
DESIGN SPACE EXPLORATION OF CONVOLUTIONAL NEURAL

NETWORKS FOR IMAGE CLASSIFICATION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Prasham Shah

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

December 2020

Purdue University

Indianapolis, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

Dr. Mohamed El-Sharkawy, Chair

Department of Electrical and Computer Engineering

Dr. Brian King

Department of Electrical and Computer Engineering

Dr. Maher Rizkalla

Department of Electrical and Computer Engineering

Approved by:

Dr. Brian King

Head of Graduate Program



iii

Dedicated to

My Parents: Bela and Alpesh Shah,

My family, friends, colleagues and all well wishers.



iv

ACKNOWLEDGMENTS

I would like to begin by honoring my parents and my family for everything. My

thesis advisor, Dr. Mohamed El-Sharkawy, whose wisdom and guidance has been

indispensable throughout my journey. I am grateful to have had Dr. Brian King,

and Dr. Maher Rizkalla, for serving on my graduation committee, and lending their

expertise to my research. Additionally, I would like to thank Sherrie Tucker, who

patiently assisted me throughout my Graduate studies.

I am grateful to have been a member of IOT Collaboratory at IUPUI, and to

have had the opportunity to work with so many talented people. The lab provided

all the hardware and software, which was required for this research and an amazing

workplace. I would like to thank my colleagues for their insights, it was great working

with them. I would like to thank Maneesh Ayi for being a great friend and colleague.



v

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Convolutional Neural Networks and its significance . . . . . . . 5

2.1.2 Input Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Convolutional Layers . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 Pooling Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.5 Fully Connected Layers . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.6 Activation Layers . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 MnasNet (Baseline) Architecture . . . . . . . . . . . . . . . . . . . . . 11

3 HARDWARE AND SOFTWARE . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 NXP Bluebox 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 S32V234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 LS-2084A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 RTMaps (Real-time Multi-sensor applications) . . . . . . . . . . . . . . 18



vi

Page

4 PROPOSED ARCHITECTURES . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Features of A-MnasNet and R-MnasNet . . . . . . . . . . . . . . . . . . 22

4.1.1 Convolutional Layers . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.2 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.3 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.4 Learning Rate Annealing or Scheduling . . . . . . . . . . . . . . 26

4.1.5 Optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 IMPLEMENTATION ON NXP BLUEBOX 2.0 . . . . . . . . . . . . . . . . 31

6.1 Implementation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 FUTURE SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



vii

LIST OF TABLES

Table Page

2.1 MnasNet Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 A-MnasNet Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 R-MnasNet Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Comparison of models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Scaling A-MnasNet with width multiplier . . . . . . . . . . . . . . . . . . . 30

5.3 Scaling R-MnasNet with width multiplier . . . . . . . . . . . . . . . . . . . 30



viii

LIST OF FIGURES

Figure Page

2.1 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Shallow vs Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Image Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Convolutional Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Example of a filter to a Two Dimensional input to create Feature Map . . 8

2.6 Max Pooling and Average Pooling . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 Fully Connected Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.8 Commonly used Activation Functions . . . . . . . . . . . . . . . . . . . . . 12

2.9 MnasNet architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 NXP BlueBox 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 High level view of NXP Bluebox 2.0 . . . . . . . . . . . . . . . . . . . . . . 16

3.3 S32V234 Vision Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Vision Application on S32V234 . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 LS2084A Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 RTMaps connection with Bluebox 2.0 . . . . . . . . . . . . . . . . . . . . . 20

4.1 Comparison of Depthwise Separable Convolution Layer and Harmonious
Bottleneck Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Mish Activation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Common Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 AutoAugment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Comparison of different LR scheduling methods. . . . . . . . . . . . . . . . 27

5.1 Baseline Training Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 A-MnasNet Training Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 R-MnasNet Training Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



ix

Figure Page

6.1 Implementation on NXP Bluebox 2.0 . . . . . . . . . . . . . . . . . . . . . 31

6.2 Python Component of RTMaps . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3 Image Classification using A-MnasNet . . . . . . . . . . . . . . . . . . . . 33

6.4 Image Classification using A-MnasNet . . . . . . . . . . . . . . . . . . . . 33

6.5 Image Classification using R-MnasNet . . . . . . . . . . . . . . . . . . . . 34

6.6 Image Classification using R-MnasNet . . . . . . . . . . . . . . . . . . . . 34



x

ABBREVIATIONS

A-MNASNET Augmented MnasNet

AI Artificial Intelligence

BLE Bluetooth Low Energy

CNN Convolutional Neural Networks

CV Computer Vision

DL Deep Learning

FC Fully-Connected

FPGA Field Programmable Gate Array

GPU Graphical Processing Unit

ILSVRC ImageNet Large Scale Visual Recognition Challenge

IP Internet Protocol

LR Learning Rate

R-MNASNET Reduced MnasNet

ReLU Rectified Linear Unit

RTMaps Real-Time Multi Sensor Applications

SGD Stochastic Gradient Descent

TCP Transmission Control Protocol



xi

ABSTRACT

Shah, Prasham. M.S.E.C.E., Purdue University, December 2020. Design Space Explo-
ration of Convolutional Neural Networks for Image Classification. Major Professor:
Mohamed El-Sharkawy.

