
PERFORMANCE COMPARISON OF PUBLIC BIKE
DEMAND PREDICTIONS: THE IMPACT OF WEATHER

AND AIR POLLUTION
by

Min Namgung

A thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

Computer Science

Fort Wayne, Indiana

December 2020



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Jin Soung Yoo, Chair

Department of Computer Science

Dr. Adolfo S. Coronado

Department of Computer Science

Dr. Peter A. Ng

Department of Computer Science

Approved by:

Dr. Jin Soung Yoo

2



Dedicated to my beloved family

3



ACKNOWLEDGMENTS

I would like to acknowledge all of those who have believed in me: My family and friends.

Thank you to my family for your unconditional love and support. I appreciate my parents

the most to support and encourage me through everytime. I appreciate my grandmother,

who always make me strong and cheer me up. I couldn’t have reached this achievement

without you. I would also like to show my appreciation to Dr. Jin Soung Yoo for her

remarkable guidance on my thesis with her insight and knowledge, Dr. Adolfo Coronado for

his outstanding mentorship and invaluable support, and Dr. Peter Ng for his generosity and

comments on my research. I appreciate all of their advice and counsel on my thesis. These

professors have helped me gain motivation and passion for my research and have encouraged

me in my pursuit of a master’s degree.

4



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 PROBLEM DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Public bike-sharing demand prediction on management-level . . . . . . . . . 17

3.2 User prediction of Public bike-sharing demand on user-level . . . . . . . . . 18

4 DATA AND DATA EXPLORATION . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 NYC Data Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Chicago Data Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Decision Tree Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Naïve Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 BIKE DEMAND PREDICTION BY WEATHER CONDITION . . . . . . . . . . 36

6.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2.1 NYC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5



6.2.2 Chicago . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 Feature Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.4 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.4.1 NYC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.4.2 Chicago . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 BIKE DEMAND PREDICTION BY AIR POLLUTION . . . . . . . . . . . . . . 50

7.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.2 Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2.1 NYC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2.2 Chicago . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.3 Feature Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.4.1 NYC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.4.2 Chicago . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A ORIGINAL DATA SCHEMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.1 NYC Citi Bike Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.2 Chicago Divvy Bike Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.3 The NOAA record of climatological observations Schema . . . . . . . . . . . 70

A.4 The EPA Outdoor Air Quality Data Schema . . . . . . . . . . . . . . . . . . 70

6



LIST OF TABLES

4.1 Tided Bike Trip Data Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1 Pre-processing Bike Trip Records Data . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 NOAA Tidied Data set in NYC . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3 Pre-processed Weather Data from Table 6.2 . . . . . . . . . . . . . . . . . . . . 37

6.4 Summarized Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.5 Precipitation Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.6 Temperature Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.7 Bike Demand Label in NYC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.8 Bike Demand Label in Chicago . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.9 Final Data Set for Task 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.10 Performance Comparison in NYC . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.11 Sensitivity and Specificity by class in NYC . . . . . . . . . . . . . . . . . . . . . 46

6.12 Performance Comparison with two labels in NYC . . . . . . . . . . . . . . . . . 46

6.13 Performance Comparison in Chicago . . . . . . . . . . . . . . . . . . . . . . . . 48

6.14 Sensitivity and Specificity by class in Chicago . . . . . . . . . . . . . . . . . . . 48

6.15 Performance Comparison with two labels in Chicago . . . . . . . . . . . . . . . 48

7.1 National Ambient Air Quality Standards . . . . . . . . . . . . . . . . . . . . . . 50

7.2 Daily Air Quality Data in Chicago . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.3 Final Data Set for Task 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.4 Performance Comparison in NYC . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.5 Sensitivity and Specificity by class in NYC . . . . . . . . . . . . . . . . . . . . . 60

7.6 Performance Comparison with two labels in NYC . . . . . . . . . . . . . . . . . 61

7.7 Performance Comparison in Chicago . . . . . . . . . . . . . . . . . . . . . . . . 62

7.8 Sensitivity and Specificity by class in Chicago . . . . . . . . . . . . . . . . . . . 62

7.9 Performance Comparison with two labels in Chicago . . . . . . . . . . . . . . . 62

7



LIST OF FIGURES

1.1 Public Bike Stations in NYC (a) and Chicago (b) . . . . . . . . . . . . . . . . . 12

4.1 Gender Distribution in NYC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Bike User Distribution in NYC . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Age Group Distribution in NYC . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Bike Demand Distribution per gender by Week Date in NYC . . . . . . . . . . . 25

4.5 Hourly Demand Distribution by Date in NYC . . . . . . . . . . . . . . . . . . . 26

4.6 Gender Distribution in Chicago . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.7 Bike User Distribution in Chicago . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.8 Age Group Distribution in Chicago . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.9 Bike Demand Distribution per gender by Week Date in Chicago . . . . . . . . . 28

4.10 Hourly Demand Distribution by Date in Chicago . . . . . . . . . . . . . . . . . 29

5.1 Decision Tree example, Han, J. et al. (2012) Figure 8.6  . . . . . . . . . . . . . . 30

5.2 General Confusion Matrix Example, Han, J. et al. (2012) Figure 8.14  . . . . . . 35

6.1 Decision Tree in NYC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Decision Tree in Chicago . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 Random Forest Feature Importance Graph in NYC . . . . . . . . . . . . . . . . 45

6.4 Random Forest Feature Importance Graph in Chicago . . . . . . . . . . . . . . 45

7.1 Decision Tree in NYC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2 Decision Tree in Chicago . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.3 Random Forest Feature Importance Graph in NYC . . . . . . . . . . . . . . . . 59

7.4 Random Forest Feature Importance Graph in Chicago . . . . . . . . . . . . . . 59

8



ABBREVIATIONS

NYC New York City

9



ABSTRACT

Many metropolitan cities motivate people to exploit public bike-sharing programs as

alternative transportation for many reasons. Due to its’ popularity, multiple types of research

on optimizing public bike-sharing systems is conducted on city-level, neighborhood-level,

station-level, or user-level to predict the public bike demand. Previously, the research on the

public bike demand prediction primarily focused on discovering a relationship with weather

as an external factor that possibly impacted the bike usage or analyzing the bike user trend

in one aspect. This work hypothesizes two external factors that are likely to affect public

bike demand: weather and air pollution. This study uses a public bike data set, daily

temperature, precipitation data, and air condition data to discover the trend of bike usage

using multiple machine learning techniques such as Decision Tree, Naïve Bayes, and Random

Forest. After conducting the research, each algorithm’s output is evaluated with performance

comparisons such as accuracy, precision, or sensitivity. As a result, Random Forest is an

efficient classifier for the bike demand prediction by weather and precipitation, and Decision

Tree performs best for the bike demand prediction by air pollutants. Also, the three class

labelings in the daily bike demand has high specificity, and is easy to trace the trend of the

public bike system.
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1. INTRODUCTION

With increasing prevalence in urban environments, bike-sharing systems have become a

prominent feature across city space worldwide. They provide a low-cost, environmentally-

friendly transportation alternative for cities that eases traffic congestion, improves public

health, and cuts carbon emissions. Due to their tremendous eco-friendly characteristics,

many cities establish their bike-sharing system as a transportation method. Representative

bike-sharing systems in the US are the Citi bike (NYC bike-sharing system) [citibikenyc.com]

and Divvy bike (Chicago bike-sharing system) [divvybikes.com]. When the Citi bike first

launched the service in May 2013, there were 332 stations and 6,000 bikes. Similarly in

Chicago, when the Divvy bike first started the service in June 2013, there were 75 stations

and 750 bikes. Currently in 2020, the Citi bike has 1000 stations with 15,000 bikes in

Manhattan, Brooklyn, and Queens [citibikenyc.com]. Based on the Nyc.gov report, released

in May 2019, nearly 1.6 million people ride a bike at least once a year in NYC, and of those

riders, nearly 800 thousand rides the bike-sharing system regularly. Similarly, due to the

increment of the Divvy bike-sharing users, based on Chicago.gov, Chicago’s Divvy bike had

around 600 stations with 6000 bikes [divvybikes.com] in 2020. As the public bike-sharing

system becomes popular, and people commonly use public bikes, better bike management is

required. To better management, a prediction of bike demand is one of the core factors to

manipulate the stations and the public bikes for the users.

The more the public bike user count increases, the more demand for the public bike system

accumulates. Due to the popularity of the public bike, effective public bike management is

required. This research aims to propound a trend of public bike demand by comparing two

metropolitan cities that have managed the public bike system by external factors that could

affect bike users. There are possibly many factors that impact the usage of the bike-sharing

system. In this research, we assume weather data such as temperature, precipitation, and air

pollution are the most important factors to influence the public bike system. To fulfill this

goal, the following questions are discussed: How does weather precipitation and temperature

affect the daily bike demand? And How much do air pollutants influence the bike usage?

This work firstly explores how public bike demand varies by weather conditions, such as

11



(a) NYC Citi bike station in
Manhattan area, 2020

(b) Chicago Divvy bike sta-
tion, 2020

Figure 1.1. Public Bike Stations in NYC (a) and Chicago (b)

maximum/minimum daily temperature and rain/snow measurement. Secondly, this research

shows how much the air quality and the public bike usage correlate or how much the daily

air condition affects public bike users’ decisions. Once both objectivities are conducted in

each city, the result of NYC’s and Chicago’s trend of bike usage is compared to predict the

bike demand model.

However, developing the public bike demand prediction is challenging, based on the

bike trip observations and weather conditions. The reason is that the analysis of the bike

demand models from NYC and Chicago are different, and the external weather conditions

vary between the two cities. Each city has a different distributed population, and the income

or tax rate is also noticeably different. Because of those reasons, citizens who live in Chicago

may prefer to ride with the public bike system due to the high state tax rate, and citizens

who live in NYC might not consider taking other transportation when they commute, or

vice versa. To analyze more accurate bike demand prediction models, the total percentage

of bike riders based on the city’s population should be considered. Also, the scale of city or

the length of the available bike path is dissimilar in both cities. Due to peripheral reasons,

the public bike system’s popularity is challenging to clarify and predict the bike demand

model from two metropolitan cities.

12



Even if this research has a limitation of different scale of population based off of two large

cities, the analyzed output data will contribute to several organizations: City Halls which

already manipulate the public bike system and New Cities which have not yet organized a

public bike system. In academia, this research will be one of the first steps for forecasting the

alternative transportation’s relationship between external factors, especially in air conditions

and air pollutants.

