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ABSTRACT 

Thermal barrier coatings (TBCs) have been extensively employed as thermal protection in 

hot sections of gas turbines in aerospace and power generation applications.  However, the 

fabrication of TBCs still needs to improve for better coating quality, such as achieving coating 

thickness' uniformity. However, several previous studies on the coating thickness prediction and a 

systematic understanding of the thickness evolution during the deposition process are still missing.  

This study aims to develop high-fidelity computational models to predict the coating 

thickness on complex-shaped components. In this work, two types of models, i.e., ray-tracing 

based and heat transfer based, are developed. For the ray-tracing model, assuming a line-of-sight 

coating process and considering the shadow effect, validation studies of coating thickness 

predictions on different shapes, including plate, disc, cylinder, and three-pin components. For the 

heat transfer model, a heat source following the Gaussian distribution is applied. It has the analogy 

of the governing equations of the ray-tracing method, thus generating a temperature distribution 

similar to the ray intensity distribution in the ray-tracing method, with the advantages of high 

computational efficiency. Then, using a calibrated conversion process, the ray intensity or the 

temperature profile are converted to the corresponding coating thickness. After validation studies, 

both models are applied to simulate the coating thickness in a rotary turbine blade. 

The results show that the simulated validation cases are in good agreement with either the 

experimental, analytical, or modeling results in the literature. The turbine blade case shows the 

coating thickness distributions based on rotating speed and deposition time. In summary, the 

models can simulate the coating thickness in rotary complex-shaped parts, which can be used to 

design and optimize the coating deposition process. 
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 INTRODUCTION 

 Thermal barrier coatings (TBCs) (Bose, 2018; Guo et al., 2007) made of low thermal 

conductivity ceramics have seen increasing application in gas turbine engines to provide thermal 

insulation to metallic components from hot gas in the machines used for aircraft propulsion and 

power generation. The use of TBCs and internal cooling of the underlying superalloy components 

provides a temperature decrease of up to 300 K in the surface of the superalloy component (Xu et 

al., 2008). They enable engines to operate at temperatures above the superalloy's melting 

temperature, improving machines' energy efficiency and performance. On the other hand, TBCs 

reduce the metal temperature, thus improving components' duration capability (Bose, 2018). 

Usually, a TBC system has a four-layered structure: the ceramic thermal barrier layer, the metallic 

bond coat layer, a thermally grown oxide layer between the top and bond coats, and the substrate 

(Ni et al., 2011). Each layer has its own specific physical and chemical properties, which provide 

the required functions in TBCs. The thermal barrier layer offers thermal protection to the 

underlying components. This layer also prevents erosion and corrosion of the underlying parts (Xu 

et al., 2008). The bond coat protects the superalloy substrate from oxidation and balances the 

thermal incompatibility between topcoat and substrate. Usually, the TBCs are applied either by 

plasma spraying or electron beam physical vapor deposition (EB-PVD) (Opsahl, 1987). 

 A high-energy electron beam heats and vaporizes the target material in the EB-PVD 

process. The target material is deposited on the substrate's surface in the molecular form under 

high vacuum conditions (Figure 1) (Movchan, 1996). EB-PVD process produces characteristic 

microstructures with specific desirable attributes (Figure 2). While Plasma spray leads to the pores 

between the splats oriented parallel to the substrate surface, revealing lower thermal conductivity 

(0.8–1.1 𝑊/𝑚 − 𝐾), the columnar grain microstructure created by the EB–PVD process contains 

channels between the columns and pores within the grains which are oriented perpendicular to the 

substrate surface, exhibiting a higher thermal conductivity (1.5–1.9 𝑊/𝑚 − 𝐾). Conversely, the 

columnar allocation of the grains allows an escalation in strain tolerance and, hence, EB–PVD 

TBCs present greater stability compared to plasma sprayed TBCs (Xu & Wu, 2011). 
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Figure 1. EB-PVD coating chamber. (Fuke et al., 2005) 

 

 

Figure 2. Cross-sectional image of a YSZ TBC deposited by EB-PVD on a superalloy. (Clarke & 

Phillpot, 2005) 

 

 Several constraints affect the quality of coatings, such as substrate temperature (Ts), shape, 

structure, composition, cleanliness, and the electrical potential difference between the source of 

evaporation and the substrate. The substrate temperature plays a vital role among these parameters. 

When the film's thickness surpasses a few hundred nanometers, its crystal structure depends on 

the substrate temperature (Xu et al., 2008). Suppose the temperature of the substrate is Ts < 2/3Tm 
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(Tm–metal melting point, K), the metal atoms directly condense from vapor into solid phase; when 

Ts > 2/3 Tm, the metal atoms change from the gas into a liquid phase (droplets). Once the droplets 

reach a specific size, they can be crystalloid (Yanar et al., 2010). 

 

 The following relationship exists between the substrate temperature and the coating 

microstructure in the classic EB–PVD coating-structural relationship model. When Ts/Tm < 0.3, 

the coating presents as a dome of the columnar structure due to a self-shadow effect and weak 

diffusion of the deposited atoms in the substrate's surface (Xu, 2011). In this case, the grain 

boundary has more pores. When 0.3 < Ts/Tm < 0.5, a dense columnar grain structure forms, and 

the coating structure forms owing to the condensation controlled by the surface diffusion. In this 

context, as Ts increases, the grain size of the columnar crystal also increases. And when 0.5 < 

Ts/Tm < 1, a recrystallization structure forms, which is mainly regulated by volume diffusion 

(Yanar et al., 2010). 

 

 Electron beam physical vapor deposition is a vital evaporation technology to fabricate 

thermal barrier coatings on superalloy substrates, exceptionally useful for applications on more 

harsh conditions, such as turbine blades at high pressures (Guo et al., 2007).  

