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ABSTRACT

Iffat Naz, Syeda. M.S.E.C.E., Purdue University, December 2020. Machine Learning
Classification of Facial Affect Recognition Deficits after Traumatic Brain Injury for
Informing Rehabilitation Needs and Progress. Major Professor: Lauren Christopher.

A common impairment after a traumatic brain injury (TBI) is a deficit in emo-

tional recognition, such as inferences of others’ intentions. Some researchers have

found these impairments in 39% of the TBI population. Our research information

needed to make inferences about emotions and mental states comes from visually pre-

sented, nonverbal cues (e.g., facial expressions or gestures). Theory of mind (ToM)

deficits after TBI are partially explained by impaired visual attention and the pro-

cessing of these important cues. This research found that patients with deficits in

visual processing differ from healthy controls (HCs). Furthermore, we found visual

processing problems can be determined by looking at the eye tracking data developed

from industry standard eye tracking hardware and software. We predicted that the

eye tracking data of the overall population is correlated to the TASIT test. The visual

processing of impaired (who got at least one answer wrong from TASIT questions)

and unimpaired (who got all answer correctly from TASIT questions) differs signifi-

cantly. We have divided the eye-tracking data into 3 second time blocks of time series

data to detect the most salient individual blocks to the TASIT score. Our prelim-

inary results suggest that we can predict the whole population’s impairment using

eye-tracking data with an improved f1 score from 0.54 to 0.73. For this, we developed

optimized support vector machine (SVM) and random forest (RF) classifier.
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1. INTRODUCTION

Traumatic brain injury (TBI) results from a heavy blow or jolt to the head. TBI can

be associated with many symptoms, such as executive functioning problems, cognitive

problems, and communication problems. All these are rooted in the ‘Theory of Mind

(ToM).’ ToM pertains to the ability to infer others’ emotions (affect recognition),

intentions, thoughts, beliefs, expectations, and desires. Deficits in emotion recognition

and other ToM components are quite common after a traumatic brain injury (TBI);

researchers have reported impairments up to 39% of the TBI population [1]. The

information needed to make inferences about emotions and mental states comes from

visually presented, nonverbal cues (e.g., facial expressions or gestures). ToM deficits

after TBI are partially explained by impaired visual attention and the processing of

these important cues. Eye-tracking technology allows us to see what participants are

looking at in ToM tests.

Eye tracking technology is the raw data to predict ToM tests and give insight into

the visual components of ToM. Eye movements are measured to determine where a

person is looking, what they are looking at, and how long they look at a particular

region. The eye is one of the primary organs that contributes to the perception of the

world, and vision is a key component in a person’s decision making process. Therefore,

eye tracking technology can be very useful in detecting what leads to correct decisions

and what leads to bad ones. So in this research, we use eye tracking technology to

study patients with TBI and how their visual processing differs from the healthy

controls (HC).

Emotional inference deficits are measured by The Awareness of Social Inference

Test (TASIT) questions. We have used this collection of videos, which form 59 videos

that determine the TASIT score. Patients were asked to watch videos to answer

questions about each video. The answers expose the patient’s understanding of the
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emotions shown in the video (ToM assessment). This collection falls into PART1,

PART2, and PART3 videos. Among these, the PART3 videos incorporate the most

complex emotions and also have a higher variability of TASIT scores across patients.

We want to predict if patients with deficits in visual processing differ from the unim-

paired population and, if so, do these visual processing abnormalities contribute to

their emotional inference deficits (as measured by the TASIT answers).

The primary contribution of this research is that we use a dynamic analysis of the

eye-tracking features data. Among the 59 videos, we found only a specific number

of videos play an important role in this research. Only a few videos are highly

correlated with the TASIT score. We also found that only some parts of the videos,

not the whole, are correlated with the TASIT answers. Eye tracking features in the

correlated frames of the videos were used, and the result achieved 73% accuracy

and an f1 score of 0.73. Taking only the correlated parts of videos have helped to

improve the classification performance. This can help diagnose the TBI impairments

and inform rehabilitation treatments.

1.1 Literature Review

Many previous studies have focused on static images for understanding visual

attention using eye tracking data. The existing studies used both low and high-level

image features. This eye tracking data has been a subject of research for detecting

diseases for many years now. Diseases that do not have a clinical biomarker are at

risk of being misdiagnosed. This data has been studied as a biomarker of diseases

such as autism spectrum disorder (ASD) [2] [3], Alzheimer’s disease [4], sports-related

concussion [5]. While many studies used eye tracking data to differentiate between

people with neurological disorders and control groups, various studies used different

approaches to differentiate those.

High functioning autism is a phenomenon when a person has a high level of in-

dependence and ability. The eye movement of adult participants with and without
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autism was recorded while looking for information within web pages at [3]; the study

achieved 74% accuracy in detecting autism. The participants were given a search

task, a time-limited browse task, and a synthesis task. The search task and time-

limited browse task gave the best performance in discriminating the two groups’ data.

The study found that increased task complexity did not amplify the discrimination

between the groups. Browsing strategies for participants with ASD while viewing a

webpage is different. Autistic people are drawn more to images than text. Other

findings [2] reported that children with ASD revealed a preference for nonsocial im-

ages rather than social stimuli. In the study, two dynamic images were presented side

by side. One side features a social stimulus, with children engaging in aerobics and

dancing, whereas another side featured a nonsocial stimulus with a series of short

sequences of moving geometric shapes. Children who spent more time at geomet-

ric shapes show impairment in Autism Diagnostic Observation Schedule (ADOS) [2].

These studies confirm that eye tracking data is key to understanding the perception

of impaired individuals vs. healthy controls.

Another study [4] reported a review for studies on Alzheimer patients. The pa-

tients had a hard time making saccadic eye movement [see glossary for this kind of

definitions 5.1], which is a rapid change of eye position from one fixation point to

another compared to healthy people [6]. When people with Alzheimer’s disease are

directed towards a target, it took a long time to move their attention and showed

increased saccadic reaction time; also known as saccade latency.

There has also been research exploring impairments in visual processing after

traumatic brain injury (TBI). In [1], difficulties in emotion perception after TBI were

presented. The main contribution was to examine the severity of this problem. Static

images were presented to detect facial affect recognition in people with TBI (PwTBI).

PwTBI showed significant difficulties in recognizing facial effects than controls. While

PwTBI has an emotion deficit, it was not clear if the emotion deficit is correlated to

eye movement data. There is some research on eye tracking data after TBI. [7]

focused on people with different severities of traumatic brain injury (TBI) as well as



4

asymptomatic controls. Eye tracking tests were performed to measure horizontal and

vertical saccades. The research achieved a sensitivity of 0.77 for horizontal saccades

while the sensitivity of 0.64 for vertical saccades. The study concluded that eye

tracking methods could be a reliable way to quantify the severity of TBI.

While many studies used eye tracking data to differentiate the two groups, various

studies used different approaches. Several studies used eye tracking data to detect

impairments in TBI patients who are closely related to this study. [8] combined elec-

troencephalogram (EEG) and eye tracking to assess mild traumatic brain injury.

