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ABSTRACT

Molnar, Andrew B. M.S.A.A., Purdue University, December 2020. Hybrid Station-
Keeping Controller Design Leveraging Floquet Mode and Reinforcement Learning
Approaches. Major Professor: Kathleen C. Howell.

The general station-keeping problem is a focal topic when considering any space-

craft mission application. Recent missions are increasingly requiring complex tra-

jectories to satisfy mission requirements, necessitating the need for accurate station-

keeping controllers. An ideal controller reliably corrects for spacecraft state error,

minimizes the required propellant, and is computationally efficient. To that end,

this investigation assesses the effectiveness of several controller formulations in the

circular restricted three-body model. Particularly, a spacecraft is positioned in a L1

southern halo orbit within the Sun-Earth Moon Barycenter system. To prevent the

spacecraft from departing the vicinity of this reference halo orbit, the Floquet mode

station-keeping approach is introduced and evaluated. While this control strategy

generally succeeds in the station-keeping objective, a breakdown in performance is

observed proportional to increases in state error. Therefore, a new hybrid controller

is developed which leverages Floquet mode and reinforcement learning. The hybrid

controller is observed to efficiently determine corrective maneuvers that consistently

recover the reference orbit for all evaluated scenarios. A comparative analysis of the

performance metrics of both control strategies is conducted, highlighting differences

in the rates of success and the expected propellant costs. The performance compar-

ison demonstrates a relative improvement in the ability of the hybrid controller to

meet the mission objectives, and suggests the applicability of reinforcement learning

to the station-keeping problem.
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1. INTRODUCTION

The human presence in space has expanded from what was once a handful of ground-

breaking missions into the dawning of a new age of space exploration. Thousands

of organizations and companies, from countries across the globe, are venturing into

space-based research and applications. With every passing day, novel missions are

proposed that seek to advance the current state of understanding and technology.

Each mission presents unique challenges, but any mission that aims to place an object

in orbit shares a common requirement: the need for a station-keeping strategy that

is reliable, highly accurate, and sustainable. The challenge of station-keeping derives

from inherent difficulties associated with modeling the environment that spacecraft

operate within. From a theoretical viewpoint, the motion of the spacecraft is governed

by a specified dynamical system, e.g., the two-body problem, three-body problem, or

a higher fidelity model. However, in actuality, the spacecraft experiences a variety

of additional forces such as solar radiation pressure and gravitational perturbations

from other celestial bodies. The addition of these perturbing forces results in a

natural tendency for the spacecraft to deviate from some desired reference motion.

Hence, station-keeping controllers are employed to determine corrective maneuvers

that resolve any deviations in the desired position or velocity states.

1.1 Previous Contributions

The formulations and analyses conducted within this investigation build upon

existing methodologies and strategies. Without the groundbreaking work of countless

researchers, this investigation would not have been possible. Consequently, the history

and significance of these contributions are recognized and discussed here, noting three
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primary concepts: multi-body dynamics, station-keeping controller formulation, and

reinforcement learning.

1.1.1 Multi-Body Dynamics

The study of the dynamics governing celestial motion has a rich history, with

contributions from the likes of Johannes Kepler, Isaac Newton, and Leonhard Euler.

In the early 1600s, Kepler published the Astronomia Nova, deriving mathematical

laws to represent the motion of planetary bodies [1]. Later that century, Newton

derived gravitational laws to represent the motion of N-bodies in the Law of Uni-

versal Gravitation [2]. Despite this advancement, the N-body problem remained

unresolved, and was later simplified by Euler into the circular restricted three-body

problem (CR3BP) [3]. The conversion of the problem from an inertial frame to a

rotating coordinate frame enabled significant advancements in the study of celestial

mechanics. Two additional critical developments vastly accelerated insight into this

model: the existence of equilibrium solutions proven by Joseph-Louis Lagrange [4],

and the discovery of a new integral of motion. Carl Gustav Jacob Jacobi proved that

the application of the conservation of energy and angular momentum to the CR3BP

determined a new integral of the motion, known as the Jacobi constant [5]. Through

this integral, bounding structures that define the accessible regions of a spacecraft are

readily determined [6]. As a result of these developments, this model is extensively

referenced in literature throughout the 1800s and 1900s, and is widely employed in

current research for preliminary analysis.

1.1.2 Station-Keeping

Station-keeping controller formulation is extensively studied for theoretical and

practical applications. Consequently, a variety of methods have been formulated

which uniquely determine control laws to correct for state error using impulsive ma-

neuvers and continuous low-thrust. Gómez, Llibre, Mart́ınez, and Simó originally
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developed a strategy known as Floquet mode, which leverages natural dynamics to

determine an impulsive maneuver to correct for state deviation [7]. This technique

assesses the eigenstructure, or natural flow, of the current reference state, and de-

termines a corrective maneuver that eliminates the unstable behavior. Additionally,

the target point approach, applied to the station-keeping problem by Howell and Per-

nicka, similarly determines an impulsive corrective maneuver [8]. This approach seeks

to minimize a cost function consisting of the corrective maneuver and the deviation in

a select number of future target states. Conversely, another branch of station-keeping

control focuses on continuous low-thrust techniques. Scheeres demonstrated that the

Hamiltonian Structure Preserving (HSP) controller is capable of maintaining refer-

ence motion by creating an artificial center manifold [9]. This controller effectively

achieves bounded motion about the reference by eliminating the stable and unstable

manifolds.

1.1.3 Reinforcement Learning

Reinforcement learning is an emergent subset of machine learning that centers on

the concept of learning via trial and error. While this field and associated techniques

have only recently been applied to aerospace applications, the fundamental rein-

forcement learning concept originates from early work in artificial intelligence in the

mid-to-late 1900s. Richard Bellman developed an approach to solve optimal control

problems using what are now referred to as the Bellman equations [10]. The devel-

opment of dynamic programming presented a feasible solution to solving stochastic

optimal control problems. However, the computational demand grows exponentially

as the number of state variables increases, termed by Bellman as “the curse of dimen-

sionality”. Due to limitations in computing resources, research progress was primarily

constrained to theoretical analysis. However, with the development of high perfor-

mance computing, reinforcement learning applications have significantly progressed

in recent years.
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1.2 Thesis Overview

The primary focus of this investigation centers on station-keeping within the cir-

cular restricted three-body problem. More specifically, the traditional Floquet mode

controller is introduced and assessed in a controlled analysis to determine perfor-

mance standards for a L1 southern halo orbit in the Sun-Earth Moon Barycenter

(EMB) system. Thereafter, reinforcement learning is introduced as a means to im-

prove on highlighted failure points associated with the Floquet mode controller.

• Chapter 2: The general N-body problem is introduced, demonstrating the

complexities and challenges inherent to the problem formulation. Thereafter,

simplifying assumptions are applied, which form the basis of the transition from

the N-body problem to the circular restricted three-body problem. With the

model defined, non-dimensional equations of motion are derived to represent

the motion of an infinitesimal spacecraft under the influence of two celestial

bodies. To conclude, the Jacobi constant is defined, allowing the introduction

of equilibrium solutions and zero velocity curves.

• Chapter 3: A variety of dynamical systems techniques are defined that are

extensively leveraged throughout the investigation to aid analysis. Initially, the

linear variational equations are determined from the linearization of the nonlin-

ear equations of motion. The linear variational equations allow the formulation

of the state transition matrix (STM). The significance of the STM is demon-

strated with the introduction of a series of differential corrections techniques

that are employed to discover families of periodic orbits. Finally, invariant

manifold theory is applied to reveal manifold structures that direct flow around

periodic orbits.

• Chapter 4: Floquet theory is discussed and applied to the station-keeping

problem, leading to the derivation of two Floquet mode control laws: x -axis

control and three-axis control. Thereafter, the station-keeping problem is de-

fined, with specifications outlined for the operational errors, mission constraints,
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conditions for success, and simulation parameters. A specific analysis technique

for studying stochastic processes is then defined, which focuses on the use of

Monte Carlo simulations to determine statistically significant results for each

of the specified performance metrics. The chapter concludes with an in-depth

discussion of the performance of each Floquet mode controller. Baseline per-

formance metrics are determined and compared to results listed in prior litera-

ture. Additionally, a comprehensive extended analysis highlights the potential

for station-keeping failure due to increased state error.

• Chapter 5: A new hybrid controller is postulated that leverages Floquet mode

and reinforcement learning. The introduction of reinforcement learning necessi-

tates a discussion of the fundamental concepts associated with general reinforce-

ment learning problems and an overview of the specific convergence algorithm

used in this investigation. The framework that defines the reinforcement learn-

ing process is then introduced, covering the observation space, action space,

reward definition, hybrid controller design, and training process. An agent is

successfully trained to reliably meet the station-keeping objective. This perfor-

mance is demonstrated in an analysis identical to the previous Floquet mode

controller analysis, directly highlighting differences in performance metrics.

• Chapter 6: The body of work is summarized, following by remarks pertaining

to significant conclusions. These remarks assess the results collected throughout

the investigation, and discuss the applicability of reinforcement learning to the

station-keeping problem. Finally, several recommendations for promising future

work are suggested.
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2. DYNAMICAL MODEL

Dynamical models allow systems of any nature to be represented by a set of mathe-

matical laws that govern motion. Spacecraft tend to operate in complex dynamical

fields under the influence of a multitude of forces. To model the motion of spacecraft

and celestial bodies, a dynamical model must be defined which adequately represents

motion throughout the field. To narrow the focus of this research, a subset of forces

is accounted for by applying justifiable assumptions which simplify the equations of

motion and allow for the application of many dynamical systems techniques which

aid analysis. To examine the breadth of complexity inherent to this system, the gen-

eral N -body problem is introduced. From this formulation, assumptions are outlined

which ultimately yield the dynamical model used throughout this work, the circular

restricted three-body problem (CR3BP).

2.1 The N-Body Problem

The general N -body formulation depicts the motion of an arbitrary N number of

bodies in a given system. In the context of astrodynamics, a system is composed of

N celestial bodies and spacecraft where each body acts on and is acted upon by all

other N−1 bodies in the system. Illustrated in Figure 2.1, a body denoted by Pi with

mass mi is influenced by the relative position of all other bodies, while simultaneously

affecting the motion of those bodies. The position of each body is measured relative

to a fixed point O which acts as the origin in the inertial frame. The inertial reference

frame is defined as a dextral coordinate system with axes I x̂ − I ŷ − I ẑ, where the

prescript denotes the inertial frame.
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O

P1

P2

PN
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Pi I x̂

I ŷ

I ẑ
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r̄ji

Figure 2.1. N -body System in the Inertial Frame.

The coupled interaction of forces between bodies are modeled by the direct appli-

cation of Issac Newton’s laws of motion. The second law of motion in vector form,

F̄ = m¨̄r (2.1)

provides a mathematical description that states the force on a body is proportional

to the product of the mass and acceleration vector [2]. In Equation 2.1, the force F

represents the vector summation of all forces acting on a body Pi. In [2], Newton also

formulates the Law of Universal Gravitation for a pair of particles,

|F | = Gm1m2

r2
(2.2)

where G is the gravitational constant. Equation 2.2 is applied for N particles and

combined with Equation 2.1 to produce a differentiable equation which represents the

motion of a particle Pi.

mi ¨̄ri = −G
N∑
j=1
j 6=i

mimj

r3
ji

r̄ji (2.3)
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This differential equation in vector form collects six scalar first-order differential equa-

tions for each particle. The number of nonlinear differential equations scales propor-

tionally to the number of particles, with 6N equations for a given N -body system.

The simplest case of Equation 2.3 where N = 2 is commonly referred to as the two-

body problem. The two-body problem has been exhaustively researched with works

and observations dating back to Kepler and Brahe [1]. For a two-body scenario, a

general assumption asserts that the orbiting body (e.g., a spacecraft) is infinitesimal

in comparison to the celestial body. As such, the presence of the smaller body does

not affect the motion of the larger, celestial body. This assumption allows for the

derivation of analytical solutions where the motion of the spacecraft is illustrated

by conic sections. The application of geometrical laws allows for extensive analysis

within the two-body problem.

While solutions to the two-body problem offer convenient means to model motion,

the merit of analysis is restricted to a limited selection of scenarios. The two-body

model isolates the system and therefore, neglects all other external forces that man-

ifest in a higher fidelity model. Depending on the specific situation, the two-body

model may provide an adequate representation, but often the inclusion of additional

forces is essential to properly model motion and perform valid analysis. The logical

next step to increase fidelity is to account for the presence of these additional bodies

in the mathematical formulation.

2.2 The Circular Restricted Three-Body Problem

The general three-body problem defines an environment with three gravitational

bodies, where each body influences the motion of the remaining two bodies. Consider

a spacecraft operating in the vicinity of the Earth and consequently, the Moon. In

the previously defined two-body model, the Earth is defined as the primary body

influencing the motion of the spacecraft. However, inclusion of perturbing forces

exerted by the Moon on the spacecraft may quickly render analysis performed in the
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low fidelity two-body model obsolete. To develop a more thorough understanding

of the actual motion of the spacecraft, the Moon is included directly in the model.

However, the addition of the Moon, or any other body, in Equation 2.3 produces a

differential equation with no closed-form solution,

m3 ¨̄r3 = −Gm3m1

r3
13

r̄13 − G
m3m2

r3
23

r̄23 (2.4)

To solve Equation 2.4, the time histories of the position of P1 and P2 are required.

This information is not readily available as these positions now have a dependency

on the state history of P3. To completely solve for all three state histories, 18 dif-

ferential equations must be solved simultaneously which requires 18 integrals of the

motion. Conservation of linear momentum, angular momentum, and energy provide

six, three, and one integrals of the motion, respectively. The lack of remaining in-

tegrals of the motion render this equation to have no analytical solution. Instead,

the problem is reformulated by applying appropriate simplifying assumptions which

allow for numerical integration of this model.

2.2.1 Model Definition

The circular restricted three-body problem is a special case of the general three-

body problem, which arises from the application of appropriate simplifying assump-

tions. These assumptions reduce the complexity of the mathematical equations which

govern motion in this environment, allowing for direct integration and analysis. The

motion in the restricted case is generally representative of actual motion in a three-

body environment. As such, this model has proven to be sufficient in acting as a

stepping stone towards a true N -body representation of motion [4].

To define the CR3BP, three simplifying assumptions are made which impact the

dynamics of motion. The first assumption concerns the impact of the spacecraft on

the dynamical system. The mass of the spacecraft, m3, is considered infinitesimal

compared to the mass of the primaries, P1 and P2. Due to this assumption, the grav-

itational effects of P3 have no impact on the motion of either primary. To reinforce
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this assertion, the system is assumed to act as an isolated two-body system with

no external forces or perturbations. Within this two-body primary system, the first

primary, P1, is arbitrarily defined as the celestial body with larger mass, m1. There-

fore, the second primary, P2, has a smaller mass, m2. The final assumption asserts

that the primaries rotate in circular orbits about their mutual barycenter, B. This

assumption is not required, but simplifies the analysis. Other models, such as the

elliptic restricted three-body problem, omit this assumption to account for eccentric

orbits. However, the scope of this research only concerns assumed circular motion.

The combination of these assumptions defines the CR3BP. In addition, these

assumptions impose that the motion of both massive primaries is constrained to a

plane. Meanwhile, the massless third primary is ”free” to move in three-dimensional

space about the primaries. A two-dimensional schematic including the inertial and a

new rotating reference frame is depicted in Figure 2.2.

B

P1

P2

P3

I x̂

I ŷ

Rx̂

Rŷ

r̄1

r̄2

r̄23

r̄13

r̄3

θ

Figure 2.2. Schematic of the Circular Restricted Three-Body Problem.

A rotating reference frame is defined as a dextral coordinate system with axes Rx̂−
Rŷ − Rẑ, where the prescript denotes the rotating frame. Following the same notation

defined by Figure 2.1, three primaries exist, denoted by Pi. The line connecting P1

and P2 forms the x axis of the rotating frame. Between these primaries lies the point
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B, which is the barycenter of P1 and P2. Both the inertial and the rotating reference

frames have an origin at B. The rotating frame is oriented at an angle θ off the inertial

x axis, which defines a rotation between the inertial and rotating reference frames.

The z axis is shared by both reference frames.

2.2.2 Equations of Motion

To mathematically describe the motion of P3 in the CR3BP, a set of equations

of motion are derived which are numerically integrated to produce trajectories. For

convenience, and to aid with numerical computation, the equations of motion are

derived in a non-dimensional form. In order to transition between dimensional and

non-dimensional units, several characteristic quantities are defined for units of length,

mass, and time. The quantities are termed, fittingly, the characteristic length, char-

acteristic mass, and characteristic time, respectively.

l∗ = |r̄1|+ |r̄2| (2.5)

m∗ = m1 +m2 (2.6)

t∗ =

√
l∗

Gm∗
(2.7)

The characteristic length is defined as the distance between primaries, and the char-

acteristic mass is the summation of the masses of both primaries. Characteristic time

is selected as a matter of convenience in order to set the value of the non-dimensional

gravitational constant equal to one.

To derive the equations of motion, a new quantity is introduced which is defined

as µ, the mass ratio of the smaller primary to the total mass of the system.

m1

m∗
= µ (2.8)

m2

m∗
= 1− µ (2.9)

Additionally, non-dimensional time τ is defined as,

τ =
t

t∗
(2.10)
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Referencing Figure 2.2, the vector which represents the position of P3 relative to

the system barycenter is specified as a new variable in non-dimensional units in the

rotating reference frame,

ρ̄ = r̄3 = x Rx̂+ y Rŷ + z Rẑ (2.11)

To produce equations of motion, the derivative of Equation 2.11 is taken twice. To

take a derivative relative to both the rotating and inertial reference frames, the Basic

Kinematic Equation (BKE) is applied twice. The general form of the BKE is given

by,
Idρ̄

dτ
=

Rdρ̄

dτ
+ I ω̄R × ρ̄ (2.12)

which requires an angular velocity I ω̄R. The rotating frame has an angular velocity

relative to the inertial frame defined by the non-dimensional mean motion n, which

is equal to one due to the choice of t∗.

