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ABSTRACT

Estimating word probabilities in context is a fundamental mechanism underlying the training of

neural network-based language processing models. Models pre-trained using this mechanism tend

to learn task independent representations that exhibit a variety of semantic regularities that are

desirable for language processing. While prediction based tasks have become an important com-

ponent for these models, much is unknown about what kinds of information the models draw from

context to inform word probabilities. The present work aims to advance the understanding of word

prediction models by integrating perspectives from the psycholinguistic phenomenon of semantic

priming, and presents a case study analyzing the lexical properties of the pretrained BERT model.

Using stimuli that cause priming in humans, this thesis relates BERT’s sensitivity towards lexi-

cal cues with predictive contextual constraints and finer-grained lexical relations. To augment the

empirical methodology utilized to behaviorally analyze BERT, this thesis draws on the knowledge-

rich paradigm of Ontological Semantics and fuzzy-inferences supported by its practical realization,

the Ontological Semantics Technology, to qualitatively relate BERT’s predictive mechanisms to

meaning interpretation in context. The findings establish the importance of considering predictive

constraint effects of context in studies that behaviorally analyze language processing models, and

highlight possible parallels with human processing.
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CHAPTER 1. INTRODUCTION

The field of natural language processing (NLP) has seen significant progress in the past decade.

This progress is evident not only in highly targeted applications such as machine translation for

high-resource languages, but also in applications that evaluate general purpose language under-

standing (Wang et al., 2019, 2018). Computational advances have been led in-part by the emer-

gence of highly parameterized neural networks, which are trained on large amounts of text using

“pretraining” (Howard & Ruder, 2018), a process that typically involves estimating word probabil-

ities in context. Improvements made to neural network-based models, either by altering underlying

architectures or by training on larger texts, often result in increased complexities, thereby coming

at the cost of our understanding of the system. For instance, GPT-3 (Brown et al., 2020), the latest

in the line of large neural network models, was trained on ≈ 570GB of heterogeneous text and

contains a total of 175 billion parameters. This trade-off between complexity and understanding in

neural network-based language processing points to the need for principled paradigms that analyze

and interpret such models — what is it that they learn? This thesis presents a case study on one

such pretrained model, BERT (Devlin et al., 2019), by developing methodology inspired from the

psycholinguistic phenomenon of semantic priming (McNamara, 2005; Meyer & Schvaneveldt,

1971).

1.1 Pretrained Language Models and their Analyses

A popular method of pretraining language processing neural networks is by using the language

model (LM) objective — estimation of word probabilities in context. A neural language model

treats sentences as sequences of words, and computes the following measure:

T∏
t=0

P (wt | ht,Θt), (1.1)

where wt is the tth word in the sequence, and ht is the hidden state of the model which represents

the sequence context at time-step t, and Θt is the collection of learnable parameters of the model.

The principle behind such a process is that by constantly updating Θ in optimizing the estimation

10



of word probabilities in context, the models produce representations for tokens that can then be

“fine-tuned” for specific tasks. These representations are often called word embeddings, or word

vectors. Pretraining using the LM objective is advantageous since it affords supervision to the

models without any labelled data — the input and the labels are both provided by the same source,

the text. That is, pretraining facilitates self-supervised learning.

As the paradigm in state-of-the-art NLP modeling shifts towards using LM-based pretrain-

ing, it has become increasingly relevant to fundamentally understand the kinds of linguistic com-

petencies that word prediction in context confers upon such models (and what it does not). This

paradigm shift has given birth to an entire research program (Alishahi, Chrupała, & Linzen, 2019)

within NLP that aims to decipher how and whether linguistic knowledge is organized in such mod-

els, and what makes them perform impressively well on a variety of tasks. In light of the inherent

processes that comprise of training LMs, this thesis divides the general class of LM analyses meth-

ods into two broad distinctions: the first class of methods evaluate LMs by providing stimuli and

testing on word prediction in context, these are termed as “behavioral” analyses in this thesis.

For instance, what is the probability of the word, are in example (1.1) and is it greater than the

probability of the word, is:

(1.1) The keys to the cabinet .

The second class of methods aim to recover linguistic properties from pretrained LMs by using

supervised classifiers (known as probes) that operate over word representations formed in these

models. In this thesis, these methods are collectively referred under “diagnostic classification,”

or probing. Consider the example (1.2), where 1.2a is the surface form of the sentence, and 1.2b

is the sequence of part of speech (POS) tags corresponding to the sentence’s words. If a probing

classifier that is trained to recover POS tags of a given sequence successfully predicts the sequence

(1.2b) when provided the sentence (1.2a), then it indicates that the pretrained LM encodes POS

information1.

(1.2) a. The dog chased the cat.

b. DET NN VBD DET NN

1the debate about whether the information is encoded completely in the LM or whether the probe learns this informa-
tion is further explored in (Hewitt & Liang, 2019) and is out of scope for this thesis.
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In assessing targeted linguistic phenomena, the class of behavioral analysis methods has

three prima facie advantages: (1) it allows the testing of LMs in their natural environment, without

involving any task specific fine-tuning; (2) it helps ask targeted questions by directly borrowing

carefully constructed items in related research fields such as cognitive science, psycholinguis-

tics, or theoretical linguistics; and (3) it provides empirical evidence whether LM pretraining is

well-suited for learning the specific linguistic phenomena that is being analyzed — for instance,

Ettinger (2020) shows BERT’s strong insensitivity to negated sentences, suggesting that LM based

pretraining is not cut out for learning message level inferences such as negation.

Although the literature directly focused on the analysis of neural networks has advanced

the understanding of the linguistic capacities that pretraining confers upon the models, much of

it is dominated by the testing of syntactic phenomena. Indeed, syntactic analyses provide useful

methodological frameworks to survey the linguistic structures learned by LMs, which represent

sentences as sequences, and do not induce any hierarchical knowledge (for example, the tree-

structure representation of English grammar). However, most natural language understanding tasks

require competence in the sub-field of linguistics that is responsible for the meaning of everything

in language that has meaning (Raskin & Weiser, 1987), semantics. For instance, in example (1.3),

if a model trained to perform the task of Natural Language Inference (NLI) (Bowman, Angeli,

Potts, & Manning, 2015) or Recognizing Textual Entailment (RTE) (Dagan, Roth, Sammons, &

Zanzotto, 2013) predicts that (1.3a) logically entails (1.3b), then the model should, in theory, have

learnt the lexical association between bird and robin, i.e., a robin is a type of bird.

(1.3) a. A robin is flying.

b. A bird is flying.

To specifically interpret whether or not linguistic meaning manifests in pretrained LMs

requires evaluation methodologies that ask and test a wide variety of questions pertaining to se-

mantic capacities. This thesis contributes to the development of such methodologies by providing

an account of how lexical associations (such as the one described in example (1.3)) are leveraged

by one such pretrained model, BERT (Devlin et al., 2019) to inform word probabilities in context.

For example, if a word like airplane is prepended to (1.4a), to what extent does this increase the

BERT’s probability for the word pilot in the blank position in (1.4b)?

12



(1.4) a. I want to become a .

b. airplane. I want to become a .

This question is particularly relevant because human brains show a robust phenomenon of

semantic priming (McNamara, 2005), in which the presence of a word such as “airplane” will

give rise to faster reactions to a related word like “pilot”, than when unrelated word like “table” is

present. Empirical observations about priming in humans reveal the organization of lexical knowl-

edge in human brains, in the form of strength of association between lexical items, as reflected

by the magnitude of the speed-up of their reaction times. This thesis explores whether the same

lexical relations that show priming in humans will also be utilized by BERT to influence word pre-

dictions in context. By analogy, doing so will reveal potential insights about BERT’s organization

of semantic content and how it is used when it performs its primary task (on which it was trained

on) of predicting words in context. Priming behavior in BERT, then, is defined as an increase in

the model’s expectation for a target word (or a lack thereof) in a given sentence context in the

presence of a semantically related word as compared to an unrelated one. In casting BERT’s prim-

ing as a test of lexical sensitivities, it is important to take into account the predictive bias of the

context that exists independent of the prime words. This predictive bias manifests within human

psycholinguistic experiments in the form of the “constraint” of a sentence (Federmeier & Kutas,

1999; Schwanenflugel & LaCount, 1988) and corresponds to how predictable a sentence with a

missing word is. For instance, the missing word in the sentence, “John kept his gym clothes in

the ” is easier to predict than in “In the valley, there were three small ” (Schwanenflugel,

1991). Taking this into account, this thesis focuses on the lexical sensitivities of BERT’s word

prediction in context capabilities based on how it is modulated by the predictive constraints of the

context. Augmenting the fundamentally empirical endeavor, this thesis borrows from the school of

Ontological Semantics (Nirenburg & Raskin, 2004), a meaning-first approach to knowledge repre-

sentation and reasoning, and presents a qualitative account of the semantic constraints imposed by

the sentence context on the missing word. This qualitative analysis is primarily conducted by us-

ing the fuzzy-inferences (Zadeh, 1965) facilitated by the Ontological Semantic Technology (OST)

(Hempelmann, Taylor, & Raskin, 2010; Raskin, Hempelmann, & Taylor, 2010; J. M. Taylor,

Hempelmann, & Raskin, 2010; J. M. Taylor & Raskin, 2010, 2016), the latest practical realization

of Ontological Semantics.
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In summary, this thesis introduces a methodology for fine-grained exploration of lexical cue

sensitivity in language models, grounded in lexical relation phenomena observed in humans during

semantic priming. It further considers contextual constraints of cloze-contexts (W. L. Taylor,

1953) by deconstructing the process of predicting a missing word using fuzzy inferences facilitated

by OST, a knowledge representation and reasoning system that is purely meaning-based.

1.2 Research Questions

This thesis addresses the following research questions:

1. To what extent does BERT show a sensitivity to lexical cues that cause priming in Humans?

2. Does BERT show similar patterns of lexical sensitivities across different lexical relations

between words?

3. How does BERT’s lexical sensitivity in context get affected by constraints imposed by the

input context?

1.3 Assumptions

The assumptions of this thesis are primarily related to the datasets and the model investigated in

the methodology chapter (Chapter 3). Briefly, this thesis makes the following assumptions:

• Priming measures such as response times of participants provide a behavioral account of

how humans represent lexical relations.

• The Semantic Priming Project (Hutchison, Balota, Neely, Cortese, Cohen-Shikora, et al.,

2013), a dataset described in Chapter 3, comprehensively accounts for lexical relations in

the English language.

• The BERT model (Devlin et al., 2019) is representative of the family of models that utilize

the masked language modelling procedure.

14



1.4 Scope and Limitations

The work presented in subsequent chapters of this thesis investigates how a specific language pro-

cessing model, BERT, adapts from lexical cues in context to inform its word probabilities. The

analyses rely heavily on the use of lexical stimuli from semantic priming that elicit priming in

humans to inform how lexical relations are utilized during word prediction in context. However,

this study only analogously compares the priming behavior of BERT to that of humans. Since the

structure of the experiments is formulated differently than standard priming setups, the methodol-

ogy presented in this thesis cannot simulate or model human priming behavior, and does not offer

a cognitive account of semantic priming.

Pretraining by the LM-based objectives has only recently become standard practice in the

field of NLP (Howard & Ruder, 2018). Leading this charge was the BERT model (Devlin et al.,

2019), which is a bidirectional transformer model, optimized in part to use context information to

predict masked words. Due to the underlying architecture of the BERT model, the specific text

stimuli presented in this work are unable to address the lexical of interest in unidirectional, incre-

mental models in which the context always appears to the left of the missing token. This thesis also

only considers the lexical sensitivities of word prediction in context for BERT trained on English

data, which casts doubt about the generalization of the results across different languages. However,

the described methodology is flexible enough to be extended to all language models and languages

for which enough representative data is available. This will require a careful reconstruction of the

stimuli — sampled from a large corpora in the desired language — which places the entire con-

text to the left of the missing token. Finally, the empirical methodology presented in this work is

complimented by a qualitative reinterpretation of the BERT’s training task, using a meaning-first

approach to knowledge representation. However, this account is constrained to only qualitatively

providing the information needed to perform word prediction in context, and while it presents a

weak quantitative notion using fuzzy-sets, it lacks robust quantitative summaries, mainly due to the

absence of standard data-driven metrics in the field of ontological semantics (Nirenburg & Raskin,

2004).
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1.5 Thesis Contributions

This thesis investigates pretrained language processing models that are trained by estimating word

probabilities in context and sheds light on the lexical dynamics that occur in these models by pre-

senting a case-study on one such model, BERT. By borrowing from the phenomenon of semantic

priming, and by considering the nature of sentence contexts in terms of semantic constraints, this

thesis builds on a growing precedent of using psycholinguistics-inspired tests which focus on un-

derlying mechanisms and linguistic competence of neural network based models, and how closely

they approximate language processing phenomena observed in humans. This thesis also provides

a qualitative account of contextual constraints and model behavior using a meaning-first approach

to representing knowledge. The resulting original contributions are:

1. A methodology for fine-grained exploration of lexical cue sensitivity in word prediction

models, grounded in lexical relation phenomena observed in humans. This analytical frame-

work empirically establishes the importance of considering contextual-semantic constraints

that affect analyses that behaviorally probe predictive models. Dissemination – (Misra, Et-

tinger, & Rayz, 2020a, 2020b):

• Misra, K., Ettinger A., Rayz, J.T. (2020). Exploring Lexical Relations in BERT using

Semantic Priming. In 42nd Annual Virtual Meeting of the Cognitive Science Society.

(Poster Presentation).

• Misra, K., Ettinger A., Rayz, J.T. (2020). Exploring BERT’s Sensitivity to Lexical Cues

using Tests from Semantic Priming. Findings of ACL: EMNLP 2020. (long paper)

2. A qualitative analysis of the BERT’s word prediction in context capability that is cast as

“guessing the meaning of an unknown word in context,” a task introduced in a series of

papers in the school of Ontological Semantics, a meaning-first approach to represent knowl-

edge. This work analyzes BERT’s behavior by devising a mechanism that leverages fuzzy

inference through Ontological Semantic Technology (OST), and descriptively deconstructs

sentence stimuli into event representations which provide an exposition of the various se-

mantic constraints posed by the context. Dissemination:
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• Misra, K., & Rayz, J.T. (2020). An Approximate Perspective on Word Prediction in

Context: Ontological Semantics meets BERT. In: 2020 Annual Conference of the North

American Fuzzy Information Processing Society (NAFIPS). (Regular Paper; forthcom-

ing)

1.6 Organization of this Thesis

The current chapter establishes the primary motivation underlying the work presented in this thesis

by situating it in a growing precedent of formulating principled evaluation methods that target

specific phenomena captured by neural networks, which are largely black-box in nature.

Chapter 2 constitutes a synthesis of prior work relevant to the justification and motivation

of the proposed analysis. It first describes the framework of language modelling, which constitutes

the core task of pretrained language processing models. This section covers the broad spectrum

of language models starting from count based n-gram models to neural network based predictive

language models. The next two sections review the impacts of pretraining and introduce the BERT

architecture, the main subject of the experiments. It then summarizes the landscape of analysis

methods by distinguishing them into two main types – probing and behavioral analysis and dis-

cusses their findings about language models. Next, it briefly introduces Ontological Semantics

and OST along with a concise discussion about fuzzy sets and how fuzziness manifests within

OST. Finally, the chapter summarizes the cognitive phenomena of semantic priming and the con-

textual effects in sentence processing, which form the primary underpinnings of the core set of

methodological developments in this thesis.

Chapter 3 establishes the methodological contributions of this thesis. It first discusses the

nature of the stimuli used in terms of its similarities to stimuli used in cloze tasks (W. L. Taylor,

1953) and the kinds of knowledge one can extract from them. Next, it outlines the analysis of the

stimuli from the perspective of Ontological Semantics, which qualitatively describe the semantic

constraint imposed within them. This chapter then delves into the core set of methodological con-

siderations for extending semantic priming to BERT, the computation of predictive constraint and

its relation to information theory, and the various measures used in subsequent analyses. Finally,

it describes the experiments performed to answer the research questions presented in Chapter 1.
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Chapter 4 presents the results of the empirical experiments outlined in the Chapter 3, their

interpretation in the context of the model, and an investigation into important anomalous patterns.

