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ABSTRACT

Ransegnola, Thomas Ph.D., Purdue University, December 2020. A Strongly Coupled
Simulation Model of Positive Displacement Machines for Design and Optimization.
Major Professor: Andrea Vacca, School of Mechanical Engineering.

Positive displacement machines are used in a wide variety of applications, ranging

from fluid power where they act as a transmission of power, to lubrication and fluid

transport. As the core of the fluid system responsible for mechanical–hydraulic energy

conversion, the efficiencies of these units are a major driver of the total efficiency of

the system. Furthermore, the durability of these units is a strong decider in the useful

life of the system in which they operate.

The key challenge in designing these units comes from understanding their work-

ing principles and designing their lubricating interfaces, which must simultaneously

perform a load carrying and sealing function as the unit operates. While most of the

physical phenomena relevant to these machines have been studied previously in some

capacity, the significance of their mutual interactions has not. For this reason, the

importance of these mutual interactions is a fundamental question in these machines

that this thesis answers for the first time. In analysis of two different machine types,

it is confirmed that mutual interactions of both physical phenomena and neighboring

fluid domains of the unit contribute significantly to the overall performance of the

machine. Namely, these analyses demonstrate load sharing owing to mutual interac-

tions on average of 20% and as high as 50%, and mutual flow interactions of at least

10%.

In this thesis, the behavior of the thin films of fluid in the lubricating interfaces

of the units, the bodies that make up these films, and the volumes which interface

with them will be considered. The resulting coupled problem requires a model that

can consider the effects of motion of all floating bodies on all films and volumes, and
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collect the resulting loads applied by the fluid as it responds. This will require a

novel 6 degree of freedom dynamics model including the inertia of the bodies and the

transient pressure and shear loads of all interfaces of the body and the fluid domain.

During operation, fluid cavitation and aeration can occur in both the displacement

chambers of the machine and its lubricating interfaces. To capture this, a novel

cavitation algorithm is developed in this thesis, which considers the release of bubbles

due to both gas trapped within the fluid and vaporization of the operating fluid in

localized low pressure regions of the films. In the absence of cavitation, this model

will also be used to find the pressures and flows over the film, communicating this

information with the remainder of the fluid domain.

Due to the high pressures that form in these units, the bodies deform. The result-

ing deformation changes the shape of the films and therefore its pressure distribution.

This coupled effect will be captured in one of two ways, the first relying on existing

geometric information of the unit, and the other using a novel analytical approach

that is developed to avoid this necessity. In either case, the added damping due to the

shear of the materials will be considered for the first time. Additionally in regions of

low gap height, mixed lubrication occurs and the effects of the surface asperities of the

floating bodies cannot be neglected. Accurate modeling of this condition is necessary

to predict wear that leads to failure in these units. This work will then develop a

novel implementation for mixed lubrication modeling that is directly integrated into

the cavitation modeling approach.

Finally, effort is made to maintain a generic tools, such that the model can be

applied to any positive displacement machine. This thesis will present the first toolbox

of its kind, which accounts for all the mentioned aspects in such a way that they can be

captured for any machine. Using both multithreaded and sequential implementations,

the tool will be capable of fully utilizing a machine on which it is run for both low

latency (design) and high throughput (optimization) applications respectively. In

order to make these applications feasible, the various modules of the tool will be

strongly coupled using asynchronous time stepping. This approach is made possible
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with the development of a novel impedance tensor of the mixed universal Reynolds

equation, and shows marked improvements in simulation time by requiring at most

50% of the simulation time of existing approaches.

In the present thesis, the developed tool will be validated using experimental data

collected from 3 fundamentally different machines. Individual advancements of the

tool will also be verified in isolation with comparison to the state of the art and

commercial software in the relevant fields. As a demonstration of the use of the tool

for design, detailed analysis of the displacing actions and lubricating interfaces of

these same units will be performed. These validations demonstrate the ability of the

tool to predict machine efficiencies with error averaging around 1% over all operating

conditions for multiple machine types, and capture transient behavior of the units. To

demonstrate the utility as a virtual optimization tool, design of a complete external

gear machine design will be performed. This demonstration will start from only

analytical parameters, and will track a route to a complete prototype.
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1. INTRODUCTION

Hydraulic pumps are typically positive displacement (PD) machines that are the key

elements for a wide range of engineering applications. In fluid power (FP) systems,

these units are used for the transmission of mechanical energy through the use of

pressurized fluid, and are commonly used in aerospace (e.g. flight control, landing

gears), off-highway (e.g. agricultural, construction equipment), industrial equipment,

and automotive braking and transmission applications. They are also used in auto-

motive and aerospace applications for fuel injection and lubrication, and for injection

molding and fluid transport in the chemical and food industries. In some applica-

tion, such as FP, they are used because their power density surpasses that of other

solutions. For others, they are the only possibility.

1.1 Working Principle

In order to model these machines, it is important to understand their operating

principles, especially when attempting to generalize their behavior. Considering this,

the simplest form of positive displacement is first examined in Figure 1.1.

Unlike hydrodynamic pumps, which transmit energy via fluid inertia, hydrostatic

pumps transmit energy via pressurized flow. Regardless of the machine type, its gen-

eral function (for machines with finite displacement chambers) is to realize a cyclic

contraction and expansion of fluid volumes within the unit. By connecting these

volumes to the delivery and suction ports during contraction and expansion respec-

tively, positive displacement is achieve regardless of fluid resistance to the resulting

flow. In practice, though, this form of machine is not feasible. In this thesis, two

common types of PD machines will be taken as example, both achieving the same

underlying functionality via different geometric means. First in Section 1.1.1, the
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𝑥

Displacement Chamber

Figure 1.1. Simplified demonstration of positive displacement against a
pressure load

axial piston machine will be introduced. Then in Section 1.1.2, the external gear

machine is introduced.

As an inevitability of their working principle, PD machines have components

in relative motion to one-another. In order to maintain efficient performance as

pressure is increased, the clearances between these moving components is typically

kept small (∼1-50 µm) to avoid excessive leakage flow. Embracing this, machine

designers typically allow a controlled amount of flow through these gaps, using the

operating pressure as well as the geometry of the film to build a reaction force which

carries the loads on the floating bodies as they shift within these clearances (micro-

motion). Even in the absence of relative motion, manufacturing constraints may

require the separation of components, presenting a leakage path from high to low

pressure. The implication of either is the introduction of thin films of fluid, the

modeling of which is a key challenge for these units.
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1.1.1 Axial Piston Machines

The axial piston machine (APM) extends the premise of Figure 1.1 by using a

series of reciprocating pistons in parallel, phase offset with respect to each other so

as to provide a more continuous flow. One of the most common types of APM is the

swash-plate type unit shown in Figure 1.2. Input power is taken in the form of a drive

shaft, rotating the cylinder block. This in turn carries the pistons over an inclined

swash plate to realize a reciprocating motion with respect to the bore. During the

suction and delivery strokes, the valve plate directs flow into and out of the fluid

volumes (trapped within the bore and the piston) to the inlet and outlet respectively.

A detailed analysis of the functioning of these units is available in [1].

Performance of these units is dominated by their three main lubricating interfaces.

These interfaces are demonstrated in Figure 1.3, along with the terminology used

throughout this work for the various components of the machine. First, the slipper-

swashplate interface maintains a finite fluid film by lifting the slipper away from the

swashplate aided by a hydrostatic pocket of fluid. In doing so, this interface forces the

piston to follow the sinusoidal path caused by the inclined swashplate. Due to this

inclination, though, a net force exists that is orthogonal to the axis of the machine

which must be carried by the piston-cylinder interface. In turn, the piston-cylinder

interface transmits this forces to the bore in which it sits. This force is offset from

the central axis of the cylinder block, and leads to a net opposing torque that must

be provided by the prime mover of the machine. Finally, the displacement chambers

of the machine must be carefully connected to the outlet and inlet porting volume of

the unit at the appropriate angular regions to realize the displacing flow. As a result,

a third interface forms between the rotating cylinder block and the stationary valve

plate used to direct this flow. Due to the planar tilting moment of the cylinder block,

an inclination in this interface is possible, leading to a pressure distribution in this

interface to prevent contact.
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Figure 1.2. Components of a typical axial piston machine (Ref P1) during
pumping
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Figure 1.3. Components of an Axial Piston Machine of Swashplate Type
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1.1.2 External Gear Machines

Unlike the axial piston machine, the displacing action of an external gear machine

cannot be directly related to the simplified machine presented in Figure 1.1. All the

same, though, the unit delivers fluid by realizing a reduction of volume on the delivery

side, followed by an expansion of volume on the suction side. In the case of the external

gear machine (EGM), this is accomplished by a pair of meshing gears. By connecting

the region of meshing where the net volume decreases and increases to the delivery

and suction sides respectively, positive displacement is achieved. In these units, the

major challenges come from the design of the gears and associated relief grooves to

direct the flow, as well as the bearing and lateral balancing lubricating interfaces.

Similar to the APM, these interfaces isolate regions of high and low pressure and

carry internal forces due to the pressure imbalance. Similar to the APM, a detailed

analysis of the working of these units is available in [1].

An important design decision for these units is the choice of lateral sealing. For

low pressure applications, which make up the majority of the EGM market, lateral

compensation is not used. In these designs, the sealing between adjacent volumes of

the machine is controlled by the clearances of the gear and pump body depth. Unlike

the strategy demonstrated in Figure 1.1, the relief grooves are machined directly into

the end cover and body of the unit, and no lateral compensation element is present

(i.e. no lateral plate).

For high pressure applications, though, this clearance is not sufficient and a float-

ing element must be used to maintain adequate sealing, typically coming in two forms.

First in Figure 1.4 a lateral compensating plate is used. By connecting a controlled

portion of the balance side of this plate to high and low pressure, a force proportional

to operating pressure is applied to the plate. By offsetting the center of pressure on

the balance side, a tilt of the plate can also be induced. In the lateral lubricating

interface between the gears and this plate, a film pressure forms to respond to this



7

𝑄𝑜𝑢𝑡𝑙𝑒𝑡

𝑄𝑖𝑛𝑙𝑒𝑡
Drive Gear

Driven Gear

Needle Bearing

Drain

LP Relief

LP Balance

HP Balance

Lateral Plate

𝜔𝑑𝑟𝑖𝑣𝑒𝑛

𝜔𝑑𝑟𝑖𝑣𝑒

HS Groove

Pump body

End Cover
HP Relief

Casing

Figure 1.4. Exploded view of a typical pressure compensated external
gear machine (Ref E3) during pumping

Driven Gear
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Drive Gear
Drain

HP Relief

Figure 1.5. Alternate form of pressure compensation in external gear
machines using bearing blocks

offset force, balancing the element in a quasi-steady equilibrium. To balance radial

loads in these units, bearings are placed in the pump body and end-cover.
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Figure 1.6. Lubricating interfaces of EGM

The alternative solution is to use a bearing block, demonstrated in Figure 1.5.

These blocks performs the same lateral sealing functions as the lateral plates, but

with a significantly larger depth so that the bearings can be housed in the same

component. The benefit of this approach is that it decouples the radial location of

the gears from the pump body, insofar as the bearing block clearance will allow.

In either balance configuration, the type of bearing used is another important

design choice. Demonstrated in Figure 1.5, journal bearings are most common, pro-

viding ‘infinite’ life when well designed and capable of carrying large radial loads.

However for challenging demands on the units, such as low speed applications, de-

signers may elect for rolling contact bearings such as the needle bearings shown in

Figure 1.4.

Figure 1.6 displays the main lubricating interfaces of a pressure compensated

EGM. These interfaces perform a load carrying function in the unit, and for this reason

they represent a large source of mechanical loss. Specifically, the lateral lubricating

interface must cary axial loading of the floating element (regardless of the balance

strategy employed) in order to main adequate sealing. Due to the differing pressure

distribution over the gears, a net radial force is applied. This force must be carried by

the radial bearings. From this figure, it is clear that the micro-motions of the bodies
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creates an interaction between the lateral interface and the journal bearing interface,

which cannot be captured by solving the two interfaces in isolation.

1.1.3 Reference Machines

In the present thesis, a total of 5 reference units are taken. These units, named in

Table 1.1, correspond to 3 different working principles. Within the category of EGM,

two different compensation strategies to maintain adequate sealing are explored, with

varying applications.

Table 1.1.
Reference units selected for modelling in this work, with names used to
reference them throughout the thesis

Name Type Applications Lubricating Gap Features

Ref E1 EGP
Medium-high

pressure pump

Lateral compensation

with bearing blocks,

Journal Bearings

Ref E2 EGM
Medium-high

pressure pump/motor

Lateral compensation

with bearing blocks,

Journal Bearings

Ref E3 EGM
Electro-Hydraulic

Actuator pump/motor

Lateral compensation

with lateral plates,

Needle Bearings

Ref G1 Gerotor Automotive pump
No lateral compensation,

Journal Bearings

Ref P1
Swashplate

type APM

High pressure mobile

hydraulic pump/motor

Standard Piston-Cylinder,

Hydrostatic Slipper-Swashplate,

Hydrostatic Block-Valveplate
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1.2 Motivations

As the main source of mechanical–hydraulic energy conversion of fluid systems, PD

machines play an important role in a wide variety of engineering applications. A 2012

study [2] found that while a properly designed hydraulic unit performs at greater than

90% efficiency, poorly designed units can have efficiencies less than 50%. Furthermore,

the inevitability of floating components in relative motion separated by only thin

films of fluid presents difficulty in designing robust units. A fundamental challenge

for improving both the efficiency and robustness of most PD machines comes from the

designing of these lubricating interfaces. Because of the complexity in modeling the

interfaces, they are commonly modeled using approximations or empirical relations to

support an iterative prototype-test-adjust design procedure. The implication of this

is manufacturers requiring lead-times on the order of years to generate functioning

designs. A motivation of this work, then, is the need to provide rapid high-fidelity

performance feedback to designers of these machines, so that they can achieve better

functioning units (with respect to efficiency and robustness) within more reasonable

prototyping timelines.

As the market for PD machines evolves, manufacturers must adjust to unforeseen

system requirements by exploring novel designs. This means that the insight gained

by prototype-test-adjust procedures of existing designs cannot be directly applied,

and manufacturers require modeling tools to investigate these novelties. The nature

of the current modeling approaches for PD machines, especially as pertains to their

lubricating interfaces, are rigid in their applicability to novel geometries. The inability

to explore novel designs that this introduces is a key inhibitor in the advancement

of PD machines. For this reason, another motivation of this work is the need for

more freedom for designers to apply high fidelity, validated models to novel machine

designs.

Even with a model in hand, its usefulness is strongly limited by the scope of its

use. More specifically, many of the existing high fidelity tools available to design-
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ers require long simulation times and heavy pre- and post-processing steps. These

constraints restrict, if not preclude, their use in virtual prototyping applications.

The final motivation for this work, then, is the high simulation times and heavy the

human-in-the-loop interactions of existing PD models. If these points are addressed,

simulation-based design can feasibly be integrated into the optimization and proto-

typing workflows of PD manufacturers.

1.3 State of the Art

While the operating principle of PD machines is straightforward, it is clear from

the state of the art that their modeling is not trivial. A detailed review of the state

of the art in gear-type PD machines was performed by Rundo [3], but can be roughly

split into the three basic approaches introduced here.

First, ongoing effort has focused on studying the kinematic behavior of these

machines. In [4] Manring and Kasaragadda derived an analytical equation for the

kinematic flow ripple of symmetric spur external gear pump (EGP). In [5] Zhao and

Vacca performed a similar analysis, including both symmetric and asymmetric spur

gears, which was extended in [6] to include the effect of helix angle. Other works

have derived similar techniques to investigate novel non-involute gear profiles [7, 8].

It is also possible to broaden the applicability of these kinematic models, as is done

by Manring [4], by modify the perfect porting assumption so as to better predict the

nominal flow behavior of the machine. In [1], Ivantysyn and Ivantysynova perform

kinematic analyses on many types of PD machines available including both gear type

and piston type machines. A detailed understanding of the kinematics of a unit can

allow for informed modification of their nature. For example in works such as Edge [9],

the kinematics of an APM were modified with a cam and piston-follower in such a

way as to reduce the pressure ripple of the unit. While these studies are helping in

understanding the working principle of a unit, they restrict study to a perfect fluid,

and cannot capture the effects of operation with compressible and viscous fluids.
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Furthermore, they neglect the effects of leakages through the clearances of the unit

and any micro-motion of the bodies within the unit.

With recent advances in the computational power of desktop computers, direct

application of the Navier-Stokes equations over the entire fluid domain of the machine

using computational fluid dynamics (CFD) approaches has become possible. Many

works have used this approach to capture the local pressurization and flow behavior,

with most of the recent CFD analyses of PD machines using the simulation tool

Simerics MP+ (formerly PumpLinx) discussed in detail by Ding et al. [10]. Of these

works, Frosina et al. [11] and Heisler et al. [12] used CFD approaches to study the flow

and pressure behaviors of high pressure spur and helical EGPs respectively. Similar

approaches have been applied to gerotors [13] and APMs [14], showing the ability

of these tools to capture flow in complex geometries and harsh operating conditions.

In Zhao et al. [15] Simerics MP+ was used to compare the results of a CFD and

lumped parameter modeling approach for a continuous contact helical EGP, providing

a useful validation approach for assessing model simplification. In general, these tools

are powerful for gaining detailed insight into the operation of a unit, with works such

as [16] using CFD to offer design improvements. CFD approaches also allow for the

exploration of novel designs, such as the macroscopic surface structures studied by

Kumar et al. [17]. Finally, they can be used to precisely study important details

of the machine behavior such as the turbulent flow through constrictions (such as

tooth tip geometry) in Castilla et al [18], non-standard tooth geometry in Riemslagh

et al. [19], and the variation of multi-phase performance with operating condition in

Mithun et al. [20].

With these tools, though, this insight comes at large computational expense. In

order to mitigate this cost, simplifications are often employed including fixing degrees

of freedom of the floating bodies. The accuracy of these tools, then, rely on estimation

of the position of the gears and balancing elements. Additionally, these tools are

subject to numerical restrictions on the discretization, such as the necessity for a
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continuous fluid domain. Often, they also cannot support a fine enough mesh to

capture multi-physical effects such as fluid-structure interaction of the bodies.

In response to this, the third approach begins by forming control volumes within

the machine. In this lumped parameter approach, interconnected discrete control

volumes, with constant properties throughout, are selected so as to capture pres-

sure variation within the unit without the computational expense of CFD analysis.

Foster [21] demonstrated that the analytical lumped parameter assumption retained

agreement with experiment. Similar works by Eaton et al. [22] and Manco’ and

Nervegna [23] further justify the applicability if this assumption. Similar tools have

been developed for APMs, such as Corvaglia and Rundo [24] and show similar agree-

ment with CFD simulation of the same unit. These tools allow for great opportunities

for optimization and design of these machines, such as porting optimization [25, 26]

and pressure ripple reduction [27,28]. Works such as Casoli et al. [29] show how these

tools can be extended to model complex flow-physics such as the multi-phase condi-

tions that can exist in these units. Still, though, these approaches cannot resolved

the detailed behavior of the lubricating interfaces, which are typically approximated

analytically [30,31]. In forming these models, though, similar assumptions to that of

CFD approaches are taken including fixing degrees of freedom of the bodies and us-

ing only approximate models of the lubricating interfaces. As a result, they typically

require tuning of model parameters from CFD.

With the computational expense spared by this lumped assumption, these tools

are capable of accounting for micro-motion of the unit. Works by Borghi et al. [32] and

Battarra and Mucchi [33] improve model agreement between the lumped parameter

assumption and experiment for both spur and helical EGMs when this micro-motion

is considered. Similar tools [34, 35] show the necessity of capturing micro-motion

in APMs. Though approximation, these models can attain highly detailed dynamic

simulations of the micro-motions of the bodies subject to their film simplifications.

This thesis draws on the simulation model HYGESim, previously developed by

Vacca and Guidetti [36]. The work is based on a lumped parameter assumption,
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which allows for rapid study of the instantaneous pressurization and main flow char-

acteristics of an EGM. By balancing the computational load, the model is capable

of considering these pressures to find the resulting micro-motion of the gears as they

shift within the bearings. This shifting, found using Booker’s mobility method [37]

for journal bearings, is then used to capture the resulting change in flow and pressur-

ization behavior. This model was initially developed for spur gears, but was adapted

to capture the helix angle of a helical EGP in [38]. This thesis will be supported both

by the parametric gear generator module of HYGESim [5], as well as the numerical

geometric module for discretizing the gear pump control volumes [15]. In [39], Zhao

and Vacca extended the lumped parameter and geometric modules to apply to con-

tinuous contact helical gears, with validation against detailed CFD simulations of the

unit. The HYGESim tool was extended to account for the manufacturering errors

present in EGMs in Rituraj et al. [40, 41]. The same authors accounted also for the

thermal modelling of these units in [42].

While these models provide unique insight into the shifting of the gears of the

unit, the use of lumped parameter models alone cannot capture the fine details of

the behavior of these machines. Moreover, each of the works mentioned above derive

a model for a single machine, with assumptions and flow simplifications specific to

that unit. As a standalone tool, then, the scope of their use is limited. The accuracy

of the lumped parameter model can be extended, though, by coupling its solution

to more detailed distributed parameter models. These tools rely on lumped param-

eter models for the lumped volumes, and use their results as a boundary condition

for more detailed study of the lubricating interfaces of the machine modeling us-

ing Reynolds equation. For external gear machines, such a model was developed by

Dhar and Vacca [43], based on the output of [36] as a boundary condition to model

the fluid-structure interaction within the lateral lubricating interfaces of an EGM.

In [44], Dhar and Vacca extended this tool to further consider the change in temper-

ature of the interface and its associated thermal deformations. In [45], Thiagarajan

and Vacca showed that, through the use of this simulation model and the similar
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distributed parameter tool developed by Pellegri and Vacca [46] for modeling of the

journal bearings of EGMs, the accurate prediction of mechanical efficiency in EGMs

could be achieved. In [47], Wieczorek and Ivantysnova developed the simulation tool

CASPAR, providing the ability to study each interface of the APM including micro-

motion of fluid-structure-thermal interactions. Pelosi and Ivantysynova [48] developed

a model for fluid-structure interaction in the piston–cylinder interface. In [49], the

same authors extended the tool to model the effects of heat transfer and associated

thermal deformation in the film. In [50], they also investigated the implications of

various constraints for the fluid-structure interaction problem.

Similar tools have also been developed by Schenk and Ivantysynova [51] and Zec-

chi and Ivantysynova [52] for the slipper–swashplate and cylinder block–valve plate

interfaces respectively. Pellegri and Vacca [46] showed agreement with experimental

results when modeling the the axial gap of a gerotor. These works demonstrate the

ability of the coupled lumped-distributed parameter modelling approach to provide

insight and capture complex multi-physical phenomena of a wide variety of machines

that cannot be captured by other means. The limitation is that all these works de-

veloped standalone models of a single interface. This means that modeling between

both the lumped fluid domain and the other gaps of the machine can only be weakly

coupled, with information available only after simulation and not during. While the

film flow–pressure relationship can be captured by co-simulation, the effects of shear

and pressure forces from the films cannot be integrated into the net loading of the

bodies considered in the lumped simulation leading to an incomplete force balance.

Since these models take mobility approaches to balance the forces, the intertia of

the bodies is also neglected. Additionally, these standalone models cannot be easily

adapted to model a new geometry. Finally, they neglect the interplay of the various

gaps of the units, whose behavior impacts all associated floating bodies and therefore

all other films that interface with it.

In [53], Thiagarajan and Vacca modeled the impact of surface asperities on the flow

and load sharing of the lateral lubricating interfaces of EGMs. In [54], Thiagarajan
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et al. demonstrated the ability of the same tool to capture the behavior of low

viscocity working fluids, with experimental validation for an aerospace fuel pump. A

similar study was performed by Morgridge et al. [55], considering the effects of elasto-

hydrodynamic lubrication at the interface of a single tooth with the lateral lubricating

interface of an EGM. Mixed lubrication and cavitation modeling is also available in

axial piston machines, including mixed lubrication by Fang and Shirakashi [56] in

the piston-cylinder interface as well as Elrod cavitation in Hashemi et al. [57] in

slipper-swashplate interface. Shang and Ivantysynova [58] used the insights provided

by these models to develop a procedure for scaling of APMs considering the impact

on the these lubricating interfaces. Ivantysyn et al. [59] showed the ability of these

tools to predict the resulting wear of the slipper-swashplate interface of an APM.

Similar to the CFD approaches, then, these tools can be used to answer fundamental

questions in the understanding of these machines. Again, though, these studies are

limited to the single films for which they are applied, and cannot be generalized to

gain insight on the impact of a complete unit.

While some works have examined the nature of the piston-slipper assembly to spin

within the cylinder bore [60], this aspect of the units presents challenge in modeling.

First, it requires the ability model coupled interactions of the piston-cylinder and

slipper-swashplate interfaces, which was demonstrated above to be a weak point in

the existing approaches. Additionally, it requires detailed modeling of the ball-socket

interface between the two. In [61], Faraz at all examined stress distribution in a spher-

ical joint by imposing mechanical equilibrium on the bodies which was then related to

the friction of the body via Couloumb friction. Kang [62] performed a similar analysis

of a spherical joint under dynamic loading, relating a Hertzian pressure distribution

to a resulting friction force using Couloumb friction. Other works use commercial

finite element software [63, 64] or experimental analysis [65] to gain information on

the dynamics of these contacts. The limitation of these works when applied to a

hydraulic machine, however, is the consideration of only a constant Coulomb friction
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coefficient. Following the approach of Weiss [66], the present work assumes Stribeck

friction [67] at the interface of the ball and socket.

To capture mixed lubrication in thin films, Brown [68] generated random surface

roughness and ran simulations using Reynolds equation. While this captures the in-

teraction of the asperities with the flow, it requires a detailed numerical discretization

to resolve this roughness, thus over-resolving the nominal geometry. To alleviate this,

Patir and Cheng [69] derived an averaged Reynolds equation accounting for imperfect

surfaces through the use of flow factor in pressure driven flow conditions. In [70], the

authors extended the model to consider the effects of a constant relative sliding of

the two films. In [71], Chengwei and Linqing defined a factor which accounts for

the discrepancy between the expected and rigid gap heights for rough surfaces in

contact for use with Patir and Cheng’s model. Meng et al. [72] provided a simple

way to find this factor for arbitrary film roughness distribution. The benefit of these

approaches is that they remove the need to use a mesh fine enough to resolve the

exact geometry of the rough film, without sacrificing accuracy. Furthermore they can

be coupled with works such as Lee and Ren [73], where similar empirical models can

be used to relate the load sharing by the asperities of the bodies to the rigid body

position of the rough surfaces, removing the need for numerical considerations of the

asperity deformation. These models have been applied only to incompressible films

with uniform body velocities, however, so their application is limited only to simple

or approximated geometries. Subject to these assumptions, this model can be used

to capture the effects of mixed lubrication that occur during sub-optimal operation

such as wear in dynamically loaded bearings [74,75], texturing and misalignment [76],

and low viscosity working fluids [77] at lower computational cost. This shows a wide

range of applicability of these empirical modeling approaches, with good agreement

against more detailed simulation.

In terms of design and optimization of these units, both kinematic and lumped

parameter models are well suited due to their lighter computational load. Such a

kinematic optimization was performed by [5] to design asymmetric spur gears. In [78]
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Devendran and Vacca used the kinematics of asymmetric spur EGPs to find an opti-

mal solution for a variable displacement unit. In [79] the same authors extended the

approach to use a lumped parameter approach to better capture the performance of

a real unit. This work, as well as other similar works such as [80, 81], demonstrate

the potential for design improvement when coupling a fast simulation tool with an

optimization algorithm to perform virtual prototype design of EGPs. In [82], Chacon

and Ivantysynova used the tools discussed above for the development of a virtual pro-

totyping procedure for APMs. The application of this procedure led to a functioning

prototype with only this virtual design approach, acting as a proof of concept of de-

sign by simulation. Finally, an outcome of this thesis which was published [6] and will

be discussed in Section 5.2 used the lumped parameter model HYGESim discussed

above to compare the potentials for helical and spur EGMs for fluid power applica-

tions. The limitations of these optimization procedures is that they are subject to

the approximations of the models they use. Furthermore, geometric considerations

are commonly simplified in parameterization of the design, due in large part to the

limited number of design evaluations that are affordable. The benefit, though, is

that modelling improvements of the evaluation functions can also directly improve

the feasible of these design optimizations.

During operation of these units cavitation is common, occurring in regions where

the pressures fall below the fluid’s saturation and vapor pressures respectively. The

resulting bubbles of both released gas and vaporized working fluid cause damage to

components and drastically decrease the effective bulk modulus and density of the re-

sulting solution, impacting unit performance. In [83], Braun and Hannon performed

a detailed review of the state of cavitation modeling in general for fluid film bearings.

Since all of the lubricating interfaces of PD machines can be viewed as special cases

of more general fluid film bearings, the insight these works provide is helpful. To

capture the detailed dynamics of the released bubbles, 3D computational fluid dy-

namic (CFD) models solve the Rayleigh–Plesset–Poritsky (RPP) equation [84], the

governing equation which describes the formation and collapse of the released gas
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bubbles. This is typically solved with either the Navier-Stokes equations in works

such as [85–87] and commercial software such as Simerics-MP+ or more commonly

Reynolds equation [88,89]. These approaches are important for tracking the formation

and collapse, as well as the transport of individual bubbles.

The modeling of the complete dynamics of these bubbles, though, requires detailed

information of the fluid inlet and outlet port and line geometries. Furthermore, the

coupled solving of the formation and transport of the bubbles introduces a large

computational load. This detailed modeling is not necessary, however, to capture

the resulting performance of the lubricating film and to predict the regions where

either gaseous or vaporous cavitation occurs. To alleviate this computation load,

many works neglect the details of this cavitation, with pressures saturated at the

cavitation value. This is discussed in great detail in Hamrock et al. [90] for various

types of bearings, specifically as pertains to journal bearings. While this solution is

fastest numerically and easiest to implement, the drawback is that all information of

cavitation is lost. Additionally, this approach cannot be applied to study the effects

of starved boundary conditions.

In the lumped parameter approaches described above, the effects of this cavitation

can be modeled by observing the bulk behavior of a mixture of liquid, released gas,

and vapor in the lumped volume. In [29], Casoli et al. successfully captured the

resulting flow and pressure behavior of an APM under cavitating conditions, using

equilibrium gas laws which neglect the dynamics of the cavitation. A similar approach

was applied in [91] by del Campo et al. for external gear machines. In [92], Zhou et al.

developed a cavitation model for hydraulic oils considering the transients of bubble

release and rupture, which was applied in [93] to external gear machines. Similar

model implementations of both these equilibrium and empirical dynamic models are

available in commercial software such as Simcenter Amesim [94] and Simerics-MP+.

In [95], Shah et al. performed further study of external gear pumps, while including

the dynamics of a fixed amount of bubbles whose radius is dictated by the RPP

equation simplified for lumped control volumes. The use of these models helps to
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extend the feasibility of the lumped parameter assumptions, where the prediction of

cavitation and aeration is made possible. In doing so, they retain rapid simulation

while still capturing dynamic cavitation effects. The drawback of these approaches

is that they typically offer only limited modeling of the transport of the bubbles,

neglecting the exchange of bubbles between the main displacement chambers and the

lubricating interfaces.

In study of the lubricating films, a modified Reynolds equation has been applied

to solve for the behavior in the complete film region of the bearing. In regions of

incomplete film, a similar volume of fluid (VOF) approach to the lumped domain is

taken, modeling the bulk properties of the ruptured film as the combination of the

fluid, vapor, and gas components. Application of this approach started first in journal

bearings with Jakobsson and Floberg [96] and Olsson [97] (JFO), who developed a set

of boundary conditions at the rupture and reformation of the fluid films consistent

with conservation of mass. In [98, 99] Elrod developed an algorithm, based on these

boundary conditions, which could automatically satisfy the JFO boundary conditions

in a single “universal” differential equation. The use of this model allows for the

modeling of cavitation in these films with a single equation, capturing the effects on

both the flow and load carrying of the units. The main drawback of this approach is

the numerical instability inherent to this model, making its implementation difficult.

To address this, many works have attempted to develop algorithms which de-

crease computation time and improve robustness of the universal equation including

Multigrid techniques [100], Gauss-Seidel iterative schemes [101], but most using al-

ternating direction implicit (ADI) method [102–104]. Others propose modifications

to the original formulation presented by Elrod, in order to smooth the discontinuity

inherent to this approach [105, 106]. More recent works apply this model to capture

effects such as starvation in piston-ring/liners [107] and journal bearings with oiling

grooves/textures [108, 109] and dynamic loading [110, 111]. These approaches show

that, when a robust implementation is achieved, the use of this tool can be applied to
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a wide variety of applications. They typically accomplish this stability, though, via

model simplifications or complex numerical schemes that increase computation time.

1.4 Research Objectives

The state of the art in analysis of PD machines has identified a wide range of

successful modeling approaches. These approaches span from instantaneous feedback

of kinematic models to high fidelity resolution of their inner workings, having also

identifying the compromises in between. Furthermore, the state of the art highlights

the fundamental challenge in modeling these machines: (i) the use of a compressible

working fluid means that real machines deviate from their kinematic performance

(ii) fluid pressures from inter-dependant regions of the unit impart high forces on

the floating bodies of the machines (iii) the pressures throughout the unit are highly

sensitive to the micro-motions and deformations that result from this loading (iv)

the extreme loading can lead to solid contact (wear) and cavitation (damage, poor

performance) in the unit. In addressing these issues, the state of the art has developed

a strong understanding of the nature of these challenges and the modeling approaches

that can be employed to study them.

What these approaches lack, however, is the ability to develop a single, comprehen-

sive analysis of any positive displacement machine. For the sake of simulation time,

these approaches typically consider a single feature of the PD machine in isolation,

or with the remaining aspects simplified. As a result, it is not known to what extent

the mutual interactions of these aspects of the machine impact its performance. In

making these assumptions, they also narrow the applicability (to varying geometries)

of the approaches they develop. The solution to this is two-fold; first, the simplifi-

cations made to treat a single interface in isolation must be relaxed. Second, and in

order to make the first feasible, the computational performance of these models must

be improved.
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The research objective of this thesis is to develop and validate a novel standalone

simulation model, based on the coupled lumped-distributed parameter modeling ap-

proach discussed above, which facilities the study of any PD machine. Specifically,

this work will relax the following model assumptions which restricted this goal.

First with respect to the dynamics of the bodies, all of the previous works from

kinematic to detailed CFD analysis have placed at least some limitations on the

degrees of the freedom of the floating bodies of these units. Instead, the modeling ap-

proach of this thesis will make no assumption on the geometry of the unit, and a novel

6 degree of freedom dynamics model for an arbitrary rigid body is developed. Based

on these dynamics, all lubricating interfaces are modeled in the same simulation. As

opposed to the isolated modeling approach performed previously, here shifting of the

floating bodies leads to pressure and shear forces over all films that in turn impact

the dynamics of the bodies.

Due to the resulting gap geometry, as well as flow constrictions in the lumped

modeling, cavitation throughout the fluid domain can occur. For the first time,

the resulting bubble exchange will be captured by a novel cavitation model of the

lubricating films, which directly interfaces with the lumped parameter model. When

the forces are not sufficient to carry the loads, the resulting mixed lubrication will

be directly implemented into this film model via a novel integration of the cavitation

and mixed lubrication modeling, consider its impact on both flow and film forces.

The film pressures that are found with this model are used to calculate the resulting

body deformation using either a finite element method (FEM) approach or a novel

analytical-based deformation model, both of which consider the shear of the bodies

for the first time. This allows for the model to close the fluid-structure problem even

without external external modeling software or known geometry.

For the first time, a model of any unit, not just a single unit, will be developed

as an application programming interface (API) applicable to any PD machine with

finite displacement chambers. Here, both the physical and computational merits of

a modeling choice are prioritized. This thesis will consist of the physical, numerical,
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and software implications of coupling the solving of all the lubricating films of a units

together with the main solver of these displacement chambers and floating bodies.

Summarizing, the goals of this thesis are as follows

1. To develop a distributed parameter model that directly couples the solution of

all lubricating films with the lumped parameter model, considering the effects

of cavitation, mixed lubrication, and body dynamics over the entire fluid–solid

domain.

2. To implement these models as a modular toolbox that can be used to model

the performance of any PD machine.

3. To validate the results of this toolbox by implementing both an EGM and an

APM model and comparing the resulting simulations against experimental data

of reference machines and the relevant state of the art.

4. To demonstrate the application of this model to design a prototype EGM for

an electro-hydraulic actuator, including virtual design optimization of its main

design parameters followed by detailed design of its lubricating interfaces.

