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1.1 Generation of biphoton frequency combs. (a) Broadband biphoton
spectrum generated in χ(2) nonlinear waveguides via SPDC, followed by
cavity filtering. (b) Comb-like biphoton spectrum generated in χ(3) non-
linear resonators via SFWM. (The figure is adapted and modified from
Kues et al. [11]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Transformations in spatial- and spectral LOQC. (a) Path-based
unitaries can be constructed from two-mode Mach-Zehnder interferometers
Mi,j, each of which is composed of two spatial beamsplitters and two phase
shifters [yellow box]. The total number of components scales quadratically
with the number of spatial modes. (Carolan et al. [37]) (b) Frequency-bin
unitaries build instead on two fundamental components, EOMs and PSs,
producing a complete network via an alternating sequence (the QFP).
The various horizontal paths shown correspond to distinct frequencies, all
residing in a single spatial mode. The total number of components scales
linearly with the number of frequency bins. . . . . . . . . . . . . . . . . . 7

1.3 Schematic of QFP construction. QFP example with a total number
of three elements (Q = 3). Each element applies phase modulation in ei-
ther time (EOMs) or frequency (shapers), realizing some desired frequency
transformation. (b) An arbitrary cascade of Q elements. Both EOMs and
PSs can be modeled as diagonal unitary matrices operating on the time
and frequency domain, respectively. To model the transformation in an
alternating sequence of them, discrete Fourier transforms (DFT; F ) are
used for the basis change. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Algorithm comparison. Scatter plots of the solutions obtained from
50 independent trials of fmincon (blue) and PSO (red) optimization. The
average runtimes for fmincon and PSO are 22± 4 and 95± 60 seconds per
trial, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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2.1 Experimental setup of frequency beamsplitter and tritter imple-
mentation. Different input frequency superpositions are prepared in the
form of electro-optic frequency comb (state preparation stage) and sent to
an 2EOM/1PS QFP circuit for single-qudit frequency-bin operations (fre-
quency mixer stage). The final output state is either characterized with an
optical spectrum analyzer, or frequency-demultiplexed by a wavelength-
selective switch and measured with an InGaAs single-photon avalanche
photodiode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Experimentally obtained beamsplitter (Hadamard gate) output
spectra for specific coherent state inputs. Modes 0, and 1 denote
the computational space. (a) Pure mode 0: |αω00ω1〉. (b) Pure mode
1: |0ω0αω1〉. (c) Mode 0 and mode 1 in phase: |αω0αω1〉. (d) Mode 0
and mode 1 out of phase: |αω0(−α)ω1〉. The small bumps outside of the
computational space (e.g., in mode −1 and 2) signify the nonunity suc-
cess probability (PW ≈ 0.97) due to the usage of a pure sinewave phase
modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Implementation of parallel beamsplitters. (a) Fidelity and success
probability as a function of center wavelength. The wavelength of the
central gate mode is scanned in 5-nm increments over the full C-band.
(b) Parallel beamsplitter performance against frequency separation. The
fidelity and success probability for the collective operation are investigated
with respect to the number of guardband modes between two parallel
beamsplitters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Experimentally obtained tritter output spectra for specific coherent-
state inputs. Modes 0, 1, and 2 denote the computational space. (a)
Pure mode 0: |αω00ω10ω2〉. (b) Pure mode 1: |0ω0αω10ω2〉. (c) Pure mode 2:
|0ω00ω1αω2〉. (d) Outputs for the superposition state input |αω0(e

−iφα)ω1(e
−2iφα)ω2〉

for: (I) φ = 0, (II) φ = 2π/3, and (III) φ = 4π/3. . . . . . . . . . . . . . . 27

2.5 Spectral interference with weak coherent states. (a) Output count
rates for the two modes of the beamsplitter, as the phase φ of the single-
photon-level state |αω0(e

−iφα)ω1〉 is scanned. (b) Counts for the three
output modes of the frequency tritter as the phase φ of the three-mode
state |αω0(e

−iφα)ω1(e
−2iφα)ω2〉 is scanned. The plotted best-fit curves are

Fourier series of the form
∑

nAn cos(nφ + Bn), summed from n = 0 to 1
for (a), and n = 0 to 2 for (b). . . . . . . . . . . . . . . . . . . . . . . . . . 28
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2.6 Hadamard and three-dimensional DFT gate design. Numerical
solutions for the time-frequency phases required to implement optimal
beamsplitter and tritter on a 2EOM/1PS QFP circuit. For the frequency
beamsplitter: (a) temporal phase modulation applied to the first EOM
[solid red] and second EOM [dotted blue], plotted over one period T ; (b)
phases applied to each frequency mode by the PS, where modes 0 and 1
denote the computational space. For the frequency tritter: (c) temporal
phase modulation for first [solid red] and second [dotted blue] EOM; (d)
phases applied to each frequency mode by the PS, where now modes 0, 1,
and 2 denote the computational space. . . . . . . . . . . . . . . . . . . . . 30

2.7 High-Dimensional DFT gate design. Numerical simulation of high-
dimensional discrete-Fourier transform (DFT) gates on a three-element
QFP driven by d − 1 RF tones. Fidelity and success probability as a
function of number of pulse shaper channels. . . . . . . . . . . . . . . . . . 32

3.1 High-level vision of quantum frequency processor. An input quan-
tum state consisting of a superposition of photons (spheres) spread over
discrete frequency bins propagates through a parallelized network of quan-
tum gates (boxes) performing the desired set of operations. Spheres of a
specific color represent the probability amplitudes of finding a single pho-
ton in a particular frequency mode– that is, an ideal measurement will
result in precisely one click for each color. Frequency superpositions are
represented by spheres straddling multiple lines, while entangled states are
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are described here: Hong-Ou-Mandel interference between two spectrally
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3.2 Tunable beamsplitter design. Previously, the phase patterns to real-
ize a frequency beamsplitter [See Chapter 2.5 and Figure 2.6 for details]
consist of two π-phase-shifted sinewaves for the EO modulations, and a
π-phase jump between the two computational modes on the pulse shaper.
(a) By simply changing the depth of the phase shift α on the shaper while
both EOM remain fixed, a beamsplitter with tunable reflectivities can be
realized. (b) Beamsplitter reflectivities R and transmissivities T for all
paths between frequency bins 0 and 1, as pulse shaper phase shift [α in
(a)] is tuned. Markers denote the values measured with a laser probe,
while curves give the theory. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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3.3 Processing biphoton frequency comb with QFP. (a) Experimen-
tal configuration. A 25-GHz-spacing biphoton frequency comb (BFC) is
generated via parametric down-conversion in a periodically poled lithium
niobite (PPLN) waveguide followed by an etalon for spectral filtering.
A wavelength-selective switch (WSS) is used to route photons in differ-
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3.4 Frequency-bin Hong-Ou-Mandel (HOM) interference. (a) Mea-
sured output coincidence counts (with no accidentals subtraction) between
bins 0 and 1 given a two-photon state input |1ω0〉A|1ω1〉B. The solid curve
is the theoretical prediction scaled and vertically offset to math the data
points via linear least squares. The HOM visibility is 0.971 ± 0.007. (b)
Registered single counts in bins 0, 1, and adjacent bins −1 and 2. Here
detector dark counts are subtracted to compare output flux. For both (a)
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results in a high-fidelity flip of spectral correlations on two entangled pho-
tons. Coincidences are collected over 120 s. . . . . . . . . . . . . . . . . . . 45

3.6 Reconstructed density matrix by BME. (a) Real part of average den-
sity matrix. (b) Imaginary part. (c) Standard deviations of the real den-
sity matrix elements. (d) Standard deviations of the imaginary elements.
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4.1 Coincidence-basis controlled-not gate. (a) A photonic cnot gate,
firstly realized in the spatial-encoded platform [101], utilizes a sequences
of beamsplitters (with 1/2 and 1/3 reflectivity) to induce non-classical
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ABSTRACT

Lu, Hsuan-Hao Ph.D., Purdue University, December 2020. Quantum Information
Processing with Frequency-bin Qudits. Major Professor: Andrew M. Weiner.

Encoding quantum information in narrow, equispaced frequency bins has emerged

as a novel scheme for photonic quantum information processing (QIP) due to its in-

herent high-dimensionality and compatibility with dense spectral multiplexing net-

works. Generation and distribution of such state, commonly known as biphoton fre-

quency combs (BFCs), have been widely demonstrated over fiber- and chip-compatible

platforms, while the processing side is relatively underdeveloped. In this disserta-

tion, we focus on the realization of the quantum frequency processor, a photonic

device comprised of an alternating sequence of electro-optic phase modulators and

Fourier-transform pulse shapers, capable of processing BFCs in a parallel and low-

noise fashion. Utilizing standard telecommunication components, we experimentally

complete the universal gate set required for scalable quantum computing, including

a high-fidelity Hadamard gate and a coincidence-basis controlled-NOT gate. High-

dimensional quantum operations are also explored on our device, where we implement

the first frequency-bin tritter, a three-mode extension of the Hadamard gate. More-

over, we exploit the natural parallelizability of the system and implement tunable

and independent qubit operations on co-propagating qubits. We realize frequency-

bin Hong-Ou-Mandel interference with record-high visibility, as well as the first high-

fidelity spectral correlation flip on two-qubit entangled states. Finally, we demon-

strate essential functionalities for quantum networking, including arbitrary single-

qubit rotations, and for the first time, a frequency-domain Bell-state analyzer.

Each of these demonstrations represents a primitive but essential function in fre-

quency domain QIP, with the potential of scaling up such fundamental systems into
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larger processors thanks to ongoing efforts in integrated photonics design. Such large-

scale integrated processors would then be well positioned for the application such

as interconnecting matter qubits with mismatched frequencies and various quantum

communication protocols based on frequency-bin encoding.
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1. INTRODUCTION

Classical optical frequency combs have revolutionized a myriad of fields, from op-

tical spectroscopy [1] to optical clocks [2], and have enabled arbitrary microwave

synthesis [3], lightwave communication [4] and generation of attosecond pulses using

high-harmonic generation [5–7]. Various forms of classical frequency combs have been

extensively explored and tailored to specific applications [8,9]. On the other hand, ap-

plications for their non-classical counterparts, namely “quantum frequency combs,”

have only recently began to burgeon. Quantum frequency combs, also known as

biphoton frequency combs (BFCs) [10,11], are usually described as two-photon states

formed by many, discrete pairs of energy-matched comb lines (or “bins” for short),

where strong time-energy correlation and stable phase coherence across the optical

spectrum are shared between the photon pair. A great amount of information can be

stored in many spectro-temporal quantum modes, which provides a unique framework

for quantum information processing (QIP) in a single fiber-optic spatial mode [12],

thereby enabling natural phase stability and compatibility with current fiber net-

works. Moreover, recent progress toward realization of BFCs with on-chip microring

resonators [13–15] further enables generation of complex states in a scalable fash-

ion. The inherent robustness and high dimensionality of this optical platform1 could

display significant promise to realize manifold QIP tasks, including fiber-compatible

quantum networks and distributed quantum sensing.

To realize the aforementioned potential and possible applications with QFCs, a

major piece of functionality is still missing—“an universal set of quantum gates”, as

1In this dissertation, we will concentrate on discrete-variable (DV), gate-based QIP, while omitting
the discussion of continuous-variable (CV) encoding with quantum frequency comb [16]. Large-scale,
complex cluster states can be generated in various CV-based systems [17, 18], but the constituent
comb lines are relatively difficult to manipulate with our proposed device due to the narrow free
spectral range.
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suggested by the Divincenzo’s criteria [19], comprised of single-qubit rotations plus a

two-qubit entangling gate, capable of synthesizing any arbitrary quantum operation.

The very stability which makes frequency such a useful degree of freedom (DoF) for

encoding information presents an array of unique challenges for quantum state pro-

cessing, such as mixing and manipulating frequency modes at the single-photon level

or even conditioned on the presence of a photon in a specific mode. In this dissertation,

we attempt to address this specific challenge. Through the use of the newly developed

quantum frequency processor (QFP) [20], a device incorporating both electro-optic

modulation and pulse shaping techniques, frequency bins, that otherwise do not in-

teract, can be coupled in a controlled fashion with remarkable precision. In the first

demonstration, we focus on the realization of single-photon quantum gates, including

a frequency-bin beamsplitter and a three-dimensional tritter [21], both with near-

unity fidelity. These gates represents the basic building blocks toward scalable QIP

based on frequency-bin encoding platform, and can soon find a range of applications

such as quantum simulations and high-dimensional quantum communication.

Moving beyond single-photon frequency manipulation to full-fledged QIP with

frequency-encoded qubits, we realize frequency-bin Hong-Ou-Mandel (HOM) interfer-

ence, a foundational multiphoton effect [22] underlying two-qubit gates in the linear-

optical quantum computing (LOQC) paradigm [23], with record highest visibility for

photons of different colors [24]. We further showcase the potential for performing mas-

sively parallelized and independent operations on frequency bins, applying distinct

single-qubit gates on two spectrally separated qubits to manipulate their spectral

correlation [24]. Additionally, two-qubit entangling gate, a basic quantum computing

functionality has heretofore proven elusive on the frequency-bin encoding platform

due to the absence of strong photon-photon interaction and additional challenge from

the mismatched wavelength, is firstly demonstrated with our device [25]. We also

developed a tailored Bayesian machine learning approach to characterize the gate

transformation, and validate its high-fidelity performance.
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By this point the QFP has been experimentally leveraged to realize a broad set of

QIP primitives. In the last part of our thesis, we shift our focus to designing useful

functionalities for general-purpose protocols in frequency-bin quantum information.

We experimentally demonstrate arbitrary gates utilizing the QFP, attaining ultrahigh

mode transformation fidelities and confirming theoretically expected success probabil-

ities [26]. These results provide a valuable foundation for applications in networking

and communications, such as superdense coding [27] and quantum teleportation [28].

Furthermore, we design a Bell-state analyzer—a core unit to realize entanglement

swapping and quantum teleportation in a quantum network—and experimentally re-

alize such a device for spectrally distinguishable, frequency-encoded photonic qubits

for the very first time. We unambiguously distinguish two of four Bell states with

accuracy over 98%, which represents an important step toward the long-term vi-

sion of a quantum internet that is compatible with both heterogeneous nodes and

dense spectral multiplexing. Finally, we present a novel quantum state tomographic

technique drawing on both theoretical (Bayesian analysis) and experimental (EOMs

and pulse shapers) methods developed in this dissertation. Applying a sequence of

random quantum operations to signal-idler photon pairs followed by coincidence mea-

surements, we are able to reconstruct two-qudit (up to d = 5) states with extremely

high quantum state fidelity (> 0.93) and an upper bound of distillable entangle-

ment close to ideal (∼log2 d ebits), which is the record-highest demonstrated in the

discrete frequency-bin encoding platform. Such a technique can prove valuable to

the frequency QIP community as building high-dimensional quantum gates is still

considered challenging.

This dissertation is organized as follows. In Chapter 1 we describe in detail the

building blocks of frequency-bin QIP, followed by the experimental implementation

of high-fidelity Hadamard and discrete Fourier-transform gates for frequency qubits

and qutrits in Chapter 2. Extending to operations on multiple qubits, we discuss the

demonstration of frequency-bin HOM and correlation swapping experiments in Chap-

ter 3. We cover our last missing piece for universal QIP, a post-selected controlled-
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NOT (cnot) gate, in Chapter 4. Chapter 5 tackles the important question of arbi-

trary single-qubit rotations and state reconstruction in frequency-encoding platform.

Finally, in Chapter 6 we highlight several QIP tasks developed on the QFP paradigm.

We have a short outlook section at the end of each chapter, stating the key areas for

improvements in the future work. The Appendix section encompasses a great amount

of information, including detailed simulation results and notes, transformation matrix

reconstruction, Bayesian mean estimation method, etc.

1.1 Frequency-bin Quantum Information Processing (QIP)

1.1.1 Frequency-Bin Encoded Qudits

At a high level, any system for discrete-variable-based QIP requires first and

foremost well-defined d-dimensional qudits (qubits for d = 2), which in the case of

photonic QIP consists of selecting a particular DoF (set of modes or, in the parlance

of quantum mechanics, the Hilbert space). Quantum information can be encoded

in a scalable and interferometrically stable fashion using broadband frequency combs

whereby every spectral comb line becomes an information carrier. The available mode

space thus comprises countably infinite set of equispaced bins centered at frequencies

ωn = ω0 + n∆ω (n ∈ Z). A single-qubit state can be represented as a photon in a

superposition of two modes indexed n0 and n1:

ψ = α |1ωn0
〉+ β |1ωn1

〉 , (1.1)

where |α|2 + |β|2 = 1, and |1ωn〉 corresponds to the Fock state with a single photon

residing in bin with frequency ωn. More generally, a single-qudit state can be defined

as a d-mode superposition
∑d−1

k=0 ck |1ωnk
〉 where

∑d−1
k=0 |ck|2 = 1.

The preparation of this frequency-multiplexed state, i.e., a single photon in a quan-

tum superposition of many frequency modes, usually requires entangled photon pairs

(or, biphotons) generation in the form of BFCs followed by heralding operations [13]—

that is, the detection of one photon suggests the presence of the other photon. One of
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Fig. 1.1. Generation of biphoton frequency combs. (a) Broad-
band biphoton spectrum generated in χ(2) nonlinear waveguides via
SPDC, followed by cavity filtering. (b) Comb-like biphoton spec-
trum generated in χ(3) nonlinear resonators via SFWM. (The figure
is adapted and modified from Kues et al. [11])

the most conventional methods for BFC generation utilizes spontaneous parametric

down conversion (SPDC) process [29], in which a high-energy pump photon is coupled

into a χ(2) material, such as periodically poled lithium niobate (PPLN) waveguide,

and decays into a pair of entangled photons [Fig. 1.1 (a)]. Whereas individually these

photons can possess any frequency value from a continuous, broadband spectrum,

collectively their frequency distributions are highly correlated due to energy conser-

vation. To create comb-like features in the frequency domain, we usually introduce

etalon or Fourier-transform pulse shapers [3, 30] as a programmable filter to carve

out the BFC. Recently, BFC generation is also realized on miniaturized platforms

via spontaneous four-wave mixing (SFWM), where two pump photons decay into

entangled photon pairs within an integrated ring resonator in the presence of χ(3)

nonlinearity [13, 15, 31, 32]. The resonant structure naturally forces photons to stay

in a set of equispaced frequency modes spaced by the free spectral range (FSR), with

the phase matching bandwidth covering several of these resonances [Fig. 1.1 (b)].

Then, to manipulate qubits optically one must be able to implement arbitrary

frequency-bin operations with high fidelity, such that superpositions of various fre-

quency bins can be converted to other superpositions defined by a unitary input/output

matrix. One could envision performing unitaries on frequency bins through nonlinear
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optical interactions, and indeed, quantum frequency mixers based on χ(2) [33,34] and

χ(3) [35,36] nonlinearities have been demonstrated on two-dimensional Hilbert spaces.

However, scaling up this approach to many bins is unclear, as it would require ad-

ditional pump fields, carefully engineered phase-matching conditions, and aggressive

pump filtering.