 

1.1 The Motivation for Work 

 Thermal barrier coatings have been extensively employed as thermal protection in hot 

sections of gas turbines in aerospace and power generation applications.  However, the fabrication 

of TBCs still needs to improve for better coating quality, such as achieving coating thickness' 

uniformity. Lack of reliable coating thickness models hinders the extensive employment of the 

TBCs. Although some studies are focusing on the coating thickness prediction, a systematic 

understanding is still missing. 
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1.2 The Objective of the Thesis 

 The objective of this study is to predict and optimize the coating thickness on complex-

shaped components. We achieve this by validating the results with several modeling studies based 

on the ray-tracing and heat transfer method. In this work, two types of coating thickness prediction 

models, i.e., ray-tracing based and heat transfer based, are developed. For the ray-tracing model, 

assuming a line-of-sight coating process and considering the shadow effects, validation studies of 

coating thickness prediction on different part geometries, including plates, discs, cylinders, and 

three-pin shaped components. For the heat transfer model, a heat source following Gaussian 

distribution is applied, which has the analogy of the governing equations of the ray-tracing method, 

thus generating a temperature distribution similar to the ray intensity distribution in the ray-tracing 

method, with the advantages of high computational efficiency. After validation studies, both 

models are applied to simulate the coating thickness in a rotary turbine blade. Finally, using a 

calibrated conversion process, the ray intensity or the temperature profile are converted to the 

corresponding coating thickness. 

1.3 Structure of the Thesis 

 The structure of the thesis is as follows. Chapter 2 presents a literature review of the 

relevant models for simulating coating thickness. Chapter 3 summarizes the governing equations 

of the ray-tracing and heat transfer models. Chapter 4 presents the validation studies of the model. 

Chapter 5 shows the model to predict the coating thickness in a turbine blade. Chapter 6 provides 

the results and discussion of the validation studies and turbine blade model. Chapter 7 gives the 

conclusions, and Chapter 8 provides the suggested future work. 
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 LITERATURE REVIEW  

 The TBC's primary defect is the uneven distribution of the vaporized target material on the 

substrate (Chen, 2011). The irregular coating phenomenon is determined using the Ray Tracing 

technique is used for modeling of TBC. In this approach, the Intensity plot of the number of rays 

hitting the surface of the turbine blade governs the coating's thickness over the body. In this work 

first, we try to validate using a plate and then using a disc, cylinder-shaped components, followed 

by a three-pin component (de Matos Loureiro da Silva Pereira et al., 2017). The validation studies 

show that the developed model results agree with either the analytical model or experimental 

measurements. Then the model is applied to a turbine blade to predict its coating distribution. 

 

2.1 Ray-Tracing model for Simulating Coating Thickness in a Three-Pin Cluster with 

Shadow Effect 

 It is now well established that the directionality of evaporation molecules in a vacuum at 

low rates from a small area source leads to a thickness distribution on a flat surface that follows 

the law stating that the mass per unit area, Eq. 1 deposited on a surface element is equal to (Lang 

et al., 1983; Rees, 1995) 

 

𝑑𝑀

𝑑𝐴
=

𝑀𝑒

𝜋ℎ2
𝑐𝑜𝑠𝑛 𝜃 cos 𝛼 

Eq. 1 

 

𝑀𝑒 is the total mass evaporated, 𝜃 is the angular displacement of the substrate relative to the normal 

to the source, n is a coefficient that defines the focus of the source, α is the inclination of the 

substrate the line of vapor flux, measured from the normal of the substrate, and ℎ is the source to 

substrate distance as shown in Figure 3 (de Matos Loureiro da Silva Pereira et al., 2017). 
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Figure 3. The geometry of evaporation. 

 

 However, this simple rule is characteristic only when the vapor emitting surface is a small 

area compared to the source-to-substrate distance. For the more general case, the thickness 

deposited is related to the rate of deposition from all sources and the deposition time such that the 

thickness distribution of a thermally evaporated coating, deposited from an ideal point source 

evaporator, follows an inverse square law governed by an equation of the form Eq. 2. (Harper, 

1978; Maissel & Glang, 1970; Rees, 1995) 

 

𝑑

𝑑0
=

ℎ0
2

ℎ2
𝑐𝑜𝑠𝑛𝜃 cos 𝛼 

Eq. 2 

 

Where d is the coating thickness at a distance h from the vapor source, d0 is the thickness directly 

over the vapor flux at a distance h0 from the source. 

 

 This study replicates the model as per (de Matos Loureiro da Silva Pereira et al., 2017), 

where two samples from the experimental run are analyzed. The coating thickness is measured 

around the circular profile, angular displacement varying from 0° to 360°, 0° being point on a 

cross-section of cylinders facing away from the center of the cluster and 180° closest to the center 

of the group. Both samples are taken from the same pin. 
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2.2 Ray-Tracing Model for Simulating Coating Thickness of Disc and Cylinder 

 In the work of (Fuke et al., 2005), the coating thickness predicted by the computational 

model agrees well with those predicted by analytical models and experimental results. Here cosine 

model is used for modeling the shape of the vapor plume generated in EB-PVD. The vapor 

intensity of the evaporated material can be expressed as Eq. 3: 

 

𝐼(𝛼) =  𝐼0 . 𝑐𝑜𝑠𝑛𝛼 

Eq. 3 

 

𝐼(𝛼) is the vapor intensity in a direction α degree from the normal to vapor emitting surface where 

𝐼0 is vapor intensity for α = 0, n = 2, 3, 4…, is an empirical parameter that depends on rate of 

evaporation. 