1.5 Structure of the thesis

Throughout this document, the general modeling suite which is developed will

be referred to as Multics. The specific application of this suite to external gear

machines will be referred to as Multics HYGESim. The information flow of this tool

is demonstrated in Figure 1.7. Similarly, the application of the suite to axial piston

machine will be referred to as Multics CASPAR, with information flow demonstrated

in Figure 1.8.
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These figures highlight the highly coupled information exchange across the mod-

ules. In the sections to come, the details of this information exchange as well as the
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role of each module will be explored. To do this, as well as to accomplish the goals

stated above, the structure of the thesis is as follows

• Chapter 2 will describes the lumped parameter model used to capture the main

displacing behavior of the machine (DC Solver), as well as the dynamics of the

floating bodies (Dynamics Solver) and simple approximations of the lubricating

interfaces.

• Chapter 3 will build on the lumped parameter model to solve the complete,

distributed parameter behavior of the lubricating interfaces (Reynolds Solver),

including the coupled effects of fluid–structure interaction (Deformation Solver),

the dynamics of the bodies (Dynamics Solver), mixed lubrication (Asperity

Solver), and cavitation/aeration (Reynolds Solver). It will also discuss how

the model is implemented and coupled to other films as well as the lumped

parameter model.

• Chapter 4 will use the toolbox developed in the previous chapters to build mod-

els of a pressure compensated external gear machine and axial piston machine,

and provide validation by comparing the simulation results against experimen-

tal measurements of reference machines as well as representative results from

literature.

• Chapter 5 will demonstrate the potentials of the model, using both the ana-

lytical approximation-based model for design optimization and the distributed

models for detailed analysis of the lubricating films of an EGM.
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2. LUMPED PARAMETER MODELING

This chapter introduces each component which makes up the lumped parameter

model. As was mentioned in Chapter 1, the use of CFD modeling of these units

offers high fidelity results, but at the expense of high computational demand. Con-

sidering this, the present model can be seen as a novel formulation, based on the

lumped parameter model HYGESim [36] developed by Dr. Andrea Vacca’s research

group over the past decade, for any positive displacement machine. In doing so, the

shortcomings identified in Section 1.3 have also been addressed with respect to lumped

parameter modeling. The work presented in this thesis focuses mostly on the lubri-

cating interface module, with modifications made to the remaining components to

facilitate a strong coupling of the two. Due to the increased computational demand

that this leads to, care was taken in implementation of both the lumped and dis-

tributed parameter components. The novel contributions to the lumped component

of the model are as follows

• Development of the model API with focus on generality and object-oriented

programming to facilitate application to any machine.

• Derivation of a full 6 degree of freedom inertial motion model of the bodies,

using an impedance based force balance to capture the inertia of the bodies.

• The novel inclusion of the forces and torques on the floating bodies due to the

thin-film shear and pressure buildup.

While the tools developed here are applicable to many PD machines, this thesis

focuses on two very different machines, the EGM and APM. These two are chosen

intentionally to challenge the tool with the generality required to model machines

with drastically different working principles. To do this, the hydraulic diagram of the
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Figure 2.1. Loading and flow paths of an axial piston machine with (a)
the hydraulic circuit of a single displacement chamber connected to high
pressure through the outlet port and to low pressure by a series of leakages
and the inlet port (b) the representation of the circuit as a cross section
of the unit

machine must be understood. Starting first with the APM, Figure 2.1 demonstrates

the hydraulic connectivity of the machine. As the pistons reciprocate in the bore,

flow leaks through the thin gap between the piston and bore Qsk. As this displacing

action occurs, the valve plate directs flow to the delivery Qr,HP and from the suction

port Qr,LP , with some of the pressurized fluid leaking through the gap between the

block and valve plate Qsb. Finally, the hydrostatic balance, via the slipper chamber pg

connected to the displacement chamber Qpg, comes at the expense of a leakage across

the thin sealing land Qsg. Each of these thin films exert a force which, in response

to the net pressure from the displacement chamber, carry the floating bodies. A

summary of how each of these components is modeled is included in Table A.1.
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Next for the EGM, a hydraulic schematic is demonstrated in Figure 2.2. This

Figure includes both the hydraulic system view in 2.2(a) (adapted from [112]) as

well as a cross-sectional view 2.2(b). Similar to the APM, the displacing action of

the fluid trapped between the teeth of the gear (TSVs) of the EGM drives flow to

the delivery and suction ports through the depths of the gears via the HV and LV

connections respectively. As the teeth begin to mesh, though, these connections close,

and the transition from high to low pressure is controlled by the placement of relief

grooves. The grooves, recessed in the lateral surface above and below the meshing

teeth, direct flow to delivery (HG) and suction (LG). For a single-flank pump, such

as the one shown in Figure 2.1(b), the existence of backlash between the two gears

permits a fluid exchange between the TSVs via the FG connection. Instead for a dual-

flank pump, the teeth make contact on both flanks, and effectively act like isolated

displacement chambers. The high pressure side of the relief grooves extend into the

casing (HS), whose purpose is to permit back-flow which pressurizes the TSV at a

consistent angle regardless of the operating pressure or speed. In do so, the loads on

the gears and balance elements are consistent and can be designed for. The resulting

radial loads are carried by bearings (typically journal bearings), which build pressure

to react the applied loads at the expense of a leakage QJB. Any axial loads cause

the plate to move either towards or away from the gears, causing pressure to build

in the film between the bushing and gears to oppose it. In a well designed unit,

an equilibrium is found which ensures minimal lateral leakages over the teeth QLL

and into the drain volume and journal bearing QDL. Finally, the clearance between

the teeth of the gears and the casing of the unit is small, minimizing the radial gap

that leads to a leakage over the tooth tips QRL. Again, the model assumptions are

collected in Table A.2.
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Figure 2.2. (a) Flow paths of an external gear machine with displacement
chambers connected to adjacent chambers as well as the inlet and outlet
volumes a series of leakages and orifices (b) the representation of the circuit
as a cross section of the unit
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2.1 Fluid Dynamic Module

In the present section, the lumped parameter fluid dynamic model is derived. With

no information on the relevant assumptions for a given unit, each component is derived

as a standalone object. This ensures modularity, because each component is isolated

from the functionality of all others, and relies only on ‘black-box’ input/output across

components. As was demonstrated in Figures 2.1 and 2.2, these components are

connected in a circuit to form the complete model of a given unit.

2.1.1 Displacement Chambers

In the lumped parameter model, the fluid domain of the unit is split into a series

of control volumes. In a lumped control volume, the pressure and temperature is

assumed to be constant, with any released vapor/gas bubbles assumed to be homoge-

neous mixture throughout the volume. The validity of this assumption is supported

by many of the previous works discussed in Chapter 1, with comparison against both

detailed CFD simulation and experimental validation. In order to solve for the pres-

sures in the volume, the integral form of continuity equation is applied

∂

∂t

(∫
Ω

ρ dΩ

)
+

∫
Γ

ρ v · dΓ = 0 (2.1)

Since the properties of the fluid are assumed to be constant throughout the whole

volume, this equation breaks down to relate the net change in mass of the chamber

to the mass fluxes into the volume at each boundary

∂ρV

∂t
= V

∂ρ

∂t
+ ρ

∂V

∂t
=
∑
i

ṁin,i (2.2)

The change in density, for a control volume whose density can change with both

pressure and temperature, is given by

ρ = ρ(p, T ) =⇒ ∂ρ

∂t
=
∂ρ

∂p

∣∣∣∣
T

∂p

∂t
+
∂ρ

∂T

∣∣∣∣
p

∂T

∂t
=

ρ

KT

∂p

∂t
+
∂ρ

∂T

∣∣∣∣
p

∂T

∂t
(2.3)
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Substituting this relation into 2.2 and rearranging yields the governing equation for

pressure in the chamber, the thermal pressure build-up equation

∂p

∂t
=
KT

V

(
1

ρ

∑
i

ṁin,i −
∂V

∂t

)
− KT

ρ

∂ρ

∂T

∣∣∣∣
p

∂T

∂t
(2.4)

Similarly for the temperature in the volume, conservation of energy is applied

∂

∂t

(∫
Ω

(
u +

1

2
|v|2 + gz

)
ρ dΩ

)
+

∫
Γ

(
h +

1

2
|v|2 + gz

)
ρv · dΓ = Q̇in + Ẇon Ω (2.5)

Neglecting body forces and assuming the volume is large enough that its change

in momentum is negligible, then in the absence of external shaft or compressor work

Equation 2.5 breaks down to balancing the total energy with the advection of enthalpy

from the adjacent volumes, the expansion work, and any external heat flux

∂mu

∂t
=
∂mh

∂t
− ∂pV

∂t
= m

∂h

∂t
+h

∂m

∂t
−p∂V

∂t
−V ∂p

∂t
= −p∂V

∂t
+Q̇in +

∑
i

(hṁ)in,i (2.6)

Collecting terms and inserting Equation 2.4 yields the governing equation for the

specific enthalpy of the volume

m
∂h

∂t
= Q̇in + V

∂p

∂t
− h

∂m

∂t
+
∑
i

(hṁ)in,i (2.7)

Implementation of this relation directly can prove challenging. Instead by relating

the specific enthalpy to the temperature via the specific heat capacity

∂h

∂t
= cp

∂T

∂t
+
∂h

∂p

∂p

∂t
(2.8)

and substituted into Equation 2.7, an express the rate of change of the temperature

in the volume is given by

mcp
∂T

∂t
+
∂h

∂p

∂p

∂t
= Q̇in + V

∂p

∂t
− h

∂m

∂t
+
∑
i

(hṁ)in,i (2.9)

Observing that the rate of change of mass in the volume comes only from influx of

adjacent volumes, and rearranging yields the governing equation of temperature in

the chamber

∂T

∂t
=

Q̇in − h
∑

i ṁin,i +
∑

i(hṁ)in,i
cp ρ V

+
1

cp ρ

(
1− 1

V

∂h

∂p

)
∂p

∂t
(2.10)
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In the absence of temperature variation, ∂T
∂t

terms drop and the isothermal pressure

build up equation is recovered.

∂p

∂t
=
KT

V

(
1

ρ

∑
i

ṁin,i −
∂V

∂t

)
∂T

∂t
= 0

(2.11)

Otherwise, these equations show the interdependence of temperature in the volume,

as well as that of the adjacent volumes.

To model fluid properties of the volume above saturation conditions, two options

are available. First, several empirical relations for modeling fluid properties, including

the Barus [113] and Roeland [114] viscosity models and the Dowson and Higginson

[115] density model (which is also used to find bulk modulus). While these models

are helpful when no other resources are available, the present thesis will make use

of tabulated properties as a function of pressure and temperature, provided by the

supplier of a typical ISO VG 46 oil.

2.1.2 Fluid Cavitation and Aeration

Below the saturation pressure of gas (commonly air) trapped in the liquid, it

cannot retain all of the dissolved gas, which begins to come out of solution in the form

of undissolved gaseous bubbles. If the pressure is further reduced to the vapor pressure

of liquid it will begin to evaporate, so that bubbles of the vaporous state of the liquid

will also be present. Vaporous and gaseous cavitation in these volumes is accounted

for in one of three ways. In all of the following approaches, the cavitation is subjected

to the lumped parameter assumption such that the mixture of gas bubbles as well

as the liquid and vaporous states of the oil are treated as a well mixed homogeneous

bulk fluid. All fluid properties are then taken as the equivalent properties of this bulk

fluid, with weighted contribution of each component dictated by the model choice.

First and most commonly, the equilibrium model described in [29] is used. This

model, based on Henry’s law, neglects the transients of the formation and collapse
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of the bubbles, and models the properties of the bulk mixture of liquid, vapor, and

released gas at equilibrium. Increasing the complexity, [93] is an implementation

based on Singhal’s full cavitation model [86] adapted for lumped parameter modeling,

both of which use empirically determined parameters to define the time constants of

phase change of the gaseous and vaporous bubbles to capture the transient of the

production of the bubbles. Finally the most computationally complex model is given

by Shah [95], where the fluid volume is initialized with a large number of bubbles.

The instantaneous radii are these bubbles are solved using Rayleigh-Plesset equation,

adapted for use in lumped parameter modeling. In either of the latter two models,

bubbles are advected between the volumes via the various flow models to come. This

aspect, as well as the added complexity of the models makes their implementation

more computationally cumbersome. Considering this, they are typically used when

cavitation issues are predicted by the equilibrium model and require detailed study.

Unless otherwise specified, all results in this thesis will use the equilibrium cavitation

model derived here.

To demonstrate this model, it is necessary to define the 4 equilibrium conditions

that are possible. First, Figure 2.3(d) demonstrates the condition where the fluid

pressure p is greater than the saturation pressure of its trapped gas psat and only

liquid is present. Below this pressure the solubility of the liquid decreases and gas is

released, as is shown in Figure 2.3(c). If the pressure is further reduced, the liquid will

vaporize. Hydraulic oils typical for lubrication applications, however, are a solution

of various substances rather than a single substance. Considering this, vaporization

occurs over a range of pressures, with the lightest molecules in the solution beginning

to vaporize at pvap,h leaving a mixture of released gas, vapor, and liquid as is shown

in Figure 2.3(b). When the pressure reaches pvap,l the heaviest molecules of the liquid

have vaporized, leaving only vapor and entirely released gas as is demonstrated in

Figure 2.3(a). In the analysis to follow, the mixture of liquid, released gas, and vapor

present in a given volume as a function of pressure will be referred to as the effective

bulk fluid, assumed here to be a well-mixed homogeneous combination of the three.
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𝑝𝑣𝑎𝑝,𝑙 𝑝𝑣𝑎𝑝,ℎ 𝑝𝑠𝑎𝑡

a) Vapor/Gas b) Liquid/Vapor/Gas c) Liquid/Gas d) Liquid

𝑝

Gas LiquidVapor

Figure 2.3. Diagram of equilibrium phases of bulk fluid containing liquid
(blue), released gas (white), and vapor (cyan) as a function of pressure

It is the properties of this bulk fluid that will then be used in modeling the behavior

of the films.

In regions of full film where p ≥ psat, this approach has no restriction on the fluid

property model used. Since the gas is fully dissolved in the fluid it does not contribute

to it’s the bulk fluid volume, only acting as a constant offset to the mass of the fluid.

Therefore, the tabulated fluid properties discussed above are directly applicable here.

Above the saturation pressure, the bulk fluid (f) is comprised of liquid (l) as well

as gas (g) that dissolves in the liquid up to the saturation limit at the pressure of its

tank. As the film pressure decreases below this saturation pressure, the liquid cannot

retain all of the dissolved (d) gas and it is released in the form of undissolved (u)

gaseous bubbles. If the pressure is further reduced past the vapor pressure of the

fluid, the fluid begins to evaporate and vaporous (v) working fluid is also present. In

these conditions, the bulk fluid’s density is the volume occupied by a mixture of the

three components in a differential fluid element

ρf =
dml + dmv + dmg

dVl + dVv + dVu
(2.12)
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Notice here that since the dissolved gas does not contribute to the volume occupied

by the fluid, only the undissolved portion is considered in the fluid volume.

dVf = dVl + dVv + dVu (2.13)

To describe the composition of the bulk fluid, void (volume) fractions αi are defined

αi =
dVi
dVf

for i = l, g, v, u, d (2.14)

which can be related to the mass fractions

si =
dmi

dmf

= αi
ρi
ρf

for i = l, g, v, u, d (2.15)

For film pressures between the saturation and vapor pressure, gaseous cavitation

occurs as the dissolved air begins to come out of the solution. To evaluate this

condition, it is first necessary to identify the saturation pressure. For a given gas

content, this saturation pressure can be found with Henry’s law at equilibrium, using

Bunsen’s coefficient β for the corresponding gas-liquid pair.

dVsat

dVl0
=
αg0
αl0

= β
psat − pvap,h

patm

=⇒ psat =
αg0
βαl0

patm + pvap,h (2.16)

Notice here that the entrained air is assumed to be released at the high vapor pressure

of the liquid when the liquid begins to vaporize, rather than vacuum, following similar

approximations made in [29,94]. Equation 2.16 is then used to calculate the minimum

pressure required to dissolve all the gas, for a given amount of saturated gas in the

mixture αg0. In this condition, the fluid volume is given entirely by the liquid, and the

volume of gas that can be dissolved at this pressure can be calculated. The saturation

density ρsat is then given by evaluating the liquid density at psat. This equation can

also be used to find the expected volume of gas trapped in a reference liquid kept at

psat such as an open tank.

Below this saturation pressure (pvap,h < p < psat), the liquid cannot retain all

dissolved gas, and undissolved gas bubbles form. In this case, the constant mass
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dm = dml + dmg is distributed over a volume occupied by both the liquid and gas

bubbles so that Equation 2.12 takes the form

ρf =
ρsat

αl0 exp
(
psat−p
K

)
+ χuαg0

(
T
T0

)(
p0
p

)1/ng
(2.17)

where the amount of gas that is released is linearly related to the pressure via Henry’s

law

χu =
αu0

αg0
=


0, p ≥ psat

psat−p
psat−pvap,h

, pvap,h < p < psat

1, p ≤ pvap,h

dχu
dp

=


0, p ≥ psat

−1
psat−pvap,h

, pvap,h < p < psat

0, p ≤ pvap,h

(2.18)

and the saturation density of the fluid is used

ρsat = (1− αg0)ρl0 + αg0ρg0 = αl0ρl0 + αg0ρg0 (2.19)

Note here that this equation considers both the release of gas, as well as the polytropic

expansion of the instantaneous undissolved component with index ng from a reference

condition to the given pressure

p

ρ
ng
g

=
p0

ρ
ng
g0

=⇒ p = p0

(
ρg
ρg0

)ng
(2.20)

The reference condition will be taken as (p0, T0) = (psat, T0) where T0 is the reference

operating temperature. The liquid and gas void fractions are then found by dividing

the local density of the differential volume by its value at saturation

αl =
ρf
ρsat

αu = 1− αl
(2.21)

If the pressure is further reduced past the high vapor pressure (pvap,l < p ≤ pvap,h),

the liquid itself begins to evaporate. As was stated above, it is assumed that once



37

this pressure is reached all dissolved gas has been released (χu = 1), so that similar to

above the bulk fluid density includes volume contributions of the liquid, vapor, and

all undissolved gas. Then from [29] the bulk fluid density is given by

ρf =
ρsat

αl0(1− χv) exp
(
psat−p
K

)
+ T

T0

(
ρl0
ρv0
αl0χv

(
pvap,h
p

)1/nv
+ αg0

(
psat
p

)1/ng
) (2.22)

where it is assumed that the mass of the molecules in the oil are evenly distributed

over the range so that the mass of liquid that is evaporated is linearly related to the

pressure

χv =
fv
fl0

=


0, p ≥ pvap,h

pvap,h−p
pvap,h−pvap,l

, pvap,l < p < pvap,h

1, p ≤ pvap,l

dχv
dp

=


0, p ≥ pvap,h

−1
pvap,h−pvap,l

, pvap,l < p < pvap,h

0, p ≤ pvap,l

(2.23)

Similar to above, this equation considers the instantaneous evaporation of the liquid

molecules, as well as the polytopic expansion of both the gaseous and vaporous bub-

bles. The gas and vapor density are updated with Equation 2.20, which can be used

to update the mass fractions with χv given

fu = fg0

fv = χvfl0

fl = fl0 − fv

(2.24)

so that Equation 2.15 can be used to find the corresponding void fractions.

If the pressure is reduced below the low saturation pressure p ≤ pvap,l, the entirety

of the liquid has evaporated, leaving only the vaporous and gaseous bubbles so that

Equation 2.22 simplifies to

ρf =
ρsat

T
T0

(
ρl0
ρv0
αl0

(
pvap,h
p

)1/nv
+ αg0

(
psat
p

)1/ng
) (2.25)
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Table 2.1.
Reference fluid properties used in this thesis for typical ISO VG 46 oil

Bunsen Coefficient β 0.085

High vapor pressure pvap,h −0.5 barg

Low vapor pressure pvap,l −0.6 barg

Saturation pressure psat 0 barg

Reference liquid bulk modulus Kl,0 1.3 GPa

Reference liquid density ρl,0 850 kg/m3

Reference liquid dynamic viscosity µl,0 0.026 Pa s

Reference gas/vapor density ρg,0 = ρv,0 1.2 kg/m3

Reference gas/vapor kinematic viscosity νg,0 = νv,0 15.68 mm2/s

Again, the mass and void fractions can be found using Equation 2.24 and then 2.15.

Using this default static model, Figure 2.4 shows the resulting fluid properties

of the bulk fluid used throughout the lumped parameter simulation, for the same

tabulated ISO VG 46 oil mentnioned above with relevant properties detailed in Table

2.1. First in Figure 2.4(a), the bulk fluid density is shown with variation in pressure.

The bulk modulus at these three conditions is then given by the density equations

via its definition

Kf = ρf
dp

dρf

∣∣∣∣
T

(2.26)

as outlined in [29] and demonstrated in Figure 2.4(b). The dynamic viscosity of the

bulk fluid, is given by the volume contributions of each to the bulk fluid

µf (p, T ) =
∑
i

(αi(p)µi(T )) for i = l, u, v (2.27)

The kinematic viscosity is then given by the bulk dynamic viscosity and density

νf (p, T ) = µf/ρf (2.28)

and is depicted in Figure 2.4(c).



39

(a) Density

(b) Bulk Modulus

(c) Dynamic Viscosity

Figure 2.4. Properties of the resulting bulk fluid mixture as a function
of pressure for (a) Equivalent density (b) Equivalent Bulk Modulus (c)
Equivalent Dynamic Viscosity
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2.1.3 Flow Throttling

In order to ensure that the assumptions of constant lumped pressures and tem-

peratures in a given volume is reasonable, it is important to define their boundaries

to reflect the physical flow constrictions of the unit. In effect, this choice creates

a network of chambers, connected to one another via these constrictions. The flow

passing through these boundaries can then be modeled using the orifice equation,

demonstrated in Figure 2.5. This equation is derived by first assuming that the fluid

is locally incompressible and steady, such that Bernoulli’s equation relates the up-

stream flow conditions to that of the throat (including the associated minor loss ψl)

where
pu
ρg

+
v2
u

2g
+ zu =

pt
ρg

+
v2
t

2g
+ zt +

ψl
2g
v2
t (2.29)

Figure 2.5 shows that the entrance effects of the orifice must be included, but down-

stream of the throat the adverse pressure gradient causes the flow to break down

to turbulence and the pressure is effectively that of the throat pt ≈ pd. Applying

continuity, then, the velocity at the throat and orifice can be related to that of the

upstream Auvu = Aovo = Atvt so that neglecting change in elevation

pu − pd =
ρ

2

(
v2
t (1 + ψl)− v2

u

)
=
ρ

2
v2
o

[(
A2
o

A2
t

)
(1 + ψl)−

(
A2
o

A2
u

)]
(2.30)

Rearranging, the orifice equation is found where the mass flux can be expressed as

ṁo = ρAovo = ψoAo
√

2ρ(pu − pd) (2.31)

with introduction of the orifice coefficient

ψo ≡
[(

A2
o

A2
t

)
(1 + ψl)︸ ︷︷ ︸

Discharge

−
(
A2
o

A2
u

)
︸ ︷︷ ︸

Velocity of Approach

]−1/2

(2.32)

This orifice coefficient is well explored, accounting for to the ratio of the unknown

throat diameter to that of the physical flow constriction, the head loss in the constric-

tion process, and the entrance effects of the orifice owing to the velocity of approach.
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𝐴𝑜 ҧ𝑣𝑜
𝐴𝑡 ҧ𝑣𝑡
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𝐴𝑢 ҧ𝑣𝑢

𝑝𝑜 𝑝𝑡

Figure 2.5. Flow through a sharp orifice, demonstrating the vena-
contracta of the flow downstream from the physical flow constriction

From empirical evidence, as well as inspection from its definition, the discharge co-

efficient is a function of the flow. In the present work, emperical relations based

on Merritt [116] are used to relate the orifice coefficient to the Reynolds number

depending on the geometry of the orifice used.

However because this constriction may become very small compared to the volume

of fluid that must pass through, it is possible for the flow to reach sonic conditions

at the throat of the orifice. In this model, it is assumed that the properties at the

throat are equal to that of the average pressure and upstream temperature, similar

to that of an isentropic nozzle, and the flow is saturated at the corresponding choked

mass flux

ṁt = sign(∆p)Ao min

[
ψo
√

2|∆p| ρ
∣∣
p,Tup

,
√

(Kρ)
∣∣
p,Tup

]
(2.33)

By expressing the rate of change of temperature in the volume in terms of the net

enthalpy influx, the energy lost to heat through this is orifice is easily implemented.

Treating the flow as adiabiatic, then by taking the specific enthalpy at the upstream

fluid state (pup,Tup) location, the energy is advected to the downstream volume as

some combination of heat and enthalpy at the downstream state.
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Ḣ = ṁh|pup,Tup (2.34)

Similarly, the vapor and gas fractions of the upstream chamber can be taken to

consider the advection of bubbles to the downstream volume where

α̇v,u = ṁαv/u,up (2.35)

2.1.4 Leakages

To model leakages, two approaches are possible. First, the exact flows may be

modeled using the distributed parameter models that will be presented in detail in

Chapter 3. For rapid simulation (e.g. for optimization) though, the use of this tool

is infeasible, and it is helpful to have analytical approximations of the flows. Taking

the EGM for example, Figure 2.6 shows how a radial gap exists between the teeth of

the gears and the body of the pump. Since the gap height is much smaller than the

radius of the gear (hgap � rgear), this can be treated as a flow between parallel plates.

Additionally since the depth of the gear is much larger than the gap (hgap � bgap),

pressure variation in the y-direction and therefore axial flow can be neglected.

To model this, the flow is assumed to be steady, with change in density and

temperature assumed to be locally small so that change in properties can be neglected.

With these assumptions, the Navier–Stokes equations simply to

d2vx
dz2

= − 1

µ

dp

dx
(2.36)

No slip boundary conditions are applied to both moving bodies vx(h) = vx,t,vx(0) =

vx,b. Then integrating this equation twice yields the modified Couette–Poiseuille

equation

v(z) =

(
vx,b +

vx,t − vx,b
hgap

z − ∆p

2µLgap

z(hgap − z)

)
î (2.37)
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Figure 2.6. Tooth tip leakage exaggerated gap in external gear machines
as Cartesian Couette-Poiseuille flow, and resulting velocity profile

The net flow across the gap is then given by the integral of this velocity of the whole

gap so that

ṁl =

∫ bgap

0

∫ hgap

0

ρ
(
v(z) · î

)
dzdy = ρ|p,Tupbgap

(
(vx,t − vx,b)h

2
−

h3
gap

12µ|p,Tup
∆p

Lgap

)
(2.38)

The pressure profile can then be recovered from this solution after applying boundary

conditions, linearly varied so that the total pressure drop ∆p = pdn − pup is realized

p(x) = pup + ∆p

(
x

Lgap

+
1

2

)
(2.39)

Note that while it is sufficient in the present work, this equation considers only the

nominal geometry of the unit and cannot capture the leakage behavior of a unit with

manufacturing errors. This component is equally applicable in these cases, however,

with inclusion of the complete leakage model described in [41,112].

Taking the APM as example, Figure 2.6 shows how a gap exists between the

floating slipper and the swash plate. Following similar assumptions as the Cartesian

gap, the flow in an axisymmetric cylindrical gap is given for ∆p = po − pi by

v(z) =

(
1

2µ

∆p

r ln(ri/ro)
z(hgap − z)

)
r̂ +

(
ωr

hgap

z

)
ϕ̂ (2.40)
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𝜑
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Figure 2.7. Radial slipper-swashplate exaggerated leakage gap in axial
piston machines as cylindrical Couette-Poiseuille

so that flow across the boundary is

ṁl =

∫ 2π

0

∫ hgap

0

ρ (v(z) · r̂) rdzdϕ = −
πh3

gap

6ν|p,Tup
∆p

(
ln

(
ri
ro

))−1

(2.41)

In both the Poiseuille and Couette terms of these equations, the flow is treated as

steady. This is justified using the results of [117], who showed that the time constant

for a purely Couette flow, and similarly for a purely Poiseuille flow, to fully develop

is

TCP ∼
h2

ν
(2.42)

For a typical gap height of h = 10µm and kinematic viscosity ν = 30mm2/s this

time is on the order of 3.4 × 10−6 seconds, or 0.04 degrees of shaft rotation at 2000

rpm, and can therefore neglecting the transients can be justified.

While this justifies the assumption of steady flow, it is possible that the two bod-

ies are in relative motion in the film-normal direction as well, such that the squez-
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ing causes excess pressure to build. Starting from the incompressible 1D Cartesian

Reynolds equation, where again parallel gaps are assumed, an ODE in pressure is

formed
d

dx

(
h3

12µ

dp

dx

)
=
dh

dt
(2.43)

and it is demonstrated that the case of squeezing in the films introduces a particular

solution to the homogeneous pressure solution that can be extracted from 2.39. The

general solution to the ODE is then simply the sum of the two. The particular squeeze

solution is given by

dps
dx

=
12µ

h3

dh

dt
x+ C1

ps =
6µ

h3

dh

dt
x2 + C1x+ C2

(2.44)

However the homogeneous solution is linear, such that the general solution is still a

parabola

pg =
6µ

h3

dh

dt
x2 + C ′1x+ C ′2 (2.45)

Applying the boundary conditions p(−Lgap/2) = pup, p(Lgap/2) = pdn

p(x) = pup + ∆p

(
1

2
+

x

Lgap

)
+

(
6µx2

h3
−

3µL2
gap

2h3

)
dh

dt

dp

dx
=

∆p

Lgap

+
12µx

h3

dh

dt

(2.46)

For a squeezing gap, the flows are appended by the volume of fluid displaced by

the squeezing action is evenly distributed to both the inlet and outlet volume

Q

(
±Lgap

2

)
=
bgaph

3

12µ

dp

dx

∣∣∣∣
±Lgap

2

=
bgaph

3

12µ

∆p

Lgap

∓ bgapLgap

2

dh

dt
(2.47)

By way of example, in the EGM Figure 2.2(b) shows that this squeezing can

be implemented indirectly by choice of control volume. Due to the finite clearance

between the gears and the tooth tips, an additional variable volume is formed. By

including this trapped volume in the total volume of the chamber (including half of

the gap volume for each tooth), this squeezing is accounted for in the pressure build-

up of the chamber and need not be expressly added here. In effect, it is treated as

an internal flow, with 2.41 accounting for the external component of the flow.
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An important observation, though, is the fact that sign of the Couette component

depends on the frame of reference taken. This means that, with respect to the frame

of reference fixed to the gear, the tooth is stationary (ut = 0) and the casing sweeps

the fluid towards the inlet (ub = −rωg). Thus when solving for the net mass flux into

a control volume, the relative velocities of the bodies must always be defined with

respect to the control volume. By preventing this variable volume definition from

passing the extremes of the casing, a perceived (artificial) suction or pumping action

of the tooth space volume as it enters and exits the casing respectively corrects for

this body fixed flow reference, conserving mass and reflecting the true physics of the

problem.

A similar procedure can be applied to the cylindrical film, starting first with the

axi-symmetric cylindrical Reynolds equation

d

dr

(
rh3

12µ

dp

dr

)
= r

dh

dt
(2.48)

So that after integrating and applying the boundary conditions at this inner radius

p(ri) = pi and outer radius p(ro) = po

p(r) =
1

ln ri
ro

[ln(r) (pi − po) + ln(ro)pi − ln(ri)po]

+
3vz µ

h3

[
r2 +

1

ln ri
ro

(
ln(r)

(
r2
o − r2

i

)
+ ln(ro)r

2
i − ln(ri)r

2
o

)]
dp

dr
=

1

r ln ri
ro

(pi − po) +
3vz µ

h3

[
2r +

1

r ln ri
ro

(
r2
o − r2

i

)]
(2.49)

Following the Cartesian case, the control volume can be carefully drawn at the

‘mean flow’ radius so that the squeeze term is accounted for in the pressure buildup

of the two volumes with definition. To do this, the radius is found such that the

squeeze contribution to the pressure gradient (and therefore the flow) is zero and

r =

√√√√ r2
o − r2

i

2 ln
(
ro
ri

) (2.50)
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so that the external flow is given exactly by 2.41.

Similar to the turbulent orifice, both the cylindrical and Cartesian flows are treated

as adiabatic so that the enthalpy flux to the downstream volume is given by 2.34 and

bubble advection is given by 2.35, where the external component of the flow is used

for each.

2.2 Dynamics Module

A key strength of the lumped parameter modeling approach is the decreased com-

putational load required to solve for the pressure distribution of the fluid domain.

As a result, the model can afford to consider not only the nominal positions of the

floating components, but allow them to vary. In order to accomplish this, it is im-

portant to capture all loads applied to the floating bodies, to properly capture their

micro-motion behavior. This section details the various loading types considered in

this model.

In the previous versions of this model developed by Dr. Vacca’s group, a mobility-

based solution was used for body dynamics. Here, mobility is defined as the dynamic

systems relationship of a velocity response to an input force. In effect, this approach

assumes that the velocity can instantly adjust to meet the force demand. However for

implementation with the distributed films, this approach requires a root finding loop

to find the appropriate velocity, rendering it computationally expensive. Furthermore,

this approach neglects the inertia of the bodies, which need not be negligible. Finally,

the nature of these mobility methods mean they cannot be extended to study mutual

interactions of multiple interfaces and cannot directly couple with the LP modules.

Instead in this model, a impedance-based solution is taken, where the dynamic

relation is instead of a force response to an input velocity. The implication of this

causality switch is the possibility of a net force imbalance, resulting in net linear

and angular acceleration of the body governed by Newton’s 2nd law. This approach

is also favorable numerically, as it forces a solution that is first order continuous



48

ψimpedance ∈ C1(t) instead of ψmobility ∈ C0(t), yielding a well-behaved solution for

numerical integration. In each of the sections to come then, force will be found for a

given position and velocity, which is then collected to find the net acceleration of the

body.

2.2.1 Pressure Loading

In the case of the APM, the pressure loading on the piston is directly given by the

area exposed to the DC pressures. Similarly, the slipper pocket pressure acts directly

on the slipper–piston assembly

FDC = pDCADC (2.51)

These are demonstrated for the piston-slipper assembly in Figure 2.8.

In the case of an EGM, the projection geometry is considerably more complex.

Again, though, the premise is the same and pressure forces act on the net area exposed

to the given pressure. This concept is demonstrated in Figure 2.9, where both a drive

(A115) and driven (A225) gear TSV projection is shown in magenta. Due to the

discretization applied to this unit, a region of the gear tooth will be exposed to the

delivery (A1D) and suction (A1S) volumes for some angular positions, demonstrated

by the red and blue regions respectively. While not shown in this figure, the driven

gear will also have area shared by these volumes as well (A2D/S). Notice that in all

of these projections, there are regions of the tooth profile where pressure acts in both

directions on the profile, negating its effect on the net force and moment applied to

the body.

In the meshing zone of the gears, the pressures within a TSV affect not only their

associated gear, but the meshing gear as well. This is shown in green in the figure,

where the pressure of drive gear TSV applies a force to the driven gear (A211). Again,

the opposite is true and the driven TSV will apply force to the drive gear as well.



49

𝐹

𝐹

Figure 2.8. DC and Hydrostatic Pocket pressure projection for Ref P1
axial piston machine

With these projection areas defined, the net loading on each gear is then given

F p,i = pDAi,D + pSAi,S +

Nteeth∑
j=1

(
p1,jAi,1,j + p2,jAi,2,j

)
(2.52)

with tooth space volume area vector Ai,j,k read as the projection area of TSV k of the

jth gear onto the ith gear, and similarly the pressure pj,k as the pressure in TSV k of

the jth gear. Due to the imbalance of pressures on the gears, a net pressure moment

is applied to each. Since the pressure is uniform over each of these projections, the
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Figure 2.9. TSV pressure projection for Ref E3 external gear machine

point at which it acts on the body is given by the center of the projection plane, and

the net moment due to pressure on a gear is given by

Mp,i = ri,D×(pDAi,D)+ri,S×(pSAi,S)+

Nteeth∑
j=1

(
ri,1,j × (p1,jAi,1,j) + ri,2,j × (p2,jAi,2,j)

)
(2.53)

where similar to the area vector, the position vector ri,j,k reads as the center of

pressure of the projection of TSV k of the jth gear onto the ith gear (defined with

respect to the center of gear i).

The driven gear’s only mechanical contact is the drive gear, and so the entirety

of its moment (including all torque losses) is opposed by a resulting contact force

F 2,c with the drive gear’s meshing teeth. The moment on the drive gear is given by

the equal and opposite contact force on the drive gear, as well as the net pressure

imbalance on the drive gear, all of which is carried by the prime mover. By the nature

of the involute profile of the gears, the contact always occurs along the line of action,

with force always act along the same line.
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2.2.2 Analytical Film Forces

In Section 2.1.4, the analytical approximations of leakage flow were derived. The

impact of these gaps comes not only from their flows, but also their resulting pressure

and shear forces on the bodies. To find the shear stresses applied to either body, the

velocity profiles derived in Section 2.1.4 are used. For the Cartesian gap, shear stress

on the top and bottom bodies are given by differentiating Equation 2.37 so that

τ |wall,t = −µdv
dz

∣∣∣∣
z=hgap

=

(
−µvx,t − vx,b

hgap

− ∆p

2Lgap

hgap

)
î (2.54)

τ |wall,b = µ
dv

dz

∣∣∣∣
z=0

=

(
µ
vx,t − vx,b
hgap

− ∆p

2Lgap

hgap

)
î (2.55)

The resulting shear force applied to either body is then the integral of this shear stress

over the whole gap region

F τ,t/b =

∫ Lgap

0

∫ bgap

0

τ |wall,t/b dydx = Lgap bgap τ |wall,t/b (2.56)

For the cylindrical gap, differentiating Equation 2.40 yields the shear stresses.

