2, and

GrabCAD3

• Dataset B: Aggregated data from 3D Warehouse and GrabCAD.

The dataset A has the same statistics with the original MCB dataset, and the

dataset B has 18,038 data with 25 classes. The detailed statistics of the dataset B is

explained in supplementary material.

5.3 Experiments

To analyze the behavior of learning algorithms developed for common objects

works on mechanical components, we benchmarked classification and retrieval tasks

with three different representations: point could, projected views, and voxel grids.

We use two NVIDIA GeForce RTX 2080Ti GPUs, i9-9900k CPU, and 64GB RAM

for the experiments. We carefully choose seven state-of-the-art shape classifica-
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Table 5.3.
The statistics of Mechanical Components Benchmark dataset.

Class #Models Class #Models Class #Models

Articulations eyelets&joints 1,632 Impeller 145 Socket 858

Bearing accessories 107 Keys and keyways splines 4,936 Spacers 113

Bushes 764 Knob 644 Split pins 472

Cap nuts 225 Lever 1,032 Spring washers 55

Castle nuts 226 Locating pins 55 Springs 328

Castor 99 Locknuts 254 Square 72

Chain drives 100 Lockwashers 434 Square nuts 53

Clamps 155 Nozzle 154 Standard fitting 764

Collars 52 Plain guidings 49 Studs 4,089

Conventional rivets 3,806 Plates circulate plates 365 Switch 173

Convex washer 91 Plugs 169 T-nut 101

Cylindrical pins 1,895 Pulleys 121 T-shape fitting 338

Elbow fitting 383 Radial contact ball bearings 1,199 Taper pins 1,795

Eye screws 1,131 Right angular gearings 60 Tapping screws 2,182

Fan 213 Right spur gears 430 Threaded rods 1,022

Flange nut 53 Rivet nut 51 Thrust washers 2,333

Flanged block bearing 404 Roll pins 1,597 Toothed 47

Flanged plain bearings 110 Screws&bolts \w countersunk head 2,452 Turbine 85

Grooved pins 2,245 Screws&bolts \w cylindrical head 3,656 Valve 94

Helical geared motors 732 Screws&bolts \w hexagonal head 7,058 Washer bolt 912

Hexagonal nuts 1,039 Setscrew 1,334 Wheel 243

Hinge 54 Slotted nuts 78 Wingnuts 50

Hook 119 Snap rings 609 Total 58,696

tion algorithms from three different 3D shape representations: point cloud, multi-

view, and voxel grids as the benchmark methods. In point cloud method, we use

PointCNN [41], PointNet++ [133], and SpiderCNN [43]. For the multi-view based,

we use MVCNN [46] and RotationNet [45]. DLAN [47] and VRN [50] are used to eval-

uate voxel grids representation. For training each method, we use the code and the

hyper-parameters from seven deep-learning algorithm papers. We use 2,048 points

density for point cloud, 32×32×32 grid for voxel grids, and 3×224×224 resolution

for image-based representations. We follow the original papers for the input data
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processing and training procedures. For all the benchmark datasets, we randomly

split the datasets into train and test set as 80% and 20%, respectively. Training

is conducted for each method to prevent initialization variation and report the best

results.

5.3.1 Object retrieval benchmark

At each entry, we calculate scores of the precision-recall curve in the retrieval

results: precision, recall, F1-score, mAP, and Normalized Discounted Cumulative

Gain (NDCG). In shape retrieval, NDCG has a heavier tail at high ranks, which

means that it does not discount lower ranks as much as mAP does [54]. Therefore,

Table 5.4.
Summary table of evaluation metrics of shape retrieval benchmark for
seven deep learning methods. They are grouped by their representation
types. Each ∗, �, and � symbol indicates the method point cloud, volu-
metric, and image, respectively.