I ω̄R = n Rẑ (2.13)

Plugging in Equation 2.13 and Equation 2.11 into Equation 2.12, and taking the

derivative with respective to non-dimensional time twice, yields the equation for the

inertial acceleration of P3 expressed in rotating frame coordinates,

Id2ρ̄

dτ 2
= (ẍ− 2nẏ − n2x)Rx̂+ (ÿ + 2nẋ− n2y)Rŷ + z̈ Rẑ (2.14)

Another expression for the land-hand side of Equation 2.14 is determining by return-

ing to Equation 2.4. The mass of P3 is removed from this equation and all terms are

converted to non-dimensional units using the characteristic quantities,

Id2ρ̄

dτ 2
= −1− µ

d3
d̄− µ

s3
s̄ (2.15)

where the relative vectors r̄13 and r̄23 are replaced by d̄ and s̄, respectively. To

determine vector equations for d̄ and s̄, the definition of the center of mass is applied

to determine that r̄1 = −µ Rx̂ and r̄2 = (1− µ)Rx̂. Hence, the relative vectors d̄ and

s̄ are determined,

d̄ = (x+ µ)Rx̂+ y Rŷ + z Rẑ (2.16)



13

s̄ = (x− 1 + µ)Rx̂+ y Rŷ + z Rẑ (2.17)

such that d̄ is the position vector from P1 to P3 and s̄ is the position vector from P2

to P3. Finally, equations 2.14, 2.16, and 2.17 are substituted into Equation 2.15 to

produce the non-dimensional equations of motion which govern the behavior of an

infinitesimal particle in the CR3BP,

ẍ− 2nẏ − n2x = −(1− µ)(x+ µ)

d3
− µ(x− 1 + µ)

s3
(2.18)

ÿ + 2nẋ− n2y = −(1− µ)y

d3
− µy

s3
(2.19)

z̈ = −(1− µ)z

d3
− µz

s3
(2.20)

These equations of motion exist as three, coupled second-order differential equations

which describe the motion of P3. The autonomous system is transitioned to six first-

order differential equations for numerical integration. For completeness, the values of

d and s are determined as,

d =
√

(x+ µ)2 + y2 + z2 (2.21)

s =
√

(x− 1 + µ)2 + y2 + z2 (2.22)

The system formulated here remains a conservative system, which suggests the

existence of a potential function to represent the equations of motion. The equations

of motion are defined in the rotating frame, and as such, a pseudo-potential function

is defined,

U∗ =
1− µ
d

+
µ

s
+

1

2
n2(x2 + y2) (2.23)

The equations of motion in Equations 2.18, 2.19, and 2.20 are represented in terms

of the newly defined pseudo-potential U∗.

ẍ− 2nẏ =
∂U∗

∂x
(2.24)

ÿ + 2nẋ =
∂U∗

∂y
(2.25)

z̈ =
∂U∗

∂z
(2.26)



14

The equations of motion defined here provide a mathematical representation for the

motion for P3 due to the forces exerted by P1 and P2. Unfortunately, the lack of

known integrals of the motion prevent the derivation of analytical solutions. Instead,

numerical integration of Equations 2.18, 2.19, and 2.20 is employed to produce con-

tinuous trajectories given any arbitrary initial state. Due to the lack of a closed form

solution, this alone is not enough to develop a comprehensive understanding of the

dynamics of this environment. In lieu of an analytical solution, many dynamical sys-

tems techniques may be applied to gain additional insights and appreciation for the

natural dynamics within the circular restricted three-body problem.

2.2.3 Jacobi Constant

The formulation of the equations of motion in the rotating frame, coupled with

the fact that the system remains conservative, suggests that an energy-like quantity

exists that serves as an integral of the motion. This quantity, termed the Jacobi

constant, is a scalar quantity which derives from the rotating velocity vector and the

pseudo-potential function. The rotating velocity is represented as,

˙̄ρ = ẋ Rx̂+ ẏ Rŷ + ż Rẑ (2.27)

Equations 2.24 through 2.26 are then dotted with Equation 2.27 to produce three

scalar equations. The sum of these scalar equations evaluates to,

ẋẍ+ ẏÿ + żz̈ =
∂U∗

∂x
ẋ+

∂U∗

∂y
ẏ +

∂U∗

∂z
ż (2.28)

where U∗ is only a function of position. Therefore, the right side of Equation 2.28 is

equal to the derivative of U∗ with respect to non-dimensional time τ . This property

allows the integration of Equation 2.28, which yields an expression for the Jacobi

constant C.

ẋ2 + ẏ2 + ż2 = 2U∗ − C (2.29)
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The left side of Equation 2.29 is conveniently rewritten as the square of the rotating

velocity magnitude, delivering a concise expression for the Jacobi constant,

C = 2U∗ − ρ̇2 (2.30)

This scalar quantity represents an energy-like parameter within the CR3BP. As an

integral of the motion, the Jacobi constant assists in analysis and offers means to

categorize orbits, determine energy changes to transfer between states, and to eval-

uate the error inherent to numerical processes. The availability of even one integral

of the motion proves invaluable to advancing the understanding of this dynamical

environment.

2.2.4 Equilibrium Points

A common starting place for the analysis of any dynamical system involves the

search for equilibrium solutions. In this formulation, which occurs in a rotating

frame, such solutions exist where rotating velocity and acceleration are zero. At each

of these equilibrium solutions, a spacecraft or object remains in a constant position

relative to the rotating frame. Since position remains fixed in the rotating frame

and the pseudo-potential is only a function of position, the condition for equilibrium

solutions is defined where the gradient of the pseudo-potential equals zero,

∂U∗

∂x
=
∂U∗

∂y
=
∂U∗

∂z
= 0 (2.31)

The equations of motion defined by Equations 2.18 through 2.20 are rearranged to

meet this condition,

∂U∗

∂x
= 0 = −(1− µ)(xeq + µ)

d3
eq

− µ(xeq − 1 + µ)

s3
eq

+ n2xeq (2.32)

∂U∗

∂y
= 0 = −(1− µ)yeq

d3
eq

− µyeq
s3
eq

+ n2yeq (2.33)

∂U∗

∂z
= 0 = −(1− µ)zeq

d3
eq

− µzeq
s3
eq

(2.34)
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where xeq, yeq, and zeq are the positional components of the equilibrium solutions. In

order to satisfy Equation 2.34, zeq must be equal to zero. As a result, all equilibrium

solutions in this model are confined to the xy plane.

The equilibrium points in this model, also known as the libration points, are cat-

egorized into two groups: collinear points and equilateral points. The categorization

stems from analysis of Equations 2.32 and 2.33. An immediate conclusion from ob-

serving Equation 2.33 is that the equation is satisfied when yeq is equal to zero. When

this constraint is true, the equilibrium point(s) lie on the x axis. These solutions are

defined as the collinear points. To solve for the x axis positions of the collinear points,

Equation 2.32 is evaluated with yeq = zeq = 0, and augmented with sign functions,

xeq = A 1− µ
(xeq + µ)2

+ B µ

(xeq − 1 + µ)2
(2.35)

Two sign functions, A and B, are defined to account for the loss of sign when simpli-

fying both terms in Equation 2.35,

A = sign(xeq + µ) (2.36)

B = sign(xeq − 1 + µ) (2.37)

Three cases of Equation 2.35 exist which define the locations of the collinear libration

points. The first libration point, L1, is determined from the case where A is positive

and B is negative. The second point, L2, results from the case where A and B are both

positive. The third and final collinear libration point, L3, is found from evaluating

Equation 2.35 where A and B are both negative. The specific value of xeq for each

case is calculated by defining the quantity γ, which represents the displacement from

the nearby primary,

xL1 = 1− µ− γ1 (2.38)

xL2 = 1− µ+ γ2 (2.39)

xL3 = −µ− γ3 (2.40)
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Equations 2.38 through 2.40 are separately substituted into Equation 2.35 with the

appropriate sign terms. In all three equations, the only unknown quantity is γi.

However, these equations cannot be algebraically solved for γi; instead, an iterative

root-finding algorithm, such as a Newton-Rhapson scheme, is used to numerically

determine a value for each γi. For the case of L1,

γj+1
1 = γj1 −

f(γ1)

ḟ(γ1)
(2.41)

defines a simple update equation to iteratively determine γ1 where,

f(γ1) =
1− µ

(1− γ1)2
− µ

(γ1)2
− 1 + µ+ γ1 (2.42)

ḟ(γ1) =
2(1− µ)

(1− γ1)3
+

2µ

(γ1)3
+ 1 (2.43)

A suitable initial guess is required for this formulation to successfully converge to the

correct value. The same process is applied for L2 and L3 to find the exact locations

of all collinear libration points. The general location of each collinear libration point

is depicted in Figure 2.3.

Another solution to Equations 2.32 and 2.33 occurs when the values deq and seq

are equal. Recall that these two quantities are the distances from P1 and P2 to P3,

respectively. Hence, a point located at an equal distance from both primaries and

constrained to the xy plane forms an equilateral triangle with the primaries. The two

equilibrium solutions corresponding to these equilateral points are simply expressed

as a function of the system µ,

xL4,L5 =
1

2
− µ (2.44)

yL4,L5 = ±
√

3

2
(2.45)

The two equilateral solutions complete the set of five libration points within this

model. Figure 2.3 shows the approximate location of all libration points in the

CR3BP. The libration points L1 and L2 are always located on either side of P2,

but are not equidistant from P2. Additionally, L3 is always located to the left of P1.



18

BP1 P2L1 L2L3

L4
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Rx̂
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Figure 2.3. Equilibrium Points of the CR3BP.

However, the relative position of all libration points shifts within these constraints as

the system mass ratio varies.

2.2.5 Zero Velocity Curves

While equilibrium points stipulate that both the rotating velocity and acceleration

must be zero, there exists another condition of interest where solely the rotating

velocity is zero. Recall from Equation 2.30, the magnitude of the rotating velocity is

expressed by,

ρ̇2 = 2U∗ − C (2.46)

Mathematically, Equation 2.46 is valid for all values of U∗ and C. However, clearly for

the condition that C > 2U∗, the resulting rotating velocity magnitude is imaginary.

For a physical system, this condition is an impossibility. Hence, the special case

of C = 2U∗, where ρ̇ = 0, is of particular interest. Evaluating Equation 2.46 for
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ρ̇ = 0 and substituting the expression for U∗ yields an expression which defines this

particular case,

C = x2 + y2 +
2(1− µ)

d
+

2µ

s
(2.47)

Locations in configuration space that satisfy Equation 2.47 for a given C value define

the zero velocity surfaces. These surfaces exist in three-dimensional space and act

as boundaries restricting the range of potential movement of the body P3. However,

the zero velocity surfaces offer no insight into how a propagated initial state traverses

within the specified boundaries.

For the purposes of this analysis, only cross sections of these surfaces are employed.

The resulting planar structure is termed a zero velocity curve. For planar motion,

for instance the xy plane, the zero velocity curves create forbidden regions which a

spacecraft or object may never enter without a change in the current energy level.

An example illustrating the structure of a zero velocity curve for a specific value

of C is depicted in Figure 2.4. The zero velocity curves are represented as three

distinct black curves; one curve surrounds P1, another curve surrounds P2, and a

third curve surrounds the entire system. The area shaded in gray represents the

forbidden regions where a spacecraft cannot reach under natural propagation. For

this value of Jacobi constant, two areas of valid motion around both primaries appear.

A spacecraft located within the curve surrounding either the Earth or the Moon is

unable to escape the vicinity of the respective body, due to a lack in energy. In order

to escape either body, a change in energy is required.

In the scenario depicted by Figure 2.4, all libration point gateways are closed.

From Equation 2.47, the Jacobi constant value corresponding to each libration point

is determined. In order for a gateway to open, the Jacobi constant value corresponding

to a spacecraft’s state must be less than the Jacobi constant value of the libration

point. The order in which the gateways open follows the naming convention of the

libration points; L1 opens first, followed by L2, then L3, and finally L4 and L5 open

at the same value of C. Therefore, the knowledge of a spacecraft’s state is adequate



20

Figure 2.4. Zero Velocity Curves in the Earth-Moon System.

to determine if the spacecraft is bounded to a primary, may move between primaries,

or even escape the system entirely.

2.3 System Parameters

Throughout this work, two three-body gravitational systems are utilized: the

Earth-Moon and the Sun-Earth Moon Barycenter (EMB) systems. Several examples

are included in the Earth-Moon system for demonstration purposes. Critical system

parameters for this system are listed in Table 2.1. However, the majority of this

research is contained within the Sun-EMB system. Table 2.2 lists Sun-EMB specific

parameters that are used for all examples throughout this investigation. The inclusion

of each table in this section captures all information required to replicate results within
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Table 2.1. Earth-Moon System Parameters.

System Parameter Value Units

Mass Ratio (µ) 0.0121505842699404 -

Characteristic Length (l∗) 384747.991979046 km

Characteristic Mass (m∗) 6.04582557449506× 1024 kg

Characteristic Time (t∗) 375699.859037759 s

Table 2.2. Sun-EMB System Parameters.

System Parameter Value Units

Mass Ratio (µ) 3.04042340382006× 10−6 -

Characteristic Length (l∗) 149597892.162912 km

Characteristic Mass (m∗) 1.98848146179211× 1030 kg

Characteristic Time (t∗) 5022636.3363283 s

the given system. Characteristic quantities are documented to allow for the transition

between dimensional and non-dimensional units, and system mass ratios are provided

to aid in consistency with processes requiring numerical integration.
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3. DYNAMICAL SYSTEMS THEORY

The circular restricted three-body problem is a dynamical model that inherits the

complexities and difficulties associated with nonlinear systems. These challenges are

due, in part, to the lack of fundamental dynamical systems theory valid for nonlinear

systems. Many common dynamical systems techniques are only applicable to linear

systems. However, with certain restrictions and limitations, these tools provide many

applications which aid analyses and study within the circular restricted three-body

problem. Local linearization of the nonlinear equations of motion opens the door to

discovering how natural flow propagates within this model. This linearization allows

for stability analysis and the implementation of many numerical techniques, such as

targeting and continuation methods. Using these tools, natural periodic orbits are

generated which extend into families of periodic orbits, revealing fascinating geometric

structures which may be leveraged for various mission applications.

3.1 Linear Variational Equations

For a linear system, the equations of motion contain crucial information which

determines local stability and imposes constraints on initial conditions. Therefore, the

linearization of the nonlinear equations of motion of the CR3BP has the potential to

provide additional information. The nonlinear equations must be linearized relative

to a reference point; the equilibrium solutions provide a convenient set of states

about which the equations of motion are linearized. However, any reference state is

appropriate. Consider any of the libration points, which possess a state defined by

x̄eq = {xeq, yeq, zeq, 0, 0, 0}T . This state solution is then perturbed from equilibrium,

denoted by δx̄ = {ξ, η, ζ, ξ̇, η̇, ζ̇}T . This perturbation is introduced to the equations

of motion defined by Equations 2.18, 2.19, and 2.20. A Taylor series expansion about



23

the equilibrium solution is performed, neglecting the higher order terms, to yield the

first order, linear variational equations,

ξ̈ − 2η̇ = U∗xxξ + U∗xyη + U∗xzζ (3.1)

η̈ − 2ξ̇ = U∗yxξ + U∗yyη + U∗yzζ (3.2)

ζ̈ = U∗zxξ + U∗zyη + U∗zzζ (3.3)

Neglecting the higher order terms in the Taylor series expansion is not required, but

performed as a matter of convenience. Analysis has shown that neglecting these higher

order terms in Equations 3.1 through 3.3 considerably reduces the complexity and

computation requirements of these equations. However, the inclusion of additional

terms provides another level of fidelity useful to certain applications [11]. The sub-

scripts on the pseudo-potential function U∗ij indicate the second derivative of Equation

2.23 with respect to variables i and j. For reference, the equations for each second

partial term are,

U∗xx = 1− 1− µ
d3
− µ

s3
+

3(1− µ)(x+ µ)2

d5
+

3µ(x− 1 + µ)2

s5
(3.4)

U∗yy = 1− 1− µ
d3
− µ

s3
+

3(1− µ)y2

d5
+

3µy2

s5
(3.5)

U∗zz = −1− µ
d3
− µ

s3
+

3(1− µ)z2

d5
+

3µz2

s5
(3.6)

U∗xy = U∗yx =
3(1− µ)(x+ µ)y

d5
+

3µ(x− 1 + µ)y

s5
(3.7)

U∗xz = U∗zx =
3(1− µ)(x+ µ)z

d5
+

3µ(x− 1 + µ)z

s5
(3.8)

U∗yz = U∗zy =
3(1− µ)yz

d5
+

3µyz

s5
(3.9)

Equations 3.1, 3.2, and 3.3 provide a means to gain insight into the motion and

stability near a specified reference. In this formulation, the reference is an equilibrium

solution. Using these equations, linear approximations for the motion near libration

points are readily determined. Additionally, the same approach is equally valid for
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any arbitrary reference state, which infers the applicability of this process to the

propagation of trajectories.

3.2 State Transition Matrix

At this point, the initial state of a spacecraft in the CR3BP provides a limited

amount of information. Using the equations of motion, any initial state may be propa-

gated to produce a time invariant trajectory of position and velocity states. While the

knowledge of what will happen given an initial state is important, such information is

limited to only that state and provides no other insights. Instead, understanding the

natural flow around a particular reference state allows for additional levels of analysis

which is leveraged to further explore this dynamical model.

Recall the equations of motion given by Equations 2.18, 2.19, and 2.20. These

three coupled second-order differential equations are rewritten as six first-order dif-

ferential equations of the form ˙̄x = f̄(x̄, t), where x̄ = {x, y, z, ẋ, ẏ, ż}T . The state

given by x̄ represents any set of of position and velocity parameters at a given point

in time. As such, consider a state which resides on a reference trajectory, denoted by

x̄∗(t). At time t, the state is perturbed by a small variation δx̄(t), which creates a

new, perturbed set of states that now lie on a perturbed trajectory. In the scenario

Reference Trajectory

Perturbed Trajectory

x̄∗(t)

x̄(t)

δx̄(t)

Figure 3.1. Perturbed Trajectory Relative to a Reference Trajectory.
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illustrated by Figure 3.1, the set of initial conditions which previously produced the

reference trajectory, now lies on the perturbed trajectory. Mathematically, this is

simply expressed as,

x̄(t) = x̄∗(t) + δx̄(t) (3.10)

Similar to the methodology which produced linear variational equations when per-

turbing an equilibrium state, a Taylor series expansion of Equation 3.10 about the

reference state x̄∗ produces a linear approximation for δ ˙̄x,

δ ˙̄x =
∂f̄

∂x̄

∣∣∣∣
x̄∗(t)

δx̄(t) (3.11)

For convenience, Equation 3.11 is rewritten as,

δ ˙̄x(t) = A(t)δx̄(t) (3.12)

where A(t) is the Jacobian matrix of the equations of motion and is evaluated on the

reference trajectory. For this formulation, the matrix A(t) is a 6×6 matrix comprised

of the second partial derivatives of the pseudo-potential function,

A(t) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

U∗xx U∗xy U∗xz 0 2 0

U∗yx U∗yy U∗yz −2 0 0

U∗zz U∗zy U∗zz 0 0 0


(3.13)

The introduction of Equation 3.12 to the numerical integration process allows the

calculation of a state transition matrix (STM), which maps variations in x̄(t) due to

perturbations applied to x̄(t0). The STM, expressed as Φ(t, t0), is calculated by the

differential equation,

Φ̇(t, t0) = A(t)Φ(t, t0) (3.14)

with an initial state Φ(t0, t0) = I6×6. The STM is evaluated on the reference trajec-

tory by numerically integrating Equation 3.14 alongside the equations of motion to
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produce Φ(t, t0). Each element of Φ(t, t0) is a partial which relates a perturbation in

a specific initial state in x̄(t0), to a variation in specific final state in x̄(t). Therefore,

the STM is expressed as a matrix of partials,

Φ(t, t0) =



∂x

∂xo

∂x

∂yo

∂x

∂zo

∂x

∂ẋo

∂x

∂ẏo

∂x

∂żo

∂y

∂xo

∂y

∂yo

∂y

∂zo

∂y

∂ẋo

∂y

∂ẏo

∂y

∂żo

∂z

∂xo

∂z

∂yo

∂z

∂zo

∂z

∂ẋo

∂z

∂ẏo

∂z

∂żo

∂ẋ

∂xo

∂ẋ

∂yo

∂ẋ

∂zo

∂ẋ

∂ẋo

∂ẋ

∂ẏo

∂ẋ

∂żo

∂ẏ

∂xo

∂ẏ

∂yo

∂ẏ

∂zo

∂ẏ

∂ẋo

∂ẏ

∂ẏo

∂ẏ

∂żo

∂ż

∂xo

∂ż

∂yo

∂ż

∂zo

∂ż

∂ẋo

∂ż

∂ẏo

∂ż

∂żo



(3.15)

Each partial provides unique information applicable to a wide variety of numerical

methods. However, as a linear approximation, the numerical accuracy of mapping an

initial perturbation to a final variation is dependent on the length of the integration

and the magnitude of the perturbation. Additionally, inclusion of Equation 3.14 in

the integration process increases the number of differential equations by thirty six,

requiring significantly more computational effort. Despite these drawbacks, the infor-

mation provided by the STM considerably expands capabilities and understanding,

allowing further exploration of this dynamical model.