To analyze the Citi bike and Divvy bike data, this work uses a Decision Tree, Naïve Bayes,

and Random Forest. Decision Tree in this work aims to predict the range of public bike usage

as target data with daily maximum/minimum temperatures and each air pollutants’ daily

maximum measurement as the prediction’s features. This work also adopts Naïve Bayes to

generate a probability of daily bike usage and find a relationship between bike demand and

weather conditions, and between the range of bike demand and air pollution. Lastly, this

work applies Random Forest to discover a more precise correlation and the range of bike usage

between daily demand and each air pollutants’ measurement or daily average temperature

and precipitation. This study will focus on 2019 NYC Citi bike data and 2019 Chicago

Divvy bike data for measuring daily bike demand. External affecting factors to the public

bike demand include 2019 daily weather data and 2019 daily air pollution measurements

categorized in carbon monoxide (CO), nitrogen dioxide (NO2), particulate matter less than

2.5µm (PM2.5), ozone(O3), and oxygen saturation (SO2) for both NYC and Chicago.

The case study shows that daily average temperature and maximum precipitation influ-

ence the range of public bike demand. When the air pollutants measure high, the bike usage

is likely to be low but not have as much of an affect as the weather data. In the predic-

tion performance, Random Forest and Decision Tree have a higher accuracy rate among the

three classifiers. Random Forest increases each task’s accuracy and probability by bagging

individual trees. Decision Tree finds each task’s trend of public bike system with features

and labels.

To illustrate, the paper will be laid out in the following sections: Section 2 Problem

Description; Section 3 Related Work; Section 4 Data Description and Data Exploration;

Section 5 Methodology; Section 6 Task One: Bike Demand Prediction by Weather Condition;

13



Section 7 Task Two: Bike Demand Prediction by Air Pollution; Section 8 Conclusion and

Future Work.
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2. PROBLEM DESCRIPTION

This work aims to propound the public bike demand prediction based on weather and air

condition by comparing two metropolitan cities that manage a public bike system. Among

many other external factors which impact the public bike demand, this research focuses on

daily temperature, precipitation, and air pollutants’ measurement.

To produce a more accurate bike demand prediction models, the public bike analysis ap-

plies multiple machine learning algorithms, such as Decision Tree, Naïve Bayes, and Random

Forest, then compares each learning’s algorithm and explores which algorithms perform the

best at each task using performance comparison results. Before exploring the public bike

demand prediction models with those external factors, this study conducts data exploration

with the bike demand observation data set.

This work conducts how weather conditions affect public bike demand. The first hy-

pothesis in this research is daily weather temperature and precipitation impact on the daily

bike demand. Due to daily weather being one of the most impacting external factors for

transportation or traffic, the public bike demand is likely to change based on this first ex-

ternal impacting factor. In addition, this research shows how much the air quality and the

public bike users are correlated, or how much the daily air condition affects the public bike

demand. The second hypothesis is air condition and is one of the affecting factors on daily

bike usage. Some countries, such as China, India, or Korea, have been negatively affected by

severe air conditions. The air pollution dilemma encourages the public bike system as alter-

native transportation. Still, at the same time, the severe air pollution discourages outdoor

activity for the public. For these reasons, predicting the public bike demand, dependent on

the air conditions, is going to be necessary for future research. However, although NYC and

Chicago’s air environment are not as severe as in other countries, the air quality might be

one of the affecting factors for public bike usage. This hypothesis and the previous external

factor extend into a second hypothesis, allowing the verification of another external factor

which impacts daily bike demand.

15



Once NYC and Chicago’s public bike demand is analyzed these two objectivities, the pub-

lic bike system trends in NYC and Chicago are compared with the performance comparisons’

table.
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3. RELATED WORKS

Public bike-sharing system analysis becomes popular in many cities as it becomes an increas-

ingly popular alternative transportation method in modern society. The public bike-sharing

system is analyzed in many ways: management-level and user-level. To have a deeper layer

of understanding, it is necessary to approach multi different levels in the public bike-sharing

system.

3.1 Public bike-sharing demand prediction on management-level

The public bike-sharing system has been expanding for the past decade. As the public

bike systems increase in scale, an extensive amount of attention is paid to public bike-sharing

demand prediction models. There are three clusters of demand prediction models in the lit-

erature: city-level, station-level, and neighborhood-level. For the city-level prediction model,

the model aims to predict the bike usage for an entire city. Y. Li et al. (2020) suggested a

hierarchical consistency prediction model to predict the citywide bike-sharing system. They

proposed an Adaptive transition constraint clustering algorithm, a similarity-based efficient

Gaussian Process regressor, and a General least square formulation to predict the causal-

ity between rent and return of real-time public bike-sharing usage. R. Giot et al. (2014)

proposed a prediction of bike-sharing system usage for the next 24 hours on the city-level

side by using two years of bike-sharing models in Washington D.C. area. Their research was

tested by multiple regression models such as Ridge regression, Adaboost regression, Support

vector regression, Random forecast tree and Gradient boosting regression tree, and evalu-

ated their outputs. However, this research argued that there are over-fitting issues when

the delay is greater than one hour, which requires a further utilization by using multiple

pieces of information, such as origin, destination, trip duration, check-in/out time, or user

information. The bike-sharing prediction model on station-level is one of the most popu-

lar and challenging levels of predicting bike demand. P. Hulot et al. (2018) proposed a

bike-sharing prediction model to simplified behaviors using the external context data, then

predicted the bike-sharing system usage on station-level. They used multiple machine learn-

ing techniques such as Linear regression, Multi-layer perception, Gradient boosted tree, and

17



Random Forest. Y. Li et al. (2015) proposed a hierarchical prediction model by tracking

each station cluster. Their research primarily used bipartite clustering to sort out stations

into two levels. Then, the total number of bikes were predicted by a Gradient boosting

regression tree for evaluating Washington D.C. and NYC. However, the bike-sharing predic-

tion models on the neighborhood-level were quite challenging. Many researchers have paid

attention to neighborhood-level in multiple ways. D. Singhvi et al. (2015) predicted New

York Citi bike-sharing system usage on neighborhood-level by analyzing regression models

with several external data contexts such as NYC weather and taxi data, demographic and

housing factors as covariates in predicting pairwise trips. R. Rixey (2013) found a contiguity

to other bike share stations and to densely populated neighborhoods, and higher levels of

income and education are positively correlated with bike-sharing stations usage. Also, non-

white populations and precipitated weather negatively affected the demand of bike-sharing

system. The author concluded with those correlation factors by analyzing Census block data

to border on neighborhood-level.

3.2 User prediction of Public bike-sharing demand on user-level

Not only the increased demand of bike-sharing trend, but also user predictions on bike-

sharing system have been popular. Along with the demand on bike-sharing prediction mod-

els, a prediction of bike riders has also been given from multiple researches. There are some

valuable findings in the bike-sharing riders’ predictions. R. Beecham et al. (2014) analyzed

cycling trips by riders of London’s bike-sharing system. They analyzed the Spatio-temporal

context under each cycling journey. They found that women’s trips tend to be structured,

such that women use public bikes at weekends and within London’s parks, while men tend to

use public bikes for commuting. J. Zhao et al. (2015) explored bike-sharing travel time and

trip cycling patterns by gender and day of the week by analyzing z-score values. They found

that women were more likely to make multiple-circle trip chains than men on weekdays. H.

I. Ashqar et al. (2017) modeled the number of available bikes in San Francisco Bay by us-

ing Random Forest and Least-squared boosting, and Partial least-squared regression. Their

research found that station neighbors, the prediction horizon time, and weather variables

were significant factors in modeling, to predict the number of available bikes. D Freund et
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al. (2017) provided new approaches to rebalance overnight and new optimization for other

non-motorized rebalancing efforts during the day in NYC. Their goal was customer satisfac-

tion, and they suggested a new integer program considering pick up/drop off bikes or moving

to an adjacent station. J Yoon et al. (2012) suggested the navigating advisor application

for the usage of public bike-sharing system. The navigating advisor provided the best pair

stations and found the shortest paths for bike users by using machine learning algorithms. Y

Zhou. (2019) proposed bike placement based on bike demand for existing and new stations.

They set different distance thresholds by considering place embedding or station geography,

then evaluated the model’s RMLSE and error rate with the real bike data sets. Froehlich

et al.(2009) implemented four predictive models to forecast the total available bikes at each

bike station: last value, historical mean, historical trend, and a Bayesian network. They

used two methods to analyze with time series methods: Auto-Regressive Moving Average

(ARMA) and Auto-Regressive Integrated Moving Average (ARIMA). These methods were

used to predict the number of available bikes/docks for each station. Gallop et al. (2011)

used a seasonal Autoregressive integrated moving average time series analysis to account for

the complex serial correlation patterns and tested the model against actual bicycle traffic

counts in Vancouver, Canada. The results demonstrated that the weather had a significant

impact on the bike demand, particularly temperature, rain, humidity, and clearness were

significant. Ashqar et al. (2019) demonstrated the bike availability model in San Francisco

Bay Area. They used Poisson regression model and Negative Binomial Regression model for

the bike count model, Random Forest algorithms for the bike availability prediction model,

and Bayesian information criterion for the comparison between models following a forward

step-wise regression guided by the results of Random Forest. They found that the time-

of-the-day, temperature, and humidity levels were significant count predictors in the bike

system.
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4. DATA AND DATA EXPLORATION

This section explains the 2019 public bike-sharing data set in NYC and Chicago. This bike

data set is commonly used for each task and shows data exploration in each city.

4.1 Data

There are two different types of bike trip data used in this research. In this section,

the first data set is the NYC Citi bike trip data provided by the Citi Bike official website

[citibikenyc.com]. This work used the data from January 1, 2019, to December 31, 2019.

The second data set is the Chicago Divvy bike trip data collected from the Divvy official

page [divvybikes.com]. To match with the NYC Citi bike data set, the Divvy bike trip data

set includes bike trip records from January 1, 2019, to December 31, 2019. Unlike the Divvy

bike, the Citi bike contains the station latitude/longitude. However, both NYC’s Citi bike

and Chicago’s Divvy bike comprise similar trip features.

NYC Citi Bike Original Data Set:

• Trip Duration (seconds)

• Start Time and Date

• Stop Time and Date

• Start Station ID

• Start Station Name

• Start Station Latitude/Longitude

• End Station ID

• End Station Name

• End Station Latitude/Longitude

• Bike ID

• User Type (Customer=24-hour/3-day pass user; Subscriber=Annual Member)

• Gender (Zero=unknown; 1=male; 2=female)

• User’s Birth Year
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Chicago’s Divvy bike trip data is less tidy than NYC Citi bike data. There are some

missing values in the gender and customer’s birth year, and the headers are inconsistent.