Computer vision is a domain which deals with the goal of making technology as

efficient as human vision. To achieve that goal, after decades of research, researchers

have developed algorithms that are able to work efficiently on resource constrained

hardware like mobile or embedded devices for computer vision applications. Due to

their constant efforts, such devices have become capable for tasks like Image Clas-

sification, Object Detection, Object Recognition, Semantic Segmentation, and many

other applications. Autonomous systems like self-driving cars, Drones and UAVs, are

being successfully developed because of these advances in AI.

Deep Learning, a part of AI, is a specific domain of Machine Learning which

focuses on developing algorithms for such applications. Deep Learning deals with

tasks like extracting features from raw image data, replacing pipelines of specialized

models with single end-to-end models, making models usable for multiple tasks with

superior performance. A major focus is on techniques to detect and extract features

which provide better context for inference about an image or video stream. A deep

hierarchy of rich features can be learned and automatically extracted from images,

provided by the multiple deep layers of CNN models.

CNNs are the backbone of Computer Vision. The reason that CNNs are the

focus of attention for deep learning models is that they were specifically designed

for image data. They are complicated but very effective in extracting features from

an image or a video stream. After AlexNet won the ILSVRC in 2012, there was a

drastic increase in research related with CNNs. Many state-of-the-art architectures
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like VGG Net, GoogleNet, ResNet, Inception-v4, Inception-Resnet-v2, ShuffleNet,

Xception, MobileNet, MobileNetV2, SqueezeNet, SqueezeNext and many more were

introduced. The trend behind the research depicts an increase in the number of layers

of CNN to make them more efficient but with that, the size of the model increased

as well. This problem was fixed with the advent of new algorithms which resulted in

a decrease in model size.

As a result, today we have CNN models, which are implemented on mobile devices.

These mobile models are compact and have low latency, which in turn reduces the

computational cost of the embedded system. This thesis resembles similar idea, it

proposes two new CNN architectures, A-MnasNet and R-MnasNet, which have been

derived from MnasNet by Design Space Exploration. These architectures outperform

MnasNet in terms of model size and accuracy. They have been trained and tested on

CIFAR-10 dataset. Furthermore, they were implemented on NXP Bluebox 2.0, an

autonomous driving platform, for Image Classification.
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1. INTRODUCTION

1.1 Context

Computer Vision is becoming an essential application in this modern world. With

advances in technology autonomous cars, drones and UAVs, robots etc have been

enabled with vision capabilities. These technologies use Convolutional Neural Net-

works to process the images or video input. They are used for applications like Image

Classification, Object Detection, Semantic Segmentation etc. Convolutional Neural

Networks are a part of Deep Learning, which is a subset of Machine Learning. Due

to the advances in the field of AI, Machine Learning capabilities increased and this

enabled a whole new field of Deep Learning. This field deals with creating, optimiz-

ing and implementing algorithms which enables technology to become self-reliant and

gain human level precision. The prime goal is automation of these technologies in a

way that they are able to operate perfectly without any human intervention.

1.2 Motivation

Deep Learning is the future of AI. Today, it has applications in almost all industrial

sectors and is helping in creating a better world. Vision applications are one of

the major breakthroughs which have been made possible because of this field. Top

companies like Tesla, Google, Amazon, Microsoft etc are investing billions of dollars

in this domain. Our lifestyle will change and so will the modern way of living. Modern

technologies are being developed to make our lives easier, healthier and safer. Today,

when the world is facing some serious challenges like climate change, health issues,

increased crime rate etc, Deep learning has become a very essential tool to face and

overcome these challenges.
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It is used in developing healthcare technologies, which have almost human level

precision and are used to save lives in hospitals. Medical imaging devices which de-

tect even minute particles are used for diagnosis of various diseases. Autonomous

cars which will make roads safer and will reduce fatal life-threatening accidents, Au-

tonomous Drones which will revolutionize the logistics and will deliver packages more

efficiently, UAVs which will aid militaries with surveillance and help prevent wars,

smart cameras which will be able to recognize people and track their activities to

reduce crimes. Smart imaging of atmosphere for weather prediction and warnings

for natural calamities like tsunami, tornadoes etc. These are a few examples of how

CNNs are making a major impact in our lives.

These technologies require computational power, speed, accuracy and precision.