Dataset Method
micro macro

P@N R@N F1@N mAP NDCG@N P@N R@N F1@N mAP DCG@N

PointCNN∗ [41] 0.892 0.892 0.690 0.889 0.898 0.869 0.797 0.833 0.886 0.854

PointNet++∗ [133] 0.778 0.778 0.613 0.794 0.754 0.772 0.678 0.712 0.803 0.746

SpiderCNN∗ [43] 0.839 0.839 0.669 0.867 0.793 0.844 0.741 0.776 0.877 0.812

A MVCNN� [46] 0.579 0.579 0.488 0.657 0.487 0.667 0.552 0.585 0.735 0.641

RotationNet� [45] 0.688 0.699 0.508 0.805 0.683 0.784 0.652 0.683 0.815 0.735

DLAN� [47] 0.840 0.840 0.568 0.879 0.828 0.878 0.786 0.820 0.880 0.845

VRN� [50] 0.537 0537 0.402 0.653 0.519 0.646 0.480 0.507 0.664 0.576

PointCNN∗ 0.905 0.905 0.676 0.913 0.899 0.895 0.829 0.853 0.909 0.871

PointNet++∗ 0.847 0.847 0.657 0.892 0.798 0.873 0.799 0.823 0.903 0.846

SpiderCNN∗ 0.779 0.779 0.609 0.829 0.728 0.782 0.698 0.719 0.841 0.757

B MVCNN� 0.786 0.786 0.609 0.831 0.742 0793 0.719 0.741 0.852 0.776

RotationNet� 0.529 0.529 0.434 0.607 0.454 0.560 0.466 0.483 0.647 0.540

DLAN� 0.912 0.912 0.674 0.908 0.925 0.903 0.830 0.854 0.902 0.870

VRN� 0.607 0.607 0.460 0.628 0.613 0.565 0.468 0.484 0.619 0.534
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A
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DLANMVCNNPointCNN PointNet++ SpiderCNN RotationNet VRN

Fig. 5.5. t-SNE [172] plots of seven different deep neural networks trained
with the dataset A and B. We set perplexity as 40 and iterate 300 times.
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Fig. 5.6. Precision-recall curve plots for retrieval with seven different
methods. The PointCNN shows best retrieval results for the dataset A,
and DLAN shows best retrieval results for the dataset B.

NDCG has a better ability to show the ration between the real performance and ideal

performance to evaluate the metrics.

Since each object has a different number of positive retrievals, the score table

metrics are referred to as P@N, R@N, F1@N, and NDCG@N, where the N refers to
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the total retrieval list length of each object, which varies across queries. The macro-

averaged version presents the performance of the dataset combining the result of

each category. The micro-averaged version treats each query, and the retrieval result

equally treats cross groups. Therefore, it eventually has the same P@N and R@N.

The summary results of all tested methods are given in Table 5.4. Corresponding

precision-recall curves are given in Figure 5.6. To see the similarity of the geometric

features from the descriptors, we perform t-distributed stochastic neighbor embedding

(see Figure 5.5). We observe that the more the clusters are grouped, the more the

retrieval results enhanced. Orientation invariance is crucial for the retrieval task. For

example, DLAN and PointCNN, which have rotation invariance, perform best for the

both datasets. However, VRN and RotationNet show poor results for the dataset B

where the orientation is not aligned, even though it uses the same representation as

DLAN. RotationNet also poorly performed on the common shape retrieval task [171]

when the orientations of the objects are perturbed. The overall retrieval performance

of the dataset A is relatively higher than the dataset B. Micro has slightly better

results on P@N, while much better results on R@N show that the metrics have better

performance in cross-category testing.

We observe that the performance of RotationNet and VRN dramatically decreases

for the dataset B compared to the dataset A. This is because the object orientations

are aligned in the dataset A but not in B. Similar behavior is observed for the com-

mon objects [54]. Specifically, RotationNet predicts view orders of given multi-views

to learn rotation-invariant features. However, the camera viewpoints of solid of rev-

olution shapes given multi-views are hard to determine and impossible to predict

when the cameras are rotating along with the center axis of the object. DLAN and

PointCNN perform well for the both datasets, with respect to both macro and micro

metrics. We conclude that these methods extract rotation-invariant features across

classes. As a point of view in data representation, point cloud methods show stable

performance for the both datasets.
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5.3.2 Object classification benchmark

For the classification task, we measure four metrics, mean accuracy over objects,

average accuracy per class, F1-score and average precision (AP) and plotted precision-

recall curves. We use the macro method for F1 and AP calculation. AP metrics are

used to compare the network performance across the dataset A and B. F1-score is the

harmonic mean of the precision and recall. The benchmark results for the datasets

A and B are available in Table 5.5 and Figure 5.7. Additionally, to compare the per-

formance between common objects and mechanical objects, we provide classification

performance on MondelNet40 in Table 5.6.