It is concluded by a detailed discussion and implication of the empirical findings. Chapter 5 con-

cludes the thesis and recommends future pathways of research.
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CHAPTER 2. BACKGROUND

2.1 Language Modeling

How does one distinguish “good” sentences from bad ones? A native speaker of English can prob-

ably tell you that “The cat sat on the mat.” is an acceptable English sentence while “The cat mat on

the sat.” is not. The acceptability of a sentence can be characterized based on whether it is mean-

ingful, grammatical, and able to communicate some sort of message. These ideas are extremely

relevant for the field of NLP and artificial intelligence as a whole. For instance, consider an “intel-

ligent” system that has to process Inspector Jacques Clouseau’s dialogue about buying hamburgers

(shown in Figure 2.1), due to the noise in the speaker’s verbal input, the system maintains several

hypotheses about what he is trying to say — “I would like to buy damn burger” vs “I would like

to buy a hamburger.” To successfully decode the speaker’s verbal input, the system will have to

rely on a mechanism that ranks these potential hypotheses and selects the most plausible one out

of those. The same case could be applied in machine translation, where due to the presence of am-

biguity, a sentence can potentially mean multiple closely related (or hilariously different) things.

These examples motivate the notion of a mechanism in such intelligent systems that assesses the

plausibility of sentences. This section describes one such mechanism that has occupied a central

role in the current methodological paradigm within NLP (Eisenstein, 2019; Goldberg, 2017;

Jurafsky & Martin, 2020): Language Models.

Automatic Speech
Recognizer

I	would	like	to	buy	a	hamburger.
...
...

I	would	like	to	buy	damn	burger.

0.90
...
...
0.05I would like to buy a damburger

Hypotheses Plausibility

Figure 2.1. A hypothetical scenario where sentence plausibility could play a major
role. Screenshot of the dialogue scene taken from

https://www.youtube.com/watch?v=Z6oeAdemFZw
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Language models formalize the intuition of assigning probabilities to sentences in a natural

language. Given a sequence of tokens, s = (w1, w2, ..., wN)1, a language model estimates the

following probability:

P (s) = P (w1, w2, ..., wN). (2.1)

The computation of such a probability assumes a discrete set of tokens belonging to the language,

often known as the language’s vocabulary, V , such that ∀i, wi ∈ V . For instance, the vocabulary of

the English language can be represented as the set: VENGLISH = {aardvark, ...,Zyzzyva}. Using the

chain rule of probability, Equation 2.1 can be rewritten as:

P (S) = P (w1)× P (w2 | w1)× P (w3 | w1, w2)× ...× P (wN | wN−11 ) (2.2)

= P (w1)
N∏
i=1

P (wi | wi−11 ). (2.3)

The quality of a language model can be assessed using two broad classes of evaluation

methods. The first class of methods are collectively referred to as extrinsic methods, wherein the

language model is evaluated as a component of a system for its effectiveness in a higher-level task.

For instance, one could measure the change in translation quality of a machine translation system

when language model A is replaced by language model B. The second class of evaluation methods

are known as intrinsic and, as the name suggests, measure quality of language models in their

natural setting, independent of any external application. The dominant approach to assess language

models intrinsically is to measure a model’s perplexity over unseen/new language constructions.

A typical approach to train or build language models is to first select a corpus that is repre-

sentative of the language for which the model is being constructed—this is known as the training

set. The language modeler then defines and estimates the desired probabilities such that given a

sentence as an input, the language model produces its estimated probability. If the language model

is indeed intrinsically of good quality, it should assign high probabilities to sentences that are valid

but aren’t observed in the training set. That is, it should generalize well to unseen instances present

in the testing set. The perplexity measure on the test set operationalizes the notion of a language

1for brevity, let the symbol wk
j denote {wj , wj+1, ..., wk}. Hence, s can be represented as wN

1 .

20



model’s generalization power. Formally, let S be the testing set, consisting of unseen sentences

{s1, s2, ..., sm} and containing a total of M words. A robust language model should maximize the

overall probability of the test set, P (S):

P (S) =
m∏
i=1

P (si), (2.4)

The perplexity of a language model LM is then defined as the inverse probability of the test set,

normalized by the number of words, M :

ppl =

(
m∏
i=1

P (si)

)− 1
M

(2.5)

log2(ppl) = − 1

M
log2

m∏
i=1

P (si) (2.6)

= − 1

M

m∑
i=1

log2 P (si) (2.7)

ppl = 2

−

(
1

M

m∑
i=1

log2 P (si)

)
(2.8)

Therefore, more robust language models produce lower perplexity values—are less “perplexed”—

in encountering unseen sentences. It is important to note that the perplexity measure is strongly

tied to the corpus that the language modeler/researcher has chosen to be the training and testing

set, and so two language models can only be faithfully compared when they are trained on the

same corpus (Eisenstein, 2019; Jurafsky & Martin, 2020). Furthermore, if the corpus is not a

very good representative collection of sentences in the given language, then it is expected that the

language model will not generalize well to test sets.

2.1.1 n-gram Language Models

As represented in equation (2.2), language models estimate the probability of a word in

context by conditioning on all words prior to the given word. Conditioning on long sequences

requires storing probabilities for every possible sequence of tokens from the vocabulary, making
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the training of language models a difficult combinatorial problem. n-gram language models allevi-

ate this computational issue by making the markov assumption. A k-th order markov assumption

assumes that the next word in a sequence/sentence only depends on the k previous words that

occur before it (Goldberg, 2017). The task of language modeling under this assumption now re-

quires approximating P (wi | wi−11 ) with P (wi | wi−1i−k), thus reducing the number of parameters

for estimating the probability for any given sequence. This gives rise to n-gram language models,

which compute maximum likelihood estimates (MLE) of probabilities derived from corpus counts

of sequences.

An n-gram model follows the (n− 1)-order markov assumption, where the MLE estimate

is given as:

P̂MLE(wi | wi−1i−(n−1)) =
n(wii−(n−1))

n(wi−1i−(n−1))
. (2.9)

At n = 1 we have a unigram model, at n = 2 we have a bigram model, at n = 3 we have a trigram

model, at n = 4 we have a “four”-gram, and so on. The unigram model makes an extreme assump-

tion of not conditioning a word on any of its preceding words in a sequence, i.e., the probability

of a word in a sequence is independent of any other word prior to it. Unsurprisingly, this results

in absurd (non-) sentences such as “<s> the the the . . . ” getting extremely high probabilities,

since the word the is the most frequent word in most English corpora. This strong independence

assumption is weakened in higher order n-gram models, which compute and store more informa-

tion about word sequences. While n-gram models make it straightforward and easy to model word

sequences, they have several shortcomings, summarized below:

• Failure to model long-range dependencies: n-gram models only estimate the probabilities

of limited sequential histories. This results in a failure to model crucial linguistic phenom-

ena. As an example, a trigram model will fail to show subject-verb-agreement (Linzen,

Dupoux, & Goldberg, 2016) in sequences such as “The keys to the cabinet are...,” prefer-

ring is as opposed to are as the completion due to the trigram the cabinet is being more

frequent than the cabinet are An obvious solution to this is to increase the value of n to

generalize to longer sequences, however this leads to the next problem:
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• Sparsity and Memory based problems: n-gram models estimate probabilities using counts

from a fixed corpus. Therefore, if an n-gram never occurs in the training set, then it is

assigned a probability of 0. Given a vocabulary V of size v, there are vn possible n-grams,

and most of them tend to never occur in the corpus, leading to a greater number of 0 counts

in the model’s parameters. Furthermore, as n increases, the number of possible n-grams

increases v-fold, causing storage problems.

• Failure to show semantic generalization: n-gram language models are trained by com-

puting the relative frequencies of n-length sequences observed in the training corpus, thus

maximizing the probability of the training set. This is in essence of the principle of max-

imum likelihood estimation. However, this method of training language models does not

allow them to generalize across plausible sequences. For instance, i.e. if the bigrams blue

cup and red cup are observed in the training set, and orange cup is not, then the model assigns

0 probability to it regardless of it being a semantically plausible occurrence, thus limiting the

model’s ability to learn semantic similarities beyond those represented in the corpus.

A number of solutions have been proposed to alleviate n-gram models of their aforementioned

issues. These techniques range from smoothing—the addition of a small amount of noise to the

count of each word in the vocabulary, to interpolation—estimating the probability of a sequence

using multiple language models (e.g. using bigrams and trigrams), to backoff —estimating an

n-gram’s probability using an (n − 1)-gram; or a combination of the three. However, none of

these solutions help solve the issue of the kinds of generalization that align well with the semantic

inclination of this thesis.

2.1.2 Neural Language Models

This section presents an alternate method of training language models where instead of count-

ing sequences from corpora, models are constructed to estimate word probabilities by encoding

context information using dense representations, known as “embeddings.” The core component

of these models is a neural-network, and the models are trained using a class of methods known

as backpropagation (Rumelhart, Hinton, & Williams, 1986). This section glosses over impor-

23



tant training and optimization details of these models and narrows down its focus on language

modelling in general, and how architectural decisions affect word prediction.

Feed-forward network Language Models: To tackle the issues of sparsity and semantic general-

ization faced by n-gram language models, Bengio et al. (2003) proposed the “Neural probabilistic

language model.” This model accepts as input a k-gram of word representations, and using a feed-

forward neural network2 to predict the probability of the (k + 1)-th word. The k-gram input, x,

comprises of a concatenation of the embeddings of each of the k words, with the embedding of

word w in the model’s vocabulary V , is represented as a d dimensional vector e(w) = E[w], where

E is an embedding matrix, E ∈ R|V|×d. For a k-gram input, x ∈ R1×kd. The following set of equa-

tions describe how the model processes the concatenation of the word embeddings, and produces

the output probability distribution over the vocabulary of the model:

x = [e(w1); e(w2); . . . ; e(wk)],

h1 = σ(xW1 + b1),

h2 = h1W2 + xW3 + b3,

P (wk−1) = softmax(h2),

(2.10)

where h1 and h2 are hidden states of the network, σ is a non-linear activation function, and the

softmax function converts its input into a probability distribution, like so:

softmax(xi) =
exi∑d
j=1 e

xj
(2.11)

The collection, Θ = {E,W1,W2,W3,b1,b2} represents the collection of trainable parameters

of the language model, where W1 ∈ Rkd×h,W2 ∈ Rh×|V|,W3 ∈ Rkd×|V|,b1 ∈ R1×h,b2 ∈

R1×|V|. The collection of parameters is referred to as “trainable-parameters” since they get updated

during training, i.e. at every instance, the model produces its prediction for the next word 3,

which is compared to the ground-truth using a loss function that returns the error in the model’s

prediction. This error signal is then propagated back to each individual trainable parameter using

backpropagation. Using the backpropagation algorithm, the trainable parameters get updated such

2also known as a multi-layer perceptron (MLP).
3the word whose probability is the greatest in the model’s output
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Figure 2.2. A Feed-forward neural network language model architecture, like the one
presented in Bengio et al. (2003).

that the overall loss of the model is minimized. The model is trained through the entire training

corpus a number of times, with each run referred to as a single “epoch.”

The output of the model is determined using a dot-product between the hidden state matrix

and the dense representations of words, which has a notion of similarity in high-dimension space

— a word’s fit to the context is being measured using similarity as opposed to counting. Due to

this, the model exhibits semantically desirable properties such as generalizing to assigning high

probability to sentences such as “The dog chased the mice” given that it has only encountered

“The cat chased the mouse” during training The k-gram input representation can be considered as

the predicted word’s context, suggesting that post-training, the embeddings of a word represent in-

formation about the kinds of contexts it occurs in, leading to properties akin to representations that

embody the distributional hypothesis (Firth, 1957; Harris, 1954), the idea that “You shall know

a word by the company it keeps.” as mentioned in Firth (1957). This is the essence of neural net-

work based representations of words such as word2vec (Mikolov, Chen, Corrado, & Dean, 2013;

Mikolov, Sutskever, Chen, Corrado, & Dean, 2013), GloVe (Pennington, Socher, & Manning,

2014), and fasttext (Bojanowski, Grave, Joulin, & Mikolov, 2017), where the vectors of words

that occur in similar contexts are similar in vector space. For example, the top=10 closest words to

the vector of the word thesis are dissertation, doctoral thesis, master thesis, doctoral dissertation,
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theses, hypothesis, theory, essay, theology, and essays. Here, similarity of two vector is calculated

using the cosine similarity metric, which measures the angle between two input vectors.

Although neural network-based distributional representations of words learned using ar-

chitectures similar to the one described earlier show semantic tendencies, the language models

themselves are still lacking in demonstrating broad-range linguistic qualities. A key bottleneck in

this family of language models is the fixed value of k, tying back to the problems associated with

the markov assumption, thus failing to model long-range dependencies. Another problem with

these models from the point-of-view of linguistics is that these vector representations of words

are largely uninterpretable, they do show lexical association from patterns of similarity, but lack

any sort of structure to their organization in vector-space, preventing any explicit lexical seman-

tic analysis. The class of models do not alleviate this deeper linguistics based issue—arguably

they complicate things even further—but do attempt to tackle the issue of long-range dependency

tracking in assigning probabilities to sequences.

Recurrent Neural Network Language Models: Originally proposed as a cognitive model of

incremental language processing (Elman, 1990), a Recurrent Neural Network (RNN) model inputs

that take the form of sequences. RNN language models (Mikolov, Kombrink, Burget, Černockỳ, &

Khudanpur, 2011) have the desirable property of not being constrained by the markov assumption,

and can theoretically model sequences of any length due to the notion of a “memory” component in

their architecture which preserves information from previous time-steps. An RNN can be viewed

as a feed-forward network with dynamic hidden layers, where the hidden state at a given time-

step ht is constructed using the current time-step input xt, a dense representation of the word at

that time-step, as well as the previous time-step’s hidden state ht−1. Therefore, the decision of

the model at the given time-step is jointly informed by the “memory” from previous time-steps

as provided by the hidden layer, and the input from the current times-step, enabling RNNs to

represent, in theory, long sequences of free text. Formally, an RNN language model is represented

by the following set of equations:
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Figure 2.3. A schematic of an RNN language model (Elman, 1990).

xt = e(wt)

ht = σ(xtWx + ht−1Uh + bh),

yt = htV + bv,

P (wt+1) = softmax(yt).

(2.12)

Here, Wx is a matrix that projects every input embedding into the same high-dimensional space,

Uh is a matrix that processes the previous hidden state to connect it to the current input, and V

is a matrix that processes the current hidden state to produce scores, yt, which are then softmax-

transformed to reflect probabilities of words given the previous context. The function σ is a non-

linear activation function (usually tanh), and bh and bv are the bias vectors. As with other forms

of neural networks, RNN language models are also trained using backpropagation.