 

 The cosine model is valid for a small-area evaporator where the diameter of the melt pool, 

Dv, is much smaller than the distance between the melt pool and the substrate, ℎ𝑣, It should be 

emphasized that Eq. 3 characterizes the shape of the vapor plume, i.e., it is approximated that the 

vapor plume has the same shape as the vapor intensity and can be expressed as: 

 

𝑟(𝛼) = 𝑟0. 𝑐𝑜𝑠𝑛𝛼 

Eq. 4 

 

𝑟(𝛼) is the range of vapor plume in a direction α degree from the normal to the vapor emitting 

surface where 𝑟0 is the range of vapor plume for α = 0 and is assumed as ℎ𝑣, n = 2, 3, 4,…, is an 

empirical parameter that depends on the rate of evaporation n. 

 

 For a flat plate stationary above the evaporator source for a constant rate of evaporation, 

the coating film thickness over a given period has been modeled as Eq. 5. (Schiller et al., 1975) 

 

𝑑𝑠

𝑑𝑠𝑜
=  

1

(1 + (
𝑟𝑠

ℎ𝑣
)

2

)
𝑛+3

2

 

Eq. 5 
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𝑑𝑠 is the local film thickness, 

𝑑𝑠𝑜 is the film thickness for α = 0  

𝑟𝑠 is the distance on the substrate from the point of maximum thickness, 

ℎ𝑣 is the height of the substrate over the evaporator source. 

Based on Eq. 5, coating film thickness for a cylindrical workpiece is modeled as follows: 

 

𝑑𝑠 =  𝑑𝑠𝑜 . [
(ℎ𝑣. 𝑐𝑜𝑠2𝛼)

(ℎ𝑣 + ℎ′)2
] cos(𝛼 + 𝜃) . 𝑐𝑜𝑠𝑛 (𝛼) 

Eq. 6 

 

𝑑𝑠 is the thickness at any point, 

𝑑𝑠𝑜 is the thickness at the point directly above the evaporator and nearest to it, 

ℎ𝑣  is the height of the point directly above the evaporator and nearest to it, 

ℎ′is the height of any point above ℎ𝑣, 

α is the angle of divergence from the source, 

θ is the inclination of the tangent (to the cylinder at a point) to horizontal, 

n is the index as suggested in the Schiller model 

(n = 2 to 6, depending on evaporation rate). 

 

 In this approach, we use ray-tracing and heat transfer techniques to validate the 

experimental data taken from the literature study and then validate them with the computational 

work. Here we include Plate, Disc, Cylinder, three-pin model. 
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 NUMERICAL MODELS OF COATING THICKNESS PREDICTION 

3.1 Governing Equations of the Ray-Tracing Method 

 The ray-tracing method in finite element software numerically solves a set of coupled first-

order ordinary differential equations (ODEs) for the components of the quick ray position q and 

wave vector k. These coupled equations are analogous to the Hamiltonian formulation (Landau & 

Lifshitz, 1987) in classical mechanics. Eq. 7, Eq. 8, Eq. 9, Eq. 10 are for the ray-tracing module's 

geometrical optics. 

 

𝑑𝑞

𝑑𝑡
=

𝜕𝜔

𝜕𝑘
 

Eq. 7 

 

𝑑𝑘

𝑑𝑡
= −

𝜕𝜔

𝜕𝑞
 

Eq. 8 

 

𝜕𝑞

𝜕𝑡
=

𝜕(𝑐|𝒌|/𝑛)

𝜕𝒌
=

𝑐𝒌

𝑛|𝒌|
 

Eq. 9 

 

𝜕𝑘

𝜕𝑡
= 0 

Eq. 10 

Here the angular frequency ω takes place usually occupied by the Hamiltonian H. When the 

refractive index is homogeneous, the Hamiltonian formulations above are reduced to the 

expressions that account for a constant speed and ray direction of light (COMSOL, 2018). 

 

When there is a discontinuity of the refractive index at an interface, the finite element package 

numerically computes the refracted ray's direction using Snell's law. This formulation makes it 

possible for the finite element package to calculate exceptional cases with homogeneous refractive 

indices and more general issues such as thermal lensing in laser engineering (straight rays and 
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curved rays). Note that this is a time-stepping method available in finite element package, and the 

results show the beams at different instances of time during propagation (COMSOL, 2018).  

3.2 Governing Equations of Heat Transfer-Based Model 

 In this work, a component is heated up by a heating source to simulate the coating process. 

The incident heat flux from the heating source has Gaussian distribution on the component's 

surface. The transient thermal response of the element and its temperature distribution during the 

heating process is computed. Then the temperature distribution is converted to the coating 

thickness using a proposed correlation.  

 

 The heat transfer equation to describe temperature distribution is defined as (Wessels et al., 

2018): 

𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
= ∇[𝑘𝑡ℎ∇𝑇] + 𝑄 

Eq. 11 

where 𝜌 is the material density, 𝐶𝑝 the specific heat capacity, T the temperature, t the time, 𝑘𝑡ℎ the 

thermal conductivity and 𝑄 the heat source in volume due to absorbed heat power. 

The heat source term can be written as follows (Wessels et al., 2018): 

 

𝑄 =  𝑃𝑖𝑛(𝑥, 𝑡) 

Eq. 12 

where  𝑖𝑠 the surface emissivity, and 𝑃𝑖𝑛 the incident heat power. 

The incident heat power is distributed in time and space with a Gaussian shape. (Wessels et al., 

2018) 

𝑃𝑖𝑛(𝑥, 𝑡) = 𝑃0exp {− ((
𝑡 − 𝑡0

𝜏 2⁄
)

2

)} exp {− (
𝑥

𝑟
)

2

} 

Eq. 13 

where 𝑃0 is the peak power, 𝑡0 the time shift, 𝜏 the pulse time, r the beam radius at half height.  



 

 

23 

 VALIDATION OF THE MODELS 

4.1 Ray Tracing Model – Rectangular Plate 

4.1.1 Geometry and Finite Element Mesh 

 The geometry is created by selecting the block feature in the finite element package, and 

the dimensions are as follows: width of 0.13m, depth of 0.01m, and a height of 0.035m. This 

geometry is placed in the center at the origin. The plane created is along XY- work plane, as shown 

in Figure 4. 