In order to make them efficient, the algorithms have to be fast having low latency,

working efficiently on low power, being more accurate and consuming less memory.

CNNs have so many layers so as the architectures become deeper and wider, giving

more accuracy, their computational cost increases. These CNN models have to be

more compact and should work as efficiently as the state-of-the-art architectures.

After years of research, with the advent of new algorithms, now it is possible to make

CNNs more efficient with a fair trade-off between model size and accuracy. This

thesis aims to contribute towards this same goal, making CNNs compact in terms of

model size and increasing its accuracy so that they can be used for such applications.

1.3 Challenges

• Implementing new algorithms on MnasNet (baseline architecture)

• Training from scratch

• Tuning hyperparameters

• Reducing model size

• Increasing model accuracy
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• Implementation on NXP Bluebox 2.0 for Image Classification

1.4 Methodology

• Analyzing the baseline CNN architecture

• Implementing new algorithms

• Modifying the baseline CNN architecture

• Training new CNN architecture with CIFAR-10 dataset

• Tuning of hyperparameters

• Implementing Optimization techniques

• Implementing Data augmentation techniques

• Deploying new architecture on a hardware for specific application

1.5 Contributions

• Design Space Exploration of MnasNet Architecture

• Proposed A-MnasNet and R-MnasNet CNN Architectures

• Image Classification on NXP Bluebox 2.0 using A-MnasNet and R-MnasNet

• Published 2 research papers in IEEE Conferences (third paper accepted)

• Published 1 paper in Journal.
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2. LITERATURE REVIEW

This section gives an insight on Convolutional Neural Networks. It will explain why

CNNs are used for Deep Learning and why they are used for computer vision applica-

tions. This chapter also discusses the MnasNet CNN architecture, which was further

improved by Design Space Exploration.

2.1 Convolutional Neural Networks

Convolutional Neural Networks are a special class of Neural Networks which

mainly consist of Convolutional Layers, Pooling Layers, Activation Layers and Fully

Connected Layers. They are used to extract features from an image or a video in-

put. They are used for various computer vision applications like image classification,

object detection, semantic segmentation, face recognition etc.

Fig. 2.1. Convolutional Neural Network

The Figure 2.1 shows an example of a convolutional neural network, which is

taking an image input and then extracting features from it through various layers

and then finally predicting the class of the object in the given image.
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CNNs can be divided in two phases:

• Convolutional layers: extracts and learns features.

• Fully connected layers: prediction part

2.1.1 Convolutional Neural Networks and its significance

In fully connected neural networks, all neurons of a layer connect with all neu-

rons of the next layer. They have so many connections that the complexity of the

architecture increases by a tremendous amount. The computational cost of such net-

works is more because the parameters are more. It is not ideal for computer vision

applications.

Fig. 2.2. Shallow vs Deep Neural Networks

For computer vision applications, classical neural networks were not as effective as

CNNs. Input of the neural network have tremendous amount of data. When this data

is as an input to fully connected neural networks, since all the neurons are connected

with each other, the network parameters increase by a huge factor.
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A CNN uses a way that an image is made out of more modest subtleties, or in-

cludes, and makes a system for dissecting each element in seclusion, which illuminates

a choice about the picture all in all. As a component of the CNN, there is additionally

a fully connected layer that takes the final product of the convolution/pooling cycle

and arrives at a classification decision.

2.1.2 Input Layer

The input can be an image input or a video stream. Both are basically a collection

of pixels which are placed in an array to form an image. Each pixel has a numeric

value in the range of -255 to +255. The numbers represent the color value of the

pixels in the image or video. The image or video stream is first converted to feature

maps which consist of an array of numbers stacked together using NumPy library. It

is illustrated in Figure 2.3.

Fig. 2.3. Image Input

2.1.3 Convolutional Layers

Convolutional layers are significant building blocks which become the backbone

of CNNs. A convolution is the straightforward use of a filter to an information that

outcomes in an activation. Rehashed utilization of similar filter to an information
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brings about a map of activations called a feature map, showing the areas and quality

of a distinguished feature in an information, for example, an image. The advancement

of convolutional neural networks is the capacity to consequently get familiar with

countless filters in equal explicit to a preparation dataset under the limitations of a

particular prescient displaying issue, for example, image classification. The outcome

is exceptionally explicit highlights that can be distinguished anyplace on input.

The CNN is a particular sort of neural network intended for two-dimensional data,

despite the fact that they can be utilized with one-dimensional and three-dimensional

information. Key to the CNN is convolutional layer, which gives the network its name.

It performs an operation, which is known as “convolution”.