A common issue in optimizing RNNs for long sequences is the issue of vanishing or eplod-

ing gradients. During training, the hidden state h keeps getting multiplied by the weight matrix,

Uh. During backpropagation, the gradients of each hidden state at every time-step with respect

to the loss get multiplied by the same quantity repeatedly, proportional to the length of the se-
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quence, causing them to either become very large (explode) or driven towards zero (vanish), which

causes problems in learning or representing the sequence. Despite their engineering issues, RNNs

are core mechanisms in several cognitive models of language processing that simulate syntactic

and semantic processing of sentences (Brouwer, Crocker, Venhuizen, & Hoeks, 2017; John &

McClelland, 1990; Rabovsky, Hansen, & McClelland, 2018). This issue of vanishing gradi-

ents motivated the development of complex RNN structures such as the long short term memory

network (LSTM) (Hochreiter & Schmidhuber, 1997) and the gated recurrent unit (GRU) (Cho et

al., 2014). LSTMs and GRUs attempt to mitigate the problems posed by exploding and vanishing

gradients by introducing the concept of “gating.” A gate is a mechanism introduced in the LSTM

and the GRU hidden layer that controls the flow of information from previous time-steps by al-

lowing certain amount of gradients to flow during backpropagation unchanged, thus dealing with

the problem of vanishing gradients. The process of gating involves a linear transformation of the

input like in a feed-forward layer, followed by a sigmoid activation that pushes the values either to

0 (deletion of information) or 1 (passed through unchanged), followed by a pointwise multiplica-

tion with the layer that is being gated. This gating mechanism is used several times in an LSTM4

unit, which maintains two forms of memory—the cell state ct and a hidden state ht. Specifically,

LSTMs consist of three gates: (1) the forget gate, which is responsible for deletion of information

from the context that is not needed in the next time-step; (2) the input gate, which selectively adds

information about the current context; and (3) output gate, which selects the information required

for the output of the current time-step (such as the probability of a word, given the context, like in

a language model). Mathematically, an LSTM is described by the following set of equations:

ft = σ(xtWf + ht−1Uf + bf ),

it = σ(xtWi + ht−1Ui + bi),

ot = σ(xtWo + ht−1Uo + bo),

c̃t = tanh(xtWc + ht−1Uc + bc),

ct = ft � ct−1 + it � c̃t,

ht = ot � tanh(ct).

(2.13)

4GRUs are very similar to LSTMs and are not discussed in detail within this section, see Cho et al. (2014) for a
comprehensive introduction to GRUs.
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The RNN model and its variants can be used to encode sentences in both directions — by train-

ing two separate models which encode the sequence in left to right (forward RNN) direction and

in the reversed direction (backward RNN). These architectures are called bi-directional RNNs, or

bi-RNNs (bi-LSTM, or bi-GRU for the gated versions). Training a biRNN further relaxes the as-

sumptions of an RNN based language model allow it to look arbitrarily into a word’s past and

its future in order to compute its hidden state (usually a concatenation of the forward and back-

ward hidden state). The bi-RNN hidden states of a word encode the information about its entire

surrounding or “context,” and are hence referred to as a word’s “contextualized embedding.” A

contextualized word representation differs from the kinds of representations learned in regular

window-based approaches because it completely depends on the local context a word occurs in,

as opposed to the static nature of window-based word representations such as word2vec, where

for example, the vector of book is the same when it occurs in “I want to book an appointment.”

and “I enjoyed reading that book.” Contextualized word embeddings can then be used in other

downstream tasks, and generally tend to improve task performance as compared to their static

counterparts. This was shown by Peters et al. (2018), who introduced ELMo (Embeddings from

Language Models), a two-layer bi-LSTM that produces a contextualized representation consisting

of a word’s static embedding, combined with its hidden states from layers 1 and 2.

A key computational issue in training RNN-based models is the complete lack of par-

allelization. This drawback stems from the fact that the hidden state at any given time step is

dependent on all the previous hidden states, i.e., computing a hidden state requires the sequential

computation of all the hidden states preceding it. This proves to be an unavoidable bottleneck in

training such models and precludes parallelization. The next section describes an approach that

avoids this issue by doing away with sequential recurrence and yet allows the learning of long term

dependencies in a sentence in an entirely parallel fashion.

Transformer Language Models: A Transformer (Vaswani et al., 2017) is a neural network model

that stemmed from the concept of attention (Bahdanau, Cho, & Bengio, 2014). Attention is a

mechanism that was inherent in a majority of sequence modelling approaches (Sutskever, Vinyals,

& Le, 2014) that were dominant in NLP prior to the advent of transformers and can be thought of

a way to model a word’s representation in a sequence by “attending” to other parts of the sequence.

Attention resides at the core of transformers, which completely eliminate the need for sequential
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Figure 2.4. A schematic of a Transformer block (Vaswani et al., 2017). Typically, a
transformer language model is made up of multiple such blocks, followed by a

softmax layer to generate output word probabilities. The acronym FFN stands for
“Feed-Forward Network.”

recurrence in order to represent sequences of text. While the transformer network was initially

proposed as an encoder-decoder model for neural machine translation, they can also be trained

as language models. In particular, a Transformer model combines the following ideas to model

sequences:

• Multi-head Self-attention: Self-attention is a component within transformers that relates

different positions of the sequence and composes them together in order to form the repre-

sentation of a specific position, allowing the model to learn long-range dependencies at every

layer. Self-attention is described as a mapping between a token’s query representation to a

set of key-value representation pairs that store information about other tokens. Specifically,

each token’s input representation is projected to three individual vectors: queries that repre-

sent the focal word being operated on, packed together into a matrix Q; keys that represent

the word that the query is being related to, packed together into a matrix K; and values that
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correspond to words that the keys refer to, packed together into a matrix V . The attention

of a token, then, is a weighted sum of the value vectors, where the weight is calculated as a

softmax transformation of the scaled dot-product between the queries and the keys. Mathe-

matically, the output representations (packed as a matrix) formed by a single computation of

self-attention are calculated as follows:

Attended-Output(Q,K, V ) = softmax(
QK>√
dK

)V, (2.14)

where the term ‘softmax(QK
>

√
dK

)’ is the attention distribution between the tokens in the se-

quence. The module that performs the above computation is referred to as an “attention

head.” A single block of transformer typically tends to have multiple such heads which at-

tend to the sequence independently, allowing the model to learn different relations between

parts of the sequence (captured by different heads).

• Positional Encodings: Transformers inject information about the order in which words

appear in sequences by adding embeddings that exclusively contain information about word

positions. These embeddings are kept constant and their size is the same as the token/word

embeddings that are used to represent the input of the sentence, allowing the two embeddings

to be summed together to jointly denote a token/word and its position in the sequence.

By combining the two ideas of self-attention and positional encodings, Transformers circumvent

the sequential bottleneck faced during training RNNs since the hidden state of at every position in

the sequence can be computed simultaneously, allowing for massive parallelization and enabling

faster computation. The general computation of a transformer involves the calculation of an input

embedding, which is computed as the sum of the token and the positional embeddings. The input

embedding is then passed to the multi-head attention layer, where multiple attended outputs are

computed in parallel for the entire sequence, this output (represented as a concatenation of the

outputs of the multi-head attention layer) is then added to the input embedding, creating a residual

connection 5 that allows the passing of positional information unchanged. This is followed by layer

normalization (Ba, Kiros, & Hinton, 2016), and then a feed-forward layer whose outputs are again

5in general, every transformer block involves this residual connection between the input to the block and the attended-
output.
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subject to concatenation by the previous layer normalized output, followed by another round of

layer normalization, leading to the output of the computation performed by a single transformer

block. To train transformers as an incremental language model, where sentences are processed one

word at a time, Radford et al. (2019) proposed the GPT model. In GPT, the input is passed as an

entire sentence, but the attention weights to the right to every word during its processing are zeroed

out, preventing the model from accessing information from the future to predict the next word.

2.2 Pre-training by Language Modeling

The ideas discussed in the previous section describe a family of models that use supervision from

freely occurring text in order to learn the probabilistic properties of language — what sequences

are likely, what word follows a given context, etc. When neural networks are used to perform this

task, they tend to produce representations for words that show semantic regularities in the way they

are encoded, in the form of vectors, or embeddings (Mikolov, Sutskever, et al., 2013; Penning-

ton et al., 2014). These word vectors serve as ideal initial states for models that perform higher

level natural language processing tasks (Collobert & Weston, 2008) such as Question Answer-

ing (Rajpurkar, Zhang, Lopyrev, & Liang, 2016), Natural Language Inference (Bowman et al.,

2015; Williams, Nangia, & Bowman, 2018), etc. Instead of starting from scratch, these models

are now able to learn from already-trained representations which provide them with basic “prior”

knowledge about the distributional semantic properties of inputs. The above account of extracting

already trained, or “pre-trained” word representations and applying them as initial states in appli-

cations can be collectively termed under “feature-based” approaches, where the vector of a word

corresponds to a collection of its features that encode some information.

Building upon the successes of using pretrained word embeddings in higher-level tasks,

Howard and Ruder (2018) generalized the feature-based approach to “transfer” knowledge using

entire models instead of a single embedding layer. Their general framework has three components:

(1) Language model pre-training, which trains a neural language model on a large corpus, e.g.

Wikipedia; (2) Language Model fine-tuning, where the neural language model adapts to the domain

relevant to the task, e.g. movie reviews; and (3) classifier fine-tuning, where the representations

are finally updated in order to perform the actual classification task, e.g. predicting the sentiment
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of movie-reviews. Therefore, instead of transferring pre-trained knowledge only at the initial layer

of the model in the form of word embeddings, an entire language model is used to first learn

generalized representations of the language and then fine-tuned to adapt to the domain of the

task. The first of the three steps — language model pre-training, produces “contextualized” word

representations of the kind described in the previous section, as a by-product. The language model

pre-training followed by fine-tuning framework yielded state of the art results across a wide variety

of NLP tasks at the time of their publication (Howard & Ruder, 2018; Radford, Narasimhan,

Salimans, & Sutskever, 2018), leading to the development of BERT (Devlin et al., 2019), a

model that brought about a radical shift in the field. The advent of BERT made fine-tuning based

approaches a staple component of the modeling process.

2.3 BERT - Bidirectional Encoder Representations from Transformers

BERT is a pretrained language processing model that uses a transformer-encoder (Vaswani et al.,

2017) as its core representation learning mechanism. BERT’s transformer layers allow it to form

contextualized word representations by informing the representation of a word the “attended” parts

of its context, thus modeling complex relationships between words in a sequence. While the in-

quiry into the kinds of relations that are actually captured by the attention mechanism in BERT

and its successors remains an active research endeavor, there is initial evidence that the models’

attention mechanism actively contributes to the models’ learning of linguistic syntax in an unsu-

pervised manner (Clark, Khandelwal, Levy, & Manning, 2019; Manning, Clark, Hewitt, Khan-

delwal, & Levy, 2020). The BERT model is trained on pairs of sentences from the concatenation

of Wikipedia and BOOKCORPUS (Zhu et al., 2015), comprising a total of 3.3 billion words, to

perform the following tasks:

• Masked Language Modeling (MLM): A reformulation of the language modeling task

where a certain percent of words in context are “masked” out and the model’s task is to

maximize the probability of these words in place of the masked positions. This task is in-

spired by cloze tasks (W. L. Taylor, 1953). Specifically in BERT, 15% of tokens in each

input are masked—by replacing the missing word with a [MASK] token. This component of

the modeling process imposes bidirectional properties within BERT, which in tandem with
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Figure 2.5. General setup of the BERT model (Devlin et al., 2019). Here, n refers to
the number of transformer layers, and h refers to the number of attention heads.

the attention mechanism afforded by the scores of transformer blocks condition the model to

rely on a word’s entire context in order to produce its representation.

• Next Sentence Prediction (NSP): Primarily motivated by the fact that several NLP tasks

require the modeling of the relationship between two sentences (such as Natural Language

Inference and Reading Comprehension), Devlin et al. (2019) decided to jointly train BERT

to also estimate whether the second sentence in its input pair follows the first one. While

the exact explanation for how this component contributes to the semantic understanding of

sentence pair relationship remains a mystery, the authors empirically showed that it leads to

performance gains in downstream tasks.

During training, BERT accepts sequences of the form:

[CLS] This is sentence A. [SEP] This is sentence B. [SEP],

where [CLS] is a special token whose representation is used for fine-tuning on classification tasks,

and [SEP] is a special token that indicates sentence separation or termination. BERT uses a word-
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piece6 tokenization scheme (Wu et al., 2016) for converting the input sequence into tokens, with a

vocabulary size of 30,522. In addition to static token embeddings, BERT uses a similar positional

encoding as used by Vaswani et al. (2017), and an additional pair of embeddings to denote whether

a word is in the first or the second sequence of the input sequence pair—this is referred to as “seg-

ment encodings”. The final representation that is used as in input to the stack of transformers is the

addition of the token, segment, and positional encodings. The BERT model comes in two variants,

differing in the number of transformer blocks used after the input embedding layer: BERT-base:

12 transformer layers with 12 attention heads in each, with embedding and hiddent state size =

768, totalling to 110 million parameters, and BERT-large: 24 transformer layers with 16 attention

heads in each, with embedding and hidden state size = 1024, totalling to 340 million parameters.

Both models were trained by the authors using a batch size of 256 sequence-pairs for 40 epochs

over 4 days on 4 Cloud TPUs (BERT-base), and 16 Cloud TPUs (BERT-large).

2.4 Linguistic Analysis of Pre-trained Language Models

The rapid progress in NLP has seen numerous instances which establish the importance and the

benefits of using learned representations from language models to tackle a wide variety of natu-

ral language applications. However it is still unclear what language models “learn” during (pre)

training. This lack of clarity primarily manifests in the black-box nature of their underlying neural

network architectures, which used parameters and weights that are virtually uninterpretable. This

has led to the emergence of a variety of methods that aim to improve the understanding of what

linguistic knowledge does the language modeling objective impart to models.

This section summarizes at a broad level the various techniques used to analyze the lin-

guistic capacities of neural language models, and reports on their general findings. As mentioned

in Chapter 1, this thesis broadly classifies the prevailing analysis methods of investigating neu-

6wordpieces are arbitrarily segmented sub-word units, for instance, the word playing is segmented into play and
##ing. The development of segmentation schemes corresponding to true morphological segmentation with good
generalization on out-of-vocabulary words is an active area of research.
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ral network based language processing models into two categories: (1) probing methods; and (2)

behavioral methods.

2.4.1 Probing methods

Probing refers to the class of methods that investigate whether a specific linguistic or informational

property can be decoded from the representations of a neural network using a supervised classifier

known as a probe (Adi, Kermany, Belinkov, Lavi, & Goldberg, 2017; Ettinger, Elgohary, &

Resnik, 2016; Veldhoen, Hupkes, Zuidema, et al., 2016). The concept of Probing is primarily

motivated by the framework of Multivariate Pattern Analysis (MVPA) proposed by (Haxby, 2012)

that uses a machine learning classification model to extract information from vectors derived from

human brain imaging data.

In this paradigm, the black-box system (brain for MVPA, NLP model for probing) ac-

cepts inputs that differ in certain linguistic properties (for instance, the animacy of a noun) and

produces intermediate representations of the input. In humans, these intermediate representations

take the form of fMRI recordings of their activity patterns, while in NLP models they exist as

vectors or embeddings. Whether or not the linguistic property is encoded in the representation is

discerned using a supervised classification framework — this is akin to asking the question, “can

property-containing inputs be consistently distinguished from non-property-containing ones?” If

the classifier is able to distinguish between the representations that do and do not encode the prop-

erty with a sufficiently high accuracy then the researcher concludes the presence of the property of

focus within the representation of the black-box system. A caveat here is to ensure the classifier

indeed extracts the property or is able to distinguish between inputs that demonstrate the property

from ones that do not. This is ensured by using experimental designs common in machine learn-

ing literature — the idea of non-overlapping training and testing sets, where the model is trained

on a specific set that contains various inputs, and then is tested on an independent, unseen set to

measure whether the model achieves a performance on par with that observed during training. The

input vectors are kept “frozen” or constant during training.

Probing was independently proposed by a number of researchers: Ettinger et al. (2016)

proposed the use of classifiers to analyze sentence embeddings (state of the art representations at
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that time) for information about the semantic roles of AGENT and PATIENT. As preliminary experi-

ments, they conducted sanity checks for the sentence encoders by probing them for the presence of

lexical content (given the embeddings for sentences containing and not containing a given word,

classify them into “has-word” and “doesn’t-have-word”) as well as shallow level semantic role

information. They then extended this proposal to conduct large scale probing experiments for se-

mantic role information on various carefully generated constructions (Ettinger, Elgohary, Phillips,

& Resnik, 2018). Probing was also separately pursued by Veldhoen et al. (2016), who used super-

vised classification on the units of simple RNNs and GRUs to investigate their generalization for

hierarchical structure for and artificially generated arithmetic language. They referred to probes as

“diagnostic classifiers” and found the two linear processing architectures (simple RNNs and GRUs)

to be competitive in performance to models that explicitly encoded tree-structures (Tree RNNs).

