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ABSTRACT 

There has been a great interest in applying Data Science, Machine Learning, and AI-related 

technologies in recent years. Industries are adopting these technologies very rapidly, which has 

enabled them to gather valuable data about their businesses. One such industry that can leverage 

this data to improve their business's output and quality is the logistics and transport industry. This 

phenomenon provides an excellent opportunity for companies who rely heavily on air 

transportation to leverage this data to gain valuable insights and improve their business operations. 

This thesis is aimed to leverage this data to develop techniques to model complex business 

processes and design a machine learning-based predictive analytical approach to predict process 

violations.  

This thesis focused on solving delays in shipment delivery by modeling a prediction 

technique to predict these delays. The approach presented here was based on real airfreight 

shipping data, which follows the International Air and Transport Association industry standard for 

airfreight transportation, to identify shipments at risk of being delayed. By leveraging the shipment 

process structure, this research presented a new approach that solved the complex event-driven 

structure of airfreight data that made it difficult to model for predictive analytics.  

By applying different data mining and machine learning techniques, prediction techniques 

were developed to predict delays in delivering airfreight shipments. The prediction techniques 

were based on random forest and gradient boosting algorithms. To compare and select the best 

model, the prediction results were interpreted in the form of six confusion matrix-based 

performance metrics. The results showed that all the predictors had a high specificity of over 90%, 

but the sensitivity was low, under 44%. Accuracy was observed to be over 75%, and a geometric 

mean was between 58% – 64%.  

The performance metrics results provided evidence that our approach could be implemented 

to develop a prediction technique to model complex business processes. Additionally, an early 

prediction method was designed to test predictors' performance if complete process information 

was not available. This proposed method delivered compelling evidence suggesting that early 

prediction can be achieved without compromising the predictor’s performance. 
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 INTRODUCTION 

With the advancements in internet connectivity, a massive amount of digital data is collated 

from multiple sources every day. Social media, web browsing, inventory and order management 

systems, enterprise resource planning (ERP) systems, and hardware-based data sources such as 

global positioning systems (GPS), mobile and sensors, radio frequency identification (RFID) 

systems, and many others are examples of data sources available to companies nowadays 

(Govindan et al., 2018). These sources produce large quantities and various types, such as 

structured and unstructured, referred to as big data.   

All this collected data contains information that can be analyzed using data analytics 

techniques to extract valuable information. Many new data analysis techniques and advanced 

algorithms, such as machine learning and AI, have effectively performed this analysis. Industries 

are now adopting these advanced data analytics tools and technologies rapidly, which has enabled 

them to gather valuable data about their business (Ben Ayed et al., 2015). A recent study by 

International Data Corporation (IDC) showed that the global spending in Data Science, Machine 

Learning, and AI-related technologies in 2020 had reached $50.1 billion and forecasted that this 

would double in the next four years. These data analytics techniques have transformed healthcare, 

consumer goods, governments, and many other industries (Cukier & Mayer-Schoenberger, 2013) 

by enabling them to make better decisions.  

One such industry that could benefit from predictive and data analytics technology is the 

supply chain and logistics industry. A research study conducted by Schoenherr & Speier‐Pero 

(2015) on the current application of predictive analytics in the supply chain, its challenges, and its 

future potential revealed that 40% of the companies they surveyed were using some analytics, 8.7% 

had the plan to use analytics in future, and only 22% had no plan to implement any form of 

analytics at all. The most common reason for adopting predictive analytics in the supply chain 

industry is that it would add value to the supply chain process. Another research study by Govindan 

et al. (2018) found that there has been a considerable increase in research publications related to 

the application of data analytics in the supply chain and logistics industry since 2012, particularly 

in the US, UK, and China. There are many reasons behind the industrial application of predictive 

analytics, including improved decision-making abilities and supply chain operations, better risk 

management, efficient demand planning and forecasting capabilities, and reduced costs. 
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Predictive analytic is a branch of data engineering that predicts future occurrences based 

on historical data or events analysis using a combination of data mining and machine learning 

techniques (Mishra & Silakari, n.d.). Predictive analytics application requires an understanding of 

the business domain, data, and analytical techniques. Predictive analysis has found its applications 

in various fields, including medical and healthcare, finance, telecommunication, insurance, 

customer relations, and many other fields.  

Descriptive analytical techniques such as process and data mining techniques have been 

widely used by the telecommunication and healthcare industries to improve their operations and 

provide better customer support. Senderovich et al. (2014) extended this descriptive-analytical 

perspective to include predictive perspective by developing a novel queue mining approach based 

on a combination of snapshot principle and machine learning-based predictors. The results 

provided evidence that this combined snapshot-based predictor approach performed far better than 

the individual models in predicting delay times for queued customers in a bank’s call center. 

Husband and Roberts (2017) applied predictive analysis techniques in human resource 

management to predict the time to fill a job position. They combined the survival analysis 

technique to analyze the survival rate after surgery with machine learning tree-based models to 

develop a unique prediction approach.  

Within the supply chain industry, one such domain that can leverage this data to improve 

their business's output and quality is logistics and transportation. Globally, industries rely heavily 

on the logistics and transport industry to ensure their supply chain remains uninterrupted. Over the 

years, industries have shifted towards air freight transportation, due to which there has been an 

increase in the air freight transportation industry. This provides an excellent opportunity to 

leverage air transport data to gain valuable insights and help companies, directly and indirectly, 

affect this industry to improve their business operations. To improve business performance and 

ensure competitiveness, the logistics and transportation industry has to shift to advanced data 

analytics techniques, such as predictive and proactive analytics, to make decisions quickly and 

efficiently by leveraging the full protentional of data analytics (Ben Ayed et al., 2015). 

The logistics and transport industry blends multiple functions, such as infrastructure, 

networks, IT, and different stakeholders. This makes the whole process very complicated and 

creates issues associated with shipping goods efficiently around the world. Technology enables 

logistic companies to respond to evolving requirements and to keep up with the growing demand. 
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Companies working in the transportation industry are trying to optimize their business with 

advanced data analytics technologies to analyze resources, improve operational efficiency, and 

demand forecasting. Predictive analytics will help these companies make better-informed 

decisions (Iovan, n.d.). In recent years, the transport and logistics industries have seen rapid growth, 

causing companies to struggle for efficient transport modes and reducing risks.   

Logistics companies, such as air cargo companies, experience several issues in managing 

their shipments. One such problem faced by these companies is the delay in delivery of airfreight 

shipments. Any delay in shipment results in an interruption in their supply chains and incurs a 

substantial monetary loss due to the high air transportation cost. Due to the complicated shipping 

process structure and high level of uncertainties, early prediction of any shipping process delays 

is challenging. The air cargo industry caters to time-sensitive and higher value goods that need to 

be transported to longer distances. 

Literature shows that complex event processing has been the most popular analytics choice 

than other techniques. Alias et al. (2016) investigated research publications to understand the 

research trends related to complex event processing and predictive analytics in the transport and 

logistics industry and found that complex event processing was the most popular choice due to its 

long history of the application. Complex event processing is a rule-based technique where events 

trigger certain actions according to predefined rules, based on systematic importance (Alias et al., 

2016). The study also highlighted the untapped potential that predictive techniques could bring to 

the transportation industry.  

A limited number of research publications have been published highlighting the application 

of analytics in the logistics and transportation industry. Complex event processing has been a 

widely used analytics technique for the transport industry due to its past applications. Feldman et 

al. (n.d.) addressed the issue commonly faced by airfreight companies of incorrect freight volume 

and weight by leveraging real-time cargo data. They implemented a predictive and proactive 

approach using complex event processing to predict discrepancies in shipment’s weight. The 

predictive complex event processing-based technique differs from predictive analytics because it 

uses a rule-based engine for prediction. 

In contrast, the latter uses a prediction model developed using historical data for prediction. 

Metzger et al. (2015) studied ways to implemented predictive monitoring of business processes to 

resolve problems in the business process so that proactive action can be taken to resolve them. 
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This was accomplished by implementing and comparing three different predictive analytical 

techniques that included machine learning, constraint satisfaction, and Quality of Service 

aggregation.  

This dissertation provides a solution for one major problem faced by air cargo companies: 

the delay in airfreight shipment arrival. Delays in shipment delivery incur a substantial financial 

loss to these companies and their stakeholders. The airfreight shipping process's complex nature 

poses a significant challenge to predict delays in shipment delivery efficiently. This dissertation 

focuses on providing a solution for this issue by developing a predictive analytical approach to 

identify shipments at risk of being delayed. This approach was based on real airfreight shipping 

data based on the IATA industry standard, called cargo 2000, for air freight transportation. This 

research aims to predict delays in airfreight delivery and help improve the shipping process. 

1. Perform exploratory data analysis on cargo 2000 to understand the complexities in the 

shipment process 

2. Study different machine learning techniques and develop a model to predict shipments 

that were delayed.  

3. Perform experiments and compare the performance of different models to find the best 

model. 

The literature related to applying different was analyzed to identify possible machine 

learning techniques for the prediction solution. Tree-based machine learning models provide an 

excellent opportunity for their application in developing a prediction model for predicting delivery 

delays in airfreight shipments. Gal et al. (2017) explored a novel method to predict a bus journey's 

traveling time using a combination of queueing theory and machine learning. The proposed 

solution combined the queue mining snapshot principle with tree-based machine learning 

algorithms, including random forest, Adaboost, and gradient boosting models. These models have 

also found their application in predicting energy usage. Ahmad et al. (2017) compared the 

performance of two well-known machine learning algorithms, random forest and artificial neural 

networks, to predict a hotel's energy consumption.   
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Based on the research goals introduced earler, the two research questions this thesis would 

answer are: 

RQ1. Can complex business process data be modeled to predict process violations such 

as delays?  

RQ2. Will the performance of prediction models decrease if the process violations were 

predicted early? 

The rest of the thesis is organized into four sections. Section 3 provides the details of the 

literature reviewed to achive the first two research goals. It provides an overview of current state 

of application of predictive analytics in supply chain and logistics industry, and studies its 

application in other research areas. Section 4 introduces the airfreight dataset and describes the 

exploratory analysis performed on the data. It details indepth the process of modeling the data for 

prediction to achieve the first two goals. This section also introduces the performance metrics that 

were used to achieve the third goal. The results of prediction models and their performances are 

compared and discussed in Section 5. Conclusion and future research opportunities are presented 

in Section 6.   
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 LITERATURE REVIEW 

With the advancements in the internet and technology, a vast amount of data is collected 

from multiple sources, such as social media, industrial operations, enterprise resource planning 

systems, logistics and transport, customer data, and many other technological sources. The 

development of big data analytics tools and software provides an excellent opportunity to extract 

valuable information from this data.  Analyzing this data, especially in real-time, provides 

organizations the ability to make quicker decisions, thus reducing costs, improving operations, and 

providing better customer services. Govindan et al. (2018) conducted research to study papers 

published on big data analytics applications in supply chain and logistics and found evidence that 

there was an increasing interest in this research area. The USA, China, and the UK were the top 3 

highest contributors to big data analytics papers. The authors collected evidence of a considerable 

increase in big data analytics research publications between 2012 and 2018. 

2.1 Predictive Analytics 

Schoenherr and Speier‐Pero (2015) researched through a large-scale survey on the current 

application of predictive analytics in supply chain management, existing barriers in its application, 

and discussed its future potential. It provided insights into the current application of predictive 

analytics being used in the supply chain industry. One question posed in the study was how to 

leverage this data to gain insights and apply predictive analytics. The study found that 40% of their 

respondents were using some analytics, 8.7% had the plan to use analytics in the future, while 22% 

had no plan to implement any form of analytics. They also found that the most common factor 

behind the adoption of predictive analytics in supply chain management was the belief that it would 

add value to the supply chain process.  