Alternatively, we adopt a novel approach proposed and theoretically developed by

Lukens et al. [12], termed “spectral LOQC”, motivated by the revolutionary LOQC

scheme proposed by Knill, Laflamme, and Milburn (KLM) in 2001 [23]—a universal

photonic QIP architecture based on linear optical components, including beamsplit-

ters, phase shifters, photon counters, and measurement-induced nonlinearities. Spec-

tral LOQC follows this perception and introduces electro-optic phase modulators

(EOMs) and Fourier-transform pulse shapers (PSs) for frequency-bin manipulations,

substituting the role of beamsplitters and phase shifters as neither of them is suited

for single-spatial-mode operation. This substitution, as illustrated in Fig. 1.2, is not

in a one-to-one fashion, since both EOMs and PSs can operate on a formally infinite-

dimensional space of frequency bins rather than pair-wisely. Instead, a sequence of

alternating temporal (in EOMs) and spectral modulations (in PSs) is found sufficient

to realize any arbitrary unitary transformation on d spectral modes, with the total

number of components required scaling like O(d). In contrast, the scaling in spatial-

or polarization-encoded LOQC is O(d2) [38]. In the following sections, we are going

to discuss the functionality of EOMs and PSs in detail, and how a cascade of them

(the QFP) can implement any arbitrary frequency-bin operations.

1.1.2 Fourier-Transform Pulse Shaper (PS)

Pulse shapers are frequently used in our experiments as spectral phase and am-

plitude filters to address each frequency mode. This device separates input frequency

modes with a spectral disperser (e.g., diffraction gratings or prisms) and focuses dif-

ferent spectral components to small diffraction-limited spots onto liquid crystal modu-
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Fig. 1.2. Transformations in spatial- and spectral LOQC.
(a) Path-based unitaries can be constructed from two-mode Mach-
Zehnder interferometers Mi,j, each of which is composed of two spatial
beamsplitters and two phase shifters [yellow box]. The total number
of components scales quadratically with the number of spatial modes.
(Carolan et al. [37]) (b) Frequency-bin unitaries build instead on two
fundamental components, EOMs and PSs, producing a complete net-
work via an alternating sequence (the QFP). The various horizontal
paths shown correspond to distinct frequencies, all residing in a single
spatial mode. The total number of components scales linearly with
the number of frequency bins.
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lator (LCM) arrays at the focal plane. One can program an user-defined pattern onto

the LCM arrays via voltage controls, applying phase- and amplitude-modulation in-

dependently to the spatially dispersed optical components. Finally, a second lens and

spectral disperser recombine all constituent frequencies in the shaped field into a single

collimated beam. Owing to the Fourier relation between frequency and time, earliest

demonstrations were mostly concentrated on shaping the temporal waveform of the

classical light field on femtosecond timescales [30, 39], such as single-cycle ultrashort

pulse generations [40] and optical arbitrary waveform generations [3]. This concept

can readily apply to non-classical light field as well. Pe’er et al. firstly demonstrated

shaping the time correlation function of entangled photon pairs [41] with phase-only

spectral modulation, and Zäh et al. further extended to full amplitude and phase

modulation of time-energy entangled two-photon states [42]. Following these pio-

neering demonstrations, a wide range of experiments have showcased the utility of

pulse shaping at the single-photon level, including dispersion cancellation [43], quan-

tum state reconstruction [44], and spectral coding [45].

In our works, pulse shaper can be visualized as a bank of user-defined attenuators

and phase shifters over all frequency bins [Fig. 1.2(b)]2. To ensure that we can operate

in the line-by-line shaping [46, 47] regime, i.e., each frequency bin can be addressed

independently, the bin spacing needs to be carefully chosen to exceed the pulse shaper

resolution (determined by the optical beam size, grating period, focal length, etc).

In most of our works, the frequency-bin spacing is chosen at 25 GHz, well above

the commercial pulse shaper resolution (∼10 GHz; Finisar Corporation), meanwhile

matching the standard ITU grid for dense wavelength-division multiplexing (DWDM)

applications. The total optical bandwidth of the pulse shaper (5 THz, in our case)

combined with the tightest available bin spacing will ultimately determine how many

frequency modes can be addressed in parallel.

2For quantum gate construction, phase-only modulation is considered for the sake of unitarity.
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1.1.3 Electro-Optic Phase Modulator (EOM)

As noted above, universal QIP also requires mixing different modes to, e.g., create

superposition and generate single- and multi-photon interference [23]. For most DoFs

in the photon, mixing different modes is straightforward—for example, spatial modes

can be mixed via conventional beamsplitters or evanescently coupled waveguides,

and polarization modes can be easily manipulated with a sequence of waveplates.

Mixing frequency modes, on the other hand, requires generation of new frequency

components, and thus nonlinear optical methods are instantly summoned [33–36].

Electro-optic modulation represents an attractive alternative: It requires no optical

pumps, relies on purely electrical controls, and is compatible with state-of-the-art

telecommunication technology. The applied radio-frequency (RF) voltage across the

EOM can modify the refractive index of the material and introduce a temporal phase

modulation to the co-propagating optical field. Assume this RF drive is periodic

at frequency ∆ω, the optical energy can be redistributed into frequency sidebands

spaced at ∆ω, an effect widely exploited for EO frequency comb generators [48,49].

Importantly, EOMs are optically linear and independent of the input optical

power, thus representing a strong candidate for manipulating single photons. In-

deed, a large number of experiments have displayed the potential of EO modula-

tions on quantum light after the first demonstration by Kolchin et al. [50], including

non-local modulation cancellation [51], frequency-bin entanglement [52–54], large-

alphabet quantum key distribution [55], bandwidth compression of single photon [56],

etc. In this work, EOMs are driven by a periodic RF signal with frequency equal to

the mode spacing, causing states across distinct input frequency bins to overlap and

interfere in a complex fashion set by the specific RF waveform [Fig. 1.2(b)]. For

maximum generality in the original proposal [12], it was assumed each EOM could

be driven by arbitrary modulation patterns repeating at ∆ω. However, reproducing

the required phase modulation bandwidth can pose a significant practical challenge

to both electronic waveform generators and EOMs. A major finding in our works
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is that much simpler single-tone drive signals are sufficient to construct many basic

quantum gates with an extremely small reduction in performance; introducing extra

harmonics to the microwave drives further improves performance and can facilitate

implementation of higher-dimensional (d > 2) quantum operations.

In the following sections, we will describe the mathematical model to handle the

transformation of PSs and EOMs, and discuss how to numerically find the spectral

and temporal phase patterns required to synthesize a target quantum operation.

1.2 Modeling the Quantum Frequency Processor (QFP)

To describe how PSs and EOMs operate on discrete frequency modes, we start

with introducing the positive-frequency electric-field operator [12, 57, 58] to describe

the input state as

Ê
(+)
in (t) =

∞∑
n=−∞

âne
−iωnt, (1.2)

and the output state after the quantum operation as

Ê
(+)
out (t) =

∞∑
n=−∞

b̂ne
−iωnt, (1.3)

where the symbol ân and b̂n denote the annihilation operator in the frequency bin

centered at ωn, before and after the operation. Mode transformation in a linear-

optical device is represented by a matrix V , which connects the input ân and output

b̂m (at frequencies ωm) via

b̂m =
∞∑

n=−∞

Vmnân. (1.4)

The ideal line-by-line shaper can apply an arbitrary phase shift to each spectral mode,

i.e.,

Ê
(+)
out (t) =

∞∑
n=−∞

eiφn âne
−iωnt, (1.5)

and thus the operation can be described as [V ]mn = eiφmδmn, a diagonal unitary

matrix in the frequency mode space.
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On the other hand, consider an EOM driven with phase ϕ(t), assumed periodic at

the inverse mode spacing (T = 2π/∆ω). The temporal phase modulation operation

can be expressed using the Fourier series expansion eiϕ(t) =
∑

k cke
ik∆ωt, where

ck =
1

2π

∫
T

dt eiϕ(t)eik∆ωt (1.6)

are the Fourier series coefficients of the periodic EOM operation. For example, in

the case of single-sinewave modulation, i.e., ϕ(t) = Θ sin ∆ωt with Θ denoting the

modulation depth, ck are revealed to be Bessel functions of the first kind, Jk(Θ). The

output electric field then transforms as

Ê
(+)
out (t) = eiϕ(t)Ê

(+)
in (t) =

∞∑
k=−∞

∞∑
n=−∞

ckâne
−i(ωn+k∆ω)t. (1.7)

We can derive the mode transformation as

b̂m =
∞∑

n=−∞

cm−nân, (1.8)

which describes how an EOM couples an input mode to infinitely many output modes,

with coupling coefficients depending only on the frequency difference between input

and output modes. The matrix form of this transformation, [V ]mn = cm−n, is a

Toeplitz (diagonal-constant) matrix; namely, the ideal EOM is invariant to optical

frequency translation. Any modulation which succeeds in coupling, say, mode n to

n+ 1, will also couple modes n+ 1 to n+ 2 with equal weight. This feature, however,

suggests that a single EOM cannot serve as a deterministic mode mixer, no matter

how intricate the periodic modulations are designed. An operation intends to mix the

frequency bins in the computational space, i.e., the predefined subset of frequency bins

used to encode quantum information, will also scatter photon outside of the space.

This fundamental limitation precludes the single-modulator-based scheme for general-

purpose QIP, but may be acceptable3 for experiments like frequency-bin entanglement

verification [53,54,59] and probabilistic frequency-bin HOM interference [60].

3The probabilistic nature of frequency mixing process may still be problematic if one would like to
extend the system to higher dimension, in which a large portion of photons are lost to sidebands
not intended for the targeted mixing process.
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QFP delivers as the alternative solution for frequency-bin QIP, introducing PSs

between every two EOMs; the spectral phase imparted by the middle stage ensures

that the generated sidebands are returned to the computational space at the last

stage through successive frequency-bin interferences, thereby making it possible to

realize a fully deterministic frequency-bin quantum operation.

1.3 Numerical Optimization Approach

Now we have qualitatively explained why an alternating sequence of EOMs and

PSs can realize a target frequency-bin transformation, we move on to discuss the nu-

merical optimization procedures we adopt to find the phase patterns for experimental

implementation. More detailed discussions can also be found in [12,21,26,61].

Fig. 1.3 shows the schematic of QFP construction. For simulation purposes, we

discretize a single temporal period of EO modulation into M samples and truncate

the number of frequency modes to M as well. This truncation provides an accurate

approximation to the d× d operation of interest as long as M � d, which guarantees

that the simulation can fully encompass all frequency modes occupied by photons

throughout the operation. In the M -bin discretization, each pulse shaper acts as an

M ×M diagonal unitary D consisting of complex-exponential elements (phase shifts)

over frequency bins. On the other hand, an EOM is represented as an M×M diagonal

unitary D operating on time samples, or as FDF † in the frequency domain, where

F is the M ×M discrete Fourier transform matrix (DFT) with elements defined as

Fnk = M−1/2e2πink/M . We can then approximate the mode transformation matrix V

for a QFP with a total number of Q alternating elements by

V = FDQF
† · · ·D2FD1F

†. (1.9)

We explicitly consider QFPs consisting of Q ∈ {1, 3, 5, ...} components, in which

EOMs comprise the first and last devices in the sequence, since we have found that

the additional phase shifts available by adding a shaper on the front or back end of

the QFP does not enable a better performance than the configuration without it.
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QFP

Fig. 1.3. Schematic of QFP construction. QFP example with a
total number of three elements (Q = 3). Each element applies phase
modulation in either time (EOMs) or frequency (shapers), realizing
some desired frequency transformation. (b) An arbitrary cascade of
Q elements. Both EOMs and PSs can be modeled as diagonal unitary
matrices operating on the time and frequency domain, respectively.
To model the transformation in an alternating sequence of them, dis-
crete Fourier transforms (DFT; F ) are used for the basis change.

To assess the performance of our QFP with respect to a desired unitary operation

U , we introduce two metrics for optimization: success probability PW and fidelity

FW [12, 62].

Success probability PW describes the probability of a photon staying within the

computational space, irrespective of the correctness of the operation. An operation

with PW < 1 suggests photons scattering outside of the d-dimensional computational

space into adjacent bins due to the EO modulation approach, rather than an overall

insertion loss of the components (assumed lossless in the simulations). Mathemati-

cally speaking, PW can be defined as

PW =
Tr(W †W )

Tr(U †U)
, (1.10)
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where W denotes the equivalent state transformation matrix, which in the case of

single-qudit operation, equals to the M ×M unitary mode transformation matrix V

truncated to the dimension of U . Derivation of W is relatively complicated in the

case of two-qubit gates, as one needs to consider all the possible pathways connecting

a given pair of input modes to the output modes. We will have a short discussion in

Chapter 4 regarding the construction of a two-qubit cnot gate; for detailed informa-

tion, the reader is directed to the supplemental information of [12].

Fidelity FW , on the other hand, describes the closeness of a successful transfor-

mation with respect to the ideal unitary U , and can be defined as

FW =
Tr(W †U) Tr(U †W )

Tr(W †W ) Tr(U †U)
, (1.11)

expressed in the form of Hilbert-Schmidt inner product. The ideal condition FW =

PW = 1 signifies the situation W = eiφU , with φ an unimportant global phase.

Practically, we would like to constrain FW to be as close to one as possible (for

example, within a 10−4 reduction), since an imperfect fidelity will requires a lot of

resources for error correction [63]. On the other hand, we are less susceptible to

nonunity PW , as we just need to wait a longer time until the gate succeed (a long

sequence of gates with reduced PW will still be detrimental, though).

In our simulations, we utilize the Optimization Toolbox in MATLAB to search for

an optimal set of phases for D, which preserve fidelity FW ≥ 0.9999 and maximize

success probability PW . One could alternatively constrain PW , or maximize to the

product FW PW ; In the theoretical proposal by Lukens et al. [12], each matrix is

characterized by M independent real numbers in (−π, π] for the sake of maximum

generality: for the pulse shaper (D2), these signify the phase shifts applied to each

frequency mode; for the EOMs, these are samples of the temporal phase modulation

over one period. However, for experimental practicability, we constrain the temporal

phase patterns to sums of sinewaves (i.e., truncated Fourier series), rather than fully

arbitrary functions. Thus, taking a total of p harmonics in the optimization—each

specified by an amplitude and phase—the number of free parameters for each EOM
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matrix reduces to 2p. The specific algorithm used for gate optimization is listed below

in chronological order.

1.3.1 Nonlinear Constrained Optimization

Making use the built-in nonlinear constrained multivariate optimizer (fmincon) in

MATLAB, specifically the interior point algorithm [64], we run multiple optimizations

with either random values or previous solutions as starting points, and report the final

solution with maximum PW satisfying FW ≥ 0.9999. If a solution cannot be found

to satisfy the condition, we can either increase the total number of components Q or

the total number of harmonics p for the EOMs to boost the circuit complexity.

We adopt this optimization procedure for most of our works; however, we notice

that fmincon is susceptible to local extrema trapping near the starting points, and

we have to rerun the optimizer multiple times with different initial points to ensure

the optimal solution can be found. Moreover, as the target transformation extends to

higher dimensions, the algorithm fails even more frequently. For example, in one set

of our attempts to find the solution for the 7-dimensional DFT operation, fmincon

only managed to find the optimum once out of 500 trials!

1.3.2 Particle Swarm Optimization with Multi-Stage Cost Function

We introduce a hybrid algorithm using particle swarm optimization (PSO)—a

nature-inspired metaheuristic algorithm—together with fmincon for better conver-

gence. PSO starts with a number of particles moving around in the multi-dimensional

problem space4 in search of the extremum iteratively, where each particle represents

a possible solution. In each iteration, the particle moves toward a new position de-

pending on both the history of its local best known position and that of the entire

swarm. The optimizer halts when all the particles converge to a single point in the

4The dimension of the particle is defined by the number of variables. In the case of 2EOM/1PS
driven by a total of p RF tones, the length of the particle’s vector is M + 4p.
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problem space. A potential issue for traditional PSO is that we can no longer max-

imize one metric while constraining another, which in our case is the gate success

probability (PW ) and fidelity (FW ≥ 0.9999), respectively. Therefore, we follow the

procedures proposed in Ref. [65] to lump both the gate success probability and fi-

delity into a single cost function. Specifically, the cost function we try to minimize

here is C = −PW +H(FW ), where H(FW ) = β(FW ) · (0.9999 − FW ) and β(·) is a

multistage, relative-violated function. We choose

β(FW ) =



100 ; 0 ≤ FW < 0.9

50 ; 0.9 ≤ FW < 0.99

25 ; 0.99 ≤ FW < 0.999

10 ; 0.999 ≤ FW < 0.9999

0 ; 0.9999 ≤ FW < 1,

(1.12)

which reduces the penalty for fidelity as it approaches unity. For a sanity check, we

follow the PSO with another quick run of fmincon using the best solution found in

PSO as the initial point and see if the performance can be further improved.

This is the method we adopt in Chapter 5, in which we find its success rate

(i.e., the frequency of attaining the ideal solution) better than the previous nonlinear

constraint method. However, one of the issues we encounter is that the choice of the

penalty functions seems very arbitrary, and it seems there is no literature stating how

to pick the best parameters.

1.3.3 Particle Swarm Optimization with Single Cost Function

In our recent simulations, we have found that one cost function can potentially

outperform other candidates and is suitable for any kind of gate design. We use

particle swarm optimization to minimize the following cost function (C):

C =

PW log10(1−FW) ; 0 ≤ FW < 0.9999

−4PW ; 0.9999 ≤ FW < 1,

(1.13)
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We again follow PSO with another run of fmincon for a sanity check.

The reason we choose such cost function is inspired by how we usually evaluate

the performance of a given gate operation—fidelity is a relatively forgiving metric,

and so one needs to push this number as close to one as possible to obtain visually

appealing solutions. As an example, consider the implementation of a Hadamard

gate (also known as the balanced beamsplitter). The ideal transformation can be

described as U = 1√
2

1 1

1 −1

, and suppose our experimental transformation is

W =

√t √
r

√
r −

√
t

 with t2 and r2 representing the beamsplitter transmissivities and

reflectivites. A beamsplitter with reflectivies (transmissivities) as bad as 40% (60%)

still retains a fidelity ∼ 99%!

0 0.2 0.4 0.6 0.8 1

Success Probability

0.9  

0.99 

0.999

F
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e
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Fig. 1.4. Algorithm comparison. Scatter plots of the solutions
obtained from 50 independent trials of fmincon (blue) and PSO (red)
optimization. The average runtimes for fmincon and PSO are 22± 4
and 95± 60 seconds per trial, respectively.
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1.3.4 Method Comparison

It is indeed difficult to compare the performance of aforementioned methods in all

possible problems. Here we revisit one of the examples, where we are searching for the

solutions for 7-dimensional DFT gates on a 2EOM/1PS QFP driven by p = 6 tones.

We describe the pulse shaper transformation with a 64 × 64 diagonal matrix while

only updating the 32 pulse shaper phases in the middle (setting other 32 as zero),

and limit the maximum RF amplitude to 5 rad. Figure 1.4 plots the comparison

between the methods discussed in Section 1.3.1 and 1.3.3. Across 50 independent

trials, fmincon cannot find any decent solution, while PSO manages to find one.