Independently, Adi et al. (2017) proposed probes as “auxiliary classifiers” and analyzed sentence

embeddings for information present within the sentence’s constituents such as word content (sim-

ilar to Ettinger et al. (2016)), word order, and sentence length. Their findings suggested trivially

that LSTM based sequence models encoded word content and word order better than bag-of-word

representations formed by averaging the embeddings of individual words in the sentence.

Since then, a number of probing experiments have been conducted to compare and evalu-

ate the linguistic knowledge of language models and their representations. Specifically, Tenney et

al. (2019) extend the probing setup from investigating individual sentence and word embeddings

to the concept of “edge-probing” to enable the analysis of span representations within sentences.

Using edge-probing, the authors compared four kinds of contextual embeddings available at the

time: CoVe (McCann, Bradbury, Xiong, & Socher, 2017), ELMo, OpenAI GPT (Radford et al.,

2018), and BERT to their non-contextual counterparts word2vec (Mikolov, Sutskever, et al., 2013)

and GloVe (Pennington et al., 2014). The two families of embeddings were compared across eight

different sequence-based tasks: Part of Speech Tagging, Constituent Labeling, Dependency La-

beling, Named Entity Recognition, Semantic Role Labeling, Coreference Resolution, Semantic

Proto-role Labeling, and Relation classification. To this end they borrowed train and test sets from

existing datasets suited for the above tasks. Their findings suggested that in general, contextual-

ized embeddings encoded better information about each of the tasks than their non-contextualized

counterparts; but this gain was more prominent in syntactic tasks than those of a semantic nature.
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This general method of edge probing was also used by Shwartz and Dagan (2019) to conduct

a comprehensive study of how lexical composition manifested within contextualized and non-

contextualized models where they studied the phenomena of meaning shift, where the meaning of

a phrase deviates from the individual meanings of its constituents, and implicit meaning, where

the composition of lexical items introduces an implicit encoding of meaning that requires world-

knowledge to understand. Contextualized word embeddings were found to better encode meaning

shift than their non-contextual counterparts, whereas both embedding classes struggled almost

equally in the more challenging task of detecting implicit meaning tasks, suggesting the need to

better incorporate world knowledge in representation learning models. Hewitt and Manning (2019)

extend probing and cast it as a regression problem by training a supervised linear transformation of

the embeddings of two popular contextualized word embeddings, BERT (Devlin et al., 2019) and

ELMo (Peters et al., 2018) to assess their encoding of syntactic trees. Using this “structural probe”

the authors provide evidence for the existence of syntactic trees within the embeddings which can

be easily recovered from the L2-space of the subsequent learned linear transformation. Similarly,

probing has been used to study the understanding of morphology (Belinkov, Durrani, Dalvi, Saj-

jad, & Glass, 2017), systematic compositionality (Hupkes, Dankers, Mul, & Bruni, 2020), and

numeracy judgements (Wallace, Wang, Li, Singh, & Gardner, 2019), inter alia.

2.4.2 Behavioral methods

Deviating from using classifier models to investigate linguistic knowledge of pretrained language

models, behavioral methods aim to analyze models in their natural setting — via controlled tests

involving word probability estimation given some context. The underlying assumption of this

method is that information encoded within language models is reflected in their behavior which

can be measured using targeted stimuli. Due to the lack of supervision in these tasks, the ques-

tion about whether the methodology does the heavy-lifting of learning a linguistic property that

is prevalent in the probing literature simply does not arise. Instead of implicit analysis of lan-

guage model representations, behavioral tasks aim to directly query language models in the form

of carefully constructed stimuli accompanied by an explicit set of inferences that can be drawn

from the responses made for them by the model. This formulation of the analysis method allows
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the researcher to test a diverse set of stimuli, often directly borrowed from related fields such as

cognitive science or psycholinguistics (Ettinger, 2020; Futrell et al., 2019) to assess linguistic

patterns within the models.

The general setup of a behavioral analysis is as follows: first, the researcher identifies

the lexical phenomena of interest that may be captured by a model. For instance, Gulordava,

Bojanowski, Grave, Linzen, and Baroni (2018) sought out to analyze LSTMs using the task of

subject-verb agreement, since the model’s success was primarily attributed to its learning of long-

range dependencies in sentences. The researcher then constructs or samples stimuli that represent

the phenomenon; in their paper, Gulordava et al. (2018) automatically extracted long-distance

dependencies, where the agreement terms (the syntactic subject and its head verb) are separated by

an arbitrary amount of words, using a large dependency treebank (Nivre et al., 2016). A simplified

example is as follows:

(2.1) The keys to the cabinet..

Here, “keys” is the syntactic-subject, and “cabinet” is an attractor 7. The test of whether the lan-

guage model captures subject-verb agreement is then performed by measuring the probabilities of

the next word. If the model assigns a greater probability to are than is for a significant majority of

such stimuli, then there is an indication that the model has successfully picked up on patterns cor-

responding to subject-verb agreement during training. Language model probabilities play a central

role in behavioral tasks, revealing insights into the explicit surface level patterns captured by the

model’s complex architecture. Common analysis methods use some form of a probability measure

(for instance, word surprisals or sentence log-probabilities) to investigate language models.

The paradigm of examining the output probabilities language models as a proxy for their

behavior in response to targeted stimuli has been dominated by syntactic analysis. Following the

results reported by Gulordava et al. (2018), Marvin and Linzen (2018) manually construct a set of

stimuli target a wider set of syntactic dependencies. In their analysis, RNNs performed well on

local agreement dependencies but made errors whose frequency increased with an increase in the

number of attractors. Furthermore, RNNs showed a lack of negative polarity item licensing effects

in stimuli with simple as well as reflective NPI licensing. The performance here was measured

7a word with the same POS as the cue noun but different number.
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by comparing the overall RNN probability of a sentence in grammatical vs ungrammatical con-

structions. Apart from the thorough analysis of agreement-based generalization, researchers have

also shown empirical evidence about LSTMs and RNNs representing information (albeit imper-

fectly) about filler-gap dependencies (Chowdhury & Zamparelli, 2018; Wilcox, Levy, & Futrell,

2019; Wilcox, Levy, Morita, & Futrell, 2018), subordinate clauses, and simple garden-path ef-

fects (Futrell et al., 2019). In each of these assessments, the syntactic information is probed by

comparing word-level surprisals (negative log probability of a word given context). This suggests

that incremental language models such as LSTMs and RNNs are able to generalize to hierarchical

syntax despite their linear processing of linguistic input.

In the realm of semantics-guided behavioral judgements of language models, Ettinger

(2020) borrows linguistic stimuli used in psycholinguistics experiments of human sentence pro-

cessing to assess BERT’s knowledge of commonsense and world knowledge, negation, and se-

mantic roles. In particular, these stimuli reflect cases that show a divergence between: (1) cloze

probability — the proportion of humans that predict a particular word in context; and (2) brain

responses such as the N400 (Kutas & Hillyard, 1980) that are reduced in amplitude to anomalous

sentence endings, missing out on key contextual information present in the stimuli. The diver-

gence between N400 responses and cloze probability measures suggests that human brains are

insensitive to certain predictive information in the sentence while responding to linguistic input,

and therefore these stimuli might present a challenge to predictive models that draw on informa-

tion from the context to compute word expectation. Through an extensive analysis of three such

small but informative sets of stimuli (Chow, Smith, Lau, & Phillips, 2016; Federmeier & Kutas,

1999; Fischler, Bloom, Childers, Roucos, & Perry Jr, 1983), Ettinger (2020) reports that BERT

is able to distinguish between good and bad completions in cases involving (1) commonsense and

pragmatic reasoning — for example, it assigns greater probability to lipstick as opposed to mas-

cara or bracelet in the sentence input “He complained that after she kissed him, he couldn’t get

the red color off his face. He finally just asked her to stop wearing that .”; and (2) attributing

nouns to their hypernyms — it predicts a noun’s hypernym in the context, “A [noun] is a .”

100% of the time in its top-5 predictions. BERT however struggled in cases involving: (1) event

knowledge — the models did prefer good completions by using the noun position in instances in-

volving role-reversals, for instance — they predicted served in the place of in “the restaurant
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owner forgot which customer the waitress had ” with higher probability than in “the restau-

rant owner forgot which customer the customer had ”, but were less sensitive than humans,

and failed to match the types of predictions on which humans converged; and more prominently,

(2) negation — the model shows complete insensitivity to the presence of negation in context, e.g.

it predicts bird as the top completion in the sentence “A robin is not a ,” showing a complete

inability to prefer true over false statements about the noun-hypernym relation. This suggests that

the model is able to utilize information from its context in simple cases where it has to attribute

nouns to their hypernyms or when the context contains words (kissed, red, wearing) whose features

are predictive of a certain completion (lipstick), reflecting patterns corresponding to commonsense

and world-knowledge. However in cases that reverse the truth of the hypernymy relation or in-

volve event-knowledge, BERT shows a glaring lack of “understanding” that is shown by humans.

Further evidence about BERT’s recall of factual or world-knowledge was shown in a large scale

analysis conducted by Petroni et al. (2019), who cast knowledge base triples such as (dante,

born-in, florence) into cloze sentences, “Dante was born in .” and evaluated the

model’s word probabilities for the missing position. Their study revealed BERT to perform com-

petitively with supervised Q/A models that had access to an entity-linking oracle — suggesting the

potential of language models to retrieve factual knowledge without any supervision or fine-tuning.

This study was further expanded by Kassner and Schütze (2020), who introduced the “negated”

and “mispriming” probes. The negated probe converted the queries used by Petroni et al. (2019)

into negated instances, and further corroborated evidence that pre-trained word prediction models

are strongly insensitive to negation, similar to Ettinger (2020). Using the mispriming probe, the

authors showed BERT to be easily distracted by misprimes—words chosen to be prepended to

cloze-like sentences. For instance, BERT-large predicted Cicero as the completion in place of the

correct answer, Plato, when the previous query is modified to “Cicero? Platonism is named after

[MASK].”

2.4.3 Probing vs. Behavioral Methods, in brief

A key advantage that both probing and behavioral methods hold are that they are grounded in

neuroscience (MVPA in the case of probing) and psycholinguistics (behavioral studies such as
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cloze tasks and human ratings) literature. Furthermore, the two broad classes of methods facilitate

different types of investigation into the models. For instance, the knowledge of POS or NER is

challenging to test using word probability estimates, while the knowledge of event structure is non-

trivial to extract using probing classifiers. Both sets of methods involve crucial experimental design

decisions to make — probing analyses require that the testing set does not contain any elements

of the train set in order to make faithful conclusions about the model’s encoding of information;

within behavioral methods, there is considerable amount of work required to carefully construct

stimuli that explicitly target the phenomenon of interest. Finally, when the test of the presence of a

phenomena can be expressed within both sets of methods, their analyses lead to slightly different

conclusions depending on the type of method used (Warstadt et al., 2019), suggesting the lack of

proper generalization within these methods, signaling the community to continuously invest time

and resources to develop better and more reliable analysis methods.

2.5 Ontological Semantics Technology (OST)

The previous sections have described empirical research in NLP predominantly rooted

within statistical learning techniques. This empirical paradigm is enabled by the existence of

large corpora and manual annotation that allow the modeling of language by picking up patterns

largely based on co-occurrence statistics. It can be argued that this class of methods only allows

for the modelling of surface-level usage patterns rather than true textual meaning. This is further

substantiated by the fact that the kind of computational models that exist in this paradigm have

no in-built mechanism to explicitly represent the knowledge about the world. It is hypothesized

that the models pick up world knowledge and semantics somehow during their training process

but the study of whether or not this is true remains an active area of research. Nevertheless, this

general statistical paradigm for NLP is often referred to as “knowledge-lean” (McShane, 2017).

This section briefly describes a strikingly different approach to knowledge representation, based

purely on meaning as opposed to patterns derived from large corpora. This approach is known as

Ontological Semantic Technology (Hempelmann et al., 2010; Raskin et al., 2010; J. M. Taylor,

Hempelmann, & Raskin, 2010), and it belongs to the school of Ontological Semantics (Nirenburg

& Raskin, 2004).
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The goal of the Ontological Semantics paradigm is to construct a model of the world (an

ontology) that can facilitate the representation, extraction, and reasoning of meaning present in

text. OST is a practical realization of these goals, and is built to reflect human reasoning and world

knowledge. The OST-system comprises of the following components:

• A language independent ontology, which is a graph data structure whose vertices are con-

cepts and edges are the properties that define relations between each concept. Concepts

within the ontology are hierarchically organized, with the most common relation being sub-

sumption, or the IS-A relation—for instance, a CHAIR IS-A FURNITURE.

• A lexicon per supported language, that defines word senses of a language and maps them to

appropriate concepts or properties in the ontology.

• A set of linguistic modules, consisting of morphological analyzers, and parsers for syntax

and semantic dependencies that enable processing of input by mapping it to the conceptual

structure as permitted by the ontology.

• An information repository that stores processed input in representation form for use in rea-

soning/further applications.

Language processing within the OST is event-driven. At its core, OST represents linguistic inputs

(usually sentences) along the event (usually a verb) that is being described within it, generating

a text meaning representation (TMR). Text meaning representations embody the various concepts

(OBJECTS and EVENTS) present in the ontology, and the inter-relationships between them (through

properties).

The process of generating TMRs first involves the process of semantic disambiguation of

the given text—the mapping of lexemes to their possible senses (or interpretations). Each inter-

preted concept is accompanied by its properties as permitted by the ontology (for instance, the IS-A

relation) as well as those defined in the text. The VALUE of a property links the current concept

with the concepts present in the linguistic input. This basic representation is further augmented

by incorporating external knowledge that allows the access of information beyond the input text.

This external knowledge augmentation is done by defining what Nirenburg and Raskin (2004) term

as “permissible facets” of a property. The permissible facets (denoted as just facets hereon) of a
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property describe its semantic constraints which take the form of a set of fillers, which are usually

concepts. Note that facets are always defined for every property, but not necessarily filled. The

following are some common facets that exist for properties.

• SEM: the fillers of this facet serve as a selection restriction constraint for the property, i.e.,

what concepts are allowed to satisfy the given property.

• REL-TO: the fillers of this facet describe the extent to which the restrictions defined by the

fillers of SEM can be violated. This is usually seen in non-literal language such as metaphor

or metaphor, e.g. “She bought gifts for the house,” where house metonymically refers to its

residents.

• DEFAULT: the filler of DEFAULT is the most expected constraint of the property in a given

concept. The DEFAULT of a property is usually the unspoken piece of information that is

required to understand the meaning of a text (J. M. Taylor, Raskin, Hempelmann, & Attardo,

2010). In general, if D is the set of DEFAULT fillers of an event, and S is the set of of SEM

fillers of an event, then D ⊂ S .

• NOT: The fillers of this facet are ones that should be excluded from being fillers of the

property. It is possible that the fillers of NOT are a subset of fillers introduced by other

facets.

Figure 2.6 depicts a minimal example of the collection of TMRs (Nirenburg & Raskin, 2004) for

the sentence “The cat ate the mouse.” It is assumed that OST has successfully disambiguated the

sense of the event EAT as described by (Hempelmann et al., 2010).