3.3 Differential Corrections

Often, a specific initial state is desired which delivers a spacecraft to a location

within a set of constraints. Some examples of these constraints include traversing from

one location to another in a specified amount of time, arriving at a particular point of

interest, or achieving a trajectory with some distinct geometrical structure. A method

to reliably meet these requirements relies on a differential corrections technique which

iteratively updates an initial state using sensitivity information provided by the state
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transition matrix. For this investigation, a single shooting scheme is employed to

correct initial conditions to produce periodic orbits.

3.3.1 Single Shooting

One methodology for satisfying a set of constraints is a single shooting scheme.

This technique iteratively updates a single set of initial conditions to meet constraints

on a desired final state. This process is accomplished by collecting all initial state

components that are free to update in a design variable vector, X̄. Then, all boundary

conditions are listed in a constraint vector, F̄ (X̄). For this formulation, the design

variable vector,

X̄ =


X1

X2

...

Xn

 (3.16)

is a one-dimensional vector of length n. Each design variable Xi represents a position

or velocity state component that is iteratively updated. The constraint vector,

F̄ (X̄) =


F1(X̄)

F2(X̄)
...

Fm(X̄)

 = 0̄ (3.17)

is also a one-dimensional vector, but of length m. Each entry Fi(X̄) is an equation

or variable which must be equal to the zero constraint at a defined time t. To modify

the design variables to meet the constraint equations, an iterative update equation

which approximates F̄ (X̄) is determined by performing a Taylor series expansion of

F̄ (X̄) about the initial X̄,

F̄ (X̄j) +DF̄ (X̄j) · (X̄j+1 − X̄j) = 0̄ (3.18)
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The exclusion of higher order terms implies that Equation 3.18 only approximates the

value of F̄ (X̄). As such, Equation 3.18 is applied iteratively until a small tolerance

is met,

||F (X̄j+1)|| < ε (3.19)

The targeting tolerance ε is generally around order 10−10, but varies depending on the

specific application. To solve Equation 3.18, the Jacobian matrix DF̄ (X̄) is defined,

which collects the partial derivatives of the constraint vector elements with respect

to the design vector elements,

DF̄ (X̄j) =
∂F

∂X
=



∂F1

∂X1

∂F1

∂X2

. . .
∂F1

∂Xn

∂F2

∂X1

∂F2

∂X2

. . .
∂F2

∂Xn

...
...

. . .
...

∂Fm
∂X1

∂Fm
∂X2

. . .
∂Fm
∂Xn


(3.20)

With each component of Equation 3.18 defined, the equation is rearranged to solve

for X̄j+1, noting the number of design variables and constraint equations,

X̄j+1 = X̄j −DF̄ (X̄j)−1F̄ (X̄j) (3.21)

For Equation 3.21 to be solvable, the number of design variables n must be equal

to the number of constraint equations m. When this condition is satisfied, the sys-

tem is fully constrained with a singular unique solution, and the matrix DF̄ (X̄j) is

square and invertible. Another condition exists where the number of design variables

n exceeds the number of constraint equations m. For this scenario, infinitely many

solutions exist, and DF̄ (X̄j) is no longer square and invertible. Several approaches

exist to identify a particular solution for underdetermined systems. One such ap-

proach, the minimum norm solution, identifies a solution for X̄j+1 that is closest to

X̄j. Consequently, the final solution determined by the minimum norm approach is



29

dependent on the initial choice of X̄. To solve for X̄j+1, Equation 3.21 is modified to

satisfy the minimum norm approach,

X̄j+1 = X̄j −DF̄ (X̄j)T
[
DF̄ (X̄j) ·DF̄ (X̄j)T

]
F̄ (X̄j) (3.22)

Similar to the fully constrained system, Equation 3.22 is iteratively solved until

||F (X̄j+1)|| < ε. In general, both Equations 3.21 and 3.22 are converged in a rel-

atively few number of iterations, given an appropriate initial X̄. Accordingly, this

approach proves to be a lucrative method of satisfying a variety of mission design

requirements.

3.3.2 Targeting Perpendicular Crossings

The targeting scheme most prevalent in this investigation involves a constraint

on a trajectory where the velocity in the x direction is zero when the y position is

zero. In other words, the trajectory must have a perpendicular intersection with the

xz -plane. By targeting sets of initial conditions that meet this constraint, fascinating

geometric structures are created, known as periodic orbits. The concept of targeting

a perpendicular crossing to create a periodic solution leverages the mirror theorem.

Theorem 3.3.1 (Mirror Theorem) If n point-masses are acted upon by their mu-

tual gravitational forces only, and at a certain epoch each radius vector from the

(assumed stationary) centre of mass of the system is perpendicular to every velocity

vector, then the orbit of each mass after that epoch is a mirror image of its orbit prior

to that epoch. [12]

The CR3BP contains structures which exhibit mirror configurations across, most

commonly, the plane defined by y = 0. Therefore, if a set of initial conditions lie

on this plane and depart perpendicularly forward in time, and if the propagated

trajectory returns perpendicularly to the plane, a periodic structure arises.
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Planar Perpendicular Crossings

Consider trajectories which solely exist on the xy-plane in the CR3BP. To develop

a trajectory which is periodic across the plane y = 0, defined as the map Σ, a set

of initials conditions is chosen which lie on the x axis and depart perpendicularly,

denoted as x̄0 = {x0, 0, 0, 0, ẏ0, 0}T . Illustrated in Figure 3.2, propagating an

arbitrary x̄0 until a return to Σ generally delivers a non-perpendicular final state. To

successfully correct x̄0 such that the return to Σ is perpendicular, an initial guess

which generates a nearly periodic trajectory is chosen. Given the restrictions on

Rx̂

Rŷ

Desired Trajectory

Initial Trajectory

Figure 3.2. Planar Perpendicular Targeting Problem.

x̄0, either x0 or ẏ0 are updated in order to return perpendicularly to Σ. In this

formulation, x0 is fixed and ẏ0 is iteratively determined. Therefore, the design variable

vector for a time independent two-dimensional perpendicular targeter is simply,

X̄ = ẏ0 (3.23)

Other formulations include time t in the design variable vector. However, this ap-

proach assumes time as an unconstrained, implicit variable. The initial state is propa-

gated until returning to Σ, where t is simply the amount of propagation time. Then,



31

at Σ, the requirement which forces perpendicular crossings is collected in the con-

straint vector,

F̄ (X̄) = ẋ{y=0}(ẏ0, y{y=0}(ẏ0)) (3.24)

Equation 3.24 indicates that at Σ, ẋ has functional dependencies on ẏ0 and y. Ad-

ditionally, y has a functional dependency on ẏ0. The documentation of the implicit

dependencies on each variable in Equation 3.24 is essential to properly evaluate the

partials in DF̄ (X̄). This formulation has one design variable and one constraint

equation; therefore, DF̄ (X̄) reduces to a 1× 1 matrix,

DF̄ (X̄) =
∂F1

∂X1

(3.25)

Noting the functional dependencies in Equation 3.24, the partial derivative of ẋ at Σ

with respect to ẏ0 is evaluated by applying the chain rule to produce,

DF̄ (X̄) =
∂ẋ

∂ẏ0

− ẍ

ẏ

∂y

∂ẏ0

(3.26)

In Equation 3.26, ẍ and ẏ are final trajectory states. Both partial terms are calculated

from integrating the STM along the trajectory. Therefore, Equation 3.26 is concisely

expressed as,

DF̄ (X̄) = φ45 −
ẍ

ẏ
φ25 (3.27)

where φij references the corresponding element of the STM, listed in Equation 3.15.

Finally, an update equation to iteratively determined ẏ0 is created by substituting

Equations 3.23, 3.24, and 3.27 into Equation 3.21, yielding,

ẏ j+1
0 = ẏ j0 − (φ45 −

ẍ

ẏ
φ25)−1 · ẋ j (3.28)

Proper implementation of Equation 3.28 in an iterative algorithm allows the deter-

mination of a set of initial conditions which creates a periodic orbit. However, an

appropriate guess for the initial state is pertinent to successfully converging a peri-

odic solution.
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Spatial Perpendicular Crossings

Similar to the planar perpendicular crossing targeter, a targeting scheme is em-

ployed to compute periodic orbits that exist in three-dimensional space. As before,

a map is defined as Σ : y = 0, at which the trajectory must intersect perpendicu-

larly. For spatial orbits, this condition implies that ẋ and ż are zero at Σ. Therefore,

consider an initial state x̄0 = {x0, 0, z0, 0, ẏ0, 0}T , where either x0, z0, or ẏ0 is fixed.

Then, the remaining two free variables are iteratively updated. The two cases where

x0 and z0 are fixed are of particular interest to this investigation.

To derive the update equations for the fixed x targeter, the process outlined for

planar periodic orbits is replicated. The design variables and constraint equations are

collected, noting functional dependencies,

X̄ =

 z0

ẏ0

 (3.29)

F̄ (X̄) =

ẋ{y=0}(x0, ẏ0, y{y=0}(x0, ẏ0))

ż{y=0}(x0, ẏ0, y{y=0}(x0, ẏ0))

 (3.30)

As before, time is optionally included in a fixed x targeter, but excluded in this

formulation. The design variable vector and constraint vector are both of length two,

resulting in a fully determined system where,

DF̄ (X̄) =


∂F1

∂X1

∂F1

∂X2

∂F2

∂X1

∂F2

∂X2

 (3.31)

Each partial derivative in Equation 3.31 is evaluated by direct application of the chain

rule, and the resulting form is substituted into Equation 3.21 along with Equations

3.29 and 3.30 to produce update equations for the fixed x targeter,

 z0

ẏ0

j+1

=

 z0

ẏ0

j −
φ43 −

ẍ

ẏ
φ23 φ45 −

ẍ

ẏ
φ25

φ63 −
z̈

ẏ
φ23 φ65 −

z̈

ẏ
φ25


−1  ẋ{y=0}

ż{y=0}

j (3.32)
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Both update equations in Equation 3.32 are iterated on simultaneously until the

targeting tolerance is met, resulting in a converged set of initial conditions that yield

a periodic solution. Following the exact same process, a matrix update equation for

the fixed z targeter is derived. For reference, the design variable vector and constraint

vector are,

X̄ =

x0

ẏ0

 (3.33)

F̄ (X̄) =

ẋ{y=0}(x0, ẏ0, y{y=0}(x0, ẏ0))

ż{y=0}(x0, ẏ0, y{y=0}(x0, ẏ0))

 (3.34)

The partial matrix DF̄ (X̄) is similarly evaluated, delivering the update equations for

a fixed z targeter,

x0

ẏ0

j+1

=

x0

ẏ0

j −
φ41 −

ẍ

ẏ
φ21 φ45 −

ẍ

ẏ
φ25

φ61 −
z̈

ẏ
φ21 φ65 −

z̈

ẏ
φ25


−1  ẋ{y=0}

ż{y=0}

j (3.35)

Depending on the specific geometry, either Equation 3.32 or 3.35 is used to converge

a set of initial conditions that results in a periodic orbit. However, the probability of

successfully converging a periodic orbit with either equation still relies on the relative

proximity of the initial guess.

3.3.3 Natural Parameter Continuation

Natural parameter continuation is one of many numerical continuation techniques

which are used to evolve a set of periodic solutions. A recurring difficulty throughout

this work and related research revolves around the search for an accurate initial guess

required for convergence. As such, natural parameter continuation is implemented

in this document as a means to approximate a series of related initial conditions to

periodic orbits. Each periodic orbit in the CR3BP exists as a member of a family of

periodic solutions [13]. Consequently, once a single periodic solution is discovered, a

family of orbits are generated using natural parameter continuation.
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Equations 3.28, 3.32, and 3.35 all require relatively accurate approximations for

the initial guess used in each respective update equation. If an arbitrary set of

conditions are used for the initial guess, the update equations may still converge, but

to another solution which differs from the desired result. To account for this behavior

when generating a family of periodic orbits, the orbit family is parameterized by

some natural property of the orbit, such as the Jacobi constant, orbital period, a

position component, or a velocity component. A common, intuitive choice for the

characterization of planar orbit families is the initial x position, x0. For this scenario,

an approximation for the next periodic solution is taken from the previous periodic

solution while incrementing x0 by a step size ∆x0. The step size, which is generally

small, is chosen such that the initial guess for the next periodic solution adequately

approximates the true periodic solution.

3.3.4 Lyapunov Orbit Families

The concepts presented in the previous sections are used in conjunction to produce

families of planar periodic orbits. In particular, a family of planar orbits about the

L1 libration point is discovered, called the L1 Lyapunov family. In order to determine

a series of orbits that represent this family, a starting point is required. To begin,

the linear variational equations listed in Equations 3.1 through 3.3 are employed to

determine a set of initial conditions that produce a linear periodic orbit about the

L1 libration point. These initial conditions are then used as the initial guess in a

targeting scheme governed by Equation 3.28 to converge to a set of initial conditions

that generate a nonlinear periodic orbit. After the first nonlinear periodic orbit

is discovered, successive orbits along the family are found using natural parameter

continuation.

To produce a linear orbit in the Sun-EMB system about the L1 libration point,

a step is taken away from the libration point. The size of the step is an arbitrary

distance in a specified direction off of the libration point. While the exact distance
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is not pertinent, behavior in the vicinity of the libration is better represented by the

linear variational equations. Consequently, the step size should be reasonable for the

system. For the Sun-EMB system, a step size of about 75000 km in the negative x

direction is selected. Using the linear variational equations, a linear periodic orbit is

produced, illustrated in Figure 3.3, where the arrow indicates the direction of flow

along the orbit.

Figure 3.3. L1 Linear Variational Orbit in the Sun-EMB system.

Integrating the initial conditions of this linear variational orbit with the nonlinear

equations of motion produces a non-periodic orbit. Numerically correcting for the

initial velocity in the y direction converges to a new set of initial conditions that

produce a nonlinear periodic orbit. In Figure 3.4, the corrected L1 Lyapunov orbit

is shown overlaid the linear variational orbit. Geometrically, both orbits look rel-

atively similar. This observation reinforces the idea that near the libration points,
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Figure 3.4. Corrected L1 Lyapunov Orbit in the Sun-EMB System.

linear analysis adequately approximates the nonlinear behavior. However, as the dis-

tance from the libration point increases, the structure of the nonlinear periodic orbits

changes drastically from a linear counterpart.

The family is now continued in the negative x direction using natural parameter

continuation. Figure 3.5 shows the initial evolution of the L1 Lyapunov family. As

previously discussed, each successive orbit is used as a stepping stone to reach the next

orbit in the family. Without this approach, or another continuation method, it would

be impractical to determine an initial guess for the initial conditions of an orbit that is

no longer near the L1 libration point. This process is repeated to continually grow the

family until correcting for the next family member is no longer numerically feasible.

In the Sun-EMB system and other systems with equivalent or smaller mass ratios,

it becomes numerically challenging to correct for periodic orbits when operating in
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Figure 3.5. Evolution of the Sun-EMB L1 Lyapunov Family.

the vicinity of the primaries. Both primaries act essentially as singularities, leading

to complex and rapidly changing dynamics that are less than ideal for numerical

applications. Nevertheless, a representative view of a portion of the Sun-EMB L1

Lyapunov family is depicted in Figure 3.6. At this point, attempts to continue to

grow the size of the family result in numerical failure, where the targeting tolerance

ε is no longer achievable. In order to further continue the L1 Lyapunov family in the

Sun-EMB system, another corrections approach, such as multiple-shooting, must be

employed.

It is worth noting that a family of orbits makes up a continuous structure, and

therefore, an infinite number of orbits exist within the family. By displaying a subset

of members spaced throughout the family, a general geometric portrait of the family

is produced. However, the orbits shown in Figure 3.6 only highlight a portion of the
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Figure 3.6. Sun-EMB L1 Lyapunov Family.

L1 Lyapunov family, and are not an exhaustive representation of the entire family.

In fact, in other systems such as the Earth-Moon system, a L1 Lyapunov family that

covers the entirety of the expanse between both primaries is easily generated using

the simple single shooting algorithm implemented here.

3.4 Stability

The knowledge of how natural flow reacts to unaccounted perturbations in the

vicinity of a specific periodic orbit is a critical insight that furthers the understanding

of the CR3BP. This notion poses the need to define a new concept, known as stability,

that aids in the determination of the boundedness of a periodic orbit. In this sense,

stability is defined as a means to quantify the likelihood that a periodic orbit will
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remain bounded over a fixed time interval. This stability information is directly

obtained from the STM, defined in Section 3.2. Recall that the STM maps variations

in the final state due to perturbations in the initial state. In particular, the STM

after exactly one revolution of a periodic orbit, defined as the monodromy matrix

Φ(P + t0, t0) or Φ(P, 0), contains orbit specific stability information.

The eigenvalues of the monodromy matrix classify the stability of a periodic or-

bit. As the STM is a discrete, linear mapping of variations, the boundary that

distinguishes stable and unstable behavior is the unit circle in the complex plane.

Consequently, there are three classifications for the linear stability of each eigenvalue:

stable, marginally stable, and unstable.

• Stable: If all |λi| < 1, the orbit is stable and perturbations will asymptotically

approach the reference periodic orbit over time.

• Marginally Stable: If all |λi| = 1, the orbit is marginally stable and pertur-

bations remain bounded around the reference periodic orbit.

• Unstable: If all |λi| > 1, the orbit is unstable and perturbations will tend to

depart the vicinity of the reference periodic orbit over time.

As the monodromy matrix is a 6 × 6 matrix, the stability of the periodic orbit is

governed by the collection of all six eigenvalues. For example, if the monodromy

matrix has a single |λi| > 1, the periodic orbit is considered unstable. Additionally,

because the CR3BP system as a whole is time-invariant, Lyapunov’s Theorem is

applicable,

Theorem 3.4.1 (Lyapunov’s Theorem) If λ is an eigenvalue of the monodromy

matrix Φ(P, 0) of a time invariant system, then λ−1 is also an eigenvalue, with the

same structure of elementary divisors. [14]

For truly periodic solutions, one of the eigenvalues of the monodromy matrix is purely

real and has unit magnitude. As a consequence of Theorem 3.4.1, another eigenvalue

is also real and equal to one. This pair of unit eigenvalues is commonly referred to as
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the trivial pair. The other two pairs of eigenvalues may be real or complex. A pair

of complex eigenvalues exist as conjugates and takes the form a ± bi. Consequently,

the values of the two non-trivial pairs of eigenvalues determine the linear stability

properties of a periodic orbit.

