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ABSTRACT

Spacecraft formation flying refers to the coordinated operation of a group of spacecraft

with a common objective. While the concept has been in existence for a long time, practical

fruition of the ideas was not possible earlier due to technological limitations. The topic

has received widespread attention in the last decade, with the development of autonomous

control, improved computational facilities and better communication technology. It allows a

number of small, lightweight, economical spacecraft to work together to execute the function

of a larger, heavier, more complex and expensive spacecraft. The primary advantage of such

systems is that they are flexible, modular, and cost-effective.

The flexibility of formation flying and other derived concepts comes from the fact that

the units are not physically attached, allowing them to change position or orientation when

the need arises. To fully realize this possibility, it is important to develop methods for spatial

reorganization. This thesis is an attempt to contribute to this development.

In this thesis, the reconfiguration problem has been formulated as a single system with

multiple inputs and multiple outputs, while preserving the individuality of the agents to

a certain degree. The agents are able to communicate with their neighbors by sharing

information. In this framework, a distributed closed-loop stabilizing controller has been

developed, that would drive the spacecraft formation to a target shape. An expression for

the controller gain as a function of the graph Laplacian eigenvalues has also been derived.

The practical applications of this work have been demonstrated through simulations.
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1. INTRODUCTION

Spacecraft (or satellite) formation flying is a concept of coordination among a group of

spacecraft in order to accomplish a common goal. According to NASA Goddard Space Flight

Center, it may be defined as “the tracking or maintenance of a desired relative separation,

orientation, or position between or among spacecraft.[  1 ]” It is a type of distributed space

system.

The control tasks of satellite formation consist of relative orbit control and relative at-

titude control of satellites. The relative orbit control includes formation initialization, for-

mation reconfiguration, and formation maintenance. Formation reconfiguration is different

from the orbit transition of a single satellite, as it not only requires each satellite to complete

the corresponding orbit transfer, but also requires coordinated movement of formation satel-

lites. Formation initialization can be regarded as a typical formation reconfiguration. The

relative positions of satellites in a formation are generally constrained in order to maintain

the shape of the formation.

1.1 Background and Motivation

Spacecraft formation flying has become popular in recent times, with the development

of autonomous flying and better communication technology. It allows a number of small,

lightweight, economical spacecraft to work together to execute the function of a larger, heav-

ier, more complex and expensive spacecraft. Such systems generally have a high accuracy,

redundancy and dependability. They have traditionally been used for Earth observation,

meteorology, communication, astronomy etc. However, there are plans by NASA and other

space agencies to use this concept for deep space missions.

As technology advances and becomes more compact, the popularity of smaller satellites is

rising. Small satellites are more cost effective and have rapid manufacturing times compared

to larger spacecraft. While the functionality of the small satellites has risen over the years

to rival that of larger satellites, some missions can’t be accomplished with just one satellite.

The solution is to assign multiple spacecraft to one mission.
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The addition of multiple satellites to one mission also has led to added flexibility. Forma-

tion flying has allowed for more types of missions that wouldn’t have been possible with just

one satellite, even a larger one. For example, the Fourier Transform Spectrometer (FTS)

CubeSat constellation of formation flying satellites will provide 3D observations of tropo-

spheric winds [ 2 ].The inclusion of vertical atmospheric wind profiles will lead to improved

and long-term weather forecasts. The possibility of replacing a faulty spacecraft at low cost

or even reconfiguring the formation to exclude the dysfunctional satellite also increases mis-

sion flexibility. A formation can also be in a ‘passive’ orbit when not in use and can be

deployed to an ‘active’ orbit via reorganization of its agents when the need arises.

Of course, manufacturing multiple satellites and putting them in orbit to accomplish a

shared objective also comes with its own issues. All of the spacecraft must be able to com-

municate with one another and their geometry relative to one another must be maintained

so that multiple spacecraft can accomplish the same goals as a large monolithic satellite.

The first discussion of flying multiple spacecraft for one mission was in 1977 [ 3 ]. The

proposed mission was an infrared interferometer made up of multiple telescopes. It wasn’t for

another ten years after the genesis of this idea that another type of mission was proposed.

This new type of mission considered using a two satellite architecture, a ‘Leader’ and a

‘Follower’ [  4 ]. After this proposed mission, many studies were made concerning various

architectures that could be utilized for these missions, and the interest in multiple spacecraft

systems took off.

Scharf, Hadaegh, and Ploen [ 5 ] have arranged all satellite formations into six categories.

The first is called Multiple-Input, Multiple-Output, where the controller treats the entire

system as a multiple-input, multiple-output plant. With this type of architecture the familiar

methods of modern control can be used, such as an LQR controller. The MIMO approach has

been used by Schaub and Alfriend [ 6 ] for controlling a formation of geometrically identical

satellites. A Leader/Follower architecture involves a “Leader” satellite which is tracked by

all of the “Follower” satellites. This type of formation is the most popular, because it reduces

an entire formation control into a simpler set of tracking problems. This has been extensively

worked on by Mesbahi and Hadaegh [  7 ], Wang and Hadaegh [  8 ], and Schlanbusch [  9 ]. If the

spacecraft in the formation are treated as rigid bodies inside of a virtual rigid structure,

14



they are in what is known as a Virtual Structure. The motion of the large, virtual structure

and the constant position of each of the spacecraft are used to track individual spacecraft.

Cyclic formations are similar to Leader/Follower architectures, except that there is not one

lead satellite. Instead the interconnection between the satellites lead to cyclic dependencies.

Zhang and Gurfil [ 10 ] have developed a cyclic control law for long time scales utilizing fixed-

magnitude thrusters. The last type of formation flying is the Behavioral architecture which

is composed of satellites with controllers that are designed to achieve different behaviors. It

has been used by McInnes [ 11 ] to maintain an annular formation in orbit.

As mentioned earlier, the rise in popularity of formation flying has grown in the last

twenty-five years. As a result, more than thirty formation flying satellite missions have been

launched since 2000, with at least six new missions planned in the next five years [ 12 ]. But

these missions are not only restricted to individual, independent satellites flying in formation.

The more recent proposals include concepts like adaptive or reconfigurable space structures

and fractionated telescopes among others.

The motivation for reconfigurable space structures arises from the investment and com-

plexity involved in designing, assembling, and maintaining large space structures such as the

International Space Station. The ISS has 16 modules and is made of hundreds of parts, some

of which are shown in Fig. (  1.1 ). Any malfunction in one part invokes a tedious replacement

process that may take days to complete, sometimes at a high financial costs. Reconfigurable

structures have been proposed for easy and low-cost maintenance or replacement in case of

damage, along with the added benefit of situational adaptability.

Similarly, the cost and complexity of on-orbit assembly of telescopes like Hubble have

served as the motivation for the development of fractionated telescopes and interferometers.

For the full functionality of formations and fragmented space architecture, it is necessary

to develop robust methods of spatial reorientation of these spacecraft clusters. This need

has inspired the work conducted in this thesis.

1.2 Objectives and Organization

The goal of this thesis is to demonstrate methods of shape reconfiguration of spacecraft

formations and illustrate their potential applications. The development of a distributed

15



Figure 1.1. Construction of the ISS [ 13 ]
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stabilizing feedback controller was attempted and an expression for selecting the same has

been derived in this thesis. The model has been validated through numerical simulations.

The organization of this thesis is as follows. In Chapter 2, the equations of motion

have been derived and then linearized. The frames of reference used throughout the work

have been described here. In Chapter 3, the reconfiguration problem has been formulated

as a two-point boundary value problem. Chapter 4 contains the closed loop formulation.

The main result of this thesis has been derived in Chapter 4, Section 4.4. In Chapter 5,

applications of this work have been shown and some concluding remarks have been provided

in Chapter 6.
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2. PROBLEM DESCRIPTION

The problem dealt with in this thesis is essentially the repositioning of a set of spacecraft

agents such that the resulting formation is in the targeted final shape. The following as-

sumptions have been made:

• The formation is in the vicinity of a large celestial body (Earth, Moon, Sun etc.).

• Each individual agent is small in mass in comparison to the above-mentioned celestial

body and therefore, they are considered to be as point masses.

• The motion of the agents is primarily affected by the gravitational force exerted by

the celestial body, and all other natural perturbing forces are very small.

Essentially, these assumptions signify that the problem may be treated as a “two-body

problem (2BP)”, with the formation being in orbit around the celestial body or the central

body. For any point mass at a distance r from the center of the celestial body, the equation

of motion is derived from Newton’s Second Law and the Law of Gravitation as:

id2r̄

dt2 = −µ
r̄

r3 (2.1)

Here, r̄ is the position vector with respect to an inertial frame of reference with the origin

at the center of the central body. µ is called the gravitational parameter of the central body,

and is equal to the universal gravitational constant G times the mass m of the central body,

i.e., µ = Gm.

As all the agents in the formation are close to each other and are orbiting the same

central body, it is convenient to define the equations of motion with respect to a rotating

frame of reference.

2.1 Equations of Motion in the LVLH Frame

The Local Vertical, Local Horizontal Frame or LVLH Frame is a rotating frame that

moves with a reference point which is in a circular orbit around the central body. In this

reference frame, the origin is at the center of the central body, x is in the radial direction

18



Figure 2.1. Geocentric LVLH Frame [ 14 ]

pointing away from the central body, y points in the direction of velocity, and z completes

the right-handed coordinate system. Therefore, motion along x, y and z axis is considered

‘radial’, ‘along-track’, and ‘out-of-plane’ respectively. This is shown for a geocentric LVLH

frame in Fig. (  2.1 )

For this problem, it is considered that the reference point is moving along a circular orbit

around the central body a constant angular velocity ω̄. The angular velocity is, therefore,

ω̄ = ωẑ, where ω is a constant. The velocity of a point mass at r̄ = xx̂ + yŷ + zẑ (in LVLH

coordinates) can be derived using the Basic Kinematic Equation (BKE).

idr̄

dt
=

ldr̄

dt
+ ω̄ × r̄ (2.2)

Here the prescripts i and l represent the inertial and rotating (LVLH) frame respectively.

The equation of motion in the LVLH frame can be derived using the BKE again.