τ |wall,t = −µdv
dz

∣∣∣∣
z=hgap

= −
(

1

2µ

∆p

r ln(ri/ro)
hgap

)
r̂ −

(
ωr

hgap

)
ϕ̂ (2.57)

τ |wall,b = µ
dv

dz

∣∣∣∣
z=0

= −
(

1

2µ

∆p

r ln(ri/ro)
hgap

)
r̂ +

(
ωr

hgap

)
ϕ̂ (2.58)

so that the net shear forces is again given by the integral over the gap, where the

asymmetric nature means that the leakage applies no net force

F τ,t/b =

∫ 2π

0

∫ ro

ri

τ |wall,t/b rdrdϕ = 0 (2.59)

It is possible that the center of the cylindrical mesh is also translating. While this

does not introduce a net mass flow when integrated over the whole surface, it does

introduce an addition shear component. Since this is simply a linear velocity, it is

given by the shear term of the Cartesian film

F τ,t,v =

∫ 2π

0

∫ ro

ri

−µ vc
hgap

rdrdϕ = −πµ(r2
0 − r2

i )

hgap

vc (2.60)
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F τ,b,v =

∫ 2π

0

∫ ro

ri

µ
vc
hgap

rdrdϕ =
πµ(r2

0 − r2
i )

hgap

vc (2.61)

Observe that as the gap height tends to zero, Newton’s law predicts infinite shear

stress from the Couette terms. Certainly this is not the case, and it is common

practice to saturate the gap height at some small value h� C.

To account for the pressure that builds in a film with arbitrary squeeze, the pres-

sure solutions found in Section 2.1.4 are considered. Starting first with the Cartesian

film, integrating the pressure over the gap surface defines the resulting impedance re-

lationship of the gap relating the gap force to the instantaneous position and velocities

of the bodies

F t/b = ±bgap Lgap

 pup + pdn

2︸ ︷︷ ︸
Mean pressure

−
µL2

gap

h3

dh

dt︸ ︷︷ ︸
Squeeze

 k̂ (2.62)

Again as was discussed in 2.1.4, the careful choice of control volume allows for the

mean pressure term to be indirectly accounted for in the pressure projection of the

control volume. The squeeze term, however, is added to the net load applied by the

film.

Similarly for the cylindrical film, integrating over the cylindrical surface yields

|Fz|
π

= por
2
o − pir2

i +
(pi − po)(r2

i − r2
o)

2 ln ri
ro︸ ︷︷ ︸

‘Mean’ pressure

− 3µvz
2h3

[
(r4
o − r4

i ) +
(r2
i − r2

o)
2

ln ri
ro

]
︸ ︷︷ ︸

Squeeze

(2.63)

While more complicated than the Cartesian case, this equation still relates the

force and squeeze as a function of gap height, fluid viscosity, and a geometric constant,

and the ‘mean’ pressure of the gap.

2.2.3 Bearing Modeling

As was mentioned previously, the lubricating films provide a bearing function

which maintains design gaps in the films. Considering this, they cannot be neglected

even in the simplified lumped model. Instead, they are approximated using ana-

lytical solutions to their pressure distributions. In [118], Child’s et al. developed an



53

‘impedance’ approach where the force response of various hydrodynamic bearings can

be related to the squeeze velocity they experience. Assuming an incompressible and

aligned journal bearing, the instantaneous force that a journal bearing film applies

the journal can be related analytically to its instantaneous eccentricity and velocity.

This is accomplished by defining impedance tensors, which relate a pure squeezing

motion to a resulting force. An arbitrary journal rotating about its translating central

axis must first be converted to the pure squeeze frame by calculating its pure squeeze

velocity

vs = v − ω × e (2.64)

and eccentricity ratio

εs =
1

Cb

 cos (∠vs) sin (∠vs)

− sin (∠vs) cos (∠vs)

 e (2.65)

The resulting pure squeeze force given by the impedance tensors is then returned

to the fixed frame to find the load applied to the journal

F b = −2µLb

(
rb
Cb

)3

|vs|

cos (∠vs) − sin (∠vs)

sin (∠vs) cos (∠vs)

W s (2.66)

The appropriate impedance tensor to use depends on the geometry of the bearing

considered. While not required, it is common to have journal bearings in EGMs to

carry radial loads on the gears due to the net pressure and shear forces of the unit. Due

to geometric constraints, these bearings are typically ‘short’
(
Lb
2rb

< 1
)

. Considering

this, they can be modeled using Ockvirk’s short bearing impedance tensor given

in [119]

ψ1 = 2(1− ε2)−1/2 arccos
(
−εs,x(1− ε2s,y)−1/2

)
(2.67)

ψ2 =
Lb
2rb

(1− ε2)−2 (2.68)

Wx,short =
(
(1− ε2 + 3ε2s,x)ψ1 + 6εs,x

)
ψ2 (2.69)

Wy,short =

(
3εs,xψ1 + 4 +

2ε2s,x
1− ε2s,y

)
εs,yψ2 (2.70)
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In order to apply the analytical film assumption to APMs, the piston’s tilting

about its central axis must be assumed small as compared to the clearance of the unit.

In this case, its behavior will resemble that of a journal bearing.Unlike typical journal

bearings in EGMs though, the piston is long and therefore more closely resembles

the Sommerfeld long journal bearing
(
Lb
2rb

> 1
)

. Considering this, the long bearing

impedance tensor given in [119] is used where

ψ1 =

√(
1 +

ε2

2

)2

− (1 +
ε2

4
)ε2s,y (2.71)

ψ2 = 2(1− ε2)−1/2 arccos

(
−
(

1 +
ε2

2

)
x(ψ2

1 − ε2s,y)(−1/2)

)
(2.72)

ψ3 =
3

2

(
(1− ε2)

(
1 +

ε2

2

))−1

(2.73)

Wx,long =
(
(2 + ε2 − 3ε2s,y)ψ2 + 4εs,xψ1

)
ψ3 (2.74)

Wy,long = (3εs,xψ2 + 4ψ1)εs,yψ3 (2.75)

Since these impedance definitions consider only the pressure forces of the interface,

it is necessary to include additional shear terms. Again because of the assumption of

small tilting, there is negligible wedge effect in the axial direction, and the axial shear

force is thus an integral of the constant surface velocity over the circumferentially

varying gap height. Following the approach suggested by Rituraj et al. [120], the

circumferential shear of the bearing is determined as a modification of the nominal

Ockvirk shear solution to account for the aspect ratio of the film. Note that as a

machine rotates, the length of the interface can change (e.g. piston-cylinder interface

of APM). Considering this, both the impedance tensors and the shear relation are

dynamically adjusted to select the appropriate tensor and aspect ratio (if necessary).

The net force of the bearing is then accounted for with Gauss quadrature, allowing

for slight variations in eccentricity along the axial length ε(z) to induce a net moment

from the film.

F b =

∫ L/2

−L/2

[(
2µ|v|

(rp
c

)3
)
W +

∫ 2π

0

µ

h
vsrp dϕ

]
dz (2.76a)
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Table 2.2.
Impedance tensor case study parameters

Reference Dynamic Viscocity µfluid 0.0594 Pa s

Gear Nominal Mass m 0.338 kg

Rotation Speed ωs 2000 rpm

Shaft Radius rbearing 10 mm

Bearing Depth bbearing 19 mm

Bearing Clearance Cbearing 60 µm

Applied Load Fs [0 1.5 0]T kN

M b =

∫ L/2

−L/2

[
rcg ×

(
2µ|v|

(rb
c

)3
)
W +

∫ 2π

0

(rcg + rbr̂)×
µ

h
vsrb dϕ

]
dz (2.76b)

The benefit of using an impedance method is shown in Figure 2.10, comparing

an example of the dynamic results obtained by the Ockvirk solution mobility and

impedance methods with varying mass. The relevant simulation parameters for this

study are given in Table 2.2. This figure shows that while all solutions converge to the

steady Ockvirk analytical solution, the path that they take to this point is a significant

function of the inertia of the body. For the transient loads of a PD machine, then,

this inertia is not negligible and will impact the resulting micro-motion of the bodies.

Here, the mass of the bodies taken as reference is the mass of the driven gear of Ref

E3, showing a non-negligible effect for modeling of the unit.

To account for the rolling contact bearings that are used in PD machines, an ex-

ample of which is given in Figure 2.11(a), an impedance relationship must be derived

here. From Johnson [121], the indentation depth of two rolling cylinders with par-

allel axis in steady rolling is given by Hertzian contact. Certainly the bodies do not

penetrate in reality, and it is worth clarifying that here indentation depth δ is defined

as the maximum depth of penetration of the rigid profiles before deforming in the

contact. With this, the needle bearing is equivalent to that of a cylinder rolling on
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𝑥
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(a) Instantaneous Journal Loading

Increasing 
𝑚

Overshoot
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(b) Journal Trajectory

Figure 2.10. (a) Instantaneous pressure and external loading of an ec-
centric rotating journal with exaggerated clearance (b) the time varying
journal center position predicted by both the mobility and impedance
methods, and their asymptotic tending to the steady Ockvirk π-film so-
lution

a flat plane (with Rp → ∞ for flat plane suggested by [121]), so that the force from

one needle of the bearing is linearly dependant on the rigid indentation depth

Fδ ≈
π

4
E∗bneedleδ (2.77)

The total stiffness of the bearing is then given by the collection of forces of all needles

in the bearing. Notice, however, that the bodies deform at both the inner and outer

race interfaces, demonstrated in Figure 2.11(b). Assuming that the deformations are

small enough that these interfaces do not interact, then for a given shaft eccentric-

ity only half of the deformation yields force output on the shaft so the impedance

relationship is given by

F b ≈
Nneedle∑
i=1

−π
8
E∗bneedle max (0, es · r̂n,i) r̂n,i = −kneedlees (2.78)
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(a) Eccentric needle bearing
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(b) Single Needle

Figure 2.11. (a) Typical needle bearing configuration with exaggerated
eccentricity (b) Demonstration of multiple penetrations δ1/2 for a single
needle in bearing

It turns out that this expression is not a function of the phase of the needles

with respect to the angle of eccentricity
(
∠rn,i − ∠es

)
, so this system can be resolved

into an equivalent linear spring, whose constant is a function only of the number and

length of the needles and the material properties

kneedle =
π

8
E∗bneedle

Nneedle−1∑
i=0

max

(
0, cos

(
i

2π

Nneedle

))2

(2.79)

To account for the damping associated with this bearing, an optional definition of

the damping ratio ς of the body is available, so that

dneedle = 2ς
√
mbodykneedle (2.80)

and the net force of the bearing considers also the velocity of the bodies involved

F b = −kneedlees − dneedleės (2.81)
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2.2.4 Rigid Body Motion

With the loads on the body defined, it is necessary to find the resulting acceleration

of the body. Because the model must work for an arbitrary unit, no assumptions can

be made on the shape or constraints of the bodies. To model the dynamics, then,

Newton’s 2nd law is applied to conserve linear and angular momentum in the arbitrary

body. First, the linear momentum must be defined in a fixed inertial frame (IF) so

that

m
d

dt
vIF =

∑
i

F i,IF (2.82)

Instead the angular momentum is defined with respect to the center of mass of the

body, and is therefore conserved in the body-fixed (BF) frame traveling with the

center of mass. This has the added convenience of an inertial tensor that need not

be transformed as the body moves, so that

I
BF

d

dt
ωBF =

∑
i

M i,BF (2.83)

The inertial tensor here is the collection of the products of inertia in each direction,

where

I =


Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

 (2.84)

These expressions can calculated either analytical for simple geometry or directly

from CAD, demonstrated for Ixx and Ixy as

Ixx =

∫
Ω

(
y2 + z2

)
dm

Ixy = Iyx =

∫
Ω

x y dm

(2.85)

Because of this coordinate system distinction, and because the applied loads are

typically applied in the body-fixed frame, a coordinate transformation is necessary

to relate the two. This transformation can be a seen as the result of 3 sequential

rotations, known as the Euler angles. In the present thesis, the most common ‘ZYX’
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convention is followed, where the body is first ‘Yawed’ about the z-axis by an angle

Ψ, then ‘Pitched’ about the transformed y′-axis by an angle Θ, and finally ‘Rolled’

about the resulting x′′-axis by an angle Φ so that

rBF = R
x
(Φ)R

y
(Θ)R

z
(Ψ) rIF

=


1 0 0

0 cos Φ − sin Φ

0 sin Φ cos Φ


︸ ︷︷ ︸

Roll


cos Θ 0 sin Θ

0 1 0

− sin Θ 0 cos Θ


︸ ︷︷ ︸

Pitch


cos Ψ − sin Φ 0

sin Ψ cos Ψ 0

0 0 1


︸ ︷︷ ︸

Yaw

rIF
(2.86)

Since these rotation matrices are skew-symmetric with determinant +1, this relation-

ship is easily inverted by observing that the inverse of the matrix is simply a rotation

in the opposite direction

rIF =
(
R
x
(Φ)R

y
(Θ)R

z
(Ψ)
)−1

rBF = R
z
(Ψ)−1R

y
(Θ)−1R

x
(Φ)−1 rBF

= R
z
(−Ψ)R

y
(−Θ)R

x
(−Φ) rBF

(2.87)

The net loading of the body can then be found by collecting the forces in both

reference frames and

F net,IF =

(∑
i

F IF,i

)
+R

z
(−Ψ)R

y
(−Θ)R

x
(−Φ)

(∑
j

FBF,j

)
(2.88)

Mnet,BF = R
x
(Φ)R

y
(Θ)R

z
(Ψ)

(∑
i

M IF,i

)
+

(∑
j

MBF,j

)
(2.89)

By consider the location of each force, the moment due to the jth force offset from

the center of mass of the body is

MBF,j = rBF,j × FBF,j (2.90)

with appropriate coordinate transformations to facilitate inertial frame definitions of

the position and/or force vector.

This formulation is not directly integrable as presented, since there is no expression

which relates the sum of the moments to progress the Euler angles. By observation

of the coordinate systems, however, the following expression can be used to relate the
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instantaneous rate of change of the Euler angles to the angular velocities, closing the

problem of body position

ωBF =


Φ̇

0

0

+R
x
(−Φ)


0

Θ̇

0

+R
x
(−Φ)R

y
(−Θ)


0

0

Ψ̇

 (2.91)

2.3 Geometric Module

Throughout the previous modules outlined in this chapter, the control volume

discretization is referenced by both the surfaces and the volume for both fluid-dynamic

and micro-motion contexts. To extract this required information, a geometric module

of the model is required. The geometric module is intentionally treated as a black-box

in this thesis, and its existence assumed for whichever pump is being considered. This

is because it will inevitably be pump specific, but is a pre-processing step that can

be treated as a separate analysis. Details of the geometric module used in the EGM

can be found in [15], and are briefly explained here.

The module starts directly from the CAD of the unit, and extracts the gear and

groove profiles. With the resulting gear profile, it defines the delimiting segments

mentioned in Section 2.1. The purpose of the geometric module is to extract the

relevant information from the geometry of the unit necessary to facilitate the lumped

simulation of the displacing action of the unit. For some units, such as piston-type

machines, the distinction between these finite displacement chambers is trivially given

by each piston-bore pair. Others, such as typical gerotors, the volumes are delim-

ited by sealing lands, making for intuitive separation points of the volume. In some

machines, such as external or internal gear machines, there is no consistent delimi-

tation of the fluid volumes. In either of the latter cases, the geometric module must

define the fluid volume into an inter-connected set of volume in such a way that it

appropriately captures the displacing action of the unit.

In order to conserve mass and to respect the fundamental rules outline by Zhao

and Vacca [15], the segments are adjusted slightly before exporting the resulting
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information in an N -dimensional table for interpolation online in the simulation. For

the case of EGM, this table is a function of the drive gear shaft angle and the center

distance of the two gears, but in general these dimensions correspond to mechanical

degrees of freedom of any pump. As an alternative to CAD, the geometric module

can take input of an analytical gear profile, generated by symbolically performing

the cutting process of the gear and passing the resulting tooth profile. The latter

functionality will be required for the optimization procedure in coming chapters.

This gear generator module is described in detail in [5].

Similarly for APMs, the tool AVAS outlined in [122] is used. While the delimita-

tion of volume in these units is straightforward, determination of the flow restrictions

formed in the porting is not. To overcome this, AVAS examines the instantaneous

flow path of the porting of the APM directly from the 3D drawings of the unit. In do-

ing so, it extracts the instantaneous point of flow constriction to both the outlet and

inlet porting given by the 3D flow paths. By repeating this procedure over a range of

shaft angles, the instantaneous connectivity of the Ar,HP and Ar,LP connections can

be collected into a similar lookup table for use simulation.

2.4 Implementation

The various inter-connected modules of the proposed model form a stiff non-linear

system of ordinary differential equations of the form

d

dt
ψ = f

(
t, ψ
)

(2.92)

For the lumped parameter implementation, LSODA [123] provides a powerful method

switching ODE solver to integrate the system of equations. In each function evalua-

tion of LSODA, the function f
(
t, ψ
)

is evaluated by collecting the flows and forces

in the chambers and bodies respectively, so that the instantaneous properties of the

chamber and acceleration of the bodies can be found. This information is then used

by LSODA to progress the solution and provide updated state-variables ψ for subse-

quent function evaluations. For this reason, they are treated as known quantities for
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a single function evaluation. For the distributed parameter implementation to follow,

the use of this integrator is unfavorable since the simulation time of is not monotoni-

cally increasing. Instead in this case, available integrators for the LP domain include

the multi-step variable coefficient backwards difference formula implemented in the

GNU Scientific Library [124], variable order Runge-Kutta explicit integration, and

a semi-implicit Adams–Bashforth predictor-corrector. These integrators have been

proven to be successful for systems of equations with varying stiffness, and all have

the important property of constant forward progress that is necessary in this ap-

proach. While these solvers are generally not capable of matching the computation

time of LSODA, the distributed parameter films dominate simulation time and the

impact of the lumped parameter portion is negligible.
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3. DISTRIBUTED PARAMETER MODELING

This chapter details the development of the distributed parameter modeling approach.

Similar to Chapter 2, this thesis can be seen as a novel formulation for modeling

any lubricating interface, again addresses the shortcomings identified in Section 1.3

relevant to distributed parameter modeling. This work takes as reference the collec-

tion of lubricating film models developed by Dr. Vacca and Dr. Ivantysynova’s re-

search groups over decades, with notable contributions from Pellosi [48], Shang [125],

Schenk [51], Zecchi [52], Dhar [44], Thiagarajan [54], and Pellegri [46]. The major

inspiration of this work is that, while a large effort has been made to improve the

modeling of each lubricating interface of EGM, gerotor, and APM considered in the

above works, their improvements typically focused on a single interface. In reality,

though, the dynamics of the single body reflect in all films it interacts with, and

balance is achieved by the simultaneous response of all these films. However because

each of the aforementioned models were developed as standalone tools, direct com-

bination of all was not possible. Furthermore, the increased computational demand

required to solve all films simultaneously means that care must be taken in the distri-

bution of computational loads. This will imply prioritizing not only fidelity, but also

efficiency of a given modeling approach. Considering this, the novel contributions to

the distributed parameter modeling are as follows

• Development of the distributed parameter model within the same API as the

lumped model, with heavy focus on modularity and parallelizable object-oriented

programming. In doing so, a novel strong coupling of the lubricating and lumped

parameter models within a single complete simulation is achieved.

• Consideration of the coupled effects of all lubricating films on all related floating

body.
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• Development of a numerically stable cavitation algorithm for lubricating films.

• Direct integration of this cavitation algorithm with the mixed lubrication model.

• Development of transient FEM and analytical based solutions to the fluid-

structure problem.

• Definition of a numerical impedance tensor for the mixed universal Reynolds

equation to facilitate asynchronous time stepping of the lumped and distributed

domains.

3.1 Universal Flow Solver

The analysis begins with the compressible Reynolds equation for thin films, de-

rived from the Navier-Stokes equations assuming

• a Newtonian fluid

• laminar flow such that viscous forces dominate inertial and body forces

• negligible pressure gradient and flow in the film-normal direction

so that the conservation of mass and momentum in the film is governed by

∇ ·
(
ρh3

12µ
∇p
)

= ∇ · (ρhv) +
∂ρh

∂t
(3.1)

As was mentioned in Section 2.1, there are many possible ways to model the

variation of fluid properties with pressure and temperature. Similar to the lumped

parameter model, this analysis will make use of tabulated fluid properties of a typical

ISO VG 46 hydraulic oil. If the temperature in the film is allowed to reached a steady

value such that isothermal operation can be assumed, then neglecting transients of

cavitation, the density is a function only of pressure ρ = ρ(p). Inverting this relation

shows that p = p(ρ), which can then be differentiated with respect to an arbitrary

quantity ψ
∂p

∂ψ
=
∂p

∂ρ

∂ρ

∂ψ
(3.2)
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to relate the change in pressure and density. Using the definition of the isothermal

bulk modulus

K = ρ
∂p

∂ρ

∣∣∣∣
T

(3.3)

and substituting this into the original form of Reynolds Equation 3.1, the pressure

gradient can be recast as a density gradient to form the universal Reynolds equation

∇ ·
(
Kh3

12µ
∇ρ
)

= ∇ · (ρhv) +
∂ρh

∂t
(3.4)

The term ‘universal’ comes from the fact that, by accounting for density of the bulk

mixture properly, the equation can be directly applied in regions of full film and

cavitated ruptured film. While it is possible to solve the original Reynolds Equation

3.1 directly, the sharp gradients in fluid properties at the interface of the ruptured film

make numerical integration difficult. This is because change in pressure cannot be

related to change in fluid properties within a given iteration, and a computationally

expensive non-linear implicit solver is required. The benefit of the universal Reynolds

Equation 3.4 is the presence of the integrated quantity ρ in each term, yielding a

better behaved solution that can be directly updated by a time-march. Furthermore

the strongest sensitivity, between pressure and density, is removed for the governing

equation leading to more stable behavior of the equation.

In order to implement this approach, though, it is necessary to relate the solution

in terms of density to that of pressure to update the fluid properties and for use in

the force calculations to follow. To do this, the cavitation/aeration model introduced

in Section 2.1.2 is inverted to find pressure for a known density.

Above the saturate density ρsat = ρ(psat), the pressure-density relationship is given

directly by interpolation of the same tabulated fluid properties used in the LP model.

Below this pressure, the volume occupied by the bulk fluid is given by the liquid and

undissolved gas components. As was demonstrated in Figure 2.4(a), small changes in

pressure in this region will lead to large changes of the bulk fluid properties. These

changes, however, are due primarily to the highly compressible gas, and therefore

the change in density of the liquid is negligible. Considering this, the fluid density
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is fixed at its value at saturation ρl0 = ρ(psat). As was proven success in [29, 93, 95],

the transient of the release of dissolved gas is neglected, where instead Henry-Dalton

equilibrium equation is used to model the asymptotic behavior of the bulk fluid in

the differential volume dV . While the more detailed approaches discussed for the LP

domain are possible for the films as well, their use implies a significant increase in

computation time. For this reason, the present work elects to use the lighter-weight

equilibrium model over the entire fluid domain, retaining cavitation information while

preserving the feasibility of multiple interfaces in a single simulation.

This is further supported by works outside of lumped parameter systems as out-

lined by Braun and Hannon [83], which find that most forms of cavitation have very

short time constants. Furthermore, it concludes that gaseous cavitation typically re-

sults in the generation of a stable cavity in the film. While the release of the gas is

fast, changes in this stable cavity will be slow. Thus, its expansion can be assumed

to be isothermal so that the polytropic index ng = 1. Under these assumptions, the

density of the bulk fluid, as derived in Section 2.1.2, is provided with the exception

that the liquid density has been treated as constant. This implies that

exp

(
p0 − p
Kl

)
≈ 1 (3.5)

and the bulk fluid density given in Equation 2.17 is simplified to

ρf =
ρsat

αl0 + χuαg0
p0
p

(3.6)

By inverting this equation, the pressure of the fluid can be expressed as a function of

the bulk fluid density

p = psat

[
αl0
αg0

(psat − pvap,h)

psat

(
ρsat

αl0ρf
− 1

)
+ 1

]−1

(3.7)

This function is valid only in the range p ∈ (pvap,h, psat), or ρf ∈ (ρvap,h, ρsat),

stopping at the points of discontinuity in χu. As the entrained gas of the liquid αg0

approaches null, and there is not trapped gas, the range (pvap,h, psat) narrows so that
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the equation is never used. With the pressure known, the bulk modulus can be found

by taking the derivative with respect to the bulk fluid density

Kf

ρf
=

(
∂ρ

∂p

) ∣∣∣∣
T

=
(psat − pvap,h)ρsat

αg0ρ2
f

[
(psat − pvap,h)(ρsat − αl0ρf )

αg0 psat ρf
+ 1

]−2

(3.8)

The mass fraction of the undissolved gas can then be related to the void fraction

using Equation 2.15, where the density of the gas is given by an expansion to the

given pressure as is shown in Equation 2.20.

When the film pressure reaches the vapor pressure, p ≤ pvap,h, all the gas has been

released and the fluid begins to evaporate. Unlike the case of gaseous cavitation,

it was discussed in [83] that the vaporous cavitation component is a very dynamic,

transitory phenomenon. In this condition, then, it is not appropriate to treat the gas

as isothermal and the compression and expansion of the vaporous bubbles is treated

as an isentropic process. If the vaporous working fluid is treated as an ideal gas,

Shapiro [126] gives that the kinetic theory of gasses can be applied to state that its

ratio of specific heats kv is related to the degrees of freedom of its molecules

kideal = 1 +
2

NDOF

(3.9)

Since hydraulic oil molecules (which are typically used for PD machines) contain long,

complex chains of atoms, the molecule will have a very large number of degrees of

freedom NDOF . Without information on the exact chemical makeup of the working

fluid it is assumed, as is suggested in Shapiro [126], that the ratio of specific heats

approaches unity. The ratio of specific heats kv ≈ 1 is then taken for this thesis, and

similarly its polytropic index nv = kv = 1. With this, the density is simplified from

Equation 2.22, with constant liquid density ρl0,

ρf =
ρsat

αl0(1− χv) + ρl0
ρv0
αl0χv

pvap,h
p

+ αg0
psat
p

(3.10)

Again, this equation is inverted to solve for pressure as a function of fluid density

p =
ψv1 + ψv2 ρf −

√
ψv3 ρ2

f + 2ψv4 ρf + ψ2
v1

2ρf
(3.11)
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where

ψv1 = (pvap,h − pvap,l) ρsat

ψv2 = pvap,h

(
ρl0
ρv0

)
+ pvap,l

ψv3 = ψ2
v2 − 4

(
ρl0
ρv0

)
p2

vap,h − 4

(
αg0
αl0

)
psat (pvap,h − pvap,l)

ψv4 = ρsat

[(
ρl0
ρv0

)
p2

vap,h +

(
1− ρl0

ρv0

)
pvap,h pvap,l − p2

vap,l

]
(3.12)

Similar to above, this function is valid only in the range p ∈ (pvap,l, pvap,h] or ρf ∈

(ρvap,l, ρvap,h]. In this region, the bulk modulus can be found by differentiation so that

Kf

ρf
=

(
∂ρ

∂p

) ∣∣∣∣
T

=
ψ2
v1 + ψv4 ρf − ψv1

√
ψv3 ρ2

f + 2ψv4 ρf + ψ2
v1

2ρ2
f

√
ψv3 ρ2

f + 2ψv4 ρf + ψ2
v1

(3.13)

Finally, when the pressure falls below the low vapor pressure p ≤ pvap,l, all liquid

has evaporated, and the fluid is comprised of only vapor and gas. In this condition,

Equation 3.10 simplifies with χv = 1 and

ρf =
ρsat

ρl0
ρv0
αl0

pvap,h
p

+ αg0
psat
p

(3.14)

This can then be inverted to find the pressure as a function of density for p ∈ (0, pvap,l]

or ρf ∈ (0, ρvap,l]

p =
ρf
ρsat

[
pvap,h

(
ρl0
ρv0

)
+ psat

(
αg0
αl0

)]
(3.15)

By differentiating this, the bulk modulus is given as

Kf

ρf
=

(
∂ρ

∂p

) ∣∣∣∣
T

=
1

ρsat

[
pvap,h

(
ρl0
ρv0

)
+ psat

(
αg0
αl0

)]
(3.16)

demonstrating that the bulk modulus is directly equal to the pressure Kf = p.

Over the whole operating range, Figure 3.1 shows the varying fluid properties

calculated by this model over the cavitated and full film region. First in Figure 3.1(a),

the instantaneous bulk fluid density is given, showing the sharp drop as the bubbles

begin to release as compared to that of the pure liquid above saturation pressure.

The resulting bulk modulus is given in Figure 3.1(b), explaining the sharp drop that
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Figure 3.1. Equivalent properties of the bulk fluid for simulation (a)
density ratio (b) bulk modulus ratio (c) ratio of bulk modulus to viscosity
(d) dynamic viscosity ratio

occurs due to these bubbles. In Figure 3.1(d), the dynamic viscosity calculated with

Equation 2.28 is shown. From Equation 3.4, though, it is not this viscosity that defines

the diffusive of the density in the film, but rather the ratio of the bulk modulus to

this density as is shown in Figure 3.1(c).
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Note here that while the bubble release functions χu/v are necessary in deriving

the model, they result in a 1st order discontinuous derivative of density reflected in

Figure 3.1, and thus present an issue for numerical solution. The sharp discontinuities

occur when these functions meet, and the slope of the density-pressure curve changes

drastically. Physically, these properties describe the effective bulk fluid property, so

they describe not only the compressibility of the instantaneous make-up of the fluid

but the immediate release and absorption of the gas and vapor within. Therefore,

at the transition from one region to the next, the instantaneous rate of release of

the gas or vapor changes, leading to discontinuity in the rate of change of proper-

ties of the bulk fluid. Furthermore, this leads to a drastic drop in fluid properties

starting at psat of many orders of magnitude, disabling the pressure (density) driven

flow terms Equation 3.4 with respect to the shear flow terms. Since this drop must

occur exactly at the point of film rupture, it is this property of the model that allows

the scheme to inherently respect the JFO boundary conditions. In order to overcome

the discontinuity, previous works including [29, 94] have approximated the functions

with higher order continuous polynomials. In this work, however, hyperbolic tangent

blending functions are used to smoothly transition the otherwise discontinuous prop-

erties from one formulation to the next. This achieves the effect of maintain physical

accuracy, with only local deviation to accommodate numerical solution.

With the fluid model defined, Figures 3.2-3.4 demonstrate the behavior of each

term of the Reynolds equation, comparing the results of the compressible and incom-

pressible Reynolds to motivate the choice of compressible fluid. The incompressible

form is recovered from Equation 3.1 by assuming ρ constant such that it drops from

all terms. To consider cavitation in this case, it is common [90] to saturate pressure

at the point where cavitation begins, effectively imposing the Reynolds boundary

condition at the edge of film rupture

∂p

∂n

∣∣∣∣
p=psat

= 0 (3.17)

In the analysis to follow, the incompressible form of the equation will hold density

and viscosity constant, applying pressure saturation in regions of pressure p < psat.
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This will be compared to the fully compressible form, with fluid properties tabulated

for the typical ISO VG 46 oil demonstrated in Figure 3.1 that would be used in these

PD units. In either, fixed pressure boundaries are applied to either side of the 1D

film, with the different cases created by manipulating the shape and velocities of the

bodies.

In a uniform parallel gap, or one without relative body motion, pressure simply

diffuses from the boundaries as is demonstrated in Figure 3.2. Notice in the left

column that in the absence of cavitated pressures, the resulting pressure profiles are

almost identical for compressible and incompressible, with the slight change in density

for the compressible case contributing negligible difference. In the right column,

however, the case where psat is reached yields very different results. The issue with

this is an apparent sharp gradient out the outlet boundary of the film, causing a

significant over-prediction of the flow at the boundary. To this point, in general once

pressure saturation occurs the solution no longer conserves mass in the film, which

makes its use undesirable for prediction of film leakages.

Pressure generation in these films comes from two forms. First in Figure 3.3, pres-

sure is generated in regions where fluid is dragged into a converging gap. Conversely,

pressure drops in regions where fluid is dragged into a diverging gap. Similar to the

case of diffusion, there is very little difference in result for the converging wedge; in

both cases pressure builds in response to compression of the fluid. A subtle difference

in result is found, due to an extra source term via the density wedge h∂ρ
∂t

, allowing

for slightly more pressure to build as compared to the incompressible case. This is

expected, as the fluid plots in Figure 2.4 demonstrated that the properties change

very slowly with pressure above the saturation pressure. Instead in the diverging gap,

the pressure saturation approach fails to describe the breakdown of the film, and a

flat region of saturation pressure is returned. The issue with this is demonstrated for

x > 0.95, where the outlet pressure boundary is able to lift the pressure above psat.

By saturating the pressure, the reformulation of the film can happen immediately,

when in reality the compressible formulation cannot recover until the last internal
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Diffusion, 𝑝 > 𝑝𝑠𝑎𝑡 Diffusion, 𝑝 < 𝑝𝑠𝑎𝑡

Incompressible

Compressible

Figure 3.2. Pressure diffusion in an exaggerated parallel gap, compar-
ison of incompressible and compressible Reynolds in cavitated and non-
cavitated conditions

element in the mesh. The implications of this observation are the inability of the

pressure saturation approach to predict even the shape of the ruptured film, only to

warn that cavitation is expected.

The other source of pressure generation comes from squeeze, as is shown in Figure

3.4. For an expanding gap, the same issue discussed above is present, where the film

is simply saturated and is not brought further below into regions of low density as

is demonstrated in the compressible case. The more extreme example in this case

comes from the converging gap, where the incompressible performed well in the other

examples. Due to the large gap length, this case is an extreme example of the pitfall of

the incompressible Reynolds, namely that the entirety of the displaced mass must be
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Figure 3.3. Film wedge effects in an exaggerated non-parallel gap, com-
parison of incompressible and compressible Reynolds in cavitated and non-
cavitated conditions

discharged via a pressure driven flow. This requires a large pressure gradient, where

the compressible fluid instead allows the density to increase slightly with little effect

on the film pressure. This example shows that the incompressible form of Reynolds

equation can drastically over-predict the stiffness of film, leading to both unphysical

behavior and numerical instability.
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Figure 3.4. Film squeeze effects in an exaggerated translating gap, com-
parison of incompressible and compressible Reynolds in cavitated and non-
cavitated conditions

3.2 Modification for Mixed Lubrication

In reality, the nominal surface smooth expected in design is not realizable in man-

ufacturing. Figure 3.5, taken from Hamrock [90], shows that as the Hersey number

(dimensionless velocity) decreases, the hydrodynamic effects become too weak to carry

load and the film enters the mixed lubrication regime. In this regime, fluid lubricant

is still present in the film, however a portion of the load is carried by direct contact

of asperities of the two bodies. If the dimensionless velocity is further reduced, the

asperities carry the majority of the load in a regime called boundary friction.

Depending of the manufacturing process used surface finish will vary, affecting

the transition across these regimes. As the nominal film approaches the magnitude
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Figure 3.5. Demonstration of the lubrication regimes (from Hamrock [90])

of the roughness, the effects of these surface asperities become non-negligible not

only in terms of contact but to the film flows as well. In [53], Thiagarajan and

Vacca demonstrated how the application of Patir and Cheng’s partial film lubrication

model [69,70] allowed for accurate prediction of flow in the lateral lubricating interface

of EGMs. As was stated earlier, more detailed deterministic models are available in

the state of the art. The use of these models however, requires a fine enough mesh to

resolve the individual asperities. This leads to a significantly higher computational

cost to model a single film. With the overall goal of including multiple films in a single

simulation, then, the present model elects to use the empirical approach developed

in [69,70]. This approach retains the ability to capture mixed lubrication effects while

maintaining the feasibility of strong coupling.

In the present section, the aforementioned model is extended to the universal

Reynolds equation derived in Section 3.1. This analysis begins with the corrected

film flow (per unit width) given by Patir and Cheng [69,70]

q = vh+
φs
2
Rq (vt − vb)− φp ◦

(
h3

12µ
∇p
)

(3.18)
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Figure 3.6. Cross section of a rough 2D film, comparing the nominal
dashed profile and the real film surface with non-zero roughness

where the pressure flow factors φ
p

corresponds to the added flow resistance that is

introduced by the fluid turning around the asperities in the two directions, and the

shear flow factor φs accounts for the additional fluid dragged by the asperities.