Table 5.5.
Benchmark results of the seven classification models which were trained
and evaluated on our mechanical engineering part benchmark. We trained
five times per model and reported the highest result. Each ∗, �, and �

symbol indicates the method: point cloud, volumetric, and image repre-
sentation, respectively.

Method
Acc. over object (%) Acc. over class (%) F1-score Average Precision

A B A B A B A B

PointCNN∗ [41] 93.89 93.67 81.85 86.80 83.86 88.63 90.13 93.86

PointNet++∗ [133] 87.45 93.91 73.68 87.97 74.59 88.32 73.45 91.33

SpiderCNN∗ [43] 93.59 89.31 79.70 79.29 81.30 80.72 86.64 82.47

MVCNN� [46] 64.67 79.17 80.47 84.09 69.69 77.69 79.82 86.66

RotationNet� [45] 97.35 94.73 90.79 89.70 92.29 91.05 87.58 84.87

DLAN� [47] 93.53 91.38 82.97 84.21 83.81 83.88 89.80 90.14

VRN� [50] 93.17 85.44 80.34 70.15 81.48 73.01 85.72 77.36

Unlike the retrieval task, RotationNet outperforms the other methods for the both

datasets (see Table 5.5 and 5.6). The performance of MVCNN drops significantly on

the mechanical components compared to the common objects which is ModelNet40.

On the other hand, the accuracy of RotationNet drops slightly. The major differences

between MVCNN and RotationNet are estimating correspondence between each im-
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age and view order during training. This correspondence estimation relaxes rotation

variant property by implicitly learning mapping function between each view of the

object and camera view point. In point cloud methods, PointCNN shows the best

performance on both datasets, and SpiderCNN perform better for the dataset A than

B. PointCNN performs best for the AP (see Table 5.5). This is because mechanical

components are sensitive to the local changes and PointCNN leverages spatially-local

correlation. In the same sense, DLAN performs better on mechanical components

due to oriented point sets. However, VRN performance drops on the mechanical

components benchmark since voxel grids are orientation variant.
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Fig. 5.7. Precision and Recall curve plots of classification task. Left plot
shows the PR curve of the dataset A, and right plot shows the PR curve
of the dataset B. The RotationNet shows the best performance in terms
of accuracy.

From our benchmark result, capturing local features and having orientation invari-

ance are crucial for developing mechanical components classifier. Although Rotation-

Net shows 97 % accuracy over an object, the accuracy over the class, which is 90.79%,

is not good enough to utilize in the industry. For the deep learning application for

mechanical components in the industry, a deeper understanding of mechanical parts

is required. The classification result of the ’Flanged plain bearings’ class shows a
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Table 5.6.
Classification accuracy on ModelNet40. Each ∗, �, and � symbol indicates
the method is based on point cloud representation, volumetric represen-
tation, and image representation, respectively.

Method Acc. over object (%)

PointCNN∗ [41] 92.2

PointNet++∗ [133] 91.9

SpiderCNN∗ [43] 92.4

MVCNN� [46] 95.0

RotationNet� [45] 97.37

DLAN� [47] 84.0

VRN� [50] 95.5

low accuracy, which is under 87% for every network. This value is relatively lower

than the accuracy of other classes (see appendix). This result shows the limitation of

existing 3D object classification algorithms in terms of extracting local features. The

general shape of the bearing is almost similar to thick washers or rings. Therefore,

if the network cannot capture the local difference of ring-shaped object, it is hard to

distinguish these objects.

We experiment how point cloud density affects the results in point cloud base al-

gorithms. We perform five different densities: 128, 256, 512, 1,024, and 2,048 points

on three point cloud classification methods [41, 43, 133] for the classification task for

the dataset B. From our experiment results, the performance increases as the density

of the point cloud increases, as shown in line plots in Figure 5.8. However, the en-

hancement of results saturates as the point cloud density grows and the performance

of SpiderCNN [43] decreases even the density increases from 1,025 to 2,048. Point-

Net++ [133] is the most sensitive in the density of the point cloud, and PointCNN [41]

is the least vulnerable in the variation of the point cloud density.
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Fig. 5.8. Classification results of five different point cloud densities.

5.4 Conclusion and Discussion

We establish a large-scale mechanical component benchmark with annotations.