19



id2r̄

dt2 =
id

dt

[
ldr̄

dt
+ ω̄ × r̄

]

=
ld

dt

[
ldr̄

dt
+ ω̄ × r̄

]
+ ω̄ ×

[
ldr̄

dt
+ ω̄ × r̄

]

=
ld2r̄

dt2 +
�
�
��7

0
ldω̄

dt
× r̄ + 2ω̄ ×

ldr̄

dt
+ ω̄ × (ω̄ × r̄)

=
ld2r̄

dt2 + 2ω̄ ×
ldr̄

dt
+ (ω̄ · r̄)ω̄ − (ω̄ · ω̄)r̄

Using equation ( 2.1 ),

−µ
r̄

r3 =
ld2r̄

dt2 + 2ω̄ ×
ldr̄

dt
+ (ω̄ · r̄)ω̄ − ω2r̄

=⇒ −µ
r̄

r3 = ¨̄r + 2ω̄ × ˙̄r + (ω̄ · r̄)ω̄ − ω2r̄ (2.3)

The left-hand side of equation ( 2.3 ) is

LHS = − µ

r3 (x x̂ + y ŷ + z ẑ) (2.4)

where, r =
√

x2 + y2 + z2. The right-hand side is

RHS = (ẍx̂ + ÿŷ + z̈ẑ) + 2(ωẑ) × (ẋx̂ + ẏŷ + żẑ) + (ωẑ) · (xx̂ + yŷ + zẑ)(ωẑ)

− ω2(xx̂ + yŷ + zẑ)

= (ẍx̂ + ÿŷ + z̈ẑ) + 2ω(ẋŷ − ẏx̂) + ω2zhatz − ω2(xx̂ + yŷ + zẑ)

= (ẍx̂ + ÿŷ + z̈ẑ) + 2ω(ẋŷ − ẏx̂) − ω2xx̂ − ω2yŷ

=⇒ RHS = (ẍ − 2ωẏ − ω2x) x̂ + (ÿ + 2ωẋ − ω2y) ŷ + z̈ ẑ (2.5)
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Equating the x, y, z components of LHS to those of RHS gives the following set of equa-

tions, which form the equations of motion in each direction in the LVLH frame.

ẍ = 2ωẏ + (ω2 − µ

r3 )x (2.6a)

ÿ = − 2ωẋ + (ω2 − µ

r3 )y (2.6b)

z̈ = − µ

r3 z (2.6c)

In the presence of an applied acceleration (i.e., control input) ux, uy, uz in the x, y, z

direction respectively, equation ( 2.6 ) becomes

ẍ = 2ωẏ + (ω2 − µ

r3 )x + ux (2.7a)

ÿ = − 2ωẋ + (ω2 − µ

r3 )y + uy (2.7b)

z̈ = − µ

r3 z + uz (2.7c)

These are the nonlinear equations of motion for a spacecraft in the x, y and z directions

in the LVLH frame.

2.2 Clohessy-Wiltshire Equations

The Clohessy-Wiltshire equations were derived in 1960 by W.H. Clohessy and R.S. Wilt-

shire [ 15 ]. These equations were formulated as the linear approximation of the nonlinear

orbit dynamics for the satellite rendezvous problem, considering each spacecraft as a point

mass. They represent the linearized relative motion of a ‘chaser’ with respect to a target

spacecraft in a circular orbit about a central body. Over time, they have evolved as the

standard set of equations for defining the dynamics of spacecraft formations.
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2.2.1 Equilibrium Position

To represent the dynamics of the formation in terms of the Clohessy-Wiltshire equations,

the equations of motion must be linearized about an equilibrium point. Let r̄e be an equi-

librium position. Therefore, ˙̄re = 0 and ¨̄re = 0. Substituting these values in equation ( 2.3 )

results in

− µ
r̄e

re3 = (ω̄ · r̄e)ω̄ − ω2r̄e (2.8)

Taking the dot product with ω̄ yields

−µ
ω̄ · r̄e

re3 = (ω̄ · r̄e)(ω̄ · ω̄) − ω2(ω̄ · r̄e)

= ω2(ω̄ · r̄e) − ω2(ω̄ · r̄e)

=⇒ −µ
ω̄ · r̄e

re3 = 0 (2.9)

Since µ
re3 6= 0, hence ω̄ · r̄e = 0. From equation (  2.8 ),

− µ
r̄e

re3 = −ω2r̄e (2.10)

=⇒ µ

re3 = ω2

=⇒ re =
(

µ

ω2

)1/3
(2.11)

An equilibrium position r̄e = re x̂ is selected, placing it on the reference orbit used to

define the current LVLH frame.

2.2.2 Linearization about the Equilibrium

The LVLH equation of motion i.e., equation ( 2.3 ) is linearized about the equilibrium

solution r̄e. Let δr̄ = r̄ − r̄e.
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− µ

re3 δr̄ + 3 µ

re4 δr̄ r̄e = δ ¨̄r + 2ω̄ × δ ˙̄r + (ω̄ · δr̄)ω̄ − ω2δr̄

=⇒ −ω2δr̄ + 3ω2

re
δr r̄e = δ ¨̄r + 2ω̄ × δ ˙̄r + (ω̄ · δr̄)ω̄ − ω2δr̄

=⇒ 3ω2

re
δr r̄e = δ ¨̄r + 2ω̄ × δ ˙̄r + (ω̄ · δr̄)ω̄ (2.12)

It is to be noted that the variables are defined as follows:

r̄e = re x̂ (2.13)

ω̄ = ω ẑ (2.14)

r̄ = x x̂ + y ŷ + z ẑ (2.15)

δr̄ = δx x̂ + δy ŷ + δz ẑ = (x − re) x̂ + y ŷ + z ẑ (2.16)

Then,

r2 = x2 + y2 + z2 (2.17)

Using linear approximation,

2reδr ≈ 2xeδx + 2yeδy + 2zeδz

=⇒ 2reδr ≈ 2reδx

=⇒ δr ≈ δx (2.18)

Additionally,
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ω̄ × δ ˙̄r = (ω ẑ) × (δẋ x̂ + δẏ ŷ + δż ẑ)

= ω(δẋ ŷ − δẏ x̂) (2.19)

ω̄ · δr̄ = (ω ẑ) · (δx x̂ + δy ŷ + δz ẑ)

= ωδz (2.20)

Substituting these values in equation ( 2.12 ) yields

3ω2

re
δx re x̂ = (δẍ x̂ + δÿ ŷ + δz̈ ẑ) + 2ω(δẋ ŷ − δẏ x̂) + ω2δzẑ

=⇒ (δẍ − 2ωδẏ − 3ω2δx)x̂ + (δÿ + 2ωδẋ)ŷ + (δz̈ + ω2δz)ẑ = 0 (2.21)

Separating the x, y, z components results in the famous Clohessy-Wiltshire equations of

motion.

δẍ − 2ωδẏ − 3ω2δx = 0 (2.22a)

δÿ + 2ωδẋ = 0 (2.22b)

δz̈ + ω2δz = 0 (2.22c)

When control inputs ux, uy, uz are applied in the x, y, z directions respectively, the new

linearized equations of motion are

δẍ = 2ωδẏ + 3ω2δx + ux (2.23a)

δÿ = −2ωδẋ + uy (2.23b)

δz̈ = −ω2δz + uz (2.23c)
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A spacecraft’s motion is defined completely using six states. If the three components of

motion and velocity are selected as these states then the state vector δx is

δx =



δx

δy

δz

δẋ

δẏ

δż


(2.24)

The input vector δu is

δu =


ux

uy

uz

 (2.25)

The dynamics of the spacecraft can now be represented as a linear system.

δẋ = Aδx + Bδu (2.26)

where,

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3ω2 0 0 0 2ω 0

0 0 0 −2ω 0 0

0 0 −ω2 0 0 0


(2.27)

and,
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B =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


(2.28)

Here, ω is the constant angular velocity of the reference orbit.

Henceforth, throughout this thesis, A and B shall denote the above-mentioned matrices

unless specified otherwise.

2.3 Use of CW Dynamics in the Thesis

The goal of this work is to demonstrate the shape reconfiguration of a spacecraft forma-

tion. It is assumed that a set of spacecraft agents are initially in a formation of one shape

and these agents must change their positions to form a new shape. In the chapters that

follow, this reconfiguration problem shall be formulated in two different ways, both based

on the CW linearized dynamics derived here.

In Chapter 3, the reconfiguration problem has been formulated as a two-point boundary

value problem. This requires complete knowledge of the initial and final states (i.e., both

position and velocity) of each agent in the formation. These are used as boundary conditions

and each agent is driven to follow a trajectory from its own initial state to final state such

that the overall fuel consumption of the whole formation is minimized. This method is

non-ideal for several reasons, which have been discussed at the end of the chapter. The two

major drawbacks are that this is an open-loop control, and it requires the exact final state

to be specified.

In Chapter 4, an alternative formulation is presented, with a goal of eliminating some

of the shortcomings of the TPBVP formulation from Chapter 3. This formulation involves

a closed-loop control and assumes that the agents share information through a network
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specified by the communication graph. The need to know the exact final state of each agent

is eliminated by introducing a reference target configuration, represented by the vector h,

and by incorporating consensus theory into the formulation. In this case, only the relative

positions of the agents in the target shape need to be known. The final configuration is in

the same shape as described by the vector h, but the positions for all the agents are offset by

a constant vector p, which may or may not be zero. Through communication among agents,

the formation converges to the shape specified by h and reaches consensus on the offset p

and the common velocity.

It is to be noted that throughout this thesis, the word ‘state’ refers to the exact values

of position and velocity coordinates in a given reference frame, while ‘shape’ refers to the

geometric form created by the spatial positions of the agents. Therefore, when a formation

converges to a specified shape, it means that the relative distances and orientations of the

agents are the same as those of the vertices of this particular shape. The actual position

coordinates of the agents do not necessarily coincide with the vertices of the given shape.
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3. TWO-POINT BOUNDARY VALUE PROBLEM

FORMULATION

The shape reconfiguration of the formation may be treated as a boundary value problem that

solves the Clohessy-Wiltshire equations while also satisfying the boundary conditions, i.e.,

the initial state and the final state of the formation. Using the calculus of variations approach,

this can be formulated as an optimal control problem, which can be solved numerically.

The Clohessy-Wiltshire equations define the linearized dynamics of each agent in the

formation. The initial and targeted final configuration of the formation are used as the

boundary conditions. A cost function may be selected based on the goal of the problem.