They have created tasks, some with high cognitive workloads and some with low

workloads. They also generated ‘virtual reality driving simulator’. Participants were

asked to drive along the coastal driveway, and when a target appears, they are asked

to shift their focus to the target while maintaining the lane position. Their prelimi-

nary study showed that brain injury does not always lead to observable performance

deficits in TBI people. However, they found differences in saccadic performance be-

tween TBI and control groups. They also reported increased level effort in the TBI

group while performing high cognitive workloads. Another study [9] used eye tracking

data of the subjects (military service members) to study differential eye movements

(saccades, fixations, smooth pursuits). The paper primarily used standard statistical

tools such as mean, variance, and standard deviation to analyze the measures.

In [10], disconjugate eye tracking was used to measure the improved performance

of concussion patients overtime during and after medical intervention. The study used

an objective, rapid, noninvasive, quantitative algorithm for the assessment of brain-

injured subjects. It hypothesized it could prove useful in tracking if a TBI patient is

improving or not, especially in cases where the CT scan does not show any significant

improvement. In [11], it was hypothesized that there is a deficit in smooth pursuit

eye movements (SPEM) in mild TBI patients. The California Verbal Learning Test

(CVLT-II) [12] was used to study the performance of the subjects in predictive smooth

pursuit and cognitive functioning. This paper demonstrated that TBI patients exhibit

deficiency in predictive SPEM, a variability of eye position, and correlation of these
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impairments with cognitive impairments. In [13], the experiment was done on eye

movement accuracy, quantification of the presence of abnormal eye movements, and

reaction time in response to simple environmental stimuli with the help of indices

of oculomotor [described in glossary 5.1] performance. I-Portal system and VEST

Neuro-Otologic Analysis Software (Neurokinetics, USA) was used to evaluate all the

experimental results. The result shows that the excessive amount of saccadic eye

movement decreases the fixation point, which leads to impaired recognition in TBI

people.

In [14], participants were instructed to interact with the approaching stimulus

(soccer ball) while avoiding distractors (pandas heads and cleats). Stimuli traveled a

total horizontal distance of 472 pixels. Mean saccadic velocity, mean saccadic ampli-

tude, and the saccadic count were used as salient features. While saccadic velocity is

slower and less accurate for people with Parkinson’s disease, the eye typically travels

farther and faster during a sport like a task for sports-related concussion. There was

also a group difference between people having concussion and control for saccadic

amplitude.

The study [15] could distinguish severe TBI & moderate TBI using eye tracking

data. Participants were asked to track a white dot presented as target stimulus. The

dot moved up and down in sinusoidal motion. The vertical smooth pursuit was used

to separate the data. Nevertheless, it was not possible to distinguish mild TBI from

the control group. ANOVA(analysis of variance) for smooth pursuit variance metrics

revealed a significant difference between the groups. Smooth pursuit percentage was

calculated as the participant’s eyes follow the target within a target’s velocity range.

The logistic regression model [described in Chapter3] for smooth pursuit variance and

smooth pursuit percentage metrics TBI and control groups.

Three research studies [10], [11], [7], included smooth pursuit and/or saccadic eye

movements for analysis. These two eye movements have different functional areas

and share common brain regions, i.e., brain areas involved in attention and executive

functions. [16] found impairment in visual memory following TBI. The impairment
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in the group was because of their impaired ability to initiate or utilize a strategy to

facilitate their memory. Still images of animals and vehicles were used with fixed and

free viewing conditions in this study. Free viewing facilitates the group to freely move

their gaze, and fixed viewing mandates them to fixate on one position on the screen.

People with TBI performed poorly in the free viewing test compared to the control

group.

In [17], participants performed easy and difficult mental arithmetic tasks while

fixating a central target. Change in pupil diameter and microsaccade magnitude

appeared to discriminate task difficulty adequately. So, the features were used as

salient for determining the magnitude of cognitive load on participants. [18] measured

the parameters of eye movement while reading in subjects with TBI and found the

parameters to be affected by TBI no matter the severity of the injury than controls.

[19] showed TBI patients and healthy controls with photographs of male faces, and

the result showed that TBI patients paid less attention to the given target and had

less dwell time on them.

According to research in published papers, machine learning methods promise a

new way of classifying impairment with eye-tracking videos. Machine learning plays

a significant role in automated vehicles, medical fields, and many others. Machine

learning research using eye tracking data also includes capturing driver’s focus and

attention while driving. The distracted drivers can be spotted analyzing their eye

tracking data with machine learning [20]. While machine learning applications using

eye tracking data is common in detecting driver’s attention, there has been little re-

search on machine learning to detect emotion recognition deficits. We have expanded

our applications on eye tracking data by using the time series segment on video data to

detect visual impairments. As an integrated part of this research, a fellow researcher

used deep learning to detect facial landmark detection in the videos. Therefore, our

research is at the forefront of combining ‘Deep Learning’ and ‘Machine Intelligence’

to this impairment classification.
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Eye tracking analysis using machine learning is beneficial in detecting diseases and

visual impairments. We can process a large number of data using machine learning

efficiently. As we are exposed to new data, machine learning can adapt independently

without any human involvement. The main property of machine learning is that it

produces reliable and repeatable results. It also makes computations easier. So it

is a widely preferred tool in many applications as mentioned before. In [21], they

used machine learning to classify the subjects. The study selected three categories,

including healthy people, brain injury patients, and vertigo patients. Random forest

(RF)[3] classifier, a widely used machine learning algorithm, was used for its robust-

ness and better performance than other machine learning algorithms. At first, eye

movement images and information such as pupil position and area were extracted as

original features. Secondly, those original features were used as training samples for

long short-term memory (LSTM) networks to build classifiers, and the classification

results of the samples are called evolutionary features. After that, multiple decision

trees were built based on evolutionary features. Finally, an RF was constructed with

these decision trees, and the results of disease classification were determined by vot-

ing. The study showed that advanced machine learning in the pathological analysis

of eye movement has apparent advantages and good prospects.

While these studies, as mentioned above, provide promising direction in TBI de-

tection, there has been little work on how people with TBI’s eye tracking data changes

over time while watching a video without any given direction. Many studies found

gaze data, smooth pursuit, saccadic features as differentiation features to distinguish

between TBI and HC. While the findings from our research correlated with the cur-

rent study, this study used time-series data to detect impairment in TBI patients.

Saccade, disconjugate eye, and changes in pupil diameter are used as salient features

in discriminating people with TBI and control group. Our research applies the ML

techniques in a new way, incorporating motion video and eye tracking features impor-

tant for ToM and predicting the TASIT score that connects the emotion recognition

to the eye movement. Other studies used ensemble differences in the groups on static
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images or text cues, while this study uses movies where social inference is a significant

factor. The previous studies were limited to static or dynamic images with nonverbal

clues. There has been little work on directly predicting the TASIT score Table 1.1.