For the creation of the dataset, we develop an annotation framework that enhances

the efficacy of the annotation and filtering processes. We perform shape classifica-

tion and retrieval experiments with seven deep-learning shape classification methods

which are designed to classify common objects. We find that view-based and voxel

grid presentation-based methods perform poorly on random orientation of mechani-

cal components. However, DLAN, a voxel-based method, performs well on random

orientation since it has orientation invariance. The creation of MCB and experimen-

tal results can be used for the development of data-driven algorithms of mechanical

components.
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6. FIRST-PERSON VIEW HAND SEGMENTATION OF

MULTI-MODAL

Hands are crucial in many industrial computer vision applications, such as augmented

reality, virtual reality, or human-computer interaction. Recognizing hands with vision

systems is necessary to interact between people and digital devices. Therefore, under-

standing hands with computer vision systems has been deeply explored through hand

tracking [173, 174], hand pose estimation [136, 175–178], grasp detection [179, 180],

hand gesture recognition [181], multi-view prediction [136], and hand-action classifi-

cation [89]. These works require segmenting hands from the background to increase

the accuracy of performance.

However, segmenting hands when interacting with tools from the background is a

challenging problem because (a) fingertips are heavily occluded by the hand dorsum

and tools in the first-person view, (b) tools are held with various grasps, and (c)

shapes of tools or objects are infinite. The traditional approach to create an RGB

hand segmentation video dataset is through manual pixel-wise labeling [89, 93, 182,

183]. However, time and cost of person-in-the-loop segmentation grows linearly as

Fig. 6.1. Sample frames from our hand segmentation video dataset. Red
and green masks represent left and right hand, respectively.
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the number of frames increases, which reduces the scalability. Therefore, developing

an efficient segmentation method is important for creating a segmented hand video

dataset.

We utilize hand temperature as prior information for the labeling process. How-

ever, pixels from LWIR thermal images of hands may falsely include pixels from the

surroundings that share the same temperature. In our method, we utilize crowd

workers to provide an Axis-Aligned Bounding Box (AABB) to localize the detailed

boundary of each hand. We further relax the AABB creation task by training a tracker

with a small amount of AABB results. The tracker learns the shape features of hands

and then uses them to estimate an Oriented Minimum Bounding Box (OMBB) for

each hand. Therefore, we use both spatial and thermal features of hands to segment

them from the background and tools. Our approach is effective regardless of finger

tips or finger joints occlusion and do not require hand pose ground truth. We prove

our method is much more efficient than the traditional pixel-wise labeling tasks while

maintaining a high performance.

OMBB

Thermal 
threshold

Tracker

Fig. 6.2. Overview of our proposed segmentation method.

Optimizing deep neural networks with a single modality may lead to failures when

the network fails to extract distinctive features from the input source. Multiple

modalities are used to provide distinctive features to the networks [123, 184, 185]

and has been an emerging area [186–188] due to the enhancement of computation

power and sensors. Human body temperature is relatively constant [189] and has
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been widely used in pedestrian detection [190], biological image processing [191], and

gesture recognition [192]. An additional advantage of Long-Wave InfraRed (LWIR) is

that it is invariant to colors, textures, and lighting conditions. Color information may

mislead vision systems distinguishing shape features. Therefore, we create a multi-

modal (LWIR, RGB, and depth) hand segmentation video dataset which consists

of 790 sequences and 401,765 frames of ”hands using tools” videos. Compared to

the other existing hand segmentation datasets, our dataset contains three different

modalities and head-mounted camera Inertial Measurement Unit (IMU) information.

With the video dataset, we analyze fusing three modalities with DeepLabV3+ [76]

and benchmark five different state-of-the-art segmentation methods [73, 76, 89, 103,

193]. We observe that the neural networks can automatically learn important cues

from three different modalities: LWIR, RGB, and depth. The jointly learned features

of these three modalities prevents confusion between hands and backgrounds.

We record our videos with a low-cost non-radiometric thermal camera, Flir Bo-

son 320, to capture relative LWIR data. RGB resolution then is rescaled to match

resolution of the LWIR sensor with two camera frustums. We use an Intel D435i

depth camera for RGB, depth and IMU information acquisition. These sensors are

placed within a 3D printed case and mounted in front of a helmet to make the camera

location consistent over sequences.