See Appendix A for a detailed list of simulation results.
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2. ELECTRO-OPTIC FREQUENCY BEAM SPLITTERS

AND TRITTERS

2.1 Background

The coherent translation of quantum states from one frequency to another via opti-

cal nonlinearites has been the focus of considerable research since the early 1990s [66,

67]; yet only fairly recently have such processes been explored in the more elab-

orate context of time-frequency quantum information processing (QIP). Important

examples include the quantum pulse gate [68, 69], which uses nonlinear mixing with

shaped classical pulses for selective conversion of the time-frequency modes of sin-

gle photons [70–73], and demonstrations of frequency beamsplitters based on both

χ(2) [33, 34] and χ(3) [35, 36] nonlinearities. These seminal experiments have shown

key primitives in frequency-based QIP, but as we discussed in Chapter 1, many chal-

lenges still remain.

In the previous chapter, we have described a fundamentally distinct platform for

frequency-bin manipulations, relying on electro-optic phase modulation and Fourier-

transform pulse shaping for universal QIP [12]. Our approach requires no optical

pump fields, is readily parallelized, and scales well with the number of modes. In

this chapter, we apply this paradigm to experimentally demonstrate the first electro-

optic-based frequency beamsplitter. Our frequency beamsplitter attains high fidelity,

operates in parallel on multiple two-mode subsets across the entire optical C-band

(1530-1570 nm), and retains excellent performance at the single-photon level. More-

over, by incorporating an additional harmonic in the microwave drive signal, we also

realize a balanced frequency tritter, the three-mode extension of the beamsplitter.

This is the first frequency tritter demonstrated on any platform, and establishes our

electro-optic approach as a leader for high-dimensional frequency-based QIP. Com-
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bined with its native parallelizability and absence of optical noise sources, our mixer

design offers new opportunities for a range of quantum information applications, in-

cluding linear-optical computation [12], quantum cryptography [74], high-dimensional

quantum communication [75], and quantum state transfer between two dissimilar

matter qubits [76, 77]. The tritter also serves as an elementary building block for a

frequency version of three-mode directionally-unbiased linear-optical multiports [78],

which find application in quantum simulations [79], and substantially reduce the re-

quired hardware resources for complex quantum walks [80].

2.2 Hadamard Gate: Frequency Beamsplitter

For our first experimental demonstration, we focus on the 50/50 beamsplitter with

phases chosen to match the Hadamard gate:

U2×2 =
1√
2

1 1

1 −1

 , (2.1)

the top row corresponding to mode 0 (ω0) and the bottom to mode 1 (ω1). The

major improvement from our original solution in [12], which results in a more prac-

tical experimental setup, is the usage of only phase-shifted sinewaves as the electro-

optic modulation functions—rather than arbitrary waveforms—theory still predicts

FW = 0.9999 and PW = 0.9760. This near-ideal performance even with such simple

microwave modulation represents a major theoretical advance in terms of practicality

and scalability, removing the need for a high-bandwidth arbitrary waveform genera-

tor (AWG) to realize the Hadamard gate. The numerical optimized solutions can be

found in Fig. 2.6(a-b), followed by more detailed discussions in Chapter 2.5.

In our experimental scheme (shown in Fig. 2.1), the preparation of input states,

frequency mixing, and detection of the final output states are all built on commercial

fiber-optics instrumentation, such as modulators, pulse shapers and single-photon

counters. A tunable continuous-wave (CW) laser operating in the C-band is firstly

sent to an intensity modulator (IM; Photline MX-LN-40) driven at 25 GHz, which
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Fig. 2.1. Experimental setup of frequency beamsplitter and
tritter implementation. Different input frequency superpositions
are prepared in the form of electro-optic frequency comb (state prepa-
ration stage) and sent to an 2EOM/1PS QFP circuit for single-qudit
frequency-bin operations (frequency mixer stage). The final output
state is either characterized with an optical spectrum analyzer, or
frequency-demultiplexed by a wavelength-selective switch and mea-
sured with an InGaAs single-photon avalanche photodiode.

creates a total number of three frequency bins with a spacing of 25 GHz1. The subse-

quent pulse shaper (Finisar WaveShaper 1000S)—which possesses ∼10-GHz spectral

resolution, 1-GHz addressability, with operating wavelength from 1527.4 nm to 1567.5

nm—then performs amplitude and phase filtering to prepare either pure mode or su-

perposition states as input to the following frequency mixer. We use an RF oscillator

(Agilent E8257D) to generate a 25-GHz sinewave, and split it three ways feeding am-

plifiers for the first IM for state preparation and the two 40-Gb/s EOMs (EOSpace) of

the QFP. Accurate control of the amplitude and the timing of RF signals is achieved

by the usage of variable attenuators and phase shifters, by which we fine tune every

1The use of an intensity, rather than phase, modulator was purely from equipment availability: a
phase modulator would produce many more comblines with greater efficiency, but the IM suffices
for the number of modes needed in this experiment.



22

RF component until we have correlation above 99.9% between the experimentally

obtained intensity spectrum after each EOM and the theoretical prediction. With

estimated EOM half-wave voltages of Vπ = 5.37 V at 25 GHz, the total RF power

required at each EOM for the solution in Fig. 2.6(a) is roughly 12.9 dBm.

The central pulse shaper (another Finisar Waveshaper) applies the numerically

optimized spectral phase pattern [Fig. 2.6(b)] for the Hadamard gate. The ∼10-GHz

spectral resolution of this pulse shaper ultimately limits the tightest frequency-mode

spacing (and thus total number of modes) we can utilize in our setup; experimentally

we have found detectable reduction in FW and PW for spacings below ∼18 GHz.

To characterize the full frequency-bin multiport, we probe it with an electro-optic

frequency comb, and utilize an optical spectrum analyzer (OSA; Yokogawa) to obtain

output spectra for different input frequency superpositions. This coherent-state-based

characterization algorithm represents the analogue of the spatial version proposed and

demonstrated in [81], applied here for the first time to frequency modes2. We also

adopt the convention [81] which specifies zero phase as the input superposition state

that maximizes the power in the zeroth frequency bin of the output; the phase values

of any subsequent state (as set by the state preparation pulse shaper in Fig. 2.1) are

thus only defined relative to this operating point. At a center wavelength of 1545.04

nm (ω0 = 2π×194.036 THz), we measure fidelity FW = 0.99998±0.00003 and success

probability PW = 0.9739 ± 0.0003, where error bars give the standard deviation of

five independent measurement sequences.

Fig. 2.2 shows four experimentally recorded input/output combinations: the top

row shows the equi-amplitude superpositions resulting from input in either mode 0

or mode 1; the second row reveals the single-wavelength output with the input in the

superposition states |αω0(±α)ω1〉.3 The small bumps in adjacent modes −1 and +2

reflect the nonunity success probability, a limitation which—as noted above—could

2The detailed matrix reconstruction procedures and example of obtained transformation matrices
are discussed in Appendix B
3Expressed in the form of coherent state. For example, |αω0

0ω1
〉 denotes a coherent state |α〉 of a

known intensity |α|2 in the mode 0.
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Fig. 2.2. Experimentally obtained beamsplitter (Hadamard
gate) output spectra for specific coherent state inputs. Modes
0, and 1 denote the computational space. (a) Pure mode 0: |αω00ω1〉.
(b) Pure mode 1: |0ω0αω1〉. (c) Mode 0 and mode 1 in phase: |αω0αω1〉.
(d) Mode 0 and mode 1 out of phase: |αω0(−α)ω1〉. The small bumps
outside of the computational space (e.g., in mode −1 and 2) signify
the nonunity success probability (PW ≈ 0.97) due to the usage of a
pure sinewave phase modulation.

be removed by more sophisticated modulation waveforms. And even in the current

arrangement with PW ≈ 0.97, the impact such residual scattering could have on gates

downstream—i.e., by coupling back into the computational space and introducing

errors—can be eliminated, either by using an additional pulse shaper to selectively

attenuate these modes, or by sending them to a fiber tap for detection.

A crucial claim in favor of our beamsplitter is its suitability for parallelization.

Ironically, the very characteristic which precludes a deterministic frequency beam-

splitter using a single EOM—frequency-translation invariance—enables nearly effort-

less parallelization. We utilize the central pulse shaper to apply a dispersion of −0.4
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Fig. 2.3. Implementation of parallel beamsplitters. (a) Fidelity
and success probability as a function of center wavelength. The wave-
length of the central gate mode is scanned in 5-nm increments over the
full C-band. (b) Parallel beamsplitter performance against frequency
separation. The fidelity and success probability for the collective oper-
ation are investigated with respect to the number of guardband modes
between two parallel beamsplitters.

ps/nm, properly compensating all frequency-dependent delay between the two EOMs

(including the residual dispersion in the pulse shaper itself), and thus ensure proper

timing between EOMs across the full C-band. Otherwise, the beasmplitter would not

be able to preserve the correct split ratio for all parallel gates simultaneously. We

then scan the wavelength of the central gate mode in 5-nm increments and measure

FW and PW at each step over the full C-band. Fig. 2.3(a) shows that the fidelity

exceeds 0.9990 for all test points, and the success probability does not drop below

0.965.
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A second question, complementary to the total acceptance bandwidth, is the min-

imum frequency spacing: how close can two single-qubit gates be placed without

performance degradation? Since sidebands adjacent to the computational space are

populated mid-calculation, one would expect that a finite number of dark, guard-

band modes are required to prevent cross-contamination. We address this question

experimentally by implementing two beamsplitters in parallel and characterizing the

total operation as a function of the number of initially empty modes between mode 1

of the low-frequency gate and mode 0 of the higher frequency one. The fidelity and

success probability for the collective parallel operation are plotted in Fig. 2.3(b); they

reach their asymptotic values for separations of just four modes. Combined with the

40-nm (5-THz) bandwidth of Fig. 2.3(a) and the 25-GHz mode spacing, these results

imply that the present system can realize 33 frequency beamsplitters in parallel—a

remarkable indication of the promise of our approach in scalable QIP.

2.3 Toward High Dimension: Frequency Tritter

Thus far, quantum frequency mixers have focused on the basic two-mode case [33–

36], yet the inherent high dimensionality of frequency-bin states makes them well-

suited for more complex qudit operations as well. Accordingly, generalizing mode

mixers to dimensions beyond d = 2 represents an important milestone for frequency-

based QIP. For d = 3, the most natural operation is the uniform frequency tritter—the

frequency analogue of a 3×3 spatial coupler with equal split ratios [82], which has been

shown to enable fundamentally richer quantum physics than the two-mode case [83].

For our purposes, a particularly convenient operation satisfying the equi-amplitude

requirement is the 3-point discrete Fourier transform (DFT):

U3×3 =
1√
3


1 1 1

1 e2πi/3 e4πi/3

1 e4πi/3 e2πi/3

 . (2.2)
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Numerically, we find that incorporating an additional harmonic in the EOM drive

signals allows our current configuration to reproduce the above frequency tritter with

predicted fidelity FW = 0.9999 and success probability PW = 0.9733. The fact that

the modulation remains so simple even for the tritter operation—consisting of the sum

of just two phase-shifted sinewaves—again manifests the fortuitous practicality of our

Fourier-series approach, beyond even the original proposal which relied on specialized

RF waveforms [12]. Numerical obtained solutions can be found in Fig. 2.6(c-d), again

followed by discussions regarding the scalability of the QFP in Chapter 2.5.

Experimentally, we incorporate an RF frequency doubler (Spacek Labs AQ-2X)

into the setup (see dotted box in Fig. 2.1) to produce the necessary second harmonic

signal. Due to a combination of doubling efficiency and loss in current microwave

components, we also reduce the drive frequency—and hence, mode spacing—from 25

GHz to 18.1 GHz, for a doubled component at 36.2 GHz 4. Considering the predicted

EOM half-wave voltages at 18.1 and 36.2 GHz (Vπ = 4.78 and 6.02 V, respectively),

the expected RF power at the input of each EOM is 14.1 dBm at 18.1 GHz and 7.89

dBm at 36.2 GHz. Also, because of the relative difficulty to manually phase shift both

harmonics synchronously, we set the relative phase of the two combined frequencies on

both EOMs independently, then match the overall delay between EOMs by applying

additional linear spectral phase on the central pulse shaper.

Running the coherent-state-based characterization algorithm [81], we measure fi-

delity FW = 0.9989±0.0004 and success probability PW = 0.9730±0.0002, again ex-

tremely close to theoretical predictions. Fig. 2.4 plots several important input/output

spectra: for any single-line input, the output exhibits equal lines in the same three

modes; conversely, three-mode input superpositions of the appropriate phases excite

single lines at the output. This high-fidelity, balanced frequency tritter—the first of

its kind—confirms that our electro-optic technique scales well to higher dimensions,

with only a minor increase in the system complexity.

4Higher frequencies could be obtained by using appropriate V-band (40-75 GHz) hardware
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Fig. 2.4. Experimentally obtained tritter output spectra for
specific coherent-state inputs. Modes 0, 1, and 2 denote the
computational space. (a) Pure mode 0: |αω00ω10ω2〉. (b) Pure mode
1: |0ω0αω10ω2〉. (c) Pure mode 2: |0ω00ω1αω2〉. (d) Outputs for the
superposition state input |αω0(e

−iφα)ω1(e
−2iφα)ω2〉 for: (I) φ = 0, (II)

φ = 2π/3, and (III) φ = 4π/3.

2.4 Single-photon Level Operation

Finally, to verify that these frequency mode mixers maintain performance at the

single-photon level, we attenuate the input state |αω0(e
−iφα)ω1〉 for the beamsplitter

and |αω0(e
−iφα)ω1(e

−2iφα)ω2〉 for the tritter to ∼0.1 photons per detection window

at the gate input (i.e., before loss through the frequency mixer) and scan the in-

put phase φ. The output state is frequency-demultiplexed by a wavelength-selective

switch (WSS; Finisar WaveShaper 4000S), and measured by an InGaAs single-photon

avalanche photodiode5. The resulting interference patterns for these weak coherent

5Beamsplitter: Aurea SPD AT M2, 1-ns gate @1.25 MHz, 20% efficiency, and ∼400 dark counts/s.
Tritter: ID Quantique id-200, 2.5-ns gate @4 MHz, >10% efficiency, and ∼150 dark counts/s
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Fig. 2.5. Spectral interference with weak coherent states. (a)
Output count rates for the two modes of the beamsplitter, as the
phase φ of the single-photon-level state |αω0(e

−iφα)ω1〉 is scanned. (b)
Counts for the three output modes of the frequency tritter as the phase
φ of the three-mode state |αω0(e

−iφα)ω1(e
−2iφα)ω2〉 is scanned. The

plotted best-fit curves are Fourier series of the form
∑

nAn cos(nφ +
Bn), summed from n = 0 to 1 for (a), and n = 0 to 2 for (b).

states allow us to predict operation fidelity for true single-photon states as well. This

follows because the gate itself is a one-photon operation, and thus the interference

visibility depends only on the average flux and any extra noise introduced by the

gate—not on the photon number statistics of the input.

Fig. 2.5(a) plots the counts in modes 0 and 1 for the beamsplitter, after subtracting

the average detector dark count rate (error bars give the standard deviation of five

repeated measurements). Moving on to the three-mode case, we obtain the detection

rates for modes 0, 1, and 2 shown in Fig. 2.5(b). The oscillations now trace a sum

of two sines, with respective peaks at φ = 0, 2π/3, and 4π/3, as expected for the

ideal matrix in Eq. (2.2). The reduced flux for mode 1 is primarily due to the WSS,

as its 12.5-GHz channel specificity do not match the 18.1-GHz line spacing; in our

filter definitions, the center of mode 1 is close to one passband edge, and thereby

experiences an additional ∼1-dB attenuation. Overall, both the beamsplitter and

tritter perform exceptionally well at the single-photon level, with detector-dark-count-

subtracted visibilities from 97-100%. Such low-flux visibilities far exceed those of
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previous χ(2) or χ(3) frequency beamsplitters, which suffer from optical noise generated

by the powerful pump fields; our approach inherently contributes no excess noise

photons, making it particularly well-suited for quantum applications.

2.5 Simulations: Scalability of the QFP

As we mentioned earlier in Chapter 1.3, the numerical optimization procedures

start with discretizing each temporal and spectral modulation into an M×M matrix,

computing the transformation matrix V , and searching for solutions which maximize

PW while constraining FW > 0.9999. In the simulation, we choose M = 128 (M � d)

such that the numerically computed V provides an accurate approximation to the

physical transformation.

Here we record the specific solutions for the pulse shaper and each EOM in the

optimal frequency beamsplitter and tritter. Figs. 2.6(a) and (b) show the results

for the frequency beamsplitter, with FW = 0.9999 and PW = 0.9760. The temporal

phases on both EOMs are just phase-shifted sinewaves driven by a single RF tone.

In addition, the spectral phase on the pulse shaper, shown in Fig. 2.6(b), turns out

to be a step function with a π-phase jump between mode indices 0 and 1, readily

implemented in the line-by-line pulse shaping scheme.

The solution for the frequency tritter is presented in Figs. 2.6(c) and (d). We

incorporate an additional RF harmonic to both EOMs while maintaining the three-

element setup, and numerically we achieve FW = 0.9999 and PW = 0.9733. As

shown in Fig. 2.6(c), the temporal phases are still time-shifted replicas, but now

composed of two harmonics. The introduction of the additional harmonic couples

more optical power to high-frequency modes, and relatively more complicated spectral

phase control is needed for the frequency tritter, as plotted in Fig. 2.6(d). Note that

both solutions are achievable experimentally: the maximum temporal phase shifts

[Figs. 2.6(a) and (c)] are well within values available from commercial EOMs, and

the number of frequency modes requiring spectral shaping is . 20 [Figs. 2.6(b) and
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Fig. 2.6. Hadamard and three-dimensional DFT gate design.
Numerical solutions for the time-frequency phases required to imple-
ment optimal beamsplitter and tritter on a 2EOM/1PS QFP circuit.
For the frequency beamsplitter: (a) temporal phase modulation ap-
plied to the first EOM [solid red] and second EOM [dotted blue],
plotted over one period T ; (b) phases applied to each frequency mode
by the PS, where modes 0 and 1 denote the computational space. For
the frequency tritter: (c) temporal phase modulation for first [solid
red] and second [dotted blue] EOM; (d) phases applied to each fre-
quency mode by the PS, where now modes 0, 1, and 2 denote the
computational space.

(d)]—much less than the full M -mode space, indicating 128 samples are fully sufficient

to characterize the solution.

Furthermore, we discover a new recipe to implement high-dimensional DFT gates

and found there to be a linear scaling between the number of harmonics and the

dimensionality of DFT that can be implemented with high fidelity and success prob-

ability. Additional simulations show that this three-element setup can implement

the frequency DFT up to d = 10 while maintaining PW > 0.95 with FW ∼ 0.9999
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constraint, using drive signals consisting of only d−1 single-frequency harmonics. To

further quantify the experimental specifications (such as pulse shaper bandwidth),

we take the optimal solution as the starting points, rerun the optimization while

trimming down the accessible shaper bandwidth, and record the corresponding gate

performance. These results are summarized in Figure 2.7, with each plot showing the

performance of an d-dimensional DFT gate for a QFP with access to d− 1 RF tones.

The x-axis in each of these plots corresponds to the number of modes addressed by

the pulse shaper. Such analysis is helpful for future designs of integrated QFPs under

the system-level constraints imposed by integration and packaging, such as the maxi-

mum number of RF and DC connections. These findings indicate favorable scaling in

our paradigm, effectively sublinear in the number of components (i.e., pulse shapers

and EOMs) and preserving high FW and PW . If we consider an integrated pulse

shaper where each frequency channel can be realized with two microring resonators

(MRRs) [84], our preliminary results in Fig. 2.7 suggests the total number of MRRs

scales linearly with the the dimensionality of DFT.