 

 

Figure 4. The geometry of the rectangular plate. 

 

 A sequence type of physics-controlled is the mesh selection, and the element size is 

extremely fine, as shown in Figure 5. 
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Figure 5. Mesh of a model representing plate in this study. 

 

4.1.2 Material Properties 

Here the chosen material is copper, and its properties are shown in Table 1. 

 

Table 1. The material properties for disc 

Property Value  Unit 

Refractive index, real part 0.24 1 

Refractive index, imaginary part 0 1 

Relative permeability 1 1 

Electrical conductivity 5.998𝑒7[𝑆/𝑚] 𝑆/𝑚 

Coefficient of thermal expansion 17𝑒 − 6[1/𝐾] 1/𝐾 

Heat capacity at constant pressure 385[𝐽/(𝑘𝑔 ∗ 𝐾)] 𝐽/(𝑘𝑔 · 𝐾) 

Relative permittivity 1 1 

Density 8960[𝑘𝑔/𝑚^3] 𝑘𝑔/𝑚³ 

Thermal conductivity 400[𝑊/(𝑚 ∗ 𝐾)] 𝑊/(𝑚 · 𝐾) 

Young's modulus 110𝑒9[𝑃𝑎] 𝑃𝑎 

Poisson’s ratio 0.35 1 
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Reference resistivity 1.72𝑒 − 8[𝑜ℎ𝑚 ∗ 𝑚] 𝛺 · 𝑚 

Resistivity temperature coefficient 0.0039[1/𝐾] 1/𝐾 

Reference temperature 298[𝐾] 𝐾 

 

4.1.3 Boundary Conditions 

 In the settings of geometrical optics module after inserting a wall condition and selecting 

all the domains of the disc with a freeze condition, a grid of hexapolar type is placed at a location 

of [0, -0.05,0]m with a cylinder axis direction of [0, -1,0]. The number of radial positions is set to 

0. The ray direction vector is set to conical with uniform density, and the number of rays is set to 

400000 in the vector space. The cone axis is [0, 1, 0], and the angle is 𝑝𝑖/2. The vacuum 

wavelength is 660nm. 

 

4.2 Ray Tracing Model – Disc 

4.2.1 Geometry and Finite Element Mesh 

 The disc has a radius of 22.6 cm and a height of 5 cm. It is positioned at origin and is 

stationary, as shown in Figure 6. It is stationed at 0.05 m measured along the y-axis from the 

source, and the ray direction vector is along the (negative) y-axis. The mesh's element size is set 

to extra fine in the finite element package setup in the geometrical optics module, as shown in 

Figure 7. 

Table 1. continued 
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Figure 6. The geometry of disc. 

  

 

Figure 7. Finite element mesh of disc with a plane in XZ direction passing through the center. 
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4.2.2 Material Properties 

 The disc's material properties are similar to that of a rectangular plate, both with the chosen 

material as copper, and shown in Table 1. 

4.2.3 Boundary Conditions 

 Firstly, In the geometrical optics module, after inserting a wall condition and selecting all 

the disc domains with a freeze condition, we choose a hexapolar grid type is placed at a location 

of [0,0.05,0]m with a cylinder axis direction of [0, -1,0] and the number of radial positions is set 

to 0. The ray direction vector is set to conical with uniform density, and the number of rays is set 

to 1000000 in the vector space. The cone axis is [0, -1, 0], and the angle is 𝑝𝑖/6. The vacuum 

wavelength is 660nm. 

 

4.3 Ray Tracing Model - Cylinder 

4.3.1 Geometry and Finite Element Mesh 

 The cylinder has a radius of 22.6 cm and a height of 0.06 m. It is positioned at origin and 

is stationary, as shown in Figure 8. In mesh settings, the mesh's element size is selected as a user-

defined mesh with free tetrahedral and an element size of 0.00094m with a growth rate of 1.3. The 

finer mesh is set in the finite element package setup in the geometrical optics module, as shown in 

Figure 9. 
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Figure 8. The geometry of the cylinder. 

 

 

 

Figure 9.3 Finite element mesh of cylinder with a plane in XY direction through the center. 
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4.3.2 Material Properties 

Here the material is selected as Aluminum, and its properties are shown in Table 2. 

 

Table 2. Material properties of the cylinder 

Refractive index, the real part 1.3 1 

Refractive index, imaginary part 0 1 

Relative permeability 1 1 

Heat capacity at constant pressure 900[𝐽/(𝑘𝑔 ∗ 𝐾)] 𝐽/(𝑘𝑔 · 𝐾) 

Thermal conductivity 238[𝑊/(𝑚 ∗ 𝐾)] 𝑊/(𝑚 · 𝐾) 

Electrical conductivity 3.774𝑒7[𝑆/𝑚] 𝑆/𝑚 

Relative permittivity 1 1 

Coefficient of thermal expansion 23𝑒 − 6[1/𝐾] 1/𝐾 

Density 2700[𝑘𝑔/𝑚^3] 𝑘𝑔/𝑚³ 

Young's modulus 70𝑒9[𝑃𝑎] 𝑃𝑎 

Poisson’s ratio 0.33 1 

Murnaghan third-order elastic moduli −2.5𝑒11[𝑃𝑎] 𝑁/𝑚² 

Murnaghan third-order elastic moduli −3.3𝑒11[𝑃𝑎] 𝑁/𝑚² 

Murnaghan third-order elastic moduli −3.5𝑒11[𝑃𝑎] 𝑁/𝑚² 

Lamé parameter λ 5.1𝑒10[𝑃𝑎] 𝑁/𝑚² 

Lamé parameter μ 2.6𝑒10[𝑃𝑎] 𝑁/𝑚² 
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4.3.3 Boundary Conditions 

 Firstly, In the geometrical optics module, after inserting a wall condition and selecting all 

the disc domains with a freeze condition, we choose hexapolar grid type is placed at a location of 

[0,0.1905,0.4699/2]m with a cylinder axis direction of [0, -1,0] and the number of radial positions 

is set to 0. The ray direction vector is set to conical with uniform density, and the number of rays 

is set to 2000000 in the vector space. The cone axis is [0, -1, 0], and the angle is 𝑝𝑖/6. The vacuum 

wavelength is 660nm. 