Table 1.1.: Comparison of the Approaches Taken by Existing Literature

Paper Approach Result

[7] Horizontal and vertical self-paced
saccades as a diagnostic marker af-
ter TBI, Used ANOVA and logistic
regression over mean values of fea-
tures while watching stimuli

Total 287 Participants; sensitivity
0.77 and specificity 0.78 for hori-
zontal saccades

[15] Vertical smooth pursuit as a diag-
nostic marker of traumatic brain in-
jury, used ANOVA and logistic re-
gression over mean values of smooth
pursuit while watching stimuli

Total 92 participants; ROC value
0.772 with sensitivity 0.68 and
specificity 0.73

[21] Guided Eye tracking to generate
smooth pursuit task (following a dot
or scene), used LSTM as evolution-
ary features and random forest as
classifier, a spot of red light moving
along a specific trajectory to guide
the subjects’ eye tracking

60 patients (24 with Brain In-
jury and 36 with Vertigo) and
36 healthy participants; Accuracy
rate for random forest is 0.96

This
Study

Eye tracking over videos, used ran-
dom forest and svm to predict stan-
dard test (TASIT) score using time
series data to detect ToM impair-
ments

Research found new associations
between ToM impairments from
video testing and the patient’s eye
movements; achieved f1 score of
0.73

1.2 Our Contribution

The question we will be answering in this research is if we can predict the TASIT

score using eye tracking data, or is there any association between visual impairments

and the patient’s eye movements. We want to know the root cause of the visual cog-

nition deficit. It is important to know why this impairment occurs in TBI patients
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so that further research can be done on TBI patients for removing these deficits.

Research studies show that 39% of TBI patients have impairment in facial recogni-

tion and other theory of mind (ToM) components (for example, inferences of other

expectations or intentions). So in our research, we explore how TBI patients visually

process data when trying to recognize someone’s facial expression; then, we will be

able to find the root cause of the impairments in TBI patients. Those deficits in

TBI patients exist because of the way they interpret the scene. Past studies were

restricted to processing the static images or dynamic images with no social clues of

eye tracking data; we found that dynamic eye tracking data was crucial in predicting

visual impairment.

This research’s challenges are that we have a relatively small data-set (approxi-

mately 100 patients) to perform our research. Some traumatic brain injured patients

had recovered from their injury many years ago—the average years since the TBI

patients’ injury is nine years. We also have a limited number of impaired patients.

So the variation in the data is minimal to train a deep learning network. However,

breaking up the raw video data into 3-sec chunks and finding a correlation with the

target features for those broken up frames helped us realize that not all frames are

important to be trained on the classifier. Our main contribution was to use video re-

lated eye tracking data and using TASIT scores for emotion recognition. These were

instead challenging tasks as the eye movement varies widely from person to person,

especially while watching movies, whereas the other studies used directed videos or

images to guide patients’ eye movement.

In brief, we created highly correlated frames of the dynamic features from eye

tracking videos, and we gave these features as input to machine learning (support

vector machine and random forest) for classification of impaired and unimpaired

population. We successfully built a machine learning model to detect the impairment

in visual processing using TASIT scores.
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2. DATA PROCESSING STEPS FOR BINARY

CLASSIFICATION OF IMPAIRED VS. UNIMPAIRED

USING MACHINE LEARNING

Machine learning classification is a supervised learning technique in which the machine

learns from the data given to it and then classifies new observations based on the

learned parameters. This data set can consist of 2-class or multi-class data.

Classification is used to predict the classes of new data points. Classes are usually

referred to as targets, labels, or categories. The result is a mapping function from

input variables to output classes. In this chapter, we are classifying impaired and

unimpaired patients as a binary classification problem. We have tested our data set on

various types of classifiers to predict the impairment in the population. This chapter

describes the TASIT test and eye tracking data and then provides the classification

result.

2.1 Database Description

The dataset used in this study was created by Indiana University School of

Medicine in a project titled “Examining determinants of negative attribution bias

in people with traumatic brain injury”. For creating this dataset, sample videos are

shown to participants (TBI and HC) in a computer equipped with Tobii Studio eye

tracking software [22]. At the beginning of the videos, participants are asked to pay

attention to a person of interest. When the video is played, the subject’s eye gaze

data is recorded using the Tobii Studio. Tobii Studio can also detect if there was fix-

ation or saccade [see glossary for descriptions 5.1] when the participants were looking

at the videos and their duration in the gaze recording.



11

The dataset consists of three parts. PART1, PART2, and PART3 contain 28, 15,

and 16 videos, respectively. The description of the parts are given below:

• PART1 – Emotion evaluation test: Actors showed one specific emotional state

for each video from a total of seven states, which are angry, happy, surprised,

revolted, anxious, neutral, and sad. The participants only had to detect which

emotional states the actors were expressing for any particular video. Although

there is no such thing as a neutral emotion, it is included in this dataset when

the person in the scene was not strongly showing any of the other emotions.

• PART2 – Social inference (minimal): Some short scenes were shown to the

participants. Each one lasts from 15 to 60 seconds. After a scene had been

shown, participants were asked four simple questions.

– A.What they think someone was doing to the other person

– B.What they think someone was trying to say to the other person

– C.What they think someone was thinking

– D.What they think someone was feeling

The questions were set in a way so that each time they only needed to answer

among these three options: Yes, No, or Do not Know. However, they were

encouraged to answer only Yes and No.

• PART3 - Social inference (enriched): Actors simulated relatively complex social

interactions. The participants were asked the same set of questions as PART2

for this part.

These videos are shown to both people with TBI and HC. There were, in total, 122

participants. Nevertheless, some of the participants’ eye tracking data were missing

from the dataset. If missing data percentage was more than 90% for any participant,

the data was dropped for that participant. Missing data means eye gaze co-ordinate

is missing for more than 90% of the time.
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There were 65 male and 57 female participants of different ages ranging from 18yrs

to 74yrs. Their education years range from 11yrs to 25yrs. The highest education

level is the doctoral-level degree, and the lowest is no diploma with 11yrs of education.

TBI patients post amnesia days varies from less than 1hr to greater than 60 days.

The TASIT test is straightforward for people with a standard range of social

skills while being difficult for people with TBI or with a social perception deficit.

TASIT scores for individual participants are calculated by summing up all the correct

answers for all parts (PART1, PART2, PART3). In comparison, people with TBI have

difficulty detecting some emotions like sarcasm, lies, angry, revolted. While they have

equivalent performance in detecting other emotions such as neutral, happy, and sad.

That is why in this study, instead of using ensemble scores of the test, individual

video scores are used for classification.

(a) (b) (c)

(d) (e) (f)

Fig. 2.1.: Sample Frames from (a) & (b) PART2 Video13, (c) & (d) PART3 Video1,
(e) & (f) PART3 Video11

Among these, the PART3 videos incorporate the most complex emotions and have

a higher variability of TASIT scores. The anonymized patient eye-tracking data from

the Tobii system was tabulated and provided by a previous project. For our initial

binary classification work, we take the answers to the TASIT test questions, and
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if all of the answers for that particular video are correct, then the patient is 1=not

impaired; otherwise, with an incorrect answer, they are considered 0=impaired. Then,

we divided the PART3 videos into 3-second intervals, and for each of the 3 seconds,

mostly correlated features were extracted from the eye-tracking data.

2.2 Feature Selection Method

Out of all the PART3 videos, video 13 & video 10 has the most variation in the

whole dataset of impaired and unimpaired patients. Therefore we used video 13 &

video 10 for our research.

Fig. 2.2.: Flowchart for Feature Selection Method

The data used to train machine learning is extremely important. If the data is

noisy, machine learning will perform no better than random guessing. All features

need not be used to train machine learning algorithms, as every feature does not

correlate to the target variables. Feature selection also makes the training faster and

reduces over-fitting.