3.4.1 Stability Index

Another means of representing the stability of a periodic orbit is the stability

index ν. The stability index is simply a function of the eigenvalues of the monodromy

matrix. However, by leveraging the reciprocity property, a stability index formula is

defined which yields an equivalent value for pairs of eigenvalues [15],

νi =
1

2
(λi +

1

λi
) (3.36)

For the six eigenvalues, there exist up to three unique stability indices. The stability

index corresponding to the trivial pair of eigenvalues always has a value of one. The

non-trivial eigenvalues equate to stability indices which offer insight into the orbit

stability. If the magnitude of both non-trivial stability indices is less than one, the

periodic orbit is stable. For cases where the magnitude of either stability indices is

greater than one, the periodic orbit is unstable.

Compressing the stability information contained in the six eigenvalues to two

metrics eases the analysis of orbit stability throughout a family. A plot of the stability

indices as a function of some family parameter, such as the initial x position, gives

immediate insight into the evolution of periodic orbit stability within a family.

3.5 Bifurcations

The analysis of stability across a set of periodic solutions leads to a phenomenon

known as bifurcations. For general dynamical systems, bifurcations occur when the

structure of the stability characteristics changes form [16]. In the CR3BP, the presence

of a bifurcation may indicate the existence of a new family of periodic orbits, which
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intersect at the point of bifurcation. At the location where the bifurcation occurs,

both families share a common, bifurcating orbit.

3.5.1 Types of Bifurcations

In dynamical systems theory, a variety of bifurcation types exist for various types

of stability changes. However, three distinct classifications [17] are of particular inter-

est and leveraged in this research: tangent bifurcations, period doubling bifurcations,

and secondary Hopf bifurcations.

• Tangent Bifurcations: A tangent bifurcation occurs when a pair of non-trivial

eigenvalues meet at unity: λi = λj = +1. The presence of a tangent bifurcation

suggests that a new family of periodic orbits may intersect the bifurcation point,

but does not guarantee existence. To determine the structure that results from

a tangent bifurcation, three subcategories are defined which designate behavior:

cyclic folds, pitchfork, and transcritical bifurcations [18].

• Period Doubling Bifurcations: A period doubling bifurcation occurs when

a pair of non-trivial eigenvalues meet at the negative of unity: λi = λj = −1.

As the name suggests, the occurrence of a period doubling bifurcation results

in a new orbit family, with an orbital period twice as large the original family.

• Secondary Hopf Bifurcations: A secondary Hopf bifurcation occurs when a

pair of non-trivial eigenvalues meet at a location on the unit circle, other than

±1, and depart into the complex plane.

A graphical depiction of these three types of bifurcations in the complex plane is

illustrated in Figure 3.7. Using this schematic, along with the stability diagram

introduced in Section 3.4.1, bifurcation types and locations within families are quickly

identified. The resulting behavior allows for the expansion of study within the CR3BP

and leads to the discovery of families of spatial periodic orbits.
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Figure 3.7. Types of Bifurcations Resulting from Stability Changes.

3.5.2 Halo Families

The halos are spatial periodic orbit families which originate from tangent bifurca-

tions in the Lyapunov families. For this research, the L1 halo family is of particular

interest. A subset of this family orbits the L1 libration point. These orbits with

low out-of-plane amplitudes are of high interest for mission applications, especially

in the Sun-EMB system [19]. A spacecraft located in one of these orbits has con-

tinuous contact with an Earth based communication station during daytime. As the

family extends, orbit members gradually shift away from the L1 libration point to-

wards the vicinity of P2. A subset of these orbits, known as the near rectilinear halo

orbits (NRHOs), have been proposed for numerous applications in the Earth-Moon

system [17].

The strategy employed to discover the initial L1 Lyapunov orbit in Section 3.3.4 is

impractical for determining an initial L1 halo orbit. At the closest L1 halo orbit to the

L1 libration point, the linearized dynamics no longer provide an adequate representa-

tion of the nonlinear dynamics. Additionally, this location remains a mystery without
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other knowledge to guide the search for the L1 halo family. Instead, bifurcations in

the L1 Lyapunov family are studied, which provide a starting point for the L1 halo

family. For every family member in the L1 Lyapunov family included in Figure 3.6,

the stability indices are calculated and displayed as a function of the initial x position

of the respective orbit. This relationship is illustrated in Figure 3.8, with indications

for the locations of each bifurcation at ν = ±1. The bifurcation which branches to

Figure 3.8. Stability Indices of the Sun-EMB L1 Lyapunov Family.

the L1 halo family is located at an initial x position of approximately 1.479× 108 km

in the Sun-EMB rotating frame. This orbit, shared by the L1 Lyapunov and L1 halo

families, acts as the starting point for a continuation scheme.

In Section 3.3.4, the L1 Lyapunov family was produced using natural parameter

continuation in conjunction with a targeting scheme for planar orbits. For a spa-

tial family, Equations 3.32 and 3.35 are utilized to converge initial conditions for
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continuation in the x and z directions, respectively. Thus, a variable continuation

algorithm is implemented which continues in either one of these directions. To deter-

mine which direction is incremented by a fixed step size, the rate of change of x0 and

z0 is considered,

step variable =

 x if |x i0 − x i−1
0 | ≥ |z i0 − z i−1

0 |

z else

The other direction, along with the initial y velocity, is targeted to produce a spatial

periodic orbit. This process is repeated to produce the L1 halo family. Additionally,

the continuation algorithm is automated by determining the step direction, i.e., in

the positive or negative direction, from the sign of the respective rate of change. A

summary of the continuation algorithm is included in Table 3.1.

Table 3.1. Spatial Periodic Orbit Continuation Algorithm Summary.

Step Variable Step Direction Update Equation

x0 sign(x i0 − x i−1
0 ) Equation 3.32

z0 sign(z i0 − z i−1
0 ) Equation 3.35

The halo families are each further divided into two sub-categories: the north-

ern and southern halos. Starting from the bifurcating orbit indicated in Figure 3.8,

continuation in the positive z direction leads to the creation of the L1 northern ha-

los. Inversely, continuing in the negative z direction produces the L1 southern halos.

These two sub-categories are symmetrical in configuration space across the xy-plane.

Axial projections of members of the L1 southern halo family are included in Figure

3.9, along with an isometric view. These projections capture the size and structure

this portion of the L1 southern halo family. In the isometric view of Figure 3.9, each

orbit member is colored by the respective Jacobi constant value. Evident by this

sub-figure, the Jacobi constant value changes as the family evolves.
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Figure 3.9. Axial and Isometric Views of the L1 Southern Halo Family.

3.6 Invariant Manifolds

Analysis of a single solution offers insight and understanding of an individual

trajectory. However, knowledge of the surrounding fundamental behavior provides an

extended level of analysis. The concept of invariant manifolds, which govern the local

and global behavior of flow around a particular reference, is applied to equilibrium

points and periodic orbits. The invariant manifolds of each reference solution provide

a representative model of the phase space, which offers information that is leveraged

for a variety of mission applications. The exploitation of invariant manifold theory

has directly benefited transfer design [20] and station keeping strategies [21].
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3.6.1 Invariant Manifold Theory

The n eigenvalues λi of matrix A(t) and of the monodromy matrix Φ(P, 0) rep-

resent the characteristic multipliers of equilibrium points and periodic orbits, respec-

tively. Highlighted in Section 3.4, the characteristic multipliers determine local linear

stability and suggest how the natural flow propagates in the vicinity of a reference so-

lution. For the consideration of an equilibrium solution or a periodic solution, three

possibilities occur which categorize stability, denoted in Table 3.2. For n distinct

Table 3.2. Stability of Eigenvalues of Equilibrium Points and Periodic Orbits.

Stability Equilibrium Point Periodic Orbit

Asymptotically Stable <(λi) < 0 |λi| < 1

Unstable <(λi) > 0 |λi| > 1

Center <(λi) = 0 |λi| = 1

eigenvalues of A(t) or Φ(P, 0), let nS, nU , and nC be the count of asymptotically

stable, unstable, and oscillatory eigenvalues, respectively,

n = nS + nU + nC (3.37)

Additionally, each eigenvalue has an associated linearly independent eigenvector in

Rn. The collection of all n eigenvectors completes a set of invariant, linear subspaces

that span Rn. The stable ES, unstable EU , and center EC subspaces, or eigenspaces,

provide a basis to represent Rn.

The existence of a linear eigenspace that represents flow allows the application of

manifold theory, with explicit distinctions for stable, unstable, and center manifolds.

Consider a general hyperbolic equilibrium solution. The equilibrium solution is hy-

perbolic if all λi possess non-zero real components. In this case, the dimension of the

center eigenspace EC is zero. Here, the Stable Manifold Theorem [22] describes how

the stable and unstable eigenspaces are associated to the local invariant manifolds.
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Theorem 3.6.1 (Stable Manifold Theorem) Suppose ˙̄x = f̄(x̄) possesses a hy-

perbolic equilibrium point x̄eq. Then, there exist local stable and unstable manifolds

W S
loc(x̄eq), WU

loc(x̄eq) of the same dimension nS, nU as that of the eigenspaces ES and

EU of the linearized system, and tangent to ES and EU at x̄eq.

The local stable and unstable manifolds provide information into the natural flow

towards and away from the equilibrium solution, respectively. Each manifold is

extended in configuration space to provide a physical representation of the global

manifold behavior. A spacecraft or object, placed anywhere on the global stable or

unstable manifold, remains on the manifold for all times. This object naturally flows

towards the respective equilibrium solution in positive time if placed on the stable

manifold. Conversely, an object on the unstable manifold naturally flows towards the

equilibrium solution in negative time.

In the event of a non-hyperbolic equilibrium solution, where nS, nU , and nC are

all greater than zero, a center manifold exists in addition to the stable and unstable

manifolds. In this scenario, the Center Manifold Theorem [22] is applicable.

Theorem 3.6.2 (Center Manifold Theorem) Let f̄ be a vector field on Rn van-

ishing at the origin f̄(x̄eq) = 0̄ and A = Df̄(x̄eq). Divide the spectrum of A into

stable nS, unstable nU , and center nC components where,

<(λ) =


< 0 : λ ε nS

= 0 : λ ε nC

> 0 : λ ε nU

Let the generalized eigenspaces be ES, EC, and EU , respectively. Then, there exist

stable and unstable manifolds W S and WU tangent to ES and EU at x̄eq and a center

manifold WC tangent to EC at x̄eq. The manifolds W S, WU , and WC are all invariant

for the flow f̄ . The stable and unstable manifolds are unique, but the center manifold

need not be.

The presence of one or more center eigenspaces implies the existence of some oscilla-

tory behavior about the equilibrium solution. In the CR3BP, this implication links
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to the previously discovered periodic orbits presented in Section 3.3.4 and Section

3.5.2. Additionally, quasi-periodic orbits, which are bounded to a surface, exist in

the vicinity of periodic orbits [23].

Both the Stable Manifold Theorem and Center Manifold Theorem are equally valid

for fixed points that make up periodic orbits, noting the change in stability bounds

outlined in Table 3.2. However, there is an important and non-trivial distinction

between manifolds of equilibrium points and periodic orbits. For an equilibrium point,

a single trajectory exists which is entirely representative of the structure of either

the stable or unstable manifold. For periodic orbits, the manifolds exist as surfaces

of natural flow. To view these structures, a series of fixed points along a periodic

orbit are used to generate trajectories which lie on the stable and unstable manifold

surfaces. The collection of these trajectories, when viewed in configuration space,

offers a visual representation of the respective manifold surface that corresponds to

the periodic orbit.

3.6.2 Manifolds of Equilibrium Points and Periodic Orbits

Consider the L1 libration point in the Sun-EMB system. This equilibrium point

has a four-dimensional center eigenspace, one-dimensional unstable eigenspace, and

one-dimensional stable eigenspace. Proven by Theorem 3.6.2, a stable and unsta-

ble manifold exist which are tangent to the stable and unstable eigenspaces at x̄L1 .

Consider, for the moment, only the stable manifold W S. To determine the flow for

W S, the eigenvalues and eigenvectors of A(x̄L1) are determined. The eigenvector

corresponding to the stable eigenvalue is selected, and is of the form,

v̄S = [xS yS zS ẋS ẏS żS]T (3.38)

The stable eigenvector in Equation 3.38 is then normalized solely by position,

v̄W
S

=
v̄S√

x 2
S + y 2

S + z 2
S

(3.39)
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rather than by the magnitude of the entire eigenvector, such that a step in the di-

rection of v̄W
S

represents a physical distance. This decision allows for an intuitive

understanding of a step-off distance from x̄L1 . To produce the stable manifold of

the L1 libration point, a set of initial conditions are determined by taking a step of

magnitude d off of x̄L1 in the direction of v̄W
S
,

x̄S± = x̄L1 ± d · v̄W
S

(3.40)

Now, the state represented by x̄S± is located a physical distance d away from x̄L1 .

This distance is important, as the selected value must be close enough to the libra-

tion point to properly approximate the manifold structure. However, the distance

must not be too close, as velocity approaches zero as the distance to the libration

point decreases. Hence, if x̄S± is too close to x̄L1 , an increase in integration steps

is required to escape the vicinity of the libration point, which leads to a build up of

numerical error. Additionally, the ± in Equation 3.40 refers to the direction of the

normalized eigenvector. Any scalar multiple of v̄S is an equally valid representation of

the stable eigenspace. Consequently, the stable eigenspace is arbitrarily categorized

into a positive and negative direction in congruence with the sign of the component

xS. Finally, to produce trajectories that are emulative of the positive and negative

stable half manifolds, the states x̄S± are integrated in negative time.

The series of equations used to create the stable manifold are directly applica-

ble to the computation of the unstable manifold by simply substituting the unstable

eigenvector in place of the stable eigenvector. The only difference pertains to how

the states corresponding to the unstable half manifolds, x̄U± , are propagated. Nat-

ural flow along the unstable manifold departs the L1 libration point. Therefore, the

unstable half manifolds are produced by integrating x̄U± in positive time.

With knowledge of the eigenspaces, along with Equation 3.39 and 3.40, the stable

and unstable manifolds are easily produced, given an appropriate step-off distance d.

Generally, an appropriate dimensional value for d is determined empirically and varies

with system mass ratio. Koon et al. recommend a step distance order of magnitude of

around 10−6 non-dimensional units, approximately 150 km in the Sun-EMB system
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[24]. Using this value as the step-off distance, both the stable and unstable manifolds

of the L1 libration point in the Sun-EMB system are produced and illustrated in

Figure 3.10. Clearly, in the immediate vicinity of L1, both manifolds are tangent

Figure 3.10. Manifold Structure of the L1 Libration Point in the Sun-EMB System.

to the respective eigenspaces. As the manifolds are extended, the linear eigenspaces

no longer approximate the manifold structures. Continued propagation only furthers

this behavior, but allows for visualization of the global manifold structure. However,

it is important to remember that this visual is only a two-dimensional projection

in configuration space. Each manifold in this planar example is actually a four-

dimensional structure.

The identical process is applied to a periodic orbit, but for a series of points along

the orbit rather than a single fixed point. In the Sun-EMB system, the orbit which

bifurcates the L1 Lyapunov and L1 Halo family is selected. Using 60 points, spaced
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equidistant around the orbit, individual trajectories which lie on the stable and unsta-

ble manifolds are created. The combination of these trajectories, illustrated in Figure

3.11, provide a two-dimensional visual representation of the four-dimensional mani-

fold tubes. The manifolds shown in Figure 3.11 are integrated for approximately 260

Figure 3.11. Manifold Structure of the L1 Lyapunov-Halo Bifurcating Orbit.

days to produce a visual that captures the appearance of the manifolds in the vicinity

of the periodic orbit. Both the stable and unstable manifolds are extended to provide

global manifold structures that traverse throughout the Sun-EMB system. With this

knowledge, a spacecraft placed anywhere on the surface of the stable manifold will

eventually reach this periodic orbit.

On the right side of P2 in Figure 3.11, the manifolds are not connected. Both

manifolds are simply propagated until reaching the x axis. However, the intersection

of stable and unstable manifolds does occur in the CR3BP. This type of intersection,
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known as a homoclinic connection, refers to a situation where a trajectory on the

stable manifold of a periodic orbit connects to a trajectory on the unstable manifold

of the same periodic orbit. Alternatively, heteroclinic connections occur when a tra-

jectory on either manifold of a periodic orbit connects to a trajectory on the opposing

manifold of a different periodic orbit. Both homoclinic and heteroclinic connections

require that the trajectories are connected in position and velocity space.
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4. FLOQUET MODE STATION-KEEPING

The ability to maintain a nominal orbit for a specified duration of time is a fundamen-

tal requirement of the mission design process. The process of maintaining a nominal

orbit, commonly referred to as a reference orbit, is known as station-keeping. A va-

riety of unique methodologies for station-keeping strategies, such as the target point

and Floquet mode, have been extensively studied for mission applications. The tar-

get point approach attempts to minimize a cost function composed of the corrective

maneuvers and state errors by targeting future states [25], [26]. The Floquet mode

approach focuses on leveraging natural dynamics to eliminate the unstable directions

of flow to achieve bounded motion about a reference orbit [7]. Both methodologies

use a heuristic based approach to calculate corrective maneuvers that will, in theory,

prevent the spacecraft from departing the reference orbit. However, each method has

independent strengths and innate weaknesses, depending on the specific application.

Consequently, this investigation seeks to expand the understanding and applicability

of the Floquet mode station-keeping implementation.

4.1 Floquet Theory

In Section 3.2, the state transition matrix, which allows for linear mappings of

variations in flow, is introduced. Recall that the STM is numerically calculated

during integration,

Φ̇(t, t0) = A(t)Φ(t, t0) (4.1)

using the Jacobian matrix of the equations of motion. For a periodic orbit, A(t) is a

T -periodic matrix, where T is equivalent to the period of the orbit, P. As a result of

the periodicity of A(t), the Floquet Theorem [27] allows for the decomposition of the

STM as a function of the eigenstructure at time t.
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Theorem 4.1.1 (Floquet Theorem) If A(t) is a continuous T-periodic matrix,

then for all t ε Rn, the STM can be written in the form,

Φ(t, t0) = F (t)eB(t−t0)F−1(0)

where F (t) is a nonsingular, differentiable, T-periodic matrix and B is a constant

matrix.

Recall that the monodromy matrix is the STM of a periodic orbit at exactly one

revolution, i.e., one orbit period P. Theorem 4.1.1 is applied to develop an expression

for the monodromy matrix,

Φ(P, 0) = F (P)eJ PF−1(0) (4.2)

In Equation 4.2, the Floquet modal matrix F (P) is a periodic function of time, such

that F (P) = F (0). Each column of F (P), or F (0), is an eigenvector of Φ(P, 0).

Additionally, the matrix eJ P is a diagonal matrix comprised of the corresponding

eigenvalues of the monodromy matrix.