 

4.4 Ray Tracing Model – Three-Pin Component 

4.4.1 Geometry and Finite Element Mesh 

 The coating industry coats multiple blades in a single run to be cost-efficient. This 

arrangement will limit the deposition on the trailing edge of the other blades. This effect is a result 

of the shadow of one blade concerning another. This paper discusses how the simulation helps 

determine the coating thickness with respect to the shadow regions. Three pins are welded to a 6 

cm diameter disc to study both the rotational and shadow effects on the thickness distribution. Pins 

are 0.8 cm in diameter and 10 cm long, positioned in a circle 1.5 cm away from the center of the 

disc, and at an angular separation of 120° (de Matos Loureiro da Silva Pereira et al., 2017). The 

disc's center is used as a rotation point, with a rotational speed of 20 rpm. Two planes, 0.1 and 0.3 

cm from the base are selected to study the thickness distribution on a cylinder, as shown in Figure 

10. The model is scaled to one hundredth so that the simulation performance can be peaked. As 

shown in Figure 11, The mesh is selected as fine, and the sequence type is physics controlled mesh. 
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Figure 10. The geometry of the three-pin component. 

 

 

Figure 11. Three-pin mesh with planes at 0.1 and 0.3 cm. 
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4.4.2 Material Properties 

 The material properties for the disc are the same as the rectangular plate. Both are selected 

as Aluminum and are shown in Table 2. 

 

4.4.3 Boundary Conditions 

 After inserting a wall condition in the geometrical optics module and selecting all the disc 

domains with a freeze condition, the release times feature is selected, and the distribution function 

is set to uniform with the setting of a number of values as 10 with a first-time value of 0 and the 

last value of 9. Grid of hexapolar type is placed at a location of [0,0.0015,0.04225]m with a 

cylinder axis direction of [-1, 0,0], and the number of radial positions is set to 0. The ray direction 

vector is set to conical with uniform density, and the number of rays is set to 100000 in the vector 

space. The cone axis is [-1, 0, 0], and the angle is 𝑝𝑖/6. The vacuum wavelength is 660nm. 

 

4.5 Heat Transfer Model – Disc and Cylinder 

4.5.1 Geometry and Finite Element Mesh 

 The disc and cylinder models are built in the finite element package. The dimensions are 

94.2 mm 15 mm (DH) for the disc Figure 12 and 60 mm  60 mm for the cylinder in Figure 13, 

so they have the same volume. There are 4,059 3D tetrahedral elements in the disc and 25,980 

elements in the cylinder. 

 



 

 

33 

 

Figure 12. Finite element model of the disc component. 

 

Figure 13. Finite element model of the cylinder component. 

 

Figure 14 shows the three-pin model used (de Matos Loureiro da Silva Pereira et al., 2017). It is a 

cluster of three pins mounted on a disc and coated in an EB-PVD coater system. since not all 

dimensions are provided in the reference, the finite element model is reproduced as close as 

possible as in the reference (de Matos Loureiro da Silva Pereira et al., 2017). In this work, the pins' 

height is 100 mm, and its diameter is 8 mm. Pins are equally displaced in a triangle shape, 
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positioned in a circle 15 mm away from the center of the disc, and at an angular separation of 120°. 

The selection is an extra-fine mesh that has 2,848 3D tetrahedral elements.  

 

 

Figure 14. Finite element model of the three-pin component 

 

Figure 15 shows the turbine blade model because of its complexity and industry importance. The 

turbine blade surface is a complex shape, including both convex and concave surfaces.  The height 

of the model is 3000 m.  
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Figure 15. Finite element model of the turbine blade 

4.5.2 Boundary Conditions and Material Properties 

 For the disc and cylinder models, the heating source's diameter is π×0.03 m, covering the 

whole disc surface and most cylindrical surfaces. The initial temperature is set to 293.15 K. The 

temperature data are collected along the disk's diameter line and cylinder's half-cycle line. 

 

 For the three-pin model, the same as in (de Matos Loureiro da Silva Pereira et al., 2017), 

the center of the disk is used as the point of rotation of the three-pin structure. The rotation axis is 

parallel to the disk's normal. A rotational speed of 20 rpm is used. S1 and S2 are the circular 

profiles on the pin surface. Those are 0.03 m and 0.01 m distant from the disk surface, respectively.  

For the turbine blade model, the component itself is rotated on its stage at an assumed speed of 20 

rpm. 

 

 For the material properties, the heat capacity is 385J/(Kg·K), density 8960 kg⁄m3, and 

thermal conductivity 400 W/(m·K). 
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 PREDICTION OF COATING THICKNESS IN A TURBINE BLADE 

5.1 Geometry and Finite Element Mesh 

 Turbine blade geometry is created using SolidWorks, and then the geometry is scaled to 

one-tenth to use it to our computational reach of finite element simulation. This model is imported 

to the finite element package, and then the work planes are created along the XY plane at Z equals 

0.05 and a YZ plane. As shown in Figure 16, the mesh is taken as fine, and since few elements are 

enormous for some small regions, we defined extra fine mesh for a few boundaries, as shown in 

Figure 17.  

 

Figure 16. The geometry of the turbine blade. 
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Figure 17. Mesh of the turbine blade. 

 

5.2 Material Properties 

 The material properties for the disc are the same as the rectangular plate. Both are selected 

as Aluminum and are shown in Table 2. 