Another approach one can envision to extend toward higher dimension is increas-

ing the total number of components (Q), i.e., cascading additional EOMs and PSs,

for complexity. Our recent work [61] investigate the required resource for frequency

broadcasting operation in a wavelength-division multiplexed optical network for clas-

sical communication, in which we adopt the same numerical optimization approaches

to simulate high-dimensional DFT operations with QFPs, and finds a linear scaling

of Q with the network size d (assumed single-sinewave modulation on all EOMs).

2.6 Outlook

In this chapter, we have described the experimental realization of a high-fidelity,

intrinsically parallelizable quantum frequency mixer based on EO modulation and

pulse shaping, and showcased its potential in operating quantum states beyond qubits.

We have also discussed the scalability of the QFP in the previous section. To realize
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Fig. 2.7. High-Dimensional DFT gate design. Numerical simu-
lation of high-dimensional discrete-Fourier transform (DFT) gates on
a three-element QFP driven by d− 1 RF tones. Fidelity and success
probability as a function of number of pulse shaper channels.

more complex operations, we can either (i) introduce more harmonics in the temporal

modulations or (ii) increase the total number of components.

Nevertheless, potential roadblocks could emerge for both methods. For (i), given

the limited availability of high-speed RF components (AWG, amplifiers, phase shifters,

attenuators, etc), it will be extremely valuable if the frequency-bin spacing can be

reduced to a few GHz. This, however, will require advanced design for the BFC gen-

eration [85,86], as well as the high-resolution spectral shaping. For (ii), on the other

hand, the insertion loss from these off-the-shelf components, which already accounts

for ∼12.5 dB in this three-element QFP6, hampers the possibility of building larger

circuits with the current designs. Importantly, though, frequency-bin encoding and

the QFP operations themselves prove well suited for on-chip integration. EOM and

pulse shaper photonic circuits have the potential to attain not only greater scalability,

6The EOMs contribute ∼2.8 dB each; the pulse shaper, ∼4.7 dB; and the remainder comes from
fiber patch cord connections and polarization controllers.
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but also better raw performance at the component level, than the discrete fiber-optic

devices employed in experimental demonstrations thus far.
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3. QUANTUM INTERFERENCE AND CORRELATION

CONTROL OF FREQUENCY QUBITS

To establish our QFP as a reliable device for scalable QIP with frequency-encoded

qubits, we must move beyond single-photon gates (irrespective of dimensionality),

demonstrate verifiably quantum features relying on multiphoton interference, and

apply independent and distinct gates to multiple qubits on demand in a low-noise

and efficient fashion. In this Chapter, we demonstrate that tunable and independent

single-frequency-qubit operations can be implemented in parallel on co-propagating

qubits, thanks to the inherent parallelizability of the pulse shaper. Specifically, we

realize a single-qubit operation which can be tuned smoothly between the identity 1

and Hadamard H gates, and can realize any combination thereof in parallel in the

same device. We characterize this operation’s tunability with frequency-bin Hong-

Ou-Mandel (HOM) interference, obtaining 97% visibility for distinct frequency bins,

the highest yet observed for photons of different colors. We then implement this

operation as two separate quantum gates on frequency-bin qubits within the same

fiber-optic mode, obtaining a high-fidelity flip of spectral correlations on two entan-

gled photons. These demonstrations are considerably more impactful than what we

present in Chapter 2 on frequency beamsplitters and tritters, for it exploits quantum

entanglement (i.e., nonclassical two-qubit, rather than just single-qubit, effects) and

realizes different operations in the same device simultaneously, rather than the same

operation in parallel over many modes.

3.1 Overview

Fig. 3.1 sketches an example of processing co-propagating frequency-bin qubits

in a parallel frequency processor, with the particular operations chosen to match the
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Fig. 3.1. High-level vision of quantum frequency processor.
An input quantum state consisting of a superposition of photons
(spheres) spread over discrete frequency bins propagates through a
parallelized network of quantum gates (boxes) performing the desired
set of operations. Spheres of a specific color represent the probabil-
ity amplitudes of finding a single photon in a particular frequency
mode– that is, an ideal measurement will result in precisely one click
for each color. Frequency superpositions are represented by spheres
straddling multiple lines, while entangled states are visualized by
clouds. Two specific operations we realize experimentally are de-
scribed here: Hong-Ou-Mandel interference between two spectrally
distinguishable photons (top), and two-qubit rotation on a maximally-
entangled frequency-bin Bell state (bottom).

experiments in this article. In general, an input quantum state consisting of frequency-

encoded qubits is manipulated by the designed QFP network, which applies various

unitary operations to combinations of frequency bins. Note that, although we draw

each frequency bin as a separate “rail” for conceptual purposes, the physical encod-

ing occurs within a single fiber-optic spatial mode, thereby enabling natural phase

stability and providing compatibility with current fiber networks. After each step in

the quantum frequency processor, a subset of modes could be extracted with opti-

cal add-drop multiplexers and measured, with the results used to update operations

downstream. Any pair of distinct quantum gates which can be implemented in paral-



36

lel in our approach must satisfy two requirements: (i) their physical implementations

must differ only in the spectral phase applied by each, since the temporal modulation

is shared by all frequency-bin gates in a single spatial mode; and (ii) they must be

able to be realized independently in two frequency bands without crosstalk. These

considerations are general, holding for any proposed set of parallel gates. Yet in

the particular example we consider here, a tunable frequency beamsplitter, we can

connect these two requirements directly to non-classical phenomena of particular sig-

nificance in quantum photonics: Hong-Ou-Mandel (HOM) interference [22] and the

Einstein-Podolsky-Rosen (EPR) paradox [87].

In the conventional HOM interferometer, two photons mixed on a 50/50 spatial

beamsplitter bunch, never exiting in different output ports. A general feature of

bosons, HOM interference forms the basis of essentially all two-qubit gates in linear

optics [88]. In our case, the overlap between frequency bins is set by the spectral

phase of the quantum frequency processor, so that HOM interference relies precisely

on the ability to tune a given operation through spectral phase control alone; in

other words, high visibility provides confirmation of requirement (i) above. Similarly,

quantum mechanics allows two particles to share a well-defined pure state even when

the individual states of both particles are mixed. This property gives rise to EPR

correlations when the joint state of the two particles is measured. While paradoxical

to classical notions of reality [87], these correlations ultimately underpin Bell tests of

nonlocality [89] and security in quantum key distribution [90]. Meeting requirement

(ii) above signifies the ability to perform independent gates on entangled frequency-

bin qubits. In particular, joint beamsplitter operations with different phases enable

the realization of all combinations of Pauli Z and X basis measurements, which are

sufficient for testing EPR correlations. Consequently, in the following experiments we

utilize both quantum phenomena (HOM and EPR) as important test cases to assess

gate performance.
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3.2 Design a Tunable Frequency Beamsplitter

Before we move forward to discuss the results regarding HOM and EPR exper-

iments in the following sections, we take a moment to describe how to implement

this tunable frequency beamsplitter and how well we can control its reflectivity and

transmissivity. The specific configuration for our Hadamard gate (cf. Chapter 2.5)

relies on the temporal phase modulation ϕ(t) = ±Θ sin ∆ωt (Θ = 0.8169 rad) on the

first and second EOMs, respectively. And for a gate operating on bins 0 and 1, the

discrete pulse shaper phases can be written as

φn =

φ0 ;n ≤ 0

φ0 + α ;n ≥ 1.

(3.1)

Here φ0 is an offset with no physical significance, while α = π for the ideal Hadamard,

as shown in Fig. 3.2(a). Yet α can be tuned as well; doing so actually permits tunable
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Fig. 3.2. Tunable beamsplitter design. Previously, the phase
patterns to realize a frequency beamsplitter [See Chapter 2.5 and
Figure 2.6 for details] consist of two π-phase-shifted sinewaves for the
EO modulations, and a π-phase jump between the two computational
modes on the pulse shaper. (a) By simply changing the depth of the
phase shift α on the shaper while both EOM remain fixed, a beam-
splitter with tunable reflectivities can be realized. (b) Beamsplitter
reflectivities R and transmissivities T for all paths between frequency
bins 0 and 1, as pulse shaper phase shift [α in (a)] is tuned. Markers
denote the values measured with a laser probe, while curves give the
theory.
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reflectivity1. Specifically, if we write out the 2× 2 transformation matrix on modes 0

and 1 as a function of this phase,

V =

V00(α) V01(α)

V10(α) V11(α)

 , (3.2)

we can define the variable reflectivitiesR (i.e., mode-hopping probabilities) and trans-

missivities T (probabilities of preserving frequency) as

R0→1 = |V10(α)|2 =

∣∣∣∣∣(1− eiα)
∞∑
k=1

Jk(Θ)Jk−1(Θ)

∣∣∣∣∣
2

R1→0 = |V01(α)|2 =

∣∣∣∣∣(1− eiα)
∞∑
k=1

Jk(Θ)Jk−1(Θ)

∣∣∣∣∣
2

T0→0 = |V00(α)|2 =

∣∣∣∣J2
0 (Θ) + (1 + eiα)

1− J2
0 (Θ)

2

∣∣∣∣2
T1→1 = |V11(α)|2 =

∣∣∣∣eiαJ2
0 (Θ) + (1 + eiα)

1− J2
0 (Θ)

2

∣∣∣∣2 ,

(3.3)

where Jk(Θ) is the Bessel function of the first kind. We note that, when α = π,

the elements {V00, V01, V10} are all real and positive, while V11 is real and negative—

in accord with the ideal Hadamard and leading to destructive HOM interference

between the reflect/reflect and transmit/transmit two-photon probability amplitudes.

Additionally, these expressions satisfy R0→1 = R1→0 ≡ R and T0→0 = T1→1 ≡

T . As α is tuned over 0 → π → 2π, R follows from 0 to a peak of 0.4781 and

back to 0, while T starts at 1, drops to 0.4979, and returns to 1. The sum R+ T

defines the gate success probability, which drops slightly at α = π due to the use of

single-frequency electro-optic modulation. Fig. 3.2(b) plots the theoretically predicted

(curves) and experimentally measured (symbols) beamsplitter transmissivities and

reflectivities between bins 0 and 1, when probing the system with a laser and scanning

the shaper phase. A phase setting of π results in an H gate; 0 and 2π phase shifts yield

1This design is inspired from the elegance of the numerically obtained solution. For α = π, we have
an Hadamard gate (H). While for α = 0, it permits an identity gate (1) as the EO modulations
are simply π-phase-shifted sinewaves and will cancel out each other. We are then curious to know
whether their is a smooth transition from 1 to H when α is tuned.
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an 1 gate. It is important to emphasize that both EOMs remain fixed throughout

the scan, so that the tunability is effected only by adjusting the phase applied by the

pulse shaper.

3.3 Experimental Arrangement

Fig. 3.3(a) shows our setup for processing quantum information encoded in fre-

quency. We couple a continuous-wave Ti:sapphire laser (M Squared) into a fiber-

pigtailed periodically poled lithium niobite (PPLN; SRICO) waveguide, temperature
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Fig. 3.3. Processing biphoton frequency comb with QFP. (a)
Experimental configuration. A 25-GHz-spacing biphoton frequency
comb (BFC) is generated via parametric down-conversion in a period-
ically poled lithium niobite (PPLN) waveguide followed by an etalon
for spectral filtering. A wavelength-selective switch (WSS) is used to
route photons in different frequency bins for coincidence detection.
(b) Joint spectral intensity (JSI) measurement of the BFC source,
measured with etalon output connected directly to coincidence detec-
tion setup (bypassing the central QFP). Strong correlations exist for
frequency bin satisfying nA+nB = 1, whereas other combinations are
at the expected accidental level. Counts are collected over 5 seconds.
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controlled at ∼85◦C for spontaneous parametric down-conversion under type-0 phase

matching. Spectrally entangled photon pairs spanning >2.5 THz are subsequently

filtered by a Fabry-Perot etalon (Optoplex) with 25 GHz mode spacing to produce

a biphoton frequency comb (BFC), with each comb line possessing a full-width at

half-maximum linewidth of 1.8 GHz. The center frequency of the pump laser is

carefully locked to align the generated signal-idler pairs with etalon peaks, i.e., to

maximize coincidences between the spectrally filtered modes. We utilize a pulse

shaper (BFC shaper) to perform amplitude and phase filtering to prepare particular

input states for quantum frequency processing. The resulting state is of the form

|Ψ〉 =
∑

n≥1 cn|1ω1−n〉A|1ωn〉B, where the coefficients cn are set by the BFC shaper.

Each frequency-bin index n corresponds to the filter centered at ωn = ω0 + n∆ω,

where ω0/2π = 193.6000 THz and ∆ω/2π = 25 GHz. Party A is assigned all modes

nA ∈ {n ≤ 0}, while the rest are given to B (nB ∈ {n ≥ 1}). The output photons are

frequency-demultiplexed by an wavelength-selective switch (WSS) having 12.5 GHz

channel specificity. Each time we route two different spectral modes (each takes up

two pixels on the WSS) to two superconducting nanowire single-photon detectors

(SNSPD; Quantum Opus) to record single counts as well as the coincidences within

1.5 ns bins. We plot the measured frequency correlations of this source [Fig. 3.3(b)],

obtained by bypassing the central QFP, scanning the filters of the output WSS,

and counting coincidences between two detectors. Over this 50 × 50 mode grid, we

observe high coincidence counts only for frequency-bin pairs satisfying nA + nB = 1,

as expected by energy conservation.

The central QFP, as we describer earlier, consists of a pulse shaper sandwiched

between two high-speed EOMs driven by a 25 GHz sinusoidal voltage. This combina-

tion was shown to enable Hadamard operation with a measured 99.998% fidelity and

only 2.61% photon leakage outside of the computational space [21], and is capable

of realizing tunable beamsplitters simply by changing the phase pattern imparted on

the QFP shaper, as discussed in the previous section.
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3.4 Frequency-bin Hong-Ou-Mandel Interference

Hong–Ou–Mandel (HOM) interference [22] is the foundational quantum effect un-

derlying two-qubit gates in the LOQC paradigm. In conventional HOM, one mixes

two photons on a 50/50 spatial beamsplitter while scanning some parameter to con-

trol their overlap, observing photon bunching at the exit ports as a result of quantum

interference between indistinguishable two-photon probability amplitudes; a visibility

exceeding 50% indicates nonclassicality [22]. In the case of photons sharing a single

spatial mode but different colors, the quantum interference can instead be realized

with a frequency mixer [91] where, e.g., the distinguishability is controlled by intro-

ducing a temporal delay between the two input modes [33] or scanning the photon

frequency spacing relative to that of the frequency beamsplitter [60,92]. Here we ad-

just the mixing probability of the operation itself, as controlled by the phase scanned

in Fig. 3.2(a), analogous to varying the reflectivity of a spatial beamsplitter.
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Fig. 3.4. Frequency-bin Hong-Ou-Mandel (HOM) interfer-
ence. (a) Measured output coincidence counts (with no accidentals
subtraction) between bins 0 and 1 given a two-photon state input
|1ω0〉A|1ω1〉B. The solid curve is the theoretical prediction scaled and
vertically offset to math the data points via linear least squares. The
HOM visibility is 0.971 ± 0.007. (b) Registered single counts in bins
0, 1, and adjacent bins −1 and 2. Here detector dark counts are
subtracted to compare output flux. For both (a) and (b), counts are
recorded over 180 s, and error bars assume Poissonian statistics.
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In this experiment, we prepare the input state in the form of |Ψ〉 ∝ |1ω0〉A|1ω1〉B
by filtering out all frequency-bin pairs in the BFC except for the first pair. A tunable

beamsplitter, whose mode transformation V is defined in Eq. 3.3, is implemented

on these two modes, 0 and 1. At the output of the beamsplitter, we measure the

spectrally resolved coincidences between bin 0 and 1, i.e.,

C01 = 〈Ψ|b̂†0b̂
†
1b̂1b̂0|Ψ〉, (3.4)

as well as the single counts in each output frequency bin

S0 = 〈Ψ|b̂†0b̂0|Ψ〉;S1 = 〈Ψ|b̂†1b̂1|Ψ〉, (3.5)

where b̂n denotes the annihilation operator in the frequency bin centered at ωn after

the gate operation (cf. Eq. 1.3). Plugging in Eq. 3.3, we thus predict the coincidences

and singles while scanning the QFP shaper phase α:

C01 = |V00V11 + V01V10|2 = |R(α)− T (α)|2

S0 = |V00|2 + |V01|2 = S1 = |V10|2 + |V11|2 = R(α) + T (α)

S−1 = S2 ≈ 1−R(α)− T (α),

(3.6)

where the nonunity success probability [R(π) + T (π) = 0.976] results in some pho-

tons scattering into bins −1 and 2. The expression for C01 also perfectly describes

the destructive interference between reflect/reflect and transmit/transmit two-photon

probability amplitudes (cf. Eq. 3.3; V11 is negative, while other terms are positive).

The measured coincidence counts between output bins 0 and 1 are shown in

Fig. 3.4(a). The solid curve is the theoretical prediction, scaled and vertically offset

to match the data points via linear least squares; the visibility obtained from this fit is

0.971± 0.007, with the reduction from unity completely consistent with the acciden-

tals level expected for our measured counts and timing resolution. This visibility far

exceeds the previous values measured for frequency-domain HOM interference with-
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out subtraction of accidentals2—namely, 0.71 ± 0.04 [33] and 0.68 ± 0.03 [92]. Such

a significant improvement in visibility can be explained by the reduced optical noise

present in our approach, compared to those relying on powerful pump fields, as well

as the fine controllability of our operation, enabled by the purely electrical control

parameters (i.e., microwave power/phase, and pixel voltages for the pulse shaper),

which allows us to precisely optimize the spectral overlap between the two modes.

We also record the singles counts for bins 0 and 1, as well as the adjacent sidebands

(−1 and 2). As shown in Fig. 3.4(b), the two central modes retain nearly constant

flux across the full scan, showing that the dip in coincidence counts results from truly

quantum HOM interference as opposed to photon loss. Moreover, the small reduction

in singles counts around π—accompanied by the increase in singles counts for bins −1

and 2—also qualitatively matches expectations, given the fact that the full H gate

scatters 2.61% of the input photons out of the computational space into adjacent

sidebands. We note that even this scattering could be removed by driving the EOMs

with more complicated waveforms [12].

3.5 Two-photon State Manipulation

Our quantum operation’s tunability, invoked in the above realization of HOM

interference, can then be applied to realize two different gates—that is, distinct pairs

of R and T in Fig. 3.2(a)—by setting different phase shifts on appropriate subbands

in the pulse shaper’s bandwidth. To demonstrate this, we set the BFC shaper to

filter out all modes except {−4,−3, 4, 5}, preparing the input entangled state |Ψ〉 ∝

|1ω−4〉A|1ω5〉B + |1ω−3〉A|1ω4〉B. The reason we have six initially empty modes between

A and B is to make sure we can apply operations on both parties without any fear of

the photon in A jumping over to B’s modes, and vice versa (cf. guardband discussion

in Chapter 2). On each pair of frequency bins—{−4,−3} and {4, 5}—we set the

2Standard practice is to report visibility without accidentals subtraction as we have done in the main
text. If the visibility presented here is accidentals subtracted, we will have ∼100% as the coincidence
count reaches a minimum approximated to the expected accidentals level.