Using the variational approach, the necessary conditions for optimality may be obtained.

Let n be the number of agents in the formation. Let x̃ and ũ be the concatenated state

and input vectors, that contain the states of inputs for all the agents. Therefore,

x̃ =



δx1

δx2
...

δxn


and ũ =



δu1

δu2
...

δun


(3.1)

Here δxi is the linearized state vector and δui is the input vector for the ith agent.

It is assumed that the initial position and target position of each agent are determined

and known beforehand, i.e., each agent is chasing a fixed target. It is also assumed that the

target must be achieved within a specified time, making this a fixed time problem.

3.1 Cost Function, Boundary Conditions, Dynamics, and Constraint

To demonstrate the reconfiguration procedure, the cost function is selected for fuel op-

timization. At any instant, the fuel consumption of a spacecraft is directly proportional to

the applied acceleration i.e., control input. Thus, the cost J to be optimized is
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J = 1
2

∫ tf

0
ũ(t)T ũ(t) dt (3.2)

Let the initial configuration of the formation be defined by the vector x̃0 and the final

configuration by x̃f . These vectors contain the position and velocity of each agent in the

formation. Therefore the boundary conditions are represented as

x̃(0) = x̃0 (3.3a)

x̃(tf ) = x̃f (3.3b)

The states for a single agent, i, have been defined as,

δxi =



δx

δy

δz

δẋ

δẏ

δż


(3.4)

Using the Clohessy-Wiltshire equations, the dynamics of each agent can be defined as

29



δẋi =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3ω2 0 0 0 2ω 0

0 0 0 −2ω 0 0

0 0 −ω2 0 0 0


︸ ︷︷ ︸

A

δxi +



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


︸ ︷︷ ︸

B

δui (3.5)

Therefore, the dynamics of the whole formation can be defines as

˙̃x =



A 0 . . . 0

0 A . . . 0
... ... . . . ...

0 0 . . . A


x̃ +



B 0 . . . 0

0 B . . . 0
... ... . . . ...

0 0 . . . B


ũ (3.6)

=⇒ ˙̃x = Af x̃ + Bf ũ (3.7)

where,

Af = In ⊗ A

Bf = In ⊗ B

Here, ⊗ denotes the Kronecker product.

In most realistic scenarios, the control input to the spacecraft is limited by the capabilities

of the engine or thruster. Therefore, it is sensible to impose bounds on the magnitude of

input in each direction for all agents. For the ith element ui of the concatenated input vector

ũ, this can be represented as:

|ui| ≤ U (3.8)
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3.2 Unconstrained Two-Point Boundary Value Problem

The optimal control problem, without the constraints, may be formulated by introducing

the co-state (or Lagrange multiplier), λ and defining the Hamiltonian as:

H = ∂J

∂t
+ λT ˙̃x (3.9)

=⇒ H = 1
2(ũT ũ) + λT (Af x̃ + Bf ũ) (3.10)

The dynamics of the co-states is given by

λ̇ = −
(

∂H
∂x̃

)T

(3.11)

= −
[

∂

∂x̃
(λT Af x̃)

]T

λ̇ = −AT
f λ (3.12)

The optimal control can be obtained by using the necessary condition

∂H
∂ũ

= 0 (3.13)

=⇒ ∂

∂ũ

(1
2 ũT ũ + λT Bf ũ

)
= 0

=⇒ 2ũT

2 + λT Bf = 0

=⇒ ũ = −BT
f λ (3.14)
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Therefore, the fuel-optimal reconfiguration of the formation can be represented as a Two

Point Boundary Value Problem using the state and co-state equations ( 3.7 ,  3.12 ), optimal

control equation ( 3.14 ) and boundary conditions ( 3.3 ). This is summarized in Table  3.1 .

Table 3.1. Two-Point Boundary Value Problem (TPBVP)
Variable Dynamics Initial Final

x̃ ˙̃x = Af x̃ − BfBT
f λ x̃(0) = x̃0 x̃(tf ) = x̃f

λ λ̇ = −AT
f λ N/A N/A

3.3 Constrained Two-Point Boundary Value Problem Formulation

When the control bounds are imposed, the optimal control equation is replaced by Pon-

tryagin’s Minimum Principle,

H(x̃∗, ũ∗, λ∗, t) ≤ H(x̃∗, ũ, λ∗, t) when |ui| ≤ U (3.15)

=⇒ 1
2(ũ∗T ũ∗) + λT (Af x̃ + Bf ũ∗) ≤ 1

2(ũT ũ) + λT (Af x̃ + Bf ũ)

=⇒ 1
2

3n∑
i=1

u∗2
i + λT Bf ũ∗ ≤ 1

2

3n∑
i=1

u2
i + λT Bf ũ (3.16)

Let bi be the ith column of Bf . Therefore, the above equation may be represented in

terms of each individual ui as

1
2u∗2

i + λT biu
∗
i ≤ 1

2u2
i + λT biu

∗
i (3.17)

=⇒ 1
2

[(
u∗

i + λT bi
)2

−
(
λT bi

)2
]

≤ 1
2

[(
ui + λT bi

)2
−
(
λT bi

)2
]

=⇒
(
u∗

i + λT bi
)2

≤
(
ui + λT bi

)2
(3.18)

Case I: λT bi < −U The minimum value of the right-hand side is attained at ui = U .

Case II: λT bi > U The minimum value of the right-hand side is attained at ui = −U .
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Case III: −U ≤ λT bi ≤ U The minimum value of the right-hand side is attained at

ui = −λT bi.

Therefore, the optimal control for the ith agent is given by

u∗
i =



−U if λT bi > U

−λT bi if −U ≤ λT bi ≤ U

+U if λT bi < −U

∀ui ∈ ũ (3.19)

So, the system behavior is similar to the unconstrained problem when the calculated ui

is within bounds and it is capped at the limits otherwise.

3.4 Simulation

To demonstrate the above formulation, a numerical simulation has been conducted using

MATLAB®. A formation comprising three spacecraft agents has been considered. These

agents are initially located a specific distance ds apart on the reference circular orbit. In the

LVLH frame this appears as a straight line parallel to the y-axis. The target configuration

is an equilateral triangle. It is assumed that the first agent is a ’leader’, i.e., it remains on

its original path. The other two agents adjust their trajectory to achieve the target final

configuration with respect to the leader. Considering this communication profile, the initial

and final conditions of the agents are
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δx1(0) =



0

0

0

0

0

0



δx1(tf ) =



0

0

0

0

0

0



(3.20)

δx2(0) =



0

ds

0

0

0

0



δx2(tf ) =



−ds cos 60o

ds sin 60o

0

0

0

0



(3.21)

δx3(0) =



0

2ds

0

0

0

0



δx3(tf ) =



ds cos 60o

ds sin 60o

0

0

0

0



(3.22)

34



For this example a geostationary reference orbit has been considered, which means

ω = 2π rad/day ≈ 7.2722 × 10−5 rad/s. The reconfiguration time tf is 30 minutes. The

separation distance ds is taken as 5% of the orbital radius, which means ds = 21.1205 km.

The maximum admissible magnitude of control input i.e., U = 3 × 10−5 km/s2.

Using these conditions, the problem has been simulated. MATLAB®’s built-in bvp4c

function has been used to solve the boundary value problem. The total cost is J = 8.9028 ×

10−7 km2/s3. The trajectory of the agents and the control history have been plotted below

in Fig. (  3.1 ) and Fig. (  3.2 ) respectively.

Figure 3.1. Trajectory of the Agents in the TPBVP Formulation

It is observed that the shape reconfiguration is completed successfully while implementing

the control bounds. The cost for various reconfiguration times for this model has been listed

in Table (  3.2 ). It is observed that the cost decreases when tf is increased, i.e. the longer the

reconfiguration time, the lower the cost.
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Figure 3.2. Control History in the TPBVP Formulation

Table 3.2. Cost for Different Reconfiguration Times
Reconfiguration Time tf (s) Cost J (km2/s3)

1800 8.9028 × 10−7

3600 1.0536 × 10−7

7200 1.3778 × 10−8

18000 1.1181 × 10−9

36000 3.3696 × 10−10

3.5 Drawbacks of the BVP Formulation

Although this formulation works, as demonstrated above, there are some major draw-

backs associated with this type of methods that limit their use in space applications. Some

of these issues are as follows:

1. The exact initial and final states (i.e., both position and velocity) must be known for

each agent.
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2. The computation time increases with number of agents. Thus the problem does not

scale well for large formations.

3. The number of iterations required for convergence depends on the initial guess for the

solution. However, this guess also includes the co-states, which may not always be

intuitive.

4. The applied control is specific to the dynamical equation used in the formulation.

Thus, the presence of disturbances in a real scenario will result in errors.

Some of these challenges can be overcome using a closed-loop control. This has been

demonstrated in the next chapter.
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4. CLOSED-LOOP FORMULATION

In this chapter, the shape reorganization problem is presented as a distributed closed-loop

multi-agent control problem wherein each agent receives information from its neighbors and

combines these with its own. The control of each agent therefore takes into account the state

of the agent as well as the states of its immediate neighbors. The exact final state of each

agent does not need to be specified in this problem. It is sufficient to know only the relative

positions of the agents in the desired final shape. This formulation attempts to eliminate

some of the shortcomings of the TPBVP formulation in Chapter 3.

Since this formulation involves information sharing, a brief discussion of a few aspects of

graph theory is necessary in order to understand the problem.

4.1 Notes on Algebraic Graph Theory

For a directed graph (digraph) with n nodes, the set of possible edges E is of size n × n.

Ni denotes the set of neighbors of the ith node, comprising all the other nodes from which

the ith node receives information. The Laplacian of the communication graph is LG = [lij],

where each element is defined as

lij =


−1, j ∈ Ni

|Ni|, j = i
(4.1)

Here |Ni| denotes the number of neighbors of the ith node. All row-sums of LG become

zero, resulting in a zero eigenvalue, with the ones vector as its corresponding eigenvector.

An important theorem related to the graph Laplacian is the Gershgorin’s Circle Theorem,

which can be used to prove that for a digraph with n nodes, all non-zero eigenvalues of LG

have positive real part less than or equal to 2(n − 1).