At first, data are divided into 3-sec chunks for each feature to observe the corre-

lation with the target variables Figure 2.2. If the correlation is strong enough, then a

null hypothesis test with 90% confidence will be rejected by observing P-values where

the null hypothesis assumes no correlation with the target variables. P-values close

to 0 pertains to a significant correlation in correlation coefficients and a low proba-

bility of observing the null hypothesis. If each variable has N observations, then the

Pearson correlation coefficient is defined as,



14

ρAB =
1

N − 1

n∑
i=1

(
Ai − µA

σA
)(
Bi − µB

σB
) (2.1)

µA and σA are the mean and standard deviation of A, respectively, and µB and

σB are the mean and standard deviation of B.

Only the higher correlated frames containing 3-sec of feature data are combined

for the features that showed a significant correlation. After normalizing the features,

principal component analysis (PCA) was performed to reduce further dimensions in

the data. PCA is the most common method for feature engineering for traditional

machine learning methods for reducing high dimensional data to a manageable one.

PCA keeps most of the information of the original data. It makes the data analysis

more straightforward and more manageable than working with extensive data.

The PCA is a combination of standardization and eigenvalue decomposition of

the data. Standardization helps to make sure each variable contributes equally to

the analysis. Each variable is converted to a close range to prevent any bias in the

results. Mathematically it is done by,

X =
X −mean(X)

StandardDeviation

As we know, principal components retain most of the variation in the data. PCA

aims to understand how the variables are correlated with each other and exclude

the highly correlated ones so the data dimension can be reduced. Removing the

highly correlated variables will remove redundant information from the data. The

Co-variance matrix (n x n; where n is the dimension of data) is calculated for the

whole dataset to determine the correlation between variables (n-dimensional). If the

sign of co-variance value is positive, then the two variables are correlated, and if the

sign is negative, they are inversely correlated. Co-variance is calculated by,

cov(X, Y ) =
1

N − 1

N∑
i=1

(Xi − µx)(Yi − µy) (2.2)
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In simpler terms, the co-variance matrix helps in summarizing the correlations

between all pairs of variables. The maximal amount of variance in data needs to be

found to determine the data’s principal components. For this purpose, eigenvectors

and eigenvalues are calculated from the co-variance matrix. Let A be a square matrix,

a vector and a scalar that satisfies Av = λv, then λ is eigenvalue corresponding to

eigenvector v of A. The eigenvalues are actually the roots of the equation det(A−λI) =

0. The eigenvector corresponding to the largest eigenvalue captures the highest co-

variance in the data. The corresponding eigenvector captures the second highest

variance to the second largest eigenvalue—that way, all the principal components can

be calculated from the data. The eigenvectors are sorted by decreasing eigenvalues,

and k eigenvectors are chosen with the largest eigenvalues to form a N x k dimensional

matrix where N is the dimension of data. This N x k eigenvector matrix is used

to transform the samples onto the new subspace using y = W ′x where W ′ is the

transpose of the matrix W.

2.3 Features Used After Down Selection:

Eye tracking features are provided by the Tobii eye tracker, which includes gaze

data, saccadic amplitude, relative saccadic direction, fixation co-ordinates, etc. Other

features are calculated using the original features such as disconjugate eye, vertical

error, horizontal error, distance measure from facial landmarks, etc.

For finding the facial landmarks in videos, Dlib, a cross-platform software library,

was used. Sixty-eight facial landmarks detector in Dlib was applied to detect the

facial landmarks in the videos. However, the default facial landmarks model does not

include the forehead. That is why 68 facial landmark model is modified to 75 facial

landmark model to include the forehead Figure 2.3. As the whole idea of emotional

expressions can be obtained by seeing a person’s whole face, that’s why forehead

landmarks points are essential in this case Figure 2.4.
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Fig. 2.3.: 75 Facial Landmark Model

The Tobii saccadic measures are calculated based on the fixation locations. It is

a visual angle measured in degrees between the previous fixation location and the

current fixation location.

• Saccadic Amplitude

Saccadic amplitude is the distance in degrees (angle) between the previous fix-

ation location and the current fixation location [22]. The Saccadic amplitude

is shown in the Figure 2.5.
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Fig. 2.4.: Some Frames of Videos after Drawing 75 Facial Landmark Model

• Absolute Saccadic Direction

The absolute saccadic direction measures the difference in angles between the

current fixation location and the horizontal axis. It is calculated based on the

fixation locations, as defined by the fixation filter Figure 2.6. [22]
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Fig. 2.5.: Saccadic Amplitude

• Relative Saccadic Direction

The difference in angles between the absolute saccadic direction of the current

and the previous saccade is called relative saccadic direction. It is calculated

based on the fixation locations, as defined by the fixation filter Figure 2.6. [22]

• Pupil Left and Right Eye

This feature is the estimated size of the pupil of the left and right eyes. The

measure comes from the Tobii eye tracker. If one pupil is more dilated than

the other, it can sign acute concussion or brain injury. That is why it can be a

differentiating factor for impaired patients.

• Vertical Error

The vertical error is defined by difference in left and right eye Y coordinates.

V erticalerror = Gazeyright −Gazeyleft
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Fig. 2.6.: Relative Saccadic Direction (Left), Absolute Saccadic Direction (Right)

• Horizontal Error

The horizontal error is defined by the difference in left and right eye X co-

ordinates.

V erticalerror = Gazexright −Gazexleft

• Distance Measure The distance between gaze data and each of the facial land-

mark points are measured. Only the minimum distance and the corresponding

nearest landmark are kept as a feature.
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• Disconjugate Eye

Disconjugate gaze is a measure of the failure of eyes to turn together in the

same direction. That means the eyes are not paired when viewing a scene. It

is measured by subtracting differences in the right eye’s X/Y co-ordinates of

consecutive frames from differences in left eye’s X/Y co-ordinates of the same

consecutive frames.

• Executive Functioning Data

We use executive functioning data such as animal fluency and letter fluency

score as part of the features. The animal fluency test requires the patient to

name as many animals as possible within a given 60 second period, whereas

the letter fluency test requires them to name as many words as possible for the

given letter within a specific time.

The features used in this study are the ones correlated to the target variable,

which is the video13 TASIT score. Not all frames are used for these features. Only

the correlated frames for which correlation coefficients are significant are used as

predictors for the classifier.

2.4 Conclusion

The focus of this chapter is to show the preprocessing steps of eye tracking data.

The Tobii eye tracker records eye gaze in the frequency of 500 Hz. The time-series

data vary from 4.5k to 18k frames, which is enormous. To make it more manageable

and for the extraction of meaningful data, several preprocessing steps are used. The

broken-up frames were beneficial to improve the quality of training, as shown in the

following chapters, when classifier performance will be discussed. The use of all frames

was introducing noise to the data-set, and the classifier has not been able to classify

the classes correctly. However, after truncation, the separation is visible, and the

classifier’s performance improved significantly.
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3. MODEL SELECTION AND OPTIMIZATION

Model selection and optimization is a vital part of machine learning. Without an

optimized model, the machine learning model will either underfit or overfit the data.

We have to ensure the machine learning model we chose for our data gives the best

result on the validation data and the unseen data. The fine-tuning of the parameters

and observing a model’s performance on unseen data is essential in this regard.