Fig. 2.4. Convolutional Layer

A convolution is a multiplication of weights with input, followed with an addition

of bias. It is a linear operation. The array of weights known as filter or kernel

slides on the input array performing convolution on each element. The result of each

operation is added to the output array which is known as feature map. This process

of extracting features from the image happens throughout the CNN’s convolutional

layers. This process is illustrated in Figure 2.4.
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The filter performs dot product or scalar multiplication with the elements of the

input array. Since the size of output feature map depends on the filter size, the

number of features extracted per layer can be changed by changing the size of filter.

Usually, the size of filter is kept less than the size of input array. Utilizing a smaller

filter is deliberate, as it permits a similar filter (set of weights) to be increased by

the input array on various occasions at various points on the input. This efficient

utilization of a similar filter over a picture is an influential thought. In the event that

the filter is intended to distinguish a particular sort of highlight in the input, at that

point the utilization of that filter methodically over the whole input picture permits

the filter an occasion to find that include anyplace in the picture. This ability is

ordinarily alluded to as interpretation invariance, for example the overall interest in

whether the component is available as opposed to where it was available.

Fig. 2.5. Example of a filter to a Two Dimensional input to create Feature Map

The output of the multiplication operation between the filter and the input array

is a solitary value. As the filter is applied on various occasions to the input array, the

outcome speak to a filtering of the input. In that capacity, the two-dimensional yield

array from this activity is known as a “feature map”. When a feature map is made,
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we can pass each value in the feature map through a non-linearity, for example, a

ReLU, much as we accomplish for the yields of a completely associated layer.

In synopsis, we have an input, for example, image data, and we have a filter, which

is a bunch of weights, and the filter is efficiently applied to the input data to make a

feature map as shown in Figure 2.5.

2.1.4 Pooling Layers

The Pooling layer is accountable for lessening the spatial size of the Convolved

Feature. This is to reduce the computational power needed to deal with the data

through dimensionality decrease. Besides, it is helpful for separating predominant

aspects which are rotational and positional invariant, in this way keeping up the

cycle of successfully preparing of the model.

There are mainly two types of Pooling Layers in a CNN: Max Pooling and Average

Pooling. The functionality of these two types of layers are demonstrated in Figure

2.6.Max Pooling restores the maximum value from the segment of the picture covered

by the Kernel. Whereas, Average Pooling restores the average of the multitude of

values from the bit of the picture covered by the Kernel. Max Pooling additionally

proceeds as a Noise Suppressant. It disposes of the loud actuations out and out

and furthermore performs de-noising alongside dimensionality decrease. Then again,

Average Pooling just performs dimensionality decrease as a commotion stifling com-

ponent. Subsequently, we can say that Max Pooling plays out significantly in a way

that is better than Average Pooling.

The Convolutional Layer and the Pooling Layer, together structure the I-th layer

of a Convolutional Neural Network. Contingent upon the complexities in the pic-

tures, the quantity of such layers might be expanded for extracting low-level features

significantly further, however at the expense of more computational power.
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Fig. 2.6. Max Pooling and Average Pooling

2.1.5 Fully Connected Layers

Fully connected layers are a basic part of Convolutional Neural Networks (CNNs),

which have been demonstrated fruitful in perceiving and arranging pictures for PC

vision. The CNN cycle starts with convolution and pooling, separating the picture

into features, and breaking down them autonomously. The consequence of this cycle

takes care of into a fully connected neural organization structure that drives the last

grouping choice.

The target of a fully connected layer is to take the consequences of the convolu-

tion/pooling cycle and use them to order the picture into a name (in a straightforward

arrangement model). The yield of convolution/pooling is straightened into a solitary

vector of values, each speaking to a likelihood that a specific feature has a place with

a name. For instance, if the picture is of a feline, features speaking to things like

hairs or hide ought to have high probabilities for the mark “cat”.

Figure 2.7 delineates how the input values stream into the main layer of neurons.

They are increased by weights and pass through an enactment work (ordinarily ReLu),

simply like in an exemplary counterfeit neural organization. They at that point pass

forward to the yield layer, in which each neuron speaks to an classification label.

The fully connected portion of the CNN network experiences its own backprop-

agation cycle to decide the most precise weights. Every neuron gets weights that
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Fig. 2.7. Fully Connected Layer

organize the most proper label. At long last, the neurons “vote” on every one of the

labels, and the victor of that vote is the classification choice.

2.1.6 Activation Layers

Activation layers are used to add non-linearity in the CNN. They determine the

correct non-linear relation between the input and output signals. Different types of

mathematical functions are used to add this property of non-linearity. Some com-

monly used activation functions like ReLU, Tanh, Sigmoid etc are represented in

Figure 2.8

2.2 MnasNet (Baseline) Architecture

It is an arduous task to design, train, and evaluate convolutional neural networks

for large datasets as it is time consuming and requires extensive domain knowledge.
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Fig. 2.8. Commonly used Activation Functions

To solve the problem of design a CNN model, the Google Brain team designed a

model called NasNet (neural architecture search network) which searches a search

space of possible convolution, pooling, and other blocks with variable strides, kernel

sizes, and more. However, this model did not search for efficient models that can be

run on mobile platforms. Thus, MnasNet was developed.