A graph is said to have a rooted directed spanning tree if there is at least one vertex in

the graph from which there is a directed path to every other vertex in the graph.
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4.2 Closed-Loop Problem Formulation

With the above insight on graph theory, the problem may now be analyzed in a new

light. Similar to the TPBVP formulation, the concatenated state and input vectors have

been used to formulate this problem as well. Therefore the dynamical equation for a single

agent is given by the Clohessy-Wiltshire equations. For the whole formation, the dynamics

may be defined by an extension of the CW equations.

˙̃x = Af x̃ + Bf ũ (4.2)

Here, x̃ and ũ are the concatenated state and control, Af = In ⊗ A and Bf = In ⊗ B, A

and B are the system and control matrices from the state space representation of the CW

equations.

The target shape to which the formation shall reconfigure must be stated. A reference

configuration for this target may be represented as a vector h. For an n-agent formation,

this vector takes the following form.[ 16 ]

h =



h1

03×1

h2

03×1

...

hn

03×1



=


hi

03×1


i=1,2, ... ,n

=
[
h̄i

]
i=1,2, ... ,n

(4.3)

Here, hi contains the position of the ith vertex of the target shape in a moving coordinate

frame, i.e. hi = [xhi yhi zhi]T .
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When the agents are in a specific formation, conducting a coordinated activity, they must

reach a velocity consensus, which means that the relative velocity of any pair of agents in

the formation must be zero. Hence the velocities in the h vector are 0.

It is to be noted that h only specifies the relative positions and velocities of each space-

craft. Therefore, the actual final position of the ith spacecraft may not be hi. However,

upon convergence, the difference δxi − h̄i = [p 03×1]T , ∀i = 1, 2, . . . , n, where p is a 3 × 1

constant vector. So the formation converges to the exact shape that is defined by h, but not

necessarily the same coordinates. This is illustrated in Fig. (  4.1 ).

Figure 4.1. Target Shape

To combine the relative information of various agents, an ‘output’ term is defined, which

takes the information of all the neighbors of the agent. For the ith spacecraft, the information

is δxi − hi and the set of its neighbors is Ni. Therefore, the output term is
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yi =
∑
j∈Ni

(δxi − hi) − (δxj − hj) (4.4)

Let LG be the communication graph Laplacian for this formation and Lf = LG ⊗I6 (since

there are 6 states). Therefore, output equation for the entire formation is

y = Lf (x̃ − h) (4.5)

Let Kf be a feedback matrix of the form Kf = In ⊗ K let and ũr be a reference input,

such that the stacked control input is

ũ = Kfy − ũr = ũc − ũr (4.6)

=⇒ δui = Kyi − δur,i = δuc,i − δur,i (4.7)

Here ũc = Kfy = KfL(x̃ − h) may be termed as the consensus input. The reference

input ũr is included in order to ensure convergence to the desired shape.

For a single agent, the CW equations can now be written as

δẍ = 2ωδẏ + 3ω2δx + uc,x − ur,x (4.8a)

δÿ = −2ωδẋ + uc,y − ur,y (4.8b)

δz̈ = −ω2δz + uc,z − ur,z (4.8c)

If the reference input components are selected as ur,x = 3ω2δx, ur,y = 0, ur,x = −ω2δz,

then the acceleration becomes independent of the position when the consensus input is zero.

In this case, the reference input for a single agent can be represented as δur = Wδx, where
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W =



3ω2 0 0 0 0 0

0 0 0 0 0 0

0 0 −ω2 0 0 0


The dynamics of one agent can now be rewritten as

δẋ = Aδx + Bδuc (4.9)

where,

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 2ω 0

0 0 0 −2ω 0 0

0 0 0 0 0 0



B =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1



δx =



δx

δy

δz

δẋ

δẏ

δż



δuc =



uc,x

uc,y

uc,z



Let Wf = (In ⊗ W ), Af = (In ⊗ A) and Bf = (In ⊗ B). Therefore, the concatenated

reference input can be written as

ũr = Wf x̃ (4.10)

The dynamics of the formation as a whole can be represented as
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˙̃x = Af x̃ + Bf ũc

=⇒ ˙̃x = Af x̃ + BfKfy

=⇒ ˙̃x = Af x̃ + BfKfLf (x̃ − h)

=⇒ ˙̃x = (Af + BfKfL)x̃ − BfKfLfh (4.11)

This can also be written as

=⇒ ˙̃x = (Af + BfKfLf )x̃ − (Af + BfKfLf )h + Afh

=⇒ ˙̃x = (Af + BfKfLf )(x̃ − h) + Afh (4.12)

Equation (  4.12 ) represents the dynamics in terms of (x̃ − h), which may be regarded as

an error term. It is to be noted that for any agent,

Ah̄i =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 2ω 0

0 0 0 −2ω 0 0

0 0 0 0 0 0





xhi

yhi

zhi

0

0

0



=



0

0

0

0

0

0



Therefore,
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Afh =



A 0 . . . 0

0 A . . . 0

... ... . . . ...

0 0 . . . A





h̄1

h̄2

...

h̄n


=



Ah̄1

Ah̄2

...

Ah̄n


=



0

0

...

0


(4.13)

So, the effective system dynamics can be written as

˙̃x = (Af + BfKfLf )(x̃ − h) (4.14)

It has been proven by Ren et al. [ 17 ] that the above system converges to the formation

h if and only if (Af + BfKfLf ) has eigenvalues with non-positive real parts and the com-

munication graph G has a rooted directed spanning tree. This means that the Laplacian LG

must have zero as an eigenvalue with algebraic multiplicity 1.

From equation (  4.11 ) it can be concluded that the stability of the system depends on the

matrix Af + BfKfLf . Based on the way the Af , Bf , Kf and Lf matrices have been defined,

this can be reduced to the following form.

Af + BfKfLf = (In ⊗ A) + (In ⊗ B)(In ⊗ K)(LG ⊗ I6)

= (In ⊗ A) + (InInLG ⊗ BKI6)

= (In ⊗ A) + (LG ⊗ BK)

Let T be a non-singular matrix such that L̄G = T −1LGT is upper triangular. This means

that the diagonal elements of L̄G are the eigenvalues of LG, i.e. λ1, λ2, . . . , λn.
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(T −1 ⊗ I6)(Af + BfKfLf )(T ⊗ I6)

=(T −1 ⊗ I6)(In ⊗ A + LG ⊗ BK)(T ⊗ I6)

=(T −1 ⊗ I6)(In ⊗ A)(T ⊗ I6) + (T −1 ⊗ I6)(LG ⊗ BK)(T ⊗ I6)

=(T −1InT ⊗ I6AI6) + (T −1LGT ⊗ I6BKI6)

=(In ⊗ A) + (L̄G ⊗ BK)

Since , L̄G and LG have the same eigenvalues, the above matrix has the same eigenvalues

as (Af +BfKfL). Moreover, (In ⊗A+ L̄G ⊗BK) is a block upper triangular 6n×6n matrix

of the form

(In ⊗ A + L̄G ⊗ BK) =



(A + λ1BK) l̄12BK . . . l̄1nBK

0 (A + λ2BK) . . . l̄2nBK

... ... . . . ...

0 0 . . . (A + λnBK)


(4.15)

Therefore, the eigenvalues of (Af + BfKfL) are the eigenvalues of (A + λiBK) ∀i =

1, 2, . . . , n, where λi is the ith eigenvalue of LG. The system converges to the desired

formation if (A + λBK) is Hurwitz for all non-zero eigenvalues λ of LG. In other words, the

feedback K is a stabilizing feedback if and only if makes (A+λBK) Hurwitz for all non-zero

eigenvalues λ of LG.

4.3 Main Result: Stabilizing Feedback Gain

In order to stabilize the system and drive it to the desired formation, a feedback-based

controller has been designed. The feedback gain for this controller is a multiple of an LQR

feedback gain which is known to yield a stable system.
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4.3.1 Solution Approach

The dynamics of the ith agent in the formation is represented as δẋ = Aδx + Bδuc. Let

Klqr be the feedback gain that minimizes the linear quadratic cost

Jlqr =
∫ ∞

0

[
(δx)T Q(δx) + (δuc)T R(δuc)

]
dt (4.16)

Let R = I (identity) and Q = qI, where q < 1. It is to be noted that as the value of q

decreases, the problem tends to a fuel optimization problem.

The Klqr matrix is used as the feedback matrix for all agents in the formation. This

always results in a stable system matrix A + BKlqr that has eigenvalues with negative real

parts.

4.3.2 Theorem

Let the Hermitian matrix P be the stabilizing solution to the Algebraic Riccati equation,

PA + AP − PBR−1BP + Q = 0, Q and R being the weight matrices in the LQR cost in

equation ( 4.16 ). Therefore, the feedback gain Klqr is given by

Klqr = −R−1BP (4.17)

It is proposed that a multiple of the above gain matrix, γKlqr can stabilize the system

A + λB(γKlqr) when γ lies within a specific range.

Theorem: A + λBK is Hurwitz for all non-zero eigenvalues λ of LG if K = γKlqr,

and γ is greater than or equal to one-half of the reciprocal of the minimum real part of the

non-zero eigenvalues of LG.

4.3.3 Proof of Theorem

Kf = In ⊗ (γKlqr) is used as stabilizing feedback matrix for the whole formation. This

requires the matrix A + λB(γKlqr) to be Hurwitz for all non-zero eigenvalues λ of the

graph Laplacian LG. The goal is to find the values of γ that will ensure that this criterion

is satisfied. To obtain this value, a system is considered, the dynamics for which can be
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written as χ̇ = (A + λBK)χ = (A + λγBKlqr)χ = Āχ, where χ is the state vector for this

system and λ is a non-zero eigenvalue of LG.

Let a Lyapunov function V (χ(t)) be defined as

V (χ(t)) = χ′(t)Pχ(t) (4.18)

Taking derivative with respect to time yields

dV

dt
= χ′Pχ̇ + χ̇′Pχ (4.19)

= χ′P Āχ + χ′Ā′Pχ

= χ′P (A + λγBKlqr)χ + χ′(A + λγBKlqr)′Pχ

= χ′[PA + λγPBKlqr + A′P + λ̄γ(K ′
lqrB

′P )]χ

=⇒ dV

dt
= χ′[PA + λγPBKlqr + A′P + λ̄γ(PBKlqr)′]χ (4.20)

P solves the Algebraic Riccati Equation, PA + A′P − PBR−1B′P + Q = 0. Therefore,

PA + A′P = PBR−1B′P − Q = PBB′P − Q (since R = I).