Below is a list of 2019 Chicago’s Divvy bike trip data indicators.

Chicago Divvy Bike Original Data Set:

• Trip ID

• Start Time

• End Time

• Bike ID

• Trip Duration

• From Station ID

• From Station Name

• To Station ID

• To Station Name

• User Type

• Gender

• Birth Year

4.2 Data Cleaning

The final bike data trip is required for data preparation due to missing data for customer

observation in Divvy trip data, and inconsistency between the bike trip data sets from NYC

and Chicago. For the NYC bike trip data, start time and stop time are formatted with 2019-

01-01 00:01:47 to categorize each observation into a particular time, including the observation

at 7 or 10 am. Along with the time, a new column “wday” is added to separate weekdays

and weekends. To calculate the correct “wday”, each date is labeled with numbers 1 to 7

and adequately replaced with 1: Sunday, 2: Monday, ... , until and 7: Saturday. The “trip

duration” is also converted to a minute value by dividing 60 from the original trip duration

(sec) in addition to the bike trip date. The “age” and “age group” are also evaluated from

the trip observation’s birth year to categorize each age group’s trip data. Similarly, the

Chicago trip data also adds “wday” to represent weekdays, and “age” and “age group” are
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also labeled in the same way as NYC bike trip data preparation. The missing values are

omitted because the research aims to classify the bike user class for each situation.

As shown in Table 4.1, the final bike trip data in NYC and Chicago is formatted with

these ten indicators. The final bike data is the fundamental data set in this research. The

total number of data in NYC is 20,551,697, and the number of data in Chicago is 3,279,253.

Among these tremendous numbers of data, we only focus on morning rush hour, 7 am to 9

am, daily time frames. After sorting the morning rush hour data, the remaining number of

data in NYC is 3,003,190, and the total number of bike trips during Chicago during rush

hour is 631,268.
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4.3 NYC Data Exploration

To get more familiar with the experiment data, we first explore the public bike system

data from NYC and Chicago using data visualization. The Citi Bike trip data in 2019

contains over 20,551,694 trip records. Among those trip data, male users take almost three-

quarters of all trips, while female users take only a quarter.

Figure 4.1. Gender Distribution in NYC

(a) Female Age Distribution (b) Male Age Distribution

Figure 4.2. Bike User Distribution in NYC

As shown in Figures 4.2 and 4.3, the later 20s and early 30s age group have the most

public bike system usage. An interesting finding from the results is that the 40s generation’s

bike usage is less than the 50s generation. Figure 4.2 (a, b) shows that the age distribution
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Figure 4.3. Age Group Distribution in NYC

in the 50s is relatively smaller than in the 40s; however, the overall age group distribution

in the 50s is larger than the 40s, as shown in Figure 4.3. The age distribution in females

and males draws a similar distribution. As we can expect so far, many young bike users who

travel to work daily have used the public bike system.

Figure 4.4. Bike Demand Distribution per gender by Week Date in NYC

Figure 4.4 displays that the public bike demand is relatively greater during weekdays

than weekends. Also, the trends of male bike users are three times larger than the trends of

male bike users on a daily basis. Monday through Friday has the most public bike usage,

compared to the weekends.
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Figure 4.5. Hourly Demand Distribution by Date in NYC

Figure 4.5 shows that the peak hours are 7 am to 9 am and 4 pm to 6 pm on weekdays

during the usual commute to work. During weekends, public bike usage steadily increases

and decreases as the day goes on. For this reason, this research focuses on the 7 am to 9

am data, for the 2019 NYC Citi Bike data set, in consideration of the higher bike demand

during the weekdays.

26



4.4 Chicago Data Exploration

The Divvy Bike trip data in 2019 contains over 3,279,253 trip records. Among those trip

data, male users take almost three-quarters of all trips as similar to the NYC Citi bike data

set. In contrast, female users take only a quarter.

Figure 4.6. Gender Distribution in Chicago

(a) Female Age Distribution (b) Male Age Distribution

Figure 4.7. Bike User Distribution in Chicago

As shown in Figures 4.7 and 4.8, the later 20s and early 30s age group have the most

public bike usage, similar to the NYC Citi bike. Compared to the NYC public bike system

in Figure 4.3 and 4.8, the 10s’ generation is relatively small in Chicago, and the 20s and 30s

groups use the bike the most in both cities. In Figure 4.8, the 20s age group has more users
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Figure 4.8. Age Group Distribution in Chicago

than the 30s age group. Oppositely the 30s age group is larger than the 20s in NYC, based

on Figure 4.3. Also, the 40s and 50s bike users count is relatively small, compared to the

bike users count from the same age group in NYC.

Figure 4.9. Bike Demand Distribution per gender by Week Date in Chicago

Figure 4.9 shows that the public bike demand is relatively greater during weekdays than

weekends. Also, similar to NYC, the male bike users count are three times larger than the

female users count daily. Monday through Friday has the most public bike usage, compared

to the weekends.
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Figure 4.10. Hourly Demand Distribution by Date in Chicago

As shown in Figure 4.10, the busiest hours are 7 am to 9 am and 4 pm to 6 pm on

weekdays. Compared to the NYC Citi bike, Figure 4.10 represents a much more clear bike

usage record during rush hour. Therefore, this research focuses on 7 am to 9 am for the 2019

Chicago Divvy Bike data set, considering the higher bike demand during weekdays at that

particular time frame. In summary, the research aims to process morning rush hour data to

predict the public bike analysis from both cities.
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5. METHODOLOGY

This section will discuss multiple machine learning algorithms, Decision Tree, Naïve Bayes,

and Random Forest, applied in the prediction of daily bike demand by weather and air

pollution.

5.1 Decision Tree Induction

Decision Tree technique is a popular tree classification because both numeric and cate-

gorical data are well-suited. Decision Tree consists of internal nodes, each associated with a

logical training test set and possible consequences. Therefore, the final tree form makes it

easy to find the trend of popularity. In Decision Tree learning, predictive values have built

Decision Tree from observations to conclusions about the item’s target value. Also, Decision

Tree is very flexible in choosing the number of training features.

Figure 5.1. Decision Tree example, Han, J. et al. (2012) Figure 8.6

As shown in Figure 5.1, Decision Tree constitutes the root node, internal nodes, and leaf

nodes. A rectangle denotes internal nodes, and ovals denote leaf nodes. Decision Tree follows

a top-down approach, which begins with a training set of tuples and their associated class

labels. The training set is recursive partitioning into smaller subsets as the tree becomes

formulated. The root node is a-top-most decision node in a Decision Tree, the internal nodes
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are tree nodes or parent nodes that split into one or more child nodes, and the leaf nodes are

the bottom nodes that do not split further. In Figure 5.1.1, the root node asks whether a

data record satisfies the condition; if it is true, the next decision node will be on the left (A2

condition), and it runs until reaching the bottom leaf node. If the target data is not satisfied

with the condition, the next node goes to the right (False), and the target data runs until it

reaches class B, and the data condition is defined as class B.

Accordingly, each class in Decision Tree classifiers will be evaluated with the Gini index

in this research. Gini index calculates the probability of specific features, which is classified

incorrectly when selected randomly. The Gini index measures the impurity of a data partition

or set of training tuples.

Gini =
n∑

i=1
pi(1 − pi) = 1 −

n∑
i=1

(pi)2 where pi is p1, p2, ..., pi (5.1)

pi denotes the probability of an element being classified for every distinct class. Gini will

be zero if some pi = 1 and it since each pi < 1, it will be maximized if all pi are equal. When

the classification is correctly analyzed, the Gini index approaches zero. Thus, the lower the

Gini index, the better fitting classification.

The Gini index considers a binary split for each attribute. Let’s assume a case where A

is a discrete value attribute having x distinct values, a1, a2, … , ax. To determine the best

binary split, all the possible subsets can be formed using known values of A. Each subset,

SA, can be considered a binary test for the attribute A of the form “A ∈ SA?”. Given a

tuple, this test is satisfied if the value of A for the tuple is among the values listed in SA.

(Han, J. et al. (2012) Ch 8.7)

In this research, each possible split point is considered for continuous-valued attributes.

The point giving the minimum Gini index for a continuous-valued attribute is taken as the

split-point of the attribute. For a possible split point of A, D1 is the set of tuples in D

satisfying A ≤ split point, and D2 is the set of tuples in D satisfying A > split point. The

attribute which has the minimum Gini index is selected as the splitting attribute. Decision

Tree classifier represents decisions and helps decision-making visually and explicitly. By
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researching Decision Tree learning, classifying nodes, help decide the final class, and conclude

the class.

5.2 Naïve Bayes

Naïve Bayes is a classifier in the probabilistic machine learning model that’s used for

classification. Naïve Bayes assumes a bottom-line probability model that found the proba-

bility that an instance belongs in multiple classes, rather than a straightforward classification

from a class. This algorithm assumes all related attributes are analytically independent and

equivalently crucial in the probability.

P (A|B) = P (B|A)P (A)
P (B) = P (A) ∏n

i=1 P (Bi|A)
P (B) (5.2)

These expressions are:

• P(A|B) is a posterior probability of target class given predictor attributes

• P(A) is a prior probability of target class

• P(B|A) is a likelihood which is the probability of predictor attribute

• P(B) is a prior probability of predictor attribute

Equation 5.2 is a simple Naïve Bayes formula. The algorithm calculates the prior prob-

abilities first at each class attribute and computes the posterior probabilities’ values. Naïve

Bayes approach works adequately when all the features/predictor attributes and the depen-

dent attribute are categorical. The second reason for selecting Naïve Bayes is that training

test data set is very quick because a single pass of the data is required to take account of

discrete variables’ frequencies or calculate a normal probability for continuous variables.

In this research, the first task is the bike demand prediction, dependent on daily maximum

precipitation and daily average temperature uses multi nominal Naïve Bayes model. The

multi nominal Naïve Bayes distributes data multi-nominally, and it conducts Naïve Bayes

variants used in each separated classification, such as an application used for word count.
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θ̂y i = Nyi + α

Ny + αn
=

∑
x∈T xi + α∑n

i=1 Nyi + αn
where θy is θy1 , θy2 , ..., θyi (5.3)

The θyi is the probability P(xi|y) of feature I appearing in a sample belonging to class

Y . The Nyi is the number of times feature I appears in a sample of class y in the training

set T , and Ny is the total count of all features for class Y .

In addition, the second task which is the bike demand prediction dependent on daily air

condition uses Gaussian Naïve Bayes model.