Another objective of this study was to highlight the benefits and barriers to applying 

predictive analytics in supply chain management. The main benefits that the companies believed 

that predictive analytics would bring included improved decision-making abilities, supply chain 

operations, risk management, demand planning capabilities, and reduction in costs. The main 

barriers identified in the study were employees' inexperience with predictive analytics, time 

constraints, integration between analytics software and existing systems, cost of predictive 
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analytics solutions, and availability of predictive analytics solutions for the supply chain 

management.  

Companies use forecasting to optimize their resources and forecast their demands to make 

their operations more efficient. The transportation industry's rapid growth has created companies' 

need to utilize their resources while reducing associated risks effectively. Iovan (n.d.) highlighted 

the transportation industry's evolution, analyzed the logistic process activities,  and identified its 

associated risks. The vast amount of data collected from sources such as global positioning systems, 

time stamping, barcoding, and many other sources, too much information makes decision making 

complicated. This phenomenon creates a need for streamlining analytics processes for more 

accurate predictive analytics.  

The air cargo industry caters to time-sensitive and higher value goods that need to be 

transported to longer distances. This industry, as compared to rail and road transport, is more cost 

and technology intensive. Airfreight companies have been striving to use technology to make their 

operation more efficient. According to Iovan (n.d.), predictive analytics will help these companies 

make better-informed decisions. These companies can implement a model-based approach for 

better forecasting and identify challenges and opportunities. 

2.2 Transport Analytics 

Alias et al. (2016) investigated the research literature related to complex event processing 

and predictive analytics in the transport and logistics industry to better understand the research 

currently being done in this area. The author discussed the different techniques of event processing, 

predictive analytics and monitoring, and their differences. Complex event processing was mostly 

implemented in application areas as compared to all other areas. This was primarily due to the long 

history of applying complex event processing in those areas instead of the other technologies. 

Another reason was its benefit in the application in the logistics and transportation processes. It 

was also highlighted that complex event processing and predictive analytical techniques go head-

on, indicating the substantial untapped potential predictive analytics can bring to the transport and 

logistics industry. 

The logistics sub-domain had the highest number of papers with forty-two publications in 

this sub-domain, compared to supply chain management and value-creation sub-domains, in 

different applications. According to the author, the reason behind this is the perceived benefit that 
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businesses are expected to show an increase in their gains and improvements in efficiencies by 

introducing these technologies. A more in-depth analysis showed that these technologies are 

applied to as many as twenty-one different sub-domains, reinforcing the benefit of applying 

predictive technologies in supply chain, logistics, and transportation. Most papers examined 

showed that predictive techniques within the logistics domain were focused on a specific area. In 

contrast, the distribution of papers showed significant variance in the technologies applied. It 

showed great diversity in the use of different predictive technologies concerning different 

application sub-domains.  

The domains and sub-domains with a higher number of complex event processing 

applications are not similar to those that employ predictive analytics and monitoring techniques or 

proactive monitoring applications. Sub-domains such as road transport, general transport, and 

supply chain integration have numerous complex event processing applications. On the other hand, 

predictive analytics and monitoring techniques are applied in air transport, road transport, and 

supply chain management.  Solutions based on proactive monitoring techniques, supply chain 

integration, multimodal transport, and warehousing are areas with upcoming applications. The 

trends show a clear pattern that all three techniques focused on generic applications in specific 

domains. With time, the author believes that there will be wider adoption of these analytics and 

monitoring techniques since it is in an early phase of research, implementation, and testing. All 

techniques, complex event processing, predictive and proactive technologies have found their 

application in specific sub-domains and show the potential of their adoption in other domains.  

Feldman et al. (n.d.) addressed the airfreight volume and weight issue by leveraging real-

time cargo data. Their results indicated that their novel approach could be used to predict the 

weight of freight to enable proactive action for a better plan of shipment. Through their proactive 

approach, the authors demonstrated that predictions about shipments' weight could be made in 

advance of a shipment. Event processing is the connection between events and subsequent 

reactions required by the situation that generally deals with detecting event patterns and identifying 

reactive situations. These situations are generated by noticing patterns in the flow of an event. An 

event processing solution gets these events and transforms them into alerts to act human or 

autonomous. In this paper, the authors have augmented proactive computing to event processing. 

They refer to this proactive approach to alleviate undesired states or take advantage of predicted 

opportunities. Traditional event processing techniques do not deal with forecasting and predictions. 
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The authors suggested a new proactive event processing approach that leverages decision-making 

capabilities for future events forecasted from ongoing events. The authors have extended this 

reactive pattern approach to their novel approach that consists of four stages. First, detecting events 

using conventional event processing techniques, second, predicting future states using predictive 

analytics, third, deciding how to handle predicted events, and fourth, acting in the best way 

possible by enacting the decision.  

According to the author, the motivation behind proactive computing came from economic 

and social factors. The paper presented a method of proactive event processing of run-time process 

management of logistics and transport events. Proactive applications have previously been 

developed, such as proactive security systems, routing in mobile networks, quality prediction, 

failure, and network management. In this paper, the authors proposed a single framework to 

augment both predictive and proactive behavior. This approach was divided into two modules: a 

forecasting module that predicts future states, and second, a near real-time decision-making 

module. The forecasting module uses predictive analytics that combines pattern recognition to 

predict future events. These future events will trigger the real-time decision-making module to 

carry out proactive actions.  

The event-driven platform was based on the concept of an event processing network (EPN). 

They applied three types of event processing agents (EPA's). A filter agent takes an incoming event 

and applies a test to check whether to discard it or pass it for processing to the next agent. This 

split agent takes an incoming event and splits it into a collection of event objects. An enrich agent 

that takes an incoming event uses it to query data and creates a forecasted event that contains 

features from the original event. Each agent acts as the onset of event objects specified by a context. 

They can be assigned to one or more context partitions. The authors then extended the EPA concept 

to include a proactive event processing agent that allows the EPA to process patterns. The proactive 

agent analyzes the incoming events in a particular context and derives either an operative decision 

or a future event. These proactive agents are equipped with predictive and decision-making models. 

The predictive models were used to predict probabilities, numerical and categorical attributes.   

The authors used airfreight cargo transportation data to put their novel approach to the test. 

The cargo process has numerous kinds of deviations, such as cancellations, volume, and weight 

violations. In this paper, the authors focused on the proactive management of weight discrepancies. 

These discrepancies occurred when there was a difference between the booked and the actual 
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shipment weight. Two situations that occur are over-weight load and under-weight load. They first 

evaluated the probability of a discrepancy through the available dataset. To determine the 

predictive model, they have analyzed past shipments that have attributes including planned weight, 

number of packages, source, destination, and airlines. The actual weight was computed from 

milestone completion events. Their analysis found that the relationship between planned weight 

and actual weight was independent of any other attribute.  

Using the weight forecasting model, the authors then developed a decision model that gives 

alerts based on two objectives, first, to capture as many violations as possible in advance (high 

recall), and second, to avoid false alarms as much as possible (high precision). Throughout the 

experiment, they maintained four sets: Alerted Under,  Alerted Over, Actual Under, and Actual 

Over. These sets were used to calculate two performance metrics, recall, and precision for both 

overweight and underweight shipments. Evidence showed that overload alerts could be made with 

outstanding precision (almost 100%) while keeping the recall at 70%. A lower precision was 

observed (75-80%) at a high recall rate (95%). The authors had also examined the time between 

when an alert was made for a particular flight. 

Metzger et al. (2015) studied ways to implemented predictive monitoring of business 

processes to identify problems in the business process. Proactive action can be taken to resolve 

them by implementing and comparing three different predictive analytical techniques. This 

includes machine learning, constraint satisfaction problem, and Quality of Service aggregation. 

The research is supported through evidence by implementing the proposed method on a case study 

in logistics and transport. They assessed the lead-time required for accurate prediction of the 

business process problem. The paper presented a case study-based approach to analyze the 

proposed prediction techniques to predict process violations, compare each model's accuracy 

depending on process lead-time, and combine these techniques to improve prediction accuracy.  

Amongst well-known machine learning techniques, the authors have selected Artificial 

Neural Network (ANN). To apply ANN for prediction monitoring, they have identified 

checkpoints in the business process. These checkpoints are process data on which they have carried 

out the predictions. They have used the execution time of each checkpoint of the service. Whenever 

an instance passes a checkpoint, a prediction is generated based on that particular instance. Then 

it compares the generated prediction with the planned checkpoint performance to decide the 

occurrence of the violation.  
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The second prediction model used by the authors is the constraint satisfaction problem 

(CSP). This is a problem-solving technique that has conditions that must be met. The solution to 

CSP are values assigned to variables that satisfy all the constraints. The CSP formulated by the 

authors is related to the execution time of each checkpoint. For their application of CSP, the authors 

have divided each instance into a sequence of service execution, and the execution time of each 

instance is derived from its components. The duration of a sequence of service execution s1 and 

s2 have time T1 and T2 respectively, so their sequence time is Tseq = T1 + T2 (this represents 

multiple hops within a leg). While the duration of their parallel execution (duration of multiple 

legs within an instance, it is also referred to as and-join) is Tand = max(T1, T2). The authors have 

used the business process structure to create a set of equations that needs to be satisfied. This was 

the first step in their implementation of CSP. In the second step, they solved the CSP with end-to-

end quality targets, which, in their case, is the execution time limit. They created two cases: the 

required time limit is not exceeded and the second, where the time limit was exceeded. The CSP 

implemented in this paper was through the ECLIPSE constraint logic programming system.  

The third technique used here is Quality-of-Service (QoS) aggregation. It is a rule-based 

reduction process model that determines QoS values. QoS aggregation rules are defined for the 

business process and include sequence time, parallel execution, and loop. At the time of execution, 

QoS rules are evaluated using process data and planned QoS values for the remaining service 

instance as an input. The authors have implemented their version of the QoS aggregation technique 

using the BOGOR model-checker system. The research was focused on answering three main 

research questions. First, what accuracy can be achieved when applying the three predictive 

models on business process instances? Second, how much accuracy depends upon the lead time 

for accurate prediction? Third, can these models be combined for more accurate predictions? 

To answer these questions, the authors employed binary indicators for the prediction: 

violation and non-violation.  Furthermore, the performance of predictions was measured by using 

the indicators to compute precision, recall, specificity, and accuracy. A case study implementation 

based on operational data from an international forwarding company was used to validate the 

hypothesis. The data was collected through the company's Cargo 2000 monitoring system. The 

data was used to predict violations in service delivery and analyze the accuracy of their prediction 

techniques. Two-thirds of the dataset was used as a training data set, while the remaining one-third 

of the dataset was used as a testing dataset. Each technique used in this paper predicts either true 
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or false based on each checkpoint in the business instance. To visualize the lead-time prediction, 

the authors have used a normalized scale to compensate for the different number of service 

execution within an instance. They have represented this as a position in their contingency table. 

This position ranges between 0% to 100%, and 50% represents the point where all incoming legs 

are consolidated.  

The data was engineered to create 21 checkpoints for each instance. The ANN was then 

trained for each checkpoint using their training dataset and used the test dataset to calculate the 

contingency matrix. All parameters used by the authors for their ANN were default proposed by 

WEKA. Their results show that the ANN prediction is less accurate up to the 50% position mark, 

after which the accuracy increases substantially. The constraint satisfaction technique used the 

training dataset to set the lower and upper bound of acceptable execution time. At each checkpoint, 

the CSP looks for the remaining service and predicts whether a violation can be ruled out or not. 

This approach can only predict violation and non-violation of checkpoints that are closer to the 

point of prediction. A similar contingency table was developed to represent the results. This 

approach gives the highest levels of precision, recall, accuracy, and specificity but only for the 

earliest predictor at 100%.  