6.1 Data Fusion for Pixel-Wise Hand Segmentation

To segment hands with LWIR frames, we narrow down the search space by finding

a Thermal Mask (TM), denoted Itm, with LWIR frames, denoted Irawlwir, and Ilwir =

T (Irawlwir) where T is transformation function that transforms an LWIR plane to an

RGB plane.

Itm = ω(Ilwir) (6.1)
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The bounded value for a pixel in the target frame corresponding to a spatial location

(i, j) in Itm is defined as follows:

ω(i,j)(I
(i,j)
lwir ) =

{
1 if a ≤ I

(i,j)
lwir ≤ b (6.2)

0 otherwise (6.3)

,where a and b are upper bound and lower bound of hand temperature. Itm ∈

[0, 1]H×W and Ilwir ∈ RH×W . We map the Irawlwir onto the RGB frame, denoted Irgb,

with depth maps. To align depth maps and Irawlwir, we find the spatial relationship

between the Irawlwir and depth camera. A projection of an object in pixel space is

derived by multiplying the camera matrix (KT for LWIR camera and KD for depth

camera) with an object point.

pD = KD · PD (6.4)

λ · pT = KT · PT (6.5)

,where pD = [uD, vD, wD]T , pT = [uT , vT , 1]T , a projected point in depth and

LWIR camera pixel plane, respectively. PD and PT are an object point in depth

and LWIR camera coordinate, respectively. λ is a scale factor. The spatial relation

between two cameras is defined by equation 6.6 where R is a 3D rotation matrix and

T is a translation matrix.

PT = R · PD + T (6.6)

By combining equation 6.4, 6.5, and 6.6, we can get an equation:

λ · pT = KT · (R ·K−1
D · pD + T ) (6.7)

By solving equation 6.7, we transform Irawlwir to the depth plane and depth plane to

the RGB plane. The detail of solving equation 6.7 is explained in the supplementary

document. The RGB and depth frames are aligned using the Intel RealSense API,

and the different resolution and field of view between the two cameras is adjusted
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using intrinsic camera parameters. After the alignment, we threshold the hand tem-

perature by setting the lower and upper bounds in human temperature as depicted

in Figure 6.3 b. These bounds are manually captured for every sequence and used as

priors that segment hands from surrounding backgrounds and the hand-held objects.

To create accurate bounds, we overlapped the Irawlwir on the depth maps as seen in

Figure 6.3 column a. Finally, we get the segmented hands by filtering thermal mask

(see Figure 6.3 column d).

Fig. 6.3. Aligning Irawlwir into the Irgb with depth maps. First, (a) Irawlwir and
Irgb are overlapped onto the depth maps. (b) Next, the projected Irawlwir

is bounded by hand temperature to capture possible hand regions. (c)
Then, the projected Irgb and Irawlwir are transformed on the RGB plane. (d)
Finally, hands are cropped from backgrounds. For visualization, Ilwir is
color mapped by a high value as red and a low value as blue.

6.2 Removing Artifacts with Hand Geometry

We occasionally observe mislabeled pixels from backgrounds that have similar

temperature as hands. To remove these mislabeled pixels, we use a tracking algorithm,

named SiamMask [194], to localize hands with OMBBs shown in Figure 6.2. We

train the tracker with Itm and AABBs of the hand. We use Amazon Mechanical Turk

(AMT) to crowdsource the creation of hand AABBs. For training the tracker, Itm and

corresponding AABBs are used as targets and Ilwir is used as inputs. Therefore, the

tracker is color and texture in-variant, which improves tracking performance of the
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tracker (sec. 89). After the training process, given initial AABBs, the tracker predicts

OMBBs and classifies them sequentially as a left hand or a right hand through frames.

This implies that the tracker learns hand shape features. These OMBBs are used to

remove mislabeled pixels by intersecting Itm and OMBBs.

Fig. 6.4. Visualization of three different bounding boxes. Itm is overlapped
onto the Irgb as a red mask for visualization. The bounding boxes with
red, blue, and green represent AABBs, OMBBs (Irgb), and OMBBs (Ilwir),
respectively.