3.1 Outlier Detection

Noise and outliers are problematic and affect the performance of machine learning,

especially for small data sets. For getting sensible models, cleaning up data is a very

crucial step. The usual machine learning methods are not optimized to detect outliers;

instead, they are built for detecting normal instances. The isolation Forest algorithm

is built to provide an efficient way to detect outliers successfully.

The algorithm’s focus is to “isolate” anomalies by creating a forest of random

trees using random attributes. The random partitioning produces significantly shorter

paths for outliers. Splits happen at random on a random attribute while building a

decision tree. The total number of splits determines the level at which the isolation

happened. The same process repeats multiple times, and the average number of

splits are taken over multiple decision trees. It will provide the anomaly score based

on the average number of splits for a given instance. The instances which have higher

anomaly scores are labeled as outliers.

The instances are considered outliers if the score is close to 1; they are relatively

safe to be regarded as normal instances if the score is significantly lower than 0.5,

then, and if all the instances return around 0.5, then the entire sample does not have

any distinct anomaly.
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3.2 Hyperparameter Optimization

Machine learning models are defined by parameters that automatically are esti-

mated from training data and also by the hyperparameters. Hyperparameters are

a part of the model’s initial structure and need to be manually tuned. The tuning

of machine learning models is one kind of optimization problem. With the right

combination of the hyperparameters, the minimum loss or the function’s maximum

accuracy is successfully found. The optimization is also essential in comparing differ-

ent machine learning models trained on a dataset.

3.3 Algorithms

There are many states of art machine learning algorithms available for classifica-

tion problems. However, we use a supervised learning technique to learn the input-

output examples’ mapping function to predict the output based on new input data.

For our case, we are using a Support Vector Machine (SVM) and random forest (RF),

which are the widely used binary classifiers and give the best result. This chapter

includes other classifiers’ results also for comparison.

• Naive Bayes Classifier

A Naive Bayes classifier is a probabilistic machine learning model based on the

Bayes theorem.

P (A|B) =
P (B|A)P (A)

P (B)
(3.1)

The probability of event A (classes) occurring given event B (predictors) has

occurred on event A and the probability of event B occurring given event A.

The denominator is irrelevant for our purpose as it will always be the same in

all conditions, and thus proportionality can be introduced. One assumption is

that the predictors are independent of each other, which means the presence of a
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particular feature does not correlate to any other feature. Another assumption

is that the features have equal weights on the outcome. Though this algorithm

works well for a vast data set, the other algorithms outperformed naive Bayes

for our dataset.

• k-Means Clustering

The k-means clustering algorithm is an unsupervised machine learning algo-

rithm. It divides the data points based on a fixed number of clusters. It assumes

the centroids (centers) of the clusters and assigns individual data points to a

cluster based on the distance from the centroid of the clusters to that data point.

After assigning the data points to one of the centroids, the centroids are again

recalculated. The whole process iterates until all the data points are assigned to

one of the centroids. k-means clustering helps us know the actual organization

of the data. Nevertheless, it works more poorly than other supervised learning

techniques.

• KNN (K Nearest Neighbor)

It assumes that similar types of classes stay near to each other. It uses similarity

measure or distance. Initialization of K (number of neighbors) is required. Ac-

cording to the distance measure, it sorts the instances, and the first K instances

are taken from the sorted collection. Then the labels of these K entries are se-

lected, and the mode of labels is returned for classification problem. Choosing

the right K is essential to reduce classification errors.

• Logistic Regression (Predictive Learning Model)

Logistic regression fits ’S’ shaped logistic function. It uses maximum likelihood

to select the curve. It is a probabilistic method for classifying a data set in

which one or more independent variables determine an outcome. It assigns the

probability of data belonging to a class. It provides a quantitative measure that

is also suitable for the regression problem.
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• Decision Trees

The decision tree divides the data into a tree-like structure. It breaks the data

into smaller parts in an iterative manner using the features associated with the

data, and at the same time, the decision tree is gradually developed. To start

with building a tree, Gini impurity is first calculated for every feature. Gini

impurity is defined by,

GiniImpurity = 1− P 2
Class1 − P 2

Class2 (3.2)

Where PClass1 , PClass2 are class 1 , 2 probabilities, respectively.

The feature associated with the lowest Gini impurity ends up in the root of the

tree. So the root will have a feature with the lowest Gini impurity that means

the lowest probability of misclassifying a class. After that, Gini impurity is

again calculated on each side of the tree for the rest of the features. The lowest

ones take up the nodes and continue like this until it reaches the leaves. In this

way, the tree ends up with a tree with decision nodes (features) and leaf nodes

(classification). The decision node can have two or more branches depending

on the classes.

• Random Forest (RF)

Random forests are better versions of decision trees for classification, starting

by building many decision trees while training and assigning the class that is the

classes’ mode. Many relatively uncorrelated trees combined improve flexibility

resulting in a vast amount of accuracy than any of the individual constituent

models. It creates a bootstrapped dataset (sampling randomly with replacement

from the original dataset of the same size) for making trees. Instead of selecting

all the features, it randomly selects a subset of features and builds the tree in a

conventional manner. This process is repeated using another bootstrap dataset

to build a different tree. This whole method is iterated 100 or more times to
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create a handful of trees to predict the instances. As the prediction does not

come from a single tree but a different variety of trees, it reduces over-fitting

and results in an overall improvement in the accuracy.

• Support Vector Machine (SVM)

A support vector machine creates a hyperplane in high dimensional space, which

can be used for classification or regression. For linearly separable training data,

two parallel hyperplanes separate the two classes of data and, at the same time,

try to maximize the distance between the hyperplanes. The kernel functions in

SVM only calculate relationships between each data points as if the data are

in a high dimensional place. This kernel trick enables algorithms to function in

the high dimension without calculating the coordinates in that plane. It helps

to separate data in a high dimensional space. We are using a Radial Basis

Function (RBF) kernel with free parameter gamma.

In SVM, the trade-off is between minimizing training error and minimizing

model complexity (The parameters of the Kernel function can be chosen from

linear to high dimensional feature space, the model complexity increases ex-

ponentially from linear to high dimensional feature space). SVM parameters

are optimized to minimize both the complexity and the error at their optimum

level.

3.4 Voting Scheme

A voting ensemble is an ensemble machine learning model that combines the

predictions from other models. It is a scheme used to improve model performance,

ideally achieving better performance than any single model used in the ensemble.

The voting scheme uses different model structures and gives different weightage to

each of the models to get the best out of each model Figure 3.1.
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Fig. 3.1.: Flowchart of Voting Classifier

3.5 Description of Classification Metrics

After training the model, the most crucial part is to evaluate the classifier to verify

its applicability. The following are the most used and effective measures to know if

the trained model gives improved results.

• Cross-validation

Over-fitting while training is the most common problem in machine learning.

The k-fold cross-validation method helps us to determine if the model is over-

fitted or not. It divides the dataset into k mutually exclusive subsets, and one

set is opt-out for testing during training. This process goes on until all the folds

get tested.