P (xi|y) = 1√
2πσ2

y

exp(−(xi − µy)2

2σ2
y

) (5.4)

Gaussian Naïve Bayes is also known as a normal distribution that supports continuous-

valued features and models (Equation 5.4). An approach to creating a simple Naïve Bayes

model assumes that a Gaussian distribution describes the data with no co-variance (inde-

pendent dimensions) between dimensions. This model can be fit by merely finding the mean

and standard deviation of the points within each label, which is needed to define such a

distribution for measuring daily air pollutants.

5.3 Random Forest

Random Forest is ensemble with multiple Decision Trees. The individual Decision Tree

in Random Forest splits out a class prediction, and the class with the most votes becomes

the final model’s prediction (Han, J. et al. (2012)). More specifically, each Decision Tree

depends on a random vector’s values sampled independently and with the same distribution

for all trees in the forest. While the tree is classified, each tree votes, and the most popular

class is returned and selected as the final decision. Random Forest is built by bagging, which

stands for bootstrap aggregation. Each training set is a bootstrap sample [Bagging Method].

Because of sampling with replacement, some of X’s original tuples may not be included in

Xi, whereas others may occur more than once. The tuples’ frequency is generally known

as voting; thus, when the particular tuple has the most considerable frequency, the bagging
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assigns the class with the most votes to X.

Algorithm 1 Bagging Method
1: procedure Bagging(X)
2: for i = 1, 2, 3, ..., k do . Create k models:
3: create bootstrap sample, X, by sampling D with replacement
4: use Xi and the learning scheme to derive a model, Mi

Given a set, X, of X tuples, bagging works as follows. For iteration i (i = 1, 2, ..., k), a

training set, Xi, of x tuples is sampled with replacement from the original set of tuples, X.

To construct a Decision Tree classifier, Mi randomly selects each node’s number of at-

tributes as candidates for the split at the node. The CART (Classification And Regression

Trees, Machine Learning Terminology) methodology is used to grow the trees. The trees are

grown to maximum size and are not pruned. Random Forest formed this way, with random

input selection, are called Forest-RI (Han, J. et al. (2012)). The bagged classifier has rela-

tively greater accuracy than a single classifier derived from the original training data, such as

Decision Tree. The Random Forest is more robust to the effects of noisy data and over-fitting

because Random Forest is insensitive to the number of attributes selected for consideration at

each split. The increased accuracy occurs because the composite model reduces the variance

of the individual classifiers. From the bagging method that Random Forest adopted, the

accuracy of Random Forest depends on the individual classifiers’ strength and a measure of

the dependence between individual classifiers. The ideal scenario is to maintain the strength

of individual classifiers without increasing their correlation.

5.4 Evaluation Metrics

For evaluating the prediction performance of three different classification algorithms,

Decision Tree, Naïve Bayes, and Random Forest, this research uses each model’s accuracy,

overall weighted average precision, recall, and measure, and each class’s sensitivity and

specificity.
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Figure 5.2. General Confusion Matrix Example, Han, J. et al. (2012) Figure 8.14

Figure 5.2 shows a general confusion matrix, which is 2x2. The accuracy, sensitivity,

specificity, precision, recall, and F measure are found from this confusion matrix. Firstly,

the classifier’s accuracy on a given test set is the percentage of test set tuples correctly

classified by the classifier. The accuracy computes by (TP + TN) / (P + N). Secondly,

sensitivity measures the proportion of positives that are correctly identified, which is true

positive, and specificity measures the proportion of correctly identified negatives, which is

true negative. The sensitivity computes by TP / P, and specificity is by TN/ N from the

general confusion matrix. Thirdly, precision can be thought of as a measure of exactness

(i.e. What proportion of positive identifications was actually correct). In contrast, recall is

a completeness measure (i.e. What proportion of actual positives was identified correctly).

The precision calculates by TP/ (TP+FP), and recall calculates by TP/ (TP + FN). Lastly,

the F-1 score (F measure) is the harmonic mean of precision and recall, and it gives equal

weight to precision and recall. F measure is also found by (2 * precision * recall) / (precision+

recall) from these computations.
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6. BIKE DEMAND PREDICTION BY WEATHER

CONDITION

This section aims to reveal a relationship between the weather, daily weather temperature,

precipitation, and daily bike demand. The record of climatological observations (NOAA

data) and 2019 public bike trip data from NYC and Chicago are analyzed.

6.1 Data Preparation

We select trip records from the public bike trip data during the morning rush hour from

7 am to 9 am based on what we have learned in data exploration. Table 6.1 shows that

the total number of trip count between 7 am and 9 am per each date is accumulated and

displays the total count with the trip date.

Table 6.1. Pre-processing Bike Trip Records Data
# Trip Count Trip Date
1 5031 2019-01-01
2 4400 2019-01-02
3 7504 2019-01-03

The second data set we used in this task is the NOAA 2019 weather data from the

National Oceanic and Atmospheric Administration (NOAA) [noaa.gov]. The NOAA pro-

vides access to a Global Historical Climatology Network (GHCN) in a daily weather record

database, which offers historical daily temperature, precipitation, and snow records over

global land areas. Among the NOAA’s extensive database records, we focus on 2019 daily

temperature and precipitation in NYC and Chicago land area. Each month’s data set in-

cludes over 40 meteorological elements, including temperature daily maximum/minimum,

the temperature at observation time, precipitation, snowfall, snow depth, evaporation, wind

movement, wind maximums, soil temperature, and cloudiness. However, we opt for the

daily maximum and minimum temperature and daily precipitation (rain/snow) in NYC and

Chicago land area. The weather data in both NYC and Chicago have the same format after

the collected one-year data is tidied.
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Table 6.2. NOAA Tidied Data set in NYC
# Date Month Day MaxTemp MinTemp Rain Snow
1 1/1/2019 1 1 58 39 0.06 0
2 1/1/2019 1 2 40 35 0 2
3 1/1/2019 1 3 44 37 0 0

The weather data shown in Table 6.2 is processed to summarize the average daily

temperature and sum of daily precipitation. In Table 6.3, the “AvgTemp” column rep-

resents the daily average temperature by dividing two from the sum of “MaxTemp” and

“MinTemp” columns, and the “Total Precipitation” column means the sum of “Rain” and

“Snow” columns.

Table 6.3. Pre-processed Weather Data from Table 6.2
# Date MaxTemp MinTemp Rain Snow AvgTemp Total Precipitation
1 1/1/2019 58 39 0.06 0 48.5 0.06
2 1/1/2019 40 35 0 2 37.5 2
3 1/1/2019 44 37 0 0 40.5 0

The bike trip in Table 6.1 and weather data in Table 6.4 are merged by the “Trip Date”

column. The “Trip Count” indicators are from Table 6.1, and the “AvgTemp” and “Total

Precipitation” columns are from Table 6.4.

Table 6.4. Summarized Data
# Trip Date Trip Count AvgTemp Total Precipitation
1 1/1/2019 5031 48.5 0.06
2 1/1/2019 4400 37.5 2
3 1/1/2019 7504 40.5 0

To label daily trip observation data, the precipitation is divided into five different ranges

to represent the categorical data sets. Based on each range, this precipitation rate attribute

helps to establish how precipitation affects the daily bike demand. Along with the assumption

between precipitation range and public bike system demand, five categorical values on the

daily average temperature are prepared in Table 6.5.
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Table 6.5. Precipitation Label
Precipitation Rate Range (inches)

None None
Little 0.01 <= Precipitation < 0.1
Weak 0.1 <= Precipitation < 0.5

Moderate 0.5 <= Precipitation < 1.0
Heavy 1.0 <= Precipitation

Table 6.6. Temperature Label
Average Temp Range (F)

Cold Avg temp < 35
Chilly 35 <= Avg temp < 50

Moderate 50 <= Avg temp < 65
Warm 65 <= Avg temp < 805
Hot 80 <= Avg temp

Initially, the entire daily ride is numeric data by counting the number of observations by

date. Since daily bike trip records are a continuous value, it is not easy to find the trend of

daily bike demand. To track the daily bike demand trend, we set the range of the number

of public bike usage. The average demand for the entire ride data is divided into three

labels to resolve the continuous values’ labeling problem. Finding the average number of

rides consists of taking the sum of trip observations and diving it by the number of total

observations. Accordingly, the average number of rides for the 2019 NYC Citi bike-sharing

system was 6802, and for the 2019 Chicago Divvy bike-sharing system, was 1435 per day.

The number of rides column is separated into three categories using this average value, “More

than Average,” “In Average,” and “Less than Average.”

Table 6.7. Bike Demand Label in NYC
Demand Of Daily Ride Range (counts)

More than Average 0 <= DemandOfDailyRide <= 3500
In Average 3501 <= DemandOfDailyRide <= 7500

Less than Average 7501 <= DemandOfDailyRide

Table 6.7 and Table 6.8 depict the demand for bike labels by each range. To be more

specific, the range in NYC is divided into 0-3500, 3501-7500, and more than 7501, and
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Table 6.8. Bike Demand Label in Chicago
Demand Of Daily Ride Range (counts)

More than Average 0 <= DemandOfDailyRide <= 400
In Average 401 <= DemandOfDailyRide <= 1435

Less than Average 1436 <= DemandOfDailyRide

the range in Chicago is divided into 0-400, 401-1435, and more than 1436. These divisions

reflect to prevent imbalance labeling problems when the test data is trained, and these ranges

produce a more reliable output for each task. The final data set consists of “weatherlabel,”

“templabel,” and “DemandOfDailyRide” columns as shown in Table 6.9. Both NYC and

Chicago data sets have the same columns and the final data set is ordered by the bike trip

data. Therefore Table 6.9 has a total of 365 observations for both in NYC and Chicago.

Table 6.9. Final Data Set for Task 1
# weather label templabel DemandOfDailyRide
1 Chilly Little Less than Average
2 Chilly Heavy Less than Average
3 Chilly Little Less than Average

6.2 Prediction Model

In this section, the bike demand prediction model by temperature and precipitation will

be shown.

6.2.1 NYC

Figure 6.1 displays a NYC Bike Demand Prediction by Weather Condition as a tree

classification. The Decision Tree folds max depth=7 and test size=0.30 to produce a more

accurate result.