6.3 Dataset Overview and Efficiency Evaluation

In this section, we show the efficiency of our proposed segmentation method,

the performance of the tracker which learns hand geometric. We consider the hand

segmentation problem as a two-class segmentation task, and we plot the maximum

probability between the two classes, background and hands, per pixel for the predic-

tion mask creation. For evaluation metrics, we use the Intersection over Union (IoU)

of the hand (hIoU) and the background (bIoU). We define the mean IoU (mIoU) as

the mean of these two class IoUs.

6.3.1 Dataset statistic and overview

To segment hands from objects, we create a pixel-wise hand segmentation dataset

with subjects holding objects and tools. The dataset consists of 401,765 frames and

790 sequences. Our dataset has a large number of sequences and frames compared
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with the other datasets. We manually annotated 13,792 frames from 136 sequences

to create a test dataset. The video dataset contains five subjects, 15 actions, and 23

tools. The distribution of the dataset across the actions and tools is plotted in the

supplementary document. For annotating per pixel label of hands, we use Ilwir as

prior knowledge and used a tracker to identify orientation of hands as well as whether

a hand is a left hand or a right hand.

6.3.2 Evaluation of data fusion efficiency

We evaluate the accuracy of Itm with manually labeled frames. Itm is defined

by the temperature of the hands. It shows fairly reasonable accuracy of 0.849 in

hIoU. We find that Itm reduces false-positive in the sequences where non-hand area

has same temperature as hands. These mislabeled pixels are the main reason of the

hIoU degradation. We remove these mislabeled pixels with the tracker given initial

AABBs [194]. Utilizing Ilwir improves the efficiency of the manually labeling frames.

We profile the amount of time that it takes to annotate frames using four different

methods for pixel-wise segmentation labeling. First, annotators use PolyRNN++ [79]

with Irgb. Second, annotators label on a tablet with a tablet pen given Irgb. Third,

annotators label on a tablet with a tablet pen given masked I ′rgb = Irgb�Itm, where �

is the Hadamard product. Lastly, annotators draw AABBs on top of Irgb. Ten people

annotated a random sample of twenty frames with the four different methods. We then

averaged the annotation time, yielding the results in Table 6.1. We find that drawing

AABBs is 24 times faster than the other methods. This implies that our method

is 24 times faster than PolyRNN++ since our method intersects AABBs on Itm.

Additionally, the third method is two times faster than the second approach and six

times faster than using PolyRNN++. Masking hands with Itm significantly narrows

down the region for annotators, which reduces the labeling time. To validate the

quality of the annotation methods, we randomly sample 136 sequences and manually
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annotate 13,792 frames. With these manually annotated frames, we evaluate the IoUs

of Itm with and without AABBs labels (see Table 6.2).

Table 6.1.
Comparison table of annotation average time cost per frame. I ′rgb = Irgb�
Itm. Lower average time is better.

Annotation Methods Avg. Time (second)

Drawing polygon with PolyRNN++ [79] 122

Painting hands on Irgb with a tablet pen 76

Painting hands on I ′rgb with a tablet pen 24

Drawing AABBs on Irgb 5

6.3.3 Evaluation of learning hand geometry

We use SiamMask as our tracker [194] and train the tracker with a seeding dataset

consisting of 518 sequences that have 11,718 frames labeled by crowd workers. The

dataset is divided into 441 sequences that have 7,882 frames for training and 77

sequences that have 3,836 frames for validation. The tracker is trained in two ways:

with Irgb frames and with Ilwir frames. For evaluation, we use the manually labeled

frames and metrics from Section 6.3.2. From the evaluation, we find that the tracker

with Ilwir frames outperforms the others as shown in Table 6.2. The tracker with

Irgb tends to detect more forearm than the tracker with Ilwir as shown in Figure 6.4.

This implies that the tracker with Ilwir is more sensitive in finding convex shape of

wrist than the tracker with Irgb, yielding better orientation of the hand and tighter

OMBBs. The tracker performs well in most of cases; however, we need to re-initialize

it with AABBs when the tracker fails to estimate the next frame. We also find that

the tracker fails to track the hands when the two hands are heavily overlapping. In

this case, we need to manually draw the OMBBs.
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Table 6.2.
Comparison of the quality of the annotated AABBs and the tracker-
generated OMBBs.