Previously, the monodromy matrix Φ(P, 0) of a periodic orbit was found by in-

tegrating a set of initial conditions for exactly P time. However, at any point along

the orbit, a different monodromy matrix exists, Φ(P + t0, t0), that is calculated by

integrating for one revolution from the desired point. The periodicity of the orbit

ensures that the eigenvalues of the monodromy matrix are constant regardless of the

starting point along the orbit [28]. This property allows Equation 4.2 to be expressed

for any arbitrary time t,

Φ(t, 0) = F (t)eJ tF−1(0) (4.3)

where eJ t = eJ P. Using the eigenvectors of the monodromy matrix Φ(P, 0) to produce

F (0), Equation 4.3 is rearranged to easily solve for the Floquet modal matrix,

F (t) = Φ(t, 0)F (0)e−J t (4.4)

at a specific time t using the STM at that point. This relationship eases the com-

putational burden required for the determination of the Floquet modal matrix at a
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desired location by removing superfluous numerical integration. Similar to F (0), each

column of F (t) is an eigenvector that corresponds to the respective eigenvalue along

the diagonal of eJ t. These eigenvectors provide a basis of eigenspaces that represent

the local linear behavior of natural flow.

4.2 Floquet Mode Control Laws

The relationships provided by Floquet theory lead to the development of the

station-keeping control strategy known as Floquet mode. Due to unmodeled per-

turbations and the unstable nature of the orbits of interest to this investigation,

spacecraft will tend to drift from the reference orbit. To avoid this undesirable be-

havior, the Floquet mode station-keeping strategy attempts to remove the unstable

component of flow via a corrective maneuver.

At any point along a trajectory, the state error between the spacecraft and the

reference orbit is represented by δx̄(t). At this point, the Floquet modal matrix is

determined by Equation 4.4. The columns of this matrix provide a basis to repre-

sent the natural flow dynamics. Therefore, the state error is represented as a linear

combination of the Floquet mode,

δx̄(t) = δx̄1(t) + δx̄2(t) + δx̄3(t) + δx̄4(t) + δx̄5(t) + δx̄6(t) (4.5)

where δx̄i(t) is the projection of δx̄(t) along the eigenvector v̄i. Therefore, a con-

troller is designed such that a corrective burn will eliminate the components of δx̄(t)

associated with unstable behavior.

4.2.1 Periodic Orbits with a Four-Dimensional Center Subspace

Historically, significant amounts of station-keeping research has involved the in-

vestigation into periodic orbits with one unstable, one stable, and four oscillatory

eigenspaces [21], [29], [30]. For periodic orbits possessing this eigenstructure, Floquet

mode delivers a corrective burn that removes the component of state error along the
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unstable eigenspace, arbitrarily assigned to δx̄1(t). The component of state error in

the direction of the stable eigenspace is associated with δx̄2(t), and the four remaining

projections are associated with center subspaces. A corrective burn law is postulated,

δx̄(t) + ∆V̄ =
6∑
i=2

αi · δx̄i(t) (4.6)

such that the addition of ∆V̄ serves to place the spacecraft in stable, bounded motion,

about the reference orbit [21]. Additionally, each projection of error x̄i(t) is augmented

with a scalar coefficient αi. Equation 4.6 is rewritten into a matrix form to incorporate

the corrective maneuver as,

δx̄(t) =


δx̄2(t) δx̄3(t) δx̄4(t) δx̄5(t) δx̄6(t)

0 0 0

0 0 0

0 0 0

−1 0 0

0 −1 0

0 0 −1


6×8



α2

α3

α4

α5

α6

∆Vx

∆Vy

∆Vz



(4.7)

which is condensed into a shorthand notation,

δx̄(t) = F ∗6×8 · ᾱ∗8×1 (4.8)

Equation 4.7 contains eight free variables: the five αi coefficients and the three di-

rections of the corrective maneuver. The resulting form is an underdetermined set

of constraint equations, suggesting that infinitely many solutions exist for ᾱ∗8×1 that

satisfy the system of equations.

Due to the infinite solution space of Equation 4.7, the resulting underdetermined

system of equations acts as a branching point for various research areas and is ap-

plied differently depending on the specific mission application. It is possible to add

additional constraints to restrict corrective maneuvers to defined axes or planes [31].
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Alternatively, a strategy which zeros certain coefficients αi relating to a subset of the

center subspaces is utilized to achieve formation keeping [32]. For this investigation,

single-axis and three-axis control laws are employed for station-keeping of periodic

orbits with four-dimensional center subspaces. A control law which delivers corrective

maneuvers solely in the x direction is achieved by adding two constraints on the cor-

rective maneuver, ∆Vy = ∆Vz = 0. These constraints are incorporated into Equation

4.7 to reduce the number of free variables to six, creating a fully constrained system.

The new system of equations is contained by the matrix F ∗6×6, which is a square and

invertible matrix. Hence, an x-axis maneuver is directly calculated by,

α2

α3

α4

α5

α6

∆Vx


=


δx̄2(t) δx̄3(t) δx̄4(t) δx̄5(t) δx̄6(t)

0

0

0

−1

0

0



−1

6×6

· δx̄(t) (4.9)

similarly written in a shorthand notation,

ᾱ∗6×1 = (F ∗6×6)−1 · δx̄(t) (4.10)

Evaluating Equation 4.9 results in a unique solution for the single-axis controller.

Conversely, if a three-axis controller is desired for a particular application, Equation

4.7 is revisited. While this equation has infinitely many solutions, one solution is iden-

tified via a minimum norm solution. Applying this approach, a corrective maneuver

with components in all three directions is determined,

ᾱ∗8×1 = (F ∗6×8)T ·
[
F ∗6×8 · (F ∗6×8)T

]−1 · δx̄(t) (4.11)

The minimum norm solution returns ᾱ∗8×1 as the solution to δx̄(t) = F ∗6×8 · ᾱ∗8×1 that

minimizes the magnitude of ᾱ∗8×1. However, this approach does not guarantee optimal

performance, i.e., a minimum |∆V̄ | cost solution.
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4.3 Station-Keeping Simulation

A numerical simulation that adequately models the trajectory of a spacecraft over

the time span of a mission is required. In reality, spacecraft operate under the in-

fluence of numerous perturbing forces induced from celestial bodies. A few examples

of these external forces include solar radiation pressure, gravitational forces, and at-

mospheric drag. In a numerical simulation, the potential exists to account for the

effects of these forces by appropriate modeling in the equations of motion. However,

increasing the fidelity of the modeled dynamics escalates the complexity of the simu-

lation and limits the applicability of some dynamical systems theory. Consequently,

this research solely focuses on the inclusion of forces contained within the CR3BP,

i.e., gravitational influences from the primary celestial bodies. In addition to external

perturbations, the simulation must account for limitations imposed by the infras-

tructure used to support real world missions. Therefore, several mission constraints

are included in the simulation that emulate the restrictions that accompany actual

mission operations.

4.3.1 Operational Errors

Given a station-keeping mission plan, the trajectory over a series of revolutions is

easily modeled in a numerical simulation. The simulation environment has the ability

to place a spacecraft in orbit with no error in the initial states, maintain omniscient

knowledge of the position and velocity states of the spacecraft, and deliver precise

corrective maneuvers. However, for an actual mission, the functional systems which

track the spacecraft and perform maneuvers possess inherent error. The accuracy

of the injection maneuver and future corrective maneuvers is limited by capabilities

of the spacecraft tracking infrastructure and the spacecraft engine. To account for

unmodeled operational errors, three classifications of error are introduced and added

to the simulation environment: orbit injection error, spacecraft tracking error, and

corrective maneuver error.
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• Orbit Injection Error: This investigation focuses on the station-keeping por-

tion of a mission plan. However, in order for a spacecraft to reach the desired

orbit, a transfer trajectory is designed to place the spacecraft in orbit. Upon

reaching the desired orbit, an orbit injection maneuver is executed which aims

to match the nominal velocity. Of course, this injection maneuver is not free of

error, resulting in an initial orbit state that differs from the nominal reference

state.

• Spacecraft Tracking Error: Once a spacecraft is placed along a reference or-

bit, the position and velocity states are tracked at regular intervals, also known

as an orbit update. Again, due to the limitations of tracking instruments,

the measured states are deviated from the true states of the spacecraft. Subse-

quently, the deviated tracking data is utilized to calculate corrective maneuvers.

• Corrective Maneuver Error: With the passage of time, the spacecraft will

naturally deviate from the reference orbit, due to the aforementioned unmodeled

perturbations and other mission operation errors. As the deviations increase in

magnitude, corrective maneuvers are required to keep the spacecraft in bounded

motion about the reference orbit. Using the measured tracking data, corrective

maneuvers are calculated and applied to the current state. However, due to

engine thrusting limitations, the executed maneuver differs from the desired

maneuver in magnitude and direction.

All three operational errors are accounted for in the numerical simulation via the

introduction of Gaussian error distributions. The standard deviation of the error

distribution is determined by analyzing the accuracy of the instruments used on a

mission-by-mission basis. For a baseline simulation, a set of standard operational

errors are outlined in Table 4.1. Using this set or a similar set of standard deviations,

a perturbation is readily sampled and applied to the nominal values to appropri-

ately model the inaccuracy in real world applications. Essentially, the deterministic

quantities are converted into nominal-centered Gaussian distributions. For injection
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Table 4.1. Standard Operational Errors.

Position [km] Velocity [mm/s]

Error Type σx σy σz σẋ σẏ σż σmag σdir

Orbit Injection 1.0 2.0 5.0 1.0 1.0 3.0 - -

Spacecraft Tracking 1.0 2.0 5.0 1.0 1.0 3.0 - -

Corrective Maneuver - - - - - - 1.0% 1.0◦

error, each state that makes up the nominal initial conditions is independently per-

turbed. The position and velocity components of each tracked state throughout the

mission are perturbed in a similar fashion. Finally, the nominal corrective maneuver

is isolated into two components: the magnitude and direction of the maneuver. The

magnitude is perturbed by a percentage of the nominal maneuver magnitude, while

the direction vector is perturbed by an offset angle.

4.3.2 Mission Constraints

In addition to mission operation errors, constraints are imposed which mimic real-

istic mission capabilities related to the spacecraft operational systems, ground track-

ing infrastructure, and mission requirements. The following constraints are included

to emulate these limitations:

• Minimum Time Between Maneuvers: A minimum time between successive

maneuvers is included as a means to model the amount of time required to

obtain sufficient post maneuver orbit determination data, and to allow for the

operation of scientific instruments without maneuver induced perturbations.

• Spacecraft Tracking Rate: Limitations in the availability of ground based

tracking stations restricts the frequency of updated spacecraft tracking data.
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The spacecraft states are returned at a fixed tracking rate, e.g., once every 24

hour period.

• Minimum Maneuver Magnitude: A restriction on the minimum allowable

maneuver magnitude is included to prevent maneuvers that are not realistically

feasible by the spacecraft propulsion system.

• Divergence in Position Error Restriction: Corrective maneuvers are only

executed when the spacecraft is actively departing the reference orbit in con-

figuration space. This constraint prevents the execution of wasteful corrective

maneuvers while the spacecraft is approaching the reference orbit.

A list of quantitative values for each mission constraint is contained in Table 4.2. This

table serves as a set of reference constraints used for baseline simulations and analysis.

Once all constraints for the given simulation are satisfied, a corrective maneuver is

implemented.

Table 4.2. Standard Mission Constraints.

Constraint Type Value

Minimum Time Between Maneuvers 30 days

Spacecraft Tracking Rate 1.0 days

Minimum Maneuver Magnitude 25.0 mm/s

Position Error Divergence True

4.4 Station-Keeping Analysis

The ability to model the trajectory of a spacecraft allows for rapid testing of vari-

ous mission scenarios. Each simulation, or series of simulations, is analyzed to obtain

information related to the propulsive costs and other performance metrics, subject to



62

the specified operational errors and mission constraints. The information obtained

from this analysis is vital for determining the feasibility of a Floquet mode station-

keeping approach. Consequently, the importance of obtaining relevant benchmarks

facilitates the need for clearly defined performance metrics supported by statistical

analysis. The overall metrics are subsequently used to determine the relative perfor-

mance of differing implementations.

4.4.1 Monte Carlo

In Section 4.3.1, several operational errors are introduced in the form of random

perturbations. The addition of random error sampling converts the simulation to

a stochastic process, i.e., two simulations with identical parameters generally yield

different results. To obtain an accurate estimate of any performance metric, a series of

simulations is required. The process of repeated simulations to determine an estimate

for the mean of a metric is known as a Monte Carlo simulation.

The number of trials n, or simulations, is an unknown factor when performing a

Monte Carlo simulation. If the number of trials is too small, the estimated mean is

generally a poor representation of the true mean. Conversely, performing too many

trials leads to excessive computational effort that does not significantly improve the

estimate of the mean. Often, a Monte Carlo simulation is performed for an arbi-

trarily large number of simulations until the sample mean has stabilized, without the

inclusion of quantitative evidence to support such results. Rather than aimlessly per-

forming simulations, the Monte Carlo is executed until the estimated mean meets a

desired confidence and precision level [29]. A summary of this methodology, which de-

termines the total number of trials required to meet a specified statistical significance,

is outlined here.

Consider a series of simulations that each produce a performance metric, with

mean X̄ and standard deviation S. A confidence interval is constructed,[
X̄ − z∗ S√

n
, X̄ + z∗

S√
n

]
(4.12)
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where z∗ is a measure of standard deviations and corresponds to the desired confidence

level. Additionally, a limit on the half-width of the confidence interval in Equation

4.12 is imposed using a relative precision tolerance ε. The allowable error is formatted

such that the true mean falls within X̄ ± (ε/100)X̄ . Using this relationship and the

half-width of the confidence interval in Equation 4.12, an estimate of the required

number of trials is computed [29],

n =

(
100 · z

∗S
εX̄

)2

(4.13)

Unless otherwise stated, a z∗ value of approximately 2.58 is employed which corre-

sponds to a 99% confidence interval. For this confidence level, the half-width should

not exceed 1% of the estimated mean. Each Monte Carlo is terminated once the total

number of simulations exceeds n.

4.4.2 Performance Metrics

To quantify the capabilities of station-keeping algorithms, key performance met-

rics are identified here. These metrics offer concise representations of the merits of

each station-keeping methodology and allow for the direct comparison of different

orbital maintenance strategies. For this investigation, two performance metrics are

identified and defined: the rate at which a station-keeping strategy successfully main-

tains the reference orbit, and the total cost of all corrective maneuvers required for

station-keeping purposes.

The success of a simulation is a function of the control strategy, celestial system,

reference orbit, operational errors, and mission constraints. This research aims to

investigate the reliability of various station-keeping strategies over a range of simu-

lation parameters. Consequently, the knowledge of how successfully these strategies

maintain the reference orbit is of critical importance. Therefore, conditions which

objectively differentiate between failed and successful simulations are defined by ap-

plying limitations on three attributes: total maneuver cost, positional deviation from

the nominal orbit, and linear divergence of position error. Threshold values for each
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attribute are determined via empirical studies and are declared in Table 4.3. For any

simulation to be classified as successful, all conditions must hold true. The restriction

Table 4.3. Metrics For Classifying Successful Station-Keeping Simulations.

Attribute Limit

Total Maneuver Cost 1000 m/s

Positional Error 100000 km

Linear Position Divergence +5000 km/year

on the maximum maneuver cost is imposed simply to terminate simulations where the

maneuver magnitudes become excessively large due to increased state error. Some

simulations may recover to the reference orbit via unrealistically high maneuvers that

are not practical in real world applications. Additionally, the max positional error

denotes a cutoff value beyond which the reference orbit generally becomes unrecover-

able. The final constraint on the max linear position divergence is included to require

that station-keeping simulations are sustainable over increased time spans. Occasion-

ally, for the given simulation time interval, e.g., five years, both the maneuver cost

and position error constraints are satisfied. However, a closer inspection of the actual

trajectory reveals divergent behavior that will lead to a station-keeping failure if the

simulation is extended. A truly successful algorithm will maintain the reference orbit

beyond the original mission life span.

The total station-keeping cost addresses the practicality of a station-keeping strat-

egy. During mission planning, propulsion budgets are allocated for each mission

phase. A desirable control strategy serves to minimize the required cost for the

station-keeping portion, potentially yielding propellant to other mission operations.

The total cost for a station-keeping simulation is defined such that,

|∆V̄Total| =
m∑
i=1

|∆V̄i| (4.14)
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where |∆V̄i| is the magnitude of the ith corrective maneuver. Subsequently, the to-

tal cost from each simulation is utilized in Equation 4.13 to determine the required

number of trials to achieve a statistically significant representation of the expected

total station-keeping cost. At this point, the rate of success of the station-keeping

algorithm is also recorded. Intuitively, an ideal station-keeping algorithm requires

minimal total maneuver cost with maximal success probability. The expected to-

tal maneuver cost should be reasonable for the specific mission scenario. However,

solely focusing on the minimization of propellant usage neglects operational success.

Therefore, the success rate is considered an equally important metric for assessing

the quality of each station-keeping methodology.

4.5 Floquet Mode Control Results

Floquet mode is implemented to maintain spacecraft in spatial periodic orbits.

Initially, baseline simulations are analyzed and performance is compared relative to

prior literature. This preliminary analysis serves as a reference point, which is then

extended via the exploration of operational errors and control strategies.

4.5.1 Single and Multi-Axis Control of Spatial Orbits

Certain spatial periodic orbits offer geometries that are highly desired for mission

applications. In particular, a low out-of-plane amplitude L1 halo orbit is selected

which has been extensively studied in previous work [21], [31]. The initial conditions

of the exact orbit used in this investigation are included in Table 4.4. All initial condi-

tions are supplied in non-dimensional units for consistency with the non-dimensional

equations of motion. Each condition is easily transitioned to dimensional units using

the characteristic quantities for the Sun-EMB system listed in Table 2.2.

The initial conditions of this periodic orbit are directly propagated using the

nonlinear equations of motion for one orbit period to produce geometric views of the

orbit. The planar projections and an isometric view of this L1 halo orbit are illustrated
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Table 4.4. Parameters for the Selected L1 Halo Orbit.

Component Value [nd]

x0 0.98885243515679

y0 0

z0 -0.0015

ẋ0 0

ẏ0 0.00918524634855

ż0 0

P 3.05847982227289

in Figure 4.1. Clearly, the resulting trajectory forms a periodic structure within the

specified targeting tolerance. However, due to numerical error, if the initial conditions

are propagated for extended periods of time, the trajectory will eventually depart the

periodic solution. For this orbit, the periodic geometry is lost after approximately

four revolutions. In addition to operational errors, the station-keeping strategies will

have to account for the error inherent in numerical processes.

A simulation is designed to maintain a spacecraft in this orbit for 10 revolutions,

which is approximately 4.87 years. For a baseline simulation, the operational er-

rors and mission constraints listed in Tables 4.1 and 4.2 are employed, respectively.