The root node starts with: IF templabel <= 0.5 (daily avg temp < 35, “cold”) THEN

Bike Demand = “Less Than Average”

IF templabel <= 0.5 (“cold”) AND weatherlabel <= 1.5 (0.01 <= daily total precipitation
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Figure 6.1. Decision Tree in NYC

< 0.1, “little”) THEN Bike Demand = “Less Than Average” (1)

IF templabel <= 0.5 (“cold”) AND weatherlabel <= 2.5 (0.1 <= daily total precipitation

< 0.5, “weak”) and THEN Bike Demand = “Less Than Average” (2)

IF templabel <= 0.5 (“cold”) AND weatherlabel > 2.5 (daily total precipitation > 0.5,

“moderate” or “heavy”) and THEN Bike Demand = “In Average” (3)

IF templabel <= 0.5 (“cold”) AND weatherlabel > 0.5 (daily total precipitation > 0.01,

“little” or “precipitation existed”) THEN Bike Demand = “In Average” (4)

Among the left-side child branch classes on the NYC Decision Tree, most of the results

show “Less Than Average” when the daily temperature is cold, even though the maximum

precipitation is little or none (1). However, the bike usage increases when the total precipi-

tation is more than 0.5, while the bike usage decrease when the daily total precipitation is

between 0.1 and 0.5, as shown in (2) and (3). Also, the overall bike usage is “In Average”

when the precipitation exists, rather than the bike usage is “Less Than Average” when pre-

cipitation does not exist (4).

Among the right-side branch classes on the NYC Decision Tree, bike users tend to use

the public bike “More Than Average” when the overall daily temperature is chilly (35 <
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daily average temperature < 50). However, there are multiple interesting findings among

the chilly weather condition.

IF templabel <= 1.5 (“chilly”) AND weatherlabel <= 0.5 (daily total precipitation <

0.01, “none”) THEN Bike Demand = “In Average” (5)

IF templabel <= 1.5 (“chilly”) AND weatherlabel > 0.5 (daily total precipitation > 0.01,

“little”) THEN Bike Demand = “More Than Average” (6)

IF templabel <= 1.5 (“chilly”) AND weatherlabel <= 1.5 (0.1 <= daily total precipitation

< 0.5, “weak”) THEN Bike Demand = “More Than Average” (7)

Among the first right-side child branch classes on the NYC Decision Tree, the daily bike

demand tends to be as “In Average” when the daily average temperature is chilly, and the

precipitation is none. Another interesting finding is that the bike demand is “More Than

Average” when the precipitation exists, rather than when the precipitation does not exist.

This interesting trend becomes much clearer in the next class (7) as shown in (5), (6) and

(7). In another case, when the daily average temperature is between 65 and 80 (“warm”),

bike users tend to use the public bike system “More Than Average.” However, the bike

demand decreases to “Less Than Average” when the precipitation is “moderate” or “heavy”

(precipitation > 2.5).

IF templabel > 2.5 (daily avg temp > 65, “warm,” or “hot”) AND weatherlabel > 3.5

(“heavy”) THEN Bike Demand = “More Than Average” (8)

IF templabel <= 3.5 (“warm”) AND weatherlabel <= 3.5 (0.5 < daily total precipitation

< 1.0, “moderate”) THEN Bike Demand = “Less Than Average” (9)

IF templabel <= 3.5 (“warm”) AND weatherlabel > 3.5 (daily total precipitation > 1.0,

“heavy”) THEN Bike Demand = “In Average” (10)

IF templabel > 3.5 (daily avg temp > 80, “hot”) AND weatherlabel > 1.5 (daily total

precipitation > 0.1, “weak”, “moderate” or “heavy”) THEN Bike Demand = “More Than

Average” (11)

IF templabel > 3.5 (daily avg temp > 80, “hot”) AND weatherlabel <=1.5 (0.01 <= daily
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total precipitation < 0.1, “little”) THEN Bike Demand = “In Average” (12)

Among the second right-side child branch classes on the NYC Decision Tree, there are

interesting findings in “warm” or “hot” weather conditions transition. Between (9) and (10),

the bike demand increases to “In Average” from “Less Than Average” when the precipitation

increases. Also, when the weather label is hot, the bike demand increases to “More Than

Average” as the precipitation increase, as shown in (11) and (12). When the temperature

is hot with moderate precipitation, the bike demand is “In Average”; while it is “Less Than

Average” when the weather is warm with moderate precipitation. We usually assume that

there would be more bike demand when the precipitation is moderate during a warm day,

rather than during hot temperatures; however, some unexpected results show the opposite.

6.2.2 Chicago

Figure 6.2. Decision Tree in Chicago

Figure 6.2 displays a Chicago Bike Demand Prediction by Weather Condition as a tree

classification. The Decision Tree folds max depth = 7 and test size = 0.30 to produce a more

accurate result and match the same environment as NYC.

The root node starts with: IF templabel <= 1.5 (35 <= daily avg temp < 50, “chilly”)

THEN Bike Demand = “Less Than Average”
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Among the first left-side child branch classes on the Chicago Decision Tree, the majority

of results show “Less Than Average” or “In Average” as the daily temperature is cold.

IF templabel > 0.5 (daily avg temp > 35, “chilly”) AND weatherlabel <= 1.5 (0.01 <=

daily total precipitation < 0.1, “little”) THEN Bike Demand = “In Average”

IF templabel > 0.5 (“chilly”) AND weatherlabel <= 0.5 (daily total precipitation < 0.01,

“none”) THEN Bike Demand = “In Average”

IF templabel <= 0.5 (daily avg temp < 35, “cold”) AND weatherlabel > 1.5 (daily total

precipitation > 0.1, “weak” or “moderate”) THEN Bike Demand = “In Average” (1)

IF templabel <= 0.5 (daily avg temp < 35, “cold”) AND weatherlabel <= 1.5 (0.01 <=

daily total precipitation < 0.1, “little”) THEN Bike Demand = “Less Than Average” (2)

IF templabel > 0.5 (daily avg temp > 35, “chilly”) AND weatherlabel <= 2.5 (0.1 <= daily

total precipitation < 0.5, “weak”) THEN Bike Demand = “Less Than Average” (3)

IF templabel > 0.5 (daily avg temp > 35) AND weatherlabel > 2.5 (daily total precipitation

> 0.5, “moderate” or “heavy”) THEN Bike Demand = “In Average” (4)

We usually assume there is more bike demand when the precipitation is little or none

during similar temperatures; however, based on (1) and (2), the bike usage increases to “In

Average” when the precipitation is more than 0.1. Also, the bike demand increases when the

weather precipitation has little, rather than zero, precipitation in the days referenced in (3)

and (4).

IF templabel <= 3.5 (65 <= daily avg temp < 80, “warm”) AND weatherlabel <=

1.5 (0.01 <= daily total precipitation < 0.1, “little”) THEN Bike Demand = “More Than

Average” (5)

IF templabel <= 2.5 (50 <= daily avg temp < 65, “moderate”) AND weatherlabel <=

2.5 (0.1 <= daily total precipitation < 0.5, “weak”) THEN Bike Demand = “Less Than

Average” (6)

IF templabel <= 2.5 (“moderate”) AND weatherlabel > 2.5 (daily total precipitation > 0.5,

“moderate” or “heavy”) THEN Bike Demand = “More Than Average” (7)
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IF templabel > 3.5 (daily avg temp > 80, “hot”) AND weatherlabel <= 2.0 (0.1 < daily

total precipitation < 0.5, “weak”) THEN Bike Demand = “Less Than Average” (8)

Among the second right-side child branch class in the Chicago Decision Tree, almost

all class represents “More Than Average” when the daily average temperature is chilly,

moderate, and warm (between 35 and 80), as shown in (5). When precipitation is heavier

during a moderate temperature, the bike demand is “More Than Average” rather than “Less

Than Average” when there is weak precipitation, as shown in (6) and (7). When the daily

temperature is hot and the precipitation rate is weak, the bike demand decreases to “Less

Than Average,” as shown in (8).
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6.3 Feature Evaluation

Figure 6.3. Random Forest Feature Importance Graph in NYC

Figure 6.3 shows that the “temp encoded” has more effect on Random Forest decision

in this task. The “temp encoded” label represents the temperature labels by encoding

each category in Table 6.6, and the importance rate is about 0.65 out of 1. The “weather

encoded” label represents the weather labels by encoding each category in Table 6.5, and

the importance rate of the “weather encoded” is 0.35 out of 1.

Figure 6.4. Random Forest Feature Importance Graph in Chicago

Based on Figure 6.4, the “temp encoded” has more effect on the Random Forest decision

in this task. The “temp encoded” label represents the temperature labels by encoding each

category in Table 6.6, and the importance rate is about 0.85 out of 1. The “weather encoded”

label represents the weather labels by encoding each weather category in Table 6.5, and the

importance rate of the “weather encoded” is 0.15 out of 1. Figure 6.3 and 6.4 show that the

“weather encoded” feature is much more dominant in both cities.
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6.4 Performance Comparison

This section compares the prediction performance of three different classification algo-

rithms, Decision Tree, Naïve Bayes, and Random Forest, using six metrics, accuracy, sensi-

tivity, specificity, weighted average precision, weighted average recall, and weighted average

F-measure.

6.4.1 NYC

There are three performance comparison tables below. Table 6.10 displays the three clas-

sifiers’ performance metrics with three labels, Table 6.11 represents sensitivity and specificity

of each class (label), and Table 6.12 shows another performance comparison results sorting

by two labels.

Table 6.10. Performance Comparison in NYC
Classifier Accuracy Precision Recall F-Measure

Decision Tree 53.64 0.53 0.54 0.53
Naïve Bayes 42.73 0.38 0.43 0.37

Random Forest 55.45 0.55 0.55 0.54

Table 6.11. Sensitivity and Specificity by class in NYC
Classifier Decision Tree Naïve Bayes Random Forest

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
In Average 0.52 0.84 0.38 0.77 0.65 0.84

Less Than Average 0.38 0.74 0.19 0.69 0.37 0.74
More Than Average 0.62 0.69 0.49 0.59 0.62 0.72

Table 6.12. Performance Comparison with two labels in NYC
Classifier Accuracy Precision Recall F-Measure Sensitivity Specificity

Decision Tree 62.73 0.63 0.63 0.63 0.59 0.66
Naïve Bayes 56.36 0.56 0.56 0.55 0.53 0.58

Random Forest 62.73 0.63 0.63 0.63 0.59 0.66

Table 6.10 shows that Random Forest classifier has the highest accuracy, highest weighted

average precision, recall, and f-measure among the three classifiers. The highest precision,
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which is referred to as completed labeling, is from Random Forest as 0.55. Moreover, the

lowest recall, which presents incorrect labeling, is from Naïve Bayes as 0.43. Among classifiers

in Table 6.11, the highest sensitivity in the “In Average” class is Random Forest, in the “Less

Than Average” class is Decision Tree, and in the “More Than Average” class is both Decision

Tree and Random Forest.