Annotation Source mIoU hIoU bIoU

Itm 0.913 0.849 0.977

Itm with AABBs 0.917 0.842 0.992

Itm with OMBBs (Irgb) 0.921 0.851 0.990

Itm with OMBBs (Ilwir) 0.923 0.855 0.990

6.4 Experiments

In this section, we present analysis of multi-modal sources for hand segmentation,

and we benchmark our dataset with five different segmentation methods. For the test

dataset, we use manually annotated labels which consist of sequences that are used

in neither the training set nor the validation set. The models have been trained using

Stochastic Gradient Descent (SGD) [195] and the ADAM optimizer [117] with initial

parameters: learning rate as 0.001, β1 = 0.9, β2 = 0.999. We decay the learning

rate by 0.1 every 250K steps. Additional configurations of the experiments are listed

in the supplementary document. We use a single TITAN RTX GPU and an Intel

i7-6850K CPU for the experiments.

6.4.1 Data fusion analysis

We analyze the effect of multi-modal sequences, {Irgb,Ilwir,Idepth}, for hand seg-

mentation by conducting seven ablation studies using all possible combinations of

{Irgb,Ilwir,Idepth} as input modalities. We perform the seven ablation studies to find

out how Ilwir contributes in training neural networks. For all experiments in this sec-

tion, we use randomly sampled 50K frames and split into two sets as following: 40K

frames as train dataset and 10K frames as test dataset. The frames in the test dataset
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are labeled manually. We use DeepLabV3+ [76] as base model and add additional

encoders to fuse additional modalities. Our fusing method is detailed on the supple-

mentary document. The rationale of using DeepLabV3+ is that it outperforms other

methods [73,89,193] in hand segmentation benchmark experiments, only using RGB,

as shown in Table 6.4. It also has the fewest parameters. We use ResNet 101 [196]

which is pre-trained on the ImageNet [158] as a backbone network. All experiments

use an equal number of encoders as the number of input modalities. From experi-

ments, we found that Ilwir guides the network in finding better minima by observing

both the loss drops and performance improvement as shown in Figure 6.5 when the

Ilwir is used also shown in Table 6.3. Including Ilwir enhances the performance of

hand segmentation by 5% in hIOU score compared to {Irgb, Idepth}. Increments are

observed for bIOU and mIOU scores as well. Therefore, Ilwir is a robust feature for

hand segmentation. The three modalities contain complementary properties, which

generates robust features, compensates weak points of each other, and leverages their

advantages.

Table 6.3.
The higher values are better in IoU, and the lower values are better in
#Parameters. C, D, and L stands for RGB, depth, and LWIR frames,
respectively. DeepLabV3+ [76] is used for the experiments.

Source mIoU hIoU bIoU #Parameters

D 0.857 0.753 0.960 59.3 M

L 0.907 0.840 0.974 59.3 M

C 0.884 0.800 0.968 59.3 M

D,L 0.897 0.822 0.972 118.0 M

D,C 0.906 0.838 0.975 118.0 M

L,C 0.921 0.862 0.979 118.0 M

L,C,D 0.931 0.880 0.982 176.6 M
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Fig. 6.5. Comparison of segmentation IoUs of seven experiments using
different input modalities. DeepLabV3+ [76] is used for the experiments.

Fig. 6.6. Qualitative results of the seven different ablation experiments.
L, R, D, and All stand for Ilwir, Irgb, Idepth, and {Irgb, Ilwir, Idepth}, re-
spectively.

6.4.2 Hand segmentation benchmark

To validate the performance of using multiple modalities, we compare our method

with five state-of-the-art segmentation methods [73,76,76,89,193] which use Irgb and

segmentation networks [103] and jointly use Irgb and Ilwir as input modalities. We use

the same dataset as Section 6.4.1 and hyper-parameters listed on the original papers.

We notice that RTFNet [103] performs second-best among all methods, indicating
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Ilwir provides the most meaningful prior knowledge for segmenting hands in frames.

DeepLabV3+∗ with three modalities outperform the second-best method, RTFnet,

by 4% in hIoU and 30% fewer parameters, as shown in Table 6.4.