 

5.3 Boundary Conditions 

 Firstly, in the geometrical optics module, after inserting a wall condition and selecting all 

the disc domains with a freeze condition, and secondly, we choose the release times to feature is 

selected. The distribution function is set to uniform with a number of values as 4,10,20 with the 

first-time value of 0 and the last value of 19. Grid of hexapolar type is placed at a location of 

[0,0.5,0]m with a cylinder axis direction of [0, 1, 0], and the number of radial positions is set to 0. 

The ray direction vector is set to conical, and because of the computational constraints with 

uniform density and number of rays is set to 40000 in the vector space. The cone axis is [0, -1, 0], 

and the angle is 𝑝𝑖/3. The vacuum wavelength is 660 nm. 
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 RESULTS AND DISCUSSION 

6.1 Ray Tracing Model - Rectangular Plate Results 

 From the data (Fuke et al., 2005; Opsahl, 1987) using the plate and calculating the thickness 

values for n=12, the model results are conducted on a rectangular plate, Figure 5, and the results 

are shown below in Figure 18. 

 

 

 

Figure 18. Intensity distribution on a rectangular plate. 
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After gathering the 3D data from the plate's surface, as shown in Figure 18 and plotting it in Matlab, 

we get Figure 19. We are scaling the data so that we can compare it with the measured results. We 

can see that the n value of 12 is the best outcome for the comparison. 

 

 

Figure 19. 3D surface plot comparison of finite element model result and reference data. 

 

In Matlab, after drawing the midplanes in length and width directions, Figure 20, Figure 21 shows 

that for n=12, the finite element model and reference work agree with each other. (Opsahl, 1987) 
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Figure 20. Cross-section graph of comparison for n=12 along the length axis. 

 

 

Figure 21. Cross-section graph of comparison for n=12 along the width axis. 
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6.2 Ray Tracing Model – Disc and Cylinder Results 

 Figure 22 depicts a 3D plot group of surface intensity on the light illuminating surface. It 

also shows that intensity has its peak in the center of the disc, and it reduces as we move gradually 

towards the circumference. In this work, we correlate the power with respect to thickness. 

 

 

Figure 22. Surface intensity plot on a disc. 

 

Figure 23 shows the intensity vs. arclength profiles of the original finite element model simulation 

data of disc. It is obtained by scaling the data by x and y as mentioned in Eq. 14, Eq. 15. These are 

scaled to measure the computational data with the data (Fuke et al., 2005). And the x-axis limits 

are changed to [-20 20]. 

 

𝑥 = ( 𝑎𝑡𝑎𝑛𝑏(𝐵(: ,1)/0.05)); 

Eq. 14 

 

𝑦 = 𝐵(: ,2)/𝑚𝑎𝑥(𝐵(: ,2)) 

Eq. 15 
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Figure 23. The plot of arc length vs. Intensity of the disc. 

 

Similarly, Figure 24 depicts a 3D plot group of surface intensity on the light illuminating surface. 

It shows that intensity has its peak in the center of the cylinder. Figure 25 shows the intensity vs. 

arclength profiles of the cylinder's original finite element model simulation data. It is obtained by 

scaling the data by X and Y, as shown in Eq. 16, Eq. 17. These are mounted to measure 

computational data with the data from the (Fuke et al., 2005), and the x-axis limits are changed to 

[-20 20]. 

 

𝑥 = ( 𝑎𝑡𝑎𝑛𝑏(𝐴(: ,1)/0.05)); 

Eq. 16 

 

𝑦 = 𝐴(: ,2)/𝑚𝑎𝑥(𝐴(: ,2)) 

Eq. 17 
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Figure 24. Surface intensity plot on a cylinder. 

 

 

Figure 25. The plot of arc length vs. Intensity of the cylinder. 
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Figure 26. The plot of arc length vs. Intensity of the disc and cylinder after scaling. 

 

 

Figure 27. Comparison of finite element model result with reference 
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 Figure 26 depicts that after the Intensity uniformization, the vertex of the disc profile and 

cylinder profile coincide at a thickness value of 1 𝜇𝑚. The average disc surface intensity is higher 

than the cylindrical surface intensity because it is a flat surface, whereas the cylinder is a round 

object. However, the volume, material property, and length of illuminating light collected on the 

line created by the work plane are identical for the disc and cylinder in the simulation model.   

 

 In Figure 27 it shows the coinciding vertex of the disc profile and cylinder profile from the 

literature (Fuke et al., 2005) analytical model, just because of the same default center maximum 

film thickness value 𝑑𝑠0. 

 

 By looking at Figure 27, either disc profile or cylinder profile has the characters of identical 

shape, tend, and distribution, though they have different physical units and values. That is why 

they can be related, and the coating thickness can be solved by intensity input. 
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6.3 Ray Tracing Model – Three-Pin Model Results 

 

Figure 28. Comparison between measured and predicted deposition profiles for two samples. (S1 

and S2) in a cluster of cylinders. (de Matos Loureiro da Silva Pereira et al., 2017) 

 

 

Figure 29. Comparison of thickness in two planes for the finite element model and reference 

data. 
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 From the literature study, Figure 28 presents a comparison between measured and predicted 

deposition profiles. Besides, it illustrates the thickness distribution around the specimens as a 

function of angular displacement from the 0° reference point. Values 0° and 180° represent the 

points of highest and lowest deposition, respectively. Figure 28 further shows that the predicted 

coating thickness for the lowest deposition point (point affected by the shadow) is approximately 

50% of the highest deposition point (de Matos Loureiro da Silva Pereira et al., 2017). 

 

 In this study, data is collected and exported to MATLAB to plot the combined curves, as 

shown in Figure 29. Due to limitations in the computation power, we have scaled this model to 

one hundredth. This plot represents the planes created in the analytical model. For comparison 

purposes, we have selected the planes at 0.1 and 0.3 centimeters, respectively.  