The QoS aggregation technique does not require historical data, so only the test dataset was 

used. They used the planned checkpoint data as an estimate of service QoS. This method only 

starts prediction once it observes a violation of individual service. They observed that the precision 

increases gradually towards the end of process execution, but there is a sudden drop in the recall 

at 60% position. According to the authors, this is observed because the DEP service shows an 84% 

violation rate, which substantially impacts recall. Specificity in QoS performs better than the rest 

of the techniques because the planned service checkpoints are chosen too optimistically.  

The authors explain that their application of the three prediction techniques and their results 

provide substantial evidence that these techniques can be applied to business process instances and 

yield excellent prediction accuracy results. The prediction accuracy is more significant than 0.7 

for predictions that are made after 50% of the service execution. Their prediction accuracy 

increases for all techniques towards the end of the process execution. To answer their last research 

question, the authors combine these techniques. They used ensemble learning to analyze if there 

is an increase in accuracy when these techniques are combined as compared to them individually. 

The first voting technique they used is called the majority. It predicts a violation of at least two 



 

 

21 

techniques predicts a violation. Depending on the actual setting, this technique can improve the 

accuracy of the prediction of violations or non-violations.  

The authors then used the majority voting to define three specific voting strategies further. 

This first strategy is aimed at increasing the recall by combining two techniques that delivered the 

best recall. In their setting, they combined machine learning and constraint satisfaction. To 

increase recall, they predicted a true-positive if at least one of the techniques predicted a real 

positive. Their next strategy was to increase the precision; thus, they combined CSP and QoS and 

defined their strategy. If both predicted a violation only, then the final prediction will be a violation. 

This helped in reducing false violations. Their last strategy was to increase the specificity by 

combining CSP and QoS techniques. This voting technique is designed such that a non-violation 

is predicted if at least one of the techniques predicts a non-violation. These combined techniques 

showed improvements in contingency table matrices. Their techniques provide substantial 

evidence that combining techniques can perform better than individual techniques. 

2.3 Predictor Based Approaches 

Senderovich et al. (2014) implemented a queuing perspective in operational process mining. 

They have gained motivation from the recent work on process mining that showed how the 

management of these processes could be guided by models extracted from the event logs recorded 

during process operation—the paper presented techniques for queue mining using two different 

approaches. First, a traditional approach to process mining is implemented that enhances an 

existing time prediction system to consider queues and system loads. Second, the queueing theory 

was applied to the model, analyze, and improve the service process. In addition to defining mining 

techniques, a comprehensive experimental evaluation using real-world logs was also presented. 

The results showed that the proposed techniques improved predictions. 

The authors illustrated the need for a queueing perspective in the operating model for 

service processing using a bank's call center. Queue mining theory was implemented to solve the 

problem of online delay prediction. To solve the delay prediction problem, a mining technique for 

three classes of delay predictors for proposed. The first predictor included integrating queueing 

information into operational process mining techniques by considering queues as separate 

activities. This approach was implemented by considering the queueing phase and service phase 

as two different steps. Other cases on each case were considered by extending the state construct 
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to include customers' system load in the queue. The system load was divided into high, moderate, 

and low load regions to account for customer load variation.  

The second class of predictors based on queueing theory was developed. Based on this, 

two predictors were designed: queue length-based predictor (QLP) and Markovian queue length-

based predictor (QLMP). These predictors use the queue lengths to predict the expected delay. 

These predictors were applied to real-world customer queue data from a bank call center to test 

the proposed predictors. Two performance matrices, absolute bias to measure accuracy and root-

mean-squared error to measure precision, were used to evaluate the predictors' performance. 

RMSE was more significant because it penalizes for any deviation from the actual delay in time 

compared to absolute bias. Thus,  RMSE was considered as the sole indicator to measure the 

performance of the predictors. 

The prediction model was considered the control variable in this research. The training data 

was mine to cluster the queue into three categories: high load, moderate load, and typical load. 

Both the queue length-based predictors (QLP and QLMP) were found to be biased. For some 

instances, the snapshot-based predictors showed negligible systematic errors, making them ideal 

for their delay prediction applicability.   

The authors divided their findings of the predictors into three sections. The first is about 

the transition system method where both of the methods, PTS and KTS, compare past delays of 

customers with similar path history to predict the delay. KTS method performed significantly 

better because it captures three different steady states. The second section compared the queue 

length predictors, QLP, and QLMP. QLP predictor failed for most cases due to a lack of reasonable 

assumptions, while QLMP outperforms PTS for most of the scenarios in both accuracy and 

prediction. However, QLMP was found to be inferior to KTS and the snapshot predictors. The 

final section compared the snapshot-based predictors. All the snapshot-based predictors showed 

better performance consistently than the rest of them. All the evidence leads to the authors' 

conclusion that the snapshot-based predictors are well suited for the application to predict delay 

time for a newly queued customer. 

2.4 Random Forest 

Decision Trees and Random Forests are two of the most popular Machine Learning 

Algorithms used for classification. Datla (2015) made a comparison of classification results from 



 

 

23 

these algorithms based on bike-sharing and Titanic datasets. The method proposed was divided 

into two parts. First, feature engineering was used to eliminate noise in data, and new variables 

were created based on existing variables. Second, to ensure optimum results, classification 

parameters were tailored based on precision and accuracy before training models with the data.  

The authors used two types of datasets, a large data set and a small dataset, to compare 

prediction models' results. To avoid overfitting, a 10-fold cross-validation method was employed. 

The research was aimed at determining the efficiency of both the models on varying dataset sizes. 

Based on the data result, the authors found that classifiers based on Decision Trees performed far 

better on smaller data sets than Random Forest-based classifiers.  Whereas Random Forest-based 

classifiers performed better on more massive datasets using the same number of variables.   

Ahmad et al. (2017) performed a comparison of performance between Random Forest, an 

ensemble-based tree model, and artificial neural networks, a feed-forward back-propagation model 

to predict a hotel's energy consumption. Different approaches have been proposed to predict 

building energy consumption classified into three categories: numerical, analytical, and predictive. 

Artificial neural network collects information from historical data in many hidden layers. They 

work as a black-box model, generating a relationship between the input and output. Feed-forward 

is the most popular neural network model generally used. The authors have implemented a feed-

forward neural network coupled with a back-propagation algorithm to predict energy consumption. 

Another method used in this paper was a random forest, an ensemble-based tree method that uses 

a voting scheme to vote for the most popular class.  

The research was conducted on energy data collected from the hotel's energy management 

system. Data from external factors such as the number of guests and outside weather information 

was also collected and considered when building the models. Four evaluation matrices, including 

root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of variation 

(CV), and mean absolute deviation (MAD), were used. An artificial neural network's sensitivity 

for the different number of hidden layer neurons was studied, after which ten neurons were selected 

to reduce the model's complexity. The random forest model's depth was also studied and found 

that random forest performance decreased as maximum tree depth increased to more than ten.  

 Comparing the performance matrices for both the models showed that the artificial neural 

network had a slightly better performance than the random forest-based model. Although there 

was a slight difference in the performance, both models showed nonlinear mapping capability, 
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making them ideal for predicting energy consumption. An advantage of using random forest over 

the neural network is its ability to handle missing values. Due to the ensemble-based algorithm, 

the random forest can quite accurately predict even when missing values are present. The 

experiments showed that the random forest-based model performed better when predicting lower 

energy consumption values, while the neural network-based model performed better in predicting 

higher values.  

Comparing the models, the authors found that random forest took much less time to train, 

a couple of seconds, while the neural networks took a couple of minutes to train. While training 

time depends on multiple factors like the algorithm's implementation, the number of variables, 

model complexity, etc., there was substantial evidence suggesting that random forests are quicker 

than neural networks. 

Husband and Roberts (2017) developed a set of quantifiable job features and then applied 

the random survival forest to build a predictor that would assess a job's probability of remaining 

open beyond its time-to-fill. The number of days from the date a new job is posted to the date it is 

filled. A predictor based on a random survival forest was developed. Survival analysis is a 

technique used to analyze patients' survival rates after surgery based on each patient's risk factors. 

The time-to-fill predictor follows the same principle, except here jobs are considered instead of 

patients and filled state of a job instead of death. Quantifiable job features such as job type, location, 

time of year, number of candidates interviewed, etc. from historical filled jobs data are used as risk 

factors. 

The authors created a random survival forest based on these features from the historical 

data. They used 2/3 of the dataset to draw "n" bootstrap samples. The remaining 1/3 of the dataset 

was used for testing. For each bootstrap sample, they grew a survival tree from a randomly selected 

subset of features. Finally, they created a cumulative hazard function for each survival tree and 

used the test dataset to calculate the prediction error.  

They made two adjustments to the typical random survival forest. Their time-to-fill 

predictor has categorized newly opened positions as high, medium, or low risk of missing the time-

to-fill target. Secondly, they created three random survival forest-based predictors. Predictor A 

uses all available features, predictor B uses all features except candidate interviewed, and predictor 

C excludes candidate interviewed and candidate submitted. For jobs that have been opened for 

more than 21 days, they have used predictor A. For jobs that were open for days between 14 and 
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21, they have used predictor B. For jobs opened for less than 14 days, they have used predictor C. 

Using the predictors, they calculated the probabilities and categorized them into three risk 

categories. Jobs with p <= 0.5 were categorized as low risk, jobs with 0.5 < p <= 0.75 were 

categorized as medium risk and jobs with p > 0.75 were categorized as at high risk. All random 

survival forests were created in R using the randomForestSRC package.  

The authors used historical data of 19,000 filled job positions. The prediction error was 

calculated from the randomForestSRC algorithm that uses Harrell's concordance index. Their goal 

was to flag jobs that missed the target time-to-fill. Further, they also tracked the degree to which a 

job missed its target using categories 1-15 days, 16-30 days, 31-60 days, and 61+ days. Using 

predictors on test data, they categorized it into high, medium, and low-risk groups. Then, for each 

of these, they further categorized each risk group into the miss target categories. Plotting this 

information showed that 85.7% of the high-risk group missed their time-to-fill target while only 

24.8% of the low-risk group missed theirs. 

2.5 Gradient Boosting 

Gal et al. (2017) explored a novel method for traveling time prediction using a combination 

of queueing theory and machine learning. A prediction mechanism to predict a bus journey's 

traveling time using historical data, journey routes, and source/destination data is proposed. This 

research is based on Dublin city's bus network data and provides substantial evidence that 

predictions based on the queueing theory suffer from outliers. This issue was overcome by 

combining queueing theory with machine learning to assist in the identification of outliers. The 

proposed model segments the data according to intermediate stops to overcome outlier 

identification by implementing a machine learning technique on historical data to improve the 

queueing theory-based prediction results.  

The prediction model suggested uses historical data of scheduled journeys and real-time 

information about vehicle movement. The information is stored in the journey log and contains 

sequences of recorded journey events and attributes for each bus trip. The problem of real-time 

travel time prediction for a bus journey has been addressed such that the journey events indicate 

the progress of the bus on its route. A novel solution to predict the traveling time for the next step 

based on their journey pattern has been implemented. To analyze the accuracy of their predictions, 

performance metrics such as root-mean-squared error (RMSE), mean absolute relative error 
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(MARE), and median absolute relative error (MdARE) were employed. A two-step approach was 

used to implement the model of travel time prediction. The first step modifies the input data to 

construct a model based on journey patterns. The second step uses this model to predict the actual 

travel-time. The predictions were based on a travel journey log and used either the most recent 

information, historical data, or a combination of both.  