From equation ( 4.17 ), PBKlqr = −PBR−1B′P = −PBIB′P = −PBB′P . So,

dV

dt
= χ′[PBB′P − Q + γ{λ(−PBB′P ) + λ̄(−PBB′P )′}]χ (4.21)

The following two matrix properties are required for the further analysis of the system.

Property 1: For any matrix M , the products M ′M and MM ′ are Hermitian positive

semi-definite.

Property 2: If U is a positive semi-definite matrix, then T ′UT is also positive semi-definite

for any matrix T .

Using the above-mentioned properties (taking M = B, U = BB′ and T = P = T ′) it

can be concluded that BB′ and PBB′P are Hermitian positive semi-definite. This means

(PBB′P )′ = PBB′P . Therefore,
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dV

dt
= χ′[PBB′P − Q − γ(λ + λ̄)PBB′P ]χ

= χ′[PBB′P − Q − 2γ Re(λ)PBB′P ]χ

= χ′[PBB′P{1 − 2γ Re(λ)}]χ − χ′(Q)χ

=⇒ dV

dt
= {1 − 2γ Re(λ)}χ′(PBB′P )χ − χ′(Q)χ (4.22)

For stability, the necessary condition is dV
dt

< 0. Therefore,

{1 − 2γ Re(λ)}χ′(PBB′P )χ − χ′(Q)χ < 0 (4.23)

For our system, Q = qI, 0 < q << 1, i.e. Q is positive definite and χ′Qχ > 0 =⇒

−χ′Qχ < 0. Moreover, PBB′P is positive semi-definite, so χ′PBB′Pχ ≥ 0. Therefore, the

system is guaranteed to be stable if

{1 − 2γ Re(λ)} ≤ 0 (4.24)

=⇒ γ ≥ 1
2 Re(λ) , ∀λ ∈ σ(LG), λ 6= 0 (4.25)

Here σ(LG) represents the spectrum of LG. Using Gershgorin’s Circle Theorem, it can

be derived that the non-zero eigenvalues of LG all have positive real parts. Let λi be the

non-zero eigenvalues of LG, such that Re(λ1) < Re(λ2) < · · · < Re(λn−1). As Re(λi) >

0 ∀i = 1, 2, . . . n − 1, the reciprocals are related as 1
Re(λ1) > 1

Re(λ2) > · · · > 1
Re λn−1

.

Therefore, for γ to satisfy the condition in equation ( 4.25 ), γ ≥ 1
2 Re λ1

, i.e.

γ ≥ 1
2 Re(λ)min

(4.26)

i.e. γ is greater than or equal to one-half of the reciprocal of the minimum real part of

the non-zero eigenvalues of LG.
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Therefore, when γ satisfies equation (  4.26 ), the matrix feedback matrix K = γKlqr makes

A + λBK Hurwitz for all nonzero eigenvalues λ of the graph Laplacian LG. The proposed

theorem is thus proved to be true.

4.4 Simulation

To demonstrate the effectiveness of the controller derived in this chapter, a simulation

has been conducted using MATLAB®, with the same parameters as the example in the

TPBVP formulation. The three-spacecraft formation is in a geostationary reference orbit

(ω = 2π rad/day ). The initial configuration is a straight line in the LVLH frame with a

separation distance of ds = 21.1205 km. The final configuration is an equilateral triangle of

side length ds. The target configuration is

h =



h̄1

h̄2

h̄3


where, h̄1 =



0

0

0

0

0

0



h̄2 =



−ds cos 60o

ds sin 60o

0

0

0

0



h̄3 =



ds cos 60o

ds sin 60o

0

0

0

0



A function is used to apply a bound on the control, such that its magnitude is less than

U = 1 × 10−4 km/s2. The communication graph is directed as Agent1 → Agent2 → Agent3,

making Agent1 the leader. The Laplacian is therefore,
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LG =



0 0 0

−1 1 0

0 −1 1


(4.27)

The eigenvalues of LG are 0, 1, 1. So, γ ≥ 0.5. A value of γ = 3 has been selected. In

this example, q = 10−9.

Using these values, the calculated feedback gain is

K =



−0.0000949 0.0000017 0 −0.0238563 0 0

−0.0000017 −0.0000949 0 0 −0.0238563 0

0 0 −0.0000949 0 0 −0.0238563


(4.28)

The system has been simulated using MATLAB® and Simulink®. The trajectory of the

agents and the control history have been plotted in Fig. ( 4.2 ) and Fig. ( 4.3 ) respectively. It

is observed that the reconfiguration procedure is successfully completed, thus validating the

controller derived above.

If the leader is given an initial velocity, the whole system moves in formation with respect

to the LVLH frame. This is shown in Fig. (  4.4 ) for the leader’s initial velocity (ẋ, ẏ, ż) =

(0.01, 0.03, 0) km/s, keeping all other parameters the same.

The next chapter demonstrates the potential practical applications of the shape reorga-

nization problem and the use of this controller in such applications.
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Figure 4.2. Trajectory of the Agents in the Closed-Loop Formulation

Figure 4.3. Control History in the Closed-Loop Formulation
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Figure 4.4. System Moving in Formation
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5. POTENTIAL APPLICATIONS

The applications of the shape reconfiguration problem are illustrated in this chapter. In

the last few years, several projects have been proposed worldwide that involve spacecraft

clusters, constellations, or formations. For most of these applications, the ability of spatial

reorientation can substantially expand their scope of operation. This capability can also im-

prove the overall reliability of the system by increasing component redundancy and providing

the opportunity for easy replacement in case of failure.

5.1 Extension of the Controller to the Nonlinear System

While the analysis and calculations in this thesis have been conducted for the linearized

system as defined by the Clohessy-Wiltshire equations, the real motion of objects in outer

space is nonlinear. The actual dynamics of a point mass in the two-body problem can be

expressed in terms of the LVLH coordinates as

ẍ = 2ωẏ + (ω2 − µ

r3 )x + ap,x + ux (5.1a)

ÿ = − 2ωẋ + (ω2 − µ

r3 )y + ap,y + uy (5.1b)

z̈ = − µ

r3 z + ap,z + uz (5.1c)

Here, ap denotes acceleration due to perturbations. A major source of perturbations

in the solar system is Solar Radiation Pressure (SRP). This occurs due to the exchange of

momentum between a surface and the photons present in sunlight. The acceleration due to

SRP may be defined [ 18 ] as follows.

aSRP = S (AU)2 CR ASRP v

m r2
s c

(5.2)

Here, S is the solar flux at one astronomical unit (generally taken as 1358 W/m2), AU

is one astronomical unit, i.e., 149,597,870.0 km, CR is the coefficient of reflectivity, ASRP is
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the cross sectional area incident to the sunline, v is the shadow factor (1 if in light, 0 if in

complete shadow), m is the mass of the spacecraft, rs is the distance of the spacecraft from

the sun, c is the speed of light. This acceleration is in the direction of the sun-spacecraft unit

vector and its component along any specific direction may be computed by the dot product

of the acceleration with the unit vector in that direction.

If the formation is in orbit around a planet, the oblateness of the planet gives rise to what

is known as J2 perturbations. In the inertial frame, the components of the accelerations due

to J2 perturbations for a geocentric orbit may be defined [ 19 ] as

aJxi = 3
2µJ2

R2
E

r5 rx

(
5
(

rz

r

)2
− 1

)
(5.3a)

aJyi = 3
2µJ2

R2
E

r5 ry

(
5
(

rz

r

)2
− 1

)
(5.3b)

aJzi = 3
2µJ2

R2
E

r5 rz

(
5
(

rz

r

)2
− 3

)
(5.3c)

Here rx, ry, rz are the inertial position coordinates. For the Earth, the constant J2 =

1.0826×10−3. RE is the radius of the Earth and r is the distance between the Earth and the

spacecraft. These accelerations may be translated to the LVLH coordinates by multiplying

with a transformation matrix.

The accelerations due to these perturbing forces in the x, y, z directions in equation ( 5.1 )

may then be represented as

ap,x = aSRP,x + aJ2,x

ap,y = aSRP,y + aJ2,y

ap,z = aSRP,z + aJ2,z

Other relevant types of perturbing forces may be included, based on the type of orbit

being simulated. For example, in Low Earth Orbit, atmospheric drag causes significant

deviations. Similarly, when the orbit comes close to another attracting body apart from the
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central body, there are perturbations due to secondary gravitational fields. These may be

modeled into the nonlinear equations of motion.

The states (position and velocity) of a spacecraft at a given time are obtained by inte-

grating equation (  5.1 ). The equilibrium state is then subtracted from these nonlinear states

and the closed-loop controller is applied to the difference. The control input thus derived is

fed into the nonlinear equations. This is schematically represented in Fig. (  5.1 ).

Figure 5.1. Control of the Nonlinear System

In the sections that follow, the above method has been applied to demonstrate some

potential applications of this work. All simulations have been done using MATLAB® and

Simulink®.

5.2 Fractionated Space Telescope

Space telescopes have helped humanity discover astounding realms in the universe and

understand enigmatic phenomena such as the birth of stars and formation of galaxies. The

most famous and versatile of them is the Hubble Space Telescope, which has been in operation

since 1990. Its successor, the James Webb Space Telescope is currently being prepared for

launch. Being massive structures, these telescopes result in a high cost of launch. Subsequent

maintenance also adds to the cost. To avoid these expenses, several organizations have
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proposed designs of fractionated telescopes. One such design by NASA JPL serves as the

motivation for this simulation.

5.2.1 Motivation

A fractionated space telescope has been proposed as a successor to the James Webb

Space Telescope by Lee et al. [  20 ]. The design comprises four separate units, namely

1. Primary Mirror

2. Sunshade

3. Optics and Instrumentation Unit (OIU)

4. Metrology Unit (MU)

Figure 5.2. Fractionated Telescope [ 20 ]

These are shown in Fig. ( 5.2 ). Each unit is an individual spacecraft, with its own

propulsion and attitude control system, and a specific function within the telescope system.

Since these are mechanically separate, the units can be launched individually at a low cost.