The following were the main contributions:

• The authors introduce latency information when evaluating models to discour-

age larger models with expensive operations. This leads to a good trade-off

between accuracy and latency.

• On ImageNet classification task, MnasNet model achieves 74.% top-1 accuracy

with 76ms latency on a Pixel phone.

• On the COCO object detection task, MnasNet achieves both higher mAP qual-

ity and lower latency than MobileNets.

They have introduced a neural architecture search approach, which optimized

accuracy and latency on mobile devices using reinforcement learning. By using
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their automated approach, they propose various architectures called MnasNet-A1,

MnasNet-A2 and MnasNet-A3. They show that diversity of layers in such resource-

constrained models yield better trade-offs between accuracy and latency of the model.

They have shown that their architecture outperforms other models like MobileNetV1,

SqueezeNext, ShuffleNet, MobileNetV2, NASNet and many other models.

Fig. 2.9. MnasNet architecture

As shown in Figure 2.9, every block except one is of the same structure. The

structure goes as follows:
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Conv2D(1x1) - BatchNormalization - ReLU6 - DepthwiseConv2D - BatchNormal-

ization - ReLU6 - Conv2D(1x1) - BatchNormalization - ReLU

Depending on the structure, the block may or may not of skip connections from

input to output of the last layers. The SepConv layer just has DepthwiseConv2D,

Conv2D(1x1), BatchNormalization, and finally ReLU6 activation layer.MnasNet uses

Convolution Ops, depthwise separable convolution, mobile inverted bottleneck layers

to extract features. It uses RMSProp optimizer, Batch Normalization and Dropout

regularization.

Table 2.1 shows the MnasNet architecture which is trained with CIFAR-10 dataset

where t: expansion factor, c: number of output channels, n: number of blocks and s:

stride.

Table 2.1.
MnasNet Architecture

MnasNet Architecture

Layers Convolutions t c n s

322 × 3 Conv2d 3×3 - 32 1 1

1122 × 32 SepConv 3×3 1 16 1 2

1122 × 16 MBConv3 3×3 3 24 3 2

562 × 24 MBConv3 5×5 3 40 3 2

282 × 40 MBConv6 5×5 6 80 3 2

142 × 80 MBConv6 3×3 6 96 2 1

142 × 96 MBConv6 5×5 6 192 4 1

72 × 192 MBConv6 3×3 6 320 1 1

72 × 320 FC, Pooling 10
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3. HARDWARE AND SOFTWARE

• NXP Bluebox 2.0

• Intel i9 9th generation processor with 32 GB RAM

• Aorus Geforce RTX 2080Ti GPU

• Python version 3.6.7.

• Pytorch version 1.0.

• Spyder version 3.6.

• RTMaps Studio

• Livelossplot

3.1 NXP Bluebox 2.0

BlueBox 2.0 [35] by NXP is a real-time development stage that gives the necessary

presentation, functional security and car unwavering quality to build up oneself driv-

ing vehicles. It is an ASIL-B and ASIL-D agreeable hardware system, a coordinated

bundle for making self-ruling applications, for example, ADAS systems, driver help

systems. It is involved three autonomous systems on chip that are S32V234: vision

processor, LS2084A: register processor, and S32R274: radar microcontroller.

It utilizes one of the Cortex-A72 layers cape processors out of the 8 processors

and an inserted vision chip S32V234. It incorporates Level 1 conveying crash admo-

nitions, programmed slows down and keeping up a set vehicle good ways from others.

Level 2 innovation execution of vehicle directing, brake, and quicken naturally in-

side restricted conditions and requirements, not dispensing with the need of a human
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Fig. 3.1. NXP BlueBox 2.0

Fig. 3.2. High level view of NXP Bluebox 2.0

driver. Level 3 independent applications, for example, the moving of the total hand

over security basic functions in specific circumstances from the driver. The test here

is furnishing independent vehicles the capacity with more calculation and memory

assets with a bomb evidence system. It works on the free installed Linux OS BSP
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bundle for both the S32V and LS2 processors with the assistance of RTMaps. It

functions as the focal registering unit of the system. Subsequently, giving the ADAS

system to be equipped for sending effective and better CNN designs.

3.1.1 S32V234

The S32V234 is a vision processor. It is mainly used to process image or video

data. The figure 3.3 shows the features of this processor. It is an essential component

of NXP Bluebox 2.0. This processor is used to perform perception applications. It

enables the system with applications like Image Classification.