The prediction methods were divided into two categories. The first category used recent 

events to predict future traveling times using a model based on the queueing theory and 

approximates systems in heavy traffic. The second category was based on machine learning's 

decision tree approach. The first prediction model uses a heavy traffic approximation that, also 

known as the snapshot principle, is implemented. When a bus passes through a segment, it will 

experience the same traveling time as another bus that has just passed through that segment. A 

predictor was developed with this method and thus defined a multi-segment snapshot predictor 

Last-Bus-to-Travel-Network (LBTN). The hypothesis was stated that the snapshot predictor 

performs better whenever busses are close to a journey.  

 The second technique proposed uses a regression tree-based approach to predict travel 

time. Unlike the snapshot method, the regression tree method uses historical data to train a 

prediction model. This model was then used to predict the traveling time for new instances of an 

ongoing journey. The predictor uses features including the prediction time and estimated time for 

the bus that enters the segment and predicts the time bus will travel through the segment. This 

predictor approach consists of two parts. First, a feature set is defined, and then they use this feature 

set to construct a prediction model. The feature set considered for modeling the predictor includes 

the bus's travel time that last used the segment, the interval between the time the last bus left the 

segment, the day of the week, and the time of the day. The authors implemented different 

ensemble-based regression trees. All of them take the feature set as input and produces an output 

that predicts the traveling time. A collection of multiple regression tree models was used since 

they produce better accuracy than a single model. This collection of regression trees included 

Random Forest (RF), Extremely Randomized Trees (ET), AdaBoost (AB), Gradient Tree Boosting 

(GB), and a robust version of Gradient Tree (GBLAD). Boosted tree algorithms were selected to 

construct models sequentially and combined them with the snapshot model. Three combined 

algorithms were proposed: S+AB, S+GB, and S+GBLAD.  
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The models were implemented using regression tree modeling in scikit-learn. Experiments 

showed that the RMSE increased as the trip length increased, while MARE decreased. This was 

observed for all prediction methods. Evaluating their techniques, the authors found that the 

combined prediction models outperformed the individual models in terms of prediction quality 

when comparing their performance. The prediction error increased as the number of stops in a 

journey increased. However, the relative error remained stable over the length of the trips.  

Snapshot-based predictors did not show any deterioration in performance for longer trips, thus 

contradicting the hypothesis that the snapshot predictor would be more precise for journeys with 

higher temporal proximity to the current journey. It was also found that the prediction accuracy 

correlated negatively with the number of busses traveling through the city. 

Georganos et al. (2018) implemented extreme gradient boosting (Xgboost) based classifier 

for land use-land cover urban classification. They further evaluated its efficiency based on sample 

size and feature selection. Finally, they compared their gradient boosting-based classifier's 

performance with random forest- and support vector machine-based classifiers. Extreme gradient 

boosting belongs to the classification and regression tree (CART) family and is an extension of 

the traditional gradient boosting technique. The traditional gradient boosting machine model was 

prone to overfitting due to a lack of proper regularization aspect. Extreme boosting tackles this 

problem by having a regularization framework that overcomes the problem of overfitting. The 

authors employed a correlation-based feature selection, a method that uses correlation and co-

variance to inspect the relation between the dependent and independent variables. This method 

allows the reduction in features by looking for features with high dependence on the dependent 

variable. The authors also optimized the parameters of the Xgboost classifier using Bayesian 

optimization.  

The results showed that Xgboost performed better than both random forest and support 

vector machine-based models for larger sample sizes. The highest accuracy was observed when 

Xgboost was trained with the maximum possible number of features. However, it showed reduced 

accuracy when correlation-based feature selection was applied, while SVM and random forest 

showed a better performance. This research provides evidence that Xgboost with Bayesian 

optimization can outperform random forest and support vector machines, but it comes at the cost 

of increased computation time. 
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Batra and Jawa (2016) implemented multiple classification algorithms to detect arrhythmia 

using a combination of classification methods and electrocardiogram diagnostic techniques. The 

proposed solution was implemented using a clinical dataset from the UCI data repository and 

machine learning algorithms that included Decision trees, Random Forest, Gradient Boosting, 

Support Vector Machine, and Neural Networks. Matrices such as confusion matrix, kappa-score, 

confidence interval, the area under the curve, and accuracy were employed to measure and 

compare models' performance.  

75% of the dataset was used for training, and the remaining 25% was used for testing. The 

dataset was divided into sixteen classes to represent normal and different types of arrhythmia.  The 

arithmetic mean values were used to replace the missing feature data, and features that had the 

same values were removed for all instances. All continuous values were normalized using the Z-

score normalization technique. The principal component analysis was employed to convert 

correlated features into linearly uncorrelated features. For classes with very few instances, the 

authors used ECG analysis criteria to identify them using machine learning algorithms accurately. 

Doing this showed 100% classification accuracy for some class labels. The dataset was then used 

to train and test all the machine learning models. The neural network showed better results for all 

performance matrices when a reduced feature set using principal component analysis was used 

instead of all the features. On the other hand, Decision trees, Random Forest, and Gradient 

boosting showed better classification results when all features were used to train the model. The 

random forest and gradient boosting models were implemented in R. XGBoost R package was 

used to develop the gradient boosting prediction model.  

Finally, the support vector machine model was implemented using all feature sets, reduced 

PCA features, top 60 features from gradient boosting, and the random forest model's top features. 

The results showed that using top features from the gradient boosting model gave the best results 

for all performance matrices compared to other methods. The authors then combined the EGC 

diagnostic analysis technique with this to improve the overall accuracy even further.  

The classification has found various applications in numerous fields. It uses training data 

to develop a classification model that predicts the class of new data. Assessing performance is a 

critical factor in evaluating a classification model and selecting the best classification problem 

model. Tharwat (2020) conducted a detailed study of different classification assessment techniques 

to understand the basics of these techniques. This study explained the confusion matrix for binary 
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and multi-class classification problems and explained the influence of balanced and imbalanced 

data on multiple performance metrics. Furthermore, a comparison of various scalar and graph 

performance metrics presented a detailed analysis of each method's robustness against imbalance 

data.   

Classification problems can be divided into binary and multi-class, depending on the 

number of classes. Binary has only two classes, while multi-class has more than two. Classification 

output can be either discrete or continuous. Discrete output predicts the class label, whereas the 

continuous output estimates the probability of class membership. In binary classification, there are 

four possible outcomes: true-positive, true-negative, false-positive, and false-negative. An 

imbalanced dataset occurs when members of one class outnumber those of the other class. 

Geometric Mean and Youden's index are two metrics that are not affected by a class imbalance, 

while accuracy and precision are affected by an imbalanced dataset. The author introduced 

multiple scalar performance matrices for binary classification, including Accuracy and Error Rate, 

Sensitivity and Specificity, False-Positive and False-Negative Rates, Predictive Values, 

Likelihood Ratio, Youden's Index, Matthews Correlation Coefficient, Discriminant Power, F1-

Score, Markedness, Geometric Mean, Optimized Precision and Jaccard. Out of these matrices, 

Sensitivity, and Specificity, False-Positive and False-Negative-Rates, Likelihood Ratio, Youden's 

Index, Discriminant Power, Markedness, and Geometric Mean are not affected or slightly effected 

by imbalanced data.  

The other performance assessment methods include graphical techniques such as Receiver 

Operating Characteristics (ROC) curve, Area under ROC (AUR), and Precision-Recall Curve.  The 

ROC curve is a graphical technique representing true-positive rate and false-positive rate on the y-

axis and x-axis. The area under the ROC curve is a technique to compare the performance of 

different classifiers. The precision-recall curve is similar to the ROC curve, except that it represents 

the relation between precession and recall. In contrast, the ROC curve represents the relation 

between true-positive and false-positive rates.  

A key issue when selecting the best model measures is its performance on an imbalanced 

dataset. Imbalance datasets consist of an unequal number of elements in each class. Some models 

perform better in one class but provide poor performance in other classes. The impact of this on 

model performance has shown to be a significant problem. Luque et al. (2019) conducted an 

extensive study to develop and analyze the effect of imbalanced datasets on different performance 
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matrices and determine the most suitable performance metrics through results obtained by using 

binary classifiers. A new method to characterize class disparity was proposed to measure 

imbalances that surpass the commonly used imbalance ratio. This was achieved by developing 

functions and numerical indicators to compare the imbalanced dataset's behavior on multiple 

performance matrices based on the confusion matrix. This research focused on the impact of an 

imbalanced dataset on the performance of the binary classification model. The author considered 

ten performance matrices based on confusion matrix, which included Sensitivity, Specificity, 

Precision, Negative Predictive Value, Accuracy, F1 Score, Geometric Mean, Matthews 

Correlation Coefficient, Bookmaker Informedness, and Markedness.  

Their results showed sensitivity and specificity were the best performing metrics with no 

bias due to imbalance in the dataset. These are considered as partial performance metrics since 

they only consider positive or negative classes. Geometric mean and Bookmaker Informedness 

also showed no bias towards imbalanced datasets due to them depending on specificity and 

sensitivity. However, they did solve the problem of partiality by considering both the classes. Both 

Geometric mean and Bookmaker Informedness had their drawbacks. They only consider the 

classification success rate and do not consider the error rates. The second group of performance 

matrices includes accuracy, the Matthews correlation coefficient, and markedness. These matrices 

showed medium biases towards an imbalanced dataset. All three consider both positive and 

negative classes, so they are considered two-dimensional performance metrics. Accuracy has 

shown to have the highest biasedness and also only considers the success rate. The rest of the two 

metrics showed lower bias than accuracy, and they also considered both the success and the error 

rates.  

The last group had consisted of the precision, negative predictive value, and F1 score. This 

group showed a high bias. While they all are two-dimensional and consider both success and error 

rates, the authors recommended avoiding its use on imbalanced datasets due to high bias. The 

research showed Geometric mean and Bookmaker informedness to the best performing metrics for 

applications that focus just on the classification success rates. For those applications where 

classification error rates are also significant, Matthews correlation coefficient proved to be the best 

option. 
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2.6 Summary 

The literature review provides evidence that the supply chain and logistics industry can 

benefit significantly by applying predictive analytics. Govindan et al. (2018) and Schoenherr and 

Speier‐Pero (2015) suggest that supply chain and logistics industries show a growing interest in 

predictive analytics primarily due to its benefits in enabling better decision making, providing 

better risk and operational management, reducing operational costs, and improving forecasting 

capabilities. Literature also suggests that most predictive analytics in the supply chain industry 

were in value creation, forecasting, or operational management sub-domains. Alias et al. (2016) 

found evidence that predictive analytics techniques were applied mostly in the supply chain 

industry. 

In contrast, the logistics and transportation industry relied mostly on predictive monitoring 

techniques such as complex event processing. This is mostly due to the long history of its 

application in the logistics and transportation industry instead of the other technologies. A closer 

look at the application of predictive monitoring techniques in the logistics and transport industry 

showed that most research areas were mostly focused on road transportation or general 

transportation. This provided an opportunity to study predictive monitoring techniques in the air 

transport industry. Feldman et al. (n.d.) implemented a predictive monitoring technique called 

event processing to develop an event processing network to monitor and predict violations in 

volume and weight of air cargo.  

The remaining literature reviewed was focused on the current application of predictive 

analytics and machine learning techniques. Senderovich et al. (2014) applied queue mining theory 

and the snapshot principle to predict the time to serve customers in a bank. Decision trees, and 

more specifically, random forests, have found great success in their application in different 

industries. Ahmad et al. (2017) compared machine learning techniques, random forest, and 

artificial neural network to predict energy consumption and found a random forest-based approach 

to run much faster than a neural network-based approach while having almost the same prediction 

performance. Datla (2015) researched to compare the performance of two of the most popular 

classification machine learning algorithms, decision trees, and random forest, and found the 

random forest to perform better on more massive datasets. Husband and Roberts (2017) applied 

the survival theory and developed a random forest-based survival predictor to predict the time to 

fill an open job position.  
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Another tree-based algorithm, gradient boosting, has shown the great potential of its 

application for predictive analytics. Gal et al. (2017) combine queueing theory and different tree-

based techniques to predict travel time and found that gradient boosting-based predicting results 

in better predicting travel time than all other tree-based predictors. Gradient boosting trees have 

shown better performance in classification applications than other machine learning techniques. 