• Precision and Recall

Precision is the ratio of relevant instances among the retrieved instances, whereas

recall is the ratio of relevant instances retrieved among the total relevant in-

stances. These measures help in quantifying how well a classifier is on minority

class in case of imbalanced data.
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Precision = TruePositives
TruePositives+FalsePositives

Recall = TruePositives
TruePositives+FalseNegatives

• F1-Score:

The F1-score is the harmonic mean of precision and recall. The range of F1-

score can be between 0 to 1, where 1 means perfect precision and recall and 0

being the worst score.

f1 = 2 ∗ Precision.Recall
Precision+Recall

• ROC curve (Receiver Operating Characteristics)

The ROC curve is another measure of validation of a model. ROC curve shows

the trade-off between the true positive rate (tpp) and the false positive rate

(fpr). The model with correctly classified data will have ROC value 1. We can

tune our model to have the best combination to maximize tpp and minimize fpr

by selecting an optimum threshold from the ROC curve. The point which gives

the minimum distance from the ROC value of 1 is our optimum threshold.
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4. BINARY TASIT SCORE PREDICTION USING

MACHINE LEARNING

In this chapter, we are predicting the TASIT Score instead of classifying TBI and

HC. TASIT Score for all three parts is different for each patient. There is a score for

every video/episode for each participant, calculated from how many correct answers

they gave for that particular video. Not every participant does well in all episodes.

There is a variation of scores within even HCs in answering the questions. Depending

on the test’s difficulty level, some participants do well on the test, and some do not.

In PART1, participants had a hard time differentiating revolted and angry. They

got confused if the actor/actress was showing revolted or angry emotions. Sometimes

they also mix up in differentiating happy and surprised. So detecting emotional cues

is not always easy for even HCs. We set ground truth data based on the TASIT

score. We are using individual video scores to detect impairment in participants for

that particular video as described in Chapter 2, page 12.

As we know, people with TBI will not necessarily have visual defects. Our focus is

on classifying the impaired in visual from the unimpaired population. That directly

correlates to the TASIT Score. We want to predict the TASIT Score using eye

tracking data. As we are trying to detect visual impairment in the population, so

we will be focusing on reducing the false-negatives as part of an improvement in

our research. The rest of the chapter shows how we progressed and improved our

impairment detection over each of the experiments.

4.1 Classification Using All Parts

Videos from all parts are used in this section. The features from Table 4.1 used for

this experiment. We normalized the features before feeding the data to a classifier.
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Also we applied a simple imputer to impute the missing values in the data. The

recursive feature elimination method is used for selecting the best subset of features.

5-fold cross-validation (CV) is used to select the best hyperparameters. The train test

ratio for this experiment is 0.75/0.25. The classes are unimpaired (got all answers to

TASIT questions correctly) vs impaired (got at least one answer wrong).

4.1.1 Features Used

In this experiment, we have used engineered features from eye tracking data. All

of the parts including PART1, PART2 & PART3 data was used to classify impairment

based on the TASIT Score.

Table 4.1.: Engineered Features for All Parts

Features

Number of Saccade
Average Saccadic Duration
Percentage of Saccade
Average Horizontal Error
Average Vertical Error
Number of Fixation
Average Fixation Duration
Percentage of Fixation in Face
Percentage of Fixation in Eye
Percentage of Fixation in Mouth
Percentage of Fixation in Forehead
Average Distance from Intersection of Eye and Nose
Average Saccadic Amplitude
Average Saccadic Direction
Average Relative Saccadic Direction
Average High Frequency Data of Gaze Point
Average High Frequency X Coordinate Data of Right Eye
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4.1.2 Result

For all parts, splitting of train and test data was done according to a 50/50 ratio.

5-fold cross-validation (CV) is used to test the model. CV is used to prevent any over-

fitting and selection bias during training. The goal of a CV is to predict how a model

will perform on totally unseen data. CV uses the data to tune model hyperparameters

and returns model performance. CV gives us insight into how a model will perform

in a generalized independent set.

Cross-validation accuracy for all parts is 0.69, but f1 score for impaired class is

poor with f1 score of 0.54, as we can see in the Figure 4.1 and Table 4.2. That is why

we trained our model to predict for the three parts separately to improve the result

on the minority class as we will see in Section 4.2.

Table 4.2.: Classification Results only on Testing Dataset for All Parts

precision recall f1-Score support

Impaired 0.52 0.57 0.54 497
Unimpaired 0.78 0.74 0.76 1022

Weighted Average 0.70 0.69 0.69 1519

4.2 Classification Separately for PART1, PART2 and PART3 Videos

Videos from different parts are used separately to predict the impairment. This

experiment shows that videos from PART3 results are more correlated to TASIT

Score than other parts. The features used in the experiment are the same as the

Table 4.1. 5-fold CV is used to prevent any over-fitting and selection bias during

training.
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Fig. 4.1.: a) Confusion Matrix All Parts Whole Data b) Confusion Matrix All Parts
Test Data

4.2.1 PART1 result

For PART1, splitting of train and test data was done according to the 80/20 ratio.

A voting classifier is implemented for this experiment. Soft voting is used for detecting
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the classes. A weighted voting scheme is implemented in this regard Chapter 3. The

f1 score for impaired population for PART1 on test data is 0.40 Figure 4.2.

Fig. 4.2.: a) Confusion Matrix PART1 Whole Data b) Confusion Matrix PART1
Test Data
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Table 4.3.: Classification Results only on Testing Dataset for PART1

precision recall f1-Score support

Impaired 0.40 0.39 0.40 104
Unimpaired 0.87 0.87 0.87 466

Weighted Average 0.78 0.78 0.78 570

4.2.2 PART2 result

For PART2, splitting of train and test data was done according to the 80/20

ratio. A voting classifier is implemented for this experiment. Soft voting is used

for detecting the classes. A weighted voting scheme is implemented in this regard.

Cross-validation score of a voting classifier for PART2 with test data is 0.65. The f1

score for impaired population for PART2 on test data is 0.32 Figure 4.3.

Table 4.4.: Classification Results only on Testing Dataset for PART2

precision recall f1-Score support

Impaired 0.29 0.36 0.32 67
Unimpaired 0.81 0.76 0.79 247

Weighted Average 0.70 0.68 0.69 314

4.2.3 PART3 result

For PART3, splitting of train and test data was done according to the 80/20

ratio. A voting classifier is implemented for this experiment. Soft voting is used

for detecting the classes. A weighted voting scheme is implemented in this regard.

Cross-validation score of a voting classifier for PART3 with test data is 0.70. The f1

score for impaired population for PART3 on test data is 0.58 Figure 4.4.
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Fig. 4.3.: a) Confusion Matrix PART2 Whole Data b) Confusion Matrix PART2
Test Data

Comparing the precision, recall and f1-score Table 4.3, 4.4, 4.5, we can say PART1

and PART3 are more correlated to TASIT score than PART2. Among them, PART3

gives the best result for impaired population.
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Fig. 4.4.: a) Confusion Matrix PART3 Whole Data b) Confusion Matrix PART3
Test Data

4.3 Video Wise Prediction

We took each video data separately to train our model. It helped us to determine

which videos play an essential part in the TASIT test. We only took the video,
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Table 4.5.: Classification Results only on Testing Dataset for PART3

precision recall f1-Score support

Impaired 0.61 0.57 0.58 122
Unimpaired 0.76 0.79 0.77 210

Weighted Average 0.70 0.70 0.70 332

which had a significant amount of impaired population compared to the unimpaired

population. Otherwise, machine learning will not have the data to train on.