It is worth noting, aided by Figure 3.6, the distinction between the nominal

(smooth) gap distributions of the top and bottom bodies and the averaged gap h.

Here, h is the expectation of gap height under the probability density distribution

fh′(s) of the asperities on both surfaces

h ≡ E[h+ h′t + h′b] =

∫ ∞
−h

(h+ s)fh′(s)ds (3.19)

where the probability distribution of the net gap deviation

h′ = h′t + h′b (3.20)

is expressed in terms of the net roughness

Rq =
√
R2
q,t +R2

q,b (3.21)

In order to relate this term to the the rigid gap, then, this integral is expanded so

that

h =

∫ ∞
−h

(h+ s)fh′(s)ds =

∫ ∞
−h

sfh′(s)ds+ h

∫ ∞
−h

fh′(s)ds (3.22)
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If only a constant surface velocities and incompressible fluid is considered, there is no

need to expressly define this quantity, only its change with nominal gap, leading to

the definition of the contact flow factor derived in [71]

φc ≡
∂h

∂h
=

∫ ∞
−h

fh′(s)dy (3.23)

Instead in this approach for an arbitrary film, an expression relating h to h is required,

leading to the definition of a new roughness flow factor

φR ≡
1

Rq

∫ ∞
−h

sfh′(s)ds (3.24)

so that the two are used to relate the expected and nominal gap via the roughness

h =

∫ ∞
−h

sfh′(s)ds+ h

∫ ∞
−h

fh′(s)ds = φRRq + φch (3.25)

Substituting this into 3.18 and multiplying by the fluid density gives the averaged

mass flow (per unit depth) as a function only of the nominal gap

ṁ = ρq = ρv(φRRq + φch) + ρ
φs
2
Rq (vt − vb)− φp ◦

(
ρh3

12µ
∇p
)

(3.26)

From continuity, the divergence of this mass flow must balance the instantaneous

rate of change of mass in the control volume (per unit area), and Reynolds equation

is recovered accounting for mixed lubrication

∇·
(
φ
p
◦
(
ρh3

12µ
∇p
))

= ∇·
(
ρv(φRRq+φch)

)
+∇·

(
ρ
φs
2
Rq (vt − vb)

)
+
∂ρh

∂t
(3.27)

Finally applying the pressure-density transformation derived in Section 3.1, and trans-

forming the average gap that appears with 3.25, the universal Reynolds equation with

mixed lubrication effects is found

∇·
(
φ
p
◦
(
Kh3

12µ
∇ρ
))

= ∇·
(
ρv(φRRq+φch)

)
+∇·

(
ρ
φs
2
Rq (vt − vb)

)
+
∂ρ(φRRq + φch)

∂t
(3.28)

To define the pressure and shear flow factors, Patir and Cheng [69,70] performed

detailed simulation of the original Reynolds function as a function of the magnitude

and directionality of the surface roughness, at a high enough resolution to resolve
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the asperities. Here the directionality of the roughness is given by the ratio of the

auto-correlation lengths in the two directions

Λ =
λ0.5,x

λ0.5,y

(3.29)

where the auto-correlation length λ0.5 corresponds to the length at which the auto-

correlation of the profile is half of its maximum. From these simulations, empirical

relations for the flow factors were extracted. In [53], Thiagarajan and Vacca found

that the roughness in the lateral lubrication interface of EGMs was isotropic (Λ = 1)

before and after operation, and well modeled by a Gaussian distribution. Following

these findings, this is assumed to be a general observation of lubricating interfaces of

PD machines so that the flow factors are given by the empirical relations correspond-

ing to isotropic roughness. For all relations, the flow coefficients are defined in terms

of the dimensionless gap height, normalized by the effective roughness of the surface

h̃ =
h

Rq

(3.30)

First the pressure flow factors for an Gaussian distribution are given by [69], which

are independent of direction for an isotropic surface so that

φp,x = φp,y ≈ 1− 0.9 exp
(
−0.56h̃

)
(3.31)

Similarly from [70], the shear factor of an isotropic surface is defined

φs ≈
R2
q,t −R2

q,b

R2
q

1.899 h̃0.98 exp
(

0.05h̃2 − 0.92h̃
)
, h̃ ≤ 5

1.126 exp
(
−0.25h̃

)
, h̃ > 5

(3.32)

For a Gaussian distribution of roughness, [71] derived the exact analytical solution

to the contact factor. However since the solution contains the error function, a poly-

nomial approximation was provided which is favorable for numerical implementation

φc =
1

2

(
1 + erf(h̃)

)
≈

exp
(

0.0401h̃3 − 0.304h̃2 + 0.782h̃− 0.6912
)
, 0 ≤ h̃ < 3

1, h̃ ≥ 3

(3.33)
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Figure 3.7. Variation of mixed lubrication flow factors with dimensionless
gap height, for shear flow taken at its maximum when the bottom surface
is smooth Rq,b = 0 so Rq = Rq,t

The roughness flow factor defined in 3.24 can be found by substituting the Gaussian

probability density function, yielding the exact solution in terms of the dimensionless

gap height

φR =
1

Rq

∫ ∞
−h

s√
2πR2

q

exp

(
s2

2R2
q

)
ds =

1√
2π

exp

(
− h̃

2

2

)
(3.34)

Using these expressions, Figure 3.7 demonstrates the variation of flow factors as

a function of dimensionless gap height. This demonstrates that at large gap heights,

the flow factors decay such that the original universal Reynolds is recovered. As the

gap is decreased, however, these factors accouting for the resulting change in flow

behavior accounting for the asperity interaction.
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3.3 Fluid-Structure Interaction

As was discussed in [50] as well as [45] for APMs and EGMs respectively, the

choice of constraint has a strong effect on the resulting deformation, and therefore

pressure, behavior of the film. Therefore, it is important to select the constraint of

each body to reflect the true physics of the component. When possible, it is also best

to validate the assumption against experimental results.

During operation, the pressures that build in these films can rise well above the

operating pressure of the unit. In these conditions, the deformation of the bodies

on either side of the film due to these large pressures is not negligible. Furthermore,

since the gaps are on the order of microns, similar to the deformation, their inclusion

makes significant changes to the gap geometry which alter the resulting film pres-

sure distribution. This forms a fluid-structure interaction (FSI) that must be solved

together to accurate reflect the pressure distribution in the film.

Since the goal of this thesis is promote exploration of novel units and working

princples, the geometry of the bounding bodies of these interfaces may not be known.

For this reason, the present section discusses two modeling options available for use in

this tool. First, the deformation of the bodies can be determined using a finite element

structural solver in the form of an influence operator. Since this approach requires

existing knowledge of the geometry of the bodies, an analytical approximation of this

deformation is discussed as an alternative. In either case, the transient response of

these bodies is considered here for the first time.

3.3.1 Influence Operator

In the present thesis, the material of the bounding bodies is assumed to be uniform

and isotropic, with small strain such that linear elastic behavior can be assumed. The

displacement u of the relevant film surfaces can be found by imposing mechanical
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equilibrium in each body. Neglecting body forces, this is accomplished by setting the

divergence of the stress tensor σ, a function only of strain γ, to zero.

div
(
σ(γ)

)
= 0 (3.35a)

u(x) = uD ∀ x ∈ ΓD (3.35b)

σ
(
γ(x)

)
n̂ = p(x) n̂ ∀ x ∈ ΓN (3.35c)

For arbitrary body, the surface domain ΓD corresponds to the region of the body

where displacement is constrained. Since the body (i.e. the gears or the lateral

bushings for EGM; piston, slipper, valve plate, and cylinder block for APM) is fully

submerged in the fluid domain, the surface domain ΓN corresponds to the remainder

of the exposed area of the body on which a non-uniform pressure distribution is

applied in the surface-normal direction.

Subject to the assumptions outlined above, the linearity of this problem allows its

solution to be expressed in terms of solutions of sub-problems with traction boundary

(3.35c) split

σ(x) n̂ = n̂ ∀ x ∈ Γn,i, (3.36a)

σ(x) n̂ = 0 ∀ x ∈ ΓN − Γn,i (3.36b)

ΓN = ∪i Γn,i (3.36c)

so unit pressure is applied to segmented subsets Γn,i of the total surface domain ΓN .

The solution to each of these sub-problems ûi can then be treated as a basis of the

solution space, which scales linearly to describe the deformation for arbitrary pressure

applied to its associated segment. Collecting these sub-problems, the exact displace-

ment solution u to the original problem can then be determined by superimposing

all these basis vectors, scaled by the pressure applied on each segment of ΓN less the

atmospheric pressure p0 where displacement is defined as zero

u(x) =
∑
i

ûi(x) [pi − p0] (3.37)
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Recording only the surface-normal component of each sub-problem’s displacement

at discrete points, an influence matrix IM can be generated. This matrix acts as a

deformation map and relates an applied surface pressure on the body to a resulting

film deformation ∆h by summing over the pressure contribution of each subset of the

domain ΓN

ĥi = ûi · n̂ (3.38a)

IMji = ĥi(xj) = ûi(xj) · n̂(xj) (3.38b)

∆hj =
∑
i

IMji [pi − p0] (3.38c)

The creation of this influence matrix can be performed as a pre-processing step,

with the results read during simulation instead of being solved online. To find this

deformation map a finite element method (FEM) is used, where the solution is ex-

pressed in terms of predetermined shape functions N with unknown degrees of free-

dom d. With the assumption of small displacement, the stiffness matrix of the system

is constant and each sub-problem defined in Equation 3.36 is given only by a differing

forcing vector f
i

K di = f
i

(3.39a)

ûi(x) = N(x)di (3.39b)

With the small time steps required to resolve the film behavior, though, the tran-

sient of the deformation subjected to a dynamic pressure load cannot be neglected.

To account for this, the existing influence matrix approach cannot be applied directly,

and the present thesis derives a novel form with consideration of the dynamics of the

solid elements. Momentum must still be conserved, where the force balance of Equa-

tion 3.35a now considers additional terms related to the inertia and strain rates of

the differential element

div
(
σ(γ, γ̇)

)
= ρü (3.40)

The fixed boundaries and surface tractions remain the same. Considering this, the

FEM formulation must be extended to consider the dynamic behavior of the body
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with introduction of the mass M and damping C of the system. Similar to above,

these matrices can be treated as constant due to the assumption of small displacement

so that

M d̈i + C ḋi +K di − f i(t) = 0 (3.41a)

ûi(t, x) = N(x)di(t) (3.41b)

To capture the velocity dependence, Rayleigh damping is applied

C = αM + βK (3.42)

With the assumption of small displacement in the body, it is assumed that the shape

of the deformed body is that of the undeformed. Considering this, the mass of the

body can be isolated to the separate rigid body dynamics module in Section 2.2.4.

Instead it can be assumed here that, due to the magnitude of the pressure loading on

the bodies, inertial effects of the solid elements deviating from the rigid solution are

negligible. The dynamic system of Equation 3.41a then simplifies to

βK ḋi +K di − f i(t) = 0 (3.43)

For this simplified system, the instantaneous degrees of freedom of each sub-problem

are given by the first order ordinary differential equation

di = K−1
(
f
i
(t)− βK ḋi

)
= d

(∞)
i (t)− βḋi (3.44)

Here the term d
(∞)
i (t) describes the ‘steady’ solution at that instant to which the

solution tends, evaluated from Equation 3.39a. Slowing the approach to this solution

is the damping term βḋi. This damping term is then discretized at time step (k)

using an implicit backward difference stencil for velocity so that

d
(k)
i = d

(∞)
i (t)− β

∆t

(
d

(k)
i − d

(k−1)
i

)
(3.45)

Applying Equation 3.41b followed by Equation 3.38a, this relationship can be trans-

formed to describe the evolution of the displacement basis which is then project onto

the constant film-normal direction so(
1 +

β

∆t

)
ĥ

(k)
i = ĥ

(∞)
i +

β

∆t
ĥ

(k−1)
i (3.46)
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By summing this equation over each sub-problem, Equation 3.38c can be used to

transform this into an update of the net deformed gap(
1 +

β

∆t

)
IM p(k)

∗ = IM
[
p(k) − p0

]
+

β

∆t
IM p(k−1)

∗ (3.47)

with definition of the ‘perceived pressure’

∆h(k) = IM p(k)

∗ (3.48)

Note that while this equation draws an analog to the static influence matrix case

(Equation 3.38c), this perceived pressure p∗ no longer corresponds to the instanta-

neous pressure p over the faces of the body. Instead, it embeds the delay in response

of the body to a change in loading and only asymptotically approaches the true pres-

sure over the domain. The transient deformation is implemented by updating this

perceived pressure vector on each iteration, with Equation 3.48 then used to relate

this pressure to the instantaneous film-normal deformation

p(k)

∗ =
p(k) − p0 + β

∆t
p(k−1)
∗

1 + β
∆t

(3.49)

In order to verify this approach, a simplified case study is taken using Ansys

Static/Transient Structural. The relevant details of this study are given in Table

3.1. As was discussed above, the rigid body translation of this body is accounted for

in the rigid body dynamics module, and so this loading condition is designed such

that the body’s center of mass is fixed. This solid foundation loading condition is

demonstrated in Figure 3.8(a), where the bottom face of the body is fixed. Over a

small portion of the top face, a uniform 10 MPa pressure is applied. Note that the

study of one pressure segment is sufficient, as the superposition property discussed

above means that more complex pressure loading will follow this same behavior.

For the giving loading condition, the same study was run in both Ansys Static

Structural and Transient Structural. The resulting face-normal deformation of the

body is demonstrated in Figure 3.8(b). First, this case was run in Static Structural

with linear-elastic steel as the material using the small strain solver. These results
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Table 3.1.
Transient deformation case study parameters

Density 7850 kg/m3

Young’s Modulus 200 GPa

Poisson’s ratio 0.3

Rayleigh Damping Coefficient β 10-4 s

Patch Offset Loff 3 mm

Patch Length Lp 7 mm

Foundation Length Lfnd 40 mm

Patch Depth bp 8 mm

Foundation Depth Lfnd 20 mm

Foundation Height hfnd 5 mm

𝐿 𝑏

ℎ
𝑏

𝐿𝐿

(a) Loading Condition (b) Resulting Deformation

Figure 3.8. Transient deformation case study in Ansys (a) Loading and
boundary conditions of object (b) resulting deformation

then correspond exactly to the IM operator of this problem. This same problem

was then repeated in Transient Structural, using typical parameters for constant

Rayleigh damping for the steel material used here. By using these same parameters

with the IM and Equation 3.48, Figure 3.9(a) compares the maximum deformation
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(b) Material Acceleration

Figure 3.9. Transient deformation results comparison (a) Maximum De-
formation (b) Material Acceleration

that results in each case. While the entire surface domain follows this same trend,

only this maximum deformation point is plotted for clarity.

The figure highlights the ability of the perceived pressure approach to capture the

deformation curve attained from detailed transient simulation without the additional

storage and computational expenses. While the settle time of the curves are identical,

there is some slight deviation in the trajectory of the point. To explain the slight

disagreement, Figure 3.9(b) includes the acceleration of the solid element (neglected in

the perceived pressure approach) at this maximal point given by the Ansys Transient

simulation. This figure demonstrates that in reality, the solid elements are inertial

and experience some acceleration. For reference in this problem, the norm of the

mass matrix |M |2 = 4.6, while the norm of the stiffness matrix is |K|2 ∼ 1012. Thus

while there is a relative large acceleration of the bodies, the shear and stiffness of the

problem are dominant and thus this acceleration contributes only a slight deviation

to the resulting trajectory of the elements. With this result as demonstration, the

approximation of the perceived pressure approach is acceptable.
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The limitation of the influence matrix approach comes from both the numerical

and computational point view. First, the solid domain can typical be resolved by a

mesh that is far coarser than that required for the fluid domain. In order to map the

pressure of the film to the solid domain, then, an interpolation must be performed.

Once the deformations at the solid body are found, they must be again interpolated

to map back to the fluid domain. As a result, this approach requires an additional 2

(likely sparse) matrix-vector multiplications

∆h(k) = Q(k)−1
IM Q(k) p(k)

∗ (3.50)

Furthermore, the interpolation errors introduced compound on the error of the solu-

tion. Since this influence matrix is dense, but typically with much coarser than the

fluid domain discretization Nfluid > Nsolid, it is not advantageous to combine these

three matrices due to the added computational and memory demands. For example

the present thesis uses linear barycentric interpolation, so the resulting density of the

interpolation matrix is very low for reasonably large solid domain. The interpolation

matrix density for an interpolant requiring k entries is given by

ρQ =
kNfluid

NfluidNsolid

=
k

Nsolid

� 1 (3.51)

with linear barycentric interpolation requiring k = 3 neighbors. For clarity, it is

pointed out that the inverse of this matrix need not be computed directly, nor does a

linear system need to be solved. Instead, the reverse interpolation matrix is formed

as a seperate interpolation matrix, which is then equally sparse. Since linear inter-

polation is used in both matrices, the solutions are consistent across domains. The

benefit of keeping the interpolation matrices separate is the ability to perform the

influence calculation in O (2ρQN
2
fluid +N2

solid), as opposed to O (N2
fluid) for the merged

matrices, when the operations are optimally ordered. Note that in practice, these

interpolation matrices need not be formally constructed and change with time. In

the present thesis, this is accounted for by directly integrating these interpolation

operations into the perceived pressure and gap updates.
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(a) Bending (b) Micro Deformation

Figure 3.10. Cantilever Plate effect of LP constraint boundary condition
of lateral balancing element of Ref E2 EG (a) Macroscopic bending (b)
Local (Micro) deformation

3.3.2 Analytical Approximation

While this approach is useful for simulations of an existing unit, it is a rigid

constraint for a designer attempting to develop a new unit. In effect, the designer

must develop the entire assembly of the unit before beginning to design the key

interfaces. As a solution, this thesis presents an alternate approach by observing that

the influence matrix captures two compounding effects, namely the local (micro) and

global (macro) effects of a fluid pressure applied to the surface of a body. This is

demonstrated qualitatively in Figure 3.10(a), where the pressure acts at a distance

from the constraints of the body inducing a bending of the body. Locally, the pressure

applies an added deformation of the region in direct contact with the pressure as is

shown in Figure 3.10(b).
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Macro Deformation

Considering first the macro deformation, the example of the lateral plate is con-

tinued, using Figure 3.10 as reference. As will be demonstrated in Section 3.4.4, the

radial force imbalance on the plate tends to enforce a fixed constraint at the interface

of the low pressure side of the casing. Hence, the plate can be approximated as a

cantilever rectangular plate of the same nominal thickness. While the geometry of a

rectangular plate varies from that of the lateral balancing plate, the shear forces in

the corners are zero and since body forces are neglected, this material has no effect

on the solution. Here is is assumed that the plate is thin, such that the x− y planar

displacements can be neglected, and that the z displacement is a function only of x

and y. The displacement of the plate’s neutral plane to the applied forces and mo-

ments can then be related to the flexural rigidity D of the plate. This equation can

be seen as the extension of the 1D Euler-Bernoulli beam to the planar deformation

of the thin plate 
Mx

My

Mxy

 = D


1 ν 0

ν 1 0

0 0 (1− ν)




∂2u
∂x2

∂2u
∂y2

∂2u
∂x∂y

 (3.52)

As was discussed Shin and Lee [127], expression of the exact solution of this prob-

lem is difficult for arbitrary loading. Following their findings, a 0-th order approxima-

tion of the plate bending is taken, where symmetry is assumed and the dependence

on the deformation along the x direction (as defined in Figure 3.11(a)) is neglected,

so that displacement uz is a function only of y. Considering this, the problem breaks

down to a 1D Euler-Bernouli beam, governed by

w(x) =
d2

dx2

(
EIxx

d2uz
dx2

)
(3.53)

In order to solve for this bending, all pressures that act on the plate are collected

into applied forces by their application area. They are then resolved into point forces

acting at the centroid yc,i of the given application area, inducing a bending of the

plate. Due to linearity of the problem, the net deformation is directly given by the
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sum over all of these individual point forces, and more complex considerations are

avoided. The solution to this equation, for the case of the cantilever beam with

arbitrary point loading, and uZ(rplate) = d
dz
uZ
∣∣
rplate

= 0, is

uz(y) =

Nf∑
i

 Aipi

6EψIIxx

(rplate − y)2(2rplate + y − 3yci) y > yc,i

(rplate − yci)2(2rplate + yci − 3y) y ≤ yc,i

 (3.54)

Observe here the presence of a factor ψI < 1 which acts to decrease the flexural

rigidity of the plate. The purpose of this is two-fold; first Figure 3.11(b) demon-

strates that the nominal cross-section of the beam varies along its length due to its

circular shape and the existence of bores for the shafts. Furthermore, Figure 3.10

demonstrates how the given cross-section of the plate is not rectangular, with re-

cessed machined into the plate to direct flow and retain seals. This factor is specific

to the geometry of the plate but, as is demonstrated in Figure 3.10, is preserved with

change in both material properties and load magnitude and location, so the resulting

relation can be used in place of a more detailed FEM approach. To demonstrate

the feasibility of this approach, the same loading condition was considered with both

Ansys Static Structural (Figure 3.10(a)) as well as the macro-def approach discussed

here.

This comparison is given in Figure 3.11(a). For the numerical result, the deforma-

tion at each node is plotted as a single point, demonstrating that the deviation from

the analytical curve is small and follows the trend of the analytical solution. The high-

est deviation occurs in the y-region which includes the bore, but the approximation

is demonstrated to be reasonable even there.

A similar analyse is performed for the gears, where again a 0-th order approxima-

tion is used to model the gears as a simply supported beam. Based on the location

of the pressure peak of the Reynolds film, the point of application of a pin and roller

on the gear is adjusted, as well as a distributed load from the TSV pressures. This

loading condition is demonstrated in Figure 3.12.
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(a) Comparison of numerical FEM and analyti-

cal deflection
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(b) Second Moment of area of nominal

rectangular plate cross-sections

Figure 3.11. Plate bending considerations with (a) comparison of nu-
merical simulation and analytical approximation of plate deflection (b)
demonstration of second moment of area variation along plate
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Micro Deformation

For the local effects, it is assumed that the micro-deformation is much smaller than

the length scales of the bodies. In this condition, with the global effects removed,

the micro-deformation caused by each element can be modeled as a uniform pressure

applied to a differential area of an infinite elastic half-space. This is demonstrated in

Figure 3.13 for two possible material configurations.

First in Figure 3.13(a), the case of a single material is demonstrated, where the

film pressure acts directly on the elastic half space. In this case, the influence of the

ith element’s pressure, with size ∆xi by ∆yi, on the surface deformation of the jth

element ofset from i by 〈xj, yj, 0〉 is reported in Johnson [121] and originally published

by Love [128]

∆hj =
pi

2πE∗

[
(2xj + ∆xi) ln

(
(2yj + ∆yi) +

√
(2yj + ∆yi)2 + (2xj + ∆xi)2

(2yj −∆yi) +
√

(2yj −∆yi)2 + (2xj + ∆xi)2

)

(2yj + ∆yi) ln

(
(2xj + ∆xi) +

√
(2yj + ∆yi)2 + (2xj + ∆xi)2

(2xj −∆xi) +
√

(2yj + ∆yi)2 + (2xj −∆xi)2

)

(2xj −∆xi) ln

(
(2yj −∆yi) +

√
(2yj −∆yi)2 + (2xj −∆xi)2

(2yj + ∆yi) +
√

(2yj + ∆yi)2 + (2xj −∆xi)2

)

(2yj −∆yi) ln

(
(2xj −∆xi) +

√
(2yj −∆yi)2 + (2xj −∆xi)2

(2xj + ∆xi) +
√

(2yj −∆yi)2 + (2xj + ∆xi)2

)]
(3.55)

While singularities exist in this solution at the corners of the pressure indenter, this

is harmless by definition of the pressure application area. By placing the edges of the

area directly between adjacent elements, information will never be required at these

points.

For some films, such as the journal bearings of an EGM or the piston-cylinder

interface of an APM, Figure 3.13(b) shows how Nlayer finite thickness layers of elas-

tic material are added to the half space to capture the bushings pressed into these

interfaces. Due to lack of availability of a model for rectangular loading, the solution

derived in [129] is used, which relates the surface deformation to a circular loading of
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(b) Multi-Material Finite-Layered

Figure 3.13. Local deformation domain for with rectangular pressure
applied by mesh element for (a) continuous single material elastic half
space (b) finite thickness elastic material layers on top of an infinite elastic
half space

uniform pressure, which propagates though a set a finite thickness elastic layers before

reaching the elastic half space. The surface deformation is given by the analytical

relation given by [129], where the radius of the circular region is selected to satisfy

the net area of the application point. The radius is mapped to an elliptic region to

take account of the aspect ratio of the rectangle

uz,i(x, y) = −pi∆ri
∫ ∞

0

D0

s
J1(s∆ri)J0

s∆ri
√(

x

∆xi

)2

+

(
y

∆yi

)2
 ds (3.56)

where

∆ri =

√
∆xi∆yi

π
(3.57)

and Ji is the ith order Bessel function of the first kind. Since this integral is poorly

behaved for numerical integration, the MATLAB toolbox given in [130], based on

Lucas’s algorithm [131] for integrating indefinite integrals of products of Bessel func-

tions, is adapted. This toolbox uses adaptive Gauss-Kronrod quadrature to evaluate

the integral with piece-wise simplifications. Observe here that the response to a unit
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Figure 3.14. Numerical deformation sample for local deformation effects

force is still linear with pressure, and these indefinite integrals must be evaluated only

during a heavy pre-processing phase and do not impact online simulation time.

To confirm these analytical expressions, the bushing of an EGM or APM is taken

as reference. These bushings are typically pressed into a bore in the machine, made

up of a thick steel retainer holding a soft bronze that is lined with PTFE. Assuming

that the deformations are small, the PTFE is treated as elastic, so that the bushing

can be treated 3 finite elastic layers on top of an elastic space that is the bore it is

pressed into. For validation, the resulting deformation is compared to a numerical

sample of deformation, evaluated using Ansys Static Structural, the loading of which

is demonstrated in Figure 3.14. For the case of uniform material, the steel and PTFE

are replaced with bronze so that the same sample is used but with uniform properties.

With these results, the agreement between the analytical and numerical solutions

is given in Figure 3.15. These results show a perfect match, as expected, between
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Figure 3.15. Local surface displacement results for rectangular pressure
applied by mesh element for (a) continuous single material elastic half
space (b) finite thickness elastic material layers on top of an infinite elastic
half space (c) deformation along y=0 edge (d) deformation along x=0 edge

the analytical and numerical solutions of the single material case. This is trivial,

however, because both solve the same elastic equations and thus must return the

same result. For the multi-material solver, though, this figure demonstrates that the

use of an equivalent circular loading is sufficient to capture not only the magnitude

of the deformation, but also the overshoot after the application area and resulting

rapid decay. Note here that each curve is normalized by the maximum deformation

predicted by the numerical case so that the curves can be better compared.
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As was mentioned for the first FSI option, storage and usage of an O
(
N2
fluid

)
matrix is cumbersome. Instead, it is observed that by isolating only the local effects,

nodes far from the point of application show negligible micro-deformation. Consider-

ing this, entries whose influence are significantly smaller than the norm of the matrix

are neglected

IMij =

IMij, |IMij| ≥ ε||IM ||∞

0, Otherwise

(3.58)

The result is a banded matrix with sparsity of around 80-90%, corresponding to a

significant decrease in the computational load with indistinguishable difference in re-

sult. The limitation of this approach comes from the fact that the macro deformation

must be given by an analytical solution. While this can be solved by extracting an

empirical curve from more detailed FEM modeling, this approach inherently risks to

introduce model simplifications that alter the result. Similar to the influence ma-

trix case, the transients of the solid response is accounted for with application of the

perceived pressure discussed in Equation 3.48.

3.4 Strong Coupling

To solve the distributed parameter model developed above, the domain is dis-

cretized using finite difference for the three fundamental domains that can occur in

these machines. Though most PD machines rotate and therefore have circular regions

in relative motion, the radii are typical significantly larger than the gaps (L, b� h)

and can be modeled with the Cartesian domain (e.g. EGM tooth tips) demonstrated

in Figure 3.16(a). Next in 3.16(b), annular gap geometry is common due to the

existence of drive shafts and pistons in these machines, with thin films in the radial

direction to maintain sealing. In this thesis, the annular film is unwrapped and treated

as a special case of a periodic Cartesian domain. Finally 3.16(c) shows a flat circular

film in cylindrical coordinates which, as was mentioned above, is very common in
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(a) Cartesian Film

(b) Unwrapped Film (c) Cylindrical Film

Figure 3.16. Fundamental film types for distributed parameter modeling
(a) a flat Cartesian film (b) annular film which is unwrapped to a Cartesian
domain (c) a flat cylindrical film in cylindrical coordinates

rotating PD machines. For each, non-uniform structured meshes are automatically

generated, starting with all elements treated as internal elements that must be solved.

In order to account for the boundary conditions, which cause these films to deviate

from their nominal shapes, elements are removed from the internal field. In doing so,

they are no longer solved in that iteration of the Reynolds film update. To ensure

that the film model can capture any PD machine, the profile of these boundaries is

taken in the form of an arbitrary polygon. For simple geometry, such as a grooved

journal bearing, this polygon does not vary with time. For other more complicated

film geometries, like the lateral lubricating interface of an EGM, there are many

boundaries whose profiles are complex and vary with shaft angle. In this case, the

profiles are updated with nearest neighbor interpolation, based on a series of polygons



99

Drive Gear Mesh Driven Gear Mesh

Delivery Chamber Profile

Driven Gear TSV Profile

Drive Gear TSV Profile

Figure 3.17. Boundary point definition by finding the mesh points within
the given polygon

corresponding to specified shaft angles. These profiles are dictated by the shape of

the control volumes that apply the pressures, and are therefore an output of the

geometric module discussed in Section 2.3.

To determine whether a mesh element falls within the given polygon, the Winding

number algorithm is used. This thesis uses an implementation based on the one given

in [132], which maintains the robustness with non-simple polygons of the winding

number algorithm while avoiding the use of trigonometric functions to match the

efficiencies of the alternative Ray-tracing algorithm.

Regardless of the polygon complexity, all points that fall within (or outside) it

are taken out of the internal field. Rather than being solved, these points have their

values set to that of the lumped volume associated with the polygon. This allows the

information from the lumped parameter model to be exchanged with the DP domain

via the internal field elements adjacent to these boundaries. For each polygon, a



100

Drive Gear 

TSV Series

Adjacent Mesh

Constant Suction 

Groove Polygon

Driven Gear 

TSV Series

Profile Castellation

Internal 

FieldWall 

Boundary

Drain 

Pressure 

Boundary

Figure 3.18. Boundary definitions on the drive gear lateral gap of an EGM
as demonstration of application of complex geometry with fundamental
film of Ref E2 EGM

unique boundary ID is assigned, which is used for mapping between the DP and LP

domains. For the lateral gap of the Ref E2 EGM, the resulting film assignments are

shown in Figure 3.18.

This figure shows many of the possible boundary cases that may occur. First,

the delivery and suction grooves must be removed from the film, as they are directly

connecting to the ports by an recess in the plate. Since this geometry does not change

with angle, it is implemented as a constant polygon. Instead for both the drive and

driven gear TSVs, the profiles change with shaft angle as dictated by the geometric

module, and are therefore implemented as a time-dependant polygon series. Since
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the tips of the teeth meet the casing outside of the meshing zone, a constant wall

boundary condition is applied at the outer radius of the gears

Qr(r0) ∼ ∂p

∂r

∣∣∣∣
r0

= 0 (3.59)

Finally, the inner radius of the gear is connected to a drain volume that exists between

the lateral and journal bearing gaps. What is left after all boundaries have been

applied is the internal field, which forms the complex gear shape in which the pressure

distribution must be solved. In this figure, castellation of the profiles is noticed when

compared to the ideal boundary profile demonstrated in Figure 3.17. While the

mesh could be snapped to these curves to better resolve the boundaries, Pellegri

[46] observed that the resulting local skewness that this introduces in the mesh was

harmful for numerical solution. Furthermore since these boundaries provide only

an interface with the LP domain, and do not otherwise impact the solution, it is

not necessary to exactly resolve their shapes. Instead in this thesis, castellation is

mitigated by choice of fine grid which minimizes this effect.

In order to achieve the strong coupling of the lumped and distributed models,

information is exchanged at each iteration at the edges of the internal field with

each boundary. At the interface of each LP boundary, Dirchlet boundary conditions

are applied in pressure, density, void contents, and temperatures, so that all effects

considered by the lumped parameter model are transferred to the DP domain.

3.4.1 Fluid Exchange

To capture the leakages across these films, it is necessary to calculate the fluid

that is exchanged with each boundary. This is accomplished using the generalized

flow equation 3.26, which gives the net mass flux accounting for the change in fluid

properties and the added flow resistances in cases of mixed lubrication. With the

density (and thus pressure) distribution known, the flow out of the film into the ith
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boundary domain Ωi is then given by the sum of the differential flows across each

segment which delimits the internal field from this domain

ṁΩi =
∑
j∈Ωi

ṁj · dΩi,j (3.60)

By considering the density of the boundaries, cavitation that occurs in the lumped

volumes is also directly fed into the DP solution. Similarly by considering the enthalpy

and void flux carried by this mass flow, the energy that escapes the LP domain via

these films is captured using Equations 2.34 and 2.35 respectively.

Returning to Figure 3.18, the penetration of the driven gear’s tooth into the

domain of the drive gear’s lateral gap demonstrates that is not only with the LP

domain, but within different films of the DP domain. While it is reasonable to treat

the remainder of the film as independent from the other films, this figure shows

that their solutions are not isolated. To account for this, then, the films retrieve

the properties at the requested location of their ‘neighbor’ on the adjacent mesh,

effectively merging the films and enforcing a solution that conserves mass over the

coupled domain inherently by solving the universal Reynolds equation across their

union.

To ensure that the castellated interface discussed above does not prevent con-

vergence of the film flows, the following study was performed. In this study, the

boundary profile defined in Figure 3.18 was applied to meshes with varying resolu-

tion (Nlat nodes in mesh). For each case, a complete EGM simulation was run. The

resulting flow across a TSV boundary and the drain boundary was then collected

for both the drive and driven gears, and averaged over the last converged revolution.

Note that in order to converge on the same flows, this approach must also lead to the

same pressure build-up in the lumped and film domains. Therefore, this study tests

not only the flow predictions of the film, but also the film’s consistency in interfacing

with the lumped domain as well as adjacent films. In Figure 3.19(a) and 3.19(b) the

convergence of these flows, across the TSV and drain respectively, is demonstrated.

Here error is defined with respect to the finest mesh taken. This result confirms that
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Figure 3.19. Flow Convergence study with change in lateral mesh reso-
lution (a) Convergence in TSV Boundary Leakage (b) Converge of Drain
Leakage

even for moderately coarse meshes (Nlat ∼ 103), the castellated meshes are able to

converge on a single flow. This gives confident that the snapping of elements, and its

associated mesh skewness, need not be considered.

3.4.2 Film Forces

When applying the boundaries, elements are taken out of the internal field either

because they do not reflect the actual geometry of the film, or because they are in

direct contact with an LP volume. Considering this, their pressures are (optionally)

not considered when evaluating the net forces of the film. It is instead assumed in

this case that their influence on the dynamics of the body is accounted for in the

lumped parameter pressure project component discussed in Section 2.2.1. Returning

to the lateral lubricating interface of EGMs, Figure 3.20(a) shows the distribution of

pressure that results during operation.
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Figure 3.20. TSV pressure projection centroid into lateral balance ele-
ment of a Ref E1 EGM (a) Pressure profile including film and LP regions
(b) for a single TSV of drive and driven over a full shaft rotation (c) net
centroid due to all TSVs

In this figure, the centroids of the TSVs as they rotate are shown. In Figure

3.20(b), the trajectory of the centroid of a single TSV of the drive and driven gear is

shown over a full shaft rotation. Notice here that while the trajectories of the drive



105

and driven gear are a mirror image for the symmetric gears, they are phase offset due

to the angle offset of the driven gear with respect to drive. This offset, as well as the

pressure distribution over the TSVs leads to a net TSV centroid

rc,p =

∑Nteeth

i=1 piAirc,i∑Nteeth

i=1 piAi
(3.61)

that oscillates with time, demonstrated in Figure 3.20(c).

The remaining forces on the body are given by the contribution of each differential

element within the internal field of the film, governed by the equations defined above,

and shown in Figure 3.20(a). First, the film pressures act in the negative gap normal

direction for both the top and bodies

F p,t/b = −
Nint∑
i=1

pi∆xi∆yin̂t/b (3.62)

While Figure 3.20(a) shows the net pressure distribution as perceived by the bush-

ing, it is important to highlight that this information is coming from two different

sources. To aid in this point, Figure 3.21 contrasts the contributions of each domain.

From these figures, it is clear that the body dynamics are strongly dependant on the

pressurization of both domains.