During operation, these units shall fly in formation to operate in tandem.
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Figure 5.3. Orientation of the Telescope

Figure 5.4. Telescope Communication Graph

5.2.2 Problem Setup

The four units in the space telescope must be aligned in a specific manner for proper

operation. The primary mirror collects and focuses light from celestial bodies, which is then

processed and corrected by the OIU and the MU. Therefore, these must be aligned in the

direction of the celestial body that is under observation. The sunshade protects the system

from the light and heat of the sun. Therefore, it must be oriented along the sunline. The

57



relative orientation of the telescope may be described using two angles, i.e., the pointing

angle α and sunline angle β. This has been illustrated in Fig (  5.3 ).

The telescope would frequently need to change orientation depending on the relative

location of the sun and the observation target. This will require shape reconfiguration

capability.

An example of this kind of reconfiguration has been simulated. Here the number of

agents, n = 4. The location of the primary mirror is the most sensitive. Therefore, the

communication graph that has been considered for this simulation has the primary mirror

as the leader, as shown in Fig (  5.4 ). At the initial time, the primary mirror coincides with

the equilibrium point with respect to which the CW dynamics are defined. The formation is

moving in a heliocentric orbit that passes through the Sun-Earth Lagrange Point 2 (SEL2).

As the central body is the Sun, J2 perturbations do not apply here. Additionally, as the

reference orbit is circular, the SRP acceleration acts along the LVLH x-direction at all times.

The SRP data has been taken from Lee et al. [  20 ].

Figure 5.5. Telescope Orientation Change, LVLH Frame
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Figure 5.6. Telescope Orientation Change, Inertial Frame

Figure 5.7. Initial and Final Configuration of the Telescope, Inertial Frame

The change of (α, β) orientation from (30o, 0o) to (−45o, 15o) has been simulated. The

separation distances mentioned in Fig. (  5.2 ) have been used.
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Figure 5.8. Evolution of (δx − h) over Time for Telescope Reconfiguration

Figure 5.9. Control History of the Nonlinear System

5.2.3 Simulation Results

The reorganization of the units of the telescope in the LVLH frame has been shown in

Fig. ( 5.5 ). The same procedure in the inertial frame is illustrated in Fig. (  5.6 ). The motion

of the agents along the orbit during the reconfiguration procedure is apparent here, but due

60



Figure 5.10. Control History of the Linearized System

Figure 5.11. Motion of the Telescope Units in Formation
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to the difference in length scale, the path of each agent is not clearly visible. Fig. (  5.7 ) shows

a zoomed-in view of the initial and final configurations of the telescope. The evolution of

(δx − h) over time has been plotted in Fig. (  5.8 ).

Fig. ( 5.9 ) shows the control history for the nonlinear system. For comparison, the control

history for the linearized system is shown in Fig. (  5.9 ). These look very similar, because in

comparison to the orbit radius, the length scale of the formation is very small. Moreover,

the accelerations due to perturbations are very small (of the order of 10−9 km/s2), because of

which the linearized system represents the actual nonlinear system very well. For the next

two examples, only the plots for the nonlinear system have been shown.

If the leader has an initial velocity of 0.01 km/s in the LVLH y-direction, the telescope

moves in formation as shown in Fig. (  5.11 ).

5.3 Reconfigurable Space Structures

Reconfigurable space structures (RSS) are fragmented structural components (scaffolds,

trusses, booms, panels etc.) that may be used as parts of a very large spacecraft, such as

a space station or observatory. These structural elements are themselves made of several

smaller spacecraft, such as NanoSats or CubeSats. This concept, though relatively new, has

gained traction in recent years. The use of RSS can make the the spacecraft an adaptive

structure, which has numerous advantages.

Figure 5.12. Reconfiguration of an RSS [ 21 ]

62



Figure 5.13. Communication Graph and Relative Initial Positions of the RSS
(Not to Scale)

5.3.1 Motivation

Lattice-based RSS has been proposed by Ochalek et al. [  22 ] for structural elements in

space. Nisser [  23 ] and a team at ESA [ 21 ] have proposed a concept for an RSS that is

actuated electromagnetically. Taking this an inspiration, an alternative process is proposed

for the reconfiguration, wherein the modules first separate (undock), then reconfigure in a

free state, and finally dock to form a solid structure. The simulation for this example has

been conducted for only the reconfiguration part, i.e., the simulation starts after the modules

have undocked and ends when the target shape in the free state has been reached.

5.3.2 Problem Setup

One of the reconfigurations illustrated in [  21 ] has been shown in Fig. (  5.12 ), where the

initial shape is a cube and the final shape is linear. The same reconfiguration has been

simulated here. A potential application of such reconfiguration may be a modular robotic

arm, which is folded into a cube for launch or storage purposes and extends to a linear

configuration when deployed.
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Figure 5.14. RSS Reconfiguration, LVLH Frame

For this simulation, the number of agents, n = 8. The initial configuration is a cube. The

communication is bidirectional between adjacent neighbors. The communication graph and

the relative positioning of the agents in the cubic form have been shown in Fig.( 5.13 ). The

final configuration is a straight line along the LVLH x-axis, which means that in the inertial

frame, it is oriented radially outward form the central body. The inter-module separation

distance in the initial and final configuration have been set as 200 m and 100 m respectively.

The equilibrium point is the center of the initial cubic configuration, through which the

geostationary reference orbit passes. Each agent in the formation is considered to be a 1U

CubeSat (10 cm × 10 cm × 10 cm) with a mass of 2 kg. Both SRP and J2 perturbations

have been considered in this model.
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Figure 5.15. RSS Reconfiguration, Inertial Frame

Figure 5.16. Initial and Final Configurations of the RSS, Inertial Frame
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Figure 5.17. Evolution of (δx − h) over Time for RSS Reconfiguration

Figure 5.18. Control History of the RSS Reconfiguration

5.3.3 Simulation Results

The trajectory of the agents in the LVLH frame and the Inertial frame have been shown in

Fig. (  5.14 ) and Fig. ( 5.15 ) respectively. As the separation difference is small, the trajectory

of the each agent is not distinguishable in the inertial frame. The zoomed-in plot in Fig.
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( 5.16 ) shows the initial and final configurations in the inertial frame. The plot of (δx − h) as

a function of time is shown in Fig. (  5.17 ). It is observed that the some of the components

of (δx − h) converge to a nonzero value, i.e., the value of the offset p is not zero. The

perturbations in this case can give rise to accelerations up to the order of 10−8 km/s2. The

control history is shown in Fig. (  5.18 ).

5.4 Imaging and Interferometry

Formation-based Interferometry has been a long-researched topic. The concept was ex-

tensively studied for NASA’s Terrestrial Planet Finder (2002 - 2011) [  24 ] and ESA’s Darwin

(1993 - 2007) [  25 ] projects, both of which were eventually cancelled. Despite this, the topic

still evokes interest and there have been several new proposals for similar projects, like the

StarLight mission, TandemX etc. Some aspects of this concept have also been tested in

orbit.

Figure 5.19. Artist’s Impression of ESA Darwin [ 25 ]

Space-based interferometry ideally requires collectors distributed over a large area. This

is difficult to do in a monolithic spacecraft, since it will increase its mass, size, and cost.
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Therefore, a distributed system is preferred, where the collectors and optics units are divided

among multiple spacecraft agents flying in formation.

5.4.1 Motivation

ESA’s Darwin project, with the goal of searching for Earth-like planets, was proposed

to have six peripheral collectors along with a central combiner and communication module.

An artistic rendition of this concept is shown in Fig. ( 5.19 ). The StarLight mission [  26 ]

and others of its kind were inspired by this concept. For the simulation that follows, the

number of peripheral agents have been expanded to 15 and the system goes from a linear

rest configuration to a circular configuration when activated.

5.4.2 Problem Setup

The number of agents, n = 16. The communication architecture is of a leader-follower

type, with the combiner as the leader. This was chosen since all the peripheral collectors

must lie on a circle centered at the collector, which receives, processes and transmits their

readings. The graph is represented in Fig. (  5.20 ). The initial configuration is a line on the

LVLH y-z plane, with a separation of 50 m between adjacent agents. The final configuration

is a circle of radius 400 m, parallel to the y-z plane. The mass of each agent is taken as 100

kg and the area as 1 m2. The equilibrium point coincides with the central combiner, which

lies on a geostationary orbit at the initial time.

Apart from imaging and interferometry, this type of reconfiguration can potentially be

used to change the inertia properties of adaptive space structures.

5.4.3 Simulation Results

The motion of the agents during the reconfiguration process has been represented in

LVLH coordinates in Fig. (  5.21 ). Fig. ( 5.22 ) shows the motion in the inertial frame. Due

to small separation distances, the trajectories of all the agents appear as single curve in the

inertial frame. The zoomed-in plot in Fig. ( 5.23 ) shows the initial and final configuration in

the inertial frame. The acceleration due to perturbations in this simulation are of the order
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Figure 5.20. Interferometry Communication Graph

Figure 5.21. Interferometer Reconfiguration, LVLH Frame
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of 10−9 km/s2 . The time history of (δx − h) has been plotted in Fig. (  5.24 ). The control

history is shown in Fig. (  5.25 ).

Figure 5.22. Interferometer Reconfiguration, Inertial Frame

Figure 5.23. Initial and Final Configurations of the Interferometer, Inertial Frame
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Figure 5.24. Evolution of (δx − h) over Time for Interferometer Reconfiguration

Figure 5.25. Control History of the Interferometer Reconfiguration
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6. CONCLUSIONS

This thesis was motivated by the vast potential of adaptive spacecraft structures and for-

mations and their scope of application in the future of space exploration, Earth observation,

defense, telecommunication etc. In this thesis, the nonlinear dynamics were first linearized

to derive a simple, manageable model. Two methods for driving a spacecraft formation to a

new shape or configuration were discussed, both using this linearized model.

The first method discussed is the open-loop two point boundary value formulation. The

initial configuration of the formation and the targeted state were used as the boundary

conditions. A cost function was defined in order to minimize fuel consumption of the system.

The Hamiltonian was derived and the Euler-Lagrange equations were solved to obtain a

control profile that theoretically drives the spacecraft to its target configuration. However,

in the practical world, this method is unlikely to be ideal.

Therefore, the derivation of a closed-loop control law was attempted. Information shar-

ing was incorporated in the model. The agents of the formation were considered to be

homogeneous from a control perspective for this problem.