We found that videos that show surprise, or sarcasm; those video TASIT scores

have a high correlation with eye tracking data. So we took Video10 (Sarcasm),

Video13 (lie) from PART3, for our experiment, which also had the highest impair-

ments among the population.

4.3.1 Result for PART3 Video13

The whole video of Video13 from PART3 is used separately to predict the impair-

ment. The features used in the experiment are the same as the Table 4.1. 5-fold CV

is used as same before to prevent any over-fitting and selection bias during training

Table 4.6.

Table 4.6.: Classification Results only on Testing Dataset for PART3 Video13
Whole Video

precision recall f1-Score support

Impaired 0.64 0.64 0.64 11
Unimpaired 0.80 0.80 0.80 20

Weighted Average 0.74 0.74 0.74 31
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Fig. 4.5.: a) Confusion Matrix PART3 Video13 Cross Validation Data b) Confusion
Matrix PART3 Video13 Test Data

4.3.2 Result for Part3 Video10

The whole video of Video10 from PART3 is used separately to predict the impair-

ment. The features used in the experiment are the same as the Table 4.1. 5-fold CV
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is used as same before to prevent any over-fitting and selection bias during training

Table 4.7.

Fig. 4.6.: a) Confusion Matrix PART3 Video10 Cross Validation Data b) Confusion
Matrix PART3 Video10 Test Data
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Table 4.7.: Classification Results only on Testing Dataset for PART3 Video10
Whole Video

precision recall f1-Score support

Impaired 0.70 0.50 0.58 14
Unimpaired 0.56 0.75 0.64 12

Weighted Average 0.64 0.62 0.61 26

4.4 Dividing Video Data into 3-sec Chunks

The next experiment divided the video into 3-second blocks. In addition, the

feature data was no longer averaged, now the eye tracking features were presented to

the machine learning as vectors of time data instead of taking the whole video data.

The saliency is determined based on model performance. We included the vectors

that improved the model performance and excluded those which results in decreased

performance.

4.4.1 Result for Salient Part of Part3 Video13

We took PART3 Video13 as part of our experiment as it had a significant amount

of impaired population-based on TASIT Score (less than four answers correct - im-

paired, four answers correct - unimpaired). The salient part of the video13 is given

in the Table 4.8 and the classification result is shown in the Figure 4.9, Table 4.9.

4.4.2 Result for Salient Part of Part3 Video10

We took PART3 Video10 as part of our experiment as it also had a significant

amount of impaired population-based on TASIT Score (less than four answers correct

- impaired, four answers correct - unimpaired). The salient part of the video10 is given

in the Table 4.10. The classification result is shown in the Figure 4.10, Table 4.11.
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Table 4.8.: Salient Part of The Engineered Features for PART3 Video13

Features Video Segment

Horizontal Error 6.5th sec - 16.5th sec
Relative Saccadic Direction 30th sec - 33th sec
Distance from Fixation to Centroid of Whole Face 33th sec - 36th sec
Vertical Error 20th sec - 30th sec
Disconjugate Eye 6.5th sec - 13th sec
Distance from Fixation Point to Nearest Landmark 13th sec - 16.5th sec
Fixation Coordinate Y 6.5th sec - 16.5th sec

Fig. 4.7.: Plot for Eigenvector after PCA for PART3 Video13 Using Salient Part

We can see in Figure 4.12, the rf model gives relatively good result than other

models. Of course, the result slightly changes after each run for cross-validation. For

that, we used SVM on top of rf to get the best and consistent result on testing data.
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Table 4.9.: Classification Results only on Testing Dataset for PART3 Video13 Using
Salient Data

precision recall f1-Score support

Impaired 0.60 0.75 0.67 8
Unimpaired 0.83 0.71 0.77 14

Weighted Average 0.75 0.73 0.73 22

Table 4.10.: Salient Part of The Engineered Features for PART3 Video10

Features Video Segment

Fixation Duration 13th sec - 16.5th sec
Saccadic Amplitude 6.5th sec - 16.5th sec
Absolute Saccadic Direction 3rd sec - 13th sec sec
Relative Saccadic Direction 16.5th sec - 20th sec
Vertical Error 23rd sec - 33th sec
Disconjugate Eye 3rd sec - 6.5th sec
Distance from Fixation Point to Nearest Landmark 20th sec - 23rd sec
Saccadic Velocity(Saccadic Amplitude/Duration) Whole Video

Table 4.11.: Classification Results only on Testing Dataset for PART3 Video10
Taking Salient Data

precision recall f1-Score support

Impaired 0.75 0.71 0.73 17
Unimpaired 0.71 0.75 0.73 16

Weighted Average 0.73 0.73 0.73 33

4.5 Comparison

Using some videos, not all, made a difference in model performance and helped

us predicting TASIT score and impairment for a particular video. We realized not

all videos help us in detecting impairment. While some videos are comfortable and

not discriminatory, some videos are salient. The f1 score improvement is 0.54 to 0.73
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Fig. 4.8.: a) Confusion Matrix for PART3 Video13 Taking Salient Part of Data b)
Decision Boundary for SVM Model

Table 4.12, which was challenging given the data is noisy, and the population size is

small. We can see taking only the salient parts of the videos; we can significantly

improve the result and minimize the missed or false detection of impaired populations.
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Fig. 4.9.: a) Confusion Matrix for PART3 Video13 Taking Salient Part of Data b)
Decision Boundary for SVM Model

As we can see in Table 4.12, we significantly improved the detection of impaired

population and successfully reduced the false negatives over the experiments.
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Fig. 4.10.: a) Cross Validation Confusion Matrix for Salient Part of PART3 Video10
on Train Data b) Confusion Matrix for PART3 Video10 on Test Data

4.6 Conclusion

Our contribution is finding the salient videos and determining the salient part of

those videos correlated to the TASIT score, which, in turn, correlates to eye tracking

data. Dividing the video data into a 3-second vector is a significant finding of this
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Fig. 4.11.: Plot for Eigenvector after PCA for PART3 Video10 Using Salient Part

Table 4.12.: Comparison of the Different Methods for Impaired Population

Methods Precision Recall f1-Score

Whole Parts 0.52 0.57 0.54
PART1 Separate 0.4 0.39 0.4
PART2 Separate 0.29 0.36 0.32
PART3 Separate 0.61 0.57 0.58

PART3 Video10 Separate 0.70 0.50 0.58
PART3 Video13 Separate 0.64 0.64 0.64

PART3 Video10 Salient 0.75 0.71 0.73
PART3 Video13 Salient 0.60 0.75 0.67

research. The participants do not have to take the test for all videos, which can be

taxing. The TASIT test can be modified and the participants will only need to take

the test on the particular videos, which is salient.
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Fig. 4.12.: Model Selection for PART3 Video10
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5. CONCLUSION

Traumatic Brain Injury research is an essential field in the public health issue, as there

are millions of TBI patients in the United States and around the world. This research

can be useful in keeping track of the impairment caused after TBI. Much research has

been done on TBI patients to detect their visual impairment. While in other studies,

eye tracking data on still images or videos with relatively less complex structures

were used to differentiate the groups. However, in this research, videos with complex

emotional features are shown to participants for collecting eye tracking data. Then

eye tracking feature vectors were extracted containing dynamic information such as

saccadic movement, saccadic direction, fixation distance from different facial regions

of interests, saccadic velocity.