2.5.1 On the Manifestation of Fuzziness within OST

In classical set theory, the individuals in a given universe of discourse (Ω) are defined to either

be members or non-members of a set. These elements have clear, well-defined boundaries that

distinguishes them, and therefore they are referred to be crisp. For example, the set of all integers,

Z = {. . . ,−2,−1, 0, 1, 2, . . . }. However, there are examples of items in the world that do not

possess such sharp boundaries between them. For instance, the concept of height — when does
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Figure 2.6. TMR for “The cat ate the mouse.”

someone be classified as tall or short? Ideally, the “tallness” of a person should increase with an in-

crease in the value of their measured height, and their “shortness” should decrease. But the bound-

ary that separates the two is vague. Fuzzy sets (Zadeh, 1965) embody this notion of vagueness

by formulating a generalization of crisp sets, by assigning intermediate degrees of membership for

elements that do not completely fall under the crisp notion of the set. Here, the membership of 1

signifies perfect membership, while 0 signifies non-membership. Mathematically, a fuzzy set A is

defined as:

A = {(x, µA(x)), x ∈ Ω},

µ : Ω→ [0, 1],

where x is an element in the universe of discourse, Ω, and µA(x) is defined as the degree of

membership of x for the set A. Fuzzy sets are connected to classical crisp sets through the notion

of α-cuts. A fuzzy set’s α-cut is defined as a crisp set, αA, whose elements’ membership is greater

than or equal to α, i.e., αA = {x : µA(x) > α, x ∈ Ω}. An α-cut of a fuzzy set allows a

fuzzy set to be decomposed into a potentially infinite number of crisp sets. For a fuzzy set A, its

support is defined as the set of all members belonging to Ω with non-zero membership values, i.e.,
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{(x, µA(x)), x ∈ Ω and µA(x) > 0}, and its core is defined as the set of all members belonging to

Ω with perfect membership values, i.e., {(x, µA(x)), x ∈ Ω and µA(x) = 1}. Given two fuzzy sets

A and B, A ⊆ B iff. ∀x ∈ Ω, µA(x) 6 µB(x). The standard operations involving fuzzy sets were

defined by Zadeh (1965) as follows:

Complement: µ¬A(x) = 1− µA(x)

Union: µA∩B(x) = min{µA(x), µB(x)}

Intersection: µA∪B(x) = max{µA(x), µB(x)}

The the most recent version of OST incorporates the notion of fuzziness through its prop-

erty facets (Raskin & Taylor, 2009; J. M. Taylor & Raskin, 2010, 2016), which allows it to

quantify the uncertainty in the selection restriction constraints imposed on the property. Within

a fuzzy instance of the OST, each facet is treated as a fuzzy set, whose fillers denote concepts

with varying degrees of memberships. J. M. Taylor and Raskin (2016) discuss the most recent ad-

vances in using fuzzy-logic within OST. In general, for an event with some property p, and fillers

of facets NOT (N ), REL-TO (R), SEM (S), DEFAULT (D), and a function desc(), which denotes

“descendant-of,” the memberships of concept x for p follow the following pattern:

µp(N) = 0 < µp(R) < µp(S) < µp(desc(D)) < µp(D) = 1, (2.15)

Furthermore, each facet of a property defines an α-cut, with αDEFAULT = 1, αSEM = 0.75, and

αREL-TO = 0.05 (J. M. Taylor & Raskin, 2010, 2016). The membership of a concept is then defined

based on the hierarchy within which it lies, as a function of its path-length φ between the various

facet concepts within the ontology hierarchy (with root node ALL). In its latest formulation the

membership of a concept x as a filler for a given property p was defined initially by J. M. Taylor
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and Raskin (2010) and later modified by J. M. Taylor and Raskin (2016) to follow the following

function:

µp(x) =



1 x = D

1− (1−αSEM)×φ(D,x)
φ(S,D)

x ∈ D or x ∈ S

µ(S)− (µ(S)−αREL-TO)×φ(S,x)
φ(R,S)

x ∈ R and x 6∈ S

µ(R)− µ(R)×φ(R,x)
φ(R,ALL)

x 6∈ R and x 6∈ N

0 x ∈ N

(2.16)

Equation (2.16) essentially suggests that when a property’s DEFAULT is defined, all its

descendants are assigned decreasing membership values, as opposed to being the same as the DE-

FAULT, as was the case in previous iterations and applications of Fuzzy-OST (J. M. Taylor &

Raskin, 2010, 2011; J. M. Taylor, Raskin, & Hempelmann, 2011). The membership of the de-

scendant decreases until the SEM value is reached, and the decrease is proportional to the distance

between the descendant and the default in the ontology graph, signifying a triangular-like mem-

bership function. The following example uses the above notions to demonstrate the calculation

of memberships for the concepts, CAT and GOVERNESS, as fillers for the property AGENT of the

event TEACH, which is depicted in Figure 2.7. Following J. M. Taylor and Raskin (2010, 2016),

the memberships of the DEFAULT (TEACHER), SEM (HUMAN), and REL-TO (ANIMATE) are set to

1, 0.75, and 0.05 respectively, equivalent to their α-cuts.

TEACH

AGENT:
REL-TO: ANIMATE

SEM: HUMAN

DEFAULT: TEACHER

Figure 2.7. Event representation for TEACH
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For the same example, assume that the following are the path-lengths, φ(X, Y ), between the vari-

ous concepts8:

φ(GOVERNESS, TEACHER) = 1

φ(TEACHER, HUMAN) = 13

φ(HUMAN, ANIMATE) = 9

φ(CAT, HUMAN) = 6

Using equation (2.16), the membership of CAT as the AGENT of TEACH is calculated as:

µAGENT(CAT) = µAGENT(HUMAN)− (µAGENT(HUMAN)− αREL-TO)× φ(CAT, HUMAN)

φ(HUMAN, ANIMATE)

µAGENT(CAT) = 0.75− (0.75− 0.05)× 6

9

µAGENT(CAT) = 0.283

Similarly, the degree of membership for GOVERNESS is given by:

µAGENT(GOVERNESS) =

µAGENT(TEACHER)− (µAGENT(TEACHER)− αREL-TO)× φ(GOVERNESS, TEACHER)

φ(TEACHER, HUMAN)

µAGENT(GOVERNESS) = 1− (1− 0.75)× 1

13

µAGENT(GOVERNESS) = 0.964

Using the concepts discussed in the previous subsections, J. M. Taylor and Raskin (2011)

and J. M. Taylor et al. (2011) proposed a computational approach towards guessing the meaning

of an unknown word (unattested input) in context by formulating it as a cloze-task (W. L. Tay-

lor, 1953). In such a formulation, the functional details in the unknown word’s context determine

the basis of understanding the meaning of the unknown word. The process involves first decom-

8for the purposes of this demonstration, the path-lengths have been gathered from WordNET (Miller, 1995).
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posing the event that affects the unknown word (often represented as zzz) using a TMR. Then,

depending upon the interpretation of the event, the unknown word takes the position of the possi-

ble property-fillers that are anchored along each interpretation. The approximate meaning of the

unattested concept is then narrowed-down by accessing each property’s facets that supply semantic

membership values to concepts which give cues to potential interpretations.

2.6 Semantic Priming

This section describes the cognitive phenomenon of semantic priming, followed by two major ex-

planatory accounts that attempt to explain how semantic priming relates to the organization of se-

mantic memory in human minds. The section ends with a brief discussion on how the phenomenon

of semantic priming and its inferences about lexical association form the primary motivation be-

hind the experiments proposed in the next chapter.

Semantic Priming refers to the phenomenon in which language comprehenders tend to

show a speed up in response to a word when the word is preceded by a semantically related stimulus

relative to a semantically unrelated stimulus (McNamara, 2005; Meyer & Schvaneveldt, 1971).

For example, in a cognitive task, the time taken to respond to a word like dog is faster when it

is preceded by a word like cat as compared to when it is preceded by a word like table — when

this happens then it is said that “dog facilitates or primes the activation of cat.” The word to

which the response is made is referred to as the target and the preceding stimuli are called primes

(either related or unrelated). Levels of priming are evaluated based on participants’ response times

(RT), which are measured after the target has been shown to them. The RTs to priming stimuli

are typically measured using two very common cognitive or perceptual tasks — Lexical decision

and Naming. In standard priming methodology, participants are shown the prime stimulus and

then asked to perform the task. The prime stimulus and the stimuli for the task are both shown

using a visual medium, either with words or pictures of the concepts the word-stimulus refers

to. In a lexical decision task, participants are instructed to decide and respond about whether the

presented string of characters is a word or a non-word, whereas in a naming task, participants are

instructed to rapidly pronounce the word out loud. In both of these tasks, the RTs to target words

are often compared between the related prime word and an unrelated prime word as a baseline
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comparison. The strength of association between the target and the related word is then reflected

in the difference between the two RT measures, which also termed as the semantic priming effect

(Hutchison, Balota, Neely, Cortese, Cohen-Shikora, et al., 2013; McNamara, 2005).

Of all explanatory models about semantic priming, there are currently two major compet-

ing accounts of how priming occurs. In the first account, lexical facilitation occurs as a result of the

activation of concepts within a semantic network using a process known as “spreading activation”

(Collins & Loftus, 1975; Quillian, 1967). In this theory, semantic memory is conceived as a

network of concepts connected to each other by links that represent association. During the cog-

nitive task during the priming experiment, word processing activates its anchored concept within

the semantic network and this activation spreads through to related concepts which make the pro-

cessing of related words easier. The activation of a concept is usually inversely proportional to the

path length within the network (Collins & Loftus, 1975) — the number of links traversed. In the

second account, concepts in semantic memory are connected not through symbolic links but rather

through feature overlaps, i.e., they are represented as densely connected units or “distributed rep-

resentations” (McClelland & Rumelhart, 1986; McRae, Cree, Seidenberg, & McNorgan, 2005;

Plaut, 1995) which can be adjusted during acquisition and correction. During the priming exper-

iment when a related word precedes the word that is being processed, the features of all concepts

close to the related word get activated, causing the ease of retrieval of the target concept. This

account gave rise to connectionist models (McClelland & Rumelhart, 1986), the precursors to

modern day neural networks in which inputs are represented as dense vectors and “learning” cor-

responds to an adjustment of weights. Regardless of the theories, the semantic priming paradigm

provides interesting and useful insight about the organization of semantic memory in the human

brain (Hutchison, 2003), especially due to the non-semantic nature of the tasks that priming par-

ticipants are asked to perform.

2.7 Role of Sentence Constraints in Lexical Facilitation

Lexical facilitation has also been studied in humans for sentence inputs using the priming tasks dis-

cussed in the previous section, as well as by investigating N400 amplitudes from brain recordings.

The N400 (Kutas & Hillyard, 1980) is an ERP component, extracted from EEG recordings of the
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human brain during sentence comprehension. It is a negative-going deflection elicited in response

to words that peaks at about 400ms after word-onset in the presence of a semantically anomalous

component in the sentence. For instance, an N400 peak is observed in sentences such as “I take

coffee with cream and dog.” Its amplitude largely shows strong correlations with cloze probabili-

ties of words in sentence contexts (Kutas & Hillyard, 1984)9. In most of these studies, a primary

factor that is often considered and taken into account as a control is the nature of the sentence con-

text in terms of the constraint it imposes on the word-position of interest (Schwanenflugel, 1991).

The constraint imposed by a sentence context on any given position is often been defined in terms

of the cloze probability of the most expected word in the word position. For example, the context

“He caught the pass and scored another touchdown. There was nothing he enjoyed more than a

good game of .” is considered high constraint by Federmeier and Kutas (1999) since the most

expected word, football has a cloze-probability that lies between .784 and 1.0. In contrast, for the

context “Fred went to the pantry and got out the homemade jelly his grandmother had brought.

Fifteen minutes later, however, he was still struggling to open the .” the most expected com-

pletion is jar, with a cloze-probability that lies between .17 and .784, and is thereforet considered

to be low constraint10.

Experimentally, the general consensus with respect to sentential or contextual constraints is

that high constraint sentences typically only show facilitation for the most expected word in context

and have a narrow scope of lexical access, as opposed to low constraint sentences, which show a

wider scope of facilitation that extends to less predictable lexical items that fit in the context. This is

evidenced in lexical decision experiments involving sentence contexts as primes (Schwanenflugel

& LaCount, 1988; Schwanenflugel & Shoben, 1985) where low constraint items yielded signif-

icant facilitation for unexpected completions while high constraint items only facilitated expected

words. Similar results have also been shown in naming experiments (McClelland & O’Regan,

1981; Stanovich & West, 1983). It is important to note that while unexpected completions are

facilitated by low constraint contexts, it is only when the completions are semantically related to

9Although there are instances when the N400 deviates from this widely hypothesized pattern, see Fischler, Childers,
Achariyapaopan, and Perry Jr (1985) and Nieuwland and Kuperberg (2008)
10actual probabilities not revealed by Federmeier and Kutas (1999). However the high-low distinction was done using
a median split of the most expected word.
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the actual expectation of human participants, i.e., semantically unrelated words that do not fit into

the context are not facilitated at all.

2.8 Summary

The prior work covered in this chapter focuses on several different concepts within the extant lit-

erature of NLP that guide and motivate the methodological and analytical framework discussed

in the next chapter. The concept of word prediction and its development from count-based proba-

bilistic models to fundamental blocks of modern-day language representation learning mechanisms

motivates its analyses — this thesis treats one such word prediction model, BERT, as the primary

subject of investigation. The discussion on the two primarily used tools for the analysis of language

models and their findings sheds light on what we know about the kinds of information encoded by

the models, and the various perspectives each class of methods brings with it. Behavioral analyses

that are guided by semantics reveal the ability of LMs to inform their word probabilities primarily

using lexical, as opposed to event level, knowledge encoded in the sentence. Of all the findings

discussed, this can be evidenced simply by examining the results of BERT’s word prediction in

negated sentences (Ettinger, 2020; Kassner & Schütze, 2020). Consider the example of the cloze

sentences with an without negation of the same message — A robin is not a .” and “A robin

is a .” The observation that BERT predicts a lexical associate (bird) in both sentences with

relatively high probability (as compared to other words) alludes to the fact that BERT focuses (or

perhaps “attends”) more on lexical associates than message level constituents of the sentence.

Semantic priming and its primary use as a fundamental method to reveal the organization

of complex lexical semantic concepts within the human brain inspires the methodological contri-

butions of this work. The phenomenon’s experimental nature helps narrows-in on the choice of

using behavioral methods as opposed to probing to explore the lexical relations between BERT.

While semantic priming serves as the primary motivation behind the kinds of word-level stimuli

used in subsequent experiments, the actual properties of the sentence stimuli are characterized with

the help of research conducted in understanding lexical facilitation within sentence context. The

specific property that concerns the methodology presented in the next chapter is that of a sentence’s

predictive constraint. Prior evidence lets us infer that the lexical semantic associates in context in-
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form word prediction model’s output in a non-trivial manner. However, there is still insufficient

understanding about exactly how these models use lexical relations and how their output is mod-

ulated based on the nature of the context itself. To fill this gap, the methodology proposed in this

thesis borrows from an experimental paradigm that investigates the organization of semantic mem-

ory in human brains (semantic priming), and how this organization interacts with varying levels of

the incoming linguistic input’s predictive constraints.

This thesis also ties in the concept of Ontological Semantics and its latest product, the OST,

both of which lie at a radically opposite spectrum within NLP methodological paradigms. OST’s

meaning-first approach to knowledge representations, its functionality in decomposing a sentence

by representing its event interpretation, and its inherent mechanism of representing semantic con-

straints through the incorporation of fuzziness within its property facets lends itself to be a suitable

analytical framework for cloze-contexts — sentences that bear close resemblance to the stimuli

used in the methods. This is elegantly shown in previous work that casts cloze tasks as “guessing

the meaning of an unknown word” (J. M. Taylor et al., 2011), and is later borrowed to qualitatively

analyze the stimuli in this thesis.
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CHAPTER 3. METHODOLOGY

This chapter describes in detail the various methodologies and techniques required to answer the

research questions posed in Chapter 1. The chapter borrows heavily from the methodological

discussions in the original contributions mentioned in Section 1.5 (Misra et al., 2020a, 2020b).

They are restated below:

• Misra, K., Ettinger A., Rayz, J.T. (2020). Exploring Lexical Relations in BERT using Se-

mantic Priming. In 42nd Annual Virtual Meeting of the Cognitive Science Society. (Poster

Presentation).

• Misra, K., Ettinger A., Rayz, J.T. (2020). Exploring BERT’s Sensitivity to Lexical Cues

using Tests from Semantic Priming. Findings of ACL: EMNLP 2020. (Long Paper)

• Misra, K., & Rayz, J.T. (2020). An Approximate Perspective on Word Prediction in Context:

Ontological Semantics meets BERT. In: 2020 Annual Conference of the North American

Fuzzy Information Processing Society (NAFIPS). (Regular Paper; forthcoming)

3.1 Nature of Stimuli

The stimuli used in subsequent analyses take the form of a sentence with an omitted word (see

example (3.1)), and the model has to rely on the context to infer what word best completes the

sentence.