6.1 Contribution of this Work

The contribution of this thesis is the derivation of a distributed closed-loop control law for

the shape reconfiguration of a set of spacecraft agents flying in formation, whose dynamics

are approximated by the Clohessy-Wiltshire system. Under this law, each agent utilizes its

own information, as well as data received from its neighbors, to determine its trajectory.

The multi-agent system is reformulated as a single-agent MIMO system. However, the

distributed nature of the system is preserved by properly defining the concatenated system

and its dynamics. The feedback gain matrix is dependent on the communication architecture

of the formation. An explicit expression to select a stabilizing control gain matrix has been

presented in this thesis. A range of gain matrices can be computed based on the dynamical

equations (i.e., system and control matrices) and the eigenvalues of the graph Laplacian.
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To validate the model, several applications have been demonstrated through simulations.

These examples have been selected from various types of applications, namely, fractionated

spacecraft, reconfigurable rigid structures, and free flying formations.

Some advantages of this formulation are listed here.

1. The control law translates well to the nonlinear system.

2. The method is scalable, as addition of more nodes does not significantly increase the

complexity.

3. This formulation can be easily applied to any two-body system, by simply changing

the µ value.

4. Being a feedback control system, it is capable of withstanding minor perturbing forces.

5. Exact final configuration need not be known; it is sufficient to specify only a target

shape. The system converges to this shape while achieving velocity consensus.

Future scope of this work lies in the incorporation of collision avoidance capability in the

model, improving the model of perturbing forces in the nonlinear system, and extension of

the work to a wider range of applications.
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A. SAMPLE CODES

Sample Codes for the TPBVP Section

1 %% TPBVP Code %%

2

3 c l c

4 c l e a r

5

6 g l o b a l w n A B Af Bf x0 x f

7

8 w=2∗ p i /(24∗3600) ; % Angular Ve l o c i t y

9 mu=398600.4418 ; % G r a v i t a t i o n a l Parameter o f Centra l Body

10 x_e=(mu/w^2) ^(1/3) ; % Equ i l ib r ium r a d i a l d i s t a n c e f o r c i r c u l a r

o r b i t

11 d_s=0.0005∗x_e ; % Separa t i on d i s tance , 0.05% o f o r b i t r ad i u s

12

13 n = 3 ;

14

15

16 A=[ 0 , 0 , 0 , 1 , 0 , 0 ;

17 0 , 0 , 0 , 0 , 1 , 0 ;

18 0 , 0 , 0 , 0 , 0 , 1 ;

19 3∗(w^2) ,0 , 0 , 0 , 2∗w, 0 ;

20 0 , 0 , 0 , −2∗w, 0 , 0 ;

21 0 , 0 , −w^2 , 0 , 0 , 0 ] ;

22

23 B=[ 0 , 0 , 0 ;

24 0 , 0 , 0 ;

25 0 , 0 , 0 ;

26 1 , 0 , 0 ;
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27 0 , 1 , 0 ;

28 0 , 0 , 1 ] ;

29

30 Af=kron ( eye (n ) ,A) ;

31 Bf=kron ( eye (n ) ,B) ;

32

33 x0 = [ 0 ; 0 ; 0 ; 0 ; 0 ; 0 ;

34 0 ; d_s ; 0 ; 0 ; 0 ; 0 ;

35 0 ; 2∗ d_s ; 0 ; 0 ; 0 ; 0 ] ;

36

37 lambda0=(1e −5)∗ ones ( s i z e ( x0 ) ) ;

38

39 x f = [ 0 ; 0 ; 0 ; 0 ; 0 ; 0 ;

40 −d_s∗ cosd (60 ) ; d_s∗ s ind (60 ) ; 0 ; 0 ; 0 ; 0 ;

41 d_s∗ cosd (60 ) ; d_s∗ s ind (60 ) ; 0 ; 0 ; 0 ; 0 ] ;

42

43 t f =1800;

44

45 IG=[x0 ’ , lambda0 ’ ] ;

46

47 s o l i n i t = bv p i n i t ( l i n s p a c e (0 , t f , 1 0000 ) , IG) ;

48 op t i on s = bvpset ( ’ S t a t s ’ , ’ on ’ , ’ RelTol ’ , 1e −6) ;

49 s o l = bvp4c (@BVP_ode, @BVP_bc, s o l i n i t , op t i on s ) ;

50 t = s o l . x ;

51 y = s o l . y ;

52 % y = [ x ’ , lambda ’ ] ’

53

54 s t a t e s=y ( 1 : 6 ∗ n , : ) ;

55 c o s t a t e s=y (6∗n+1:12∗n , : ) ;

56 u=−Bf ’ ∗ c o s t a t e s ;
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57

58 f o r k=1: l eng th ( t )

59

60 U_max=3e −5;

61 f o r j =1:3∗n

62 i f u ( j , k )<−U_max

63 u( j , k )=−U_max;

64 e l s e i f u ( j , k )>U_max

65 u( j , k )=U_max;

66 end

67 end

68

69 mag_u1( k )=norm (u ( 1 : 3 , k ) ) ;

70 mag_u2( k )=norm (u ( 4 : 6 , k ) ) ;

71 mag_u3( k )=norm (u ( 7 : 9 , k ) ) ;

72 uTu( k )=u ( : , k ) ’∗u ( : , k ) ;

73 end

74

75 J=0.5∗ t rapz ( t , uTu) ;

76

77 f o r i =0:n−1

78 rx ( i +1 , : )=s t a t e s (6∗ i +1 , : ) ;

79 ry ( i +1 , : )=s t a t e s (6∗ i +2 , : ) ;

80 end

81

82 plotBVP ( rx , ry )

83

84 plotBVPu ( t , u )

85

86 %% Funct ions %%
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87

88 f u n c t i o n dydt = BVP_ode( t , y )

89

90 g l o b a l n Af Bf

91

92 x = y ( 1 : 6 ∗ n ) ;

93 lambda = y (6∗n+1:12∗n ) ;

94 u = −Bf ’ ∗ lambda ;

95

96 U_max=3e −5;

97

98 f o r i =1: l eng th (u )

99 i f u ( i )<−U_max

100 u( i )=−U_max;

101 e l s e i f u ( i )>U_max

102 u( i )=U_max;

103 end

104 end

105

106 dydt = [ Af∗x + Bf∗u ;

107 −Af ’ ∗ lambda ] ;

108

109 end

110

111

112

113 f u n c t i o n r e s = BVP_bc( i n i t i a l _ c o n f , f i n a l _ c o n f )

114

115 g l o b a l n x0 x f

116
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117 r e s = [ i n i t i a l _ c o n f ( 1 : 6 ∗ n )−x0 ;

118 f i n a l _ c o n f ( 1 : 6 ∗ n )−xf ] ;

119

120 end
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Sample Codes for the Closed-Loop Section (Application: RSS)

Linearized System: Setup and Simulation

1 c l e a r

2 c l c

3

4 w=2∗ p i /(24∗3600) ; % Angular Ve l o c i t y

5 mu=398600.4418 ; % G r a v i t a t i o n a l Parameter o f Centra l Body

6 x_e=(mu/w^2) ^(1/3) ; % Equ i l ib r ium r a d i a l d i s t a n c e f o r c i r c u l a r

o r b i t

7 Xe=[x_e ; 0 ; 0 ; 0 ; 0 ; 0 ] ; % Equ i l ib r ium s t a t e f o r r e f e r e n c e po in t

8

9 n=8; % Number o f agent s

10 O=ones (n , 1 ) ;

11 Xef=kron (O, Xe) ; % Concatenated r e f e r e n c e s t a t e f o r fo rmat ion

12

13 % Graph Lap lac ian %

14 % 1 <−−> 2 <−−> . . . <−−> 7 <−−> 8 %

15 L=[1 , −1, 0 , 0 , 0 , 0 , 0 , 0 ;

16 −1, 2 , −1, 0 , 0 , 0 , 0 , 0 ;

17 0 , −1, 2 , −1, 0 , 0 , 0 , 0 ;

18 0 , 0 , −1, 2 , −1, 0 , 0 , 0 ;

19 0 , 0 , 0 , −1, 2 , −1, 0 , 0 ;

20 0 , 0 , 0 , 0 , −1, 2 , −1, 0 ;

21 0 , 0 , 0 , 0 , 0 , −1, 2 , −1;

22 0 , 0 , 0 , 0 , 0 , 0 , −1, 1 ] ;

23

24 % A and B f o r s i n g l e s p a c e c r a f t from CW Equat ions %

25 A=[ 0 , 0 , 0 , 1 , 0 , 0 ;

26 0 , 0 , 0 , 0 , 1 , 0 ;
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27 0 , 0 , 0 , 0 , 0 , 1 ;

28 3∗(w^2) ,0 , 0 , 0 , 2∗w, 0 ;

29 0 , 0 , 0 , −2∗w, 0 , 0 ;

30 0 , 0 , −w^2 , 0 , 0 , 0 ] ;

31

32 A_new=[ 0 , 0 , 0 , 1 , 0 , 0 ;

33 0 , 0 , 0 , 0 , 1 , 0 ;

34 0 , 0 , 0 , 0 , 0 , 1 ;

35 0 , 0 , 0 , 0 , 2∗w, 0 ;

36 0 , 0 , 0 , −2∗w, 0 , 0 ;

37 0 , 0 , 0 , 0 , 0 , 0 ] ;

38

39 B=[ 0 , 0 , 0 ;

40 0 , 0 , 0 ;

41 0 , 0 , 0 ;

42 1 , 0 , 0 ;

43 0 , 1 , 0 ;

44 0 , 0 , 1 ] ;

45

46 W=[3∗(w^2) , 0 , 0 , 0 , 2∗w, 0 ;

47 0 , 0 , 0 , −2∗w, 0 , 0 ;

48 0 , 0 , −w^2 , 0 , 0 , 0 ] ;

49

50 % LQR D e f i n i t i o n %

51 q=5e −10;

52 Q=q∗ eye (6 ) ;

53 R=eye (3 ) ;

54 K_int=−l q r (A,B,Q,R) ;

55 gamma=7.5 ;