44

spectral phase to apply either the identity 1 or Hadamard H gates, and then measure

coincidence counts between the frequency bins at the output. Accordingly, we can

express the coincidence probability for any (nA ≤ 0, nB ≥ 1) as

CnAnB
= |VnA,−3VnB ,4 + VnA,−4VnB ,5|

2 . (3.7)

This expression accounts for all aspects of the potentially non-ideal mode transfor-

mation. Focusing on the qubit modes (nA ∈ {−4, 3}, nB ∈ {4, 5}), we have the ideal

coincidences under all four cases of Fig. 3.5 as:

V (1A ⊗ 1B) =⇒ C1A⊗1BnAnB
=

1

2
(δnA,−3δnB ,4 + δnA,−4δnB ,5)

V (1A ⊗HB) =⇒ C1A⊗HB
nAnB

=
1

4
(δnA,−3δnB ,4 + δnA,−3δnB ,5 + δnA,−4δnB ,4 + δnA,−4δnB ,5)

V (HA ⊗ 1B) =⇒ CHA⊗1B
nAnB

=
1

4
(δnA,−3δnB ,4 + δnA,−3δnB ,5 + δnA,−4δnB ,4 + δnA,−4δnB ,5)

V (HA ⊗HB) =⇒ CHA⊗HB
nAnB

=
1

2
(δnA,−4δnB ,4 + δnA,−3δnB ,5) ,

(3.8)

where δnm is the Kronecker delta function. These expressions predict perfect negative

correlations for the case 1A ⊗ 1B—i.e., detecting the low frequency of A occurs in

coincidence with the high frequency of B, and vice versa —while positive correlations

result for HA ⊗ HB. For the other two cases, no frequency correlations are present,

with all four combinations equally likely. The transition from 1A⊗1B to HA⊗HB can

flip the correlations entirely, eliminating the negative frequency dependence resulting

from pump energy conservation in favor of a positive dependence.

Fig. 3.5 furnishes the results for all four combinations of 1 and H. When the

two gates match, near-perfect spectral correlations result [(a) and (d)], whereas mis-

matched cases produce uniform population of the two-qubit space [(b) and (c)]. By

measuring correlations in adjacent bins as well, we confirm the self-contained nature

of our operation; even in the worst case [Fig. 3.5(d)], less than 6% of the total coinci-

dences lie outside of the 2×2 subspace, whereas similar state manipulation with only

one EOM suffers from high probability of qubit scattering [53, 54, 60]. The loss of

photon energy to unwanted sideband modes is intrinsic to frequency-bin operations
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Fig. 3.5. Two-photon state manipulation. Coincidences between
output frequency bins after application of the following gates on the
input entangled state |Ψ〉 ∝ |1ω−4〉A|1ω5〉B + |1ω−3〉A|1ω4〉B: (a) iden-
tity operations on both photons; (b) Hadamard on photon A; (c)
Hadamard on photon B; (d) Hadamard on both photons. The transi-
tion from 1A⊗1B to HA⊗HB results in a high-fidelity flip of spectral
correlations on two entangled photons. Coincidences are collected
over 120 s.

based on a single EOM (see discussion in Chapter 1.2). Thus, they are inherently

non-deterministic and can be viewed at best only as postselected single-photon gates.

By contrast, the manipulations shown in Fig. 3.5 do represent frequency-bin gates

in this proper sense, and thus offer potential in constructing more general quantum

information processing networks. In particular, because our frequency-bin operations

retain photons in their respective computational spaces, they can be concatenated in

systems containing several successive gates, without the massive reduction in success

probability inherent to previous approaches.
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Moreover, the quality of our state manipulation can be analyzed by equivalently

viewing the unitary rotations on our input state followed by coincidence detection

as measurements of the state in bases other than computational. As one example,

we can test the EPR-like nature of this state using the strong correlations in two

mutually unbiased bases (MUBs) Z and X (gate operations 1 and H)3.

We define the conditional entropies H(1A|1B) and H(HA|HB) as the uncertainty

of the measured frequency mode of A {−4,−3} given knowledge of B’s result {4, 5},

for the two cases of matched transformations [Fig. 3.5(a) and (d)]. Retrieving the

probabilities from the raw counts via Bayesian mean estimation (BME) [93,94] with

no accidentals subtraction (See Appendix C.1 for detailed analysis), we recover

H(1A|1B) = 0.19± 0.03

H(HA|1B) = 0.997± 0.003

H(1A|HB) = 0.993± 0.005

H(HA|HB) = 0.29± 0.04.

(3.9)

As expected, the mismatched bases have near-maximal entropy (1 bit), while matched

cases are much lower. This is similar to the concept behind entanglement-based QKD,

where Alice and Bob share entangled photon pairs and perform local measurements

using one of the MUBs; When they choose the same basis, Alice’s measurement can

perfectly predict Bob’s and vice versa (i.e., zero conditional entropy), even though

locally the results are completely random. Contrarily, when they choose different

bases, their measurement results are completely decorrelated (i.e., maximal entropy).

The bipartite entanglement can be quantified by violation of the Maassen-Uffink

bound for separable states: H(1A|1B)+H(HA|HB) ≥ qMU [95,96], where the Maassen-

Uffink bound qMU depends on the overlap between the basis vectors in the rows of 1A

and HA; for measurements with perfect MUBs in d-dimension, qMU = log2 d bit. In

our case, the bound qMU is computed to be 0.971, just smaller than 1 because of slight

imbalance in our H operation. With the sum, H(1A|1B) +H(HA|HB) = 0.48± 0.05,

3Applying unitaries H, HS†, and 1 followed by measurement in the computational basis are equiv-
alent to perform Pauli-X, Y , and Z measurement, respectively; S†=[1,0; 0,-i]
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Fig. 3.6. Reconstructed density matrix by BME. (a) Real part of
average density matrix. (b) Imaginary part. (c) Standard deviations
of the real density matrix elements. (d) Standard deviations of the
imaginary elements. Shorthand label definitions: 00 ≡ |1ω−4〉A|1ω4〉B,
01 ≡ |1ω−4〉A|1ω5〉B, 10 ≡ |1ω−3〉A|1ω4〉B, 11 ≡ |1ω−3〉A|1ω5〉B.

we thus violate the qMU bound by 9.8 standard deviations, providing a clear witness

of entanglement in our system.

Moreover, BME allows us to estimate the full density matrix from just the four

measurements in Fig. 3.6, with any missing tomographic information reflected nat-

urally in the retrieved uncertainty [93, 94]. As mentioned earlier, the operations

above—1 and H followed by frequency-bin detection—are equivalent to measure-

ments in the Pauli Z and X bases, respectively. Using this information, BME pro-

duces the density matrix ρ̂ in Fig. 3.6: the mean values of the real and imaginary

components are plotted in panels (a) and (b); their associated standard deviations in

(c) and (d) (see Appendix C.2 for model details). The power of Bayesian inference is

particularly evident in the error. It is extremely low for the real elements, due to our

complete coverage of the Z and X bases, yet much larger on several of the imaginary
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components, as expected given the absence of results in the Pauli Y basis. Since

physical requirements do bound this error, we can still strongly bound our estimate

of the fidelity compared to the the ideal state |Ψ+〉 ∝ |1ω−4〉A|1ω5〉B + |1ω−3〉A|1ω4〉B.

Specifically, the Bayesian estimate is FW = 〈Ψ+|ρ̂|Ψ+〉 = 0.92 ± 0.01. This result

provides positive corroboration of our frequency-bin control, and is fairly conserva-

tive, given that: (i) dark counts are not removed, and thus can degrade the state;

and (ii) we intentionally lump any imperfections in our system onto the state itself,

so that impurities in either the input state or quantum frequency processor will con-

tribute to lower FW . Such findings demonstrate the utility of our quantum frequency

processor for manipulating joint quantum systems coherently and independently, pre-

serving a state’s built-in entanglement in the process—an essential functionality in

frequency-bin qubit control.

3.6 Outlook

In this chapter, we significantly expand the paradigm introduced earlier, show-

ing high-contrast interference of fully quantum frequency states. By making use of

our gate’s unique tunability, we demonstrate frequency-bin HOM interference with

record-high visibility. And by incorporating such tunability with our method’s paral-

lelizability, we synthesize independent quantum frequency gates in the same device,

realizing the first high-fidelity flip of spectral correlations on two entangled photons.

These results demonstrate multiple functionalities in parallel in a single platform,

representing a huge step forward for the frequency-multiplexed quantum internet.

Moving forward, a key question should be addressed to further bolster QFP’s role

in frequency-bin QIP platform is how diverse a set of parallel quantum gates can

be, given they all share the same EO modulations? For the demonstration discussed

in this chapter, the gate is smoothly tuned from 1 to H (R = 0 → 0.5) simply by

changing the phase shift on the pulse shaper, but unfortunately, it cannot go all the

way to a Pauli-X (R = 1) gate. Indeed, additional simulations show that to realize a
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X operation, the temporal modulation patterns applied to the EOMs are significantly

different than those of 1 andH. We then ask, is it possible to implement all the desired

quantum gates with the same RF drives but different spectral modulation patterns,

and how many components in the QFP we will need in this case? This criterion, of

course, is not a necessary condition for universal frequency-bin QIP, but it could be

extremely valuable for efficient resource provisioning. For example, a single QFP can

perform distinct quantum operations to multiple frequency-bin qubits in separate

subbands and fully capitalize its inherent parallelizability, rather than introducing

multiple QFPs and realizing the task with a divide-and-conquer strategy.

From a complementary point of view, we can also ask the same question but

with a different premise: suppose the pulse shapers in the QFP are fixed, can we

achieve all the quantum operations of interest, such as X, Y , Z, and H gates, simply

by adjusting the EO modulations4? The potential of real-time updating the QFPs

will be beneficial for networking-centric quantum applications, in which the user(s)

holds a QFP to measure the flying qubits in different bases (in a QKD system),

perform distinct operations with respect to the bit strings to transmit (in a superdense

coding system), or simply route/process a quantum package upon receiving a header

of classical pulse (in a quantum/classical coexistence network).

4The reason we assume pulse shapers are fixed is due to technical limitation. For a pulse shaper
based on liquid-crystal modulators or realized with a bank of on-chip thermo-optic phase shifters,
the update speed is in the scale of ms, which is significantly slower than that of EOMs (inverse of
the electro-optic bandwidth).
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4. A CONTROLLED-NOT GATE FOR FREQUENCY-BIN

QUBITS

4.1 Background

Two-qubit entangling gate, which operates on one qubit conditioned on the state

of the other, is a necessary component for constructing any arbitrary quantum oper-

ation to fulfill universal QIP [19]. While photonics excels for single-qubit gates, the

inherent difficulty in realizing photon-photon interactions has made the two-qubit gate

a persistent obstacle in photonic QIP. In the absence of a sufficient nonlinearity, such

gates can still be achieved via quantum interference, ancilla photons, feed-forward

operation, and single-photon detection. While two-qubit gates succeed only proba-

bilistically in this paradigm, linear-optical quantum computation (LOQC) [23] is in

principle scalable with polynomial auxiliary resource requirements and has laid the

foundation for many subsequent advances in photonic QIP [88, 97–102]. Previously,

we have discussed the experimental implementation of spectral LOQC [12]—a uni-

versal QIP scheme tailored to frequency-bin qubits which makes use of EOMs and

PSs (or namely, the QFP). Single-qubit operations with near-unit fidelity have been

reported in Chapter 2, but a two-photon frequency-bin gate has heretofore proven elu-

sive and yet to be realized on any other platform. Nevertheless, the basic mechanism

of two-photon gates relies on high-fidelity quantum interference, and the demonstra-

tion of frequency-bin HOM interference with near-unity visibility (cf. Chapter 3.4)

indicates strong potential of realizing such gates with the QFP.

Theoretically, Lukens et al [12] have previously discovered EOM/PS configura-

tions capable of realizing ancilla-based (heralded) two-qubit gates in spectral LOQC [12],

where the success probability and ancilla photon requirements can match the best
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Fig. 4.1. Coincidence-basis controlled-not gate. (a) A photonic
cnot gate, firstly realized in the spatial-encoded platform [101], uti-
lizes a sequences of beamsplitters (with 1/2 and 1/3 reflectivity) to
induce non-classical interference between two photons owing to path
indistinguishability. (b) Conceptual frequency-bin interference in the
QFP, for the case of input state |11〉. Quantum interference suppresses
the result |11〉 at the output, leaving only state |10〉 in the coincidence
basis. While the general interference phenomena can apply to both
platforms, the basic manipulations are significantly different.

known in any linear-optical platform1. Yet if one relaxes the gate requirements

slightly, by conditioning on the presence of a photon in the desired qubit modes, it is

well-known in standard LOQC that one can engineer a two-qubit gate with no ancil-

las and success probability PW = 1/9 [98, 100]. Assuming a quantum nondemolition

measurement is unavailable, such gates are destructive (succeeding only when both

information-carrying photons are themselves detected, also known as coincidence-

basis). Yet they require only two-fold coincidences for characterization, making them

excellent choices for experimental studies of basic quantum computing functionalities.

Before we move on to the details of the gate design, we believe it will be instructive

to have a short discussion regarding the basic concept behind this coincidence-basis

controlled-NOT (cnot) gate—the first two-photon gate we choose to implement on

our platform—which flips the state of the target qubit if the control qubit is in state

|1〉. In Fig. 4.1, we provide a side-by-side comparison between the original path-

1A 4EOM/4PS QFP is capable of realizing a controlled-Z (cz) gate with the best-known success
probability of PW = 2/27 [12]. A cz gate flips the sign of the target qubit when both inputs are |1〉.
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encoded version and our version of cnot gate. Fig. 4.1(a) describes one of the first

experimental realizations of photonic cnot gate [101], which consists of three spatial

beamsplitters with 1/3-reflectivity, sandwiched by two balanced beamsplitters. This

design was motivated by the fact that a cnot operation can be decomposed as:

UCNOT = (1 ⊗ H)UCZ(1 ⊗ H), where H is equivalent to a 50/50 beamsplitter, and

as derived in Ref. [98, 100], the quantum interference at the partial beamsplitter can

give rise to a π phase shift for the |11〉 state (i.e., cz operation) when postselecting

on two-photon coincidence events. After the gate transformation, the input photon

pair can end up in the same output spatial mode or dumped out of the circuit, but

only when a coincidence event is registered between a control and target output mode

then we know the gate succeeds.

On the other hand, Fig. 4.1(b) provides a conceptual example of the interference

underpinning the frequency-bin cnot, where the rails denote particular frequency

bins and the lines trace out probability amplitudes of single photons initially in bins

C1 and T1 (logical 1 for both control and target qubits); blue follows the control,

red the target, and the thickness is proportional to the squared amplitude. Each

EOM serves as a multimode interferometer mixing all bins simultaneously; in this

particular example, the phases applied by the QFP shaper produce destructive inter-

ference of the two amplitudes yielding the output |C1T1〉, leaving only the possibility

|C1T0〉 in the coincidence basis (the characteristic CNOT bit flip). This picture high-

lights that, while the general interference phenomena remain the same between path

and frequency encoding, the basic manipulations are significantly different: standard

beamsplitters interface two input modes with two outputs, while EOMs couple, in

principle, infinitely many. Such a lack of direct correspondence between frequency-

bin and path primitives is the reason for our use of numerical optimization of the

full transformation, rather than constructing and combining individual frequency-bin

beamsplitters.
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4.2 Experimental Setup and Gate Design

To explore two-qubit gates with a QFP, we follow the optimization approach in

Chapter 1.3, numerically finding phase patterns for an EOM/PS sequence which max-

imize success PW constrained to fidelity FW ≥ 0.9999, while restricting our simula-

tions to sinewave-only EO modulation. We find that a 3EOM/2PS QFP can realize a

frequency-bin CNOT at the optimal success probability of PW = 1/9, while a smaller

2EOM/1PS circuit can do so with reduced success: PW = 0.0445. Due to equipment

availability and system complexity, we elect to implement this simpler 2EOM/1PS

cnot in the experiments below. See Appendix A for the specific EOM/PS modula-

tion patterns, and numerically obtained mode and state transformation matrices.

Fig. 4.2 provides a schematic of the setup. The gate itself comprises the central

EOM/PS/EOM sequence, and the frequency bins for encoding are defined accord-

ing to ωn = ω0 + n∆ω, where ω0 = 2π × 193.45 THz and ∆ω = 2π × 25 GHz,

Fig. 4.2. Realization of frequency-bin CNOT with the QFP.
The experimental arrangement is very similar to that described in
Figure 3.3, with only a slight difference in the management of the Ti:S
laser and the PPLN waveguide for preparing all four computational-
basis states as the input. See text for more details.
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Fig. 4.3. Mode definitions for control and target qubits. The
labels {Ω00,Ω01,Ω10,Ω11} mark the pump frequency values (divided
by two) needed to produce each of the computational basis states.
The encoding frequency bins are defined according to ωn = ω0 +n∆ω,
where ω0 = 2π × 193.45 THz and ∆ω = 2π × 25 GHz.

corresponding to the standard ITU grid and facilitating low-crosstalk, line-by-line

shaping by our 10 GHz resolution pulse shapers. The specific bins for encoding follow

in Fig. 4.3, where {C0, C1} and {T0, T1} denote logical |0〉 and |1〉 for the control

and target, respectively. Compared to single-qubit gates, where only the spacing

between the two computational bins matters, two-qubit gates provide a much richer

parameter space; namely, the placement of the four computational modes relative

to each other can have a profound impact on the EOM/PS complexity needed to

realize a specific operation. In general, we are guided by the intuition to spectrally

isolate control mode 0 (C0) while packing control mode 1 (C1) close to both target

modes2. This ensures a photon in mode C0 leaves the target unchanged, while bin

C1 is close to both target bins, able to be coupled to T0 and T1 with equal strength.

We have performed a thorough—though non-exhaustive—search over these possible

mode placement combinations in each round of optimization. In our simulation, we

have found more than one arrangement leading to similar gate performance, and thus

we choose to work with the solution which demands smallest EO modulation depth

to facilitate experimental implementation.

2This intuition comes from the design in the path-encoded cnot. In Fig. 4.1(a), the control mode 0
(C0) is spatially isolated and never interacts with other modes.
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4.3 Coherent State Measurement

Since this gate is based on a linear-optical network, we can again estimate its per-

formance using coherent-state-based characterization (See Appendix B), i.e., probing

it with an EO comb and measuring the output spectrum for different input frequency

superpositions. This technique allows us to estimate the mode transformation ma-

trix V , which controls how input mode operators ân at each frequency ωn transform

to the output operators b̂n: b̂n =
∑

n′ Vnn′ ân′ . The mode matrix V , averaged over

five independent measurements and projected onto the four computational modes, is

shown in Fig. 4.4(a). We utilize phasor notation to represent the complex elements

Vnn′ ; the filled color reflects the amplitude on a logarithmic scale, normalized to the

maximum value in the matrix (0.499), and the arrow marks out the phase.

From this matrix V , we can compute the equivalent two-photon state transforma-

tion matrix3 W

WCrTs←CkTl = VCrCk
VTsTl + VCrTlVTsCk

; {k, l, r, s} ∈ {0, 1}. (4.1)

This equation perfectly captures the concept behind the coincidence-basis two-qubit

gate: An operation succeeds only when one photon is detected at the control qubit

(Cr) and another at the target qubit (Ts). The summation of the two terms de-

scribes the quantum interference between two possible pathways given by the mode

transformation, i.e., (Ck → Cr, Tl → Ts) and (Tl → Cr, Ck → Ts). The inferred

state transformation W is plotted for the coincidence basis in Fig. 4.4(b) and also

normalized to its peak magnitude of 0.222.