(3.1) I was reading a .

These sentences bear resemblance to the stimuli prevalent in cloze tasks (W. L. Taylor, 1953) —

tasks where participants are presented with incomplete sentences and are asked to fill in the blank

by relying on the context surrounding the missing word — and therefore are referred to as “cloze

contexts.”
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Such stimuli are compatible with BERT’s masked language modeling procedure, briefly

described in Section 2.3. These stimuli offer insight into the kinds of knowledge that, in principle,

can be extracted from the context surrounding the blank position in order to complete the sentence.

The following Section expands qualitatively on how a system that demonstrates natural language

understanding can approach this task.

3.2 Analyzing cloze contexts through the lens of Ontological Semantics

This Section offers a perspective on the specific semantic knowledge needed to “guess” the best

completion to cloze contexts through the fuzzy-inferences supported by the OST system. This per-

spective is highly qualitative, and only relies on the rather quantitative nature of fuzzy membership

functions to provide relative comparisons to the probabilistic outputs of a language model. This

method directly follows the one discussed in Section 2.5.1, i.e., works that proposed a fuzzy ap-

proach to understanding the meaning of an unknown word (in a sentence-context) using the OST

system (J. M. Taylor & Raskin, 2011; J. M. Taylor et al., 2011).

Within the OST framework, a given cloze context is decomposed along the event, E, that

affects the missing word. This event is represented in a notation which lists its various properties,

along with their inferred facet values. The properties and facets are inferred based on the functional

elements in the cloze-context. An example event notation is shown in Figure (3.1).

E
PROPERTY-1

REL-TO:
SEM:
DEFAULT:

PROPERTY-2:
...

Figure 3.1. Minimal representation notation for events described by cloze-contexts.

As described in Section 2.5.1, the facets (NOT, REL-TO, SEM, DEFAULT) of a property represent

its semantic constraints and indicate concept memberships for properties that are endowed to the
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event, E. In this qualitative interpretation of cloze-context, the membership of a concept, µ(C)

denotes the extent to which it satisfies the semantic constraints imposed by the specific property of

the event, and follows the same pattern as described in Equation (2.15)

The decomposition of cloze-contexts into events with facet memberships allows discern-

ing what concepts are evoked by a context, and qualitatively comparing against language model

outputs. It also allows relative comparison of the semantic constraint (more formally described

in Sections 3.3 and 3.4) applied on the missing word-position. This relative comparison can be

demonstrated using the following example contexts, each denoting the event, WASH:

(3.2) a. I washed my .

b. I used laundry detergent to wash my .

WASH

AGENT: HUMAN

THEME: ??
SEM: PHYSICAL-OBJECT

(a) Event representation for example (3.2a).

WASH

AGENT: HUMAN

INSTRUMENT: LAUNDRY-DETERGENT

THEME: ??
SEM: PHYSICAL-OBJECT

DEFAULT: CLOTH-ITEM

(b) Event representation for example (3.2b).

Figure 3.2. Event representation of WASH in example (3.2).

In both examples, the missing position is interpreted as the THEME of the event WASH. Without

any other properties afforded to WASH in example (3.2a), its THEME stipulates any PHYSICAL-

OBJECT to serve as the minimum selection restriction (SEM). Hence any instance or descendant

of the concept PHYSICAL-OBJECT would receive equal membership. When the same WASH event
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is endowed with a property, such as an INSTRUMENT with value LAUNDRY-DETERGENT like in

example (3.2b), its THEME now carries a DEFAULT facet of CLOTH-ITEM. This causes its member-

ship values to readjust, with µTHEME(WASH, CLOTH-ITEM) = 1. At the same time, the membership

for every descendent of CLOTH-ITEM, such as COAT, TROUSER, etc., is now greater than that of

other physical objects (UTENSILS, BODY-PART, etc.). This allows a direct behavioral comparison

between LMs and OST’s fuzzy inferences, where LM probabilities for completions can be matched

up against lexical instances of the concepts evoked within the OST framework for the given cloze-

context. The membership pattern change in example (3.2) also indicates a clear distinction in the

semantic constraint of the two cloze contexts — example (3.2b) is more constraining because of

the additional INSTRUMENT property, which is absent from (3.2a).

The above example discusses the dynamics of property fillers when properties are explic-

itly endowed to an event, for instance, WASH with INSTRUMENT = LAUNDRY-DETERGENT causes

certain concepts to get promoted in the membership rankings, while also actively demoting others.

These dynamics can also implicitly arise when the event is “primed” with a certain concept. Prim-

ing in the context of OST and its inbuilt fuzzy mechanisms can be considered akin to an unstruc-

tured endowment of properties to events. They are similar in the sense that both of them cause a

shift in the membership values of certain fillers, in both directions. This shift in membership values

can be seen as weighted activations to certain concepts — similar to those in the spreading activa-

tion model of priming behavior (Collins & Loftus, 1975; Quillian, 1967). While supplying prop-

erties is more widely discussed in the Ontological Semantics literature, priming fits better within

the context concerning the direct goals of this thesis. For example, let’s consider example (3.2a)

again, now with an additional element of a “prime” concept — SPOON. The concept of SPOON

activates nearby concepts in its hierarchy and memberships of concepts such as CUTLERY (imme-

diate ancestor) or shared category members such as FORK, for the THEME property are increased as

a result. If this spreading activation is assumed to be proportional to the path length, φ(C1, C2) be-

tween concepts in the ontology, then the memberships to valid fillers of THEME-OF WASH such as

any descendent of CLOTH-ITEM will be demoted in comparison. Hence, although FORK and SHIRT

are assigned equal membership as the THEME-OF the “unprimed” instance of example (3.2a) since

they are both descendants of PHYSICAL-OBJECT, priming by SPOON causes an irregular shift in

the sub-hierarchy of PHYSICAL-OBJECT, raising the value of µTHEME(WASH, FORK) in comparison
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to µTHEME(WASH, SHIRT). A key limitation of this approach is that it is constrained by decomposing

an event along its main verb (or noun, when it is a noun-event), and cannot address priming or any

other source of membership dynamics when the event is the word that is missing in context.

Regardless of the property-filler dynamics and their modulation by explicit and implicit

factors, the event decomposition of cloze-contexts to understand semantic constraints using fuzzy-

inferences is taken into qualitative consideration in the next section, which advances towards the

primary goals of this thesis.

3.3 Extending Semantic Priming to BERT - Considerations

In humans, semantic priming occurs due to the presence of a lexical associate that affects the speed

of response to a stimulus. Analogously, this thesis is interested in learning how BERT’s behavior

(defined as a change in its output word probability) is affected by a lexical cue present in its input

context. In that regard, the methodology in this thesis is primarily centered around the use of

cloze contexts, as described in Section 3.1. While cloze contexts can be constructed by randomly

omitting words from sentences, in the current study, only a single word is removed from individual

cloze sentences at a time. This removal is systematic in nature, to test the behavior of the model

when particular “target” words are removed.

In this work, semantic priming in pretrained LMs is defined as an increase in the model’s

expectation for a target word (or a lack thereof) in a given context in the presence of a semantically

related word as compared to an unrelated one. Structurally, priming is simulated by the addition

(or prepending) of a “prime” word before a cloze context. Consider the following example:

(3.3) a. I want to become a .

b. airplane. I want to become a .

c. table. I want to become a .

If the probability of the target word, pilot is greater in (3.3b) as compared to that in (3.3c), then it

results in an interpretation that the related word (airplane) primes BERT more than the unrelated

word (table) does, for the target pilot in the context (3.3a). Such a test ensures that the only

difference in BERT’s output for the blank position in both cases is due to the swapping of the

58



prime words, allowing one to infer the degree to which BERT relies on single word cues to inform

its probability for the target word. Importantly, this setup does not allow for direct comparisons to

human word prediction in context—the structure of the tests is adapted for BERT’s conventional

usage by placing words in context, and thus deviates from standard priming structure.

As established in Chapter 2, the processing of cloze stimuli of the form shown in (3.3a)

often involve an effect of the amount of constraint placed on the missing position. Adducing the

motivations presented in the aforementioned chapter, the analysis technique developed in this chap-

ter focuses on measuring BERT’s sensitivity to individual prime words under varying contextual

constraints. For example, consider the following two stimuli where the target word is key:

(3.4) a. He lost his yesterday.

b. She opened the door using a .

In (3.4a), the blank position can be any word that denotes the concept which satisfies

the semantic role THEME-OF for the event LOSE. Arguably, the blank position is far more con-

strained in (3.4b), where it can be a word that denotes the concept which satisfies the semantic

role INSTRUMENT-OF for the event UNLOCK-DOOR. The subject (She) can open the door using

a key, lock-pick, or perhaps a screwdriver, and semantically the sentence is highly constraining

towards predicting any word denoting those three concepts or their relatives. Borrowing from Sec-

tion 2.5.1 and Section 3.2, the constraint of the two sentences can be described by treating the

properties THEME-OF and INSTRUMENT-OF as fuzzy sets with their facets representing concept

membership. For the event LOSE as described by the sentence in (3.4a), its THEME is relatively

unconstrained, and therefore does not have a well-defined DEFAULT. The typical THEME of LOSE

can be semantically constrained to any PHYSICAL-OBJECT, which materializes as the SEM facet

here. The concept of KEY is a type of PHYSICAL-OBJECT and therefore it receives a membership,

µTHEME(LOSE, KEY) 6 0.75. The INSTRUMENT property of the UNLOCK-DOOR event in (3.4b) on

the other hand, has a DEFAULT filler of KEY (J. M. Taylor & Raskin, 2011), and therefore receives

the highest possible membership, µINSTRUMENT(UNLOCK-DOOR, KEY) = 1, signifying greater con-

straint for (3.4b) than for (3.4a). BERT matches this pattern of membership, with its probability

for key being far higher in (3.4b) than in (3.4a). These analysis is summarized in table 3.1.

59



Table 3.1. A brief analysis of the semantic constraints imposed by sentences in
Example (3.4).

Sentence He lost his yesterday. She unlocked the door using a .

Event
Representation

LOST

AGENT: HUMAN

GENDER: MALE

THEME: ???

UNLOCK-DOOR

AGENT: HUMAN

GENDER: FEMALE

INSTRUMENT: ???

Concept
Memberships µTHEME(LOST, key) < µINSTRUMENT(UNLOCK-DOOR, key) = 1

BERT
probabilities PBERT-large(key) = 0.005 PBERT-large(key) = 0.977

Focusing on how the semantic constraints affects the notion of semantic priming estab-

lished earlier offers two main advantages. First, it facilitates the exploration of the dynamics of

information provided by lexical-cues as primes as compared to words already present in the sen-

tence. This corresponds to exploring how much more information about the target word (key) does

prepending a related word like lock provide in a high-constraint context such as (3.4b), beyond

open and door, which are already present in the sentence, and have association with the target.

This can be compared to when the related word, lock, is prepended to (3.4a), which imposes fewer

constraints on the blank position. Second, it allows comparisons against priming behavior and

lexical response observed under high and low constraints in humans. As a caveat, due to the differ-

ences in the two setups, this comparison can only be at the behavioral outcome level. The current

setup of tests does not allow direct comparisons to human priming under a sentence context, which

would ideally require a simulation model of some sort, and is out of scope for this thesis.

3.4 Data Setup and Stimulus Construction

Human priming data used as ground truth for lexical relations are derived from the Semantic Prim-

ing Project (SPP) (Hutchison, Balota, Neely, Cortese, Cohen-Shikora, et al., 2013), which is

currently the largest resource of its kind. The SPP has previously been used to evaluate word

embedding models, such as word2vec (Mikolov, Sutskever, et al., 2013) and GloVe (Pennington
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et al., 2014), in a number of studies (Auguste, Rey, & Favre, 2017; Ettinger & Linzen, 2016;

Mandera, Keuleers, & Brysbaert, 2017). These evaluations have been carried out by measuring

the amount of variance in priming response times, derived from the SPP, explained by cosine sim-

ilarity between word vectors of the target and the prime words as a predictor. The SPP consists of

priming data for 768 human subjects across 3322 priming instances which are of the form (T , R,

U), where T is the target word, and R and U are the related and unrelated primes, respectively.

It also consists of a number of different measures, such as response times (RTs) across different

tasks assigned to the participants. In addition, the SPP also provides annotations for the various

kinds of lexical relations that exist between the related prime and the target word, these are briefly

summarized in Table 3.2. To enable fair comparison, target words that do not occur in BERT’s

vocabulary, as well as instances where some of the RTs were missing are filtered out, resulting in

92% of the total triples (n = 3058) left for further preprocessing.

Table 3.2. Relations covered by the SPP (Hutchison, Balota, Neely, Cortese,
Cohen-Shikora, et al., 2013), their total counts, and example pairs.

Relation N Target, Related

Synonym 418 anger, fury
Forward Phrasal Associate 263 ache, stomach
Category 164 bed, sofa
Antonym 153 deep, shallow
Backward Phrasal Associate 151 cause, effect
Supraordinate 131 spaghetti, pasta
Script 124 judge, court
Perceptual property 90 leaf, tree
Functional property 73 bell, ring
Instrument 35 bow, arrow

In addition to the SPP triples, the experiments in this thesis also introduce a context, C,

which is a naturally-occurring sentence originally containing the target word, T , now with T

replaced by the “[MASK]” token 1. The aim of the priming experiments is to test the model’s

expectation for T in the masked position when C is preceded by a related prime, R, and compare

it to when it is preceded by an unrelated prime U , denoted as (R, C) and (U , C), respectively.

T is embedded in C in order to better simulate BERT’s conventional usage—to predict words in
1BERT uses the [MASK] token as its representation of a missing/blank word.
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sentence contexts. The contexts C are chosen to be naturally-occurring sentences, since BERT is

trained on well-formed sentences that affect its word level expectation. The target contexts are

sampled from the concatenation of the ROCstories Corpus (Mostafazadeh et al., 2016), and the

train and test sets used in the “Story Cloze Test” task (Mostafazadeh, Roth, Louis, Chambers, &

Allen, 2017), primarily due to the simplistic nature of the sentences contained in those corpora.

Two scenarios are considered for the prime contexts,R and U : (a) WORD: where the prime

word, followed by a period, ‘.’ is prepended to the target context, and (b) SENTENCE: where a

neutral context, “the next word is ” followed by the prime word and a ‘.’, is prepended to the

target context. To be compatible with the input format BERT has operated over during training

and following previous studies using a similar setup (Ettinger, 2020; Goldberg, 2019; Petroni et

al., 2019), the [CLS] and [SEP] tokens are added at the beginning and the end of each stimulus,

respectively. Table 3.3 shows full example items from these different settings. The prime words

are embedded either as single word or neutral sentence contexts because any naturalistic sentence

containing R would be different from that containing U , thus adding imbalanced noise from the

non-prime words. The context C for the target, by contrast, will remain constant given that the

target is constant (for any pair of primes).

Table 3.3. Example Stimuli, with prime contexts in italics. Here, T = pilot,R =
airplane, and U = table.

Scenario
Prime

Context Stimulus

WORD
R [CLS] airplane. I wanted to become

a [MASK]. [SEP]

U [CLS] table. I wanted to become
a [MASK]. [SEP]

SENTENCE
R [CLS] The next word is airplane.

I wanted to become a [MASK]. [SEP]

U [CLS] The next word is table.
I wanted to become a [MASK]. [SEP]

The present study focuses on analyzing BERT’s reliance on single-word lexical cues (prime

words) to inform its target word probability under the predictive constraints on the [MASK] token.

Doing so first requires a quantitative measure of how constraining the un-primed context, C is. In
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previous work on analyzing lexical processing in sentence contexts (Federmeier & Kutas, 1999),

sentence constraint was measured by using cloze probabilities (by human participants) and per-

forming a median split on the probabilities of the best predicted words to get a binarized set of low

and high constraint sentences. Therefore, highly predictable contexts count as a high-constraint

contexts, and contexts that are not very predictable count as low-constraint contexts. Similar to

Federmeier and Kutas (1999), contextual constraint in this study is measured using the probabil-

ity of the most expected word by BERT, averaged for the BERT-base and BERT-large models.