Fig. 3.3. S32V234 Vision Processor

Figure 3.4 demonstrates the different stages of the vision application process on

S32V234 processor. It shows the different components, which are utilized in perform-

ing such applications.
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Fig. 3.4. Vision Application on S32V234

3.1.2 LS-2084A

The LS2048A is the main computational component of NXP Bluebox 2.0. All

the major computations are performed by this processor. Figure 3.5 shows the main

features of this processor. This processor is used to process the data which is used to

perform machine learning applications. It enables NXP Bluebox 2.0 to perform real

time vision applications.

3.2 RTMaps (Real-time Multi-sensor applications)

RTMaps is a non-concurrent superior platform and have an advantage of proficient

and easy utilization structure for fast and robust developments. As its name suggests,

it is used for real time multi-sensor applications. The simplest method to create, test,

approve, consolidate and implement applications intended for the development of

multi-modular based applications. It has different components, which are used for

various applications.
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Fig. 3.5. LS2084A Processor

RTMaps Runtime Engine is the core of RTMaps. It takes care of the basic tasks

like segment registration, buffer the board, time stepping, stringing, and needs. It

corresponds with the outside applications and the board.

RTMaps Component Library comprises of all the essential libraries required to

perform various applications. It provides suppport for Python, Pytorch, Tensorflow,

C++, MATLAB Simulink models and so on.

RTMaps Studio is like an IDE which enables user to develop various applications.

It is user friendly and has a very easy-to-operate User Interface. It is used to perform

Image Classification on NXP Bluebox 2.0. It establishes a TCP/IP connection with

the NXP Bluebox 2.0 to transmit and recieve data. Figure 3.6 shows the connection

between them.
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Fig. 3.6. RTMaps connection with Bluebox 2.0



21

4. PROPOSED ARCHITECTURES

This chapter introduces the proposed CNN architectures and discusses the proposed

algorithms and their features.

Table 4.1.
A-MnasNet Architecture

A-MnasNet Architecture

Layers Convolutions t c n s

322 × 3 Conv2d 3×3 - 32 1 1

1122 × 32 SepConv 3×3 1 16 1 2

1122 × 16 MBConv3 3×3 3 24 3 2

1122 × 24 Harmonious Bottleneck 2 36 1 1

562 × 36 MBConv3 5×5 3 40 3 2

1122 × 40 Harmonious Bottleneck 2 72 1 2

282 × 72 MBConv6 5×5 6 80 3 2

1122 × 80 Harmonious Bottleneck 2 96 4 2

142 × 96 MBConv6 3×3 6 96 2 1

142 × 96 MBConv6 5×5 6 192 4 1

72 × 192 MBConv6 3×3 6 320 1 1

72 × 320 FC,Pooling 10

t: expansion factor, c: number of output channels, n: number of blocks and s:

stride
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Table 4.2.
R-MnasNet Architecture

R-MnasNet Architecture

Layers Convolutions t c n s

322 × 3 Conv2d 3×3 - 32 1 1

1122 × 32 SepConv 3×3 1 16 1 2

1122 × 16 MBConv3 3×3 3 24 3 2

1122 × 24 Harmonious Bottleneck 2 36 1 1

562 × 36 MBConv3 5×5 3 40 3 2

1122 × 40 Harmonious Bottleneck 2 72 1 2

282 × 72 MBConv6 5×5 6 80 3 2

1122 × 80 Harmonious Bottleneck 2 96 4 2

142 × 96 MBConv6 3×3 6 96 2 1

1122 × 80 Harmonious Bottleneck 2 192 1 2

1122 × 80 Harmonious Bottleneck 2 96 4 2

142 × 96 MBConv6 5×5 6 192 4 1

1122 × 80 Harmonious Bottleneck 2 288 1 1

72 × 192 MBConv6 3×3 6 320 1 1

72 × 320 FC,Pooling 10

4.1 Features of A-MnasNet and R-MnasNet

4.1.1 Convolutional Layers

Different types of convolutions are used to extract features from an image or a

video input. Depthwise Seperable layers were used in MnasNet. In order to extract

features more efficiently, Harmonious Bottleneck Layers were added to the architec-

ture. These convolutional layers extract features from the spatial dimensions along

with the channel dimensions but it changes the scale along these dimensions as well.



23

There is contraction-expansion of spatial dimensions while keeping the channel di-

mensions constant and expansion-contraction of channel dimensions while keeping

the spatial dimensions constant. The computational cost of Harmonious Bottleneck

Layers is less than the depthwise separable convolutional layers. This strikes a de-

crease in the model size of the architecture and increases its accuracy.

Fig. 4.1. Comparison of Depthwise Separable Convolution Layer and
Harmonious Bottleneck Layer.

The spatial size of input/output feature maps is (H x W), C1/C2 are input/output

feature channels, (K x K) is the kernel size and s denotes stride.