Because this estimate predicts all four of the large elements of W to be in-phase,

the corresponding inferred fidelity is FW,inf = 0.995 ± 0.001; the success probability

is PW,inf = 0.0460± 0.0005. Both values are with respect to the ideal CNOT and in

good agreement with theory. We emphasize that, unlike single-qubit gates which act

on photons independently, two-qubit entangling gates rely on quantum interference

3In the case of two-photon gates, the mode transformation V is no longer equivalent to the state
transformation W , which can only be inferred from V obtained in the coherent-state-based charac-
terization method.
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Fig. 4.4. Coherent-state-based gate characterization. (a) Ex-
perimentally obtained complex mode transformation V . (b) Inferred
two-photon transformation W obtained from permanents of 2 × 2
submatrices of V . For both cases, we use phasor notation to repre-
sent the complex elements, with filled color signifying the amplitude
(normalized by the matrix’s maximum value, and shown on a log-
arithmic scale), and the arrow depicting the phase. Dotted circles
denote phases we could not retrieve due to weak amplitudes.

effects that are inherently absent with high-flux laser fields. Thus this inferred fidelity

is only an indirect estimate, based on extrapolating measured one-photon interference

results to the two-photon case. Nevertheless, it provides strong initial evidence for

the phase coherence and proper operation of our gate.

4.4 Quantum Measurement in the Computational Basis

To test our gate with truly quantum states, we prepare a biphoton frequency comb

(BFC) by pumping a PPLN waveguide with a continuous-wave Ti:sapphire laser, fol-

lowed by filtering the broadband biphotons with a 25 GHz spaced etalon (see Fig. 4.2

and discussion in Chapter 3 for more details). By translating the pump frequency

to four different values (as shown in Fig. 4.3) and selecting the desired modes using

the BFC shaper, we can prepare all inputs from the two-qubit computational basis:

|C0T0〉 = |1ω01ω7〉, |C0T1〉 = |1ω01ω8〉, |C1T0〉 = |1ω61ω7〉, and |C1T1〉 = |1ω61ω8〉. To
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Fig. 4.5. Measurement in the computational basis. (a) Ex-
perimentally measured coincidences over 600 s for all input/output
logical-basis state combinations, showing a characteristic cnot bit
flip. (b) Estimated number of accidentals computed from the product
of single detector counts.

ensure the photon flux remains constant across the four inputs, we tune the PPLN

temperature to align the peak of the phase-matching spectrum with the pump fre-

quency. After the gate, the output photons are frequency-demultiplexed: we send

control photon bins to detector A and target photon bins to detector B.

Fig. 4.5(a) shows the measured coincidences for all 16 input/output mode combi-

nations, integrated over 600 s for each point. The results indicate our gate performs

largely as designed—the quantum state holds with an input photon in C0, while a

photon in C1 flips the target qubit. In Fig. 4.5(b) we plot the accidentals as deter-

mined by the product of the singles counts and our timing resolution [103,104]. The

nonuniform distribution of accidentals stems from the fact that the singles counts

vary significantly across input/output state combinations. Indeed, this is a natural

feature of coincidence-basis gates: they are designed to discard cases when one of the

qubit spaces is empty or doubly occupied, so that photon detection rates in a specific

mode can change without impacting the designed operation.
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4.5 Gate Reconstruction via Bayesian Machine Learning

Such information-bearing features in the accidentals suggest that incorporating

knowledge from single-detector events—as well as the coincidences—can add signif-

icant value for quantifying the performance of our gate in the presence of noise. To

utilize all of our experimental data in a consistent fashion, we make use of Bayesian

machine learning techniques to implement a numerical parameter inference approach

built on Bayesian mean estimation (BME) [105]. In the context of quantum state

retrieval, BME is a powerful method which returns uncertainties on any quantity

directly and makes efficient use of all available information, in the sense that the

confidence in any estimate naturally reflects the amount of data gathered [93]. BME

models for photon pairs including single-detector events have been developed as well,

permitting extraction of the quantum pathway efficiencies in conjunction with esti-

mates of the input density matrix [94]. In our BME model here, not only do we

account for noise effects, but we can also retrieve meaningful estimates of the full

complex matrix V , even though we only prepare and measure states in the computa-

tional basis. This represents an entirely new capability in two-photon gate analysis,

for previously such truth-table measurements [as in Fig. 4.5(a)] have only been used to

establish magnitudes in the matrix transformation, with superposition states required

to assess the phase [101].

The general model for extracting information using BME can be outlined as fol-

lows: We first define a set of unknown parameters of interest called β, usually repre-

sented by density matrix, gate transformation, pair generation rate, etc. Experimen-

tally, we collect data D, such as single counts and multiphoton coincidence events,

from a number of trials in different experimental configurations. We can construct

a multinomial likelihood function P (D|β), which mathematically describes what the

probability of observing the data set D is, given the parameters β. After setting up a

prior distribution P (β)—general knowledge about the parameters before making the

inference—we compute the multivariate posterior probability distribution P (β|D)
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Fig. 4.6. Outline of our Bayesian machine learning approach.
For every input/output combination, we can construct a multinomial
likelihood function P (D|β) to connect the unknown parameters β
with the experimental data D, including single counts NA and NB

and coincidences NAB. Using Bayes’ rule and slice sampling method,
we can retrieve samples β̄ from the posterior distribution, which can
faithfully represent the parameters of interest.

using Bayes’ rule: P (β|D) ∝ P (D|β)P (β), which represents complete knowledge

of the parameters given the observed data. Finally, numerical sampling algorithm,

such as Metropolis-Hastings and slice sampling [106], can be employed to extract a

sufficient amount of samples from the posterior distribution. Suppose the samples

can faithfully represent the distribution of interest, we can compute the means and

error bars of the parameters from those samples.

Fig. 4.6 depicts the outline of our BME model, while more details can be found in

Appendix C.3. The unknown parameters (β) to retrieve include: the mode transfor-

mation matrix V , the pair generation probability µ, and the total system efficiencies

ηA and ηB preceding detection at the control and target photon detectors, respectively.

Obtained from independent measurements, and thus taken as fixed and known, are

the dark count probabilities dA and dB. All probabilities {µ, dA, dB} are specified

for one resolving time τ (∼1.5 ns). For the input photon state |CkTl〉 (k, l ∈ {0, 1})
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with detectors A and B set to respond to output modes Cr and Ts (r, s ∈ {0, 1}),

respectively, the probability of a coincidence between detectors A and B is

pAB = µηAηB |VCrCk
VTsTl + VCrTlVTsCk

|2 + 2pApB. (4.2)

Here pA and pB are the marginal probabilities for clicks on A or B, irrespective

of clicks on the other, during a given time τ . This formula thus contains both a

correlated term (from photons of the same pair; cf. Eq. 4.1) and an accidental term.

The latter, equal to 2pApB [103, 104], represents the chance of simultaneous clicks in

which at least one detector registers a dark count, or the photons come from different

pairs (see Appendix C.3 for details).

The marginal probabilities pA and pB can be found by summing the contribu-

tions from each possible number of photons N being present in the monitored mode,

sketched formally as, e.g., pA =
∑

N P (click|N photons)P (N photons). Writing out

each term for N = 0, 1, 2, and simplifying, we ultimately arrive at the probabilities

for a click on either detector within a time τ (see Appendix C.3):

pA = µηA
(
|VCrCk

|2 + |VCrTl |
2)+ dA

pB = µηB
(
|VTsCk

|2 + |VTsTl |
2)+ dB, (4.3)

valid under the assumptions µ, ηA, ηB, dA, dB � 1—satisfied in our experiment. Cru-

cially, the singles probabilities [Eq. (4.3)] depend only on the moduli of the V -matrix

elements, whereas the coincidences also depend on the relative phase [via the per-

manent term in Eq. (4.2)]. It is this complementary dependence which underpins our

ability to extract the full complex matrix from experimental data.

Specifically, for a single preparation/measurement configuration we possess three

numbers as data: clicks on A (NA), clicks on B (NB), and coincidences (NAB).

This gives us the multinomial likelihood for this specific input/output configuration

(|CkTl〉 → |CrTs〉):

P
(
DCrTs
CkTl
|β
)

= (pA − pAB)NA−NAB(pB − pAB)NB−NAB

×pNAB
AB (1− pA − pB + pAB)M−NA−NB+NAB , (4.4)



61

where DCrTs
CkTl

= {NA, NB, NAB} contains all data values for the specific configuration.

We have also reexpressed the events to make them mutually exclusive: click on A only,

happening NA−NAB times; click on B only, occurring NB −NAB times; coincidence

between A and B (NAB times); and no clicks (all remaining frames). M equals

the total number of τ frames considered in one counting period (∼ 4 × 1011 in our

tests). The complete likelihood comprises 16 factors in the manner of Eq. (4.4) for

all combinations of inputs and outputs.

After setting up the prior distributions for all parameters (See Appendix C.3),

we have the posterior probability distribution from Bayes’ rule. However, practically

speaking, computing integrals or, equivalently, sampling from this many-parameter

multimodal distribution is a formidable challenge. It is here that the techniques of

Markov chain Monte Carlo (MCMC) sampling offer a solution, which—with minimal

input—enable Bayesian machine learning of complex models. In our case, we employ

slice sampling, an MCMC algorithm designed to produce a sequence of samples whose

stationary distribution converges to the posterior [106].

Using the predicted matrix V as an initial guess for the slice sampler, a procedure

which we found important to speed up convergence given the large search space of

28 independent variables, we ultimately converge to the Bayesian fidelity estimate

FW,BME = 0.91 ± 0.01. Our truly quantum measurement does not reach the >0.99

classically inferred FW,inf , which is a consequence of the relatively few coincidence

counts (<100 in all cases) and additional noise from residual light. Nevertheless, the

low uncertainty on FW,BME indicates high confidence in our BME model, especially

in light of its ability to retrieve the full complex fidelity with computational basis

measurements. To see how FW,BME translates into output state probabilities in the

coincidence basis, we plot the Bayesian-estimated pathway probabilities in Fig. 4.7,

where the four outcomes for each input state are normalized to sum to unity. The

average probability for obtaining the correct output is 0.92±0.01, computed by taking

the mean of the four peaks in Fig. 4.7.
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Fig. 4.7. Retrieval of probabilities for the computational-basis
operation via BME. Utilizing a parameter inference approach based
on Bayesian machine learning, we are able to reconstruct the full gate
transformation from measurements in the logical basis alone. Trans-
lating the BME results into output state probabilities, we calculate
an average probability of 0.92±0.01 for obtaining the correct output,
computed by taking the mean of the four peaks in the figure.

4.6 Outlook

In this chapter, we have realized an entangling gate in frequency-bin encoding. We

confirm high-fidelity cnot operation with two forms of characterization: coherent-

state-based reconstruction and photon pair measurements in the computational basis.

Both the classically inferred fidelity and Bayesian estimate suggest high performance

in our system. As the sole realization of a two-photon entangling gate in frequency, our

gate significantly expands the potential of single-spatial-mode, fiber-optic-based QIP.

More generally, our Bayesian characterization approach provides further evidence of

the potential of machine learning in analyzing quantum systems, particularly for

extracting information within measurements which traditional methods overlook.

Hitherto, a crucial point missing in this chapter is to demonstrate this cnot gate

is truly entangling, i.e., producing an entangled two-qubit state from a separable

state at the input. Such experiment usually involves with, for example, preparing the



63

input control qubit in a superposition state |C0〉 ± |C1〉 and the target in either |T0〉

or |T1〉, performing a full quantum state tomography on the output states for density

matrix reconstruction, and finally calculating the fidelity between the retrieved state

and the ideal output state (i.e., one of the Bell states) [101]. More interestingly, a

cnot circuit, due to its reversibility, can disentangle the entangled states. Introducing

an extra Hadamard gate to the control output, one can deterministically discriminate

any of the four input Bell states (i.e., Bell-state analyzer) from the other by reading

the output coincidence pattern [98]. The capability of processing arbitrary two-qubit

states with this cnot gate will also be useful implementing photonic QIP algorithms

such as the variational quantum eigensolver [107] and Shor factoring [108]. Moreover,

the standard procedure for gate characterization such as quantum process tomography

(QST) [109–111], which is designed to recover a quantum operation treating the

system as a black box, also requires preparation of many linearly independent input

states for measurement.

To prepare the input states beyond just the computational basis, extra components

such as EOMs and shapers are required to fulfill this objective. For example, one could

precede the cnot operation with additional Hadamard operations on one or both

input photons (cf. Chapter 3). Yet cascading additional elements at the moment is

limited by technical loss; we predict that we could not at present obtain coincidences

above the accidental level with the additional equipment required. On the other hand,

an alternative solution is to absorb this technical loss before the photon generation,

i.e., by engineering the pump. The two-photon state generated in our system is still

limited to a certain form4, mostly due to the usage of single-tone, continuous-wave

pump. It is worth investigating whether arbitrary two-qubit states, or at least, all

four Bell states can be prepared given the pump now contains multiple comblines and

the etalon (shown in Fig. 4.2) is replaced by a pulse shaper for full amplitude and

phase filtering.

4For example, our BFC state is usually in the form of |1ωi
1ω−i
〉 ± |1ωj

1ω−j
〉, which resembles two of

the Bell states.
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5. FULLY ARBITRARY CONTROL OF

FREQUENCY-BIN QUBITS

5.1 Background

Drawing on arguments from LOQC [23], our QFP approach has been shown scal-

able in principle, and a collection of gates comprising a universal set have been re-

alized experimentally [20, 21, 24, 25], as discussed in the past few chapters. Such

scaling arguments prove crucial in establishing ultimate feasibility, yet leave many

smaller—though highly practical—questions unanswered. For example, the fully ar-

bitrary rotation of a single qubit represents a fundamental capability for any two-level

system, yet neither a Solovay–Kitaev construction [112] in terms of basic gates, nor

general resource bounds, reveals the optimal construction of general two-mode uni-

taries, particularly when subject to practical resource constraints.

In this chapter, we answer this important question through theoretical analysis and

experimental verification of arbitrary single-qubit gates in frequency-bin encoding.

We have established optimal designs for arbitrary single-qubit unitaries on frequency-

bin qubits, for multiple quantum frequency processor setups subject to realistic con-

straints on modulation and elements. Our numerical simulations obtain three-element

QFP configurations capable of any unitary operation with fidelity FW ≥ 0.9999 utiliz-

ing single-tone modulation only; by either adding a second harmonic or cascading an

additional pulse shaper/modulator pair, such operations achieve success probabilities

PW > 0.95 or PW > 0.999, respectively. We reinforce these findings experimentally,

synthesizing frequency-bin unitaries with performance in close agreement with the-

ory. Finally, we highlight their use at the single-photon level in the rotation of a

fixed input to arbitrary points on the Bloch sphere, obtaining output state fidelities

Fρ > 0.98 with respect to the ideal. Our results represent the first full tomography
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of arbitrarily rotated frequency-bin qubit states, establishing resource guidelines for

future systems and providing tools for fundamental applications in communications

and coherent control.

5.2 Problem Formulation

In discrete-variable frequency-bin encoding, a frequency-bin qubit can be de-

scribed by annihilation (creation) operators â0 (â†0) and â1 (â†1) centered at fre-

quency ω0 and ω1, respectively. A pure qubit state may be expressed as |ψ〉 =

(c0â
†
0 + c1â

†
1) |vac〉, where |vac〉 is the vacuum state and |c0|2 + |c1|2 = 1. Logical basis

states follow as |n〉 = â†n |vac〉 (n ∈ {0, 1}). Any 2 × 2 unitary operating on these

modes can be parameterized as [113]

Fig. 5.1. Experimental setup for arbitrary frequency-qubit
operations and state measurement. Insets show an example uni-
tary rotation for an input state |ψ〉 = 0.6 |0〉 − 0.8 |1〉 and (θ, ϕ, λ) =
(0.7π, 0.55π, 0.25π), with tomography represented in terms of projec-
tions onto each axis. Here |±〉 ∝ |0〉 ± |1〉 and |±i〉 ∝ |0〉 ± i |1〉.
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U(θ, ϕ, λ) =

 cos θ
2

−eiλ sin θ
2

eiϕ sin θ
2

ei(ϕ+λ) cos θ
2

 , (5.1)

where θ ∈ [0, π], ϕ ∈ [0, 2π), and λ ∈ [0, 2π). Further intuition can be gained by

factorizing into the product U(θ, ϕ, λ) = D(ϕ)R(θ)D(λ), where D(·) represents a

diagonal unitary imparting a phase shift to bin 1 (Rz-rotation) and R(·) a mixing

between both bins (Ry-rotation). Considering this as taking the inputs â0 and â1

to outputs b̂0 and b̂1, this implies that the output state coefficients, |φ〉 = (d0b̂
†
0 +

d1b̂
†
1) |vac〉, satisfy

(
d0
d1

)
= U( c0c1 ). An example unitary rotation is shown in the upper

right inset of Fig. 5.1: starting at |ψ〉 = 0.6 |0〉 + 0.8 |1〉, the state rotates through

λ = 0.25π around the z-axis, then θ = 0.7π around y, and finally ϕ = 0.55π around

z to end up at |φ〉 = 0.5547 |0〉+ 0.8320 e−i0.7130π |1〉.

This mathematical formulation applies generally to any qubit system. The nu-

ances of the QFP approach appear, though, when describing (i) the bins ω0 and ω1

as embedded within a comb spaced at ∆ω (ωn = ω0 + n∆ω;n ∈ Z) and (ii) the

transformation on all modes b̂m =
∑

n Vmnân as characterized by an alternating series

of electro-optic phase modulators (EOMs) driven with 2π
∆ω

-periodic waveforms and

pulse shapers applying arbitrary phases to each bin. As modeled, V is unitary over

the entire countably infinite collection of bins, though the 2 × 2 submatrix in the

computational space—call this W =
(
V00 V01
V10 V11

)
—may or may not prove unitary, due to

coupling into adjacent bins. While an apparent disadvantage of the QFP in this case

(particularly when compared to the isolated modes of alternative frequency-bin ap-

proaches [33,35,36,91,114,115]), this natural coupling between many bins facilitates

multiphoton interference between all underlying modes as required for LOQC. More-

over, by cascading additional pulse shapers and EOMs and employing more complex

modulation patterns, such adjacent-bin coupling can be fully compensated for, to

realize smaller-dimensional gates with unity efficiency [12,61].

Within this overall framework, considerable progress has been made on a subset

of U(θ, ϕ, λ): the phase-only gate U(0, ϕ, λ) and the Hadamard H = U(π
2
, 0, π),
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with the former requiring only a single pulse shaper, and the latter realizable with

an EOM/pulse shaper/EOM QFP [21, 24] (cf. Chapter 2.2). These considerations

engender optimism for experimental realization of arbitrary U , yet they do not answer

the practical questions of explicit construction, nor elucidate the procedures involved

in reconfiguring a given QFP for all possible unitaries.

5.3 Numerical Simulations

Here we focus on pure-sinewave EO modulation (either one or two tones), and

QFPs with three or five elements. Limitation to odd-numbered QFPs follows from

previous observations that adding a pulse shaper on either side of a QFP improves

neither fidelity nor success probability. In fact, these remarks can be made rigor-

ous in the present case of a single-qubit operation. Suppose that a particular QFP

configuration realizes the gate W = gU(θ, 0, 0) (unitary up to an overall constant).