Mathematically, the constraint of a context (C) is defined as:

constraint(C) = max
x∈V

1

2

∑
m∈{b,l}

Pm([MASK] = x | C), (3.1)

where Pm represents the probability distribution for [MASK] in the output of the BERT model,

either base (b) or large (l), and x is a token belonging to BERT’s vocabulary, V . The constraint

function is thus bounded by [0, 1]. In contrast to Federmeier and Kutas (1999), this thesis con-

siders a continuous measure of constraint (as opposed to a binary high/low split) by uniformly

binning contexts into n equal bins with increasing constraint scores, to create a graded measure.

In principle, n can be any arbitrary number, and larger n corresponds to a more graded measure

of the constraint. In the present study, n is set to 10. This allows one to study priming behavior

as a function of roughly continuous constraint scores, which was previously not possible with the

binarized version. Sentences from the source corpus that contain the target word are grouped into

10 equal bins of a constraint score width of 0.1 each, i.e, a constraint score of 0.38 would be in bin

4. Additionally, as a control, a synthetic and unconstraining target context 2 that is referred to as

“neutral” is also used, these neutral context items appear as follows:

[CLS] the last word of this sentence is [MASK]. [SEP]

Intuitively, the neutral context contains no information about what [MASK] can be—it can be filled

by any word in BERT’s vocabulary. Therefore, it provides the least constraint on the [MASK]

token. Using Equation 3.1, the empirical constraint for this context was found to be ≈ 0.02, thus

confirming this intuition.

2The choice of neutral context follows Schwanenflugel and LaCount (1988).

63



To make robust conclusions about the effect of constraint, only the triples that have at least

one target context in each of the 10 bins were sampled. Polysemy issues were encountered for

72 target words, where the sense of the target in the originally sampled C did not fit the lexical

relation with the primes—these were manually corrected by re-selecting appropriate contexts from

the corpus, however, this issue could not be resolved for 28 items, which were discarded. This

further reduces the number of unique triples to 2112 (69% of the valid instances), with each triple

being associated with 11 (10 bins and a neutral context) stimuli. Figure 3.3 displays the average

constraint score within each constraint bin.
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Figure 3.3. Average constraint score within each constraint bin.

To further understand the numerical properties of the notion of constraint adopted in this

thesis, constraint scores were compared against the entropy of BERT’s probability distribution

for the [MASK] token, over its vocabulary. Entropy (Shannon, 1948) is an information theo-

retic measure that quantifies the average amount of information or uncertainty encoded in a ran-

dom variable’s possible outcomes. For a discrete random variable X , with possible outcomes
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{x1, x2, ..., xn}, that occur with probabilities {p(x1), p(x2), ..., p(xn)}, its entropy H(X) is math-

ematically defined as:

H(X) = −
n∑
i

p(xi) log p(xi). (3.2)

In the context of the research goals of this thesis, the entropy of BERT’s output distribution for a

cloze-context can be considered to denote a form of constraint on the [MASK] token, i.e. in terms

of the uncertainty about the filler for [MASK]. Here, low constraint contexts would represent high

uncertainty, and therefore a high entropy value. Similarly, lower entropy values would be observed

for high constraint contexts, where the model is To compare the proposed constraint scores with

this new entropy-based notion of constraint, the following quantity is computed for every context

(C) used in subsequent experiments, where the entropies of the outputs for both BERT models (b,

l) are averaged:

Hconstraint(C) = −1

2

∑
m∈{b,l}

∑
x∈V

Pm(x | C) logPm(x | C) (3.3)

The Pearson correlation between constraint(C) and Hconstraint(C) was found to be -0.89, indicating

strong empirical relationship between constraint measured as the probability of the best completion

and entropy of the predicted distribution. This relationship is also represented by Figure 3.4.

3.5 Measuring Priming in BERT

For a probabilistic model of word prediction in context, such as BERT, its expectation for a word

w in context c can be measured using the model’s surprisal, or the negative log likelihood of w,

given c or hidden state representation hc (in case of a neural network-based model):

Surp(w | c) = − log2 P (w | hc). (3.4)

The surprisal of a model represents the amount of “surprise” in encountering a particular word in

the given context. Surprisal is an effective linking hypothesis between language model probabili-

ties and measures of human language processing. For instance, surprisal derived from n-gram and
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Figure 3.4. Average entropies of contexts (Equation 3.3) plotted against their
constraint scores computed using Equation 3.1.

RNN based LMs was shown to be a significant predictor of self-paced reading times, a measure

of cognitive load incurred during sentence comprehension in humans (Hale, 2001; Levy, 2008;

Smith & Levy, 2013). Word surprisals have also found to be predictive of the amplitude of the

N400 event related potential (ERP) (Kutas & Federmeier, 2011; Kutas & Hillyard, 1980).

The stimuli in this thesis are sentences prepended by prime contexts (word or sentence) that

differ minimally in the prime word (R or U), thus keeping the main sentence context C constant.

This nullifies the effect of syntactic/structural differences on BERT’s surprisal for T . Therefore,

measuring the difference in BERT’s surprisals for the target word T between the two minimal

pairs quantifies the degree to which the model gets influenced by one isolated prime word over the

other. This can be considered analogous to how the difference in response times corresponds to the

strength of lexical association between the prime and target words, as used by the human language

processing faculty. Following the definition of priming in the context of word prediction models

mentioned in Section 3.3, priming in BERT can be quantified by this difference between surprisals
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of T in the unrelated and related contexts. This quantity is referred to as “facilitation”, F, and is

mathematically described as:

F = Surp(T | U , C)− Surp(T | R, C). (3.5)

IfR primes BERT in predicting T in place of [MASK], more than U does, then BERT should show

less “surprise”—i.e., produce lower probability—in its expectation for T in the context (R, C),

than in (U , C). In such cases, F will be positive.

Measuring the number of cases where F is positive allows one to discern general patterns

of a model’s sensitivity to lexical associations between the target and the related prime word. For n

samples of minimal-pair priming stimuli as described before, the proportion of cases which show

priming by the related word is measured by:

Priming =
1

n

n∑
i=1

1Fi>0, (3.6)

where 1 is an indicator function which returns 1 when Fi > 0 and 0 otherwise. The cases where

priming by related words is observed are termed as “primed instances.”

In summary, the quantities that measure priming in BERT stem from the model’s probabili-

ties of target words in context, and denote the level of sensitivities that the model shows to isolated

lexical cues (related primes and unrelated primes). The first quantity, facilitation (F), denotes the

level of surprise shown by BERT in encountering the target word in presence of an unrelated prime

relative to that in the presence of a related prime, and the second quantity denotes the aggregate

level of facilitation across a range of stimuli. The next Section describes the tests designed to

answer the research questions presented in Section 1.2, and how the quantities described in this

Section are utilized to form conclusions about BERT’s priming behavior.

3.6 Description of Empirical Tests

The tests described in this thesis target the extent to which BERT shows sensitivities towards

isolated lexical cues that appear in cloze stimuli as “primes.” These sensitivities are especially

observed under varying levels of contextual constraint, a measure grounded in psycholinguistics
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literature that indicates the degree to which a cloze-context is predictable. Patterns of sensitivities

and contextual constraints are analyzed using two empirical tests.

The first test investigates the relation between BERT’s overall priming behavior and the

level of contextual constraint imposed on missing tokens in the cloze-stimuli. It focuses on the

exact nature of the interaction between the strength of lexical relation between words during word

prediction and the constraint imposed by the context. This test is conducted by measuring BERT’s

facilitation as a function of the constraint scores established in Equation 3.1. Specifically, con-

straint scores are used as fixed effects in a linear mixed-effects model (Baayen, Davidson, & Bates,

2008) with random intercepts for target words. The relation between facilitation and constraint is

quantified by the estimated coefficient for the constraint score in the model — i.e., a negative es-

timate would suggest a negative relationship. To establish statistical significance, this model is

compared to a baseline model without the fixed effect component of the constraint using a likeli-

hood ratio test. This test is also augmented by the analysis of the relation between the proportion

of “primed instances” and contextual constraint scores, revealing aggregated patterns where BERT

positively uses the presence of a related word in context to inform its word probabilities.

The second test performs a finer-grain investigation into the consistency of the patterns

discovered in the results of the first test across various lexical relations represented in the SPP

dataset. This test uses the same general methodology of assessing the relation between facilitation

and constraint scores, but specifically measures the interaction for stimuli representing various

lexical relations between words, revealing the extent to which BERT is attuned towards them.

Specifically, the test focuses its analysis on the stimuli belonging to the top-10 most frequent lexical

relations in the SPP dataset: synonym, forward phrasal associate, category, antonym, backward

phrasal associate, supraordinate, script, perceptual property, functional property, and instrument.

Apart from the two tests which form the core set of analyses, the following chapter presents

additional insights into the differences between priming by a word as opposed to a sentence con-

text; between BERT-base and BERT-large, the two models investigated in this thesis, and more

importantly, a post hoc analysis to further explore potentially anomalous patterns.
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CHAPTER 4. RESULTS AND DISCUSSION

This chapter presents the results of the empirical tests proposed in this thesis (and described in

section 3.6), and at the end, summarizes them in the broader context of existing literature.

4.1 Relationship between Facilitation in BERT and Contextual Constraint

The aim of the first experiment was to investigate the relationship between BERT’s lexical sen-

sitivity to prime words, quantified by the facilitation, and the predictability of the cloze context,

quantified by constraint scores. This relationship between BERT’s facilitation and the input’s

contextual constraints is depicted in Figure 4.1a, which shows the average facilitation values for

BERT-base and BERT-large across the SENTENCE and WORD scenarios, plotted against binned

constraint scores. Additionally, Figure 4.1b shows the total proportion of instances where the two

BERT models showed priming behavior (F > 0) across both scenarios. Both measures for the

neutral context, “[CLS] the last word of this sentence is [MASK]. [SEP]” are shown separately

in Table 4.1 since the neutral context was synthetically designed, and deviates from the samples

extracted from naturally occurring text for which constraint scores were calculated.

Table 4.1. Average Facilitation (with 95% standard error) and percentage of primed
instances for Neutral contexts.

Model Scenario F ± 95% S.E.
Percent of

Primed Instances

BERT-base
SENTENCE 4.10 ± 0.16 88.26%
WORD 2.69 ± 0.12 85.23%

BERT-large
SENTENCE 5.12 ± 0.16 91.95%
WORD 5.14 ± 0.16 91.29%

On average, both BERT models show positive facilitation values across all constraint items and

prime-context scenarios (p < .001 in all cases, as measured by one-sample t-tests). From Figure

4.1a, priming effects in BERT models decreases as the constraint of the cloze-context on [MASK]

increases and this is further evidenced by the negative relationship between facilitation and con-

straint scores as measured by the likelihood-ratio test between a model that estimated facilitation
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(b) Proportion of primed instances vs. Binned Constraint Scores.

Figure 4.1. Average facilitation (a) and proportion of primed instances, i.e., F > 0 (b)
vs. binned constraint score. Error bands in (a) represent 95% confidence intervals.

using constraint as fixed effects together with random intercepts for target words and a baseline

model that only included the random intercepts. This is shown in Table 4.2, where the coeffi-

cient of the constraint is estimated to be negative for both models across both scenarios. This

indicates that the information provided by the related prime word (relative to the unrelated one)
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Table 4.2. Relation between facilitation and constraint (quantified by βconstraint)
indicated by a linear mixed-effects model. Significance calculated using Likelihood

Ratio Tests.

Model Scenario βconstraint χ2(1) p-value

BERT-base
SENTENCE -2.51 3842.76 < .001
WORD -1.65 2506.84 < .001

BERT-large
SENTENCE -2.90 3995.26 < .001
WORD -2.76 3495.80 < .001

is increasingly outweighed by the information provided by the predictive constraints as the level

of constraint increases. This becomes particularly apparent upon comparing facilitation values

of naturally occuring cloze contexts shown in Figure 4.1a and those of neutral contexts, shown

in Table 4.1. Neutral contexts, where BERT receives almost no context information from non-

prime words, show substantially larger facilitation than their naturally occurring counterparts (for

instance, 5.12 bits of facilitation is observed in neutral contexts for BERT-large for the SENTENCE

prime-context scenario as opposed to 1.69 bits in the next lowest constraint score of 1), suggesting

that BERT almost completely relies on the prime words to inform the target word’s probability

in context. On comparing settings with and without sentence context for the prime word, BERT

consistently shows greater facilitation effects when the prime context is a sentence rather than a

single word, across every constraint bin (p < .001), with the exception of BERT-large for neutral

contexts, where the magnitudes of the facilitation are the largest (as shown in Table 4.1), but not

significantly different between sentence and word prime contexts (t(2111) = -0.3402, p = 0.6331).

Overall, this suggests that sentence contexts confer more information that the BERT model is able

to utilize to inform its word probabilities.

4.2 Facilitation and Constraint Scores across Lexical Relations

The second experiment follows from the first one and investigates the interaction between BERT’s

facilitation values and the constraint scores of the cloze-contexts, but now with the fine-grained

lens of specific lexical relations between the target and related words. Figure 4.2 depicts average

facilitation scores plotted against binned constraint scores across the SENTENCE and WORD scenar-
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Table 4.3. Average Facilitation (with 95% standard error) and percentage of primed
instances for Neutral contexts.

Relation N
F ± 95% S.E. Percent of Primed Instances

SENTENCE WORD SENTENCE WORD

Synonym 418 5.62 ± 0.23 4.89 ± 0.24 94.50% 93.06%
Forward Phrasal Associate 263 2.97 ± 0.27 2.61 ± 0.26 84.60% 81.75%
Category 164 6.90 ± 0.41 5.46 ± 0.40 96.65% 95.12%
Antonym 153 8.12 ± 0.40 5.82 ± 0.39 97.71% 95.75%
Backward Phrasal Associate 151 3.40 ± 0.38 2.99 ± 0.36 87.42% 84.11%
Supraordinate 131 4.81 ± 0.45 4.30 ± 0.45 90.46% 90.84%
Script 124 4.51 ± 0.45 4.02 ± 0.47 88.71% 87.90%
Perceptual Property 90 3.74 ± 0.50 3.15 ± 0.52 88.33% 82.78%
Functional Property 73 3.75 ± 0.53 3.79 ± 0.54 88.36% 89.04%
Instrument 35 4.00 ± 0.80 3.26 ± 0.77 87.14% 84.29%

ios for BERT-base (Figure 4.2a) and BERT-large (Figure 4.2b). As in the previous section, results

for the neutral context are summarized separately in Table 4.3. In addition, Table 4.4 summarizes

the results of performing a comparison between the constraint vs. facilitation linear mixed-effects

model, and the constraint-less baseline linear mixed-effects model for each of the relations, across

both models and prime-context scenarios.

Figure 4.2 and Table 4.3 suggest a somewhat consistent patterning of the average facil-

itation with the constraint of a cloze-context — positive facilitation scores, on average, for all

relations across every constraint bin (p < .001 in all cases). Again, neutral contexts show greater

facilitation across relations, indicating a consistently similar usage of isolated lexical cue informa-

tion by BERT, in estimating target word probabilities. Interestingly, the plots shown in Figure 4.2

show somewhat inconsistent patterns local to certain constraint-score regions, where higher con-

straint scores show more priming effects than do preceding lower constraint scores (for instance,

the facilitation increases when going from 0.7 constraint score to 0.8 in stimuli within the synonym

relation for both models). This locally inconsistent behavior is more pronounced in relations with

low sample sizes, which incidentally also show wider confidence intervals, indicating the need for

more samples in order to form stronger conclusions. Overall, the results from the likelihood ratio

tests indicated in Table 4.4 appear resistant to the locally-inconsistent patterns within certain con-

straint scores—showing consistently and significantly negative relations between facilitation and
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(a) Relation-wise results for BERT-base.
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(b) Relation-wise results for BERT-large.