Note that this feature of the films need not applied. Consider for example the

cylinder block - valve plate of an APM, demonstrated in Figure 3.22(a). This figure

highlights how as the unit rotates, the porting boundaries of the DCs and the out-

let/inlet overlap. To isolate these complex profiles as the two overlap would require

complex polygon operations and a tabulated result. Instead, the pressure contribution

of the boundary nodes can be included to directly account for the complex pressure

distribution. In effect, this functionality is left as a model option for the user, who can

apply the more convenient approach to define the net loading over the surface of the

body. On the DC side shown in Figure 3.22(b), then, the net projection due to the

displacement chamber pressures is given by the radius of the bode. The additional

area known to be at case pressure (Aunder) must be applied in the +z direction to

so account for the gap pressure distribution it opposes. Since the shape of the bore
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Figure 3.21. Surface Pressure contributions to lateral balancing element
of EGM from distributed and lumped domains

deviates from the annular disk geometry of the gap side, the known case pressure on

the gap side must also be accounted in the -z direction (Aover). Since the remaining

regions of the body are at a uniform case pressure, their contributions cancel and do

not need to be considered for the rigid body loading.

Similar to the film pressures the shear must also be applied to the bodies, where

here it must be assumed that the forces of the film come only from the internal field.

In order to account for the mixed lubrication effects introduced above, the shear flow

factors derived in [70] are used. Again, these empirically determined coefficients relate

the variation of shear that occurs as the asperities become non-negligible to the rigid

gap height h, where

τ t/b =
µ(vt − vb)

h
(φf ± φfs)± φfp

h

2
∇p (3.63)

For the Gaussian and isotropic surfaces assumed here, these coefficients are given

by [70]

φf ≈ 1− 1.4 exp(−0.66h̃) (3.64)
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Figure 3.22. Boundary Contributions to Cylinder Block - Valve Plate
interface of Ref P1 APM (a) Gap side (b) DC side

φfs ≈
R2
q,t −R2

q,b

R2
q

11.1h̃2.31 exp(0.11H2 − 2.38H), h̃ ≤ 7

0, h̃ > 7

(3.65)

φfp ≈



h̃

(
ln
(
Rq(h̃+3)

ετ

)(
h̃2

9
− 1
)3

− h̃
180

( h̃
3
( h̃

3
( h̃

3
( h̃

3
(49h̃

+60)− 405)− 160) + 345) + 132) + 11
12

)
−35
96
, h̃ ≤ 3

h̃

ln
(
h̃+3

h̃−3

)(
h̃2

9
− 1
)3

−
h̃

(
h̃2( 103 h̃

2−80)

9
+66

)
45

 −35
96

h̃ > 3

(3.66)

As was discussed in the lumped parameter analytical shear definitions of Section

2.2.2, infinite shear stress is avoided by saturating the rigid gap height at a small

number ετ � Rq. With these two, the net force on the top and bottom bodies are
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F t =

Nint∑
i=1

∆xi∆yi

(
−pin̂t − φfp

h

2
∇p− µ(vt − vb)

h
(φf − φfs)

)

F b =

Nint∑
i=1

∆xi∆yi

(
−pin̂b − φfp

h

2
∇p+

µ(vt − vb)
h

(φf + φfs)

) (3.67)

To find the net tilting moment of this film force, the moment arm between the

force and the center of mass of each body is considered so that

M t =

Nint∑
i=1

(ri − rCG,t)×
[
∆xi∆yi

(
−pin̂t − φfp

h

2
∇p− µ(vt − vb)

h
(φf − φfs)

)]

M b =

Nint∑
i=1

(ri − rCG,b)×
[
∆xi∆yi

(
−pin̂b − φfp

h

2
∇p+

µ(vt − vb)
h

(φf + φfs)

)]
(3.68)

3.4.3 Asperity Contact

As was demonstrated in Figure 3.6, in regions of low film thickness the asperities

of the two bodies that makeup the film will begin to make contact. In this condition,

the results contact pressure pc assists in carrying load on the film. To model the

load sharing due to asperity contact pressures in regions of mixed lubrication, the

empirical model developed in [73] is used, defining a relationship between the rigid

gap and the resulting average asperity contact pressure over the film. The

ln h̃ =


∑4

i=0[1 Λ−1 Λ−2 Λ−3]G
i
[1 H̃−1 H̃−2 H̃−3]

ᵀ
p̃ic, p̃c < H̃

0, p̃c ≥ H̃
(3.69)

where G
i

are the empirical coefficient matrices found by Lee and Ren [73], which act

on the dimensionless material hardness

H̃ =
3σyλ0.5

πE∗Rq

(3.70)

and roughness directionality to relate the dimensionless contact pressure

p̃c = pc
πE∗Rq

λ0.5

(3.71)
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to the log of the gap height. Evaluating this summation yields a quartic polynomial

relationship between contact pressure and the log of the dimensionless gap whose

coefficients are a function of the material and surface properties, and can therefore

be evaluated in preprocessing

ln h̃ = ψγ,4p̃
4
c + ψγ,3p̃

3
c + ψγ,2p̃

2
c + ψγ,1p̃c + ψγ,0 (3.72)

The use of this model, however, is cumbersome at the scale to which it must be

applied here, since the known quantity is h̃, and p̃c cannot be easily extract from the

polynomial. Instead, it is observed the integration of the film requires a small time

step. Considering this, the change in gap at a point will be small, and its log even

smaller. With this observation, the otherwise quartic polynomial can be linearized

about the previous position

p̃c = p̃c0 +
d(p̃c)

d(ln h̃)

∣∣∣∣
0

(ln h̃− ln h̃0) +O
(

(ln h̃− ln h̃0)2
)

(3.73)

to yield a simple equation to update the contact pressure

p̃c ≈ p̃c0 +
ln h̃− ψγ,4p̃4

c0 − ψγ,3p̃3
c0 − ψγ,2p̃2

c0 − ψγ,1p̃c0 − ψγ,0
4ψγ,4p̃3

c0 + 3ψγ,3p̃2
c0 + 2ψγ,2p̃c0 + ψγ,1

(3.74)

If the step between the two point is too large, or contact pressure crosses zero,

then the exact solution can be found by finding the positive real root of the modified

quartic polynomial with trailing coefficient

ψ′γ,0 = ψγ,0 − ln h̃ (3.75)

In either case, the resulting contact pressure is added to the force and moment cal-

culations given in Equations 3.67 and 3.68 respectively.

3.4.4 Boundary Friction

Returning to Figure 3.5, Hamrock [90] shows that the friction behavior of lubri-

cated contact deviations from the mixed Reynolds solution in the presence of bound-

ary lubrication. This condition occurs in areas where the hydrodynamic and hydro-

static components of a contact interface are not sufficient to hold its loading, and a
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majority of the load is carried by solid contact. In regions where boundary lubri-

cation occurs, the universal Reynolds equation cannot be applied. In PD machines

these conditions are unavoidable, so the present thesis develops a separate means to

model them. First for APM in the piston-slipper joint, friction between the ball and

socket joint of the slipper and piston restricts relative motion between the two. For

EGM, Thiagarajan et al. [54] found a hysteresis effect in the position of the lateral

balancing element of an EGP. This hysteresis, they found, was due to the effects of

boundary friction between the floating element and the pump body. The boundary

friction occurring in both these interfaces is accounted for in this section.

Lateral Bushing of EGM

The cause of this friction in EGMs is shown in Figure 3.23. Here a net pressure

imbalance over the axial area of the bushing and the forces of the journal bearings

inevitably drives it into the low-pressure size of the pump body.

As a result, motion of the body is restricted by lubricated (though not notably

hydrodynamic) friction. As was demonstrated in [54], inclusion of friction effects in

this regions was necessary for the authors to capture hysteresis effects in the measured

bushing position, confirming its importance. The present work extends this model, to

consider also the frictional resistance of this contact to tilting of the bushing. To do

this, the contact pressure is assumed to be uniformly shared over the contact region

so that the net friction force per unit area is given by modifying the Stribeck friction

relation from [133]

F ′f =

[
−
√

2e

vst
∆p(µs − µd) exp

(
−
(
|v|
vst

)2
)
− µd∆p

|v|
tanh

(
|v|
vc

)
− fv

]
v (3.76)

This curve, demonstrated in Figure 3.24, accounts for the transition from static to

dynamic friction (Coulomb) friction as the breakaway velocity vbrk is reached and

the body begins to move. The Stribeck (vst =
√

2vbrk) and Coulomb (vc = vbrk/10)

velocity thresholds are defined with respect to this breakaway friction to determine

the shape of the curve. The static breakaway friction with coefficient µs is then tran-
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Figure 3.23. Planar free body diagram of lateral balancing element of
Ref E1 EGP, showing net force imbalance

sitioned into dynamic Coulomb friction with coefficient µd in the opposite direction

of the velocity, with shear force building as speed increases. With this, the net force

and moment of the region are given by an integral over the contact surface Γc

F f =

∫∫
Γc

F ′f dΓ (3.77a)

M f =

∫∫
Γc

r × F ′f dΓ (3.77b)

These integrals are then evaluated numerically using Gauss quadrature.

Ball-Socket Interface of APM

In the present work, the clearance between the piston and slipper in its ball socket

interface is assumed to be sufficiently small. As a a result, the combined piston-slipper
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Figure 3.24. Variation of friction regime with surface velocity

behaves as a single free body . In general, though, the ball socket does not accomplish

a perfect welding of the piston and slipper bodies. Considering this, it is necessary

to also capture the relative tilting of the slipper to the piston. In the frame of this

net piston-cylinder body, the slipper does not behave like a free body. With the

assumption of small clearance, it can experience only rotational modes about the ball

socket.

With the assumption of small clearance, the contact that occurs in the socket

interface can be treated as an internal force. The function of the contact is to maintain

the relative linear motion of the two bodies. To achieve this, a normal stress builds

over a small contact region of the interface. Due to the high forces that build in

this contact region, a friction force develops which opposes relative motion of the ball
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Figure 3.25. Contact in piston-slipper ball socket

and socket. As an internal force, the net contact force must exactly balances the

accelerations of the two bodies to that of the net piston-slipper body, so that

F net,P + F PS

mp

=
F net,S − F PS

ms

(3.78)

Since the ball-socket interface is a spherical contact, the vector from the socket

center to the center point of its application must be collinear with the normal com-

ponent of the applied force, and is therefore known. The net loading of this contact

can then be demonstrated in Figure 3.25.

From the review of the state of the art in the modeling of this contact, it is

demonstrated that these interfaces are modeled with an effective friction coefficient.

Since the relative velocities of these bodies is typically very small, hydrodynamic

effects are negligible. Nonetheless, the contact is flooded with oil and a dry contact

model is not suitable. For this reason, the same Stribeck friction equation shown in

Figure 3.24 is used to model this interface. The contribution of this frictional force

on both bodies is then determined by considering the moment arm at which it acts.

This model provides the additional benefit of not needing detailing information of
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the shape of the contact patch, maintaining simple calculations that facilitate rapid

lumped parameter evaluation.

To consider the impact of relative motion of the piston and slipper on the per-

formance of the unit, the present thesis also considers the limiting case of infinite

friction force. In effect, this conditions means that there can be no relative motion

in the ball-socket interface. Similar to Equation 3.78, this infinitely frictional contact

moment can be expressed by the moment required to balance the angular accelera-

tions of the body, where it is important to note the use of the common inertial frame

in calculation.

∂ω̇p,IF
∂M IF

(
Mp,IF +M f,IF

)
=
∂ω̇s,IF
∂M IF

(
M s,IF −M f,IF

)
(3.79)

Figure 3.25 demonstrates that the frictional component of this force is offset from

the center of the socket, and therefore induces a net moment on both bodies. It is

exactly this frictional contact that acts to constrain the relative rotation of the slipper

with respect to the socket. The normal component passes through the center of the

socket, and so it does not impact the slipper rotation. The net force is transmitted

via this socket to the piston, and acts to communicate the slipper-swashplate loading

to the piston-slipper body.

3.5 Implementation

Though the relative states of the lumped and distributed parameter regions of

the fluid domain inform the solution of both, they are often governed by drastically

differing time-scales. Specifically, the non-linearity of the lumped parameter system

results in a stiff system of equations compared to the Reynolds films. Since film

computations dominate the overall run-time, it is harmful to limit the lubricating

film to match this smaller step, and asynchronous time stepping of the two offers a

large potential for alleviating excessive computation expense. The implementation

of this approach is illustrated in Figure 3.26(b). Here, the main timeline (A) solves
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the lumped parameter problem, considering all hydraulic components as well as the

dynamics of all bodies.

For each distributed parameter film an additional coupled timeline is introduced.

As is demonstrated in Figure 3.26(b) , these additional (B, C, . . . ) timelines always

lead the main timeline (A) so that film information between their steps can be inter-

polated. For demonstration, Figure 3.26(b) highlights 3 noteworthy time points on

the more dense main (A) timeline. As is shown at time point tA,2, this interpolation

is unique within each timeline in order to collect all film states at this main time. In

case a time request of the main timeline falls behind of the current bounds of a film

timeline tA,1, previous steps are also recorded for interpolation. This is an important

feature that ensures continuity of the film solution as perceived by the main timeline.

Finally, the request of a time point ahead of the current bounds of a film tA,3

triggers a time step of the film timeline (B, C, . . . ). The use of the Mixed Universal

Reynolds Equation 3.28 gives a nonlinear advection-diffusion problem in ρ. Consider-

ing this, the time step of the scheme is controlled using the Courant–Friedrichs–Lewy

(CFL) conditions of the numerical discretization. In the present work, four additional

timelines (B-E) are necessary from the EGM, corresponding to the top side lateral

and journal bearing gaps of the drive and driven gears respectively. This approach

is equally applicable for modeling of a helical gear as well, with the introduction of 4

additional timelines. For the APM 3 additional timelines are necessary (B-D), corre-

sponding to the piston-cylinder, slipper-swashplate, and cylinder block - valve plate

interfaces.

Figure 3.26(a) shows how information of both the film forces and leakages are

required in order to progress both the dynamics and fluid simulations within the

main LP timeline. Both the DP and LP domains interface with the output of the

geometric module and the gap preprocessing in order to update the geometry of the

unit as the floating bodies shift. At each print interval of simulation, results are

output to a text file for the LP film and a .vtk file for the DP film, which can be

used with the open source software Paraview for post-processing and visualization.



116

Geometry 
Module

Fluid 
Dynamic 
Module

Loading 
Module

Dynamics 
module

Film 
Leakages 
Module

Main Timeline (A) Coupled Timeline (B)

Pre-processing

Film Force 
Module

Gap 
Calculations

(a) Double timeline interface

(Main) A

B
𝑡 , 𝑡 , 𝑡 , 𝑡 ,

𝑡 ,
𝑡 , 𝑡 ,

C
𝑡 , 𝑡 ,

…

(b) Asynchronous timelines

Figure 3.26. Strong coupling of the Main LP timeline and the DP time-
line (a) flow chart of the module interaction (b) Interfacing between asyn-
chronous timelines

All figures that are included in thesis of film results are direct output of the code

created using this software, unless otherwise specified.

3.5.1 Information Exchange

As described in Figure 3.26(a), the interface between the main lumped timeline

and the films is accomplished by interpolating between the two. At each step of a

film, then, the flows over all boundaries are recorded, which are then used at arbitrary

main timeline (A) request. Here, a linear interpolation is chosen over higher order

interpolation schemes for its consistency. If not for this property, the film flows

perceived by the main timeline would change as new DP time steps were considered

in the interpolant, leading to an unrealistic and numerically unfavorable solution for

the main timeline.

ṁB(tA,2) = ṁB(tB,i−1) +

(
tA,2 − tB,i−1

tB,i − tB,i−1

)[
ṁB(tB,i)− ṁB(tB,i−1)

]
(3.80)

As demonstrated in Figure 3.26(a), mass fluxes are used to exchange information

with the lumped films, retrieving density and void fractions in return. While doing
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this, the cavitation and aeration information of all distributed parameter films and

lumped chambers are inherently accomplished.

Similar to the flow coupling, the film forces are recorded at each discrete time-step

of the film. As the main timeline progresses, this information is used to linearly inter-

polate both forces and moments on the body. While the larger time scale alleviates

a large computational load, it does so at the expense of instantaneous feedback on

body acceleration in the main timeline. In most positive displacement machines, the

leakage flows of the unit are much smaller than the main flows. This makes the loss of

feedback acceptable for a realistic solution. However, since these interfaces perform

the main load carrying functions of the unit, this lack of feedback in the dynamics

module leads to numerical instability in the solution. Therefore, to provide this feed-

back, an additional load term FB,I(tA,2) is considered. To define this addition, the

velocity field at which the mixed Reynolds film was solved is perturbed so the gap-

normal squeeze deviates by ḣ′ yielding a perturbation ρ′ in the density solution. The

universal Reynolds equation is linearized and collected in Appendix B.1 about the

nominal solution, so that the perturbation can be locally described using Equation

B.4 repeated here

∇ ·
(
D∇ρ′

)
= γ + κρ′ (3.81)

In order to implement this function directly, the gradient of the diffusivity is

required. To resolve this gradient, a fine mesh and temporal resolution would be

required and in effect the time steps are re-synchronized negating the performance

benefit. Instead, the method of weighted residual is used to express this equation in

its weak form. To simplify notation, this function can be expressed in terms of an

arbitrary diffusivity tensor D and constant and linear forcing γ and κ respectively as

derived in Appendix B.1. In this notation, the method of weighted residual is given

by the functional

G(ρ′, ρ̃) = −
∫∫

Γ

ρ̃
(
∇ ·
(
D∇ρ′

)
− γ − κρ′

)
dΓ = 0 (3.82)
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Applying the divergence theorem to the first term of this functional, the weak form

of this problem is recovered. Notice here that due to the homogeneous boundary

condition of the perturbation, all boundary terms drop∫∫
Γ

(
D∇ρ′

)
· ∇ρ̃ dΓ +

∫∫
Γ

ρ̃γ dΓ +

∫∫
Γ

ρ̃κρ′ dΓ = 0 (3.83)

In order to solve this problem in the four domains considered here, a function f

mapping the unit square domain Γ′ to the physical domain Γ is defined. Each problem

discussed below will use a different map of this form, given in Appendix B.2

f : Γ′(ξ, η) 7→ Γ(x1, x2) for ξ, η ∈ [−1, 1] (3.84a)

J =

∂x1∂ξ ∂x1
∂η

∂x2
∂ξ

∂x2
∂η

 (3.84b)

In this unit domain, the problem is solved using a pseudospectral method. As such,

the solution to the problem is expressed in terms of a sum of basis functions Ni(ξ, η)

with unknown weights a. With the Galerkin method used here, similar definition is

used for the test function with weights ã

ρ′(ξ, η) = N(ξ, η)Ta, ρ̃(ξ, η) = N(ξ, η)T ã (3.85)

Substituting this approximation into the weak form of Equation 3.83 yields the

definition of the discrete functional. The Jacobian J of the map f is used so that this

functional can be expressed in terms of an integral over the unit domain

G̃(a, ã) = ãT
[(∫∫

Γ′

(
∇N J−1DJ−T ∇NT +NκNT

) ∣∣J∣∣ dΓ′
)
a+

∫∫
Γ′
Nγ

∣∣J∣∣ dΓ′
]

= 0

(3.86)

The non-trivial solution to this problem forms a linear system of equations in

a. Since the diffusivity and forcing are an arbitrary function of the film state, the

surface integrals are evaluated using Gauss–Legendre quadrature with film properties

interpolated at the quadrature points. This aspect of a global method justifies its use

here, namely that it requires only limited information to be interpolated from the film

solution while still retaining rapid convergence. This rapid convergence allows for a
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Figure 3.27. Base domain types for impedance Reynolds films

small system of equations which can be rapidly inverted as opposed to more expensive

distributed parameter film steps. This approach is applied to each of the four domain

types considered in Figure 3.27. Here, circular and/or annular domains can be found

in the lateral interface of the EGM and the slipper swashplate and cylinder block -

valve plate interfaces of APMs. Similarly cylindrical films are found in the journal

bearings of EGMs and the piston-cylinder interface of APMs. Here, the rectangular

domain is included in order to assist the other definitions, but could also be used to

model more complex tooth-tip geometries of an EGM.

With the perturbed density found by solving the linear system of Equation 3.86,

the corresponding perturbed pressure can then be determined using a linearized ap-

proximation of the bulk modulus

p′ ≈ K0

ρ0

ρ′ (3.87)

The linearity of this system means that the solution to arbitrary perturbation of veloc-

ity can be expressed in terms of the superposition of perturbations in each direction.

Considering this, each mechanical degree of freedom of the film is perturbed with

unit magnitude, and the force response is integrated from the resulting perturbed
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pressure. By collecting these solutions, a numerical impedance tensor W is formed

so that the instantaneous response to an arbitrary velocity perturbation is given by

superposition. With each timestep of the film, this tensor is updated to describe the

tangent impedance of the film

R = [Fx Fy Fz Mx My Mz]
T = W [vx vy vz ωx ωy ωz]

T (3.88)

Finally, this impedance tensor is used to augment the interpolated force of the film

so that

RB(tA,2) = RB(tB,i−1) +

(
tA,2 − tB,i−1

tB,i − tB,i−1

)[
RB(tB,i)−RB(tB,i−1)

]
+W

[
v′x v

′
y v
′
z ω
′
x ω
′
y ω
′
z

]T (3.89)

3.5.2 Parallelization

The distributed parameter component of the model is parallelized using OpenMP.

While this restricts the parallelization to a single node, this is not a problem as the

goal of this thesis is to a develop a tool that can be run on a single machine, and not

a large cluster. Use of this program typically comes in two cases. Case one pertains

to a given unit with a specific problem. In this case, the operating condition(s) that

elicit the undesirable behavior are typically known, and the parallel implementation

of the program provides the engineer with the simulation results in the fastest possible

time. Instead the alternate use of this program is for mapping performance over a

range of operating conditions, either for diagnostics or unit evaluation. In this case,

the time taken for an individual simulation is less important, but the total time for

the batch is. To maximize throughput, then, the sequential version of the program

is run with multiple instances on the machine, so that the higher efficiency of the

sequential version leads to a lower overall time. The benefit of using OpenMP is the

ability to directly toggle the parallel/sequential implementations of the program with

no change in the underlying source code. This eases development time as only one

source is maintained, and more importantly prevents differing implementations for

the sequential and parallel modes and potentials for bug introduction.
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The parallel flow of the model is demonstrated in Figure 3.28 for a single DP

timeline (B). This figures demonstrates the major sources of efficiency loss in the

parallel implementation. Due to the nature of the initial value problem, the solution

to the next time step cannot be evaluated until the current time step is complete.

As a result, parallel forking (or barriers) must be placed at each time step of the

timelines, leading to a large overhead.

In an attempt to mitigate these losses, the amount of barriers/forking within a

single step is minimized to 3 phases. The calculation of a step of a coupled timeline

step relies on barriers to ensure that the solution remains consistent. First, the pre-

processing phase collects the updated boundary information from the LP volumes,

as well as the rigid body positions of the floating bodies. It then applies the relaxed

deformation update to the rigid gap to get the net deformed gap distribution over the

film. Finally it prepares the flow factors using these updated gap heights for solving.

After these actions, it is necessary to place a barrier before the next phase to

prevent the density/temperature update from using outdated gap and flow informa-

tion. Similarly after the fields are updated, another barrier ensures that the force

and flow calculations take place using the updated values of the states. Because the

film can include arbitrary boundaries, an even workload over the threads cannot be

guaranteed with a static work distribution and a guided scheduling must be used.

This approach is a dynamic work distribution, where work is distributed in chunks

as the threads completes its previous chunk of work. The difference as opposed to

pure dynamic scheduling is that the guided scheduler starts with large chunk distri-

bution, and dynamically scales the chunk size towards the end of the work queue.

This is beneficial, as it approaches the optimal behavior of the static distribution,

but pays a small efficiency price to protect against cases where one thread is given a

disproportionate number of internal field elements.
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3.5.3 Numerical Discretization

As mentioned above, the films are solved on a structured, non-uniform mesh using

finite difference discretization. Note that while this approach will be demonstrated for

the Cartesian film here, it is equally applicable for the cylindrical film with appropriate

adjustment of the ∇ operator for cylindrical coordinate system. Dirichlet boundary
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Figure 3.29. Second order finite difference stencil for given Cartesian
internal field element for arbitrary field quantity

conditions are applied by removing elements from the internal field which is solved,

and are instead fixed at the corresponding boundary values as demonstrated in Figure

3.18. All other boundaries, such as wall and symmetry boundaries are achieved by

manipulation of the masking of the film. More specifically, the connectivity and grid

spacing of the mesh is stored as a set of masks pointing to the north, south, east, and

west neighbors of the given element. With these masks, the stencil given in Figure

3.29 can be constructed for each element for an arbitrary field quantity.

For example to accomplish a wall boundary condition on the north edge of a node,

the mask entry is adjusted so that

ψi,j+1 = ψi,j (3.90)

Similar manipulation can be used to achieve all boundaries that are required in the

film.

In regions of full film, the universal Reynolds equation is an ecliptic partial dif-

ferential equation. Since this means that information propagates in all directions

immediately, it is well suited for central differencing schemes. Considering this, the
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pressure driven flow terms are evaluated using a central difference stencil. The second

order accurate stencil used in this thesis is then demonstrated for the x component

∂

∂x

(
φp,x

Kh3

12µ

∂ρ

∂x

)
=

∂

∂x

(
Dx

∂ρ

∂x

)
≈

Dx
(k)

i+ 1
2
,j

ρ
(k+1)
i+1,j −ρ

(k+1)
i,j

∆xe
−Dx(k)

i− 1
2
,j

ρ
(k+1)
i,j −ρ(k+1)

i−1,j

∆xw

0.5(∆xe + ∆xw)

(3.91)

where Dx
(k)
i,j is the density diffusivity in the x direction given by the leading term.

This includes both fluid and film roughness and gap properties

Dx = φp,x
Kh3

12µ
(3.92)

In regions of film rupture, the dimensionless bulk modulus is small so that shear

flow is dominant, and this pressure driven term drops out. Without this term, the

partial differential equation becomes hyperbolic and information travels at a finite

speed. To promote stability and accuracy of the numerical solution in these regions

then, upwind differencing is used for the advective flow terms. The first order accurate

stencil, again demonstrated in the x direction, is

∂

∂x

(
ρvx(φRRq + φch)

)
+

∂

∂x

(
ρ
φs
2
Rq (vt,x − vb,x)

)
=
∂Ax ρ

∂x

≈


Ax

(k)
i,j ρ

(k+1)
i,j −Ax(k)i−1,jρ

(k+1)
i−1,j

∆xw
, Ax ≥ 0

Ax
(k)
i+1,jρ

(k+1)
i+1,j −Ax

(k)
i,j ρ

(k+1)
i,j

∆xe
, Ax < 0

(3.93)

where Ax
(k)
i,j is the advection velocity in the x direction including only film roughness

and gap properties

Ax = vx(φRRq + φch) +
φs
2
Rq (vt,x − vb,x) (3.94)

Over the entire internal field, these stencils can be formed into differencing oper-

ators, where all known (k) terms are absorbed, acting on the next solution(
Dx(k) +Dy(k)

)
ρ(k+1) =

(
Ax(k) + Ay(k)

)
ρ(k+1)+

ρ(k+1)(φ
R
Rq + φ

c
h)(k+1) − ρ(k)(φ

R
Rq + φ

c
h)(k)

∆t

(3.95)
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which can be solved implicitly to update the solution. In effect, this forms a semi-

implicit update, where the change in the fluid properties and deformation is assumed

to be small so that iteration is not required and instead the (k) properties are used

in the update of (k + 1). Additional user options for the film integrator besides

this first order implicit update include: 2-step predictor-corrector implicit/explicit

updates, first order backward difference update. All of these integrators follow the

same update logic, with slight variation in the stencil (Equation 3.95) employed.

In order to ensure stability as the film state changes, especially given this assump-

tion, the time step must be dynamically adjusted. To do this, CFL conditions are

derived for the aforementioned numerical discretization approach. These conditions

examine the region of numerical stability, ensuring that errors due both to the nu-

merical discretization and finite precision arithmetics are not amplified. This can be

ensured for the linear scheme with CFL≤ 1 for an explicit scheme, where CFL> 1 is

allowable here for to the semi-implicit scheme. In order to define this CFL criteria,

the linearized form of the universal Reynolds equation B.4 is taken, so that advection

CFLA,i = ∆t

(
|v1|
∆x1

+
|v2|
∆x2

) ∣∣∣∣
i

(3.96)

and diffusion

CFLD,i = 2∆t

(
D

h (x2
1 + x2

2)

) ∣∣∣∣
i

(3.97)

conditions are given based on the two directions at each point in the mesh. Note

that these CFL conditions are sensitive not only the the fluid properties and body

position/velocity, but also to the resolution of the mesh. To promote mesh quality, the

default mesh is created in such a way as to make the discretization as close to squares

as possible. For highly advection-dominated films, these resolution can instead be

manually set to bias in the direction of high speeds. Furthermore, the mesh can be

augmented with grading toward regions of high sensitivity. For this reason, as well

as the variation in fluid properties and velocities that result, this calculation must be

repeated over each node in the mesh.



126

To account for squeeze effects, two additional criteria are imposed related to the

net change in gap height

∆t|ḣi| ≤ εh (3.98)

and gap squeeze

∆t2|ḧi| ≤ 2εv (3.99)

allowable in a single step. Again these must be satisfied for each node in the mesh.

Finally, the time step is heuristically adjust if the reliance on impedance corrections

of the forces becomes too high.

The allowable CFL and tolerances εv/h of the simulation are taken as a user input.

With this, the maximum time step where all conditions are satisfied over a film is

then selected as the next time step for that DP timeline. It is worth reiterating, for

clarity, that this calculation is unique to each film, which all progress their solution

at differing time steps. It is also worth noting that in practice, the explicit schemes

require values of CFL much less than unity due to the non-linearity of the problem.

3.5.4 Strong Scaling and Performance

In order to evaluate the performance of this program, it was run and timed in

the Brown cluster at Purdue. The sequential version of the code was run on the

same node, but compiled in sequential mode for fair comparison. Since changing the

film resolution changes the nature of the problem, primarily with regard to regions of

numerical stability, a weak scaling study of the problem cannot be performed. Instead

the same mesh resolution was taken, and a strong scaling study was performed by

changing the number of threads used in simulation. By recording the timing results

of the same simulation run with each number of threads, the resulting performance

parameters can be found. Since a single node on Brown was available for this work,

this study will consider only from 1-24 threads, the maximum available on a single Dell

compute node with two 12-core Intel Xeon Gold “Sky Lake” processors @ 2.60GHz.
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First, the times taken for both the parallel and sequential implementations can

be compared, so the resulting speedup can be found. In Figure 3.30, the speedups

observed as the number of processors was varied are demonstrated. This speedup is

defined by

S =
tsequential

tparallel

(3.100)

so that the sequential time for a mesh resolution is used to find the speedup of

each parallel run with that resolution. These results are compared to the behavior

predicted by Ahmdal’s law

SA =
1

(1− s) + s
Nthread

(3.101)

for s as the percentage of the program that can be parallelized. This figure demon-

strates Amdahl’s effect, where the speedup increases more slowly as number of pro-

cessors increases. As the number of threads is first increased, a noticeable speedup

is achieved. Further increasing the number of threads, however, yields diminishing

returns in terms of speedup as it levels out. On the contrary as the mesh resolution

is increased, so does the problem size. As a result, the speedup seen by the program

increases, and the rate at which the speedup increases stays higher since the ‘knee’

occurs at higher number of processors.

This is expected, as for a given number of threads the same amount of forking

work is required regardless of the problem size. However as the problem size increases,

the amount of the program that can be parallelized increased. This is shown in Figure

3.30, where the same program yields significantly more parallelized code simply by

increasing the problem size.

Looking next to the efficiency, Figure 3.31 shows a plot similar to Figure 3.30,

where now the efficiency at each configuration is shown. This efficiency is found by

relating the total resource time spent by the sequential and parallel implementations

where

ηS =
tsequential

Nthread tparallel

=
S

Nthread

(3.102)
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These results shows that the efficiency of the program drops drastically as the

number of threads is increased, explaining the corresponding plateau in the speedup

of the program. It is likely that the constant forking/merging work, as well as time

spent idle in the barriers, can explain this sharp drop in efficiency. As the number

of thread increases, the magnitude of this work increases and decreases the overall

efficiency of the program as an increasing amount of work is present which is not

necessary in the sequential implementation.

To better understand this behavior, a Karp-Flatt analysis of the program can be

performed. Here the fraction of the program run time where it is performing serial

acts, not required in the sequential version, can be represented by

SF =
1
S
− 1

Nthread

1− 1
Nthread

(3.103)

where the speedup and number of threads are used. Figure 3.32 shows that with the

exception of low number of threads, the serial fraction grows as the the number of

threads is increased. This observation confirms the claim made above, namely that

the loss of efficiency can be blamed on the growing overhead of the problem as the

number of threads is increased. Similarly, it also shows how the percentage of serial

work is significantly decreased when it is compared to an increased problem size.

This strong scaling study highlights the justification for implementing only thread-

wise parallelism in the tool. Namely, these result show that indeed the parallel im-

plementation is capable of retaining high parallel efficiencies as the mesh resolution

is increase. However, since the nature of these problems means that the meshes

will remain in the orders of magnitude examined here, there is little potential for

improvement if the number of threads is further increased.

As an additional reference, typical simulation times of the present tool are con-

trasted with comparable existing simulation tools for APMs and EGMs discussed

in Section 1.3. For APMs, Multics CASPAR is compared to the simulation tool

FSTI [48, 51,52, 125] in Table 3.2. First comparing the lumped parameter models, it

is worth noting that in the existing approach’s lumped parameter module runs with
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leakage only from the film models. Since this means that the leakages are “known”

(for a single weak coupling iteration), the lumped parameter simulations run very

quickly with no need to converge on pressure-leakage behavior simultaneously. While

this speed can be replicated with Multics CASPAR by disabling features to match

the assumptions of the existing tool, a typical use of the Multics CASPAR includes

analytical approximations of the films. For the improved fidelity these features offer,

a slight price must be paid in simulation speed. Still, though, this “intermediate”

fidelity solution is helpful. Examples of these uses include efficiency mapping, sen-

sitivity studies, and virtual prototyping applications as will be discussed in Section

5.2.

For the distributed parameter version of the tool, this table shows that a complete

simulation of Multics CASPAR reaches the same speed as an iteration of the other

tools for a single iteration (iterations limited by the longest time). It is worth noting

here that while the existing tool can run a simulation in similar time, it requires

multiple iterations to converge on the weakly coupled lumped-distributed behavior.
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Table 3.2.
Run time breakdown comparison with existing APM simulation

Min Max Typical

Piston-Cylinder

Interface (per iteration)
6 hr 1 week 18 hr

Slipper-Swashplate

Interface (per iteration)
6 hr 2 days 12 hr

Cylinder block - Valve plate

Interface (per iteration)
6 hr 2 days 12 hr

Pressure Module

(per iteration)
10 s 2 min 20 s

Multics CASPAR - LP

(Sequential)
10 s 1 hr 2 min

Multics CASPAR - DP

(4 threads)
2 hr 3 days 20 hr

For Multics CASPAR on the other hand, this simulation represents a strongly coupled

converged solution. For fair comparison, Multics CASPAR times are reported for

simulation on 4 threads, the minimum number that would be expected on a typical

desktop machine. As was shown above, the code retains high potential to improve on

these times if more threads are made available.

Similarly for EGMs, Multics HYGESim is compared to the previous simulation

tool HYGESim [36,44,46,54] in Table 3.3. Here the lumped parameter model of HY-

GESim (previous) can run without (or with) interfacing with the Reynolds models,

and thus faces the same issues mentioned for Multics CASPAR. The major speed ben-

efits observed between this existing tool and Multics HYGESim, then, come from it

being re-implemented as a standalone software package (as opposed to within another

software as was done previously) rather than changes to the underlying modeling ap-
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Table 3.3.
Run time breakdown comparison with existing EGM simulation

Min Max Typical

Journal Bearing

Interface (per iteration)
6 hr 2 days 12 hr

Lateral Lubricating

Interface (per iteration)
6 hr 1 week 18 hr

Lumped Parameter

(per iteration)
5 min 2 hr 30 min

Multics HYGESim - LP

(Sequential)
10 s 30 min 2 min

Multics HYGESim - DP

(4 threads)
2 hr 2 days 15 hr

proach. For the distributed parameter approach, on the other hand, a similar trend

as was observed for Multics CASPAR is present. Namely, a single strongly coupled

simulation of an EGM with Multics HYGESim can be performed in the same time as

a single weak coupling iteration of the existing tools. Again 4 threads are used for the

DP version of Multics HYGESim, accounting for use on a typical desktop machine.