Georganos et al. (2018) compared gradient boosting, random forest, and support vector machine 

to build a prediction model for urban land classification and found gradient booting to perform 

better than the other two. 
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 METHODOLOGY 

A significant issue faced by companies that rely upon heavily on-air freight is the delay in 

the timely arrival of their shipment—any delay in shipment results in an interruption in their supply 

chains, which incurs an extensive monetary loss. The shipping process's complex structure and the 

high level of uncertainties pose a significant challenge in predicting any delays. This research 

proposes a prediction approach to identify shipments that are at risk of being delayed. Our 

approach is based on real air freight shipping data from a freight forwarding company. This section 

introduces the prediction techniques, data samples, and detailed process of implementing those 

prediction techniques on the dataset.  

3.1 Airfreight Dataset 

To standardize the shipment process monitoring, the International Air Transport 

Association (IATA) implements a new quality management system, Cargo 2000, for the air 

transport industry. The goal was to introduce a system where all stakeholders involved in the 

transportation process can share shipment information. This includes the planning, re-planning, 

and completion of shipment events.  Each shipment is structured into incoming and outgoing legs. 

A shipment is planned into two sections, incoming leg and outgoing leg. Each shipment can consist 

of multiple incoming legs ranging from one to three independent of each other, and so all incoming 

legs are transported in parallel. Each leg of a shipment might pass through multiple segments that 

can range from one to four. A segment replicates a layover. Each shipment gets a plan with 

predefined milestones of planned completion time for that service. The transport legs consist of 

four physical transport services, as shown in the table below: 

Table 1. Physical transport services 

RCS Service when the shipment is checked in at the departure airport 

DEP Service when the shipment is on-board, and the aircraft has departed 

RCF Service when the shipment is received at the arrival airport 

DLV Service when the shipment is delivered at the destination airport 
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Similar to the incoming legs, all the shipments have an outgoing leg. All the incoming legs 

arrive at the outgoing leg's departure airport, combined and sent out as one shipment in this leg. 

Unlike the incoming legs, each shipment has just one outgoing leg. The outgoing leg also consists 

of multiple segments ranging from one to three and consists of the four physical transport services. 

The delivery at the outgoing leg is the final delivery of the shipment. Table 2 shows the complete 

list of features of leg 1.  Note that the unique id of the airport location has been masked for 

confidentiality. Each leg has a unique leg ID (i1_legid), which remains the same throughout the 

shipment transport in leg 1. Each leg consists of all four transport services, and each service has a 

planned and actual duration. For example, i1_rcs_p and i1_rcs_e are the planned and actual timings 

for the RCS service, respectively. 

Similarly, all other transport services (DEP, RCF, and DLV) have actual and planned 

service timings. Since each leg consists of up to three segments, three layovers, departure, and 

arrival information (DEP and RCF) are also available for those segments. i1_dlv_p and i1_dlv_e 

represent the planned and actual delivery time of the shipment's first leg at the outgoing leg. 
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Table 2. Incoming Leg 1 Feature Overview 

i1_legid  unique id across all transport legs of incoming transport leg 1 

i1_rcs_p  planned duration (minutes) of incoming transport leg 1 (RCS: Freight Check-in)  

i1_rcs_e effective (i.e., actual) duration (minutes) of incoming transport leg 1 (RCS: Freight Check in)  

i1_dep_1_p planned duration (minutes) of incoming transport leg 1 (DEP: Departure Segment 1)  

i1_dep_1_e actual duration (minutes) of incoming transport leg 1 (DEP: Departure Segment 1)  

i1_dep_1_place unique id for the airport (original IATA codes have been masked due to confidentiality reasons) of incoming transport leg 1 (DEP: Departure Segment 1)  

i1_rcf_1_p planned duration (minutes) of incoming transport leg 1 (RCF: Arrival Segment 1) 

i1_rcf_1_e actual duration (minutes) of incoming transport leg 1 (RCF: Arrival Segment 1)  

i1_rcf_1_place unique id for the airport (original IATA codes have been masked due to confidentiality reasons) of incoming transport leg 1 (RCF: Arrival Segment 1) 

i1_dep_2_p planned duration (minutes) of incoming transport leg 1 (DEP: Departure Segment 2) 

i1_dep_2_e actual duration (minutes) of incoming transport leg 1 (DEP: Departure Segment 2) 

i1_dep_2_place unique id for the airport (original IATA codes have been masked due to confidentiality reasons) of incoming transport leg 1 (DEP: Departure Segment 2) 

i1_rcf_2_p planned duration (minutes) of incoming transport leg 1 (RCF: Arrival Segment 2) 

i1_rcf_2_e actual duration (minutes) of incoming transport leg 1 (RCF: Arrival Segment 2) 

i1_rcf_2_place unique id for the airport (original IATA codes have been masked due to confidentiality reasons) of incoming transport leg 1 (RCF: Arrival Segment 2) 

i1_dep_3_p planned duration (minutes) of incoming transport leg 1 (DEP: Departure Segment 3) 

i1_dep_3_e actual duration (minutes) of incoming transport leg 1 (DEP: Departure Segment 3) 

i1_dep_3_place unique id for the airport (original IATA codes have been masked due to confidentiality reasons) of incoming transport leg 1 (DEP: Departure Segment 3) 

i1_rcf_3_p planned duration (minutes) of incoming transport leg 1 (RCF: Arrival Segment 3) 

i1_rcf_3_e actual duration (minutes) of incoming transport leg 1 (RCF: Arrival Segment 3) 

i1_rcf_3_place unique id for the airport (original IATA codes have been masked due to confidentiality reasons) of incoming transport leg 1 (RCF: Arrival Segment 3)  

i1_dlv_p planned duration (minutes) of incoming transport leg 1 (DLV: Freight Delivery) 

i1_dlv_e effective (i.e., actual) duration (minutes) of incoming transport leg 1 (DLV: Freight Delivery) 

i1_hops number of segments (hops) in the transport leg of incoming transport leg 1 
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Since each shipment can consist of up to three incoming legs, all three legs have the same 

service information as leg 1 shown in Table 2. All the legs are transported in parallel, so the 

shipments from each of these legs are combined at the departure airport of the outgoing leg and 

shipped out in this last transport leg. The DLV service of the outgoing leg (o_dlv_p and o_dlv_e) 

provides information on whether the shipment was delivered on time or whether it was delayed. 

Similar to the incoming legs, the outgoing leg might have more than one segment. Since not all 

the shipment processes are the same, not all instances have the same number of legs or segments. 

Due to this, there is a lot of missing information. The sub-section below provided a more detailed 

view of the dataset and introduced the techniques used to cater to missing data and inconsistent 

shipment data. 

3.2 EDA and Feature Engineering  

The dataset consists of five months of shipment data from an air freight forwarding 

company. There are 3,942 shipment instances, 1,318 instances with just a single incoming leg, 

1,258 instances with two incoming legs, and 1,366 instances with three incoming legs. In total, 

there are 7,932 incoming legs. Since each instance has just one outgoing leg, thus there are only 

3,942 outgoing legs. Each instance consists of the planned execution time and the actual execution 

time of all four transport services. 

Table 3. Breakdown of instances based on the number of legs 

Total Instances 3,942 

Instances with 1 incoming leg 1,318 

Instances with 2 incoming leg 1,258 

Instances with 3 incoming leg 1,366 

Total Incoming legs 7,932 

Total Outgoing legs 3,942 

 

The dataset has a total of 98 variables. These include the planned and actual execution of 

four transport services, leg ID, location, number of hops in each leg, and legs in each instance. 

Some of these variables do not give us much information about the delay, for example, leg ID or 
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location, so those variables were dropped from the dataset used in the implementation of random 

forest and XGboost. These included leg ID, departure place, arrival place, leg hops, and legs. 

Another major problem with the dataset was missing values. Since not all instances had the same 

number of legs, instances with one or two legs had missing values for the third leg variables. 

Similarly, legs with one or two segments have no values for the second and third segments, 

respectively. Table 4 below shows this issue for an instance that had just one leg. 
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Table 4. Sample of a shipment's Leg 1 data showing missing values 

nr i1_legid i1_rcs_p i1_rcs_e i1_dep_1_p i1_dep_1_e 
i1_dep_1_plac

e 
i1_rcf_1_p 

0 5182 199 218 210 215 609 935 

 

i1_rcf_1_e 
i1_rcf_1_plac

e 
i1_dep_2_p 

i1_dep_2_

e 

i1_dep_2_plac

e 
i1_rcf_2_p i1_rcf_2_e 

i1_rcf_2_plac

e 

736 256 ? ? ? ? ? ? 

 

i1_dep_3_

p 
i1_dep_3_e 

i1_dep_3_plac

e 
i1_rcf_3_p i1_rcf_3_e 

i1_rcf_3_plac

e 
i1_dlv_p i1_dlv_e 

? ? ? ? ? ? 840 1539 
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As shown in Table 4, the shipment's first leg had just one segment (layover). The remaining 

segment information for this leg was left blank. To overcome inconsistencies in a leg's segments, 

all the segment's transport service planned and actual execution times were combined. This was 

done because the segments occur in the series. For example, the instance shown in Table 4 has just 

one segment, so DEP and RCF service for the second and third segments are missing. A new 

service variable (i1_dep_p) was created that combined all the planned departure times for the leg 

as shown by the equation below: 

 

i1_dep_p = i1_dep_1_p + i1_dep_2_p + i1_dep_3_p  (1) 

i1_dep_e = i1_dep_1_e + i1_dep_2_e + i1_dep_3_e   (2) 

 

Removing all the unimportant variables and combining the segment services allowed to 

reduce the first leg variables from twenty-four to eight. The Table 5 below shows the reduced set 

of variables for leg one information shown in Table 4, thus, removing the segment missing data. 

This was done for all three incoming legs and the outgoing leg to remove any missing segment 

data—this data cleansing approach allowed to reduce the total number of variables from ninety-

eight to thirty-three. 

Table 5. Reduced set of variables for incoming leg one 

I1_rcs_p i1_rcs_e i1_dep_p i1_dep_e i1_rcf_p i1_rcf_e i1_dlv_p i1_dlv_e 

199 218 210 215 935 736 840 1539 

 

Another problem with the dataset was that not all instances had the same number of legs. 

As seen from Table 3, 1,318 instances have just one incoming leg, 1,258 have two, and 1,366 have 

three. The dataset was divided into three datasets based on the number of incoming legs to solve 

missing leg data. These three datasets were used to create three separate predictors. The section 

below discusses the approaches implemented in developing these predictors. The table below 

shows the number of variables in each of these derived datasets. It can be seen that the total number 
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of variables is different for all the legs, with Leg 1 predictor having half as many variables as that 

of Leg 3 for prediction. 

Table 6. Number of variables in each leg 

 
Number of Incoming 

Leg's Variables 

Number of Outgoing 

Leg's Variables 

Total Number of 

Variables 

Leg 1 8 8 16 

Leg 2 16 8 24 

Leg 3 24 8 32 

 

The biggest problem with airfreight shipment is the delay in delivering the shipment. This 

could happen due to multiple reasons. For instance, a delay could occur due to a delay in delivering 

the shipment at the departure airport (RCS) or delayed departure of flight (DEP and RCF) due to 

weather conditions. While these sources of delays cannot be identified beforehand, the delay in 

the final delivery (dlv_final) can be predicted based on delays in a shipment's physical transport 

service status.  