Following the process outlined in Section 4.4.1, the required maintenance cost is de-

termined using two control strategies: single-axis control and three-axis control. For

single-axis control, all corrective maneuvers are constrained to only apply changes in

velocity in the x direction. The magnitude of the corrective maneuver is calculated

using the control law defined by Equation 4.10. The resulting total corrective maneu-

ver costs are depicted in Figure 4.2. Each data point refers to the required |∆V̄Total|

to maintain the reference orbit for a single simulation. The blue line corresponds to

the moving average of the total corrective maneuver cost for all simulations that are
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Figure 4.1. Projections of the Nominal L1 Southern Halo Orbit.
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Figure 4.2. Baseline Maintenance Costs for a L1 Halo Orbit in the
Sun-EMB System with x -Axis Control.

performed up to that point. For this Monte Carlo, 613 simulations were performed to

achieve a stabilized expected corrective maneuver cost. The Monte Carlo concludes

that, with 99% confidence, the true cost to maintain the reference orbit with x -axis

control is within 1% of 2.798 m/s. Additionally, every simulation in this trial met the

requirements listed in Table 4.3, suggesting that the x -axis control strategy is able to

maintain the reference orbit without failure for this set of simulation parameters.

Alternatively, three-axis control allows corrective maneuvers to modify all three

velocity components. Equation 4.11 defines a control law for three-axis maneuvers us-

ing a minimum norm solution. Similar to the analysis for single-axis control, a Monte

Carlo is performed to determine an interval for the true cost to maintain the same

reference orbit with the same parameter sets. Maintenance costs for individual sim-

ulations are illustrated in Figure 4.3, along with the moving average of the expected

cost. The Monte Carlo for three-axis control required 372 simulations to stabilize the

expected corrective maneuver cost within the desired confidence level and relative

precision. For this set of operational errors and mission constraints, the true cost

to maintain the reference orbit with three-axis control is within 1% of 0.720 m/s,
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Figure 4.3. Baseline Maintenance Costs for a L1 Halo Orbit in the
Sun-EMB System with Three-Axis Control.

at a confidence level of 99%. It is noteworthy that this methodology successfully

maintained the reference orbit for 100% of the simulations performed.

The station-keeping costs determined in this investigation for single and three-

axis control are consistent with prior works that seek to maintain similar halo orbits

for comparable lengths of time [21], [30]. An initial observation simply concludes

that both methods successfully maintain the reference orbit, while three-axis does so

at a reduced cost. However, other factors are considered for a more comprehensive

analysis. One strength of x -axis control is the lack of orientation requirements from

one maneuver to the next. Given a spacecraft oriented with the thrust axis aligned

along the x direction, the orientation required for a corrective maneuver is always

satisfied. The added complexity of providing appropriate orientation for three-axis

maneuvers is non-trivial. Consequently, for specific mission applications, the x -axis

station-keeping approach has the potential to be satisfactory. On the other hand,

the three-axis strategy consistently maintains the reference orbit with a reduction in

the total corrective maneuver cost. Therefore, a mission which requires a minimal



70

station-keeping budget, but has the capacity to meet orientation demands, would

benefit from a three-axis control strategy.

4.5.2 Divergence from the Reference Orbit

While the propulsive requirement is an integral factor when considering a station-

keeping strategy, other factors such as success rate and orbit sustainability are equally

important. Consequently, the concept of divergence is introduced, which defines

a metric to represent how the spacecraft trends towards or away from the reference

orbit over the course of a simulation. The spacecraft position error at each state along

the trajectory has been previously employed in the Floquet mode station-keeping

formulation. Here, a linear trendline is best fit to these position error magnitudes,

which indicates if the spacecraft is diverging from the reference orbit. This trendline

gives a rate of linear position divergence over a fixed time span.

For the same Monte Carlo performed in Section 4.5.1, the expected linear diver-

gence is calculated to obtain an estimate of the true divergence over time. The linear

divergence for each simulation and moving average is illustrated in Figure 4.4. The

Figure 4.4. Linear Divergence from a L1 Halo Orbit in the Sun-EMB
System with x -Axis Control.
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data collected from these trials suggests a divergence rate of 24.159 km/year for the x -

axis controller. This positive divergence rate suggests that, on average, the spacecraft

will drift away from the reference orbit over the course of a simulation. As an exam-

ple, a simulation with a linear divergence rate approximately equal to the expected

divergence rate is selected from Figure 4.4. The position error history for this simu-

lation and a linear trendline are depicted in Figure 4.5. The oscillatory motion of the

Figure 4.5. Position Error of a Spacecraft with x -Axis Control.

position error illustrates how the x -axis Floquet mode controller maintains bounded

motion about the reference orbit. However, visual observation of the position error

and the linear trend clearly indicates divergence from the desired orbit. Over time, as

the deviation in position continues to increase, maintaining the orbit with an x -axis

control approach has the potential to become unsustainable. However, additional

analysis is required to properly determine conclusions on the sustainability of the

x -axis controller. Meanwhile, the three-axis Floquet mode controller maintains the

spacecraft in consistently bounded motion about the reference orbit, with an order of

magnitude reduction in divergence rate. Evident by Figure 4.6, a spacecraft utilizing

the three-axis controller is expected to diverge at a rate of 1.137 km/year. Relative
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to the x -axis controller, the three-axis controller reduces drift from the reference orbit

at a reduction in propulsive cost.

Figure 4.6. Linear Divergence from a L1 Halo Orbit in the Sun-EMB
System with Three-Axis Control.

This preliminary analysis suggests that a three-axis controller exceeds the perfor-

mance of the x -axis controller for this halo orbit in terms of total corrective maneuver

cost and the divergence from the reference orbit. This conjecture relies on the ca-

pability to deliver multi-directional corrective maneuvers. Therefore, the choice of

controller is still dependent on specific mission requirements. Despite the higher cost,

the x -axis controller is still desirable due to the simplification of orientation require-

ments. Additionally, when considering divergence rate, the size of the reference orbit

is an important factor. This halo orbit in the Sun-EMB system has in-plane and

out-of-plane amplitudes of approximately 690000 km and 180000 km, respectively.

Accordingly, a divergence rate of approximately 24 km/year may be acceptable for

certain mission scenarios.
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4.5.3 Expanded Operational Errors and Mission Constraints

A primary focus of this investigation centers on the robustness of station-keeping

algorithms. In this context, a robust station-keeping strategy continues to maintain

the spacecraft in the vicinity of the reference orbit despite unexpected operational

errors and changes in mission constraints. In Sections 4.5.1 and 4.5.2, baseline per-

formance metrics for x -axis and three-axis control strategies were determined using

the operational parameters listed in Tables 4.1 and 4.2. This preliminary investigation

highlighted the differences in performance of both control strategies in an environ-

ment with relatively small operational errors and mission constraints that allowed for

frequent corrective maneuvers. However, the narrow focus of this analysis prevents

general conclusions regarding the overall performance of both control strategies. In

this section, an extended analysis is performed which restricts the frequency of correc-

tive maneuvers and considers a variety of increased injection errors in order to provide

a comprehensive assessment of the capabilities of both station-keeping strategies.

The baseline problem setup allowed for corrective maneuvers to be performed

every 30 days. This rate is consistent with previous literature, allowing the direct

comparison of preliminary results [21], [31]. In addition, other station-keeping strate-

gies have attempted to maintain similar L1 southern halo orbits in the Earth-Moon

system via corrective maneuvers solely at x -axis crossings [33]. To emulate a similar

restriction, the corrective maneuver cooldown is extended to 90 days, effectively limit-

ing the number of corrective maneuvers to two per revolution. The updated minimum

time between consecutive maneuvers is subsequently imposed with all other mission

constraints listed in Table 4.2. Additionally, the injection errors are significantly var-

ied in order to investigate the sensitivity of each station-keeping controller in response

to unexpected errors in the initial state. Rather than a constant 1-σ error for each

state component, a range of 1-σ position errors between 1.0 km and 2000 km, and

a range of 1-σ velocity errors between 0.001 m/s and 2.0 m/s are employed. These
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injection error ranges are then implemented in conjunction with the tracking and

corrective operational errors previously defined in Table 4.1.

For this updated mission scenario, two performance metrics are of interest: the

total expected propulsive cost and the expected rate of success to maintain the space-

craft in orbit. A successful station-keeping simulation keeps the spacecraft in bounded

motion about the reference orbit. The conditions for success are defined by the param-

eter limits listed in Table 4.3. Additionally, the expected total cost is the summation

of the magnitudes of all corrective maneuvers required to keep the spacecraft in orbit.

However, only the results of successful station-keeping simulations are included in the

expected cost. Failed simulations generally result in unrealistically large corrective

maneuvers due to significant state error. Including the excessive maneuvers results

in a skewed expected total cost, which offers little insight into the performance of the

controller. By excluding outliers, the resulting expected cost represents the propulsive

requirements on the condition that the simulation is successful.

A series of Monte Carlo runs are performed to determine a comprehensive de-

piction of the performance of the x -axis and three-axis controllers. For each Monte

Carlo simulation, a position error and velocity error permutation is sampled and in-

dependently applied as a perturbation to the appropriate injection state component.

Simulations are then performed until the expected cost stabilizes. To meet this condi-

tion, Equation 4.13 is employed to determined the required number of trials for a 99%

confidence interval and a relative precision of 1%. Once terminal, the expected cost

to maintain the orbit and the rate of success are recorded. This process is repeated

over the range of all position and velocity errors for both controllers. However, each

Monte Carlo simulation requires a significant amount of computational effort. For

an accurate yet computationally feasible analysis, the position and velocity errors are

discretized into 100 km and 0.1 m/s increments, respectively. This selection of errors

results in 441 injection error permutations, each requiring a Monte Carlo simulation

to determine performance metrics.
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The resulting performance maps for the rate of success and expected total propul-

sive cost of both controllers are illustrated in Figure 4.7. Each subfigure contains data

points for all Monte Carlo simulations, colored by the respective performance metric.

For visualization purposes, the gaps between the discretized points are colored us-

ing two-dimensional linear interpolation. The resulting plots effectively display how

(a) x -Axis Success Rate. (b) Three-Axis Success Rate.

(c) x -Axis Expected Cost. (d) Three-Axis Expected Cost.

Figure 4.7. Success Rate and Expected Cost of the x -Axis and Three-
Axis Controllers for Extended Injection Error.

the success rate and expected cost vary as a function of the position and velocity
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injection errors. The x -axis controller successfully maintains the spacecraft in the

desired orbit between 23.4% and 100% of attempted simulations, while the three-axis

controller ranges between 72.2% and 100%. Both controllers show a gradual decrease

in the success rate as the position and velocity errors increase. However, clearly, the

ability to maintain the orbit using the x -axis controller diminishes at a significantly

higher rate than the three-axis controller. Meanwhile, the expected cost is observed

to proportionally increase with either injection error type. Relative to the three-

axis controller, the x -axis controller requires less propellant to maintain the orbit

for successful simulations, with the disparity increasing as injection error increases.

To clearly highlight the differences in both performance metrics, a direct comparison

of three-axis controller relative to x -axis controller is illustrated in Figure 4.8. The

(a) Relative Success Rate. (b) Relative Expected Cost.

Figure 4.8. Three-Axis Controller Performance Relative to the x -Axis Controller.

relative success rate shown in Figure 4.8(a) increases rapidly with the injection error

until reaching a plateau around 40%. Likewise, the relative propulsive cost gradually

increases throughout the range of tested injection errors. This relationship suggests

that the additional cost delivered from the three-axis formulation is related to higher

rates of success.
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The previous analysis in Section 4.5.1 for baseline controller performance sug-

gested that both x -axis and three-axis controllers reliably maintain the reference

orbit, noting that the three-axis controller does so at a reduced cost. Meanwhile, this

section imposes a restriction on the frequency of corrective maneuvers and permutates

over a series of increased injection errors. A clear observation of this analysis pertains

to the significant reduction in the rate at which both controllers meet the defined suc-

cess criteria. As a result, mission plans that limit the number of corrective maneuvers

or desire station-keeping strategies robust to operational errors, potentially require a

reevaluation of how the control strategy is implemented.
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5. HYBRID CONTROLLER DESIGN

The exploration of station-keeping techniques in literature has uncovered a variety of

methodologies which share the common goal of maintaining a spacecraft in orbit. The

various station-keeping control laws aim to correct for unaccounted errors, generally

via derived heuristics that leverage the dynamics of the system. Inherently, shortcom-

ings or failure points exist when exploring the versatility of the different controllers.

In Chapter 4, Floquet mode was introduced and the performance of the controller

was demonstrated. For the scope of that analysis, the three-axis Floquet mode con-

troller generally maintained bounded motion about a reference orbit. However, as

mission constraints and operational errors were increased, performance degradation

was exhibited, resulting in higher failure rates. In these events, the three-axis con-

troller provided inadequate corrective maneuvers to avoid the rapid divergence of the

spacecraft from the reference orbit. This observation results in the manifestation of a

requirement to develop a robust controller which delivers corrective maneuvers that

avoid undesirable divergence behavior. To that end, a new controller is proposed

that leverages the three-axis Floquet mode control law, augmented with a corrective

maneuver perturbation determined by a reinforcement learning (RL) agent. This hy-

brid controller (RLFM) exploits the highly successful nature of the three-axis Floquet

mode controller for small state errors, while enhancing the ability of the controller

to recover and maintain the reference orbit in the presence of significant operational

errors and restrictive mission constraints.

5.1 Reinforcement Learning Background

Reinforcement learning is a branch of machine learning in which an agent, i.e., a

controller, is trained to accomplish a defined task or set of tasks. The agent “learns”
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via a training process in which the agent directly interacts with an environment.

The process of learning through interaction, a trial and error based approach, is

conceptually similar to the human or animal learning process. For instance, Sutton

discusses a gazelle calf struggling to walk moments after birth, but within a short

period of time, the calf manages to learn how to run [34]. In this scenario, the calf

experiments with different actions that result in favorable, neutral, and detrimental

outcomes. Instinctively, negative behavior is discouraged, e.g., falling over when

attempting to stand, and positive behavior is encouraged. Via this action-reward

cycle, the calf eventually discovers the proper combination of actions to successfully

run.

5.1.1 Introduction to Reinforcement Learning

The primary components of the reinforcement learning structure are the agent

and the environment in which the agent operates. The agent is viewed as a controller

which relates a set of inputs, i.e., observations, to a set of actions. The observations

supplied to the agent are either a partial or full view of the current environment

state. Once the actions are applied to the environment, the state is propagated using

the dynamics of the environment. At the updated state, a reward is determined to

inform the agent of the impact of the chosen actions, and to represent the quality

of the current state. This cyclic procedure is iterated from an initial state until a

terminal condition is reached, as represented by the schematic in Figure 5.1 [34], [35].

The completion of this process from the initial to final state is known as an episode.

Once an episode terminates, the environment is reset to a new initial state, and

the process is repeated. Over a series of episodes, the policy is updated in order to

maximize the cumulative reward, i.e., the return, per episode. The policy dictates

the actions that are determined, and is often viewed as the “brain” of the agent. For

clarity, an overview of each of the aforementioned RL components and notations is

outlined below.
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Agent

Environment

Action at

st+1

State st

rt+1

Reward rt

Figure 5.1. The Agent-Environment Interaction Process [34], [35].

Observation Space

The observation space, which contains observations ot, captures the agent’s per-

spective of the current state of the environment. On the other hand, the state space,

S, containing states st, refers to a complete depiction of the environment. The obser-

vation space potentially encompasses a smaller subset of the full state. In this event,

the environment is considered partially observed. Conversely, when the observation

space captures all knowledge of the state, the environment is fully observed.

Action Space

The action space, A, consists of the set of available actions that an agent is able

to perform that inevitably affect the environment. The action space is divided into

two subcategories: discrete and continuous action spaces. Discrete action spaces are

employed in environments limited to a finite number of actions. For continuous action

spaces, the actions are represented as real-valued vectors. The type of action space is

generally driven by the environment. For instance, reinforcement learning frameworks

utilizing discrete action spaces have achieved super-human performance in strategy

games such as chess and shogi [36]. Likewise, continuous action space controllers have

been incorporated for environments requiring precise control for transfer trajectory

design [35].
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Policy

The actions are determined as a function of the current state using the agent’s

policy. Essentially, the policy contains rules which govern actions, and is either de-

terministic or stochastic, denoted by µ and π, respectively. Furthermore, the policy

is parameterized by a set of weights and biases which are refined during the training

process. Therefore, the actions determined by the policy are represented by the policy

type and parameter set,

at = µθ(st) (5.1)

at ∼ πθ(at|st) (5.2)

where θ denotes the parameterization. For stochastic policies, each action is sampled

from a Gaussian distribution denoted by a mean value and standard deviation. The

randomness aids in the exploration of new actions during the training process. Once

training concludes, the stochastic policies are generally converted to deterministic

variants where the mean action value is applied to the environment.

Return

The reward is defined as a function of the current state and is potentially extended

to include the current action and/or the next state. Each reward, rt, determined at

the various states throughout an episode, is culminated to calculate a return which is

indicative of episodic performance. Several methods are used to calculate the return;

commonly, a finite-horizon undiscounted return and an infinite-horizon discounted

return are employed. The finite-horizon undiscounted return is simply the summation

of all rewards over a fixed number of state transitions. Conversely, the infinite-horizon

discounted return is the sum of all rewards, each augmented by a time decaying

discount factor γ,

R(τ) =
∞∑
t=0

γtrt (5.3)
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where τ denotes an episode. The discount factor γ is bounded in the range [0, 1] and

controls the relative influence of current rewards versus delayed rewards. In essence,

the discount factor is an adjustable, problem specific parameter, that allows intuitive

weighting of the ratio between immediate and future rewards.

Value Functions

The return directly relates to the concept of value functions. Within most rein-

forcement learning algorithms, value functions are incorporated as means of estimat-

ing the expected return. One type of value function, the state value function,

V π(st) = Eπ

[
∞∑
k=0

γkrt+k+1(sk)

]
(5.4)

estimates the expected return from a specific state, assuming the current policy is

followed indefinitely. Additionally, the state-action value function is defined,

Qπ(st, at) = Eπ

[
∞∑
k=0

γkrt+k+1(sk, ak)

]
(5.5)

which similarly estimates the expected return. However, the state-action value func-

tion estimates the expected return by incorporating an arbitrary action taken at the

current state, which is not necessarily from the current policy. Thereafter, the current

policy is followed indefinitely.

Markov Decision Process

A Markov Decision Process (MDP) is defined as a discrete time stochastic control

process, and represents the mathematical formulation of the reinforcement learning

problem [37]. Each MDP is formulated as a tuple (S,A, T ,R, γ), where T is the state-

transition probability function. Within the MDP, the environment is fully observable,

i.e., the observation space and state space are equivalent. Additionally, the Markov

property, which suggests that future states are only reliant on the current state, rather

than the prior time dependent state history, must hold true at each state [37].
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5.1.2 Soft Actor-Critic Algorithm

Within the domain of off-policy reinforcement learning, numerous algorithms ex-

ist which uniquely attempt to develop an ideal policy that maximizes the expected

return. Most off-policy approaches employ Q-Learning, where an approximator rep-

resents the optimal action-value function. As the optimization occurs off-policy, sam-

ple data collected throughout the training process is used for policy updates. Con-

versely, on-policy approaches rely on policy optimization techniques in which the

policy parametrization, θ, is optimized using the current version of the policy. This

investigation leverages soft actor-critic (SAC), an off-policy maximum entropy rein-

forcement learning algorithm [38]. This algorithm is relatively similar to an earlier

algorithm, deep deterministic policy gradient (DDPG) [39]. Both algorithms leverage

the sampling-efficiency innate to off-policy learning while mitigating hyperparame-

ter sensitivity and instability. However, the SAC formulation incorporates entropy

maximization and adjusts the policy iteration process, which ultimately enhances

convergence stability and provides demonstrably improved relative performance [38].