 

 The cluster's ideal arrangement is such that the blades limit the deposition on the trailing 

edge of other blades (act as a shadow mask) while not masking the component's leading edge. One 

solution could be the position of a turbine blade, for instance, identical blades at an angular 

displacement of 120° (for a cluster of three blades) with their trailing edges pointing to the center 

of the circle and their leading edges pointing away from the center of the imaginary circle. The 

computer model allows this arrangement to be investigated by predicting the modification in 

coating thickness as a function of the distance of blades from the center of rotation and rotational 

speed (de Matos Loureiro da Silva Pereira et al., 2017). 
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Figure 30. Finite element model result of intensity on the three-pin surface. 

 

 The finite element model defines the parameters such as medium properties, material 

discontinuities, ray properties, wall/surface features (to calculate deposited ray power), ray release 

from a grid feature (100000 rays releasing in each second interval for a minute). We can get the 

result in Figure 30, where the intensity has been plotted on the surface, and the planes are selected 

to calculate the intensity values along the arc length. 
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6.4 Ray Tracing Model – Turbine Blade Results 

 Figure 31 shows the boundary heat source intensity of the turbine blade is 200 𝜇𝑚 

compared to the values of previous results. It also depicts the thickness/Intensity values across the 

selected surfaces. The regions affected by the shadow effect are coated less compared to the 

exposed area. After simulating three different scenarios with pi/5, pi/10, 2pi/5, Figure 32 is 

generated. It shows the distribution along the cross-sectional plane surface. 

 

Figure 31. Turbine blade 3D surface plot 

 

 From Figure 32 at arc length of 0.016 m, which is the center part of the turbine blade coated 

surface, we can predict that at a speed of pi/5 rpm, the thickness is around 0.5, for a rate of 2pi/5, 

the thickness is 0.45, and for speed of pi/10, the thickness is 0.6. Also, in Figure 33, we can see an 

increase in intensity compared to time by evaluating different revolutions at a constant speed. 
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Figure 32. Comparison between three speeds of the turbine blade. 

 

 

Figure 33. Comparison between different revolutions of the turbine blade at a constant speed. 
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Figure 34. 3D Plot of a turbine blade at 10 seconds. 

 

 

Figure 35. 3D Plot of a turbine blade at 20 seconds. 

 

 

Figure 36. 3D Plot of a turbine blade at 30 seconds.  
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 From Figure 34, Figure 35, Figure 36. we can observe that with the increase in time, the 

intensity of radiation is increasing. 

6.5 Heat Transfer Model – Disc and Cylinder Results 

 The computed temperature distributions of the disc and cylinders are shown in Figure 37, 

respectively. As shown in the figures, the highest temperature is at the center of the surface. 

 

 To view the temperature distribution along a particular direction in Figure 37, the 

temperatures in the disc and cylinder's diagonal lines are plotted in Figure 38. Since both figures 

show the same characteristics of a cubic function, the relationship between temperature and the 

angle of divergence from the heating source can be fitted as a cubic polynomial function. The fitted 

temperature for the disc is: 

 

𝑡𝑠𝑑 = − 7.4979 × 10−10 ∙ 𝛼3 − 6.329 × 10−4 ∙ 𝛼2 + 2.1544 × 10−7 ∙ 𝛼 + 296.4 

Eq. 18 

Also, the fitted temperature profile for the cylinder: 

 

𝑡𝑠𝑐 = 5.6296 × 10−8 ∙ 𝛼3 − 1.3465 × 10−3 ∙ 𝛼2 − 1.7789 × 10−5 ∙ 𝛼 + 295.53 

Eq. 19 

where α is the angle of divergence from the ray source. 

Their maximum temperatures then normalize the temperature distributions, so the maximum 

normalized temperature becomes unity. 
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Figure 37. Temperature distribution of (a) disc and (b) cylinder. 

 

 

(a) 

 

(b) 
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Figure 38. Predicated temperature distributions along the diagonal direction of (a) the disc and 

(b) the cylinder. 

 

 

(a) 

 

(b) 
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By fitting the cubic polynomial with the simulated model data and combining it with the analytical 

models solving Eq. 18, Eq. 20 for the disc, and Eq. 19, Eq. 21 for the cylinder, the relationships 

between the normalized coating thickness and normalized temperature t0  can be derived, also as 

shown in Figure 40:  

 

𝑑𝑠𝑑/𝑑𝑠0 = (4.6648 ×  to −  3.6662) 

Eq. 20 

 

𝑑𝑠𝑐/𝑑𝑠0 = ( 4.1033 × to −  3.1264) 

Eq. 21 

Using Eq. 20, Eq. 21, the predicted normalized coating thicknesses of the disc and cylinder are 

shown in Figure 39. As shown in Figure 40, the components have the maximum coating thickness 

in the center, and thickness decreases gradually to the sides.  

 



 

 

56 

 

Figure 39. Predicted normalized coating thickness distributions for (a) disc, (b) cylinder. 

 

To further check the predicted coating thickness's correctness, the comparison between the 

expected coating thickness and (Fuke et al., 2005) is shown in Figure 40. It shows that the predicted 

thickness is in excellent agreement. 

 

(a) 

 

(b) 
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Figure 40 Predicted normalized coating thickness of disc and cylinder, compared with the (Fuke 

et al., 2005). 
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6.6 Heat Transfer Model – Three-Pin Model Results 

 The predicted coating thickness in the three-pin component is shown in Figure 41, 

assuming the maximum coating thickness is 200 m. For each pin, the center has the maximum 

thickness, while the thickness decreases away towards ends. 

 

 

Figure 41. Predicted coating thickness in the three-pin component, assuming the maximum 

coating thickness is 100 m. 