The original dataset did not contain any variable for the final delivery, so a new variable 

was derived using the planned and actual delivery variables of the outgoing leg (o_dlv_p and 

o_dlv_e). The new variable is called the final delivery variable (dlv_final), was used to represent 

the delay in final delivery. It is defined as the difference between the planned and actual delivery 

time and is represented by equation (3) below: 

dlv_final = o_dlv_p – o_dlv_e  (3) 

To better understand this new variable, we took a more in-depth look into this variable. 

Table 7 and 8 below provides a better understanding of the final delivery variables and delays 

corresponding to each leg. Instances with dlv_final > 0 were considered as delayed. Approximately 

one-third, 1,167, of the instances had some sort of delay. All the legs had an almost similar number 

of instances with delayed delivery. Table 8 shows that the minimum value for dlv_final was -6.6 

days, which means that the shipment arrived almost six days early. A maximum of 387 days delay 

in shipment delivery was observed. A median of -1.5 days means that most of the shipments were 
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delivered before their planned delivery time. This means that the planned delivery times are 

overestimated when booking to ensure that the shipments are delivered on or before that time. 

Table 7. Delays in shipment delivery 

Total Number of Instances Instances with delayed final delivery 

3942 1,167 

 

Table 8. Summary of dlv_final variable 

Minimum Maximum Median  

-6.6 days 387 days -1.5 days 

 

Quantile 

25% 50% 75% 95% 

-2.24 days -1.5 days 0.33 days 21 days 

 

Looking at the summary of the final delay for each leg in Table 9, we can see that all the 

legs had similarly delayed shipments. The rate of delays on-time/delayed instances was almost the 

same: 41.4% for Leg 1, 41.3% for Leg 2, and 43.3% for Leg 3. Finally, a new variable is introduced 

that serves as the class label for each shipment. This new variable was labeled as "Violation" and 

derived from the dlv_final variable. The Violation variable had two factors: Yes and No. Instances 

in which delays were observed that is dlv_final > 0 were labeled Yes, while all those for which 

dlv_final < 0 were labeled No. This variable served as the dependent variable in our prediction 

approaches. Succeeding sub-sections will detail the dependent and independent variables and their 

implementation in our tree-based predictors. 
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Table 9. Summary of delays in final delivery for each leg 

 LEG 1 LEG 2 LEG 3 

Total instances 1,318 1,258 1,366 

On-time 932 890 953 

Delayed 386 368 413 

Minimum delay 109 days 387 days 364 days 

Maximum delay - 6.5 days - 6.6 days - 6.4 days 

3.3 Decision Trees 

Tree-based approaches have been widely used to solve classification problems. To predict 

whether a shipment will be delayed or on-time, decision tree-based classification predictors have 

been designed. Tree-based classification techniques, such as Decision Tree, possesses the ability 

to model the complicated relationship between variables without having strong model assumptions 

(Zhao & Zhang, 2008). They can classify features and limits that best splits data into distinct 

groups. This splitting ability occurs recursively until all the data divide into similar groups. 

Decision Tree is a handy classification algorithm because of its ability to detect important features 

immediately. One most significant advantage provided by Decision Trees is the readability of its 

classification rules. Decision trees do not require long training methods so, it saves much time 

when modeling large datasets. Some key advantages of decision trees are listed below: 

1. Decision trees are easy to interpret and visualize 

2. Decision trees are easy to reproduce since they are transformed easily into production 

rules; 

3. Decision trees can handle both categorical and numerical data, but the output attribute 

have to be categorical 

4. Decision trees are extremely fast and possess extensive data handling capabilities. 

Decision trees come with disadvantages. Multiple output attributes are not allowed in 

decision trees. Deep trees are prone to the problem of overfitting. Decision trees select the optimum 

option at each node without considering the global optimum, which does not ensure the optimum 

choice when the tree reaches the leaf node.  
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To give an example of how a decision tree can be grown on the dataset, suppose that we 

divide the dataset into delayed and not delayed. These delayed and not delayed labels are 

represented in the dataset by the Violation variable. This variable contains two factors: Yes and 

No, representing delayed and not delayed, respectively. The dataset is divided into two parts, 

training and testing datasets. The training dataset will be used to train the decision tree and the 

testing dataset to test the final classifier.  

Each instance, or shipment, in this case, has a set of variables called features that 

characterize the instance between delayed and not delayed. For each instance, one variable is 

selected and split into two parts, depending on the variable's value. A simplified schematic of a 

decision tree is shown in Figure 1. Here, the first variable picked is the outgoing leg's planned 

delivery time. A splitting value for it greater than 982 is selected (o_dlv_p > 982). It gives the best 

separation to split the dataset into delayed and not delayed. This is repeated for all the variables 

and for both the branches until a leaf node is reached, that is delayed or not delayed. This is 

repeated for all the instances in the training dataset to train the model, and then the test dataset is 

used on this model to gauge its performance. This is a simplified example of applying the decision 

tree model to our dataset. The models implemented here are much more complex decision tree-

based models, random forest, and XGboost. The sub-sections below explain how these models 

were implemented on this dataset to classify whether the shipments were on time or delayed. 

3.4 Random Forest-Based Prediction Method 

The ensemble-based technique is based on the collection of results from multiple trees 

instead of a single tree. Bagging and boosting are the two most well-known techniques used in 

ensemble-based trees. In the boosting technique, the extra weight given to the predicted features 

incorrectly and voting based on weight produces the final prediction. In the bagging technique, 

each tree is developed using a bootstrap sample from the dataset, and each tree is independent of 

the other tree. The final prediction is based on the majority votes from each tree.  

Breiman (2001) proposed a new technique based on the bagging ensemble technique called 

random forest. In Random Forest, during learning, the tree nodes are split by creating a random 

feature subset. Each tree is grown by a randomly drawn bootstrap sample, sampling with 

replacement. Random forests also have another source of randomness in them. At each split in a 

tree, the features are also selected at random. In a random forest, the prediction from all trees is 
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combined to give the final prediction. Each tree votes for a class prediction, and the class with 

maximum votes becomes the final answer. Thus, random forest work is an unbiased predictor.  

The random forest also has additional methods of checking prediction. Like other models, 

random forest uses a separate test dataset for testing model performance, but it also comes with an 

out-of-bag prediction feature. When trees, built using bootstrapping during the learning phase, 

some training dataset instances do not include building trees. These excluded observations are 

called out-of-bag samples and used for computing the performance of the built model. According 

to Breiman (2001), the random forest performed better than a single classification tree and other 

machine learning techniques such as support vector machine or neural networks. 

A simple tree grown using the dataset, shown in Figure 1, was visualized to show how an 

instance is divided at each node. The leaf nodes provide the final class prediction. This is a 

simplified version of a tree; the actual random forest tree has a much more complicated structure. 

A random forest grows multiples such trees and selects a class prediction based on majority voting. 

Also, it picks a random set of features to grow each tree. 
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Figure 1. Tree Simple Tree Representation of Dataset 
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The critical advantage of single classification tree methods, such as decision trees, is 

interpreting and visualizing them quickly. However, interpreting and visualizing ensemble-based 

techniques like a random forest is not easy because random features are selected from the feature 

set to grow each tree. Each feature may appear at different positions. This gives random forest an 

advantage in that different features are selected each time a tree is grown and can have a complex 

effect on the tree prediction. Thus, random forest computes the variable's importance to assess 

their importance in generating all trees. This importance is given in the form of Mean Decreasing 

Accuracy, which permutates out-of-box samples to calculate each feature's importance. Variable 

importance is measured by finding the difference between out-of-box prediction error before 

permuting and out-of-box prediction error after permuting averaged over all trees. The figure 

below shows the variable importance after implementing random forest on our dataset 

 

Figure 2. Variable Importance of Leg 1 variables represented in terms of Mean Decrease 

Accuracy and Mean Decrease Gini 

 

All exploratory data analysis, feature engineering, and modeling were performed in R. R's 

randomForest package was used to generate the random forest-based predictors. As mentioned in 

the preceding sub-section, three separate predictors were developed, one each leg. Leg 1 predictor 

had seventeen variables in its feature set, nine variables of the incoming and eight of that from the 
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outgoing legs. The outgoing leg's actual delivery time (o_dlv_e) was dropped from the feature set 

because the dependent variable, violation, was derived. The planned delivery time was kept 

because all the planned transport services are known before starting the shipping process. Two key 

parameters, the number of variables selected at each split (mtree) and the number of trees grown 

(ntree), affect a random forest model's stability. By default, the ntree is set to 500, and mtree is 

taken as the square root of the total number of variables in the feature set, which in our case is 

equal to four.  

A 70/30 split was used to split the dataset into training and test data. 70% of the dataset 

was selected randomly for the training dataset, and the remaining 30% were reserved for the testing 

dataset. The training dataset was used to model a random forest-based predictor using the default 

parameters. Figure 3 below shows the change in each class's error rate and out of box error rate. It 

was observed that the predictor showed its optimum performance ntree = 600 and mtree = 9. The 

predictor showed a classification accuracy of 75% on the test dataset and 77% out-of-box accuracy 

at these parameter settings. 

 

 

Figure 3. Prediction model error-rate vs number of trees plot for Leg 1 predictor (default mtree = 

4, ntree = 500) 
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Similarly, predictors for Leg 2 and Leg 3 were implemented. For both of these predictors, 

mtree was set to 9, and ntree was set to 600. The leg 2 based predictor produced 80% accuracy on 

the test dataset and 77% on the out-of-box data. Leg 3 showed 76% accuracy on the test dataset 

and 77% on the out-of-box dataset. A detailed comparison of accuracy and other performance 

metrics are presented in the next section. The preliminary results provide evidence that random 

forest-based predictor approaches can predict delays in shipment delivery. 

3.5 Gradient Boosting-Based Prediction Method 

Another well-known ensemble-based technique is called boosting. It is considered one of 

the most powerful learning techniques introduced in recent times (Roe et al., 2005). In boosting 

algorithms, incorrectly predicted features or weak classifiers are given extra weight, and voting is 

based on weight to produce the final prediction. In boosting algorithm, a tree model is built from 

the training data. Then a second model is built that tries to correct the classification errors made 

by the first model. This is repeated until the models correctly classify the predicting dataset.  

AdaBoost was one of the first boosting ensemble method proposed by Freund and Schapire 

(1997) to boost decision trees' performance. Boosting refers to a general method of improving the 

performance of any algorithm. In gradient boosting, this technique uses weak classifiers to reduce 

error rather than randomly guessing the outcome. A weak classifier is developed using weighted 

samples from the training dataset, initially having the same weights. The misclassification rate is 

then evaluated, which is then used to calculate the new weights. The next tree is grown on this new 

weighted data. These weak models are then added until a given number of weak models are 

generated. Finally, the weighted average of these weak models is calculated for each instance in 

the test dataset to give the final prediction.  

Chen and Guestrin (2016) introduced XGBoost, which is one of the fastest and scalable 

implementations of gradient tree boosting. This sub-section implements the XGBoost library in R 

on the cargo dataset to predict a delay in shipment delivery. Similar to the random forest 

implementation, three separate predictors were developed for instances with one, two, and three 

incoming legs. The same 70/30 split for the training and testing dataset was used. The random 

forest predictor, 70/30 split for the training and testing dataset, was used here.  

Unlike random forest, which has minimal tuning parameters, XGBoost provides many 

parameters for tuning the model. These parameters are divided into three parts: general parameters, 
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booster parameters, and learning parameters. The general parameters include the type of booster 

(tree, linear, or dart), the verbosity of printing message, and the number of threads. "gbtree" booster 

was used to model our predictor running on a single thread. Table 10 below represents a list of 

general parameters of XGBoost that were used in building our model. 