The total cost of depthwise separable convolution is:

(H ×W × C1 ×K ×K) + (H ×W × C1 × C2) (4.1)

The total cost of harmonious bottleneck layer is:

B/s2 + (H/s×W/s× C1 + H ×W × C2) ×K2 (4.2)

where, B is the computational cost of the blocks inserted between the spatial contrac-

tion and expansion operations. It is evident that by squeezing the channel expansion-

contraction component and using a pair of spatial transformations yields a slimmed

spatial size of wide feature maps in each stage, which reduces the computational cost.



24

4.1.2 Activation Functions

Activation functions are used to introduce non-linearity in neural networks. They

determine the correct non-linear relation between the input and output signals. In

2019, Mish was introduced and it outperformed all other activation functions. It is

a new type of gated softplus function. The softplus activation function can be rep-

resented as: Figure 4.2 shows the graphical representation of Mish. For comparison,

Figure 4.3 shows commonly used activation functions along with the graph of Mish

activation.

Fig. 4.2. Mish Activation Function

Mish avoids saturation due to near zero gradients, strong regularization effects,

preserves small negative gradients and has effective optimization and generalization.

After implementing it in R-MnasNet, the accuracy of the model increased from 90.14%

to 91.13%.
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Fig. 4.3. Common Activation Functions

4.1.3 Data Augmentation

AutoAugment was used for data augmentation. AutoAugment learns the best aug-

mentation policies for a given dataset with the help of Reinforcement Learning (RL).

A policy consists of 5 sub-policies and each sub-policy applies 2 image operations in

sequence. Each of those image operations has two parameters: The probability of

applying it and the magnitude of the operation (e.g. rotate 20 degrees in 65% of
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cases). There is a controller that decides the best data augmentation policy at that

instant and tests the generalization ability of that policy by running a child model

experiment on a small subset of a particular dataset. After the child experiment

is finished the controller is updated with the validation accuracy as the reward sig-

nal, using a policy gradient method called Proximal Policy Optimization algorithm

(PPO). In this research, AutoAugment is used on CIFAR-10 dataset. The accuracy

of A-MnasNet was 92.97% but after using AutoAugment the accuracy increased to

96.89%. The accuracy of R-MnasNet was 88.54% but after using AutoAugment the

accuracy increased to 90.14%.

Fig. 4.4. AutoAugment

4.1.4 Learning Rate Annealing or Scheduling

While training a network, different learning rates are used to increase its accuracy.

According to a pre-defined schedule, the learning rate is reduced while training the

model. Some techniques like step decay, time decay, exponential decay and cosine

annealing are very famous. Figure 4.5 illustrates step decay based learning rate

performs better than other learning rate schedule methods. Therefore, this method

is used for training A-MnasNet.
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Fig. 4.5. Comparison of different LR scheduling methods.

4.1.5 Optimizers

RMSprop (Root Mean Square Propagation) was used to train MnasNet. SGD

(Stochastic Gradient Descent) was used to train A-MnasNet and R-MnasNet with

momentum equal to 0.9. Learning rate scheduler was used while training the network.
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5. RESULTS

A-MnasNet and R-MnasNet are used for Image Classification on NXP Bluebox 2.0.

These models have an accuracy of 96.89% and 91.13% with a model size of 11.6 MB

and 3 MB respectively. They outperform the baseline MnasNet architecture in terms

of model size and accuracy. A comparison of these models is shown in Table 5.1

Table 5.1.
Comparison of models

Comparison of models

Architecture Model Accuracy Model size (in MB)

MnasNet 80.8% 12.7

A-MnasNet 96.89% 11.6

R-MnasNet 91.13% 3

These models were trained with CIFAR-10 dataset on Aorus Geforce RTX 2080Ti

GPU using PyTorch framework for 200 epochs. The data was divided into batch size

of 128 for training set and batch size of 64 for validation set.

Table 5.2 shows the results obtained by scaling the model with different values of

width multiplier.

Table 5.3 shows the results obtained by scaling the model with different values of

width multiplier.
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Fig. 5.1. Baseline Training Plots

Fig. 5.2. A-MnasNet Training Plots

Fig. 5.3. R-MnasNet Training Plots
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Table 5.2.
Scaling A-MnasNet with width multiplier

Scaling A-MnasNet with width multiplier

Width Multiplier Model Accuracy Model size (in MB)

1.4 97.16% 22

1.0 96.89% 11.6

0.75 96.64% 6.8

0.5 95.74% 3.3

0.35 93.36% 1.8

Table 5.3.
Scaling R-MnasNet with width multiplier

Scaling R-MnasNet with width multiplier

Width Multiplier Model Accuracy Model size

1.4 92.49% 5.6 MB

1.0 91.13% 3 MB

0.75 90.03% 2 MB

0.5 87.5% 1.3 MB

0.35 84.9% 837.6 KB
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6. IMPLEMENTATION ON NXP BLUEBOX 2.0

This chapter will discuss the implementation of the proposed CNN architectures on

NXP Bluebox 2.0 for Image Classification.