56 K=gamma∗K_int ;
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57

58 % Concatenated Matr i c e s f o r the fo rmat ion %

59 Af=kron ( eye (n ) ,A) ;

60 Bf=kron ( eye (n ) ,B) ;

61 Lf=kron (L , eye ( 6 ) ) ;

62 Kf=kron ( eye (n ) ,K) ;

63 Wf=kron ( eye (n ) ,W) ;

64

65 % Change o f s t a t e s from d e l t a x to ( d e l t a x − h) %

66 Bf f =[Bf , eye (6∗n ) ] ;

67 Df=z e r o s ( s i z e ( B f f ) ) ;

68

69 % I n i t i a l and Target S t a t e s ( L i n e a r i z e d )%

70 de l t ax0 =[ −0.1; 0 . 1 ; 0 . 1 ; 0 ; 0 ; 0 ;

71 0 . 1 ; 0 . 1 ; 0 . 1 ; 0 ; 0 ; 0 ;

72 0 . 1 ; −0.1; 0 . 1 ; 0 ; 0 ; 0 ;

73 −0.1; −0.1; 0 . 1 ; 0 ; 0 ; 0 ;

74 −0.1; −0.1; −0.1; 0 ; 0 ; 0 ;

75 0 . 1 ; −0.1; −0.1; 0 ; 0 ; 0 ;

76 0 . 1 ; 0 . 1 ; −0.1; 0 ; 0 ; 0 ;

77 −0.1; 0 . 1 ; −0.1; 0 ; 0 ; 0 ] ;

78

79 h=[ 0 . 3 ; 0 ; 0 ; 0 ; 0 ; 0 ;

80 0 . 2 ; 0 ; 0 ; 0 ; 0 ; 0 ;

81 0 . 1 ; 0 ; 0 ; 0 ; 0 ; 0 ;

82 0 . 0 ; 0 ; 0 ; 0 ; 0 ; 0 ;

83 −0.1; 0 ; 0 ; 0 ; 0 ; 0 ;

84 −0.2; 0 ; 0 ; 0 ; 0 ; 0 ;

85 −0.3; 0 ; 0 ; 0 ; 0 ; 0 ;

86 −0.4; 0 ; 0 ; 0 ; 0 ; 0 ] ;
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Figure A.1. Simulink® Model for Linearized System

Nonlinear System: Integration and Simulation

1 f u n c t i o n [ sys , x0 , s t r , t s ] = SFunction_NL ( t , x , u , f l a g )

2

3 % t i s time

4 % x i s s t a t e

5 % u i s input

6 % f l a g i s a c a l l i n g argument used by Simul ink .

7 % The va lue o f f l a g dete rmines what Simul ink wants to be executed

.

8

9 g l o b a l n mu w

10

11 n=8;

12 w=2∗ p i /(24∗3600) ;
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13 mu=398600.4418 ;

14

15 sw i t ch f l a g

16

17 ca s e 0 % I n i t i a l i z a t i o n

18 [ sys , x0 , s t r , t s ]= m d l I n i t i a l i z e S i z e s ;

19

20 ca s e 1 % Compute D e r i v a t i v e s xdot

21 sy s=mdlDer iva t ive s ( t , x , u ) ;

22

23 ca s e 2 % Not needed f o r cont inuous −time

systems

24

25 ca s e 3 % Compute Output

26 sy s = mdlOutputs ( t , x , u ) ;

27

28 ca s e 4 % Not needed f o r cont inuous −time

systems

29

30 ca s e 9 % Not needed here

31

32 end

33

34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

35 % m d l I n i t i a l i z e S i z e s %

36 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

37 %

38 f u n c t i o n [ sys , x0 , s t r , t s ]= m d l I n i t i a l i z e S i z e s

39

40 g l o b a l n mu w
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41

42 % Create the s i z e s s t r u c t u r e %

43 s i z e s=s i m s i z e s ;

44 s i z e s . NumContStates = 6∗n ; % Set number o f cont inuous −time

s t a t e v a r i a b l e s

45 s i z e s . NumDiscStates = 0 ;

46 s i z e s . NumOutputs = 6∗n ; % Set number o f outputs

47 s i z e s . NumInputs = 3∗n ; % Set number o f i n t p u t s

48 s i z e s . DirFeedthrough = 0 ;

49 s i z e s . NumSampleTimes = 1 ; % Need at l e a s t one sample time

50 sy s = s i m s i z e s ( s i z e s ) ;

51

52 % Refe r ence Point %

53 x_e=(mu/w^2) ^(1/3) ;

54 Xe=[x_e ; 0 ; 0 ; 0 ; 0 ; 0 ] ;

55 O=ones (n , 1 ) ;

56 Xef=kron (O, Xe) ;

57

58 % I n i t i a l s t a t e s ( l i n e a r i z e d and n o n l i n e a r )

59 de l t ax0 =[ −0.1; 0 . 1 ; 0 . 1 ; 0 ; 0 ; 0 ;

60 0 . 1 ; 0 . 1 ; 0 . 1 ; 0 ; 0 ; 0 ;

61 0 . 1 ; −0.1; 0 . 1 ; 0 ; 0 ; 0 ;

62 −0.1; −0.1; 0 . 1 ; 0 ; 0 ; 0 ;

63 −0.1; −0.1; −0.1; 0 ; 0 ; 0 ;

64 0 . 1 ; −0.1; −0.1; 0 ; 0 ; 0 ;

65 0 . 1 ; 0 . 1 ; −0.1; 0 ; 0 ; 0 ;

66 −0.1; 0 . 1 ; −0.1; 0 ; 0 ; 0 ] ;

67 x0=Xef+de l t ax0 ;

68

69 s t r = [ ] ; % s t r i s a lways an empty matr ix
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70 t s =[0 0 ] ; % t s must be a matr ix o f at l e a s t

one row and two columns

71

72 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

73

74 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

75 % mdlDer iva t ive s

76 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

77 %

78 f u n c t i o n sys = mdlDer iva t ive s ( t , x , u )

79

80 % Compute xdot based on ( t , x , u ) and s e t i t equa l to sy s

81

82 g l o b a l n mu w

83

84 % Set the D e r i v a t i v e s %

85

86 f o r i =1:n

87 x_i=x (6∗ ( i −1)+1) ;

88 y_i=x (6∗ ( i −1)+2) ;

89 z_i=x (6∗ ( i −1)+3) ;

90 dx_i=x (6∗ ( i −1)+4) ;

91 dy_i=x (6∗ ( i −1)+5) ;

92 dz_i=x (6∗ ( i −1)+6) ;

93

94 ux_i=u (3∗ ( i −1)+1) ;

95 uy_i=u (3∗ ( i −1)+2) ;

96 uz_i=u (3∗ ( i −1)+3) ;

97

98 r=s q r t ( x_i^2+y_i^2+z_i ^2) ;
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99 k=mu/ r ^3 ;

100

101 % C a l c u l a t i o n f o r SRP A c c e l e r a t i o n %

102 area =0 . 1∗0 . 1 ;

103 m_sc=2;

104 a_SRP=0.4557∗(10^( −8) ) ∗ area /m_sc ;

105

106 % C a l c u l a t i o n f o r J2 A c c e l e r a t i o n %

107 TM1=[ cos (w∗ t ) , −s i n (w∗ t ) , 0 ;

108 s i n (w∗ t ) , cos (w∗ t ) , 0 ;

109 0 , 0 , 1 ] ; % Trans format ion Matrix ,

LVLH to I n e r t i a l

110

111 TM2=[ cos (w∗ t ) , s i n (w∗ t ) , 0 ;

112 −s i n (w∗ t ) , cos (w∗ t ) , 0 ;

113 0 , 0 , 1 ] ; % Trans format ion Matrix ,

I n e r t i a l to LVLH

114

115 J2 =1.0826∗10^( −3) ;

116 C=1.5∗mu∗J2 ∗(6378^2) /( r ^5) ;

117

118 xyz_in=TM1∗ [ x_i ; y_i ; z_i ] ;

119 j x=C∗xyz_in (1 ) ∗ (5∗ ( xyz_in (3 ) / r ) ^2−1) ;

120 j y=C∗xyz_in (2 ) ∗ (5∗ ( xyz_in (3 ) / r ) ^2−1) ;

121 j z=C∗xyz_in (3 ) ∗ (5∗ ( xyz_in (3 ) / r ) ^2−3) ;

122

123 J2_r=TM2∗ [ jx ; j y ; j z ] ; % Convers ion from I n e r t i a l to

Rotat ing Frame

124 a_J2_x=J2_r (1 ) ;

125 a_J2_y=J2_r (2 ) ;
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126 a_J2_z=J2_r (3 ) ;

127

128 % D e r i v a t i v e s %

129 ddx_i=2∗w∗dy_i+(w^2−k ) ∗x_i+ux_i+a_SRP∗ abs ( cos (w∗ t /2) )+a_J2_x ;

130 ddy_i=−2∗w∗dx_i+(w^2−k ) ∗y_i+uy_i+a_SRP∗ abs ( s i n (w∗ t /2) )+a_J2_y

;

131 ddz_i=−k∗ z_i+uz_i+a_J2_z ;

132

133 sy s (6∗ ( i −1)+1) = dx_i ;

134 sy s (6∗ ( i −1)+2) = dy_i ;

135 sy s (6∗ ( i −1)+3) = dz_i ;

136 sy s (6∗ ( i −1)+4) = ddx_i ;

137 sy s (6∗ ( i −1)+5) = ddy_i ;

138 sy s (6∗ ( i −1)+6) = ddz_i ;

139 end

140

141 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

142

143 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

144 % mdlOutput

145 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

146 %

147 f u n c t i o n sys = mdlOutputs ( t , x , u )

148

149 % Compute output based on ( t , x , u ) and s e t i t equa l to sy s

150

151 g l o b a l n

152

153 f o r i =1:n

154 sy s (6∗ ( i −1)+1) = x (6∗ ( i −1)+1) ; %x_i
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155 sy s (6∗ ( i −1)+2) = x (6∗ ( i −1)+2) ; %y_i

156 sy s (6∗ ( i −1)+3) = x (6∗ ( i −1)+3) ; %z_i

157 sy s (6∗ ( i −1)+4) = x (6∗ ( i −1)+4) ; %dx_i

158 sy s (6∗ ( i −1)+5) = x (6∗ ( i −1)+5) ; %dy_i

159 sy s (6∗ ( i −1)+6) = x (6∗ ( i −1)+6) ; %dz_i

160 end

Figure A.2. Simulink® Model for Nonlinear System
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