Overall, the “More Than Average” class has the highest sensitivity rate as 0.62, and the

“Less Than Average” class has the lowest sensitivity rate as 0.38 in Decision Tree, 0.37 in

Random Forest, and 0.19 in Naïve Bayes. Thus, we note that as the Random Forest classifier

has high accuracy, the Random Forest’s ability to label the positive class correctly is also

remarkable given its’ high sensitivity from three classes. In general, multi-class has high

specificity, meaning that it can accurately recognize negative tuples. Especially in the “Less

Than Average” class, although the class has the lowest sensitivity rate, the specificity is high

enough.

Table 6.12 represents the overall performance comparison when only two labels exist. The

labels, which consists of “More Than Average” and “Less Than Average,” lead the models to

higher accuracy comparatively, and higher precision and recall results. However, one of the

shortages in the two class labeling, “More Than Average” and “Less Than Average,” is the

tree classification does not depict the range difference as much as three classes. We can find

out that the three class labels model’s trend of bike demand is easier to trace, compared to

the two labels’ bike prediction model.

6.4.2 Chicago

There are three performance comparison tables below, similar to NYC. Table 6.13 dis-

plays the three classifiers’ performance metrics with three labels, Table 6.14 represents sen-

sitivity and specificity of each class (label), and Table 6.15 shows another performance com-

parison results sorted by two labels.

As shown in Table 6.13, Random Forest classifier has dominantly the highest accuracy,

highest weighted average precision, recall, and f-measure among three classifiers. The highest

weighted precision is from the Random Forest as 0.56, and the lowest recall is from Naïve

Bayes as 0.44.
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Table 6.13. Performance Comparison in Chicago
Classifier Accuracy Precision Recall F-Measure

Decision Tree 47.27 0.53 0.47 0.49
Naïve Bayes 43.64 0.36 0.44 0.33

Random Forest 54.54 0.56 0.55 0.54

Table 6.14. Sensitivity and Specificity by class in Chicago
Title Decision Tree Naïve Bayes Random Forest

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
In Average 0.56 0.77 0.25 0.66 0.63 0.76

Less Than Average 0.24 0.82 0.31 0.78 0.40 0.83
More Than Average 0.65 0.63 0.47 0.75 0.58 0.72

Table 6.15. Performance Comparison with two labels in Chicago
Classifier Accuracy Precision Recall F-Measure Sensitivity Specificity

Decision Tree 63.64 0.64 0.64 0.62 0.63 0.65
Naïve Bayes 66.36 0.66 0.66 0.65 0.67 0.66

Random Forest 65.45 0.65 0.65 0.65 0.70 0.60

Among the classifiers in Table 6.14, the highest sensitivity in the “In Average” class

is Random Forest, in the “Less Than Average” class is Random Forest, and in the “More

Than Average” class is in Decision Tree. Overall, the “More Than Average” class has the

highest sensitivity rate of 0.65, and the “Less Than Average” class has the lowest sensitivity

measure of 0.24 in Decision Tree, 0.31 in Naïve Bayes, and 0.4 in Random Forest. Thus,

we note that as the Random Forest classifier has high accuracy, the Random Forest’s ability

to label the positive (rare) class correctly is also remarkable given its high sensitivity from

three classes. In general, the multi-class has high specificity, meaning that it can accurately

recognize negative tuples. Especially in the “Less Than Average” class, although the class

has the lowest sensitivity rate, the specificity is the highest in the Decision Tree and Random

Forest.

Table 6.15 represents the overall performance comparison when there are only two labels

that exist in Chicago. The labels, which consists of “More Than Average” and “Less Than

Average,” lead the models to higher accuracy comparatively, higher precision and recall
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results. However, one of the shortages in the two classes labeling, “More Than Average”

and “Less Than Average,” is the tree classification does not depict the bike demand range

difference. We can find out that the three labels model’s trend of bike demand is easier to

trace, compared to the two labels’ bike prediction model.
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7. BIKE DEMAND PREDICTION BY AIR POLLUTION

This section aims to discover a relationship between daily air pollution rate and daily bike

demand. The 2019 daily air quality index from the United States Environmental Protection

Agency (EPA data) [epa.gov/outdoor-air-quality-data] and 2019 public bike trip data are

analyzed.

7.1 Data Preparation

The first bike data we select in this task is Table 6.1  Bike Trip data, which has to pre-

process for the previous task. The bike demand prediction by air pollution relates to the

daily bike demand similar to the previous task. Thus the same bike trip recorded data is

used, reference on the Table 6.7 and Table 6.8 Bike Demand Label.

The second data set we use in this work is the 2019 daily air quality index collected from

the United States Environmental Protection Agency (EPA). EPA air pollution measurements

are categorized in carbon monoxide (CO), nitrogen dioxide (NO2), Particulate Matter Less

than 2.5µm (PM2.5), Ozone (O3), oxygen saturation (SO2) for both NYC and Chicago. The

EPA sets National Ambient Air Quality Standards (NAAQS) Table for pollutants considered

harmful to public health and the environment. This research focuses on five pollutants with

primary standards among a total of seven pollutants, excluding Lead (Pb) and PM10.

Table 7.1. National Ambient Air Quality Standards
Pollutant Primary/Secondary Averaging Time Level
Carbon Monoxide (CO) Primary 8 hours 9 ppm

1 hour 35 ppm
Nitrogen Dioxide (NO2) Primary 1 hour 100 ppb

Primary and Secondary 1 year 53 ppb
Ozone (O3) Primary and Secondary 8 hours 0.070 ppm
Particle Pollution (PM2.5) Primary and Secondary 24 hours 35 µg/m3

Sulfur Dioxide (SO2) Primary 1 hour 75 ppb

The primary standards provide public health protection, including the health of sensi-

tive populations such as asthmatics, children, and the elderly. Oppositely, the secondary

standards provide welfare protection, including protection against decreased visibility and
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damage to animals, crops, vegetation, and buildings. Each air pollutant should not exceed

the maximum level in the averaging time to be harmful to the primary targeting group.

Table 7.2. Daily Air Quality Data in Chicago
Date CO NO2 Ozone PM2.5 SO2

Max AQI Max AQI Max AQI Mean AQI Max AQI
1/1/2019 0.4 5 19.3 18 0.029 27 6.6 28 0 0
1/2/2019 0.4 5 31.8 29 0.02 19 9.1 38 0.8 0
1/3/2019 0.2 2 23.7 22 0.016 15 8.9 37 1.6 1

Among those indicators in Table 7.2, each air pollutant’s AQI is excluded because the AQI

is stabilized, and the task needs the same continuous variable to produce a comprehensive va-

riety of cases. Therefore, DailyMaxCO, DailyMaxNO2, DailyMaxOzone, DailyMeanPM2.5,

DailyMaxSO2 columns are selected as features in this task.

Table 7.3. Final Data Set for Task 2
Date MaxCO MaxNO2 MaxOzone MeanPM2.5 MaxSO2 Bike Demand
1/1/2019 0.4 19.3 0.029 6.6 0 Less than Average
1/2/2019 0.4 31.8 0.02 9.1 0.8 Less than Average
1/3/2019 0.2 23.7 0.016 8.9 1.6 In Average

As shown in Table 7.3, five air pollutants’ measurements become features, and the bike

demand becomes a target class in this task.

7.2 Prediction Model

This section analyzes the relationship between the daily bike demand and the daily air

pollutants’ measurement with the Decision Tree, Naïve Bayes, and Random Forest classifiers.

7.2.1 NYC

Figure 7.1 displays an overall bike demand prediction by daily air quality as the tree

classification in NYC. The Decision Tree folds max depth=5, test size=0.3, and random

state=42 to produce an accurate result.
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Figure 7.1. Decision Tree in NYC

Bike demand under the condition of DailyMeanPM2.5 <= 7.45 µg/m3 tends to be “More

Than Average” due to a satisfactory PM 2.5 condition. However, there are multiple cases of

“In Average” bike demand affecting different air pollutants. The root node starts with: IF

DailyMeanPM2.5 <= 7.45 THEN Bike Demand = “More Than Average”

IF DailyMaxOzone > 0.046 AND DailyMaxNO2 <= 18.8 THEN Bike Demand = “More

Than Average” (1)

IF DailyMaxOzone > 0.046 AND DailyMaxNO2 > 18.8 THEN Bike Demand = “In Aver-

age” (2)

IF DailyMaxNO2 <= 18.8 AND DailyMaxCO <= 0.25 THEN Bike Demand = “In Average”

(3)

IF DailyMaxNO2 <= 18.8 AND DailyMaxCO > 0.25 THEN Bike Demand = “More Than

Average” (4)

IF DailyMaxOzone > 0.046 AND DailyMaxNO2 <= 40.9 THEN Bike Demand = “In Aver-

age” (5)

IF DailyMaxOzone > 0.046 AND DailyMaxNO2 > 40.9 THEN Bike Demand = “More Than

Average” (6)

Based on Table 7.1 NAAQS Table, Ozone should not exceed more than 0.07 ppm, and

NO2 should not exceed 100 ppb per day. Under the moderate Ozone condition based on

(1) and (2), the daily bike demand increases when the DailyMaxNO2 rate is less than 18.8
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ppb. DailyMaxNO2 is less than 18.8 ppb, which is still a satisfactory NO2 condition; the

public bike demand increases to “More Than Average” by following DailyMaxCO, which is

greater than 0.25 ppm. Based on Table 7.1, DailyMaxCO should not exceed over 9 ppm;

otherwise, it will negatively affect people. Thus, it is interesting finding that bike demand

increases when DailyMaxCO is higher. The daily bike demand increases when DailyMaxNO2

is greater than 40.9 ppb compared to the condition when DailyMaxNO2 is less than 40.9

ppb. Although the weather condition is not excellent, under moderate Ozone and moderate

daily NO2 conditions, the daily bike demand increases to “More Than Average.” Oppositely,

the bike demand decreases to “In Average” when the NO2 condition is better based on (5)

and (6).