For both the EGM and APM cases, these tables demonstrate that the core changes

to the underlying approach of Multics allow for a marked decrease in the time required

to attain a coupled lumped-distributed simulation result. Furthermore, the compo-

nents developed in Multics introduce novel physical considerations within the same

run-time. This is accomplished mainly via the ability of Multics to perform a single

strongly coupled simulation of these machines, without the need for weak coupling

iterations. It is also worth noting that these results are attained assuming a modest

computational ability. Even with this modest resource, the simulation times of the

present work is similar to single iteration of the existing approaches. Even if only
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a single iteration of the weak coupling is required to converge (which is unlikely),

analysis with the present model is completed in 50% of the time. This section further

shows that with the availability of more parallel threads, the performance of Multics

can be further improved to even surpass the time required for a single iteration of the

existing tools.
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4. VALIDATION

Throughout Chapters 2 and 3, the various components of the simulation suite Mul-

tics were developed and individually verified. In the present chapter, these model

approaches are validated against relevant experimental measurement and state of the

art. First, the novel universal Reynolds equation will be validated in isolation in

Section 4.1 against both experimental results and relevant approaches in literature.

With confidence in the behavior of this equation, experimental validation will then

be performed on the specific applications to 3 different PD machines: EGM, APM,

and Gerotor in Sections 4.2, 4.3, and 4.4 respectively.

4.1 Lubricating Films

Before proceeding with application to specific machines, it is important to validate

the underlying approach. To do so, this section will compare the novel universal

Reynolds equation against existing studies of common bearing geometry. This will

come in the form and experimental and reference results available in literature for

the Elrod cavitation algorithm on which the present thesis builds. In this section,

3 simplified cases are considered. First, the model is applied to a simple 1D slider

bearing with results compared to Elrod [99] and Vijayaraghavan and Keith [103], then

a plain journal bearing compared to Raimondi and Boyd [134] under steady operation

and finally Brewe [110] during dynamic loading.

For the dynamic case, the time dependant density solution is solved using the

finite difference scheme developed in Section 3.5.3. For both of the steady cases,

the problem is solved using the same finite difference stencil. Without the time

dependence, the steady problem is solved using an root finding approach adapted

from Powell’s Hybrid method [135] that was developed in [136].
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Figure 4.1. Parabolic slider bearing geometry definitions, with exagger-
ated gap height

4.1.1 Parabolic Slider Bearing

In [103], Vijayaraghavan and Keith extended the Elrod algorithm to include the

compressibility effects of the shear flow term in the full film condition, comparing

it to the infinite width parabolic slider bearing studied in Elrod [99]. To validate

the present model, results will be compared to both of these works. Since constant

liquid bulk modulus and viscosity are assumed in both thse works, values µ0 and K0

are taken respectively instead of the tabulated properties discussed previously. The

density is then given by the linearized approximate approximation of the logarithmic

relation

p ≈ pc +K0

(
ρ

ρ0

− 1

)
(4.1)

as is discussed in [99]. In Figure 4.1, the geometry of the slider is demonstrated, with

fixed upper body and moving lower body. For this bearing, Table 4.1 demonstrates

the relevant geometric and fluid properties.

With flooded inlet, results can be compared to the analytical, incompressible

Reynolds solution
dp

dx
= 12µ0vx

h− h0

h3
(4.2)
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Table 4.1.
Fluid properties used for model validation study

Surface velocity vsurf 4.57̂im/s

Length L 76.2mm

Minimum height hmin 25.4µm

Maximum height hmax 50.8µm

Liquid constant viscosity µ0 0.039Pa s

Liquid constant bulk modulus K0 69MPa

Liquid reference density ρ0 850 kg/m3

Reference saturation pressure p0 0 barg

with h0 = h(x0), subject to a constant pressure inlet and Reynolds boundary outlet

conditions

p|x=0 = 0

p|x=x0 =
dp

dx

∣∣∣∣
x=x0

= 0
(4.3)

The solution to this equation can then be written in terms of the unknown x0,

which is found numerical via a 1D root finding algorithm to satisfy the boundary

conditions. In the compressible cavitated region, pressure is saturated at 0 and the

cavitated pressure variation is neglected, an approach consistent with that of Hamrock

et al. [90]. For numerical solution, the same constant inlet condition is applied,

corresponding to either the flooded ρ
ρsat
≥ 1 or starved ρ

ρsat
< 1 inlet. Consistent with

the previous works, the second derivative of pressure is fixed to zero at the boundary,

corresponding to an outlet boundary condition on flow

ρ|x=0 = ρ|inlet

Q ∼ dρ

dx
∴
dQ

dx

∣∣∣∣
x=L

∼ d2ρ

dx2

∣∣∣∣
x=L

= 0
(4.4)
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Figure 4.2. Flooded inlet (ρinlet = 1.0001ρsat) pressure and density ratio
profile comparison of proposed model to Vijayaraghavan et al. [103] and
Elrod [99] approaches, as well as the exact solution for incompressible
fluid pressure

With this information defined, the flooded inlet case ρinlet = 1.0001ρsat is first run.

The pressure and density ratio that result in this condition are given in Figure 4.2.

While the density ratios of all three approaches appear similar, the conversion

to pressures highlights the difference in result. Note here that in matching Elrod’s

approach, Vijayaraghavan’s data presumably does not include the compressibility in

the shear term, which was demonstrated to have an effect on the resulting pressure

profile. Since this term is included in the proposed approach, the slight variation in

resulting profile is expected. Furthermore, since both previous approaches use the

discontinuous switch function to transition between upwind and central difference of

the shear term in cavitated and full film regions respectively, the discretization and

therefore the numerical problem to solve are different. With all models, the results

show how pressure builds in the converging end, with the pressure dropping past the

minimum film thickness and forming a void at the exit of the bearing.
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Figure 4.3. Starved inlet (ρinlet = 0.55ρsat) pressure and density ratio
profile comparison of proposed model to Vijayaraghavan et al. [103] and
Elrod [99] approaches

Similarly, the inlet condition ρinlet = 0.55ρsat is run, corresponding to the same

bearing with a starved inlet. The pressure and density ratio in this condition are

given in Figure 4.3. Here the methods show poor agreement, even between the Elrod

approaches. In case of the present work, it is likely that the disagreement comes in

part from the non-zero pressure diffusion term which is neglected in the other works.

As a result, the present work predicts a slower rate of reformulation of the film as

compared to the Elrod approaches. All three, however, predict that same point at

which the film ruptures, as well as the distribution of liquid in the film after rupture.

Again, the same issues present in the flooded case will also impact agreement here.

As is mentioned in [103], though, Elrod’s shear flow term does not include the effects

of compressibility in the full film shear term. In Figure 4.4, the proposed model is

compared to Vijayaraghavan’s result after including this effect, with better agreement.

Despite close results in the reference condition above, the agreement between

incompressible and compressible fluid models are not always so close. In the case

below, the surface velocity has been increased by a factor of 4 to provide more ability
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Figure 4.4. Flooded inlet pressure profile comparison of proposed model
to Vijayaraghavan et al. [103] with and without inclusion of fluid compress-
ibility in the shear term, as well as the exact solution for incompressible
fluid

for hydrodynamic pressure buildup. Again, the inlet is assumed to be flooded ρinlet =

1.0001ρsat. Though the magnitudes of the two models are in relative agreement in

this case, the peak locations and non-zero pressure region of the film are different,

leading to different net force and moment prediction of the bearing. Furthermore,

this figure shows the difference in results due only to a change when considering that

the compressibility of the fluid itself changes with pressure.

As was mentioned above, the exact bulk modulus must be altered to facilitate

numerical solution. The result of this alteration is highlighted in the zoomed portion

of Figure 4.5, where a slight perturbation to the shape of the pressure curve occurs

as the pressure crosses psat and the models are blended. Therefore, it is important to

ensure that this blending occurs over a small enough region of pressure that it does

not impact the final result. This zoomed portion also demonstrates how the pressure

falls below that of saturation, and cavitation occurs. In Figure 4.6, the film content

distribution is plotted against this pressure profile, demonstrating the film makeup

for the case of the variable bulk modulus.
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Figure 4.5. Flooded inlet pressure profile comparison of effect of variable
compressibility on resulting pressure profile
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Figure 4.6. Flooded inlet pressure profile and void fractions demonstrat-
ing bulk fluid contents

This plot shows how first the trapped air is released from the liquid. However,

since this release is not enough to fill the void, the pressure is further reduced until

a slight evaporation of the liquid occurs. This highlights the utility of the proposed
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Figure 4.7. Unwrapped journal bearing film, with exaggerated radial
clearance between bearing and journal

model, where not only the presence of cavitation, but a better understanding of the

type and behavior of the cavitation can be studied.

4.1.2 Steady Journal Bearing

As was observed by Elrod [99], the difference between the incompressible and

compressible solutions of a flooded inlet journal bearing is not detectable in a typical

plot. Considering this, the proposed approach was applied to the flooded, axially

fed plain journal bearing studied by Raimondi and Boyd [134]. Again since this

work assumed constant viscosity and bulk modulus, the properties detailed above are

maintained for validation.

The results are then compared to results obtained for incompressible fluid by [134].

In order to solve for the film pressures in the bearing, it is first unwrapped so that

the circumferential ĉ and axial k̂ directions make up a rectangular, periodic film as

is demonstrated in Figure 12. The lengths in the two directions are given by the

circumference 2πrb and axial length of the bearing Lz.



142

10-2 10-1 100 101

Bearing number

0

0.2

0.4

0.6

0.8

1

Raimondi and Boyd: =1
Raimondi and Boyd: =2
Raimondi and Boyd: =4
Present work

(a) Minimum Gap

10-2 10-1 100 101

Bearing number

0

20

40

60

80

A
tti

tu
de

 a
ng

le
 [d

eg
]

(b) Attitude Angle

Figure 4.8. Comparison with Raimondi and Boyd [134] results as a func-
tion of bearing number for various bearing aspect ratios D/L (a) minimum
gap thickness (b) attitude angle

From Hamrock et al. [90], the gap height of the bearing, for a given eccentricity

vector e and nominal radial clearance C, can be calculated.

h = C − ex cosϕ− ey sinϕ (4.5)

In steady conditions, the applied load is exactly opposite the net bearing force. There-

fore, the attitude angle for ω > 0 is

ΘF = arctan
Fb,y
Fb,x
− arctan

ey
ex

(4.6)

Similarly, the bearing number is calculated via its definition in [134]

BN =
µ0ωrbLz
π|F b|

(rb
C

)2

(4.7)

Using these, Figure 4.8 is constructed to compare results of the proposed model to

that of [134] for the minimum gap height and attitude angle.

This result shows a good agreement between the pressure saturation and proposed

approaches at various bearing aspect ratios. Notice, however, that the agreement

begins to break down at higher bearing number, depending on bearing aspect ratio.
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This effect was also observed above, where increasing the characteristic frequency ω,

speed in the case of the slider, decreased the agreement between the incompressible

and compressible solutions. This points to the fact the pressure saturation approach

is appropriate for high loading situations but breaks down when the effects of the

non-zero cavitation pressure are not negligible with respect to the peak pressure.

To demonstrate a typical solution, the constant fluid property assumptions are

removed, and Figure 4.9(b) shows the film density distribution over the film for the

gap distribution shown in Figure 4.7. The corresponding pressure profile is given

by Figure 4.9(a), where the pressure and density peak at 90◦ corresponding to the

minimum of the converging gap region, at an eccentricity ratio |e|
C

= 0.5. Elsewhere,

though, the contrast between the flat pressure profile and the drastically changing

density profile shows key information that is discarded when using pressure saturation

alone.

In the same condition, Figures 4.10(a) and 4.10(b) show the void fractions of the

undissolved gas and vapor respectively. These plots demonstrate the key advantage of

this approach, which provides insight of the degree of gaseous and vaporous cavitation

throughout the film. These plots show that at first, the entrained gas of the liquid

is released to fill the void created by the expanding region of the bearing. However,

when this is not enough, the fluid evaporates and overcomes the gas and liquid bubble

volume until its maximum at 270◦, the peak of the expanding film region. While the

gap height begins to converge here, the low bulk modulus and density of the film

cause a lag in recovery of pressure. Thus, the bubbles do not come completely back

into solution until after 45◦, coinciding with the building of pressure.

Incorporating the effect of oiling grooves, Figures 4.11(b) and 4.11(a) for the den-

sity and pressure respectively are constructed. This simulation is run with the same

bearing geometry and eccentricity ratio |e|
C

, excepting supply grooves maintaining

constant pressure of 5barg at the points marked in the figures. Notice here that the

bearing has been loaded by a purely vertical load F b = 〈0, Fb,y, 0〉. The eccentricity

angle was then adjusted to balance this load with the resulting film pressures, so that
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(a) Film Pressure

(b) Film Density

Figure 4.9. Steady film makeup for plain journal bearing at eccentricity
ratio |e|

C
= 0.5

the gap height distribution is shifted from that of Figure 4.7. Contrasting with Fig-

ures 4.9(a) and 4.9(b), these figures demonstrates how the downstream feeding groove
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(a) Undissolved gas void fraction

(b) Vapor void fraction

Figure 4.10. Steady ruptured film makeup for plain journal bearing at
an eccentricity ratio |e|

C
= 0.5

extends the region before the collapse of the film, and decreases the magnitude of the

density drop in the ruptured film. Additionally, the upstream groove maintains high
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pressure in the converging region of the bearing that allows it to build enough pres-

sure to accomplish a bearing number 6 times smaller than the axially fed bearing at

the same eccentricity ratio.



147

ℎ𝑚𝑖𝑛

Feeding Grooves

(a) Film Pressure

ℎ𝑚𝑖𝑛

Feeding Grooves

(b) Film Density

Figure 4.11. Steady film makeup for journal bearing with oiling grooves
at an eccentricity ratio |e|

C
= 0.5
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4.1.3 Dynamic Journal Bearing

To investigate the implications of the proposed change to the universal Reynolds

on the transients of the ruptured film, dynamic simulations are compared with the

Elrod implementation performed by Brewe [110] for a whirling journal bearing. For

these simulations, Table 3 demonstrates the parameters collected from Brewe, which

are used in the results to follow. Notice here that the fluid was assumed to be

degassed, such that only liquid and vaporous states of the oil are possible.

First in Figure 4.12(a), the radial load on the journal is plotted over a full orbit of

the shaft center with the bearing, demonstrating the ‘journal bearing hysteresis loop’

observed by Brewe. This figure shows that the two models agree in the first half of

the orbit, where there is no cavitation predicted and both models break down to full

film Reynolds models.

The results deviate slightly in the separation phase, however. This region was

also observed to be sensitive to boundary condition by Brewe, when comparing the

Elrod method implementation to the pseudo-Gümbel boundary condition. The dis-

agreement here is likely due to a key difference between the present work and Elrod’s,

namely that of the diffusion term in the cavitated film. In Elrod’s method, the pres-

sure is saturated over the entire cavitated front, with the diffusion term disabled.

Instead in the present work, the dimensionless bulk modulus approaches 0 only at

the boundary of the cavitation front, then recovers in the ruptured film. While both

satisfy the JFO boundary conditions, they permit slight variation in cavitated pres-

sure profile, which would then reflect in a difference in the resulting load on the

journal.

As is demonstrated in Figure 4.12(b), the void forms 30ms into the orbit, existing

until 63ms for a predicted bubble life of 33ms in line with the prediction of Brewe.

As was mentioned in Brewe, this value is larger than observed in experiments, likely

owing to a ruptured film that is still numerically existent that cannot be spotted by

the photographs.
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Table 4.2.
Bearing geometry and operating condition for dynamic journal bearing
simulation

Radial clearance C 5× 10−4 m

Bearing Radius rb 42.5 mm

Bearing Length Lb 85 mm

Minimum eccentricity |e|min 0.1

Maximum eccentricity |e|max 0.8

Shaft angular velocity ωs −19.5 rad/s

Orbit angular velocity ωD −92.7 rad/s

Reference saturation pressure psat 0 barg

Liquid constant viscosity µ0 0.066 Pa s

Liquid constant bulk modulus K0 1.72 GPa

Edge pressure over saturation 1.0133 bar

Separation

Squeezing

c)

d)

e)

b)

f)

a)

(a) Radial Load

a)

f)

b)

c)

d)

e)

(b) Void Content

Figure 4.12. Film Forces and Void content over a full shaft orbit, where
the curve travels clockwise with simulation time
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Finally, the film pressures over an orbit can be seen in Figure 4.13. Similarly, the

journal position is demonstrated in Figure 4.14 over a full orbit, with the exaggerated

film colored by the density ratio at the center cross-section. These figures are helpful

in visualizing the circumferential motion of the pressure/density peak as it follows

the shaft orbit. Notice here that the points (a)-(f) are also noted in Figure 4.12.

These plots show that pressure builds during the squeezing phase of the orbit. By the

time the journal reaches its highest eccentricity, though, a void has already formed

in the expanded region of the bearing. During the separation phase of the orbit, this

bubble is expanded until it collapses just before reaching the minimum eccentricity.

This is also demonstrated in Figure 4.14 with the void fraction protruding radially

outward, denoting the location of the void which forms and specifically how it follows

the orbit. This is a difference with respect to Brewe’s result, which predicts that the

bubble should last past the minimum eccentricity and into the squeezing phase. As a

result, points a) and f) do not agree with Brewe’s, due to the difference in timing of

the bubble life. Similarly, this discrepancy is responsible for the disagreement in load

carrying in the separation phase of the orbit. As was stated above, this difference in

pressure profile is likely explained by the difference in the treatment of diffusion in

the cavitated film.
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a) b) c)

f) e) d)

ℎ𝑚𝑖𝑛 ℎ𝑚𝑖𝑛 ℎ𝑚𝑖𝑛

ℎ𝑚𝑖𝑛ℎ𝑚𝑖𝑛ℎ𝑚𝑖𝑛

Figure 4.13. Film Pressure over an orbit of the bearing, at same times
demonstrated by Brewe, where the time points (a)-(f) are viewed clockwise
in increasing time
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a) b) c)

f) e) d)

Figure 4.14. Journal trajectory over an orbit, with exagerated film col-
ored by density ratio and void fraction protruding radially outward at the
cneter journal cross-secion. Again (a)-(f) are viewed clockwise in increas-
ing time
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4.2 External Gear Machine

In the previous section, the core universal Reynolds solver of Multics was validated.

As was discussed in Section 1.5, this solver as well as other elementary components

of Multics are applied in the simulation tool Multics HYGESim to form a complete

system of an EGM. While Table A.2 collects a complete list of the relevant models

applied here, it is helpful to graphically represent the components which constitute

Multics HYGESim. This is given in Figure 4.15. Here all components of the machine

are treated as inertial bodies, with their dynamics solved using the rigid body and

deformation modules of Multics. The tooth space volumes and porting volumes of the

units are treated as lumped control volumes, with pressure dictated by the pressure

buildup equations. The turbulent flows between both the tooth space volumes and

the porting volumes is modeling using the orifice equation. Flow and force due to the

leakage path across the tooth tips of the unit is modeled as Couette-Poiseuille flow.

Finally, the flows and forces in the journal bearing and lateral lubricating interfaces

solve Reynolds equation, using either analytical approximations for a LP model or

the complete Reynolds film objects for a DP model. Boundary friction between the

bushing/lateral plate and the casing (if lateral compensation is employed) is modeled

as Stribeck friction. In the present section, model validation of Multics HYGESim

will be performed using two commercial EGMs.

4.2.1 Reference Unit E1

In order to validate the performance of Multics HYGESim, experimental measure-

ment of the Ref E1 EGM was performed at Purdue University with an ISO VG46

working fluid. The test setup is demonstrated in Figure 4.16 with both an image

of the setup and the corresponding ISO schematic. In this circuit, a needle valve

(represented by the orifice O2) is used to load the unit. Between the pump and the

load, there is a rigid and constant diameter straight pipe with a close end termination

(orifice O1) which is only used to create standing waves which are easy to reproduce
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Figure 4.15. Modeling components for Multics HYGESim

in simulation for pressure ripple comparison. While it is typically the flow ripple

that is of interest for a pump, the dynamics of flow meters are typically too slow

to capture this ripple. Instead, it is common to measure the pressure ripple, which

can be captured with high frequency pressure sensors. Since the pump is loaded by

a constant orifice, the resulting pressure ripple is directly proportional to the flow

ripple

Q ∝
√

∆p (4.8)

per orifice equation 2.5, and matching of one inherently validates the other. This

experimental technique was first introduced by [137]. The details of the measurement

equipment used in this experiment are defined in Table 4.3.

In Figures 4.17 – 4.22, the resulting pressure ripple at various operating conditions

throughout the operating range is given. In these figures, the ripple is demonstrated
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Figure 4.16. Experimental setup for measurement of Ref E1 EGM

Table 4.3.
Measurement devices for EGM validation schematic

Label Sensor Model Specifications Accuracy

P1 Pressure Wika S-10 0 to 400 bar ±5% of span

P2 Pressure Ripple Kistler 0 to 600 bar

T1 Thermocouple Omega K-type -5 to 200 ◦C ±1◦C

Q1 Flow Meter VSE VS02 0.1 to 120 L/min ±0.3%

in both the time and frequency domains. These results highlight that the model shows

good agreement with the first and second harmonics of the flow ripple, and matches

higher for some operating conditions. The first harmonic of the ripple corresponds

to the number of displacement chambers, in the case of the EGM to the number of

teeth. The ripple at these frequencies corresponds to phenomenon which occur once

per tooth span, including the cross-port flow permitted by the grooves in the meshing

zone, pressure overshoot, and the pressurization of the TSV in the casing.

The second harmonic contains information about a unit acting in dual-flank oper-

ation, where contact between both flanks of the teeth in meshing effectively doubles

the number of displacement chambers. After these two harmonics, the behavior of

the ripple is more sensitive to manufacturing errors in the units and external factors

such as the electric motor driving the unit.
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Figure 4.17. Pressure ripple for ∆p/pmax=100%, shaft speed of 3000 rpm
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(b) Frequency Domain

Figure 4.18. Pressure ripple for ∆p/pmax=100%, shaft speed of 500 rpm
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(b) Frequency Domain

Figure 4.19. Pressure ripple for ∆p/pmax=80%, shaft speed of 2000 rpm
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Figure 4.20. Pressure ripple for ∆p/pmax=40%, shaft speed of 1000 rpm
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(b) Frequency Domain

Figure 4.21. Pressure ripple for ∆p/pmax=20%, shaft speed of 3000 rpm
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Figure 4.22. Pressure ripple for ∆p/pmax=20%, shaft speed of 500 rpm
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4.2.2 Reference Unit E2

The previous section showed the ability of the unit to capture the dynamic be-

havior of an EGP. Since these units contain only internal leakage paths, though, they

provide no means for non-invasive validation of their interfaces. For this reason, ad-

ditional tests were conducted with the Ref E2 EGM unit operating as a pump, again

with an ISO VG 46 mineral oil as working fluid. The test circuit is very similar to

that of Figure 4.16, with the addition of an external drain line. These tests were per-

formed in the same test setup at Purdue University, using the same loading strategy

and measurement devices shown in Table 4.3. As visible in Figure 4.23, the unit is

externally drained, allowing for an isolated capturing of the drain flows of the unit.

The goal of this analysis is to demonstrate agreement of both the steady and

transient behavior of the unit. Furthermore, by collecting the flow from an external

drain port of the unit, validation of the lubricating interfaces in isolation can be

performed through indirect flow prediction comparison.

First, the steady behavior of the reference unit is examined, with respect to the

volumetric performance. Tests at different operating speeds and loads were conducted

to construct the flow-pressure characteristics of the unit as shown in Figure 4.24(b).

By recreating this procedure in Multics HYGESim, the resulting flow behavior is

included for comparison in the same plots. Comparing this to the theoretical flow

expected by the unit, the volumetric efficiency is given in Figure 4.24(a). Here, the

efficiency is defined using the kinematic displacement of the unit Vkin, corresponding

to the volume of fluid that is swept by the teeth of the gear as it rotates.

ηv =
Q

ωVkin

(4.9)

This study demonstrates the ability of Multics HYGESim to capture both the mag-

nitude and trends of the efficiencies of an EGM over a wide range of operating con-

ditions.

The delivery apparatus used for the tests allows for a straightforward comparison

between the measured and the simulated pressure pulsations. As was discussed in
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Figure 4.23. Experimental setup for measurement of Ref E2 EGM

Section 4.2.1, this pressure ripple is directly proportional to the flow ripple of the

unit. In Figure 4.25, the resulting pressure oscillation at the pressure sensor used

for pressure ripple measurements (P2, 50kHz) is shown. This result is compared to

the predictions of Multics HYGESim, demonstrating agreement in both the time and

frequency domains. It should be remarked that the pressure ripple in an EGM is

highly sensitive to both the position and pressurization of the internal TSVs. This

result, then, shows that the tool can capture not only the steady behavior of the unit,

but also its dynamic pressure-flow characteristics as well as the main internal fluid

dynamic features.

The choice of an externally drained EGM, shown in Figure 4.23, allows for a means

of indirect measurement of the lubricating film behavior. As was highlighted in Figure

1.6, this drain flow must travel out of the TSVs into the lateral lubricating interface,

and through the journal bearing before finally escaping through the drain port. Since

these flow were demonstrated in Equation 3.18 to be cubic in gap height, the resulting

flow is highly sensitive to the positions of the floating elements. While the volumetric

efficiency of the unit also reflects these flows, comparison of the predicted drain-

flow provides a further indirect validation of the lubricating interface models only.

Figure 4.26 provides a reasonable agreement between the drain leakage predictions of

Multics HYGESim as compared to the experimental measurement. It is worth noting

that in this study, the nominal clearances of the unit were used. With this highly
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(a) Volumetric Efficiency

(b) Flow Characteristics

Figure 4.24. Steady State comparison of Multics HYGESim and experi-
mental results (a) Volumetric Efficiency (b) Pressure-Speed Flow charac-
teristics

sensitive cubic flow-gap relationship, agreement with experiment could be improved if

the true clearances of the unit were taken and used as input to the model. However,

since the goal of this study is to develop a tool which can be used in place of a

manufactured prototype, the true clearance would not be known. Instead, it is elected
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Figure 4.25. Pressure oscillation in both time and frequency domains a)
p/pmax = 0.4, ω = 1800 rpm b) p/pmax = 0.6, ω = 2400 rpm c) p/pmax =
0.8, ω = 3000 rpm

here to demonstrate the ability of the tool to predict performance using only known

design quantities. This result, then, confirms that the behavior of isolated lubricating

interfaces of the machine can also be captured by the tool using only nominal geometry

of the unit.
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(a) 2400 rpm (b) 3000 rpm

Figure 4.26. Steady State comparison of Multics HYGESim and experi-
mental results drain leakages at (a) 2400rpm (b) 3000rpm

4.3 Axial Piston Machine

A major goal of this thesis is to develop a modeling suite applicable to any PD

machine. Similar to Multics HYGESim, the components of the simulation suite Mul-

tics developed in Chapters 2 and 3 can be used to construct the complete system of an

APM. This model is referred to as Multics CASPAR, with all model components col-

lected in Table A.1. Again for clarity, these components are represented graphically in

Figure 4.27. Here the pistons, slippers, cylinder block, and swashplate are treated as

inertial bodies, with dynamics and deformation captured by the respective modules of

Multics. Based on these dynamics, the displacement chambers, hydrostatic pockets,

and porting volumes are treated as lumped volumes with pressure dictates by the

pressure buildup equation. Turbulent flow exchange between these lumped volumes

is modeled using the orifice equation. The friction of the ball-socket interface of the

piston-slipper pair is modeling using a Stribeck friction model. Finally the lubricating

interfaces of the machine (piston-cylinder, slipper-swashplate, and valve plate - cylin-

der block) are modeled using Reynolds equation. For LP simulations these interfaces
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Figure 4.27. Modeling components for Multics CASPAR

are simplified, and for DP simulations they are modeled with the complete universal

Reynolds solver.

The goal of this section, then, is to perform a similar non-invasive validation of

the ability of Multics CASPAR to predict the behavior of a commercial APM during

operation. In order to perform this validation, the steady state experiments performed

by [138] on a reference commercial high pressure axial piston machine of swash-plate

type are recreated (Ref P1).

The unit was loaded with the circuit demonstrated in Figure 4.28. By varying the

operating speed and pressure relief (PRV1) setting, the pressure-flow characteristic

of the unit was attained. In Figure 4.29(a), the resulting behavior of the unit is

demonstrated with comparison against the proposed model. It is worth noting here,
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Figure 4.28. Experimental Setup of the reference unit performed by [138]

that the efficiencies are calculated using the shear and flow predictions of the Reynolds

film model instead of the analytical approximations.

Following the approach discussed in [139], the total efficiency of the experiment is

extracted from the steady state flow, pressure, and temperatures of the unit taking

properties of the ISO VG 32 hydraulic oil used in this work. In Figure 4.29(b) this

result is compared to the total efficiency prediction of Multics CASPAR, defined

as the efficiency with which the unit converts mechanical power to useful hydraulic

power [1]

ηt =
Qout pout −Qin pin −Qdrain pdrain

τs ωs
(4.10)

This figure confirms that the proposed model is able to accurately capture the effi-

ciency of the unit over a wide range of operating speeds and pressures, with both the

magnitude and trend of the experimental curve tracked.

For better understanding of the relative contributions of leakage and shear loses

in the unit, Figure 4.30 shows comparisons of the volumetric and hydro-mechanical

efficiency components of the total efficiency of the unit. Here volumetric efficiency ηv
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is found using Equation 4.9 given the kinematic displacement of the unit, so that the

corresponding mechanical efficiency must be

ηm = ηt/ηv (4.11)

It is important to note that the major sources of both volumetric and shear losses in

an APM are in its lubricating interfaces. These results, then, are only attainable with

accurate modeling of the lubricating interfaces of the machine. Thus, these results act

to indirectly validate both the flow and shear predictions of the lubricating interfaces.

As was discussed for the case of the EGM, Equation 3.18 shows a cubic dependence

of leakages on the gap height. Additionally, Equation 3.62 show how the shear losses

shows reciprocal dependencies on the gap distribution in the interfaces. Thus since

these functions are heavily dependant on the gap distribution, the matching of these

results also indirectly validates the dynamics of the floating bodies in the unit.
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(a) Pump Assembly (b) Lubricating Interfaces (c) Tooth tip leakage

Figure 4.31. Demonstration of working principal of a Gerotor unit, high-
lighting loss sources in the machine (a) the assembly of a Gerotor (b)
lubricating interfaces in the unit (c) flow constriction at tooth tips

4.4 Gerotor

The working principal of a Gerotor is similar to that of an EGM, where the

meshing teeth form a contraction and expansion in the delivery and suction volumes

respectively. This unit is demonstrated in Figure 4.31(a) from Mistry et al. [140].

The key difference here, is that an external gear rotates within an internal gear, with

exactly one tooth difference such that sealing is maintained between adjacent volumes

of fluid trapped by contact at each tooth shown in Figure 4.31(c). The lubricating

films to be considered in this unit are the lateral gap interface, similar to the EGM

except without a balancing element in this case, and the radial gap of the outer rotor

which acts as a journal bearing. Both of these interfaces are shown in Figure 4.31(b).

Applying the modeling suite Multics presented in this thesis, Mistry et al. [140]

simulated the Ref G1 Gerotor pump, validating against both the pressure and torque

ripples of the unit against experimental results. These results act as both a validation

of the tool in terms of accurately reflecting the physics, but also a proof of concept

that the API can be directly applied to other units besides the EGM and APM for
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(a) Test Circuit (b) ISO Schematic

Figure 4.32. Experimental setup for Ref G1 Gerotor validation with (a)
a picture of the test setup (b) the corresponding ISO schematic represen-
tation

which it is derived here. The following results are included here for completeness, but

the reader is encouraged to refer to the original text for a more detailed explanation.

First in Figure 4.32, the experimental setup is shown both with an image and the

corresponding ISO schematic. In this test, the input speed and torque of the drive

shaft are recorded, as well as the flow across the pump. In addition, two pressure

sensors are shown, where one is used for observing mean pressure and the other is a

high frequency sensor for pressure ripple measurement.

Due to confidentiality, the true values of pressures and torques cannot be reported

here, and are instead normalized by arbitrary values. Starting first with the pressure

ripple, Figure 4.33(a) shows a comparison between the simulated and predicted flow

ripple of the unit. Unlike the case of the EGM shown above, the shaft frequency of

the unit is clear in the experimental flow ripple in this unit. This is typically caused

by manufacturing errors present in individual teeth of the gears, so that the feature

repeats only once with each shaft revolution. As a result, a low frequency wave over

the 360◦ shaft rotation is visible. Since the geometry was assumed to be ideal in the

simulations performed by [140], these affects were not captured. Excluding this, the

results show good agreement with both the magnitude and shape of the resulting

pressure ripple of the test circuit.
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(a) Pressure Ripple

(b) Torque Ripple

Figure 4.33. Instantaneous pressure and torque ripple in unit over a full
shaft revolution

Similarly, the torque ripple is considered. To avoid effects of manufacturing er-

ror and misalignment discussed with respect to the pressure ripple, the raw torque

data was high-pass filtered. This acts to isolate the effects of the nominal Gerotor

design. In Figure 4.33(b), the resulting filtered curve shows good agreement with the

torque ripple predicted by simulation, where again values are normalized arbitrarily

for confidentiality.
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Figure 4.34. Net lubricating interface normalized pressure distribution
over the DP domain of Ref G1

It is worth noting that these results were attainable only by considering the lu-

bricating interfaces of the unit. In Figure 4.34 taken with permission from [140],

an instant of the lubricating interfaces’ pressure distributes are shown. This result

demonstrates the applicability of Multics to markedly different geometries than the

EGM and APM which this thesis discusses.
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5. MODEL POTENTIALS

In Chapters 2 and 3, the various novel components of Multics were verified against

relevant commercial software and analytical solutions. In Chapter 4, the core Univer-

sal Reynolds equation was validated against experimental and reference results in the

state of the art. Additionally, the specific applications to EGM (Multics HYGESim)

and APM (Multics CASPAR) were validated against experiments of the respective

machines. With a verified and validated model, the present section will now go on to

demonstrate some applications of the tool to highlight the model potentials. First in

Section 5.1, the implications of each modeling feature will be studied using an EGM

as reference. Next in Section 5.2, the use of this tool for a complete virtual prototyp-

ing will be shown. Finally, Sections 5.3 and 5.4 will perform detailed simulations of

the mutual interactions present within EGMs and APMs respectively.

5.1 Detailed Analysis of a High Pressure EGP

To demonstrate the use of this tool on an existing unit, the following study is

performed on the Ref E1 EGP. With this unit, the impact of each component of the

tool can be discussed. For all simulations, the simplified loading circuit given in Figure

5.1 is used, where the line volume between the pump and load orifices is intentionally

kept very small to exaggerate the resulting pressure ripple. Note here that the electric

motor is assumed to be a perfect torque source, and introduces no variation of speed

into the simulation. For confidentiality, the true values cannot be reported here, and

all physical quantities are normalized with respect to representative quantities for the

unit.

First, the fully lumped parameter model is demonstrated, both with fixed gears

(F mode) or with the gears free to shift (FFI mode). In Figure 5.2, the delivery
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M

Figure 5.1. Hydraulic schematic for High Pressure EGP detailed simula-
tion

flow of the unit is demonstrated, with comparison between both F and FFI mode to

the kinematic flow of the unit. First comparing the F mode to the kinematic, the

effect of the compressibility of the fluid is considered. Multiple drops in the flow,

demonstrated by Figure 5.2(b), correspond to points in which the fluid that would

have otherwise been delivered must instead be drawn into a TSV as it transitions

from low to high pressure. Additionally, a drop occurs in the meshing zone, when the

highly throttled relief grooves cannot deliver all of the volume displaced by the teeth.

Finally, the capacitance of the outlet volume of the unit means that the flow does

not drop as sharply in real operation as the kinematic curve predicts, with dynamics

that lag the kinematic.

Also included in this figure is a comparison of the results obtained with and

without the inclusion of macro-deformation of the bodies. While the difference is

small, an additional benefit of the separation of macro and micro effects is the ability

to consider the macro-scale deformation of the bodies without the necessity to use

an influence matrix. To understand the reason for this difference, Figure 5.3 shows

the instantaneous gear center distance in both the FFI simulations with and without

macro deformation. This figure shows that due to the deformation of the bodies, the

center distance of the gears perceived by the geometric module changes, reflecting

a different net displacing and sealing action of the gears, and as a result the flow

behavior (Figure 5.2) is changed.
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(b) 2 tooth spans

Figure 5.2. Instantaneous flow rate of the Ref E1 EGP using LP simula-
tion (a) over a whole shaft revolution (b) zoomed in on 2 tooth spans
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Figure 5.3. Instantaneous center distance of the two gears in LP simula-
tion

Similarly to Figure 5.2, the instantaneous pressure of the drive TSV is given in

Figure 5.4. In this figure, a key difference between the F and FFI modes is given,

namely the fact that without considering the micro-motion of the gears, the radial gap
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(b) TSV pressurization

Figure 5.4. Instantaneous drive TSV pressure of the Ref E1 EGP using
LP simulation (a) over a whole shaft revolution (b) zoomed in on the TSV
pressurization

sealing (at the teeth of the gears) is significantly different. This effect is highlighted

in 5.4(b), where the leakage that is allowed in the F mode simulation due to an

inadequate radial sealing allows for pressure to build well before the FFI simulation

predict.