Then, as derived in Appendix D, the same QFP can actualize the gate gU(θ, ϕ, λ)

by delaying the RF signals applied to the first (last) EOM by − λ
∆ω

( ϕ
∆ω

) and adding

linear phases kλ (kϕ) to the first (last) pulse shaper [the sum k(λ+ϕ) in the case of

a single pulse shaper in a three-element QFP], with k the frequency-bin index.

This finding implies that, for the purpose of establishing performance under sys-

tem constraints, one need only concentrate on U(θ, 0, 0) numerically. We emphasize

that, while similar, these phase degeneracies prove fundamentally more significant

than those resulting from the freedom to set a phase reference. As argued in Ref. [81]

and invoked below in our own characterization procedure, the prerogative to define

the “in-phase” condition across modes at the input and output planes of an optical

multiport simplifies the process of extracting amplitudes and phases of the individual

transformation elements Vmn. However, such phase reference flexibility does not im-

ply the physical equivalence of operations that differ by this reference. For example,

if one defines the reference so that the QFP realizes U(θ, 0, 0), modifying the transfor-

mation to U(θ, ϕ, λ) produces measurable differences in the output state, impacting
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Fig. 5.2. QFP configurations. Optimized success probabil-
ity of single-qubit gate U(θ, 0, 0) for different QFP configurations.
(a) Three-element QFP, single-tone modulation. (b) Three-element
QFP, two-tone modulation. (c) Five-element QFP, single-tone mod-
ulation.

any subsequent operations downstream. Accordingly, the relationship between phase

and EOM delay discussed here is not just the establishment of a reference: it gives a

means to realize a (ϕ, λ) combination for any reference definition.

To benchmark the performance of single-qubit gates synthesized on the QFP, we

randomly generate 150 samples of θ ∈ [0, π] [corresponding to 150 different unitaries

U(θ, 0, 0)], and numerically find the solutions U(θ, 0, 0) for three different scenarios

(see Fig. 5.2): three-element QFP driven by (a) one or (b) two RF tones and (c)

five-element QFP driven by single tone. Case (a) is the baseline QFP which we

have utilized in previous chapters, while cases (b) and (c) describe the two most

immediate upgrades; (b) has been explored in a limited context for a frequency-bin

qutrit operation in Chapter 2, while (c) has so far required too many resources for

implementation. Yet all three are realizable with standard, commercially available

components—no specialized RF or optical equipment required.

We then assess the performance of W with respect to the desired U according to

gate success PW = Tr(W †W )/2 and gate fidelity FW = |Tr(W †U)|2/(4PW ) metrics,

where PW describes the probability of a photon remaining in the computational space,
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Fig. 5.3. Mode-transformation spectra. Experimentally obtained
spectra for Hadamard (top row) and Pauli-X (second row) operation
with three-element QFP driven by single and two RF tones. The
dashed box represents the computational space.

and FW defines the quality of the operation [62]. Figure 5.2 plots the simulation

results. PW shows a strong dependence on θ, suggesting that those unitaries with

small θ are easier to realize. This matches our intuition as the identity and phase-

only gates (θ = 0) can be realized without any EOM, while gates like Pauli X and Y

(θ = π) require proper engineering of the mixing process such that the photon can be

completely hopped to the opposite bin. Additionally, the results indicate that gate

performance can be significantly boosted with increased complexity in the controls,

by introducing either an additional RF harmonic [Fig. 5.2(b), PW > 0.95] or extra

components [Fig. 5.2(c), PW > 0.999]. Here, we experimentally focus on the setup

in Fig. 5.2(a) and (b) due to equipment availability—i.e., lack of EOMs and pulse

shapers for (c).
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5.4 Gate Characterization

Figure 5.1 provides a schematic of the experimental setup. A high-frequency RF

oscillator generates 25-GHz sinusoidal voltages to drive both EOMs, where their am-

plitudes and delays are set with manual phase shifters and attenuators. 1 Meanwhile,

the optimized spectral phase pattern is programmed onto the QFP shaper. Experi-

mentally, we select 21 out of the 150 previous solutions from Fig. 5.2(a). To investigate

whether each gate performs as anticipated, we utilize a coherent-state–based charac-

terization approach [21,81] by probing our QFP with an electro-optic frequency comb

and measuring the output spectrum for different input superpositions. As a result,

we are able to reconstruct the mode-transformation matrix W and compute the ex-

perimental FW and PW , as shown in Fig. 5.2(a) and (b). All measured gate fidelities

are above 0.9993 (except for one, unexplained outlier), and the success probabilities

track closely the theoretical prediction. Figure 5.3 presents a comparison between

the single-tone and two-tone QFP performance for the Hadamad and Pauli-X opera-

tions. The success probability, i.e. the power preserved in the computational space,

improves significantly with the introduction of the extra RF harmonic.

5.5 Quantum State Tomography and Bayesian Reconstruction

The previous tests confirm synthesis of arbitrary frequency-qubit operations, when

viewed in terms of optical modes. Yet in the context of photonic QIP, these mode

transformations are valuable insofar as they enable high-fidelity operations on quan-

tum states. Accordingly, we explore these gates at the single-photon level, focusing

specifically on their ability to convert a fixed input to an arbitrary output state. For

example (see Fig. 5.1), given a well-defined qubit |Ψ〉 as the input of the QFP, we can

convert it to an output state anywhere on the Bloch sphere through an unitary oper-

1To implement the configuration in Fig. 5.2(b), i.e., three-element QFP driven by two RF tones,
please refer to Chapter 2 for more detailed discussion. The drive frequency is reduced to 20 GHz
(and 40 GHz for the doubled tone) given the available RF bandwidth.
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ation U(θ, ϕ, λ). We can then assess the quality of this manipulation by performing

quantum state tomography (QST) on the output photon. 2

For single-qubit QST, we perform three Pauli measurements (Z, X, and Y ) to

project the output state onto the eigenvectors |t〉 (six in total): {|0〉 , |1〉 , |±〉 , |±i〉}.

To realize these three Pauli measurements (Z, X, and Y ) for QST, one needs to apply

1, H, and HS† prior to computational-basis measurement, where H is the Hadamard

operation and S = ( 1 0
0 i ). Experimentally, we follow the gate operation (namely, the

last EOM in the QFP) with a pulse shaper to filter out any photons outside of mode 0

and 1 such that residual scattering will not affect the operations downstream—i.e., by

coupling back to the computational space and introducing measurement errors. For

the H operation, we elect to use a single EOM to realize a probabilistic version of the

Hadamard gate; driving this EOM with a sinusoidal RF voltage with a modulation

index of 1.434 rad, we have equal power splitting between mode 0 and 1, as shown in

Fig. 5.4(a). This approach inevitably scatters more photons (∼40%) out of the single-

qubit space than its near-deterministic counterpart using a three-element QFP [21],

but can be implemented with the limited number of EOMs available in our laboratory.

Figure 5.4(b) and (c) show examples of projecting |+〉 and |−〉 states to |0〉 and |1〉,

respectively. The clear contrast between two output frequency modes shows that this

approach, while reducing the efficiency of the tomographic process, does not sacrifice

projection accuracy.

We emphasize that the RF drive applied to this EOM is synchronized with those

in the QFP, and its relative timing should be properly set as well. Experimentally,

we first program a Hadamard operation on the QFP and send the output photons

(now in the |+〉 state) through the pulse shaper (applying zero phase to all bins) and

EOM for tomography, and fine tune the delay of this electrical drive via a manual RF

phase shifter while recording the photon counts in two computational modes. Once

we obtain maximal (minimal) amount of photons in the frequency mode 0 (mode 1),

2Here our focus will be the simplest QFP configuration—three-element QFP driven by single RF
tone.
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Fig. 5.4. Probabilistic Hadamard operation for QST. Example of
simulated output spectra for specific inputs. (a) Pure mode 0, |0〉.
(b) Mode 0 and 1 in phase, |+〉 ∝ |0〉+ |1〉. (c) Mode 0 and 1 out of
phase, |−〉 ∝ |0〉 − |1〉. 40% of the photons are scattered outside of
the computational space due to the usage of single EOM.

this EOM is aligned to perform the desired H measurement and the delay setting is

fixed throughout the rest of the experiment. Then, by applying a phase of −π
2

to

frequency bin 1 on the measurement pulse shaper, we can realize the necessary S†

operation for |±i〉 measurement as well.

Finally, for computational-basis projection, we demultiplex the photons by color

with a wavelength-selective switch (WSS), and records the counts in |0〉 and |1〉 with

superconducting nanowire detectors (SNSPDs). For each measurement setting, we

record the counts over 1 s, then subtract the average detector dark counts and obtain

a final dataset D = {N0, N1, N+, N−, N+i, N−i} with all outcomes for subsequent

tomographic analyses. For reconstruction, we employ Bayesian mean estimation [93],

an advanced tomographic technique which avoids unjustifiably low-rank estimates and
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furnishes natural error bars. We parameterize the density matrix ρ̂(x) and sample a

posterior distribution π(x) ∝ LD(x)π0(x) with multinomial likelihood

LD(x) = pN0
0 pN1

1 p
N+

+ p
N−
− p

N+i

+i p
N−i

−i , (5.2)

where pt ≡ 〈t|ρ̂(x)|t〉 is the probability of measuring the state |t〉 given the proposed

state ρ̂(x). We adopt the parametrization, prior distribution π0(x), and sampling

procedure recently proposed in Ref. [116], obtaining R = 1024 density matrix samples

ρ̂r for each tomographic dataset, from which we estimate the fidelity according to the

mean and standard deviation of the values of the individual samples (F r = 〈φ|ρ̂r|φ〉).

5.5.1 Arbitrary State Rotation

Following the QFP with a set of projective measurements, we reconstruct its

density matrix (ρ̂) through QST and compute the state fidelity with respect to the

ideal output state |φ〉 via Fρ = 〈φ|ρ̂|φ〉. 3 We prepare a single-photon-level source

by attenuating a continuous-wave laser at frequency ω0 to ∼106 counts/s (1/10 of

the detector saturation level) prior to the QFP. Since neither the QFP operation nor

QST involve multiphoton interference, the results of a weak coherent state are fully

equivalent to those of true single photons at the same average flux. To show that

we can bring this input state, |0〉 = â†0 |vac〉, at the north pole of the Bloch sphere,

to any arbitrary state within the whole sphere, we choose 11 values of θ ∈ [0, π] and

assign a few different ϕ to each, amounting to a total of 41 gates to implement. The

ideal output state is |φ〉 = cos θ
2
|0〉+ eiϕ sin θ

2
|1〉.

Figure 5.5 depicts the QST results. We map the ideal output states and the

retrieved Bayesian samples onto the Bloch sphere [Fig. 5.5(a)]. Three of the trans-

formations are highlighted in the zoomed-in inset, where the Bayesian samples follow

the ideal states closely. This suggests strong agreement between the design and ex-

perimental implementation, confirmed by Bayesian mean state fidelities above 98%

across all gates [Fig. 5.5(b)].

3Note the change in definition from the Hilbert–Schmidt fidelity FW used for gate characterization.
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5.5.2 Tunable Beamsplitter Design

In addition to a randomly chosen set of single-qubit rotations, we can also explore

coherent quantum state control across a specified trajectory. Previously, we found a

set of analytical solutions for tunable frequency beamsplitters [24] (cf. Chapter 3.2),

Fig. 5.5. Arbitrary single-qubit rotations on the QFP. (a) Re-
trieved Bayesian samples plotted on the Bloch sphere (green dots)
following 41 different transformations U(θ, ϕ, 0). Three examples are
highlighted in the inset, where blue dots mark the corresponding ideal
states. (b) Associated state fidelities, grouped by θ value, with each
data point corresponding to a randomly chosen ϕ. The mean and
standard deviation are computed from 1024 Bayesian samples.
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Fig. 5.6. Tunable beamsplitter design. (a) Temporal phase mod-
ulation applied to the first EOM (solid red) and second EOM (dotted
blue). (b) Spectral phase pattern applied by the pulse shaper, where
modes 0 and 1 denote the computational space. (c) Theoretical beam-
splitter transmissivity T (solid red) and reflectivity R (dotted blue).
Markers denote the values measured with single-photon-level input.
(d) Extracted parameters for the corresponding unitary U(θ, ϕ, 0).

where the reflectivity can be set anywhere between 0 and 0.5 simply by changing

the depth of the phase shift α imparted by the QFP shaper between frequency bins

0 and 1 (while both EOMs remain fixed). We revisit such design but with only a

slight modification in the EO modulation—previously, the modulation index was set

at 0.8169 rad, which can numerically realize a fidelity FW = 0.9999 and success

probability PW = 0.9760 for the Hadamard operation (when α is π). Here we adjust

the the modulation index to 0.829 rad, and the theoretical fidelity for the Hadamard

gate is boosted to FW = 0.9999999 after a small reduction in the success probability,

PW = 0.9746. Figure 5.6(a-b) depicts the specific configuration for this design.
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Figure 5.6(c) plots the theoretical T (solid red) and R (dotted blue) with respect

to α. On top of the two curves we also mark the (normalized) photon counts obtained

in the Pauli Z measurement with single-photon-level input at frequency mode 0, which

matches the theoretical prediction well. Finally, to visualize the trajectory of such a

beamsplitting operation on the Bloch sphere, we map the output state V00(α) |0〉 +

V10(α) |1〉 to the form of cos θ
2
|0〉+ eiϕ sin θ

2
|1〉 from the equivalent unitary U(θ, ϕ, 0)

and compute the corresponding θ and ϕ [shown in Fig. 5.6(d)]. The maximum θ goes

to π/2 (i.e., from north pole to equator) since our tunable beamsplitter design achieves

maximum reflectivity of 50%, rather than a full frequency hop. As for ϕ, it follows

a continuous path from −π/2 to π/2, which explains the counterclockwise trajectory

shown in Fig. 5.7(a). Note that for better visualization, we wrap the parameter ϕ

within −π and π (instead of 0 to 2π as in the main text).

For full QST, we sample 21 evenly spaced α ∈ [0, 2π] for implementation, and

again repeat the QST measurement for the same state input |0〉. Figure 5.7 depicts

the experimental results. As we increase α, the output state is moved from the

north pole (|0〉) to the equator (|+〉 = H |0〉), and then back to the north pole (|0〉),

following a counterclockwise trajectory on the Bloch sphere (dashed line in Fig. 5.7).

Again all measurements are in excellent agreement with theory (Fρ > 0.98).

5.6 Outlook

In addition to addressing fundamental questions in frequency-bin quantum state

control, the findings described here appear particularly relevant in the applications

of quantum communications and networking. Indeed, one of the inherent benefits

of frequency-bin encoding is its compatibility with fiber-optic communications: the

QFP paradigm already leverages commercial telecom components (EOMs and pulse

shapers), and frequency-bin operations can be extensively parallelized according to

the principles of wavelength-division multiplexing (WDM). This synergy has enabled

several recent quantum networking demonstrations invoking WDM for distributing
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Fig. 5.7. Tunable beamsplitter. (a) Ideal output state trajectory
(dashed line) and retrieved Bayesian samples (green dots) plotted on
the Bloch sphere. (b) Bayesian state fidelities as function of pulse
shaper phase α.

0

entanglement in other degrees of freedom [117–120]; the QFP approach moves even

further by exploiting frequency bins for encoding quantum information as well, and

the fully arbitrary unitaries realized here should make feasible an array of quantum

networking protocols with frequency bins. Whereas the previously shown Hadamard

(θ = π
2
) [21, 24] would be sufficient (along with the identity) for basis measurements

in quantum key distribution [90], it is only through these more general unitaries that

the full range of qubit quantum information protocols can be realized. For example,

both superdense coding [27] and quantum teleportation [28] require single-qubit gates

including a full 180◦ rotation (θ = π), and the standard CHSH Bell inequality [121]

relies on measurements preceded by unitaries with θ ∈ {0, π
4
, π

2
, 3π

4
}.

Moreover, while we have focused specifically on the fundamental two-level qubit

here, one of the salient features of the frequency degree of freedom is its natural com-

patibility with high-dimensional qudit (d > 2) encoding [53,54,86,122]. Importantly,

the same design procedure adopted here can be applied for the construction of arbi-

trary qudit operations as well. As initial examples, we have numerically found 2d+ 1
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EOMs and pulse shapers sufficient for high-dimensional frequency hopping (up to

d = 5) using single-tone RF modulation [61]; we have also found d− 1 RF harmonics

capable of realizing d-dimensional discrete Fourier transformations (up to d = 10)

on a single three-element QFP. Combined with general scaling arguments [12], these

results highlight that arbitrary high-dimensional gates can be realized in an efficient

fashion. The main limitations moving to higher dimensions, then, are technical in

nature—namely, the complexity of RF drive waveforms and the number of pulse

shapers and EOMs available.

On the characterization side, our focus on QST of an arbitrarily rotated state

corroborates the gate performance estimated from classical measurements. On the

other hand, quantum process tomography (QPT) would be required for a complete

quantum-mechanical description of the gate itself [110]. This procedure relies on

preparation of multiple input states (four in the case of a single-qubit operation),

followed by QST of each output after the QFP, which would necessitate additional

components beyond those available to us. Given our understanding of the physical

mechanisms involved in the QFP, we do not expect fundamentally new insights from

QPT. Nevertheless, realization of complete QPT—perhaps leveraging Bayesian tech-

niques for experimental simplifications—would prove valuable in future work, as a

means to further validate performance.
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6. APPLICATIONS IN FREQUENCY-BIN QIP

6.1 Frequency-Domain Bell State Analyzer

6.1.1 Motivation

Within the overall landscape of quantum science and technology, the development

of quantum networks is critical for applications such as blind quantum computing,

connected quantum sensors, and distributed quantum computing [123]. Quantum

networks can interconnect quantum information between physically separated matter

qubits via entanglement swapping operations (ESO) on traveling photons1. First,

each quantum system locally entangles their matter qubits with single photons and

launches them into the fiber network. Next, photons from different quantum systems

are brought together and processed by an apparatus called a “Bell-state analyzer”

1Here we omit the discussion of the simplest type of ESO designed for DLCZ protocols [124], where
one utilizes a single spatial beamsplitter to mix the optical paths from two atomic ensembles such
that the detection of a single photon erases all “which-way” information and projects the matter
qubits onto an entangled state (i.e., coherent superposition of a single atomic excitation in one or
the other ensemble).

QFP

qubit A

qubit B
SPDs
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qubit A’
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M
U
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frequency-domain 
BSA for spectral qubits 
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 (a)  (b)

Fig. 6.1. Photonic BSA. Bell state analyzers based on (a) spatial
and (b) frequency beamsplitters.
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(BSA). When the measurement is successful, the BSA erases the information carried

by the photonic qubits and projects the distant matter qubits, though they never

interacted, onto an entangled state.