IF DailyMeanPM2.5 > 3.65 AND DailyMaxNO2 <= 12.7 THEN Bike Demand = “In

Average” (7)

IF DailyMeanPM2.5 > 3.65 AND DailyMaxNO2 > 12.7 THEN Bike Demand = “More Than

Average” (8)

IF DailyMaxOzone > 0.044 AND DailyMaxNO2 <= 32.45 THEN Bike Demand = “In Av-

erage” (9)

IF DailyMaxOzone > 0.044 AND DailyMaxNO2 > 32.45 THEN Bike Demand = “More

Than Average” (10)

To compare (7) with (8), the bike demand increases to “More Than Average” when Dai-

lyMaxNO2 is greater than 12.7 ppb, oppositely the bike demand is “In Average” when the

NO2 condition is less than 12.7 ppb. Besides, under DailyMaxOzone > 0.044 ppm condi-

tions, which is satisfactory but not good Ozone condition, the daily bike demand is varied

based on NO2 measure. When DailyMaxNO2 is less than 32.45 ppb, the bike demand is “In

Average.” On the other hand, the bike demand is “More Than Average,” when DailyMaxNO2

is greater than 32.45 ppb based on (9) and (10). The annual mean of NO2 is 53 ppb, which

could negatively impact the elder and young kids.
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On the first right-side child branch in the NYC Decision Tree, most of the bike demand

is “In Average” under the condition: IF DailyMeanPM2.5 > 7.45 AND DailyMaxSO2 <=

1.25 THEN Bike Demand = “In Average”

One of the interesting findings in the first right-side child branch classes is:

IF DailyMaxNO2 > 11.35 AND DailyMaxOzone <= 0.038 THEN Bike Demand = “In Av-

erage” (11)

IF DailyMaxNO2 > 11.35 AND DailyMaxOzone > 0.038 THEN Bike Demand = “More

Than Average” (12)

IF DailyMeanPM2.5 > 11.1 AND DailyMaxCO <= 1.05 THEN Bike Demand = “In Aver-

age” (13)

IF DailyMeanPM2.5 > 11.1 AND DailyMaxCO > 1.05 THEN Bike Demand = “More Than

Average” (14)

The bike demand is likely to increase when the air pollutants’ measurements are not high,

and the bike demand decreases when the air pollutants increase. However, the bike demand

increases to “More Than Average” when DailyMaxOzone is greater than 0.038 ppm. Ozone

should not exceed 0.070 ppm in an eight hours period based on Table 7.1, and 0.038 ppm

is comparably moderate but not excellent condition. Also, under DailyMeanPM2.5 > 11.1

µg/m3 conditions, the bike demand increases when DailyMaxCO is greater than 1.05 ppm.

Inversely, the bike demand is “In Average” when DailyMaxCO is less than 1.05 ppm under

the same DailyMeanPM2.5 condition. From these results, even though the first right-side

child branch has mostly moderate air conditions, unexpected results occur.

On the second right-side child branch classes in the NYC Decision Tree, three different

bike demand classes experience different circumstances, “Less Than Average,” “In Average,”

and “More Than Average.”

IF DailyMaxSO2 <= 1.7 AND DailyMaxOzone <= 0.049 THEN Bike Demand = “Less

Than Average” (15)

IF DailyMaxSO2 <= 1.7 AND DailyMaxOzone > 0.049 THEN Bike Demand = “In Aver-
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age” (16)

IF DailyMaxSO2 <= 2.35 AND DailyMaxCO <= 0.85 THEN Bike Demand = “More Than

Average” (17)

IF DailyMaxSO2 <= 2.35 AND DailyMaxCO > 0.85 THEN Bike Demand = “In Average”

(18)

IF DailyMaxSO2 > 2.35 AND DailyMaxOzone <= 0.033 THEN Bike Demand = “Less Than

Average” (19)

IF DailyMaxSO2 > 2.35 AND DailyMaxOzone > 0.033 THEN Bike Demand = “In Average”

(20)

To compare (15) and (16), the daily bike demand increases when DailyMaxOzone is

greater than a satisfactory threshold, 0.049 ppm, under DailyMaxSO2 <= 1.7 ppb condition.

DailyMaxOzone 0.049 ppm is close to 0.07 ppm, which negatively affects the elder and young

children. The bike demand decreases to “In Average” from “More Than Average,” as the

DailyMaxCO increases based on (17) and (18). The bike demand oppositely increases to

“In Average” again when DailyMaxOzone is greater than 0.033 ppm under DailyMaxSO2 >

2.35 ppb condition.

7.2.2 Chicago

Figure 7.2 displays an overall bike demand prediction by daily air quality as the tree

classification in Chicago. The Decision Tree folds max depth=5, test size=0.3, and random

state=42 to produce a more accurate result and match NYC’s same environment.

Figure 7.2. Decision Tree in Chicago
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The bike demand under the conditions of DailyMaxSO2 is less than 2.25 ppb, and Dai-

lyMaxOzone is greater than 0.049 ppm tend to be “More Than Average.” Ozone should not

exceed a maximum of 0.07 ppm in an eight hour period, based on Table 7.1. Due to the close-

ness with the threshold, the measurement of 0.049 ppm in Ozone depicts a poor air condition.

IF DailyMaxOzone > 0.049 AND DailyMaxNO2 <= 17.8 THEN Bike Demand = “Less

Than Average” (1)

IF DailyMaxOzone > 0.049 AND DailyMaxNO2 > 17.8 THEN Bike Demand = “More Than

Average” (2)

IF DailyMaxSO2 < 1.35 AND DailyMaxNO2 <= 11.75 THEN Bike Demand = “In Average”

(3)

IF DailyMaxSO2 < 1.35 AND DailyMaxNO2 > 11.75 THEN Bike Demand = “More Than

Average” (4)

IF DailyMaxSO2 > 2.05 AND DailyMaxOzone <= 0.06 THEN Bike Demand = “More Than

Average” (5)

IF DailyMaxSO2 > 2.05 AND DailyMaxOzone > 0.06 THEN Bike Demand = “Less Than

Average” (6)

Based on (1) and (2), the bike demand increases to “More Than Average” when Dai-

lyMaxNO2 is greater than 17.8 ppb, while bike demand decreases to “Less Than Average”

when DailyMaxNO2 is less than 17.8 ppb. Both conditions are satisfactory since NO2 has

not reached the threshold, 100 ppb, but Ozone is close to the daily threshold. However,

the bike demand inversely shows an increment when the air condition is negatively affected

by the increase in NO2. Similarly, under DailyMaxSO2 < 1.35 ppb condition, which is a

healthy air condition. The bike demand increases when DailyMaxNO2 is greater than 11.75

ppb. Oppositely, the bike demand decreases when DailyMaxNO2 is less than 11.75 ppb, as

shown in (3) and (4). However, a potentially unhealthy Ozone condition is detected on (5)

and (6). Based on Table 7.1, Ozone should not exceed more than 0.07 ppm in an eight hour

period. The effect of Ozone measurement is found in (5) and (6). Accordingly, the bike

demand decreases due to the harsh Ozone levels, which are greater than 0.06 ppm, and the
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bike demand increases again when DailyMaxOzone is less than 0.06 ppm.

IF DailyMeanPM2.5 <= 3.85 AND DailyMaxNO2 <= 16.75 THEN Bike Demand = “In

Average” (7)

IF DailyMeanPM2.5 <= 3.85 AND DailyMaxNO2 > 16.75 THEN Bike Demand = “More

Than Average” (8)

IF DailyMaxNO2 > 16.75 AND DailyMaxOzone <= 0.042 THEN Bike Demand = “More

Than Average” (9)

IF DailyMaxNO2 > 16.75 AND DailyMaxOzone > 0.042 THEN Bike Demand = “In Aver-

age” (10)

IF DailyMeanPM2.5 > 3.85 AND DailyMaxOzone <= 0.038 THEN Bike Demand = “Less

Than Average” (11)

IF DailyMeanPM2.5 > 3.85 AND DailyMaxOzone > 0.038 THEN Bike Demand = “More

Than Average” (12)

An interesting finding on the most left-side child branch in the Chicago Decision Tree

(7) and (8) is the daily bike demand increases to “More Than Average” when DailyMaxNO2

is greater than 16.75 ppb, under DailyMeanPM2.5 <= 3.85 µg/m3 condition. On the other

hand, the bike demand decreases to “In Average” when DailyMaxNO2 is less than 16.75

ppb. To not affect negatively, NO2 should not exceed more than 100 ppm. The bike demand

increases to “More Than Average”, even though NO2 increases, which is still under the ideal

NO2 condition. To compare the pair (9, 10) and (11, 12), there is one interesting finding

depending on the O3, PM2.5, AND NO2. The bike demand naturally decreases to “In

Average” from “More Than Average” when DailyMaxOzone is greater than 0.042 ppm under

DailyMaxNO2 > 16.75 ppb condition. As mentioned earlier, Ozone measurement 0.042 ppm

is close to the healthy Ozone threshold due to it being close to 0.07 ppm. On the other hand,

the bike demand increases to “More Than Average” when Ozone is greater than 0.038 ppm

under DailyMeanPM2.5 > 3.85 µg/m3 condition. Since PM 2.5 does not exceed 35 µg/m3,

the air condition is still healthy except for Ozone condition.
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On Chicago’s right-side child branch classes in the Decision Tree, the trend of bike de-

mand is “More Than Average” under DailyMeanPM2.5 <= 12.75, which is not even close

to 35 µg/m3 per day.

IF DailyMeanPM2.5 <= 12.75 AND DailyMaxSO2 <= 4.5 THEN Bike Demand = “Less

Than Average” (13)

IF DailyMeanPM2.5 <= 12.75 AND DailyMaxSO2 > 4.5 THEN Bike Demand = “More

Than Average” (14)

There is one interesting finding under DailyMeanPM2.5 <= 12.75 µg/m3 condition. As

shown in (13) and (14), the bike demand is “More Than Average” when DailyMaxSO2 is

greater than 4.5 ppb, which is not a significant enough value to affect the air condition neg-

atively.

IF DailyMeanPM2.5 > 12.75 AND DailyMaxOzone <= 0.043 THEN Bike Demand =

“In Average” (15)

IF DailyMeanPM2.5 > 12.75 AND DailyMaxOzone > 0.043 THEN Bike Demand = “More

Than Average” (16)

IF DailyMaxOzone > 0.043 AND DailyMeanPM2.5 <= 19.4 THEN Bike Demand = “More

Than Average” (17)

IF DailyMaxOzone > 0.043 AND DailyMeanPM2.5 > 19.4 THEN Bike Demand = “Less

Than Average” (18)

Most of the bike demand trends under DailyMeanPM2.5 > 12.75 µg/m3 condition is

comprehensible. To be specific, in (17) and (18), the bike demand decreases to “In Average”

or “Less Than Average” from “More Than Average” based on an increase in Ozone and PM2.5

measurement. Among those daily bike trends, there is one unusual case found. The bike

demand increases when DailyMaxOzone is greater than 0.043 ppm under DailyMeanPM2.5

> 12.75 µg/m3 condition based on (15) and (16). Based on Table 7.1, Ozone should not

exceed more than 0.07 ppm, and PM2.5 should not exceed 35 µg/m3 per day. Even though

58



there are high Ozone levels and PM2.5 measurements in (15) and (16), the bike demand

represents the opposite, which is considered an interesting finding.