6.1 Implementation Setup

The proposed architectures were implemented on NXP Bluebox 2.0 for real time

application like Image Classifcation. This was done by using RTMaps Studio. It

provides an interface between the Bluebox 2.0 and the achitectues via a TCP/IP

connection. The architecture is deployed using a python module. The process is

illustrated in Figure 6.1.

Fig. 6.1. Implementation on NXP Bluebox 2.0

After training the models on CIFAR-10 dataset, they were imported in the RTMaps

Studio using its python component. The python module is shown in figure 6.2. A

TCP/IP connection is used for data transmission between RTMaps and NXP Bluebox

2.0. The python component in RTMaps has a text editor that allows users to modify

their code. It works due to the combination of three functions. They are Birth(),

Core() and death().
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Fig. 6.2. Python Component of RTMaps

• Birth(): used to initialize and define the parameters.

• Core(): used to import the CNN architectures

• Death(): used to stop the implementation.

6.2 Implementation Results

The models were successfully deployed on NXP Bluebox 2.0 and were able to

predict the object in the input images accurately. The model takes input from the

Cifar-10 dataset. It randomly selects an image and then predicts the object class.

These predictions of A-MnasNet are shown in Figure 6.3 and 6.4 and of R-MnasNet

are shown in Figure 6.5 and 6.6.
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Fig. 6.3. Image Classification using A-MnasNet

Fig. 6.4. Image Classification using A-MnasNet
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Fig. 6.5. Image Classification using R-MnasNet

Fig. 6.6. Image Classification using R-MnasNet
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7. CONCLUSIONS

This thesis demonstrates Design Space Exploration of MnasNet architecture. It pro-

poses 2 new CNN architectures, A-MnasNet and R-MnasNet, which have been derived

from the baseline MnasNet architecture. It proposes algorithms, which were used to

modify the baseline architecture. It is evident that by making those modifications,

the accuracy and model size of the new architectures improved.

The prime goal of proposing A-MnasNet is to make the model more efficient in

terms of accuracy. The accuracy of A-MnasNet is 96.89% with a size of 11.6 MB. It

outperforms its baseline architecture MnasNet which has an accuracy of 80.8% and

model size of 12.6 MB. Three new layers were added to the baseline architecture.

These layers are called Harmonious Bottleneck layers. AutoAugment was used to

further increase the accuracy of the model.

The prime goal pf proposing R-MnasNet was to make the model more compact

and having a fair trade-off between model size and accuracy. The accuracy of R-

MnasNet is 91.14% with a size of 3 MB. It outperforms its baseline architecture

MnasNet, which has an accuracy of 80.8% and model size of 12.6 MB. Six Harmonious

Bottleneck layers were added to the baseline architecture. Mish activation was used to

improve the optimization of the network. AutoAugment was used to further increase

the accuracy of the model.

This thesis also demonstrates Image Classification on NXP Bluebox 2.0 using

Convolutional Neural Networks. A-MnasNet and R-MnasNet which have been de-

rived from MnasNet have been used for this Computer Vision application. These

models, when trained on CIFAR-10 dataset using Pytorch framework, have a val-

idation accuracy of 96.89% and 91.13% with a model size of 11.6 MB and 3 MB

respectively. They outperform the baseline MnasNet architecture in terms of model

size and accuracy. RTMaps Studio was used to deploy these architectures to NXP
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Bluebox 2.0 by establishing a TCP/IP connection. These models can also be used

for other computer vision applications like Object Localization, Object Detection,

Semantic Segmentation etc on NXP Bluebox 2.0 as well as other mobile or embedded

platforms.
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8. FUTURE SCOPE

Deep Learning is growing rapidly. Every year, new algorithms are proposed and the

research never stops. With the advent of new algorithms, the existing algorithms can

be optimized. Design Space Exploration has various parameters which affect the per-

formance of the CNN architecture. It is very important to tune the hyper-parameters

to get the best performance of the model. Different optimization techniques can be

used to improve the back propagation during training. Initial during the training, the

model is initialized with random tensor values. Initialization techniques like Xavier

Initialization can be implemented to optimize the initialization of parameters.

Deep Compression is a technique, which is used to reduce the model parameters.

It uses pruning, quantization and huffmann encoding on the network to compress the

network. This technique has been used on state-of-the-art architectures to reduce

their size and has successfully accomplished that. This technique could be used to

improve A-MnasNet and R-MnasNet. These architectures were trained and tested

on CIFAR-10 from scratch. Transfer Learning can be used to improve the efficiency

of these models. This architectures can be also be used for other computer vision

applications like object detection, object recognition, semantic segmentation etc.
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