This claim is supported by Figure 5.5, comparing the instantaneous tooth tip

gap over a full revolution of the shaft. By convention, the gap is equal to zero

when the gear’s tooth is not in the casing. This figure confirms that the F mode

simulation allows non-zero gap in a region where the gears shift and seal in FFI

mode. Furthermore, this figure shows that the shifting of the gears impacts not only

the displacement of the unit, but its sealing as well.

If the impedance journal bearings are replaced with their corresponding Reynolds

unwrapped films, Figure 5.6 demonstrates that the resulting shifting changes. With-

out the deformation of the bodies, this effect is subtle. Once the bodies are allowed

to deform, a significant change in the quasi-steady position of the gears is achieved.

This is expected since, by virtue of the fact that the Ockvirk solution neglects the
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Figure 5.5. Instantaneous gap between tooth tip and casing in LP simu-
lation
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Figure 5.6. Instantaneous journal bearing eccentricity comparison be-
tween analytical impedance and numerical Reynolds simulations of the
journal bearings without micro-deformation

pressure driven flow in the circumferential direction, it does not allow the pressure to

diffuse circumferentially and under-predicts the load carrying capacity of the bearing.
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(a) Film Pressure (b) Film Density

Figure 5.7. Numerical distributed parameter Reynolds journal bearing
result without micro-deformation showing (a) film pressure (b) film den-
sity

The resulting film pressure and density of the journal bearing are given in Figures

5.7(a) and 5.7(b) respectively. Figure 5.7(a) shows that a large pressure builds as

the journal shifts to form a converging region in order to carry the applied load. As

a result, Figure 5.7(b) shows the large scale cavitation that occurs in the expanding

region of the bearing, with negligible effect on the pressure in this region.

Similarly Figure 5.8 compares the leakage out of a TSV using the analytical sim-

plifications of the lateral flows as compared to the distributed parameter Reynolds

film. For both, the same fixed gap is used, and no micro-deformation is present. It

is worth noting that while the leakages are small for the low nominal gap taken here,

this is not a general observation of all EGM units. Therefore, comparison should fo-

cus on the relative magnitude of the leakages, as opposed to comparison to the mean

flow.
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Figure 5.8. Instantaneous lateral leakage comparison between analytical
simplifications and numerical Reynolds simulations of the fixed lateral gap
without micro-deformation

The resulting film pressure and density of the lateral gap are given in Figures 5.9(a)

and 5.9(b) respectively. Note that here and for all subsequent lateral gap plots for

the sake of visualization, the results have been post-processed to snap the boundary

points to the edges of the boundary polygon. This functionality is implemented within

the films themselves, and is a user option that can be toggled. It has no effect on the

internal field solution, but is helpful with the interpolated color filling employed by

Paraview. This figure shows that without tilting or deformation, there is no wedge

or squeeze terms to generate pressure, and pressure simply diffuses across the TSV

boundaries. Unlike the journal bearing, Figure 5.9(b) shows that the lateral gap does

not have large pockets of cavitation. It does, however, show the remnants of cavitated

fluid, swept into the film from the cavitating TSV as the gears rotate. This shows a

key strength of the DP approach outlined here, where it is able to capture the coupled

effect of cavitation between the LP and DP volume. Even when the cavitated TSV

has left the region, the low density and bulk modulus of the bulk fluid in that region
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(a) Film Pressure

(b) Film Density

Figure 5.9. Numerical distributed parameter Reynolds lateral result with-
out micro-deformation and fixed bushing showing (a) film pressure (b) film
density

make it impossible for the film to recover before the next cavitated TSV deposits

more cavitated fluid.

When the effect of micro-deformation is included, Figure 5.10 shows that the

resulting eccentricity of the bearing increases. This erroneously makes the bearing

appear to be able to carry less load, when in reality this increase in ‘rigid’ eccentricity
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Figure 5.10. Instantaneous journal bearing eccentricity for the numerical
Reynolds simulations with and without micro-deformation

is caused by the materials deforming and allowing the journal center to proceed further

from the bearing’s nominal center. As was shown in the previous plots, though, the

LP model is sensitive to the position of the gears and therefore this change in position

will have an effect on the performance of the unit.

Besides affecting the LP modeling, the effect of this deformation on the journal

bearing is clearly demonstrated in Figure 5.11. Here, the deformation of the material

allows the pressure to spread over a larger region of the bearing, thus decreasing

the maximum pressure required to carry a given load. Figure 5.11(b) also shows an

important aspect of the macro-deformation, where the bending of the shaft creates

a gap that varies in the axial direction with the deformed gear. The result of this is

shown in Figure 5.11(a), where the pressure peak concentrates on the gear side of the

bearing, as was shown previously in Figure 3.12.
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(a) Film Pressure (b) Gap Deformation

Figure 5.11. Numerical distributed parameter Reynolds journal bearing
result with micro-deformation showing (a) film pressure (b) gap deforma-
tion

Similarly for the lateral leakage, the introduction of body deformation increases

the gap heights and thus the leakages as is shown in Figure 5.12. In Figure 5.13, the

corresponding film pressure and gap deformation is shown. These figures show that

even without any axial motion of the gears or bushing, the deformation of the bodies

forms a wedge shown in Figure 5.13(b) that builds pressure in the meshing zone,

where the sweeping gears drag fluid into the converging wedge. This pressure build

up is shown in Figure 5.13(a). As a result, the gap becomes more open on the high

pressure side, but also the leakage dynamic changes entirely as the TSV pressurizes

and in the meshing zone.

Finally, the complete model allows the bushing to move. Since the bearings are

within the bushing of this unit, the effects of this bushing movement are found in

both films, as is shown in Figure 5.14. This result justifies the need to couple the

solving of all films and the lumped parameter model, where the tilting induced by
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Figure 5.12. Instantaneous lateral leakages for the numerical Reynolds
simulations with and without micro-deformation

the tooth space pressures causes a reactive pressure build-up in both the lateral and

journal bearing interfaces in opposition. Note that here since the journal bearing film

pressure are much higher than that of the lateral gap, the two are put on different

color scales so that the trends can be seen in both. Returning to Figures 5.10 and

5.12, the inclusion of the movement of the plate changes the resulting eccentricity and

leakage respectively. Note that in creating these figures, the simulation was first run

with this complete model so that the quasi-steady position of the bushing was known.

The fixed gap simulations were then run at this same gap so that a fair comparison

could be made. It is worth noting that without the use of this complete model to

determine the appropriate constant gap, the fixed gap simulations would not be able

to achieve results even as close as those presented here.
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(a) Film Pressure

(b) Gap Deformation

Figure 5.13. Numerical distributed parameter Reynolds lateral gap result
with micro-deformation and fixed bushing showing (a) film pressure (b)
gap deformation
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Figure 5.14. Numerical distributed parameter Reynolds lateral gap and
journal bearing result with micro-deformation and dynamic bushing show-
ing pressure distribution on all of bushing
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5.2 Virtual prototyping of an EGM

A major goal of this work was to facilitate virtual prototyping of both existing

PD concepts and new ones. However since most of these units will have many design

parameters, and similarly the designer will have to balance many objectives, any

optimization algorithm employed will require a large number of design evaluations.

Considering this, the use of the complete DP model, with simulation time > 10hrs

is not feasible. Instead the lumped parameter model, with simulation time ∼ 50

seconds, can facilitate the exploration of a the solution space in significantly less

time. For virtual prototyping, then, the present thesis proposes a 2-phased design

procedure. First in Phase 1, the lumped parameter model is used, assuming ideal

lubricating interface performance. In effect, this optimizes for the unit design with

the highest potential performance. In reality, this ideal behavior is not attainable,

and Phase 2 attempts to achieve as close to the ideal as possible.

The present section will demonstrate this virtual optimization procedure with the

design of the Ref E3 EGM for application in an electro-hydraulic actuator (EHA).

This design study is part of a larger effort (supported by the U.S. Department of

Energy under grant no. DE-EE0008334.) with the overall goal of electrifying an

entire machine as is highlighted in Figure 5.15. Here, each function of the machine is

actuated by an isolated EHA, the core of which is the EH unit - the combination of

the electric machine with a positive displacement machine. This application presents

unique challenges to the design of the unit, which must be integrated directly with

its electric machine, and virtual prototyping from zero is required. The working fluid

considered for this machine is a typical ISO VG 46 hydraulic oil, with tabulated fluid

properties used to model its behavior.

5.2.1 Phase 1: Lumped Parameter Optimization

As was mentioned above, it is not feasible to begin design optimization directly

from the detailed distributed parameter model. This challenge can be overcome by
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EH Unit

Electric Motor

PD Machine

Figure 5.15. Definition of the Ref E3 EHA

observation that while the balance elements are driving factor in the performance of

a unit, a poorly designed gear set with well designed balancing elements will still per-

form poorly. Thus the following procedure, using the LP implementation of Multics

HYGESim as the core design evaluation function, optimizes the macroscopic design of

the unit by identifying the optimal gear set and porting geometry. The optimization

procedure is demonstrated in Figure 5.16.

This procedure is implemented in the commercial software modeFRONTIER. The

modular nature of the software is well suited for this analysis, which relies on various

tools with different software implementations. First, the optimization algorithm,

based on an initial set of designs, will propose a new set of gear and groove parameters

correspond to a single EGM design. This information is passed to a script which

generates the gear and groove designs corresponding to these parameters if they are

feasible. The constraints and conversion of these parameters to an EGM design will

be discussed in the Design Generation section. This resulting EGM is then passed to

the geometric model to extract the information necessary by the Multics HYGESim

tool to simulate its performance using the lumped parameter EGM model discussed

in Chapter 2. The post processing of these simulation results to extract the constraint

and objective function results will be discussed in the Performance Evaluation section.
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Figure 5.16. LP Optimization workflow

Finally, these are passed back to the optimization algorithm, which uses this feedback

to adjust the EGM parameters appropriately. Selection of a design from these results

will be discussed in Design Selection section.

Design Generation

The first step is to take a given set of design parameters and to generate an EGM.

These parameters include information of not only the gear set, but the corresponding

relief grooves which dictate the transition from high to low pressure. Note that

throughout the parameterization, effort was made to parameterize using dimensionless

values and angles. Doing this ensures that for a given set of parameters, changing a

single quantity will cause all other dimensional quantities to scale accordingly. As a

result, it is more likely that the new design given by this change will remain feasible
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Figure 5.17. Symbolic cutting of the gear set using parametric rack cutter

such that the optimization can progress. Additionally, it can reveal relationships

between the parameters that their dimensional counterparts would mask.

A gear design, then, is given by dimensionless quantities which define the shape

of the involute EGM tooth. For example, the gear addendum ha is related to its cor-

responding dimensionless parameter h̃a and the gear module m through the relation

h̃a =
ha
m

(5.1)

and similarly for the parameters in Table 5.1, which collects all gear parameters. For

this design, helical gears were not considered, and only asymmetric involute spur type

units were considered, so that the gear generator developed by Zhao and Vacca [5] can

be used to symbolically cut the gears. These design parameters, then, are the shape

of the cutter which is used. In doing so, they control the resulting shape considering

only gears that are physically possible for manufacturing. An example of this cutter,

and the resulting symbolic cutting process, is given in Figure 5.17.

In order to determine if a given combination of gear parameters will lead to a

physical gear set, a series of constraint functions are defined. The first constraints

correspond to the cutter design, where again the reader is encouraged to consult [5]
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Table 5.1.
Set of gear parameters and range of values considered

Input Min Max

Number of teeth [-] Nteeth 8 18

Gear depth [-] b̃ 0.1 50

Addendum [-] h̃a 0 3

Dedendum [-] h̃d 0 3

Tool pressure angle, Drive [deg] θd 10 40

Tool pressure angle, Coast [deg] θc 10 40

Radius of curvature of root, Drive [-] r̃d 0 1

Radius of curvature of root, Coast [-] r̃c 0 1

Profile correction [-] xg -1 1

Inter-axis percentage [-] ip 0.1 0.9

for a detailed derivation of the functions, which are reported here for completeness.

First, the constraint[
(h̃b − r̃d) tan θd +

r̃d
cos θd

]
+

[
(h̃c − r̃c) tan θc +

r̃c
cos θc

]
≤ π

2
(5.2)

enforces that the tip of the cutter is flat so that the drive and coast side root fillets

do not overlap. Next, the constraint

Nteeth

2
+ xg + h̃a >

Nteeth

2
max [cos θd, cos θc] (5.3)

ensures that the involute profile exists for both the drive and coast flanks of the gear.

To form a physical gear, where the outer radius ra satisfies its definition for involute

gears

ra =
mNteeth

2
+mx+mh̃a (5.4)

it is necessary to enforce a finite tip width Lt. Since the unit must perform a sealing

action in its radial clearance, it is helpful to set some minimum value Lt,min so that a
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design that cannot meet the requirements of an EGM is not evaluated unnecessarily.

The tooth tip width is then subject to constraint

Lt ≥ Lt,min ≥ 0 (5.5)

This work will focus on single flank gear pumps, where only the drive flanks make

contact in meshing. This means that there is an opening between the corresponding

volumes of both the drive and driven gears. In effect, the two TSVs act as a single

combined volume while meshing. For single flank EGMs, the inter-axis at which they

operate is a key design point in the behavior and porting of this single volume. In

order to promote feasible designs, the optimizer is allowed to select only within the

feasible inter-axis range. Again, this also works to generalize the parameters, meaning

that a change to another input parameter scales the inter-axis accordingly. To place

the inter-axis, it is first necessary to find the range of values that corresponding to a

working gear set. For EGMs, this comes to two conditions. First, there is a geometric

minimum after which there will be interference between the gears. This occurs either

when the tip of one gear makes contact with the root of the other, or when both

flanks make contact at dual flank inter-axis idf . The maximum of these two is taken

as the geometric minimum on inter-axis

imin,g = max[ra + rr, idf ] (5.6)

where the root radius rr is given by

rr =
mNteeth

2
+mx−mh̃b (5.7)

Similarly, maximum geometric inter-axis is given when the gears no long make contact

imax,g = 2ra (5.8)

An additional geometric interference is possible, when the tooth tip of one gear

makes contact with the root fillet of the other. The presence of this interference is

checked in the range of geometric inter-axis numerically over one full angular pitch



192

of the gears, and the range [imin,g, imax,g] is narrowed to exclude regions of i where

interference between the root fillet and tip is found. Finally, the viable range of inter-

axis values is further narrowed to the region where at least a single tooth is always in

contact between the meshing gears, to form the viable inter-axis range [imin, imax]. As

long as this range is at least as large as the possible inter-axis values that can occur

based on the clearances of the bearings

imax − imin ≥ Cjb (5.9)

then the nominal inter-axis can be selected via the inter-axis percentage parameter

inom = imin + ip (imax − imin) (5.10)

With a gear set generated, it is necessary to generate its relief grooves. As was

mentioned above, these grooves are used to direct the flow to either the delivery

or suction volumes in the region, where the TSV is trapped between two contact

points. In general, these grooves are designed such that the TSV is connected to

the delivery port through this groove for as long as its volume is decreasing, and a

pumping action is occurring. At the point where the volume is at its minimum, the

volume should switch its connection from the delivery to the suction groove. As the

volume is increasing, the suction action is connected to the unit’s inlet. In practice,

it is common to deviate from this ideal groove design, sacrificing some in volumetric

efficiency to smooth the transition from high to low pressure. Many studies have

focused on the design of these groove, including Gulati et. al. [81] searching for

the optimum area curve and Wang et. al. [141] specifically focusing on the different

possible morphologies.

In the present approach, a simple tilted rectangular groove morphology was se-

lected. This approach is sufficient to compare the relative behavior of proposed de-

signs, while minimizing the number of design variables required to describe its shape.

The parametric definition of these grooves is demonstrated in Figure 5.18, where the

delivery and suction grooves of both sides of the gears can be offset vertically Xi and
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tilted θi. To define the position of these grooves, the angle of pressurization due to the

back-flow groove θp is parameterized. As the back-flow groove sets the pressurization,

the casing angle θs sets the radial sealing. Due to the net pressure force applied on

the gears, they shift in their bearings as they carry the load. This shifting causes

a variation in gap height as a function of angle which, along with the casing angle,

defines the resistance of the EGM to flow over its tooth tips. The casing angle needs

to be large enough to allow the volumes to fill, but small enough that this resistance

is high after the gears have shifted. Since the shifting varies from gear to gear, so too

must the casing angle and it is necessary to consider it as a defining design parameter.

Note that since this approach is for spur gears, the bottom face is a mirror of

the image of the top, and there is no need to parameterize the design of both sides.

In Table 5.2, a similar set of groove parameters is given, where again length scales

are normalized by the gear module as demonstrated in Equation 5.1. Based on these

parametrizations, it is possible to propose a design where the two grooves overlap each

other. In this case, a direct connection will be formed through the grooves from the

high pressure to low pressure volumes and the unit will not function. This condition

can be avoided, however, by imposing the constraint

(X1 −
w

2
tan |θ1|) + (X3 −

w

2
tan |θ3|) > 0 (5.11)

Similarly, it is possible to propose a design where the TSV is simultaneously open

to the casing and the backflow groove. This situation introduces a direct bypass from

the backflow grooves, through the TSV, and into the low pressure volume and must

therefore be avoided. This situation is prevented by imposing the constraint

θp − θs ≥
2π

Nteeth

(5.12)

which enforces that the angular difference between the casing and backflow groove is

at least equal to one angular pitch of the gear.
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Figure 5.18. Relief Groove and pump body parameterization for given
gear set

Table 5.2.
Set of groove parameters and range of values considered

Input Min Max

Offset – Top Face Delivery Groove [-] X̃1 -3 3

Offset – Top Face Suction Groove [-] X̃3 -3 3

Tilt Angle – Top Face Delivery Groove [deg] θ1 -45 45

Tilt Angle – Top Face Suction Groove [deg] θ3 -45 45

Angle of Pressurization [deg] θp 100 180

Starting angle of casing [deg] θs 50 80

Performance Evaluation

In order to evaluate the feasibility of a proposed unit, its performance is simulated

using the LP model over the representative simplified duty cycle and test circuit
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Figure 5.19. Simplified EGM loading circuit and corresponding duty
cycle considered in optimization

demonstrated in Figure 5.19. In this circuit, the raising and lowering of the actuator

is simplified to raising at constant load and speed, followed by lower at constant speed

and load. This implies constant pumping and and energy recover phases respectively.

After running the Multics HYGESim simulation, the resulting pressure and flow

characteristics are examined. First, Figure 5.20 demonstrates a typical pressure pro-

file. From this profile, constraints can be defined that correspond to the pressure

peaking and tendency of the unit to cavitate.

In order to avoid excessive pressure peaking in the tooth space volumes when the

gears are meshing, a maximum allowable pressure difference between the tooth space

volume pressure and the outlet pressure is taken for each condition. Consideration

of this pressure peak captures both the resulting peak in loading on the lubricating

interfaces of the pump, as well as the spike in torque required to compress the fluid.

In doing so, the optimization can correlate with the mechanical performance of the

pump, while not requiring a full design optimization of the bearing and lateral gap

designs of each proposed pump design. The following contraint requires that the

pressure peaking be no higher than that of a reference value

∆p = max
t

(pTSV(t)− pHP(t)) ≤ ∆pmax (5.13)
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Figure 5.20. Pressure profile over a full shaft revolution in pumping mode,
highlighting the resulting pressure overshoot and undershoot due to the
relief groove design

While the volume is still trapped but starts expanding, the pressure will fall under

that of the inlet tank pressure. When this happens, gaseous and vaporous cavitation

will occur where trapped air will come out of the solution and in extreme cases the

oil will evaporate. In order to quantify the tendency of a design to undergo this

local aeration and cavitation, the region in which the tooth space volume pressure is

under the inlet volume pressure is considered. This is accomplished by the parametric

function

ψp =

pinlet − pTSV, pTSV < pinlet

0, pTSV ≥ pinlet

(5.14)

By integrating this function over a whole revolution, the local cavitation area Ac

can be found. This function equally weights the magnitude of the pressure difference

when pTSV < pinlet and the time over which it occurs. While the result does not

capture the magnitude of the gas release, it is effective in comparing the relative

tendency of two pumps to release bubbles. Similar to the pressure constraint, this

avoids the need to use a computationally expensive cavitation model online. Instead,
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Figure 5.21. Instantaneous shaft power consumption in raise (pumping)
mode of arbitrary EGM

this is avoided by requiring that the cavitation area be no higher than a limiting

value, corresponding to a unit without aeration/cavitation issues

Ac =

∫ 2π

0

ψp(ϕ) dϕ ≤ Ac,max (5.15)

A major goal of this design optimization is to minimize the total energy consumed

over this representative cycle, including the energy consumed during pumping and

the energy recovered during motoring where

P shaft =
Ppumping traise + Pmotoring tlower

traise + trest + tlower

(5.16)

The instantaneous shaft torque and speed of the unit is given by Multics HYGESim,

as is demonstrated in Figure 5.21, and can be averaged during steady operation at

both operating conditions to populate this equation.

Another important objective of this optimization is to generate a unit whose

torque and flow ripples are low. This ripple, demonstrated in Figure 5.22, is inherent

to all positive displacement machines with finite displacement chambers. Challenging

the accepted assertion that outlet flow ripple leads to EGM noise, recent work [9] has
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(a) Flow Ripple (b) Torque Ripple

Figure 5.22. Ripple of both the flow and torque of the EGM during raise
(pumping) mode of an arbitrary EGM

found that the contribution of the outlet pressure ripple (related to the outlet flow

ripple) is not the most significant source to the generation of airborne noise of an

EGM unit. Nevertheless, the flow ripple puts excessive vibration into the system that

leads to noise in the downstream components and may lead to instability. Without

detailed information on the design of the downstream system or the mounting of

the unit, though, it is not possible to predict the exact resulting noise spectrum.

Instead, this work attempts to minimize the noise sources which lead to perceived

sound of the EGM. Figure 5.22(a) also demonstrates the necessity of using the full LP

analysis, and not simply examining the kinematic behavior of the unit. In this figure

the instantaneous flow predicted by the kinematic of the unit is compared to the

flow from Multics HYGESim, where the operation with a real fluid leads to distinct

deviation in the resulting ripple from the kinematic as discussed in Section 5.1.

For the sake of generality, it is assumed that the resonant frequencies of the

structure are far from that of the fundamental frequency of the unit. Typically,

the majority of the ripple energy of an EGM is in its first two harmonics of the

fundamental frequency, and so this assumption is reasonable. While the magnitude
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of the resulting noise cannot be predicted, when this is the case the system driven

noise spectrum will tend to follow a similar trend to its sources’. Considering this, an

A-weighting amplitude function A(w) is applied to the ripple, so that the resulting

oscillation will be evenly weighted as it is perceived by the human ear.

To accomplish this, a fast Fourier transform is first applied to the outlet flow and

torque, offset by their mean values to isolate the ripple. Because the displacement of

each unit will vary, the amplitude of the ripple also varies, and the use of the ripple

power directly would not reasonably compare the tendency of two units. In order to

quantify the magnitude of the outlet flow ripple of a proposed design, its signal power

is calculated by summing the A-weighted power at each of the N spectral components.

The flow and torque ripple objective functions

P̃Q =
1

NQ
2

N−1∑
i=0

(
A(wi)|Q̂(wi)|

)2

Q̂(w) = F
(
Q(t)−Q

) (5.17)

P̃M =
1

NM
2

N−1∑
i=0

(
A(wi)|M̂(wi)|

)2

M̂(w) = F
(
M(t)−M

) (5.18)

are then normalize by the mean flow and torque respectively. In effect, this quanti-

fies the ripple power as a percentage of the mean simulated flow/torque of the unit

Q/M . In the simulation phase, exactly one revolution of data is recorded. Since the

fundamental frequency of a gear pump is given by its shaft speed, capturing exactly

one period of the shaft rotation ensure that the ripple is periodic, and rectangular

windowing is appropriate.

Finally, this machine must be mounted on mobile machinery, where space is heav-

ily constrained. Considering this, the power density of the machine is important, and

an objective function acts to minimize the total space occupied by the unit.
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Figure 5.23. Pareto optimal front of hydraulic unit optimization, with all
4 objective functions demonstrated

Design Selection

With the problem well defined, design optimization was run with modeFrontier.

Their built-in NSGA-II optimization algorithm is chosen primarily because it is in-

herently capable of handle discrete values (e.g. number of teeth), supports multi-

objective optimization, and does not require determination of gradients. Since design

evaluations are expensive, the latter is important for computational efficiency. Fur-

thermore, because an entire generation is evaluated at once, a genetic algorithm is

well suited for running multiple design evaluations in parallel. Finally, it is likely

the solution space is non-convex and will contain local minimum, so the ability of

the NSGA-II algorithm to promote exploration is desirable. The optimization was

run for over 35,000 physical designs evaluated. 7 designs were run simultaneously,

averaging around 1 design per minute on a Intel Core i7-6700 3.40GHz CPU.

This corresponds to 50 generations, allowing the optimizer ample opportunity to

explore the solution space. After running this optimization, no single design that
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Figure 5.24. Selected gear/groove design from parallel coordinate chart

is optimal for all objectives was found. Instead a pareto optimal front is identified,

demonstrated in Figure 5.23, correspond to the set of designs where in order to

improve on one objective, at least one other must be harmed. This front demonstrates

the benefit of this approach, namely the ability to understand the relative tradeoffs in

designing a unit. By using a comprehensive EGM model, these relationships are not

biased by the implicit assumptions of an analytical performance evaluation, and better

reflect the true trade-offs of an EGM. Finally, the use of this procedure allows for

detailed evaluation at a rate that cannot be matched by conventional manufacturing

and experimental testing of prototypes. The selected design from this front is then

given in Figure 5.24.

5.2.2 Phase 2: Distributed Parameter Design

With the nominal geometry of the unit identified, the assumptions inherent to the

previous section must be relaxed so that detailed design of the unit can be performed.
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Namely, this section will develop a procedure to design the balancing element of the

Ref E3 EGM, which was assumed above to perform ideally. This unit must act

as an EHA which can operate over a wide range of pressures and speeds, in both

pumping and motoring modes. Over this range, there will be a large variation in the

pressure distribution of the film. This is caused by the superposition of two effects –

variation in the pressure boundaries of the TSVs and micromotion/deformation of the

balancing element. To ensure that an optimal balance design is identified, operating

conditions that span the entirety of the possible range of the unit must be considered.

As was discussed in Section 3.4.2, the force and moment balance of the lateral balance

element is given by the TSV and film pressures, the relief groove geometry, and the

hydrostatic balance areas. Since the gear side of the unit is fixed from Phase 1, the

only degree of freedom for Phase 2 is the delimitation of high and low pressures on the

balance sides. The present section will discuss the method developed in this thesis to

determine the optimal balance design of this given geometry.

Isolation of Hydrostatic and Hydrodynamic

First, the pressures of the TSVs diffuses over the film. For a parallel fixed plate,

there is no pressure generation in the film and a hydrostatic pressure develops due

only to diffusion. This is shown in Figure 5.25 for both a pumping and motoring case.

The net force due to this pressure distribution can be resolved into a hydrostatic force,

offset from the center of the plate thus inducing a moment. Because of the variation

in pressurization of the TSVs over the range of operating conditions, the location and

magnitude of this force depend on both speed and operating pressure.

In response to the discrepancy between this hydrostatic force and the opposing

hydrostatic force of pressure on the balance side, the plate both tilts and translates.

The resulting hydrodynamic wedge that forms, as well as any squeezing motion of

the film, drastically changes the film distribution in the lateral gap and the resulting

film force. If this hydrodynamic component is not sufficient to mitigate the force or
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Figure 5.25. Comparison of pressurization for (a) a pumping mode (b) a
motoring mode

moment imbalance, the plate will make contact with the gears. This leads to wear,

decreasing both the life and efficiency of the unit, and must be avoided.

An important observation, though, is that the contact can occur only in response

to an excess pressure imbalance between the balance and gap sides of the plate. Thus,

the balance design which minimizes the hydrostatic force and moment imbalance will

require the least response from the hydrodynamic effects, decreasing the likelihood of

mechanical contact. Since the response is hydrodynamic, it is most effective at higher

operating speeds. Considering this, priority in design of the hydrostatic balance must

be given to the low speed operating conditions, relying on the hydrodynamic effects

to carry the resulting imbalance at higher speeds.

The first step of the design procedure, then, is to quantify the hydrostatic force

component which, in an ideal design, could be exactly counteracted by the balance

areas. To do so, the simulation model is run over the entire operating range of

the machine for a constant parallel gap. It is worth noting that in assuming an

arbitrary fixed gap height, the resulting pressure distributions can only be treated as

approximate. This is because the hydrostatic pressure distribution resulting from a

different assumed gap would result in a differing leakage flow impacting the resulting
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TSV boundary pressures. Considering this, a sufficiently small gap value must be

selected which is close to the desired gap. In doing so, the hydrostatic design is

optimized to realize this desired gap distribution.

Hydrostatic loading

The first step in this quantification, then, is to run simulations of the entire

operating range of the unit with the balance element fixed in its ideal location. In

this condition, Figure 5.26 shows a typical result of a pumping and motor mode,

for both the net axial force and moments applied to the plate. First Figure 5.26(a)

demonstrates significantly higher axial loading in the motoring condition as compared

to pumping. Returning to Figure 5.25, this can be explained by the nature of a

pumping mode where high pressure fluid that is displaced by the meshing of the

gears is replaced with low pressure fluid from the inlet of the pump. Once the TSV

enters the casing, it is isolated from the inlet and intermediate pressure forms. Since

there is tight radial sealing in the unit, this pressure is very close to inlet. As a

result, pressurization of the TSV occurs as it opens to the backflow groove. Instead

in motoring mode, the displaced low pressure fluid is replaced with high pressure

fluid. As the TSV enters the casing, it is still connected to the backflow groove and

therefore maintains its high pressure. Once the TSV leaves the backflow groove, the

tight radial sealing does not allow for enough the TSV pressure to drop due to leakage

until it opens to the low pressure volume. As a result, a significantly larger area of the

unit is at high pressure and applies significantly larger axial force than the pumping

mode. In Figure 5.26(b), on the other hand, the motoring modes show significantly

less tilting moment. Again returning to Figure 5.25, this can be explained by the

same nature of the motoring mode bringing high pressure fluid throughout the entire

casing, such that the tilting moment contributions of the TSVs cancel along the

centerline of the plate. For the pumping mode, on the other hand, around half of the

TSVs are at high pressure and apply significant tilting moment on the plate.
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Figure 5.26. Instantaneous loading from gap side due to fixed plate
pressure diffusion (a) axial force (b) tilting moment

The resulting resolved force and moment are averaged and collected at each oper-

ating point, forming a map of the applied load on the plate over its operating range.

These maps are given in Figure 5.27, demonstrating a drastic difference in the plate

loading in motoring and pumping mode. From this figure, the effects of operating

condition on the required balance force are highlighted. Most notably, there is a dras-

tic change in the loading of the plate when the unit switches between pumping and

motoring mode. Within a single quadrant, though, increase in the pressure difference

of the unit yields a proportional increase in the gap forces. A change in loading with

speed is also observed, with markedly less impact as compared to pressure difference

and the sign of the speed. This variation is caused by the differing pressurization

behavior of the sealing TSVs.

Balance design

With the loading defined, the next step is to formulate a design which minimizes

the hydrostatic force and moment imbalances over the Nω operating speeds and Np
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(a) Mean Axial Force (b) Mean Tilting Moment (Toward LP)

Figure 5.27. Revolution averaged hydrostatic loading from gap side (a)
axial force (b) tilting moment

operating pressures where performance is considered. To do so, the error over all

operating points is collected into a single error function

εbal =
Nω∑
i=1

Np∑
j=1

[(
wF,ij

∣∣Fgap,ij − Fbal,ij

∣∣)2
+
(
wM,ij

∣∣Mgap,ij −Mbal,ij

∣∣)2
]

(5.19)

As was discussed above, it is important to give priority to the lower operating

speeds, since they rely most on hydrostatic balance. This is accomplished with the

inclusion of weight functions wF/M for both the moment and force, scaling for the

relative importance of each operating point. With an objective defined, the parame-

terization can then be developed.

In Figure 5.28 the balance side of the lateral plate is demonstrated, including

parameters which define the delimiting point between the high and low pressure

areas. This delimiter can be seen as the edge of the seal, which is commonly used

to isolate the high pressure and low pressure sides. The first parameter is the radius

of the seal rseal, which must be greater than the bore rbore, and less than the outer

radius of the plate rplate. At this radius, the high pressure area is then determined
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Figure 5.28. Balance side parameterization for Ref E3 design

by two angles defining the outer θp/m and central θc span of the plate. Notice here

that this leaves an intermediate patch on the low pressure side which is isolated from

both inlet and outlet. By connecting this patch to the TSVs, it is set to low pressure

in pumping mode and high pressure in motoring mode. This strategy allows for the

unique design of the balance for the pumping and motoring modes, to overcome the

drastic change in TSV pressure distribution. The optimal balance design is then

found via a single-objective optimization algorithm applied to optimization problem

formalized in Table 5.3.

Table 5.3.
Optimization problem statement for Ref E3 hydrostatic balance design

Minimize εbal

By Changing
rseal,

θc, θp, θm

Subject To

rseal ∈ (rbore, rplate),

θc < θm

θm < θp,
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With an optimal hydrostatic design identified, detailed simulation of the dynamic

performance of the plate is required to adjust the design. As was stated previous,

this is because the imposition of an arbitrary constant gap yields a pressure solution

which only approximates the true behavior. Furthermore, the inclusion of deformation

induced wedge and squeezing effects changes the resulting TSV pressurization and

thus the hydrostatic load to be balanced. Considering this, Figure 5.29 outlines the

design procedure used in the present thesis. The approach begins with an educated

initial guess given by the hydrostatic balance. By performing detailed simulations of

this initial guess, its performance can be determined. It is likely that this design will

suffer from either underbalance yielding excess gap height or overbalance yielding solid

contact. Based on the magnitude of this discrepancy, the area can be heuristically

adjusted to correct it. Since this can be adjusted in two ways, the choice of parameter

to adjust depends on the behavior. If both the pumping and motoring modes exhibit

the same imbalance behavior, the central element θc must be used to adjust the

balance area of both configurations. Instead if the discrepancy occurs only in pumping

or motoring, θp and θm respectively must be adjusted.

Optimal Performance

Following the procedure outline above, the initial design is generated using only

the hydrostatic loading and is shown in Figure 5.28. For this design, the predicted

load imbalance is shown in Figure 5.30. This figure demonstrates that by using the

intermediate balance area on the balance side, the imbalance in force and moment

at low speed can be kept below ±200 N and ±1 Nm respectively. As the speed is

increased, though, the imbalance becomes more noticeable. Over all conditions, the

imbalance is kept within 5% of the overall load.

In implementation, though, this design leads to a high contact force between the

teeth and plate in the high pressure side of the gear. This discrepancy, as mentioned

previous, is likely due to the fact that the pressurization is changed as soon as a tilt
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Figure 5.29. Heuristic design adjustment for balancing elements of EGMs

(a) Axial Force Imbalance (b) Tilting Moment Imbalance

Figure 5.30. Revolution averaged hydrostatic loading from gap side (a)
axial force (b) tilting moment

is introduced. Considering this, the high pressure area is adjusted to allow the high

pressure area to reach lower in the plate, decreasing the resulting tilting moment and
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Figure 5.31. Gap Height distribution for Ref E3 EGm at 3000pm, 100bar
outlet pressure

alleviating this contact. After iterating though the design adjustment phase, the final

result is a balance design that maintains low gap height while avoiding contact of

all operating conditions considered. To test this final optimized design, the following

figures shows the performance of the finalized design at an operating condition for

which it wasn’t optimized - high speed (3000rpm) and moderate pressure (100bar) -

that is a typical operating point of the unit.

First, Figure 5.31 demonstrates the gap height distribution over the lateral gap

of the machine. Note that this distribution is the net effect of the plate and includes

both its rigid motion as well as the surface deformations of plate and gears. As was

discussed above, this figure shows how the deformation of the plate leads to a large

deviation from the parallel gap assumption. Along with this deformation induced gap,

there is quasi-steady oscillation in both the tilting and axial position of the plate, as

is shown in Figure 5.32. From Figure 5.27(a) it is seen that there is an oscillation in

the force applied on the plate as TSVs pressurizes or de-pressurizes. Figure 5.32(a)
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Figure 5.32. Revolution averaged hydrostatic loading from gap side (a)
axial force (b) tilting moment

then shows that the plate responds to this oscillation with a qausi-steady oscilation

about its equilibrium position. This same effect is present in Figure 5.27(b), where

tilting moments about both x and y oscillate around their mean. Figure 5.32(b) then

shows how both the roll (tilt from inlet to outlet) and pitch (tilt from drive to driven)

show a qausi-steady oscillation. Because the hydrostatic balance is not sufficient at

this operating point, a mean tilting toward the low pressure side is also demonstrated

which allows a hydrodynamic wedge to form.