The gaze data on dynamic images can detect facial recognition impairments in TBI

patients and the control group. We have found that the eye position error (horizontal

and vertical error), saccade data shows better accuracy than fixation data. Especially

saccadic measures produce the most crucial classification features, confirmed by other

research that we have reviewed earlier. We also used distances from major facial

regions (center of the whole face) as the features, which further helped improve the

classifier’s accuracy. We expected that percentage of fixation in the region of interests

would paint a better picture to classify impaired from unimpaired. Nevertheless,

they do not show improvement in the classifier’s performance compared to other

features. However, our result is consistent with the other studies, which showed

that a significant difference is found in eye position errors and saccadic movement in

impaired population.

We had a collection of 59 videos for the TASIT test. The PART3 videos incorpo-

rate the most complex emotions and have a higher variability of TASIT scores. We

found only a few videos among 59 videos are essential for this research. We found the
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videos with sarcasm shows more promising result in predicting TASIT scores. Visual

processing abnormalities, while watching those particular videos, are evident for the

impaired population. We can say visual processing abnormalities contribute to their

emotional inference deficits (measured by the TASIT answers).

While ANOVA or t-test used in most of the studies are useful for finding the

primary difference in eye tracking measures between the classes, machine learning is

an excellent tool to detect impairment in a person’s visual processing. Random forest

classifier, support vector machine have proved to be a vital tool in our research to

classify impaired and unimpaired people. As our sample population is small (≤ 100),

we kept our model simple to prevent any overfitting. For a small dataset like ours,

the model’s high complexity is better on training data but worse on testing data.

Keeping the problem simple helped us to find a model that is better in performance

and prediction.

Our main contribution to this research is that we used a vector of eye tracking

features, not only the features averaged over the entire video. Other research did not

use dynamic features. We also successfully found a correlation between eye tracking

data and TASIT scores. Our research is also confirming the significant finding which

has been reported in other research. We have improved the facial landmarks model to

include the forehead to have full facial information. We incorporated the facial feature

information in the video along with the eye tracking data. The improved result is

an f1 score of 0.73, whereas the baseline for the f1 score was 0.54 in the impaired

population. Furthermore, we achieved a precision score of 0.75, improved from 0.52

in the impaired population using support vector machine (SVM) and random forest

(RF). Taking only the correlated parts of videos (related to sarcasm) have improved

the classification performance.

We can conclude that the videos associated with complex emotions reflect visual

impairments to eye tracking data. Later, this can help make the TASIT test short

and be more focused on the simulation of relatively complex social interactions than

the simple ones.
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5.1 Future Works

More complex time series machine learning structures like RNN can predict the

TASIT score in future studies. Now the prediction is at the binary level. In the

future, it would be more helpful if we could predict multi-level impairments in the

population. Emotion-related complex features or salient images can also be incorpo-

rated to differentiate those groups along with gaze data. Also, the accuracy of our

model can be improved by collecting more samples of data. Although the emotional

deficit is a complex problem, we made significant progress in detecting the impair-

ment. In the medical field, achieving what we have was challenging, especially in this

small population. Our population had much bigger variation in years since injury

compared to other studies, which affected machine learning’s performance. However,

we are hopeful that the performance can be further improved if more data is available.

Also, in this research, we have not used the audio data. Maybe incorporating audio

data can also prove to be useful for the prediction.
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ACRONYMS

TBI

Traumatic Brain Injury

TASIT

The Awareness of Social Inference Test

ToM

Theory of Mind

ASD

Autism Spectrum Disorder

SVM

Support Vector Machine

RF

Random Forest

LSTM

Long Short Term Memory

EET

Emotion Evaluation Test

PCA

Principal Component Analysis

KNN

K Nearest Neighbour

RNN

Recurrent Neural Network
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GLOSSARY

Fixation

A fixation occurs when eyes are focused on a particular spot for an extended

period, usually ranges from 150 to 300 milliseconds.

Saccadic Eye Movement

A saccadic eye movement is a rapid change in both eyes’ movement between two

fixation points in the same direction.

Saccadic Amplitude

Saccadic amplitude is the distance in degrees (angle) between the previous fix-

ation location and the current fixation location.

Saccade Latency

The delay to initiate a saccade is called saccade latency. rnnsaccadel

Horizontal and Vertical Saccade

The horizontal and vertical saccade are referred respectively as the horizontal

and vertical saccadic eye movement.

Smooth Pursuit

Smooth pursuit is the voluntary movement in both eyes when closely following

a moving object.

Discojugate Eye Tracking

Disconjugate gaze is a measure of both eyes’ failure to turn together in the same

direction.

Saccadic Velocity

The velocity at which eyes change position from one fixation to another is called

saccadic velocity.
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Saccadic Count

Total number of saccades is called saccadic count.

Microsaccade Magnitude

The very small saccades are referred to as microsaccades. The microsaccade

amplitude/microsaccade magnitude is typically less than 0.1.

Oculomotor Response

Oculomotor nerve is the third of 12 pairs of cranial nerves in the brain. This

nerve is responsible for the eyeball and eyelid movement. The response initiated

by the oculomotor nerve is referred to as oculomotor response.

Null Hypothesis Test

Null hypothesis test based on the idea that there is no relationship in the pop-

ulation and that the relationship the sample reflects is occurred by chance.

P-values

In statistical testing, the p-value is the probability of obtaining test results at

least as extreme as the results observed, assuming that the null hypothesis is

correct.

T-test

A t-test is a type of inferential statistic used to determine if there is a significant

difference between the means of two classes.

ANOVA

Analysis of variance (ANOVA) is the same as a t-test; the only difference between

them is that ANOVA is applicable for more than two classes while the t-test

determines the difference between two groups.

TASIT

Social inference deficits are measured by The Awareness of Social Inference Test

(TASIT) questions.
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ToM (Theory of Mind)

Theory of mind pertains to the ability to infer others’ emotions (affect recogni-

tion), intentions, thoughts, beliefs, expectations, and desires.

Absolute Saccadic Direction

The absolute saccadic direction measures the difference in angles between the

current fixation location and the horizontal axis.

Relative Saccadic Direction

The difference in angles between the absolute saccadic direction of the current

and the previous saccade is called relative saccadic direction.

Vertical Error

The vertical error is defined by difference in left and right eye Y coordinates.

Horizontal Error

The horizontal error is defined by the difference in left and right eye X co-

ordinates.

Executive Functioning Data

We use executive functioning data such as animal fluency and letter fluency score

as part of the features. The animal fluency test requires the patient to name as

many animals as possible within a given 60 second period

Cross-validation

The k-fold cross-validation method divides the dataset into k mutually exclusive

subsets

Precision and Recall

Precision is the ratio of relevant instances among the retrieved instances

F1-Score

The F1-score is the harmonic mean of precision and recall. The range of F1-score

can be between 0 to 1



56

ROC curve

ROC curve shows the trade-off between the true positive rate (tpp) and the false

positive rate (fpr). The model with correctly classified data will have ROC value

1.