The most general reinforcement learning framework optimizes the policy by max-

imizing the expected return. For the maximum entropy framework, the objective

function is augmented with the expected entropy of the policy [40]. The resulting

objective function is further modified for the infinite horizon discounted problem,

J(π) =
∞∑
t=0

E(st,at)∼ρπ

[
∞∑
k=t

γk−t Est∼T ,at∼π{r(st, at) + αH[π(·|st)] | st , at}

]
(5.6)

where ρπ corresponds to the probability of the state-action tuple [41]. Addition-

ally, the temperature parameter, denoted α, controls the stochasticity of the optimal

policy by weighting the entropy relative to the reward. The objective function in

Equation 5.6 essentially weights the discounted expected return and entropy by the

corresponding state-action probability for the current policy.

Starting from this maximum entropy framework, the SAC algorithm is derived by

first applying the soft policy iteration method. Thereafter, several approximators are

defined which are readily implemented in a practical algorithm that is computationally
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feasible. A summary of the derivation is included in this investigation, but is described

in detail in the original work [38]. Initially, the value of the policy is determined

according to Equation 5.6, where the soft Q-value function is deduced by iterative

application of a modified Bellman backup operator, Bπ,

BπQπ(st, at) = r(st, at) + γEst+1∼T [V π(st+1)] (5.7)

with a corresponding soft state value function,

V π(st) = Eat∼π [Qπ(st, at)− log π(at|st)] (5.8)

Additionally, during the policy improvement step, the policy is updated towards the

exponential of the new Q-function, which guarantees policy improvement in terms

of the soft value [38]. The Kullback-Leibler divergence, which relates the differences

between two probability distributions, is employed to project the new policy,

πnew = arg min
π′∈Π

DKL

(
π′(· | st)|

expQπold(st , ·)
Zπold(st)

)
(5.9)

where Π is a set of policies that restricts the policy domain and Zπold(st) serves to

normalize the distribution. The projection is an essential step to account for the

added constraint on the policy domain, and is selected as a matter of convenience

[38]. This process of evaluating the policy and improving the policy is iterated, and

generally converges to an optimal policy. However, the formulation is limited to

the tabular form, preventing direct implementation for continuous domains. This

limitation facilitates the need to develop several function approximators for the Q-

function and the policy. Additionally, rather than switching between policy evaluation

and improvement, each approximator is optimized using stochastic gradient descent.

Three approximators are defined specifically for the SAC formulation: the state

value function Vψ(st), the soft Q-function Qθ(st, at), and the policy πφ(st, at). The

parameters of each network-based approximator are denoted by ψ, θ, and φ, respec-

tively. The state value function is used to estimate the soft value. During training,
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this approximator seeks to minimize the squared residual error, specified by the ob-

jective function,

JV (ψ) = Est∼D
[

1

2
(Vψ(st))− Eat∼πφ [Qθ(st, at)− log πφ(at | st)])2

]
(5.10)

where D signifies the distribution of sampled states and actions. Meanwhile, the soft

Q-function network parameters are optimized in order to minimize the soft Bellman

residual,

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ(st, at)− Q̂(st, at)

)2
]

(5.11)

where Q̂(st, at) is readily determined,

Q̂(st, at) = r(st, at) + γEst+1∼T [Vψ̄(st+1)] (5.12)

The target value network is denoted by Vψ̄ and is updated using either an exponential

moving average of the value network weights, or by matching the value function

weights. Lastly, the policy parameters are updated by minimizing the expectation of

Equation 5.9, where the policy is reparameterized via a neural network transformation

at = f(εt, st). Here, εt is input noise, represented as a vector and sampled from a fixed

distribution. Noting this reparameterization, the objective function for the policy is

determined,

Jπ(φ) = Est∼D,εt∼N [log πφ(fφ(εt, st) | st)−Qθ(st, fφ(εt, st))] (5.13)

This combination of objective functions is implemented in an iterative algorithm to

train the parameters of each network. As a final remark, performance studies indicate

that simultaneously training two Q-function approximators tends to mitigate positive

bias and results in accelerated convergence. Additionally, these studies have generally

taken a single environment step followed by one or more gradient steps. The results

of these studies, hyperparameters, and relative performance to other algorithms are

discussed in the original work [38].
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5.2 Reinforcement Learning Framework

A reinforcement learning framework is composed of all critical algorithmic com-

ponents, such as the observation space, action space, and reward definition. Each

component is finely tailored to a specific application; this investigation operates ex-

clusively in the CR3BP environment. The design of each component is governed

in part by standard operating principles and best practices. However, considerable

freedom in design is available, with seemingly minor design changes contributing to

significant differences in performance. Therefore, proper care is taken during the

algorithm design phase to establish appropriate framework components.

5.2.1 Observation Space

For the scope of this analysis, the agent is assumed to possess omniscient knowl-

edge of the environment, i.e., the state space and observation space are identical.

The observation space is adequately defined to properly capture all necessary envi-

ronmental information. In fact, for a valid MDP, the agent must be aware of all

present information which impacts future states. For this application, the nonlinear

equations of motion which govern natural dynamics in the CR3BP are dependent on

current position and velocity states. Therefore, the inclusion of the three position and

three velocity states is essential to satisfy the Markov property. However, to capture

additional environmental information, the acceleration of the spacecraft is included

in the observation space. The acceleration is determined via Equations 2.18 through

2.20. The acceleration could arguably be excluded due to the dependency on position

and velocity. However, directly including the acceleration removes uncertainty and

provides additional insight into the dynamics of the spacecraft.

Each aforementioned dynamical state provides sufficient information to the agent

regarding how the spacecraft will react during an environmental step. However, the

observation space is augmented to capture additional information imperative to the

station-keeping application. Chapter 4 defines the reference orbit which represents
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the six-dimensional nominal spacecraft state. Currently, the agent has no awareness

of this desired position and velocity. Consequently, the nominal position and velocity

states are appended to the observation space in the form of relative error. The relative

state error is defined in Section 4.2 and is a critical component of the Floquet mode

station-keeping formulation.

The addition of relative state error is sufficient in the quest to inform the agent

of the station-keeping objective. However, additional information exists to assist

the agent in determining successful corrective maneuvers. To that end, the nominal

three-axis Floquet mode maneuver determined via Equation 4.11 is included in the

observation space. The Floquet mode corrective maneuver acts as linear reference that

generally maintains the spacecraft in the vicinity of the reference orbit. Finally, the

running total cost of all corrective maneuver magnitudes is included in the observation

space as a scalar quantity. The total cost to maintain the spacecraft in orbit is

critically important for mission design due to budgetary constraints, as previously

discussed in Section 4.4.2. Given the desire to minimize this quantity, including the

total cost allows the agent to relate potential negative or positive rewards to mission

performance.

This combination of observations completes the observation space defined in this

investigation. Each observation, along with notation and dimensionality, is concisely

included in Table 5.1 for reference. However, the designed observation space is sup-

plied to the agent in a vector form. Therefore, the observation space, which is equiv-

alent to the state space in this evaluation, is more formally written,

S = [ρ̄ ˙̄ρ ¨̄ρ δx̄(t) ∆V̄FM3 |∆V̄Total|]T (5.14)

All observations listed in Equation 5.14 serve to inform the agent of necessary in-

formation without providing redundant or extraneous data. Including unnecessary

information in the observation space is generally not detrimental, but potentially

hampers training rate, as the agent must discover the insignificance of the extra ob-

servations. To assess the significance of each observation, methodologies exist that

assign relative weightings to each observation parameter, allowing for the discovery
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Table 5.1. Observation Space for the Station-Keeping Reinforcement
Learning Framework.

Observation Notation Dimension

Spacecraft Position ρ̄ 3

Spacecraft Velocity ˙̄ρ 3

Spacecraft Acceleration ¨̄ρ 3

Relative State Error δx̄(t) 6

Floquet Mode Three-Axis Burn ∆V̄FM3 3

Total Corrective Maneuver Cost |∆V̄Total| 1

of observations that are essentially neglected during the training process [42]. These

weights approximate the contribution of each parameter towards determining a spe-

cific action. However, this analysis is not included in this investigation, and remains

a topic for future work.

5.2.2 Action Space

The action space must be appropriately defined for the specific application. For

station-keeping purposes, the range of actions is generally restricted to impulsive

or continuous low-thrust corrective maneuvers. This investigation focuses solely on

impulsive corrective maneuvers to prevent spacecraft from departing reference orbits.

These maneuvers are implemented via the propulsion system, adjusting the current

velocity state. As a result, the spacecraft is placed in bounded motion about the

reference orbit.

Despite the restriction on the set of potential actions for this environment, several

options exist for how the agent action space is defined. For example, the agent could

determine a corrective maneuver magnitude and direction separately, which are then

combined and implemented. Alternatively, and perhaps more intuitively, the agent
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may simply output scalars which define a corrective maneuver vector. This type of

implementation has demonstrated promising performance, and is leveraged by this

investigation [43]. Therefore, the action space is defined as a set of three actions,

where each action is a vector component of the corrective maneuver,

A = [∆Vx ∆Vy ∆Vz] (5.15)

Consequently, the actions determined by the agent are directly applied to the space-

craft velocity states. The updated states are then propagated during the environment

step for a fixed time span.

The actions that are output from the agent are governed by the output activation

function. Activation functions incorporate nonlinearity into neural network models,

and the output activation function bounds the action. This investigation employs

the hyperbolic tangent function as the activation function. Therefore, each action is

bounded such that at ∈ [−1, 1]. This action is scaled in order to determine a realistic

corrective maneuver component. The CR3BP is inherently a highly sensitive system,

where a small modification to the velocity states may lead to drastic downstream

effects. Consequently, the action must be appropriately scaled to deliver a significant

impact, but not be overwhelming to the point of continuously destructive behavior.

Empirical trials lead to the implementation of the following vector scaling function,

∆V̄RL = sign(A) ·
(
exp (2.25A2)− 1

)
(5.16)

which is graphically illustrated in Figure 5.2. This scaling function is chosen specifi-

cally to accommodate the sensitivity associated with the working environment. Ap-

proximately half of the unscaled action relates to a minuscule portion of the entire

scaled action range. This more easily allows for small-scale changes in the applied cor-

rective maneuver. However, Floquet mode station-keeping analysis has demonstrated

that as the state error increases, the magnitude of the corrective maneuver increases

accordingly. Therefore, the spectrum captured by the action signal must also in-

clude a portion of corrective maneuver magnitudes capable of delivering impactful

alterations to the current velocity state.
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Figure 5.2. Action Scaling Function.

5.2.3 Reward Definition

The reward serves to inform the agent of the current state of the environment

with respect to the station-keeping objective. To that end, a reward is devised which

concisely quantifies the current standing of the spacecraft. Clearly, a spacecraft that

has no state error is located on the reference orbit and matches the desired velocity.

This ideal situation is quantified by two rewards to incentivize the agent for states

that minimize position error and velocity error. Additionally, two rewards are applied

at terminal states to provide incentive for minimizing the total cost and to promote

success. Therefore, the total reward for any given state is determined by culminating

all four individual reward components,

rt = rδρ̄(t) + rδ ˙̄ρ(t) + r|∆V̄Total| + rSuccess (5.17)

With the exception of the reward for successful episodes, all other rewards are de-

termined as a function of unbounded quantities, e.g., position error |δρ̄(t)| ∈ [0,∞].

Consequently, bounded functions are employed to clearly define a range for each un-

bounded reward component. This concept is necessitated mathematically, but also

makes practical sense. For example, the difference between a position error of 106 km
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and ∞ km is irrelevant in terms of successful station-keeping. Both cases are clas-

sified as failures, and as a result, should receive no reward. This conceptualization

leads to the definition of a bounding function for the position error reward,

rδρ̄(t) = − tanh (4000 · |δρ̄(t)|) + 1 (5.18)

where the position error δρ̄(t) is supplied in non-dimensional units. Similarly, the

velocity error is bounded using hyperbolic tangent,

rδ ˙̄ρ(t) = − tanh (2500 · |δ ˙̄ρ(t)|) + 1 (5.19)

where δ ˙̄ρ(t) is also non-dimensional. Unlike position and velocity error rewards, which

are applied for all state-action pairs, the rewards for minimal total cost and success

are only applied at terminal state-action pairs. This discontinuity is represented

mathematically as piece-wise functions. The reward for total cost,

r|∆V̄Total| =

 − tanh
(
100 · |∆V̄Total|

)
+ 1 : (S,A, T = 0,R, γ)

0 : (S,A, T > 0,R, γ)

(5.20)

is a function of the non-dimensional total corrective maneuver magnitude of all non-

terminal MDPs for the episode. The reward signals for the position error, velocity

error, and total cost are illustrated in Figure 5.3. The position error, velocity error,

and total cost are dimensionalized in each subplot to provide perspective into each

signal. However, all terms in Equations 5.18 through 5.20 are evaluated using non-

dimensional quantities. Finally, the bonus reward for state-action pairs that terminate

as successful episodes is similarly defined as a discrete piece-wise function,

rSuccess =

 3 : (S,A, T = 0,R, γ) and pτ = 1

0 : else

(5.21)

where pτ is defined as a Boolean that indicates whether an episode meets the condi-

tions for success, as defined by Table 4.3.

Looking at each reward signal, clearly the bonus for successful episodes dominates

the net reward. By design, successful episodes are regarded as the most important
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Figure 5.3. Reward Component Signals.

objective that the agent seeks to accomplish. The emphasis on success has the effect

of indirectly aiding propellant minimization. This observation results from the min-

imization of state error. As state error decreases, especially in early episodic states,

the downstream corrective maneuvers are significantly reduced in magnitude. Ad-

ditionally, if too much priority is applied to cost reduction, the agent may quickly

converge to a less-than ideal high reward solution: terminate the episode via a single

maneuver that leads to immediate failure. In this investigation, this exploitation of

the reward structure is avoided by reducing the relative weighting. However, the

exploitation could equally be removed by adding additional reward constraints that

prevent positive reinforcement for such events.
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5.2.4 Hybrid Controller Design

A station-keeping controller is designed to maintain a spacecraft in desired motion,

modeled by a reference orbit. Chapter 4 details an in depth analysis of a traditional

Floquet theory based controller, known as Floquet mode. Relevant literature has

similarly investigated the merits of Floquet mode and compared performance to a

reinforcement learning controller [43]. This investigation also seeks to study how

reinforcement learning is applicable to the station-keeping problem. However, rather

than replacing the Floquet mode controller outright with a reinforcement learning

agent, a new type of hybrid controller is formulated. This controller seeks to leverage

the generally successful performance of the three-axis Floquet mode controller, while

using reinforcement learning to enhance the corrective maneuver. The net maneuver

is then commanded to the spacecraft. To that end, the corrective maneuver of the

hybrid controller is determined,

∆V̄RLFM = ∆V̄FM3 + ∆V̄RL (5.22)

where ∆V̄FM3 is the three-axis Floquet mode maneuver determined from Equation

4.11 and ∆V̄RL is the scaled action calculated using Equation 5.16. Essentially, the

agent seeks to augment the Floquet mode corrective maneuver in an effort to meet the

objectives defined by the reward definition. While the three-axis controller presented

in Section 4.5.3 reliably succeeds in the station-keeping problem, performance decay

is noted due to increased operational errors and mission constraints. This degradation

is attributed, in part, to the three-axis formulation. The corrective maneuver is de-

termined via a control law that derives from a linear analysis of the nonlinear system.

The linear approximation is generally representative of the nonlinear dynamics, re-

sulting in corrective maneuvers that tend to successfully recover the reference orbit.

However, as the state error increases, the linear corrective maneuvers become in-

creasingly unreliable. This observation has led to a technique which uses the Floquet

mode corrective maneuver as an initial guess in a targeting scheme. While this con-

trol scheme results in superior corrective maneuvers, the computational requirements
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are significantly increased. Therefore, this investigation seeks to deliver similarly

adjusted corrective maneuvers without the additional computational burden.

5.2.5 Training Process

The agent is trained using the reinforcement framework detailed throughout this

section. However, to fully define the training process, episodic details including the

initial environment setup, operational errors, mission constraints, and termination

conditions are clarified here. A full tabulation of all training parameters is included

in Appendix A for reference.

The agent is trained through mass iteration of episodes. Each episode is ini-

tialized with a set of randomized initial position and velocity states. These initial

conditions are determined by applying random injection errors to the nominal initial

state, dictated by the reference orbit. For the training process in this investigation,

the reference orbit previously introduced in Section 4.5.1 is selected. An environmen-

tal step is then performed for a length of time equal to the minimum time between

corrective maneuvers. The agent does not perform an action at the initial state,

as this state is assumed to be delivered via an orbit insertion maneuver. After the

environmental step, random tracking error is applied to the current state. At this

point, Equation 4.11 is employed to determine the portion of the corrective maneuver

from Floquet mode. An observation of the current state is then performed, which is

fed to the agent. The agent then determines an action in the form of a corrective

maneuver. The two corrective maneuver vectors are combined and commanded to

the spacecraft. However, prior to updating the current velocity state, random cor-

rective maneuver error is applied to ∆V̄RLFM . The perturbed corrective maneuver is

then implemented, and another environmental step is taken. This cyclic process is

repeated until a terminal condition is reached. For training, an episode is terminated

in success if the final simulation time of approximately 4.87 years is reached, which

corresponds to 10 revolutions of the reference orbit. Conversely, an episode is ter-
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minated in failure if at any state, the total maneuver cost exceeds 1000 m/s or the

position error surpasses 100000 km. After the episode concludes, the environment is

reinitialized and the episodic process is repeated.

After each episode terminates, the discounted return is recorded. These returns

are used to create a training curve which represents the performance of the agent. In

Figure 5.4, the discounted return for each episode is denoted by a data point. Ad-

ditionally, the moving average of the discounted returns is displayed using a sliding

window size of 1000 episodes. This figure gives immediate insight into the current

Figure 5.4. Discounted Returns Per Episode and Moving Average
During Training (γ = .99).

performance of the agent. An increase in the moving average corresponds to a positive

trend in performance, as more episodes have terminated with higher discounted re-

turns. Additionally, the curve indicates the point of maximum performance and when
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performance gains have plateaued. For this training session, maximum performance

was reached at episode number 28147, with a discounted return moving average of

3.217. The trend appears to show that additional training would lead to increases

in performance. However, this training session performed nearly 50000 episodes, and

no increase was observed past the range depicted in Figure 5.4. Therefore, after

the training process is concluded, the agent state corresponding to episode 28147 is

reinstated. This agent is subsequently employed for all further analysis and results

depicted in this chapter.

5.3 Hybrid Controller Results

An analysis of the hybrid controller formulated in Section 5.2.4 is conducted to

determine performance characteristics. These evaluations include studies into the

expected cost, sustainability, and reliability of the hybrid controller, with respect to

the station-keeping objective. The controller is assessed using baseline simulation

parameters similar to prior literature, allowing for direct performance comparison.

Thereafter, an extended analysis mirroring Section 4.5.3 is examined, which imposes

increased mission constraints and permutates injection error.