 

To quantitatively compare with (de Matos Loureiro da Silva Pereira et al., 2017), the coating 

distributions in the two-section planes S1 and S2 are plotted in Figure 42. S1 and S2 are the circular 

profiles on the pin surface. Those are 0.03 m and 0.01 m distant from the disc surface. The 

predictions in this work agree reasonably well with the experimental data (de Matos Loureiro da 

Silva Pereira et al., 2017). The maximum coating thickness occurs at 00 and minimal around 1500, 

which is due to the other two pins' shadow effect. 

 

S2 

S1 
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Figure 42. Predicted coating thickness distributions on two cross-sections S1 and S2 of the three-

pin model, compared with the experimental points from (de Matos Loureiro da Silva Pereira et 

al., 2017). 

  



 

 

60 

6.7 Heat Transfer Model - Turbine Blade Results 

 The predicted coating thickness distribution in the turbine blade is shown in Figure 43, 

assuming the maximum coating thickness is 200 m. The coating thickness of the blade trailing 

edge is higher than that of the leading edge. Thickness decreases from the trailing edge to the 

leading edge along the pressure side and suction side of the turbine blade.  

 

 

Figure 43. Predicted coating thickness distribution in the gas turbine blade model. 

 

Figure 44 shows the predicted coating distribution along the middle plane section. It shows that 

trailing edge thickness is the highest. The thickness profiles of the pressure side and suction side 

section are almost symmetrical along the leading edge.  

 

S1 

S2 
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Figure 44. Predicted coating thickness along the central line of the turbine blade. 
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 CONCLUSIONS 

In this work, two finite element models based on the ray tracing and heat transfer methods are 

developed to simulate the coating thickness. The major conclusions are summarized as follows: 

 

• The coating thickness model can be analogously compared to the computed intensity plot about 

the rectangular plate validation model. 

• The disc and cylinder follow a similar trend by evaluating the ray-tracing method's data and 

comparing it with the reference. With the thickness value highest at a deposition angle of 0𝑜 

and lowest at the extremes −20𝑜 and 20𝑜.  

• From the ray-tracing results of the three-pin model, the minimum coating thickness at 150𝑜 

and the maximum is at 80𝑜 and 100𝑜 which is similar to the reference, and hence it is validated. 

• All the compared models are validated using the heat transfer method by providing a new cubic 

polynomial based approach. 

• The model is applied to the turbine blade model. For the ray-tracing model, the thickness 

reduces at regions affected by the shadow effect, and that the thickness at the trailing edge is 

more and for the heat transfer model. It shows that trailing edge thickness is the highest. The 

thickness profiles of the pressure side and suction side section are almost symmetrical along 

the leading edge. 

• For the rotary turbine blade model, the simulated intensity of radiation increases with respect 

to time. It can predict the real scenario of coating thickness. 
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 FUTURE WORK 

 By validating the data from various literature works, the thickness distribution on an object 

can be predicted using the ray tracing and heat transfer model. With extra computational efficiency, 

we can get more homogenous ray-tracing results by increasing the number of rays in a control 

volume to get optimum results. Also, more in-depth analysis of the coated regions so that the 

unevenly coated places can be optimized to obtain cost-effectiveness and increase efficiency.   

 



 

 

 

6
4
 

APPENDIX A. COATING THICKNESS DATA OF A PLATE IN REFERENCE 

Table A 1 Coating thickness for a thin plate, n=9 

 

Table A 1 is the data generated using an analytical expression from the reference (Opsahl, 1987) with n=9, to validate it with our work. 

Also, Figure A1 represents the comparison between the above data and the data from the finite element package. 
 

 
Figure A1. 3D Plot of Reference data for n=9 and finite element data. 

 

0.2 0.28 0.38 0.49 0.6 0.67 0.7 0.67 0.6 0.49 0.38 0.28 0.2 

0.23 0.33 0.46 0.6 0.72 0.81 0.85 0.81 0.72 0.6 0.46 0.33 0.23 

0.25 0.37 0.51 0.67 0.81 0.92 0.96 0.92 0.81 0.67 0.51 0.37 0.25 

0.26 0.38 0.53 0.7 0.85 0.96 1 0.96 0.85 0.7 0.53 0.38 0.26 

0.25 0.37 0.51 0.67 0.81 0.92 0.96 0.92 0.81 0.67 0.51 0.37 0.25 

0.23 0.33 0.46 0.6 0.72 0.81 0.85 0.81 0.72 0.6 0.46 0.33 0.23 

0.2 0.28 0.38 0.49 0.6 0.67 0.7 0.67 0.6 0.49 0.38 0.28 0.2 
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Table A 2 Coating thickness for a thin plate, n=12 

 

Table A 2 is the data gathered and calculated from (Opsahl, 1987) to validate it with our work. Also, Figure A2 represents the comparison 

between the above data and the data from the finite element model for n=12. 
 

 

Figure A2. 3D Plot of Reference data for n=12 and finite element model data.  

0.130093 0.203971 0.301001 0.413386 0.522963 0.604384 0.634648 0.604384 0.522963 0.413386 0.301001 0.203971 0.130093 

0.159069 0.252565 0.377042 0.522963 0.666641 0.774144 0.814246 0.774144 0.666641 0.522963 0.377042 0.252565 0.159069 

0.179941 0.287973 0.433037 0.604384 0.774144 0.901721 0.949421 0.901721 0.774144 0.604384 0.433037 0.287973 0.179941 

0.187575 0.301001 0.453752 0.634648 0.814246 0.949421 1 0.949421 0.814246 0.634648 0.453752 0.301001 0.187575 

0.179941 0.287973 0.433037 0.604384 0.774144 0.901721 0.949421 0.901721 0.774144 0.604384 0.433037 0.287973 0.179941 

0.159069 0.252565 0.377042 0.522963 0.666641 0.774144 0.814246 0.774144 0.666641 0.522963 0.377042 0.252565 0.159069 

0.130093 0.203971 0.301001 0.413386 0.522963 0.604384 0.634648 0.604384 0.522963 0.413386 0.301001 0.203971 0.130093 
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