Table 10. XGBoost General Parameters 

 

 

 

 

 

The second type of parameter controls the boosting method used. Each type of boosting 

method has its boosting parameters. Table 11 details the tree boosting parameters that were used 

in building the models. Gamma represents the minimum loss reduction that is necessary for further 

splitting at the leaf node. A higher gamma value means that the model will be more conservative. 

Eta, or learning rate, represents the step size shrinkage used to prevent overfitting. Max depth 

represents the maximum depth of the grown tree. Subsample allows random sampling of data 

before growing a tree to prevent overfitting.  Lambda and alpha are L2 and L1 regularization terms, 

respectively. The default value for lambda is one, while that of alpha is zero. Increasing the values 

for both of these parameters makes the model more conservative. 

  

booster Type of booster ("gbtree", "gblinear" and "dart") 

verbosity Default = 1 (warning) 

nthread 1 
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Table 11. Tree Booster Parameters for XGBoost 

 

Three predictors were built, one for each one, two, and three incoming leg datasets using 

70% of data to train the models and the remaining 30% to test the model by building a confusion 

matrix. Predictor built for one incoming leg shipment predicted delayed and on-time shipments 

with 75% accuracy. The predictor modeled to predict delays in shipments with two incoming legs 

showed a prediction accuracy of 80%. In comparison, that designed to predict delays in shipments 

with three incoming legs showed a prediction accuracy of 75%. All the predictors were modeled 

with the same tuning parameters for XGBoost. The preliminary results are compared in terms of 

accuracy, but these results are not conclusive. The subsection below introduces the different 

performance models selected and the rationale behind their selection to compare the prediction 

models. The next section will discuss the results obtained from all the predictions and compare the 

models to select the best performing one. The effect of parameters used in tuning the XGBoost 

model and their effect on different performance metrics have also been discussed. 

3.6 Early Prediction Technique 

The second research question for this thesis was to analyze the effect of predicting the 

shipments early on the performance of both the models. To address this, an early prediction 

approach was designed. Subsection 3.6 and 3.7 have detailed the complex structure of a shipping 

process in terms of legs and segments, and also explained the transport service information. This 

gamma 

(min_split_loss) 

Minimum loss reduction required to make a further partition on a 

leaf node 

max_depth Maximum depth of the tree 

Subsample Subsample ratio of the training instances 

eta (learning_rate) Step size shrinkage used to shrink the feature weights 

lambda L2 regularization on weights 

alpha L1 regularization on weights 
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information was leveraged to develop an early prediction technique. To simulate a shipment in 

transit, three early prediction categories were designed. These categroies were used to show the 

start, haly way and near completion of a shipping sprocess. Since all the incoming legs were 

executed in parallel, the feature set of the dataset was divided into two parts: incoming and 

outgoing legs.  

The start category represents a shipment process at the beginning of its journey. The actual 

transport service information may not be available at the start of a shipping process, so these 

features were dropped from the dataset for both the incoming and the outgoing legs. Similarly, 

when a shipment is half way through its journey, only half of actual transport service information 

may be available and when shipment reaches near completion, most of its actual service 

information is available. The dataset based on these early prediction categories were then used in 

training the random forest and gradient boosting-based predictors. Section 4.4 presents the results 

obtained from early prediction technique and discusses the effect of early prediction on the 

performance of the prediction models.   

3.7 Performance Metrics 

A critical factor in selecting the best classification model for a problem is assessing their 

performance. Different methods are used to measure the performance of classification algorithms. 

Most classification models split the dataset into training data, build the classification model, and 

test data to test the prediction model's performance. Our classification process was divided into 

two parts: the training phase and the testing phase. 70/30 split method was used with 70 percent 

of the dataset used for building the model in the training phase, while the remaining 30 percent for 

testing it in the testing phase. Classification outcomes can be either discrete or continuous, 

depending on the prediction model. The discrete classification can be binary, with two outcomes, 

or multi-class, having more than two outcomes. Here the classification output was discrete and 

binary in terms of whether there has been a delay in shipment delivery or not.  

The output was then represented in the form of a 2 X 2 confusion matrix. The confusion 

matrix consists of four elements: True Positive, True Negative, False-Positive, False-Negative. 

The table below shows the possible outcomes as represented in the form of a confusion matrix. 

The actual values represent the number of correctly identified samples, while the false are samples 
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incorrectly identified. This confusion matrix results were used to evaluate the performance in terms 

of scalar matrices like accuracy, recall, specificity, sensitivity, etc. 

Table 12. Confusion Matrix 

 
Actual Class 

Delay = Yes Delay = No 

Predicted Class 

Delay = Yes 
True Positive 

(TP) 

False-Positive 

(FP) 

Delay = No 
False-Negative 

(FN) 

True Negative 

(TN) 

 

Selecting the right performance metrics is crucial in comparing multiple classification 

models. Some of these matrices are sensitive to the issue of an imbalanced dataset. The problem 

of an Imbalanced dataset occurs when the number of one class label outnumber the others. 

Sensitivity, Specificity, Geometric Mean, and Bookmaker Informedness have shown to be 

unbiased towards imbalanced data. However, they only consider the success rate and do not 

consider the error rate (Luque et al., 2019), while Accuracy, Matthews correlation coefficient, and 

markedness have shown little bias towards imbalanced data. Matthews correlation coefficient and 

markedness consider both the success and error rates. Also, metrics such as False-Positive and 

False-Negative Rates, Likelihood Ratio, Youden's Index, and Discriminant Power are not affected 

by imbalance in data (Tharwat, 2020). 
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Table 13. Summary of class distribution of airfreight dataset 

 DELAY DELAY (%) 

 
NO YES NO YES 

One incoming 

leg 932 386 70.71 29.29 

Two incoming 

legs 890 368 70.75 29.25 

Three 

incoming legs 953 413 69.77 30.23 

 

A summary of the class distribution of the cargo dataset is shown in table 5. Approximately 

70% of the data belongs to the class label. No, the represents shipments that are not delayed while 

the remaining 30% belong to the Yes class representing delayed shipments. Since the dataset used 

here has imbalanced class data, the number of instances belonging to the No class outnumber those 

in the Yes class, a mix of performance matrices that are not sensitive to imbalanced class data were 

selected. These include Accuracy, Geometric Mean, Sensitivity, Specificity, False-Positive, and 

False-Negative Rates. Accuracy is the ratio of correctly identifies classes (True Positive and True 

Negative) over the total number of instances. It is one of the most widely used performance 

measures used for classification. Accuracy is given by equation (1) below. Sensitivity is another 

performance metric used here and is the ratio of True Positive over the total number of Positive 

instances. It is also referred to as true-positive rate. 

On the other hand, specificity, also known as the true-negative rate, is the true-negative 

ratio over the total number of negative instances. Equation (2) and (3) represents sensitivity and 

specificity, respectively. Geometric mean measures the balance between the classification 

performance of both classes and uses both sensitivity and specificity. Geometric Mean is 

represented by equation (4). The false-positive rate is the ratio of False-Negative over the total 

number of Negative instances. 
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Similarly, the false-negative rate is the ratio of False-Positive over the total number of 

Positive instances. They represent the portion of instances wrongly classified as negative or 

positive. Equations (5) and (6) represent False-Positive and False-Negative rates, respectively. 

 

ACC =  (TP+TN)/(TP+FP+TN+FN)    (1) 

Sensitivity =  TP/(TP+FN)     (2) 

Specifity =  TN/(TN+FP)     (3) 

Geometric Mean = √(TP/(TP+FN)*TN/(TN+FP))  (4) 

FPR =  FP/(FP+TN)      (5) 

FNR =  FN/(FN+TP)      (6) 
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 RESULT ANALYSIS 

The previous section introduced the air cargo dataset and the two tree-based predictive 

modeling methods that were employed to achieve the research goals. It also presented details of 

the feature engineering approaches applied to the dataset and the performance metrics used to 

compare the prediction models. Two ensemble tree-based classification models were implemented 

to predict a delay in final shipment delivery: random forest, a bagging ensemble model, and 

gradient boosting, a boosting ensemble model. Three predictors, each for one, two, and three 

incoming legs, were modeled for each prediction technique. The dataset was divided into a 70/30 

split, and 70% of the dataset was used in training the models. At the same time, the remaining 30% 

were used for testing. The testing results were used to build a confusion matrix that was then used 

to derive the performance metrics' results. In this section, the empirical results that were obtained 

from two prediction techniques are presented in detail. Furthermore, a comparison is presented 

based on the results of the two models. 

4.1 Results from Random Forest 

Before training the models, the dataset was first divided into three sections to separate 

instances with one, two, and three incoming legs. These three new datasets went through a feature 

engineering process to make them ready for modeling. The table below shows the total number of 

instances and the portions of these datasets that were used for training and testing. 

Table 14. Number of instances in training and testing dataset for each instance 

Number of 

Incoming Legs 
One Two Three 

Total instances 1318 1258 1366 

Training data 922 880 956 

Testing data 396 378 410 
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During the random forest-based predictors training phase, two tuning parameters were set 

mtry = 9 and ntry = 600. The testing data was used to validate the model, and the confusion matrix 

for each predictor was generated. The confusion matrices are shown in Table 15 below. A 

confusion matrix is represented in terms of true-positive (TP), true-negative (TN), false-positive 

(FP), and false-negative (FN). Here no delay or “Delay = No” in shipment delivery is referred to 

as true-positive, and a delay or “Delay = Yes” is referred to as true-negative. All three of the 

predictors show quite similar true-positive and negative values. The confusion matrix itself does 

not give us much information about the models to understand the results better. The six-

performance metrics introduced in Section 5 were derived from the confusion matrices. 

Table 15. Confusion matrix representation of results from random forest-based predictors 

One Incoming Leg  Two Incoming Legs  Three Incoming Legs 

Delay Yes No  Delay Yes No  Delay Yes No 

Yes 46 22  Yes 44 20  Yes 48 22 

No 77 251  No 55 259  No 72 267 

 

Table 16 contains the results from the performance metrics for each of the predictors. 

Overall accuracy (ACC) gives us the ratio of correctly classified samples. The overall accuracy 

(ACC) of above 75% was observed for all three of the predictors. The predictor modeled to predict 

the data with two incoming legs performed better than the rest of the two predictors for all the 

performance metrics. The false-positive rate (FPR) and false-negative rate (FNR), specificity, and 

sensitivity are essential metrics in understanding the performance in terms of correct and incorrect 

identification of positive and negative classes. Two-incoming leg predictors showed the least false-

positive (FPR) and false negative (FPN) rates and higher values of geometric mean, sensitivity, 

and specificity compared to the other two predictors, which means that it performed better than 

the rest in correctly predicting each class.  

However, it was also observed that all the predictors had a false-positive rate under 8%, 

which means that the ratio of instances that belong to class no-delay (No) incorrectly identified as 
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delayed (Yes) was below 8%. The specificity was over 92%; thus, the shipments with no-delays 

were correctly identified 92% of the time. In contrast, the ratio of shipments with a delay 

incorrectly identified as no-delay were wrongly identified almost 55-60% of the time. The 

sensitivity for all three predictors was between 37-44%, which means that almost 37-44% of 

shipments with a delay were correctly classified. These results show that all three of the predictors 

were biased towards correctly predicting a no-delay. 