5.3.1 Baseline Controller Performance

The baseline performance of the controller is assessed in a study that seeks to

prevent the spacecraft from departing a L1 halo orbit in the Sun-EMB system. Pro-

jections of this reference orbit and non-dimensional initial conditions are provided

in Figure 4.1 and Table 4.4, respectively. The motion of the spacecraft is then sim-

ulated for 4.87 years, equivalent to 10 revolutions of the reference orbit, using the

baseline operational errors and mission constraints from Tables 4.1 and 4.2, respec-

tively. Clearly, the introduction of stochastic operational error suggests that controller

performance will vary across simulations. Therefore, a Monte Carlo is performed to

accurately capture the desired performance metrics. Section 4.4.1 details a process
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for determining the required number of simulations to meet a desired confidence level

and relative precision of a specified performance metric. This technique is leveraged

to ascertain the expected corrective maneuver cost with 99% confidence at a relative

precision of 1%. In other words, there is 99% confidence that the true cost to maintain

the orbit is within 1% of the cost returned from the Monte Carlo simulation.

The results of the Monte Carlo analysis are illustrated in Figure 5.5, where each

data point is the cost of a single simulation. Meanwhile, the curve represents the mov-

ing average of all simulations performed up to the current simulation number. This

Figure 5.5. Monte Carlo Results for Baseline Performance Metrics of
the Hybrid Controller.

analysis required 394 simulations to stabilize the expected cost within the specified

statistical requirements. At this point, the Monte Carlo is terminated and the per-

formance metrics for total cost, linear divergence rate, and success rate are recorded.
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Concludingly, the true cost to maintain the reference orbit using the hybrid controller,

at 99% confidence, is within 1% of 0.660 m/s for the specified mission constraints

and operational errors. Additionally, a spacecraft utilizing this controller is expected

to diverge from the reference orbit at a rate of 0.594 km/year. Finally, in all 394

simulations performed, the station-keeping objective was successful, as defined by the

metrics for success in Table 4.3.

5.3.2 Performance Relative to Floquet Mode Controllers

This investigation places emphasis on three primary concerns that are generally

associated with station-keeping controllers: the expected cost to perform all neces-

sary station-keeping operations, the sustainability of maintaining the reference orbit

throughout and beyond the scope of the simulation, and the reliability of the con-

troller. Clearly, the expected cost determined via the Monte Carlo speaks directly to

the first concern. To address the second concern, the linear divergence is considered.

This metric is determined by fitting a linear trendline to the position state error his-

tory. Preferably, the controller tends to keep spacecraft in bounded motion about the

reference orbit, resulting in a position state error history that does not increase over

time. Therefore, the linear divergence rate concisely differentiates between bounded

and divergent behavior. Additionally, a possibility exists where a simulation termi-

nates and meets all conditions for success, but one or more constraints are on the

verge of failure. In this event, any additional propagation will result in failure. This

undesirable behavior is also captured by the divergence rate. Finally, the rate of

success is presented as a means of quantifying the reliability of the controller.

The three performance metrics are subsequently used to represent the quality

of station-keeping controllers. Consequently, the metrics for various controllers are

comparable, assuming that the analysis of each controller utilizes the same simulation

parameters, operational errors, and mission constraints. The baseline analyses for

both Floquet mode controllers in Section 4.5.1 and the hybrid controller in Section
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5.3.1 were conducted under identical simulation conditions. Therefore, a comparison

of the performance metrics is acceptable. The expected cost, linear divergence rate,

and success rate for the baseline performance of each controller are listed in Table

5.2. Clearly, each controller type successfully performs station-keeping operations for

Table 5.2. Comparison of Expected Baseline Performance Metrics for
Floquet Mode and Hybrid Controllers.

Controller Total Cost Divergence Rate Success Rate

Type [m/s] [km/year] [%]

Floquet x -Axis 2.798 24.159 100

Floquet Three-Axis 0.720 1.137 100

Hybrid (RLFM) 0.660 0.594 100

all evaluated simulations. However, relative to the Floquet mode x -axis controller,

the hybrid controller offers a significant reduction in the total cost and expected

divergence rate, similar to the Floquet mode three-axis controller. Meanwhile, the

hybrid controller offers marginal reductions in total cost and divergence rate compared

to the Floquet mode three-axis controller.

In addition to the baseline analysis, Section 4.5.3 evaluates the performance of

both Floquet mode controllers in response to increased injection error and limited

corrective maneuvers. The aforementioned study extends the minimum time between

maneuvers to 90 days, which approximately applies a constraint of two maneuvers

per revolution. Additionally, a series of injection error permutations are studied,

determined from 1-σ position errors ranging between 1.0 km and 2000 km, and 1-σ

velocity errors ranging between 0.001 m/s and 2.0 m/s. For each permutation, the

position and velocity error are constant across all directions, i.e., σx = σy = σz and

σẋ = σẏ = σż. In this section, the hybrid controller undergoes an identical analysis,

offering insight into the robustness and adaptability of the controller. Performance

contour maps for the expected rate of success and expected total cost as a function of
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the injection error are displayed in Figure 5.6. Immediately noticeable is the relatively

(a) Success Rate. (b) Expected Cost.

Figure 5.6. Success Rate and Expected Cost of the Hybrid Controller
for Increased Injection Error.

high rate of success for all injection error permutations. The success rate remained

steady around 99%, with a spike in performance at the minimum injection error

permutation, and a dip at the maximum permutation. Additionally, the expected

total cost increases proportionally to both position and velocity injection error.

A direct comparison of the performance contour maps for the hybrid controller

in Figure 5.6 and the Floquet mode three-axis controller in Figure 4.7 is illustrated

in Figure 5.7. This figure displays the relative difference of the hybrid controller

compared to the three-axis controller. Clearly, the hybrid controller outperforms the

three-axis controller in terms of success rate for all error permutations in this study.

The hybrid controller met the criteria for success between 98% and 100% of the time,

depending on the injection error permutation. In contrast, the expected success rate

of the Floquet mode three-axis controller varied between 72% and 100%. However,

this gain in reliability is offset by an increase in required propulsive costs. A significant

increase in expected cost is observed for the minimum injection error permutation,

and as the injection error increases, the gap in performance diminishes.
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(a) Relative Success Rate. (b) Relative Expected Cost.

Figure 5.7. Hybrid Controller Performance Relative to the Floquet
Mode Three-Axis Controller.

In conclusion, the hybrid controller achieves nearly optimal performance in terms

of success rate, with a trade-off in expected cost relative to the Floquet mode three-

axis controller. However, as discussed in Section 5.2.3, the agent prioritizes succeeding

in the station-keeping objective over minimizing the expected cost. To that end, the

hybrid controller formulation successfully delivers a robust station-keeping methodol-

ogy that is capable of reliably managing unexpected operational errors and restrictive

mission constraints. While the controller type is generally selected to satisfy a set

of requirements, a controller which demonstrably minimizes failure points is highly

desirable for mission applications. Therefore, the observations drawn for this analysis

suggest that the application of reinforcement learning to the station-keeping problem

offers significant benefits, and further investigation is warranted.

5.4 Comparative Station-Keeping Scenario

A sample scenario is assessed to demonstrate the differences in resulting spacecraft

trajectories when employing the Floquet mode three-axis controller and the hybrid
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controller. However, the station-keeping problem formulated in this investigation

relies on stochastic errors. Hence, Monte Carlo simulations are required to determine

expected performance metrics. As a result of this stochasticity, the results from any

one simulation, such as this example, may not be representative of true performance.

Therefore, care is taken to not draw any conclusions from this example, and simply

observe the resulting behavior.

In addition to the Floquet mode three-axis controller and the hybrid controller,

a new control strategy is introduced that leverages the differential corrections tech-

niques introduced in Section 3.3 to deliver a corrective maneuver that eliminates

position error. This controller uses a simple fixed point, fixed time targeting scheme

using the corrective maneuver determined from the Floquet mode three-axis con-

troller as an initial guess. To that end, a position state along the reference orbit

that is a specified amount of time downstream is targeted. For this analysis, the

fixed time is equivalent to the minimum time between corrective maneuvers. This

targeting scheme effectively removes all position error for the next state at which a

maneuver is allowable. At this point, a second maneuver simply corrects for velocity

error, enabling the full recovery of a reference state.

Each control type is subsequently evaluated in an independent, identical trial.

Accordingly, the stochastic operational errors are replaced with seeded random error.

Therefore, for each controller evaluation, the spacecraft is initialized with identical

perturbed initial conditions, and the resulting propagated trajectory is similarly per-

turbed with identical tracking error. Finally, once a corrective maneuver is required,

the nominal maneuver is perturbed by identical corrective error. For this scenario,

injection errors of 2000 km and 2.0 m/s are applied, along with the standard tracking

and corrective errors from Table 4.1. Additionally, all baseline mission constraints

from Table 4.2 are imposed with the exception of the minimum time between succes-

sive maneuvers, which is extended to 90 days.



103

5.4.1 Trajectory Analysis

Due to the differences in the corrective maneuver determined from each controller,

the spacecraft follows differing trajectories over the 4.87 year simulation time. How-

ever, the operational errors are seeded across controller evaluations, leading to a

common initial trajectory segment prior to the first corrective maneuver. As a re-

sult, the state of the spacecraft immediately prior to the initial corrective maneuver

is equivalent for all three controllers. Thereafter, the velocity of the spacecraft is

updated according to the controller, resulting in unique trajectories. This behavior

is demonstrated in Figure 5.8, which contains in-plane and out-of-plane projections

of all three trajectories. Clearly, all trajectories match until the execution of the

Figure 5.8. Trajectories of the Floquet Three-Axis, Hybrid, and Tar-
geting Controllers Prior to the Second Corrective Maneuver.

first corrective maneuver, which serves as a branching point. Each trajectory is then

propagated until the location of the second corrective maneuver. At this point, the

Floquet three-axis controller produced a spacecraft state with the most significant po-

sition error, while the targeting controller unsurprisingly reduced the position error

to approximately zero.
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In addition to observing the trajectory, the initial corrective maneuver determined

by each controller is of interest. This maneuver, for each controller, is listed in Table

5.3. The maneuver determined via targeting requires the least amount of propellant

Table 5.3. Initial Corrective Maneuvers Determined from the Floquet
Three-Axis, Hybrid, and Targeting Controllers.

Controller ∆V̄1 [m/s] |∆V̄1| [m/s]

Floquet Three-Axis [93.203 0.5457 7.8931] 93.539

Hybrid (RLFM) [90.280 0.0621 7.2833] 90.574

Fixed Point Targeting [88.761 1.5455 5.4786] 88.944

and propagates to a state with nearly zero position error, where a second corrective

maneuver is executed to resolve the discrepancy in the velocity states. Immediately

following this corrective maneuver, a reference state is completely recovered, i.e., the

spacecraft state has approximately zero position and velocity error. Consequently, ad-

ditional propagation leads to minimal developments in state error, where corrective

maneuvers are only required to account for the numerical error and the imposed track-

ing and corrective operational errors. Meanwhile, both other controllers determine

maneuvers that fail to fully resolve the state error 90 days after the initial maneuver.

However, the hybrid controller results in less significant position and velocity errors,

compared to the Floquet mode three-axis controller.

The spacecraft are further propagated until the final simulation time is reached,

or until a failure criterion is met. The full state histories for all three scenarios are

displayed in configuration space in Figure 5.9. Clearly, each controller resulted in

vastly different trajectories that vary in terms of boundedness. The Floquet three-

axis controller was unable to determine corrective maneuvers that delivered bounded

motion. For the majority of the simulation, the in-plane error was relatively mini-

mal. However, with each successive revolution, the out-of-plane error is exacerbated,

ultimately resulting in failure shortly after the 8th revolution. Meanwhile, the hybrid
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(a) Floquet Three-Axis In-Plane. (b) Floquet Three-Axis Out-of-Plane.

(c) Hybrid In-Plane. (d) Hybrid Out-of-Plane.

(e) Targeting In-Plane. (f) Targeting Out-of-Plane.

Figure 5.9. Complete Spacecraft Trajectories for the Floquet Three-
Axis, Hybrid, and Targeting Controllers.
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and targeting controllers successfully met all the station-keeping objectives. However,

Figure 5.9 clearly illustrates the differences in the state histories. While both con-

trollers achieve bounded motion, the magnitude of the position errors is significantly

higher for the hybrid controller. Concludingly, the targeting controller achieves rela-

tively improved behavior in terms of state error and propellant cost. This observation

is not unexpected as targeting methods are formulated to provide refined corrective

maneuvers that meet a set of constraints. However, targeting algorithms are com-

putationally expensive, often involving a significant number of large matrix inverse

calculations. The addition of this computational burden is a significant factor when

considering the implementation of the controller into on-board flight software.
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6. CONCLUSION

6.1 Summary

This investigation considers a mission in which a spacecraft is placed in orbit about

the L1 libration point that exists within the circular restricted three-body problem.

In particular, the spacecraft is in a L1 southern halo orbit within the Sun-EMB

system that is considered useful for scientific applications [21]. Unfortunately, the

subset of low-amplitude L1 southern halo orbits are unstable and highly susceptible

to unmodeled external forces. For instance, the spacecraft motion is affected by

solar radiation pressure and gravitational perturbations from other celestial bodies

such as Jupiter and Venus [29]. As a result of the inherent instability and these

unaccounted perturbations, the spacecraft will naturally diverge from the reference

halo orbit, rendering the mission a failure. To avoid this clearly undesirable behavior,

a station-keeping controller is employed to determine corrective maneuvers that place

the spacecraft in bounded motion about the reference orbit.

Two station-keeping control strategies are of particular interest to this investiga-

tion: traditional Floquet mode and a new hybrid controller which augments Floquet

mode via reinforcement learning. The Floquet mode controller leverages the natural

dynamics of the model environment by eliminating the unstable direction of motion

with a corrective maneuver. Thereafter, the updated spacecraft state naturally flows

towards the reference orbit. The effectiveness of this control strategy is demonstrated

with a comprehensive analysis of the x -axis and three-axis Floquet mode controllers,

concluding that both controllers are capable of maintaining the reference orbit for

baseline scenarios. However, the Floquet mode formulation derives from a linear anal-

ysis of the nonlinear dynamical system. While the linear approximation is generally

representative of the nonlinear dynamics, increases in state error lead to increasingly
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ineffective corrective maneuvers. As a result, the controller performance begins to

degrade, with a larger percentage of simulations failing the station-keeping objective.

This discovery gives rise to the formulation of a new controller which, in similar sce-

narios, is capable of consistently recovering the reference orbit. A hybrid controller is

postulated that uses the traditional Floquet mode corrective maneuver as a baseline

solution. This maneuver is subsequently perturbed by a reinforcement learning agent,

and then commanded to the spacecraft. An identical analysis is performed for the

hybrid controller, demonstrating an increase in success rate for all evaluated scenarios

relative to the Floquet mode controller. Concludingly, the hybrid controller reliably

succeeds in the station-keeping objective without a significant increase in propellant

cost or computational requirements.

6.2 Remarks

Current station-keeping algorithms are faced with the challenge of minimizing

the computational demand of the controller, while maximizing other performance

metrics. Consequently, the analyses performed throughout this investigation seek to

demonstrate a station-keeping control strategy that is effective in terms of reliability

and computational efficiency. The primary conclusions and remarks that are drawn

from these analyses are summarized in this section.

Both the x -axis and the three-axis Floquet mode controllers are highly desirable

for mission applications. This investigation highlighted situations in which the con-

trollers failed to maintain the reference orbit. However, for state errors that are

reasonably expected in an actual mission scenario, the controllers are adequate for

orbit maintenance algorithms. The control laws are relatively simplistic, suggesting

that the controllers could feasibly be implemented for on-board guidance due to the

computational efficiency. Additionally, in scenarios that allow for increased compu-

tational effort, the Floquet mode corrective maneuvers are excellent candidates for

the initial guess.
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The hybrid controller, which leverages Floquet mode and reinforcement learning,

demonstrably increases the success rate without the additional computational burden

that a targeting scheme imposes. The additional computational demand is offloaded

to the training session, allowing the final agent to efficiently calculate the required

maneuvers. Additionally, the reinforcement learning framework is easily adjusted,

enabling the training of new agents that meet other mission objectives. Considering

this flexibility, the observed increase in reliability, and the computational efficiency,

reinforcement learning appears to be a promising venture for future exploration of

the station-keeping problem.

6.3 Recommendations for Future Work

Throughout the exploration of material in this investigation, numerous branching

points are encountered that warrant further study. In particular, this work exclusively

pertains to the Sun-EMB system and a singular L1 southern halo orbit. However, the

analysis of other systems with varying mass ratios offers the potential for expanded

applicability to a wider variety of mission scenarios. Additionally, the study of orbits

with differing geometries is essential for demonstrating comprehensive performance

standards. To that end, various orbits that are located in the vicinity of the primaries,

have expansive geometries that traverse systems, or have different eigenstructures are

of particular interest.

In addition to expanding the dynamical analysis, the proposed hybrid controller

acts as a foundation to be built upon. The design of any reinforcement learning

framework is highly subjective, suggesting that permutations of the framework link

to varying levels of performance. Two aspects of the framework are considered for

additional analysis: the observation space and the control law. The observation space

included in this formulation seeks to capture all necessary information. However,

further study of the importance of each observation is suggested to determine if

extraneous information is supplied to the agent. Additionally, the postulated hybrid



110

control law considers the nominal maneuvers determined via Floquet theory and from

the agent. Rather than directly incorporating both contributions, the use of weighting

coefficients to modify the relative significance of either component has the potential

to alter overall performance.

Finally, an apprehension common to reinforcement learning based solutions con-

cerns the predictability of the controller successfully responding to unforeseen situ-

ations. In an attempt to minimize this uncertainty, further experimentation is war-

ranted to investigate the response of the controller in mission scenarios outside the

scope of the training environment. Within the CR3BP, the controller should be eval-

uated for variations in other simulation parameters. For example, analysis that in-

cludes modifications to the tracking error, corrective error, and maneuver constraints

would further limit uncertainty surrounding controller performance. Thereafter, to

transition the applicability of the controller from the modeled environment to a more

realistic scenario, benchmarks of the controller performance should be obtained within

higher fidelity models, such as a Sun-Earth-Moon ephemeris model.
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A. Parameters for Agent Training Process

A.1 Simulation Parameters

Table A.1. Operational Errors for the Agent Training Process.

Position [km] Velocity [mm/s]

Error Type σx σy σz σẋ σẏ σż σmag σdir

Injection 2000.0 2000.0 2000.0 2000.0 2000.0 2000.0 - -

Tracking 1.0 2.0 5.0 1.0 1.0 3.0 - -

Corrective - - - - - - 1.0% 1.0◦

Table A.2. Mission Constraints for the Agent Training Process.

Constraint Type Value

Minimum Time Between Maneuvers 90 days

Spacecraft Tracking Rate 1.0 days

Minimum Maneuver Magnitude 25.0 mm/s

Position Error Divergence True
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A.2 Reinforcement Learning Parameters

Table A.3. Reinforcement Learning Hyperparameters for Agent Training.

Hyperparameter Value

Learning Rate 3 · 10−4

Discount Factor γ .99

Target Smoothing Coefficient 5 · 10−3

Number of Gradient Steps 1

Target Update Rate 1

Max Buffer Size 106

Number of Hidden Layers 2

Number of Neurons (All Layers) 256

Output Activation tanh