Table 6.4.
Comparison of quantitative results with other segmentation methods.
DeepLabV3+∗ is trained with fused {Irgb, Ilwir, Idepth}. The higher val-
ues are better in IoU and the lower values are better in size of model
parameters.

mIoU hIoU bIoU Model Size

HIW [89] 0.865 0.770 0.865 118.0 M

PSPet [73] 0.897 0.823 0.972 70.4 M

DUC-HDC [193] 0.893 0.815 0.961 69.2 M

RTFNet [103] 0.911 0.846 0.976 254.5 M

DeepLabV3+ [76] 0.907 0.840 0.974 59.3 M

DeepLabV3+∗ [76] 0.931 0.880 0.982 176.6 M

6.5 Conclusion and Discussion

In this work, we propose a robust and efficient pixel-wise hand segmentation

method and a multi-modal dataset. Our method and dataset can ease dataset creation

for more research on vision problems. We record rich sequences with three different

image modalities and IMU information of first-person-view images with pixel-wise

hands and action labels. We found that using multiple modalities achieves 4% better

hIoU when compared to the existing state-of-the-art methods for hand segmentation.

We also show that our multi-modal dataset with fusing LWIR and RGB-D frames

achieves 5% better hand IoU performance than using just RGB-D frames. Also, we

notice that only using Ilwir gives poorer results than using other modalities such as

RGB and depth. This could be because thermal signature of hand is shared by other
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body parts. The proposed method is 24 times faster than PolyRNN++ with similar

quality of manually labeled frames. One limitation we find is that the tracker does

not work properly when two hands are heavily overlapped. The future development

will be focusing on improving the dataset for more diverse hand-related tasks such

as hand-object pose estimation, object reconstruction when a person is holding the

object, and hand action recognition.
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7. CONCLUSION

7.1 Summary

We address developing computer vision-based machine perception of objects and

hands with deep learning. Recent advances in deep learning in computer vision have

made significant improvements in almost every data-powered machine perception ap-

plications in literature and industry. However, there are still many barriers to the vast

and successful adoption of advanced computer vision systems for real applications.

One of the barriers is improving the generalizability of the machine perception model

to apply in diverse environments. We first tackle the problem by improving learning

strategies. We propose a fully-convolutional conditional generative model and jointly

learning the surface and volume of 3D objects. In addition, we further improve perfor-

mance by developing a data curation methods. Deep neural networks needs to be op-

timized with a vast amount of data from diverse environments with advanced training

methods. However, collecting and labeling large amounts of data is time-consuming

and expensive. To relieve these issues, developing self-supervised or unsupervised

learning with multimodal information as a practical approach for achieving human-

level vision perception in computer vision. In addition, in order to minimize the

human effort in dataset creation we leverage multimodal visual sensors and learned

knowledge from diverse domains and tasks. In particular, we explore developing

conditional generative models and automatizing a large-scale dataset creation by (1)

traversing latent space to make conditional generative models fully-convolutional, (2)

jointly learning surface and volumetric representations of 3D objects for conditional

generative models, (3) establishing mechanical components benchmark for intelligent

manufacturing, and (4) automating a pixel-wise hand segmentation labeling process
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with multimodal sensors. To this end, we focus on answering machine perception of

hands and objects in computer vision and computer graphics.

7.2 Future Directions

Current AI works are mostly limited in weak AI, also called narrow AI; the model

solves single tasks in a restricted domain. However, the demand for AI in real life

is not restricted to a single task but expands to multiple tasks within multiple do-

mains. For instance, AI applications in autonomous driving, smart factories, and

smart homes require a visual perception module, a speech recognition part, language

translation models, searching algorithms from the cloud, etc. Therefore, consolidat-

ing cross-domain information into single artificial consciousness is preferable, which

can hallucinate multi-domain representations. For example, people can imagine a

sound from a moving car by observing a car through windows when a person is in a

soundproof room. In this regard, learning underline data structure with the gener-

ative model is important, but it also has to be designed such that the latent space

is sharable between task-specific networks in multiple domains. The AI system can

further expand with self-supervised learning methods to be applicable in diverse en-

vironments without human assistants. Additionally, deep neural networks have been

evolved in computer vision perception in the 2D domain, but now deep neural net-

works is actively moving to 3D spaces with inverse simulation and computer graphics.

This is not only because of the popularity of AR/VR, but also because of the nature

of our world in which people live in 3D space. 2D information is limited and not

sufficient for learning the full geometry of objects and real environments. Moreover,

biomechanics domain knowledge can be used to develop deep learning algorithms

for human understanding since biomechanics understands the biological system with

deterministic functions which have a long history.
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