Together, these effects lead to a pressure profile throughout the gap that deviates

drastically from the pressure diffusion solution of Figure 5.25. The design approach

acknowledged this behavior, and identified designs that would deviate favorable. This

effect is demonstrated in Figure 5.33, where the tilting observed in 5.32(b) leads to

a hydrodynamic wedge that builds pressure on the low pressure side of the gear

faces. While Figure 5.31 shows that this region does correspond to the minimum film

thickness of the interface, this hydrodynamic buildup supports the imbalance so that

the minimum gap is kept within 0.5 µm.
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Figure 5.33. Fluid domain pressure distribution for Ref E3 EGM at
3000pm, 100bar outlet pressure

Since the roughness of the bodies is on the same order of magnitude as this

minimum gap height, Figure 5.34 shows the resulting contact fraction of asperities in

the film increases above null. As discussed in Section 3.4.3, this parameter corresponds

to the fraction of the area occupied by contacting asperities. This contact will result

in a small removal of material in the break-in process of the unit. Since this region

is localized and small, the design performance is considered to be acceptable and is

expected to perform well in this condition.

While this contact patch is fairly localized, Figure 5.35 shows how the impact of

the asperities affects nearby regions outside of the contact. Here, regions that do

not predict contact still show a pressure flow factor <1, corresponding to added flow
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Figure 5.34. Asperity Contact Fraction for Ref E3 EGM at 3000pm,
100bar outlet pressure

resistances introduced by the asperities. This figure, then, highlights the need for

accounting of mixed lubrication in the films, as a model that assumed full film would

not be able to detect this affect outside of the contact patch.

Returning to Figure 5.33, a region of low pressure (below the inlet) is apparent

in both the TSVs and film. To explain this Figure 5.36 shows the density over the

domain, highlighting various forms of cavitation that occur during operation. First,

the tilting of the rigid body induces a geometric wedge which drops the pressure. A

similar effect can be seen due to wedges formed by the deformation of the plate and

gears. In either case, the diverging regions that form work to separate the fluid and

induces cavitation in response. Finally, consideration of the dynamics of the plate

leads to regions that are instantaneously rising. Due to this separation, the film can

only fill the void by releasing gas. Notice however that the density changes only

slightly to meet these expansions. As a result of these cavitation effects in the film,
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Figure 5.35. Pressure Flow Factor φp,x = φp,y for Ref E3 EGM at 3000pm,
100bar outlet pressure

fluid must be taken from the displacement chamber. With this, cavitation information

communicates across the boundary of the film, and the TSV pressure also decreases.

Since the TSV is isolated in the low pressure region of the casing, the adjacent TSVs

cannot provide enough flow to replace the lost mass and the TSV remains at low

pressure until its radial gap opens enough to receive pressurized fluid. While local

density drop is unavoidable due to the working principle of the balance element, this

analysis confirms that the tendency of the film to cavitate is sufficiently small.
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Figure 5.36. Film Density for Ref E3 EGM at 3000pm, 100bar outlet
pressure

5.3 Study of interface mutual interaction in an EGM

In the section above, the design of the Ref E3 EGM was discussed. In this unit, a

lateral balancing plate was used (Figure 1.4) due to external design constraints. The

bearing block strategy demonstrated in Figure 1.5, however, is very common with

EGM manufacturers. In these units, the journal bearings are housed within the same

balancing element used for maintaining lateral sealing. This geometry inherently

leads to a coupled behavior of the two interfaces, due to the coupled nature of the

micromotion of the bearing block. Considering this, the present section performs a

detailed study of these mutual interactions for the Ref E2 EGM, which employs this

bearing block compensation strategy. In this study, the same circuit (Figure 4.23)

which was used to load the unit in experiment is recreated here.

Similar to what was shown in Figure 5.33 for the Ref E3 EGM, Figure 5.37 demon-

strates the ability of Multics HYGESim to capture the pressure distribution over the
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Figure 5.37. Pressure over the fluid domain and resulting floating element
deformed position an instant for p/pmax = 0.6, ω = 3000 rpm

whole fluid domain. Contrasting the lateral plate case, this figure shows the net de-

formation of the bearing block owing to all 4 lubricating interfaces it interacts with

(i.e. the journal bearings and lateral gap). Due to this deformation, the pressure

distribution is not symmetric about its axial center-line, as would be expected for

a typical plain bearing. This effect was also observed in Section 5.1 for the Ref E1

EGM.

While existing tools [44, 54, 142] are able to capture the pressure distributions

across domains that are demonstrated in Figure 5.37, the present work provides novel

insight into local cavitation phenomenon across both the films and the displacement

chambers. In Figure 5.38, the density distribution over the entire fluid domain is

demonstrated. This figure highlights the capability of the tool to study geometry

induced cavitation, such as the known tendency of an axially fed journal bearing

to induce a void in the diverging region. Similar to Figure 5.36, strong coupling of

the dynamics of the balances elements, allows for the wedge and squeeze induced
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Figure 5.38. Density over the fluid domain at an instant for p/pmax = 0.6,
ω = 3000 rpm

cavitation by the balance of the body to be captured. This figure also shows a more

prominent example of the exchange of cavitation information across the LP and DP

domains in the meshing teeth. In this case, it is the TSV that undergoes cavitation

due to throttling in the meshing zone. Because the gears rotate with respect to the

plate, a portion of the cavitated fluid gets dragged into the film. The density of this

fluid is low, so a given volume flow corresponds to a lower mass flow. Furthermore,

the bulk modulus is very low for the cavitating fluid, so a large amount of mass is

required to increase the pressure. As a result, the cavitated fluid gets caught in the

film and cannot recover before the next TSV enters the meshing zone.

Again the flow factors (warped by film thickness) show that asperities contribute

to the films’ flow resistances in regions of minimum film thickness in Figure 5.39. This

figure shows, as compared to Figure 5.35, that minimum film thickness regions occur

in both the lateral and journal bearing interfaces of the unit. Since this occurs in

the journal bearings in a region offset from the center-line of the bearings, this figure
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Figure 5.39. Pressure flow factor with films warped by gap height at an
instant for p/pmax = 0.6, ω = 3000 rpm

justifies the need to consider both interfaces in the moment balance of the bearing

block.

Along with capturing more directly integrated physics, a major accomplishment

of this thesis is the ability to study the mutual interactions of the lateral lubricating

and journal bearing interfaces of an EGM. Due to the nature of the films, the major

pressure contribution of their forces are orthogonal. As the body tilts and deforms,

though, the pressure distributions develop in such a way that the net moment balance

of the body is given by both interfaces. This is demonstrated in Figure 5.40, which

shows how the journal bearings contribute a non-negligible moment, around 20% on

average, to the net opposition to planar tilting of the body. In Figure 5.40(b), the

magnitude of y-direction moment opposing the rocking from drive to driven is also

shown. Since this value is centered around zero, this figure simply demonstrates that

the bearing moment tends to be on the same order of the lateral gap contribution.

In Figure 5.40(a), the contribution of the journal bearing opposition to the net tilt-

ing moment of the balance and TSV forces toward suction or delivery (x-direction)

is included. Over the majority of operating conditions, this value is positive, cor-
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(a) Suction to Delivery (b) Drive to Driven

Figure 5.40. Contribution of tilting moment opposition for the journal
bearings on the bushing (a) Tilting from inlet to outlet (b) Tilting from
drive to driven

responding to a condition where the bearing helps to prevent this tilting. For low

speeds and high pressures, however, this figure demonstrates that the bearings tend

to further tilt the bushing. This result justifies the need to couple the solution of

these interface, as an interface in isolation does not capture the net dynamics of the

bodies.

5.4 Study of piston-slipper spin in an APM

Similar to the section above, the dynamics of the piston-slipper assembly of

an APM are determined by the net influence of the piston-cylinder and slipper-

swashplate interfaces. Since most of the models for these machine discussed in Section

1.3 studied a single interface in isolation, though, they were not capable of capturing

the coupled nature of the bodies’ motions. For the first time, then, a detailed study

of the sensitivity of the piston spin to various physical parameters of an APM is per-

formed. Namely, this section will focus on the effects of the friction of the ball-socket



220

interface with operating condition – pressure difference, shaft speed, socket friction,

and displacement angle. This study will take the commercial high pressure Ref P1

APM as reference.

Before entering this discussion it is worth clarifying, aided by Figure 5.41, the

terminology used in this work. As was discussed in Section 2.2.4, the dynamics of

each body are solved separately. This means that the block, piston, and slipper will

each be rotating at unique velocities ωblock, ωpiston, ωslipper respectively. Since the

block is mechanically connected to the drive shaft, its rotation speed is exactly equal

to the shaft speed ωs. Similarly, the swash-plate is fixed in this analysis and thus

experiences 0 angular velocity. The piston and slipper, on the other hand, are free

to rotate in response to the applied moments. The implications of this spin are two-

fold; first the component parallel to the shaft (axial spin) acts to change the perceived

average surface velocity of the piston-cylinder interface. The remainder of the angular

velocity of the piston and slipper bodies lies in the plane perpendicular to the shaft

axis (planar spin) and acts to change the gap height of the piston-cylinder interface.

As will be discussed in this section, the central axis of the slipper is inclined with

respect to the shaft, so that it must undergo both axial and planar spin in order to

preserve a given gap height distribution.

The result of the differing spin of the two bodies is demonstrated for the piston-

cylinder interface in the detail of Figure 5.41, but is equally applicable for the film

between the slipper and swashplate. Here, the average velocity in the gap is deter-

mined by the rotation of both faces. Since the block and swashplate velocities are

constant, this section will focus on the axial and planar spin of the piston and slipper

bodies with variation in operating conditions. This figure also highlights how the

velocity is not constant throughout the interface. This small variation is due to the

linear translation of the bodies, which contributes a much smaller impact than the

spin motion for typical machines.

With this terminology defined, Figure 5.42 first demonstrates a typical result

of this tool with examples of the field data attained from the universal Reynolds
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Figure 5.41. Body spin definitions

solution. Figure 5.42(a) demonstrates the film pressure distribution over the piston-

cylinder, cylinder block - valve plate, and slipper-swashplate interfaces. This figure

justifies the need to consider the detailed Reynolds solution as opposed to simplified

analytical approximations, where there are high hydrodynamic pressures which build

to oppose the tilted bodies. While these pressure results are attainable (in isolation)

using existing models discussed above, the present work introduces the novel ability

to describe the bulk fluid density over the domain. Due to the diverging wedge that

forms in the piston-cylinder interfaces from this tilt, Figure 5.42(b) shows how the

local density of the fluid drops drastically while the film pressure drops only slightly.

Focusing on the interfaces of interest for this work, Figure 5.42(c) shows that the

pressure peaks are not sufficient to hold the tilting moment on the piston-slipper

body. As a result, the film thickness drops to a small enough value to allow for solid

contact of the asperities and surfaces to share the loads. Figure 5.42(c) then shows

how the asperities of the surface contribute a non-negligible resistance to flow in this

region.
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(a) Film Pressures (b) Film Density

(c) Film Contact Pressure (d) Film Pressure Flow Factor φp,x = φp,y

Figure 5.42. Field Data for High pressure high speed condition (a) Film
Pressures (b) Film Density (c) Film Contact Pressure (d) Film Pressure
Flow Factor φp,x = φp,y

To understand first a typical influence of the friction of the ball-socket, a moderate

operating condition of the unit is considered. In this condition, Figure 5.43 shows



223

Figure 5.43. Axial spin at moderate operating condition for piston and
slipper with varying socket friction

the component of spin aligned with the drive shaft for both the piston and slipper

bodies. Here the static friction coefficient µs (and dynamic friction µd ≈ µs/2) of

the ball-socket is varied from its typical value 0.16 to adjust the effective resistance

predicted with Equation 3.24. This plot investigates the variation versus half the

typical friction (0.08), almost no friction (0.01), and infinite friction (welded).

It is worth noting, for clarity, the implication of a non-zero spin of the bodies.

While the piston-cylinder interface is nominally aligned with the axis of the shaft,

the slipper-swashplate interface is inclined by the swashplate angle. This means

that as the slipper spins about the axial direction of the unit, it must also undergo

planar rotation in order to maintain sealing of the hydrostatic pocket. This additional

velocity, demonstrated in Figure 5.44, has a non-negligible contribution to the friction

moment at the interface. For reference, the inclusion of a welded socket condition

demonstrates the magnitude of planar tilting that is allowed only by the net motion

of the two bodies.

As was discussed above, the resulting axial spin of the bodies is excited by the net

imbalance of shear moments in the piston-cylinder and slipper-swashplate interfaces,
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Figure 5.44. Planar spin at moderate operating condition for piston and
slipper with varying socket friction

which is then opposed by the resulting friction in ball-socket interface. In effect, the

piston-cylinder interface works to accelerate the body to the angular rotation of the

block, while the slipper-swashplate interface works to decelerate the body to that

of the stationary swashplate. In interpreting these results, then, it is important to

understand the shear contribution of these interfaces. The dominant factor which

determines the shear of the interfaces is their gap distribution, the minimum of which

is demonstrated in Figure 5.45.

During the high pressure stroke of the unit, the pressure of both the displacement

chamber and hydrostatic pocket yield sufficient normal force such that the socket

behaves similarly to the welded interface. At the transition of the high to low pressure

stroke of the unit, the force on the piston abruptly drops. With this drop, the shear at

the piston-cylinder interface is able to overcome the friction force at the ball-socket

interface, and the bodies accelerate. As the piston-slipper progresses through the

low pressure stroke, though, the significantly lower pressure in the hydrostatic pocket

tends to decrease the eccentricity of the piston-cylinder interface while simultaneously

allowing the slipper to separate from the swashplate. As a result, the shear at both the
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Figure 5.45. Minimum gap height at moderate operating condition for
piston and slipper with varying socket friction

slipper-swashplate and piston-cylinder interface decreases, and the moment balances

transitions to a steady spin velocity. Finally, as the piston-slipper object reaches the

transition back from from low to high pressure, the force abruptly increases and the

spin is halted.

Since the normal force on the socket that elicits this frictional force changes with

operating conditions, it is also useful to examine the variation of this normal force. To

do so, Figure 5.46 demonstrates the variation in axial spin as the pressure difference

across the unit is varied. This result shows how increase in pressure, and therefore

contact force, tends to decrease the spin of the piston. A counter-intuitive result is

seen for the slipper, though, which teds to slightly increase in speed with increase

in pressure. To explain the reasoning for this, Figure 5.47 demonstrates the change

in minimum gap height with varying pressure. This figure demonstrates that while

the piston’s minimum gap changes, there is a much more significant variation in the

slipper-swashplate gap. As the slipper lifts from the swashplate, its shear contribution

to the moment balance of the body decreases and its speed is determined increasingly

by the socket friction moment.
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Figure 5.46. Axial spin at moderate operating condition for piston and
slipper with varying operating pressure difference

Figure 5.47. Minimum gap height at moderate operating condition for
piston and slipper with varying operating pressure difference

The other factor which determines the spin of the piston is the shaft speed, as it

is the rotation of the block that excites the piston spin. The effect of varying shaft

speed is demonstrated in Figure 5.48, with the piston and slipper spins normalized by

the shaft speed. Note that this figures shows an almost constant relative spin of the
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Figure 5.48. Axial spin at moderate operating condition for piston and
slipper with varying shaft speed

bodies with the shaft speed. Due to the non-linearity of the shear term, as well as the

difference in pressurization of the displacement chamber and hydrostatic pocket, the

shape slightly varies across the operating conditions. Over all the operating ranges,

though, the bodies rotate at no more than 1% of the shaft speed.

To explain this variation in shape, Figure 5.49 demonstrates the variation in pres-

sure of both the displacement chamber and hydrostatic pocket at varying operating

speeds. Due to the compressibility of the fluid, this figures shows how the higher

operating speeds show a wider angular span of pressurization. As a result, they can

maintain spin further into the high pressure stroke, while the lower speed conditions

are stopped by the more immediate normal force.

The results discussed above justify the need for strong coupling of the films and

body dynamics. To quantify this claim directly, a comparison of the overall mo-

ment sharing of the piston-slipper body loading by the piston-cylinder and slipper-

swashplate interfaces is performed. Inherent to the kinematic of a swashplate type

APM, the incline of the slipper will impart a large tilting moment (kinematic mo-

ment). In Figure 5.50, the projection of the slipper-swashplate moment (discluding
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Figure 5.49. Pressure at moderate operating condition for piston and
slipper with varying shaft speed

this contribution) and the piston-cylinder moment are normalized by the kinematic

moment. In doing so, this figure demonstrates the relative contribution of each inter-

face to the overall carrying of the kinematic moment. Over the high pressure stroke,

the moment is carried primarily by the piston-cylinder interface. In the low pressure

stroke the kinematic torque drops significantly, and an equilibrium is found with the

two interfaces opposing one another. The strongest justification for the necessity of

the coupled dynamics can be seen at the transitions between low and high pressure.

Here, the transients of the DC and pocket pressures lead to a condition where the

moments of the slipper-swashplate interface approach the same magnitude as the

piston-cylinder interface. Consideration of the two in isolation, then, would mask

this strongly coupled transitory response.

Further results can be offered to support the need for strong coupling of the films

and body dynamics. Further results however, can be offered to support the need

to strongly couple the solution to the displacement chambers of the unit with the

films and dynamics. In Figure 5.51(a), the net leakage flow of the unit is plotted

against the inlet and outlet port flow of a single DC. Since the magnitude of these
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Figure 5.50. Moment Sharing of the Piston-Cylinder and Slipper-
Swashplate interfaces at the moderate speed condition

port flows depends on the operating speed of the unit, a moderate middle point in

speed is taken. From this figure it is clear that in the transitions between low and

high pressure, the leakages are on the same order of magnitude as the overall flows

into and out of the DC. Observing from the pressure buildup equation 2.4, this means

that the leakages have comparable effects on the dynamics of the pressurization of the

unit as the porting. As is shown in Figure 2.1, then, the sensitivity to pressure then

propagates into both the boundaries of the Reynolds films as well as the loading of the

bodies. Figure 5.51(b) then shows that each interface face contributes a non-negligible

portion to the leakage flow, so that all must be considered in simulation.

Furthermore, it should be pointed out that this study was performed on a suc-

cessful commercial unit. From the results presented in this section, it is clear that the

porting is well designed. For a general use of the tool though, especially in a proto-

typing development, this porting need not be optimal and the strong coupling aspect

is even more important. This is because in the absence of appropriate cross-port

flows (a poorly designed porting), the effects of the films in the presence of cavitation

and pressure peaking become increasingly prominent. This effect plays an increasing
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(a) Comparison with main flow (b) Leakage contributions

Figure 5.51. Leakages over of the 3 main interfaces of the machine at the
moderate speed condition (a) Comparison with main flow (b) Leakage
contributions

role as the operating speed is decreased, where the pressure driven leakage magnitude

approaches the magnitude of the speed-dependant flow of the unit. Thus, the use of

a strongly coupled model protects against the potential for a weakly coupled model

to mask these effects.
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6. SUMMARY

This thesis presented a numerical model for the evaluation of performance of positive

displacement machines. It included both a simple analytically approximated model

implementation, as well as a detailed numerical model. In both, the motion of the

floating bodies is considered, as well as its impact on the thin films of fluid within

finite clearances of the unit, on the resulting performance. For the DP simulation

model, the effects of cavitation in the films, mixed lubrication, fluid-structure inter-

action, and the impact of these features on both the body dynamics, LP model, and

the adjacent films were captured. These models were implemented as a stand-alone

toolbox Multics, which can be used to model the behavior of any PD machine with

appropriate use of the toolbox. The models of an EGM, APM, and Gerotor cre-

ated within this toolbox were validated again experimental results of the reference

machines, with average error in predicted efficiency around 1% for both APMs and

EGMs over their entire operating range. The lubricating films were independently

validated against the relevant state of the art. Application of the EGM model Multics

HYGESim was demonstrated by performing a virtual optimization of an EGM for an

EHA, as well as detailed analysis of the implications of each modeling assumption on

behavior. Similarly, the APM model Multics CASPAR was used to study the mutual

interactions of the piston-cylinder and slipper-swashplate interfaces of an APM for

the first time, showing as much as 50% of the load sharing carried by this mutual

interaction.

In terms of floating body dynamics, this work improved the modeling capability

by considering the inertia of the body, as well as the linear and angular accelerations

that result from a given load. In addition to the pressure loading considered in the

past, this work also included the effects of shear on the bodies as well as squeeze in

both the analytical approximate and detailed numerical solutions. In DP simulation,
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the dynamics of the bodies are given not only by a single film, but the collection

of loading by all films that interface with the body. Using this updated model, the

coupled response of the journal bearing and lateral lubricating interfaces of an EGM

in response to a tilting of the bearing block was captured. It was confirmed in this

analysis that the mutual interactions of these interface contributes an average of

20% to the overall load sharing. With this, the resulting flow ripple of an EGM

and Gerotor, as well as the torque ripple of the Gerotor, were validated against

experimental results.

Next with regard to cavitation in the films, this work derived a novel extension

to the commonly used Elrod cavitation algorithm, removing the need for a discontin-

uous switch function that caused numerical instability. Furthermore, this approach

provides for more detailed understanding of the makeup of the ruptured film in terms

of gas and vapor content. The results of this model showed good agreement with sim-

ulation in literature of the Elrod method for both steady state and dynamic bearings.

In a related work, the commonly used Patir and Cheng average Reynolds mixed

lubrication model was extended, applying the same flow factors derived in this model

to the universal Reynolds equation. This formulation allows for the consideration of

both the cavitation and mixed lubrication effects within the film automatically and

with coupled solution.

The resulting pressure that comes as the solution to the mixed universal Reynolds

equation is used with a novel analytically-derived influence matrix approach. Using

either this novel form or FEM approaches, the transient responses of the deforming

bodies was captured for the first time. These allow for consideration of the film de-

formation without or without the availability of external software or existing designs,

and allows for consideration of the macro-deformation of the bodies in the lumped pa-

rameter modeling. The deformation models used in this thesis show good agreement

with FEM results over varying loading and geometries, confirming their validity.

Finally, the entirety of the modelling aspects defined above were implemented into

a stand-alone coupled simulation tool. By using thread-wise parallelization, this tool
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can accomplish both low latency or high throughput simulation, with high efficiency

for reasonable mesh resolution. As compared to existing approaches, the present work

is able to accomplish a given simulation in at least 50% of the time. The API of this

coupled tool was proven successful in its application to a third PD machine for which

it was not derived, and in its matching with experimental simulation of the unit. This

work has applicability as follows

• This work demonstrated how the LP tool could be used within an optimization

workflow to identify an optimal EGM design without any user input once the

objectives are defined. Therefore, PD manufacturers could use these approaches

to develop similar virtual prototyping procedures to improve the efficiency of

their next generation of units and to avoid the need to manufacture prototypes

to evaluate their performance. This is especially true with the addition of the

analytical deformation, removing the requirement for detail CAD of a unit to

analyze its performance.

• Similarly, this tool could be used to study an existing unit, including diagnosis

of unknown behavior of a unit, or design improvement of lubricating interfaces.

Using the DP model, this tool could be used to predict failures such as wear in

regions of mixed lubrication or pitting damage due to regions of high cavitation.

This capability was demonstrated for both reference external gear machines and

axial piston machines.

• By adjusting the inputs of the model, the resulting change in performance of

the unit can easily be observed within a single model result. This tool, then, is

helpful for understanding the sensitivity of a given unit to choice a parameter,

which could be used to assist designers in decisions such as required tolerances

and material selection.
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7. FUTURE RESEARCH DIRECTIONS

7.1 Thermal Effects in Films

The author has put effort in adapting the compressible Reynolds equation to con-

sidering the effects of not only density variation with pressure, but with temperature

ρ = ρ(p, T ) (7.1)

Following the derivation of Section 3.1
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the density is related now to both the pressure and density. Applying this modification

to the compressible Reynolds equation given in Equation 3.1
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(7.3)

demonstrates that the distribution of temperature in film directly affects the diffu-

sion of density, as well as varying the fluid properties within the film. Since the

lumped parameter components of the model are already capable of solving for the

temperatures, the model change requires only updating a non-constant film temper-

ature with thermal boundary conditions given by the LP domain and the bodies. To

that point, from the beginning of the fluid model derivation, it is assumed that the

polytropic process given in Equation 2.20 does not include temperature change. In

reality, information on the change in temperature over the film will improve not only

the prediction of the cavitation from the universal Reynolds equation, but will allow

the consideration of the state change of the liquid and gasses with temperature.

An important followup work could be to integrate a thermal solver of the fluid

films and bodies into the Multics suite, using the thermal conditions of the lumped
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parameter model as boundary conditions. In doing so, this model could be used to

study the resulting fluid-structure-thermal problem and its impact on the dynamics

and cavitation behavior of PD machines.

7.2 Choking conditions

In the present model, the effect of choking in the flow constriction is modeled

simply by relating the flow to the speed of sound at a reference fluid state. While the

author believes this is an adequate model, no further improvement was possible due

to the lack of study of these flows for liquids in literature. A future research direction

could be the refinement of this assumption by studying the behavior of a nozzle in

sonic conditions with oil as a working fluid instead of an ideal gas.

7.3 Studying the impact of films on unit NVH

An important research direction in Dr. Vacca’s research group, as well as in in-

dustry, is the study of the noise emissions of PD machines. Due to lack of availability

of detailed models, these studies typically rely on experimental evaluation of proto-

types. In Dr. Vacca’s research group, a FEM/BEM model has been developed for

EGMs [143], capable of mapping the instantaneous pressures and loading from the

TSVs to the body of the pump, and tracking its propagation from fluid-borne noise

to structure-borne and finally to air-borne noise. A limitation of this model is that,

due to lack of information of the pressure distribution, the lateral lubricating and

journal bearing interfaces are approximated with oscillating distributed forces. With

a validated means for finding not only the instantaneous loading of these films, but

their pressure distributions, a model expansion could be performed to better model

these interfaces. With this revised model, a follow-up on the optimization procedure

presented in Section 5.2 could also be performed, with focus on the modification of

unit geometry to reduce the resulting noise radiation of the unit in response to these

film loading.
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7.4 Cavitation in films

In order to conserve computational resources in the present work, the transients of

the gas release were neglected. While this is a safe assumption for steady operation,

it is possible the consideration of the dynamics of individual bubbles, or even the ho-

mogeneous mixture, may lead to improvement in prediction of cavitation phenomena

in these units. Additionally, it could be useful for predicting of damage in the unit

caused by the individual bubbles. An extension to the model presented here, then,

could illuminate more on the dynamic cavitation behavior in these units. It is also

possible that the extension of this tool to employ larger-scale parallelism could be

more effectively utilized with the additional workload this approach would imply.

7.5 Wear in balancing elements

It is common in PD machines to have a ‘break-in’ procedure, where the compo-

nents wear so that they form to one another. This procedure is typically a closely

guarded trade secret, and can be the difference between a functional and non-functional

unit. Clearly, then, it is an important aspect for the design of these machines. Due

to computational limitations, this effect is neglected in the lubricating films in the

present model, where instead a measured worn profile would need to be fed directly

into the solver to consider its impact on performance. A possible research direction

could be to develop a wear model of the lubricating films, to provide machine design-

ers with strategies to predict this wear and design ‘break-in’ procedures accordingly.

This work would also be helpful to understand the extent to which the assumption

of isotropic roughness in the fluid films is reasonable in PD machines, or to propose

a more appropriate modeling solution.
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A. MODEL EQUATIONS

This chapter collects the flow assumptions applied to each flow term depicted in

Chapter 2. First, Table A.1 collects the model assumptions for the APM.

Table A.1.
Pressure/Flow/Force Models for Multics CASPAR

Gap Analytical Model Distributed Model

Piston-Cylinder Block

QSK , F SK

Eccentric Annular Flow

Long Impedance Bearing
Unwrapped Film

Valve Plate-Cylinder Block

QSB,F SB

Cylindrical Couette-Poiseuille Cylindrical Film

Slipper-Swashplate

QSG, F SG

Cylindrical Couette-Poiseuille Cylindrical Film

Slipper pocket

pG, FG

Pressure build-up, Pressure projection

Displacement Chamber

pDC , FDC

Pressure build-up, Pressure projection

DC - Slipper pocket

QPG,F PG

Orifice Equation, Stribeck Friction

Inlet/Outlet Chamber

pLP/HP
Pressure build-up

Inlet/Outlet flow

Qr,LP/HP

Variable Orifice Equation

Similarly, the model assumptions for the EGM are collected in Figure A.2.
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Table A.2.
Pressure/Flow/Force Models for Multics HYGESim

Gap Analytical Model Distributed Model

Journal Bearing

Ql,JB, F JB

Eccentric Annular Flow

Short Impedance Bearing
Unwrapped Film

Inter-TSV Lateral Leakage

Ql,LL,FLL

Cylindrical Couette-Poiseuille Cylindrical Film

TSV-Drain Leakage

Ql,DL,FDL

Cylindrical Couette-Poiseuille Cylindrical Film

Tooth Lip Leakage

Ql,RL,FRL

Cartesian Couette-Poiseuille

Displacement Chamber

pDC , FDC

Pressure build-up, Pressure projection

Inlet/Outlet Chamber

pLP/HP , FLP/HP

Pressure build-up, Pressure projection

Inlet/Outlet port flow

Qt,LP/HP

Fixed Orifice Equation

Inlet/Outlet depth-wise flow

Qt,LV/HV

Variable Orifice Equation

Inlet/Outlet groove-wise flow

Qt,LG/HG

Variable Orifice Equation

Back-flow groove flow

Qt,HS

Variable Orifice Equation
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B. PERTURBED UNIVERSAL REYNOLDS DERIVATION

B.1 Governing Equation

The derivation begins by perturbing the normal-velocity of a given solution to

the mixed universal Reynolds Equation 3.28 by ḣ′ so that the density solution is

perturbed by ρ′. By assuming a sufficiently small deviation in time from the known

solution, it can be observed that this velocity perturbation contributes negligible

change in the gap height h ≈ h0 and thus the flow factors remain constant. By

linearizing the universal Reynolds equation about the given nominal solution ρ0, then,

this perturbation can be described locally by

∇ ·

(
φ
p
◦

(
h3

0

12

K

µ

∣∣∣∣
ρ0+ρ′
∇(ρ0 + ρ′)

))
= ∇ ·

(
(ρ0 + ρ′)v(φRRq + φch0)

)
+

∇ ·
(

(ρ0 + ρ′)
φs
2
Rq (vt − vb)

)
+ (φRRq + φch0)

[
∂ρ0

∂t
+
∂ρ′

∂t

]
+ (ρ0 + ρ′)(ḣ0 + φcḣ

′)

(B.1)

With the assumption of a sufficiently small perturbation, ρ′ � ρ0 such that change

in compressibility and viscosity is negligible, and the diffusivity of the film can be

taken as a constant at the reference state

K

µ

∣∣∣∣
ρ0+ρ′

≈ K0

µ0

+
∂

∂ρ

(
K

µ

) ∣∣∣∣
0

ρ′ =

[
ρ0

µ0

(
1− ρ′

µ0

∂µ

∂ρ

∣∣∣∣
0

)
+
ρ′

µ0

]
∂p

∂ρ

∣∣∣∣
0

≈ K

µ

∣∣∣∣
ρ0

(B.2)

Since the velocity perturbation is applied only along the gap-normal direction,

density wedge effects are negligible as compared to the squeeze response. Further-

more, the squeeze response of the perturbed density is approximated using backward

differencing against the reference solution with known 0 perturbation. With this sim-

plification, and by removing the reference state, this equation reduces to describe the

perturbation response directly
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∇ ·
(
φ
p
◦
(
K0h

3
0

12µ0

∇ρ′
))

=
h0

∆t
ρ′ + ρ0φcḣ

′ + ḣ0ρ
′ (B.3)

As a notational convenience, the constant terms can be collected to form the

perturbed universal Reynolds equation

∇ ·
(
D∇ρ′

)
= γ + κρ′ (B.4a)

D =
K0h

3
0

12µ0

I φ
p

(B.4b)

γ = ρ0φcḣ
′ (B.4c)

κ = ḣ0 +
h0

∆t
(B.4d)

with definition of the local diffusivity tensor D as well as the constant and linear

forcing γ and κ respectively. By neglecting the change in gap height, the change in

volume and thus pressure of the CVs at the boundaries due to this perturbation can

also be neglected. With this, a homogeneous Dirichlet boundary condition is applied

to the density perturbation along the edges of the domain.

B.2 Domain-Specific Maps

B.2.1 Rectangular Film

First, this problem is solved for the case of a rectangular domain. Here, the

arbitrary rectangular shape is mapped linearly to the unit domain

x1(ξ) =
ξL1

2

x2(η) =
ηL2

2

(B.5)

In this domain, a basis of Chebyshev polynomials of the first kind Ti(ξ) is applied.

Rather than imposing boundary conditions expressly, this basis is modified to inher-

ently satisfy the homogeneous boundary condition

T̂k(ξ) = Tk(ξ) +
ξ − 1

2
Tk(−1)− ξ + 1

2
Tk(1) (B.6)
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In effect, the constant T0(ξ) and linear T1(ξ) polynomial weights are predetermined

to satisfy the boundary conditions, such that they need not be included in the linear

system. With these functions applied in both the ξ and η directions, the basis used

here is given by the product of each combination of one-dimension functions. This

basis is unwrapped into the single basis vector used in Equation 3.85

Nj(ξ, η) = T̂k(ξ) T̂i(η) (B.7)

From the solution of Equation 3.86, the pressure throughout the film is known.

The net loading on the bodies due to the film is given by the integral of this pressure

solution. Since these integrals do not change with time, they need only to be computed

once so that

Fz =

(∫∫
Γ′
N
∣∣J∣∣ dΓ′

)T
a (B.8a)

Mx =

(∫∫
Γ′
x2N

∣∣J∣∣ dΓ′
)T

a (B.8b)

My =

(∫∫
Γ′
−x1N

∣∣J∣∣ dΓ′
)T

a (B.8c)

B.2.2 Circular Film

In the circular film, the boundary of the film is given only at the outer radius ro.

The solution to the circular film can be exactly recovered from the solution of the

rectangular film, where the circular domain is mapped to a rectangular domain using

Nowell’s elliptical grid mapping [144]

x1(ξ, η) = ro ξ
√

1− η2/2

x2(ξ, η) = ro η
√

1− ξ2/2
(B.9)

This map was chosen because its simplicity yielded the lowest condition number

of the resulting stiffness matrix, as compared to the other square-circle maps consid-
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ered. With this map, the same basis function definitions of Equation B.7 and force

calculations of Equation B.8 used for the rectangular film can be applied.

B.2.3 Annular Film

Unlike the circular film, the annular film has a non-zero inner radius ri. At

this additional boundary, the homogenous Dirichlet boundary condition must also

be applied, and the circular film solution cannot be used. Instead in this case, the

domain is mapped using a cylindrical coordinate system where

x1(ξ, η) =

[
ri + ro

2
+ η

(
ri − ro

2

)]
cos πξ

x2(ξ, η) =

[
ri + ro

2
+ η

(
ri − ro

2

)]
sin πξ

(B.10)

Unlike the previous two cases, the homogenous boundary condition in this case

must only be applied along the edges of the radial η direction. In the tangential

ξ direction, symmetry about ξ = ±1 must be respected. Thus, a Fourier basis is

applied with complex wave number νk

F̂k = < (exp [νkξ]) (B.11)

along this direction. With appropriate choice of wave numbers, these functions inher-

ently satisfy the symmetry requirements of both the function value and its derivatives.

For an arbitrary film state, this basis must be capable of representing a general func-

tion including both phase and magnitude. These two degrees of freedom can be

expressed as linear weights using Euler’s formula, with choice of wave number νk

imposing the symmetry boundary condition so that

F̂k = ak cos kπξ + bk sin kπξ (B.12)

Similar to above, this basis is unwrapped into the single basis vector used in Equation

3.85

Nj(ξ, η) = F̂k(ξ) T̂i(η) (B.13)



256

Again once the pressure solution is found from Equation 3.86, the forces can be

determined using Equation B.8.

B.2.4 Cylindrical Film

Finally, the cylindrical film of radius rc is mapped by unwrapping the cylinder

into the unit domain where

x1(ξ) = ξπrc

x2(η) =
ηL2

2

(B.14)

Similar to above, Equation B.13 describes the Fourier basis applied in the tangen-

tial direction and the Chebyshev basis applied along the axis of the cylinder. Unlike

the other domains, the act of unwrapping the film means that the force calculations

must be modified. Here, the pressure solution obtained with Equation 3.86 is inte-

grated to find the net force projected onto the plane normal direction, where again

the integrals can be evaluated off-line with their result stored

Fx =

(∫∫
Γ′
N cos(ξπ)

∣∣J∣∣ dΓ′
)T

a (B.15a)

Fy =

(∫∫
Γ′
N sin(ξπ)

∣∣J∣∣ dΓ′
)T

a (B.15b)

Mx =

(∫∫
Γ′
−x2N sin(ξπ)

∣∣J∣∣ dΓ′
)T

a (B.15c)

My =

(∫∫
Γ′
x2N cos(ξπ)

∣∣J∣∣ dΓ′
)T

a (B.15d)
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