Figure 4.2. Facilitation effects across top-10 lexical relations for (a) BERT-base and
(b) BERT-large. Error bands represent 95% confidence intervals.

constraint scores across all relations and prime-constraint scenarios, for both models (p < .001 in

every case). Specifically, among lexical relations with a considerably high sample size synonymy,

category, and antonymy relations show the most pronounced differences, with both BERT models

showing considerably larger facilitation in the neutral context than for other relations (Table 4.3).

This suggests that BERT’s word predictions in context may be more strongly attuned to relations

of synonymy, category membership, and antonymy than to other lexical relations.
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Table 4.4. Relation between facilitation and constraint (quantified by βconstraint)
indicated by a linear mixed-effects model, across top-10 relations in SPP (Hutchison,
Balota, Neely, Cortese, Cohen-Shikora, et al., 2013). Significance calculated using

Likelihood Ratio Tests. p < .001 in all cases.

Model Relation N
χ2(1) βconstraint

SENTENCE WORD SENTENCE WORD

BERT-base

Synonym 418 1172.58 720.12 -3.01 -1.97
Forward Phrasal Associate 263 374.75 242.30 -1.84 -1.24
Category 164 358.10 251.01 -3.33 -2.18
Antonym 153 428.46 354.35 -4.05 -2.69
Backward Phrasal Associate 151 216.22 126.50 -1.92 -1.20
Supraordinate 131 223.14 138.85 -2.52 -1.68
Script 124 225.85 133.26 -2.59 -1.67
Perceptual Property 90 164.92 93.95 -2.08 -1.35
Functional Property 73 144.26 111.27 -2.49 -1.65
Instrument 35 69.28 36.38 -2.41 -1.39

BERT-large

Synonym 418 1147.61 987.75 -3.52 -3.44
Forward Phrasal Associate 263 399.17 306.24 -2.06 -1.98
Category 164 396.64 326.75 -4.08 -3.54
Antonym 153 416.00 365.34 -4.43 -3.74
Backward Phrasal Associate 151 243.55 202.71 -2.22 -2.17
Supraordinate 131 220.71 220.05 -3.05 -3.13
Script 124 227.21 195.60 -2.96 -2.86
Perceptual Property 90 145.26 129.46 -2.33 -2.33
Functional Property 73 117.63 138.61 -2.65 -2.87
Instrument 35 74.37 67.80 -2.77 -2.55

4.3 On Primes and Distractors: a post hoc examination

The preceding results show a decrease in number of primed instances as contextual constraint

increases. This means that as the constraint imposed by the context increases, there are more

instances in which the probability of the target word in presence of the related word is less than

that in presence of an unrelated word. For example, the first row of Table 4.5 shows an instance

for a target, bacon, with a constraint score of 0.89 (i.e., the 9th bin). Contrary to priming patterns

observed in low-constraint contexts, the probability of bacon is quite low when BERT is primed by

pork, and very high when the unrelated word, meteorite, is the prime. Here, the related prime acts
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Figure 4.3. Proportion of primed instances under more (dashed) and less (solid)
stringent priming criteria.

as a distractor,1 similar to the mispriming phenomenon reported in Kassner and Schütze (2020).

Upon further investigation, the probability of the target word in presence of the related word is

in fact also observed to be lower than that in an un-primed context, i.e., P (T | R, C) < P (T |

C). In such cases, the related word “distracts” rather than “aiding” BERT from reliably getting

primed, thereby reducing the probability of the target. To account for such cases, the criterion of

what counts as an “primed” instance can be made more stringent — where primed instances show

positive facilitation (F > 0) and if the presence of the related word increases the probability of the

target over that in the un-primed instance (P (T | R, C) > P (T | C)). These changes are reflected

in Figure 4.3 which shows a plots similar to Figure 4.1b, now with the more stringent criterion.

In Figure 4.3, the proportion of facilitatory instances is now substantially lower with this more

robust notion of priming, but it follows the same pattern observed when only facilitation score

was considered. At higher constraint scores, the proportions fall under 50%, giving us thresholds

beyond which BERT shows more “distraction” from related prime words than facilitation. For

1it is referred to as a distractor rather than a misprime since the target word is not the absolute correct completion for
our contexts, as they are not factual like in Kassner and Schütze (2020).
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example, starting at the 8th constraint bin, BERT-base shows priming only for 49% or fewer cases

in the WORD prime context.

Table 4.5. Example high constraint instances that show “distraction” rather than
priming in BERT-large.

Target
(Constraint) (R,U) Context Top 5 Predicted Words (BERT-large probability)

Primed by Related Primed by Unrelated

bacon
(0.89)

(pork/meteorite). she
cooked up some eggs,
[MASK], and toast.

eggs (0.20), potatoes (0.04),
tea (0.04), pancakes (0.04),
cheese (0.03)

bacon (0.78), sausage (0.06),
ham (0.03), pancakes (0.02)
toast (0.02)

painting
(0.75)

(drawing/champagne).
dana was a young artist
who spent many
hours a day [MASK].

drawing (0.88), painting (0.10),
studying (<0.01), writing (<0.01),
practicing (<0.01)

painting (0.79), drawing (0.06),
working (0.03), studying (0.03),
teaching (0.01)

Specific instances of model predictions are qualitatively examined to shed further light on the

factors that contribute to BERT’s distraction (as opposed to priming) effects. Table 4.5 shows two

examples in which such distraction patterns are observed in BERT. In the example with painting

as the target, BERT’s behavior is akin to that discussed in Kassner and Schütze (2020). Here,

the presence of a distractor (drawing), one that fits as a completion in the [MASK] position, leads

BERT to predict the distractor with greater probability than the target (painting). However, the

example with bacon as the target shows a different kind of distraction: pork cannot replace bacon

here as well as drawing can replace painting in the previous example, but bacon is still demoted in

the probability distribution in favor of other foods related to pork. By contrast, in both examples

the unrelated primes resemble “random misprimes” in Kassner and Schütze (2020): BERT isn’t

distracted by them—likely due to their degraded relevance to the context—and still predicts the

target as the best completion.

4.4 General Discussion

The experiments above show that when using word pairs informed by human semantic priming,

the BERT model is reliably sensitive to individual lexical cues in its context—if the context is min-

imally constraining, such that there is little predictive information beyond that lexical cue. As the

predictive constraint applied by the context increases, BERT’s level of sensitivity to a given lexical
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cue decreases. These results suggest that BERT uses lexical cues as needed: when informative

sentence cues are available, single lexical items are of less value, and so they exert less influence

on BERT’s expectations for a masked word.

The examination of patterns across different types of lexical relations suggests that this gen-

eral effect of constraint holds across several relation types, but synonym, category, and antonym

relations elicit larger lexical sensitivities in BERT, as compared to other relations (when the context

is unconstraining). This suggests that BERT has identified these relations—or the particular words

that share these relations—to be reliably predictive. Human brains show facilitation to priming

items, likely due to predictive mechanisms sensitive to co-occurrence or feature overlap (Hutchi-

son, 2003). BERT, being a strong predictive model for language, can reasonably be expected to

pick up on these patterns too, thus showing strong sensitivities in presence of informative prime

words. The informativeness of prime words is likely amplified greatly in the absence of highly

related words in low constraint sentences and hence BERT is reliably primed with greater effects

in such instances. BERT’s priming behavior can therefore be strongly linked to how well it cap-

tures co-occurrence statistics about words, and how this leads to it forming higher-order relational

associations that inform its relative lexical sensitivities.

While we see that these priming-based lexical relations can have facilitatory effects on

BERT’s word predictions when the context is otherwise unconstraining, we see conversely that

when the context is constraining, prime words can actually have a “distractor” effect—actively

demoting the target word in the probability distribution. This finding builds on recent evidence of

BERT’s sensitivity to such distractions when predicting completions to factual queries (Kassner

& Schütze, 2020). The analyses presented above show that the nature of this distraction depends

critically on the interaction of contextual constraint and the strength of the lexical relation: when

the context is unconstraining, the probability of a word is likely to be promoted by a related lexical

item more than by an unrelated lexical item. If the context is constraining, a related lexical item

may demote the probability of a target word in the predicted distribution, while an unrelated word

is likely to have less impact. Judging from the qualitative analyses, it can be speculated that as

a context’s constraint increases, so does BERT’s expectation for an item similar/related to the

target – but once that expectation is met by the related prime, BERT no longer expects another

similar word in the target position. If this is indeed a generalizable inference, then for any model,
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its “distraction” effects would depend on its expectation based on context, or sensitivity towards

redundancy. This opens up new avenues for future work investigating different families of language

models.

The distraction effects observed in BERT are likely to be avoided in the ontological seman-

tic account of priming, which can be seen as a relative change in the membership of a concept to

a property’s fillers as briefly described in Section 3.2. Taking the example of the first row in Table

4.5, the sentence is primarily decomposed along the event COOK, and the [MASK] token occupies

a position that appears to be a candidate for the THEME of the event, represented as the following:

COOK

AGENT: HUMAN

THEME: ??
DEFAULT: UNCOOKED-FOOD

SEM: FOOD-ITEM

Figure 4.4. Event representation for the cloze-context: “She cooked up some eggs,
[MASK], and toast.”

When primed by PORK, concepts that have a close relation to it (and are subsumed by FOOD-ITEM

or UNCOOKED-FOOD) are activated — i.e., they experience an increase in their fuzzy membership

values for the property of interest, the magnitudes of which depend on their closeness to the prime.

Hence, BACON shows reliably stronger membership to THEME-OF COOK. When the prime is an

unrelated concept that is not subsumed by any of the candidate fillers, such as METEORITE, the

membership of BACON remains low due to its distance from the prime in the ontological hierarchy.

However, due to its limitations as discussed in section 3.2, the Fuzzy-OST method is unable to

account for priming effects in cases resembling the example in the second row of Table 4.5, where

missing words denote events themselves.

The effectiveness of human priming pairs in influencing BERT’s lexical sensitivities, as

well as the impact of contextual constraint on BERT’s use of lexical context cues suggest possible

parallels with mechanisms in human language processing. Not only do humans show priming with

the same word pairs that this thesis shows to impact BERT’s predictions here, but like BERT, hu-
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mans also show more limited semantic priming in constraining contexts, and wider scope of prim-

ing in low-constraint contexts (Schwanenflugel & LaCount, 1988; Schwanenflugel & Shoben,

1985). This suggests that the mechanisms that dictate BERT’s lexical sensitivity may be opti-

mized in a manner—or at least to an outcome—comparable to those underlying priming effects in

humans.

In practical terms, the results of these analyses highlight the importance of contextual con-

straint in the dynamics of word prediction and information usage in the BERT model. Future work

studying these dynamics should be mindful of this fact, as any observed prediction dynamics may

change with the predictive-ness of the context. This further emphasizes parallels with the study of

human processing, as the predictive constraint of context has long been an important consideration

and instrument in studying human sentence processing (Federmeier & Kutas, 1999; Schwanen-

flugel, 1991; Schwanenflugel & LaCount, 1988). This thesis’ findings show a similarly important

role played by the amount of constraint imposed on a masked word during word probability es-

timation, which can lead to substantially different outcomes in behavioral analysis of pre-trained

models.
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CHAPTER 5. CONCLUSION AND FUTURE WORK

5.1 Overview

Models that are pretrained by estimating word probabilities in context have become ubiquitous in

natural language processing. By-product representations that are learned as part of the pretraining

process have substantively improved the state of the art in several high-level NLP tasks. However,

the question of what linguistic properties pretraining confers upon models is by and large a signif-

icant research pursuit. This thesis focuses specifically on the behavioral properties of models to

infer the degree to which they inform their word probabilities using isolated lexical cues in context.

To this end, this thesis presented a case study analyzing the pre-trained BERT model with tests in-

formed by semantic priming. Priming in this thesis is defined by a direct analogy from humans.

Just as humans get primed to react or respond faster to stimuli in presence of a related as opposed

to an unrelated “prime”, this thesis proposed to evaluate whether BERT more strongly forms its

expectation for a word in a sentence context in the presence of a related as opposed to an unrelated

lexical cue. The experiments in this thesis are based on word pairs with clear, cognitively-based

lexical relationships for which one can explore fine-grained relation differences. Further, this the-

sis integrated perspectives from cognitive science and psycholinguistics and empirically studied

BERT’s priming dynamics based on how it was modulated by contextual constraint. Apart from

empirically defining the constraint of a sentence using metrics grounded in experimental and be-

havioral studies involving humans, this thesis blended in the paradigm of ontological semantics to

qualitatively understand the semantic constraints of sentence contexts.

Overall, this work found BERT to show “priming,” predicting a word with greater proba-

bility when the context includes a related word versus an unrelated one. This effect decreased as

the amount of information provided by the context increased — suggesting parallels with sentence

based human priming experiments where low constraint (less predictable, high entropy) sentences

showed a greater scope of facilitation as opposed to high-constraint which only elicited facilitation

in high constraint sentences. Follow-up analysis showed BERT to be increasingly distracted by re-

lated prime words as the context became more informative, assigning lower probabilities to related
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words. The findings of this thesis establish the importance of considering contextual constraint

effects when studying word prediction in word prediction models, and highlight possible parallels

with human processing.

5.2 Recommendations for Future Work

The following subsections sketch out recommendations for future work that can augment the em-

pirical contributions of this thesis.

5.2.1 Broad-coverage analyses of priming in different language model strategies

This thesis has developed a methodological framework by using lexical stimuli that cause priming

in humans to investigate analogously similar effects within a word prediction model — BERT.

This framework can currently cover other word prediction models similar to the masked language

modelling framework of BERT, but differ from BERT and each other mainly in terms of parameter

counts, such as RoBERTa (Liu et al., 2019), ELECTRA (Clark, Luong, Le, & Manning, 2020),

inter alia, without any changes made in the stimuli setup or construction. It would be worthwhile

to extend this framework to language models that process language incrementally, formulating

lexical and syntactic hypotheses as they encounter new words/tokens — i.e., models such as RNNs

and left-to-right transformer based models such as GPT2 (Radford et al., 2019). However, this

would require a drastic change in the stimuli needed as these models come with the restriction of

processing context only from the left side of the cloze-position. Furthermore, there can be a radical

mismatch between vocabularies of various models (for instance, using GPT-2 with the current set

of stimuli would reduce the total sample size by 34%), which can be a non-trivial challenge to

circumvent.

Regardless, comparing priming behavior across a broader set word prediction models will

reveal novel and general insights about the roles played by parameter counts, training objective,

and underlying architectures in influencing the interaction between context predictability and tar-

get word facilitation. Such an analysis can be made more robust in the context of forming firm
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conclusions about neural network architectures by investigating priming behavior in non-neural

n-gram LMs, as a baseline analysis.

5.2.2 Priming/adaptation effects using complex semantic units

The general framework of measuring sensitivities in word prediction models can be extended to

include more complex semantic units such as phrases or sentences, where two contrasting events

are used as “sentence primes,” followed by a generic incomplete context with the missing word

occupying the rightmost position. Such a setup is similar to the CPRAG-102 dataset, compiled

by Ettinger (2020), and will likely target more complex interactions between syntactic, lexical,

compositional, and pragmatic elements within the model, which come into play in processing a

longer context as input. Adaptation to more complex set of inputs facilitates more broader analyses

of the underlying dynamics of a model’s primary task of word prediction. This further leads to a

better characterization of what properties of language does pretraining with the language modeling

objective inject into the model, and what it does not.

5.2.3 Thorough investigation into distraction effects

This thesis reports on the existence of counter-facilitatory or “distraction” effects in the presence of

related words. This exploratory finding can be augmented by conducting controlled experiments

that aim to discern patterns in priming as discussed in this thesis that lead to distraction rather

than priming in models. From the qualitative analysis discussed in the previous chapter, a likely

explanation behind distraction can be found by studying the dynamics of the fit of the related

primes themselves to the unprimed cloze-context and its interaction with the nature of the context

itself. This category of future work is important to potentially understand and develop counter-

measures against misrpriming to train better word prediction models.
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