Table 16. Performance metrics’ results for random forest predictors 

One Incoming Leg  Two Incoming Legs  Three Incoming 

Legs 

ACC 75.0%   ACC 80.2%   ACC 76.8% 

SPC 91.9%   SPC 92.8%   SPC 92.4% 

SEN 37.4%   SEN 44.4%   SEN 39.7% 

GM 58.6%   GM 64.2%   GM 60.5% 

FNR 62.6%   FNR 55.6%   FNR 60.3% 

FPR 8.1%   FPR 7.2%   FPR 7.6% 

 

4.2 Results from Gradient Boosting 

The XGBoost package in R was used to build predictors for the gradient boosting. The 

results obtained from these predictors are as following. The same dataset, shown in Table 14, was 

to train and test these models for the random forest. XGBoost allows a lot of more tuning 

parameters than random forest. “gbtree” booster parameter was used to model the gradient 

boosting-based predictors. A complete list of all the parameters used  were presented in Table 10 

and Table 11. The results obtained from test data validation are represented in the form of 

confusion metrics in Table 17 below. The true-positive and true-negative distributions are almost 

similar to those observed for the random forest-based predictors. 
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Table 17. Confusion matrix representation of results from XGBoost-based predictors 

One Incoming Leg  Two Incoming Legs  Three Incoming Legs 

Delay Yes No  Delay Yes No  Delay Yes No 

Yes 38 20  Yes 47 24  Yes 52 35 

No 79 259  No 52 255  No 69 254 

 

The results from the performance metrics for each of the predictors are presented in Table 

18. Quite similar to the results from random forest-based predictors, the overall accuracy (ACC) 

was observed to be between 75-80% for all three predictors. Again, the two-incoming leg predictor 

outperformed the rest for all the performance metrics. The false-negative rates for two-incoming 

legs and three-incoming legs predictors were 52.5% and 57%, respectively. The highest false-

negative rate was observed for the one-incoming leg, 67.5%, much higher than the rest of the two. 

However, the one-incoming leg predictor showed the least false-positive rate of 7% compared to 

the rest that showed 8% and 12%. The specificity was observed between 88-93%, while the 

sensitivity was between 32-47%. The results from the performance metrics showed similar trends 

to that of the random forest. 

Table 18. Performance metrics’ results for XGBoost-based predictors 

One Incoming Leg  Two Incoming Legs  Three Incoming Legs 

ACC 75.0%  ACC 79.9%  AC

C 
74.6% 

SPC 92.8%  SPC 91.4%  SPC 87.9% 

SEN 32.5%  SEN 47.5%  SEN 43.0% 

GM 54.9%  GM 65.9%  GM 61.5% 

FNR 67.5%  FNR 52.5%  FNR 57.0% 

FPR 7.2%  FPR 8.6%  FPR 12.1% 
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4.3 Comparison Between Results of Prediction Models 

We have seen how the predictors individually performed in classifying delayed shipments 

from those that were not delayed. In this subsection, a comparison of both the predictors is 

presented for each of the different numbers of incoming legs. Table 19 contains the results of 

performance metrics for one-incoming leg predictors. The overall accuracy is the same for both 

predictors. Random forest-based predictor performed better in predicting delays as shown by 

higher sensitivity and lower false-negative rate than the XGBoost-based predictor. The XGBoost 

had higher specificity and a lower false-positive rate, which means it performed better in predicting 

the no-delay shipments.   

Table 19. Comparison of one-incoming leg predictors 

 One Incoming Leg Predictor 

 ACC SPC SEN GM FNR FPR 

Random 

Forest 
75% 92% 37% 59% 63% 8% 

XGBoost 75% 93% 32% 55% 68% 7% 

 

Table 20 presents the comparison of both the predictors designed for shipments with two-

incoming legs. Again, both the predictors had the same overall prediction accuracy, but the random 

forest had higher sensitivity and lower false-negative rate. XGBoost performed better in predicting 

delayed shipments, as evident by higher specificity and lower false-positive rate. 

Comparing the predictors' prediction results for the three-incoming legs dataset, it was 

observed that the random forest-based predictor had better accuracy and specificity than the 

XGBoost-based predictor. However, the XGBoost-based predictor performed slightly better in 

classifying delayed shipments as represented by the higher specificity value. Both the predictors 

had the same geometric means. 
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Table 20. Comparison of two-incoming legs predictors   

Two Incoming Legs Predictor 

 ACC SPC SEN GM FNR FPR 

Random 

Forest 
80% 93% 44% 64% 56% 7% 

XGBoost 80% 91% 47% 66% 53% 9% 

 

Table 21. Comparison of three-incoming legs predictors 

Three Incoming Legs Predictor 

 ACC SPC SEN GM FNR FPR 

Random 

Forest 
77% 92% 40% 61% 60% 8% 

XGBoost 75% 88% 43% 61% 57% 12% 

 

4.4 Early Prediction of Delays  

The results above provide compelling evidence that the proposed prediction models could 

predict with over 75% accuracy. RQ2: How accurately can a delay be predicted while in transit to 

address the second research question? Both the prediction models were trained with reduced 

features. The actual incoming and outgoing legs’ checkpoint features were removed to mimic the 

limited checkpoint data available while in transit. The resulting datasets were then used in training 

random forest- and XGBoost-based predictors. To show the effect of early prediction on the 

predictors’ performance, three early prediction categories were developed, each with different 

features. Since all the incoming legs are executed in parallel, the data was divided into incoming 
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and outgoing legs. Table 22 represents the feature set in these three categories: near-completion, 

half-way, and the start of a shipment journey 

Table 22. Features of incoming and outgoing legs are included in the feature set for each 

category. 

 Incoming Legs Outgoing Legs 

Near-completion All planned and actual 

checkpoints 

All planned and actual 

checkpoints except actual 

delivery time (o_dlv_e) 

Half-way All planned and actual 

checkpoints 

All planned checkpoints only 

Start All planned checkpoints only All planned checkpoints only 

 

It was observed that the prediction performance for the random forest-based predictor was 

not affected much by reducing the feature set. The change in accuracy remained with-in 2%. It 

was interesting to see that, for one- and two- incoming leg predictors, specificity increased by 

reducing the number of features. These results show that the random forest-based predictors can 

be used for early prediction without compromising on performance. The results of these predictors 

are presented in Table 23. 

XGBoost-based predictors showed similar trends in performance results as the random 

forest-based predictors. The overall accuracy did not change much by reducing the number of 

features. One- and two-incoming leg predictors showed a decrease in Sensitivity and an increase 

in specificity. The overall performance did not show much change. 
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Table 23. Prediction performance for different categories for the random forest-based predictor 

ONE-INCOMING LEG 

 ACC SPC SEN GM FNR FPR 

NEAR-

COMPLETION 
75% 92% 37% 59% 63% 8% 

HALF-WAY 77.8% 91.3% 46.7% 65.3% 53.3% 8.7% 

START 76.3% 91.8% 32.0% 54.2% 68.0% 8.2% 

 

TWO-INCOMING LEGS 
 ACC SPC SEN GM FNR FPR 

NEAR-

COMPLETION 
80% 93% 44% 64% 56% 7% 

HALF-WAY 77.2% 89.2% 48.2% 65.6% 51.8% 10.8% 

START 79.1% 90.3% 51.8% 68.4% 48.2% 9.7% 

 

THREE-INCOMING LEGS 
 ACC SPC SEN GM FNR FPR 

NEAR-

COMPLETION 
77% 92% 40% 61% 60% 8% 

HALF-WAY 76.3% 95.7% 34.6% 57.6% 65.4% 4.3% 

START 77.3% 95.4% 38.5% 60.6% 61.5% 4.6% 
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Table 24. Prediction performance for different categories for the XGBoost-based predictor 

ONE-INCOMING LEG 

 ACC SPC SEN GM FNR FPR 

NEAR-

COMPLETION 
75% 93% 32% 55% 68% 7% 

HALF-WAY 76.5% 90.2% 45.0% 63.7% 55.0% 9.8% 

START 74.2% 89.1% 32.0% 53.4% 68.0% 10.9% 

 

TWO-INCOMING LEGS 

 ACC SPC SEN GM FNR FPR 

NEAR-

COMPLETION 
80% 91% 47% 66% 53% 9% 

HALF-WAY 77.2% 88.1% 50.9% 67.0% 49.1% 11.9% 

START 77.0% 87.7% 50.9% 66.8% 49.1% 12.3% 

 

THREE-INCOMING LEGS 

 ACC SPC SEN GM FNR FPR 

NEAR-

COMPLETION 
75% 88% 43% 61% 57% 12% 

HALF-WAY 72.4% 91.1% 32.3% 54.2% 67.7% 8.9% 

START 76.3% 93.6% 39.2% 60.6% 60.8% 6.4% 
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 CONCLUSION AND FUTURE WORK 

This research demonstrated the implementation of a predictive analytics-based approach 

to improve business processes. After examining the literature and thoroughly exploring the topic, 

it became evident that there was a need for new methods for applying predictive analytics in 

complex business processes such as logistics. The main challenges stemmed from developing a 

prediction technique revolved around the complex nature of the business process's events. The first 

research question was proposed to overcome this challenge. To address the second research 

question, an early prediction technique was developed. 

RQ1: How can the complex nature of airfreight shipment be modeled for predicting delays? 

Solution:  A data transformation technique was proposed that simplified the shipping 

process's complex structure to prepare it for predictive modeling. The proposed technique divided 

the data based on the number of incoming legs: one, two, and three. Furthermore, the shipping 

process's serial structure of segments was leveraged to combine the segment data to overcome each 

leg's different number of segments. The result was three datasets each for different legs with no 

missing information and a simplified process structure. Two predictive modeling techniques were 

developed based on random forest and XGBoost using these datasets. 

Additionally, six performance metrics were derived from the prediction results. It was 

observed that for all the prediction models, accuracy was between 75-80%, specificity was 

between 88-90%, sensitivity was between 32-47%, and geometric mean was between 55-66%. 

While the predictors performed very well in predicting no delays, they did not do very well in 

predicting delayed shipments, as evident by lower sensitivity score. However, these results 

provided compelling evidence that the proposed techniques could be used for predicting delays in 

a complex business process.  

RQ 2:  Will the performance of prediction models decrease if the process violations were 

predicted early? 

Solution: Each shipment has planned and actual checkpoint information. The planned 

information is available before the start of the shipping process. The actual checkpoint information 

becomes available on completion of that checkpoint while the shipment is in transit. Three 

categories of datasets were derived to simulate shipments in transit: near completion, half-way, 

and the start of a shipment journey. The near completion category represented shipments that have 
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completed the entire journey but have not yet been delivered. The second category represented 

shipments that were halfway through the journey; that is, they had completed their incoming leg 

journey. The last category represented shipments at the start of the journey process. Each 

category's dataset was used to model predictors, and their performance measured using the six 

metrics. The expectation was that the near completion category would show the best performance; 

however, the results showed this was not the case. Some predictors showed a slight decrease in 

performance, but others showed improved performance. This proves that early prediction is 

possible without compromising prediction accuracy.       

Two tree-based algorithms were used to predict the delays in the shipment process. The 

predictors performed reasonably well in identifying shipments that did not have a delay, as shown 

by high specificity rates. However, they did not perform very well in identifying delayed shipments, 

as shown by the low sensitivity rate. This was due to the imbalance in the dataset, which had more 

than double the number of shipments with no delay than those that did. This has turned out to be 

a limiting factor for the prediction methods used here, but it also serves as an opportunity for future 

improvements. The prediction models were trained on shipment’s transport service data. This was 

another limitation of the dataset since it does not give us any information about the potential cause 

of delay. This limitation could be overcome if information of external souces of delay, such as 

temperature, weather conditions, etc., were available.  

A new combined prediction model could be designed that could complement the existing 

model’s performance to improve their sensitivity. The early prediction technique could be 

extended to include a prescriptive approach by designing an intelligent decision-making model to 

prescribe actions based on the prediction outcome. This prescriptive analytical approach can be 

beneficial for companies that rely heavily on logistics.  

The algorithms implemented here have found their application in various fields such as 

technology and healthcare. This research presented their application in a complex business setting. 

The results provide evidence that their application in other logistics industry fields, such as rail 

and road, is also possible.   
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