7.3 Feature Evaluation

Figure 7.3. Random Forest Feature Importance Graph in NYC

Based on Figure 7.3, among the five features, DailyMaxNO2 has the most effect on

the daily bike demand, and DailyMeanPM2.5 and DailyMaxOzone have a comparably high

impact on the bike demand. DailyMaxNO2’s importance rate is about 0.24 out of 1, Daily-

MeanPM2.5 is about 0.24, and DailyMaxOzone is about 0.22 out of 1. The least affecting

feature of the bike demand is DailyMaxCO, and the importance rate is about 0.1 out of 1.

Figure 7.4. Random Forest Feature Importance Graph in Chicago

Based on Figure 7.4, DailyMaxNO2 has the most effect on the daily bike demand among

the five features. The importance rate in DailyMaxNO2 is about 0.24 out of 1, Daily-
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MeanPM2.5 is 0.23 out of 1, and DailyMaxOzone is about 0.22 out of 1. The least affecting

feature is DailyMaxCO, and the importance rate is less than 0.1 out of 1. DailyMaxNO2

and DailyMeanPM2.5 are the most affecting air pollutants on the bike demand from both

NYC and Chicago.

7.4 Performance Comparison

This section compares each classifiers’ performance of three different algorithms, Decision

Tree, Naïve Bayes, and Random Forest, using six metrics, accuracy, sensitivity, specificity,

weighted average precision, weighted average recall, and weighted average F-measure.

7.4.1 NYC

There are three performance comparison results. Table 7.4 displays the three classifiers’

performance metrics with three labels, Table 7.5 represents sensitivity and specificity of each

class (label), and Table 7.6 shows another performance comparison results sorting by two

labels.

Table 7.4. Performance Comparison in NYC
Classifier Accuracy Precision Recall F-Measure

Decision Tree 53.64 0.51 0.54 0.51
Naïve Bayes 45.45 0.42 0.45 0.42

Random Forest 46.36 0.45 0.46 0.45

Table 7.5. Sensitivity and Specificity by class in NYC
Title Decision Tree Naïve Bayes Random Forest

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
In Average 0.56 0.82 0.29 0.77 0.33 0.78

Less Than Average 0.35 0.72 0.37 0.73 0.32 0.72
More Than Average 0.59 0.74 0.51 0.61 0.60 0.66

As shown in Table 7.4, Decision Tree classifier has the highest accuracy, highest weighted

average recall, and f-measure among the three classifiers. Since a perfect precision and

recall score are one, the highest precision, referred to as completed labeling, is Decision Tree
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Table 7.6. Performance Comparison with two labels in NYC
Classifier Accuracy Precision Recall F-Measure Sensitivity Specificity

Decision Tree 50.00 0.51 0.50 0.50 0.46 0.55
Naïve Bayes 58.18 0.59 0.58 0.58 0.53 0.64

Random Forest 54.54 0.55 0.55 0.55 0.50 0.59

as 0.51. The lowest recall, which is referred to as incorrectly labeling, is Naïve Bayes as

0.45. Among the three classifiers in Table 7.5, the highest sensitivity in the “In Average”

class is Decision Tree, in the “Less Than Average” class is Naïve Bayes, and in the “More

Than Average” class Random Forest, but similar in Decision Tree. Thus, the “More Than

Average” class has the highest sensitivity rate of 0.6 from Random Forest, and the “Less

Than Average” class has the lowest sensitivity rate of around 0.3. Therefore, Decision Tree

classifier has high accuracy, and Decision Tree’s ability to correctly label the positive class

is also remarkable, given its high sensitivity from three classes. In general, multi-class has a

high specificity, meaning that it can accurately recognize negative tuples. Especially in the

“Less Than Average” class, although the class has the lowest sensitivity rate, the specificity

is the highest.

Table 7.6 shows the same model with only two labels: “More Than Average” and “Less

Than Average” for the daily bike demand. Overall, the two class labels have higher accuracy

and precision, recall, and F-Measure. An interesting finding is Decision Tree in three class

labels, which consists of “In Average,” “More Than Average,” “Less Than Average,” has

higher accuracy than the two labels, “More Than Average” and “Less Than Average.” Since

the data set uses the normal distribution to predict the bike demand model, the three

labels have more support for distributing the output. However, the two class labeling model

represents higher accuracy in Naïve Bayes and Random Forest due to their limited amounts

of sorting when training and testing the data set. Since Decision Tree output is also only

sorted with two class, it is not easy to perceive where the class actually belongs to due to

its’ simplicity. Therefore, although three class labels have lower accuracy than the two class

labels, the three labels’ results contain more interesting results.
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7.4.2 Chicago

There are three performance comparison tables in this section, similar to NYC. Table

7.7 displays the three classifiers’ performance metrics with three labels, Table 7.8 represents

sensitivity and specificity of each class (label), and Table 7.9 shows another performance

comparison results sorting by two labels.

Table 7.7. Performance Comparison in Chicago
Classifier Accuracy Precision Recall F-Measure

Decision Tree 47.27 0.47 0.47 0.47
Naïve Bayes 45.45 0.45 0.45 0.44

Random Forest 39.09 0.40 0.39 0.39

Table 7.8. Sensitivity and Specificity by class in Chicago
Classifier Decision Tree Naïve Bayes Random Forest

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
In Average 0.41 0.69 0.37 0.66 0.34 0.64

Less Than Average 0.28 0.82 0.33 0.82 0.27 0.82
More Than Average 0.61 0.67 0.56 0.66 0.50 0.59

Table 7.9. Performance Comparison with two labels in Chicago
Classifier Accuracy Precision Recall F-Measure Sensitivity Specificity

Decision Tree 57.27 0.57 0.57 0.56 0.60 0.53
Naïve Bayes 55.45 0.54 0.55 0.54 0.58 0.50

Random Forest 57.27 0.56 0.57 0.56 0.59 0.53

As shown in Table 7.7, Decision Tree classifier has the highest accuracy, highest weighted

average precision, recall, and f-measure among the three classifiers. Since a perfect precision

and recall score are one, the highest precision, which is referred to as completed labeling, is

both Decision Tree as 0.47. The lowest recall, which is referred to as incorrectly labeling, is

Random Forest as 0.39.

Among classifiers in Table 7.8, the highest sensitivity in the “In Average” class is Decision

Tree, in the “Less Than Average” class is Naïve Bayes, and in the “More Than Average”

class is in Decision Tree. Thus, the “More Than Average” class has the highest sensitivity
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rate as approximately 0.61 from Decision Tree. The “Less Than Average” class has the

lowest sensitivity rate of 0.33 from Naïve Bayes. Therefore, Decision Tree classifier has high

accuracy, and Decision Tree’s ability to correctly label the positive class is also remarkable,

given its’ high sensitivity from those three classes. In general, multi-class has high specificity,

which means it can accurately recognize negative tuples. Especially in the “Less Than

Average” class, although the class has the lowest sensitivity rate, the specificity is high

enough.

Table 7.9 shows the same model with only two labelings: “More Than Average” and

“Less Than Average” in Chicago. The Chicago’s comparison results in two labelings, “More

Than Average” and “Less Than Average,” also has a higher accuracy than three labeling,

“Less Than Average,” “In Average,” and “More Than Average.” The accuracy increases in

two labels due to its’ simplified training and test data set. However, the sensitivity and

specificity in “More Than Average” in two labeling and three labeling do not contain a

significant difference. Even though two labeling is simpler when the test data is trained, two

labeling is not easy to find an attractive feature in the classification model. Therefore, even

though the three labels have lower accuracy than the two class labels, the three class labels’

results contain more interesting features and worth discussing.
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8. CONCLUSION

Generally, the public bike demand is lower when the daily temperature is low, precipitation

exists, or air condition is not satisfactory. However, there are multiple interesting bike

demand predictions which inversely increases bike demand under unsatisfactory air condition

based on this research.

Decision Tree is one of the best models to visually track all the classification models

to discover the unusual bike usage trend. For the first weather and precipitation task, the

Random Forest bike demand prediction learning has the highest accuracy for both NYC and

Chicago. Even though only two labels exist in the data, the results are the same as the three

labeling models.

The second task, air pollution and bike demand, is slightly different from the first task.

Since the air pollution data set contains continuous variables, the Decision Tree produces the

highest accuracy in NYC and Chicago for the second task. Even though the accuracy and

precision in the two labeling system are higher in many spots due to its simplicity in training

and test data sets, the specificity, which can sort out non-class groups, is high enough in

three class labeling. Therefore, we can conclude that the Decision Tree is the most reliable

technique among the three classifiers.

For our model, there is still much work that is worth exploring in the future. Other

external factors, such as geographical inference, can be added along with the weather, pre-

cipitation, and air pollution data to increase the overall accuracy rate. Secondly, instead of

using the maximum or mean value of air pollutants, air pollutants can be replaced with the

air quality index and standardize the air pollutants’ features. Thus, overall accuracy can in-

crease with more simplified features. The discovery of the relationship between air pollution

and bike demand in NYC and Chicago is the first step forward from this research. Even

though the result does not seem to produce a critical impact or result in the city, because of

their moderate air condition, this result will benefit the city management in the future for

possible air pollution condition management.
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A. ORIGINAL DATA SCHEMA

This section shows an original data.

A.1 NYC Citi Bike Schema

Citi Bike Company publish downloadable files of Citi Bike trip data  . The data includes:

• Trip Duration (seconds)

• Start Time and Date

• Stop Time and Date

• Start Station ID

• Start Station Name

• Start Station Latitude/Longitude

• End Station ID

• End Station Name

• End Station Latitude/Longitude

• Bike ID

• User Type (Customer=24-hour/3-day pass user; Subscriber=Annual Member)

• Gender (Zero=unknown; 1=male; 2=female)

• User’s Birth Year

A.2 Chicago Divvy Bike Schema

Divvy Bike Company publish downloadable files of Divvy Bike trip data  . The data

includes:

• Trip ID
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• Start Time

• End Time

• Bike ID

• Trip Duration

• From Station ID

• From Station Name

• To Station ID

• To Station Name

• User Type (Member, Single Ride, and Day Pass)

• Gender (Zero=unknown; 1=male; 2=female)

• User’s Birth Year
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A.3 The NOAA record of climatological observations Schema

A.4 The EPA Outdoor Air Quality Data Schema

The United States Environmental Protection Agency(EPA) provide downloadable files

of Outdoor Air Quality Data . Total six air pollutants are provided:

• Ozone (O3)

• Particulate matter (PM10 and PM2.5)

• Carbon monoxide (CO)

• Nitrogen dioxide (NO2)

• Sulfur dioxide (SO2)

• Lead (Pb)
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