In the simplest conception of a Bell-state analyzer, two photons, each entangled

with separate qubits (either matter-based or photonic), are mixed with a set of linear

optics—usually a combination of spatial/polarizing beamsplitters. Quantum inter-

ference between two-photon outcomes leads to one of many detection events. A

subset of the possible detection outcomes, usually signified by twofold coincident de-

tections, herald projection of the undetected qubits onto an entangled state. This is

a probabilistic process with a maximum efficiency of 50% when using linear optics

and vacuum ancillas [125], i.e., only two out of four Bell states can be discriminated

unambiguously. An optical module capable of carrying out such a measurement is

often referred to as a two-state Bell state analyzer (2-BSA) and was first realized for

polarization-encoded photons [126]. Figure 6.1(a) provides the concept of such an

example, where orthogonal modes (H with H and V with V ) are mixed in parallel

at a 50 : 50 spatial beamsplitter. Two of the Bell states, |Ψ±〉, can be distinguished

from their distinct coincidence patterns, while the |Φ±〉 family results in two photons

bunching in the same detectors2.

However, the quality of generated entanglement depends critically on the spectral

indistinguishability of photons participating in the joint measurement. This is an

inherent challenge in the case of frequency-bin encoding, as well as a practical chal-

lenge in networks with heterogeneous nodes, homogeneous nodes but in the presence

of location-dependent energy shift, or those that rely explicitly on spectral multiplex-

ing of quantum channels. To erase the frequency-distinguishable information between

two photons, one can use time-resolved detection with fast detectors to increase the

fidelity of remote entanglement, which reduces the entanglement rate owing to the

need for temporal postselection [129]. Time-resolved detection in combination with

2Interestingly, this is not the only possible apparatus for two-state Bell-state measurement. Ex-
perimental demonstrations using extra polarization rotators [127,128] can distinguish different Bell
states, albeit still with 50% success probability (in this case, |Ψ+〉 and |Φ+〉).
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active feed-forward [130, 131] has been used to mitigate this issue, but fidelities are

still lower than what one would obtain with spectrally indistinguishable photons.

6.1.2 Methods and Results

Among all the possible scenarios for spectrally distinguishable photons, we con-

sider the case where two input photons, photon A and B, have quantum informa-

tion directly encoded in four disparate, equispaced frequency modes {A0, A1} and

{B0, B1}, respectively 3. To implement the frequency-domain BSA, we draw an anal-

ogy from the 2-BSA design for the polarization qubit in Fig. 6.1(a)—i.e., mixing modes

A0 with B0 and A1 with B1 with frequency beamsplitters [H1 and H2 in Fig. 6.2(b)],

followed by spectrally-resolved coincidence measurements.

Hitherto we have extensively explored and focused on frequency beamsplitters op-

erating on “nearest-neighbor” modes on a three-element QFP with ultrahigh fidelity

3Other scenarios will be discussed in the following section.
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put spectra for single-frequency input at mode {A0, A1, B0, B1}.
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[cf. Chapters 2 and 3], in which the microwave drive frequency equals the funda-

mental mode spacing (∆ω). Setting the modulation frequency to an integer multiple

N∆ω (N = 2 in this case), we can produce interleaved, parallel frequency beamsplit-

ters for modes now spaced N modes apart, all while avoiding crosstalk with interior

modes. This effectively creates two independent QFPs operating on separate “super-

grids”! Figure 6.2(c) depicts the mode transformation spectra implemented in such a

scenario. Finally, as with the spatial analog, only the |Ψ±〉 ∝ |1A0〉|1B1〉 ± |1A1〉|1B0〉

states can be identified without ambiguity. Here we validate this functionality by

demonstrating that each of these states gives rise to a unique coincidence pattern.

Figure 6.2(a) shows our experimental setup. Time-frequency–entangled photons

are generated by pumping a periodically poled lithium niobate ridge waveguide (PPLN)

with a continuous-wave laser at 780 nm. We use an etalon and pulse shaper (BFC

shaper) to select four energy-correlated, narrowband frequency modes {A0, A1, B0,

B1}, which projects the biphoton onto state |Ψ±〉 (determined by phase applied to

|1A0〉|1B1〉 by BFC shaper). The center-to-center separation between signal and idler

is 40 GHz while the two modes in each computational space are 20 GHz apart with an

intensity full-width at half-maximum of 0.8 GHz. Parallel and interleaved Hadamard

transformations are implemented with the QFP driven by a 40 GHz sinusoidal volt-

age. The output of the QFP is frequency demultiplexed by another pulse shaper such

Fig. 6.3. Two-state Bell state analyzer. Coincidence counts regis-
tered after (a) |Ψ+〉 and (b) |Ψ−〉 pass through the BSA. Coincidences
are integrated over a 1.15 ns window for a total of 120 seconds



83

that different frequency modes are routed to the two detectors (SPDs). Coincidence

counts for all 6 combinations (excluding A0A0, A1A1, B0B0 and B1B1) are integrated

over a 1.15 ns window for a total of 120 seconds.

Experimental results are presented in Figure 6.3. For the |Ψ+〉 state [Fig. 6.3(a)],

coincidences register between the two frequencies corresponding to the original idler

modes (A0A1) or the two original signal modes (B0B1), as expected from theory [126].

On the other hand, the |Ψ−〉 state [Fig. 6.3(b)] results in coincidences between one of

the original idler modes with one of the original signal modes (A0B1 or A1B0), thereby

allowing one to unambiguously distinguish |Ψ+〉 from |Ψ−〉. We then calculate the

discrimination accuracy F = Nc/NT , where Nc and NT correspond to the sum of

correct measurement results and the sum of four measurements (A0A1, B0B1, A0B1,

and A1B0), respectively. For the two Bell states tested here, we achieve accuracy

of 98.6% and 98.1% for |Ψ+〉 and |Ψ−〉, respectively, which are reported without

accidental subtraction (The accuracy increases to 99.8% and 99.4% after accidental

subtraction).

6.1.3 Outlook

Our demonstration represents an important step toward the long-term vision of

a quantum internet that is compatible with both heterogeneous nodes and dense

spectral multiplexing. While the specific 2-BSA realized here operated on frequency-

bin entangled photons, the concept is easily extended to spectrally distinguishable

photons encoded in other degrees of freedom (DoFs). For example, consider the case of

two spectrally-distinguishable, polarization-encoded photons, a polarization-diverse

version [132] of QFP can efficiently erase their frequency mismatch while preserving

their polarization states. On the other hand, the reason we focus on direct frequency

encoding is motivated by the many advantages of this DoF. Frequency (energy) is

the most common encoding variable for matter-based qubits, as well as offers natural



84

QFP

qubit A

qubit B

M
U
X

M
U
X

frequency-domain 
BSA for spectral qubits 

ω

ω

ω

ω
Scenario II

Scenario I

Fig. 6.4. Frequency BSA for tunable photon frequency spac-
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larger than the two-photon spacing.

stability in optical fiber, straightforward measurement with high-efficiency filters and

detectors, and compatibility with wavelength-division multiplexing.

In our prototype demonstration, we address two photons populating four equis-

paced frequency modes. In the future, one could consider a more general version,

where the four frequency modes are no longer equally spaced [cf. Fig. 6.4]. Such a

scenario mimics ESO between two distinguishable quantum memories (i.e., different

center frequencies) with the same Zeeman frequency splitting. Moreover, for realistic

matter-qubit systems such as trapped ions or rare earth ion memories, the frequency

modes can be separated by a few GHz or even less. In both cases, we anticipate need-

ing to migrate our QFP system to an integrated platform, where the pulse shaper

consists of a bank of narrow-linewidth, microring filters, capable of addressing tightly

spaced frequency modes independently.
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6.2 Quantifying Entanglement in Biphoton Frequency Combs

6.2.1 Motivation

In the optics community, the polarization DoF has historically been the most

widely studied in the field of QIP. Tools to generate, manipulate and measure such

two-level quantum states are easily accessible in the lab. Nevertheless, recent years

have witnessed significantly increased attention to other discretized DoFs, such as

path, orbital-angular-momentum (OAM), time-bin, and frequency-bin [122], all capa-

ble of supporting multilevel quantum information in a single particle. In comparison

to standard qubit approaches, encoding quantum information on single and entangled

qudits can offer crucial advantages for quantum communication and networking, such

as higher information capacities, success rates and resistance to noise, to name a few.

Figure 6.5 highlights the recent progress in realizing high-dimensional QIP over

the aforementioned DoFs. Given our interest in using photonic qudits for quantum

communication tasks, we have paid most of our attention to the following function-

alities:

• State generation: This includes the preparation of the entangled qudit states

and certification/quantification of the amount of entanglement in the system.

• State manipulation: Contingent on the quantum communication protocols

pursued, this can span from DFT gates (for measurement in the Fourier basis in

QKD [133]) to more complex operations such as high-d cyclic shift operations

(for encoding messages in superdense coding [134]).

• Fiber compatibility: We focus on fiber-optic network compatibility as well,

due to the need for synergy between potential quantum encodings and aspects

of the existing telecommunication infrastructure, such as dense wavelength di-

vision multiplexing (DWDM), FlexGrid, reconfigurable optical add-drop multi-

plexers (ROADMs), etc.
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Fig. 6.5. Multilevel quantum information. A comparison of
high-dimensional QIP in different photonic DoFs. List of references:
♠ [135], N [136], ♣ [137], � [138], H [139], � [140], � [141], ♦ [142],
∆ [143], β [144], γ [86], δ [54], ζ [53].

A few points can be quickly summarized from Fig. 6.5. First of all, frequency-

encoding undoubtedly has the best compatibility with fiber-optic networking and is

more robust against certain fiber transmission impairments. Second, generation of

high-dimensional frequency entangled states, usually in the form of biphoton fre-

quency comb (BFC), can be as simple as pumping a nonlinear, resonant structure

[cf. Chapter 1.1]. However, the main reason frequency encoding had received com-

paratively less attention than other DoFs lies in the fact that the tools required to

manipulate quantum states were limited, and building high-dimensional quantum

gates for photonic frequency appeared insurmountable. Indeed, this has been the

main impetus behind our work in this dissertation.
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Another interesting aspect to point out in Fig. 6.5 is the huge gap between the

maximal number of frequency modes and the dimensionality of the entanglement

characterized experimentally. Quantifying the amount of entanglement in a high-

dimensional quantum system has been a long-standing question in the community,

but it is more evident in the frequency DoF. For example, from the joint spectral

intensity (JSI) measurement [cf. Fig. 3.3(b)], the number of correlated frequency

modes is extremely large (∼50), but the entanglement dimensionality, which relies on

the phase coherence across correlated frequency-bin pairs, remains uncharted.

Figure 6.6 provides the intuition behind this problem. With a single JSI mea-

surement alone [equivalent to measurement in the two-photon logical basis; See

Fig. 6.6. Phase coherence in BFCs. (a) An example JSI mea-
surement of the BFC source. (b) General form of BFC due to energy
conservation. Density matrix plots of (c) highly entangled, pure state
and (d) classically correlated, mixed state.
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Fig. 6.6(a)], there is no information about the presence of inter-pair coherence [ques-

tion mark in Fig. 6.6(b)]. Without extra measurements in complementary bases,

it cannot be ascertained whether the BFC corresponds to a truly high-dimensional

frequency-bin–entangled state, as illustrated in Fig. 6.6(c), or an incoherent mix-

ture of comb line pairs (i.e., classically correlated state), as depicted in Fig. 6.6(d).

This suggests complementary measurements are needed in order to investigate the

entanglement in BFCs.

Existing literature has highlighted two major ways. First, one can directly mea-

sure the two-photon correlation in the temporal domain [32, 44, 86], i.e., a joint tem-

poral intensity (JTI) measurement. Oscillations in the measured coincidence counts

at a period equal to the inverse of the bin spacing signifies the existence of broad-

band phase coherence. However, such a scheme demands the detector resolution to

be shorter than the time scales of the correlations, which is only possible for pho-

ton sources with narrow frequency-bin spacing (a few GHz), or alternatively using

nonlinearity-based optically gated detection [43, 145]. The second method relies on

pulse shapers and EOMs to mix the frequency bins, either probabilistically [53,54,59]

or deterministically [cf. Chapter 3.5], and measure the coincidence counts with differ-

ent phase settings at the input (equivalent to different measurement bases other than

the computational). Nevertheless, mixing all frequency bins equally is a nontrivial

task—a standalone EOM generates frequency sidebands with probability amplitudes

following Bessel functions. On the other hand, though our QFP system provides a

novel route, such as the implementation of Hadamard and 3-D DFT gate, extension

to higher dimensions has so far required too many resources for implementation 4.

In the present work, we propose an alternative solution to this problem. Instead

of attempting to mix all frequency bins equally at once, we utilize a pulse shaper and

an EOM to apply a series of random quantum operations to the input biphotons and

follow with JSI measurements. At each measurement setting, the output frequency

bin pairs consist of different superpositions of the input bins, with the weightings de-

4Please refer to Chapter 2.5 for discussion regarding implementation of high-dimensional DFT gates.
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termined by the EO modulation depth. Though these measurements are not mutually

unbiased, they are random enough such that we can utilize state-of-the-art Bayesian

statistical methods to extract the posterior distribution of the density matrix and

estimate the amount of the entanglement in the system.

6.2.2 Methods

Figure 6.7(a) illustrates our proposed method. Our test source is a BFC state gen-

erated directly from on-chip optical MRRs or carved from continuous down-conversion

spectra. We follow the BFC state generation with a pulse shaper and EOM. The pulse

shaper is programmed to apply a set of random spectral phases onto the signal and

idler bins (a total set of 2d phases), and the EOM is driven by sinusoidal voltages

periodic at the frequency-bin spacing (∆ω), resulting in a temporal phase modula-

tion eiδsin∆ωt. The strength of the modulating RF field δ is chosen randomly—in the

simulation, we assume δ ∈ [0, d/2]5; while in the experiment, δ is randomly chosen

between 0 and 2.5 radian, with the range limited by the amount of RF power we can

generate at specific frequency (40 GHz in this case). Figures 6.7(b) and (c) provide

two examples of JSI measurement results for d = 4. When the EOM is off, i.e., δ = 0,

the JSI is depicted in Fig. 6.6(a). When the EOM is turned on, the frequency corre-

lations become more complex as photons are scattered into many frequency modes,

and the JSIs are no longer diagonal. Moreover, as discussed in Chapter 1.2, if we

only consider the d × d computational space, the mode transformation in the EOM

is not unitary, i.e., photons can be scattered outside the computational space. This

explains why the number of coincidence counts drops in Fig. 6.7(b) and (c) as we

increase the RF amplitude. This method is inspired by a recent paper (Imany et

al. [146]), where they noticed that the distinct features in the two-photon frequency

correlations in the presence of EO modulation depend on the input state (dubbed

as the “quantum frequency walk”). Here we take one step forward and realize the

5The optimal range of δ is still under research. Here we choose d/2 since this modulation strength
is large enough to mix the first and the d-th frequency bin.
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Fig. 6.7. High-d Bayesian QST based on randomized mea-
surements. (a) Experimental setup. (b-c) Examples of random JSI
measurements. See text for details.

retrieval of the unknown input state given the knowledge of the measurement results

and the quantum operations applied in the system.

We consider a total of R measurement settings, the first of which is the traditional

JSI measurements (i.e., EOM off), and the rest of which correspond to random spec-

tral and temporal phase modulations applied by the shaper and the EOM. For each

measurement setting, we collect coincidences for all d2 combinations and disregard

those photons scattered outside of the original subspace. We can thus construct a

multinomial likelihood function

LD(x) =
R∏
r=1

d∏
m,n=1

[
〈f−m, fn|Urρ(x)U †r |f−m, fn〉

Z(x, Ur)

]N(r)
mn

. (6.1)

where N
(r)
mn is the measured coincidences between frequency mode f−m (idler pho-

ton) and mode fn (signal photon) at the r-th measurement setting, and Z(x, Ur) =
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∑
mn〈f−m, fn|Urρ(x)U †r |f−m, fn〉 normalizes the measurement outcome probabilities

to sum to unity within the d×d computational space. The effect of pulse shapers and

EOMs on two-photon state is given by Ur = U
(s)
r ⊗U (i)

r , where U
(s)
r and U

(i)
r describe

the random modulations 6 applied to signal and idler photons, respectively. ρ(x) is

the density matrix parameterized by some vector x, and we follow the procedures

developed in Ref. [116] such that any value within x’s support returns a physical

matrix. If we assume an uniform prior (i.e., no prior knowledge of x), Bayes’ theorem

can immediately construct the posterior distribution of x from Eq. 6.1. Sampling

this posterior distribution is equivalent to answering the following question—Given

the applied modulations, what are the possible states that can contribute to the photon

counts distribution observed in the experiment? Quantum states with higher likeli-

hood than the others have better chance of being sampled in the Markov chain Monte

Carlo (MCMC) algorithms. From the obtained density matrix samples, we can then

estimate the mean and standard deviation of any function of interest (such as state

fidelity).

6.2.3 Results

Figures 6.8(a) summarize our simulation results. We generate simulated tomo-

graphic data for entangled states in the form of Werner state [147]

ρ = λ |Ψ〉 〈Ψ|+ 1− λ
d2

I, (6.2)

where |Ψ〉 = 1√
d

∑d
k=1 |1f−k

〉 |1fk〉 is the ideal, high-dimensional Bell state [an example

of d = 4 is depicted in Fig. 6.6(b)], and d is the dimension of each photon. I is the

d2 × d2 identity matrix, and λ ∈ [0, 1] determines the overlap with respect to the

ideal state |Ψ〉, i.e., fidelity Fρ = (d2−1)λ+1
d2

. Other useful metrics in quantum optics

experiments can also be expressed by λ; for example, the coincidence-to-accidental

6U
(r)
s and U

(r)
i are infinite-dimensional mode transformation truncated to the dimension of each

photo (d× d in this case). Please refer to Chapter 1 for detailed mathematical formalism.
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ratio (CAR)—coincidences in a frequency-matched pair of bins divided by those in

any mismatched pair—equals 1 + dλ/(1− λ).

Here we consider the case of Werner state with d = 5 and two different λ (noise

contributions). Photon counts are obtained by calculating the outcome probabilities

in each measurement setting using Born’s rule and drawing from a multinomial to

emulate the experimental environment. Running the MCMC algorithm on these

simulated datasets, we are able to estimate the state fidelity from the 1024 obtained

samples. Bayesian mean fidelities converge to the theoretical prediction after R ∼ 10

measurement settings, which is comparable to the traditional, full QST methods using

mutually unbiased bases [∼ (d + 1)2]. To quantify the amount of entanglement, we

use log-negativity EN (ρ) = log2 ‖ρΓ‖tr (ρΓ denotes the partial transpose of ρ and ‖·‖tr

the trace norm), which gives an upper bound of distillable entanglement [148]. The

amount of ebits in both scenarios match well with respect to theory.

Finally, we repeat this procedure using real experimental data, as depicted in

Fig. 6.8(c). Our test source is a 40-GHz-spacing BFC with a total of 5 energy-

correlated signal-idler pairs. We intentionally leave a ∼ 300-GHz gap between the

signal and idler photons, such that we can apply strong EO modulations without any

fear of the photon in signal modes jumping over to idler’s modes, and vice versa. We

adjust the pump power such that the CAR level is around 93, which if we assume

a Werner state corresponds to the case λ = 0.95. We calculate the state fidelity

with respect to the ideal state—a Bell state (d = 5) with additional quadratic phases

accumulated in 20 meters of SMF-28 fiber [See Fig. 6.9(a) for its density matrix plots].

For R = 1 (single JSI measurement, EOM off), as discussed earlier, we have no

information regarding the phase components of the states, let alone the phase coher-

ence across the whole spectrum. The mean density matrix, as shown in Fig. 6.9(b),

is very distinct from the ideal and resembles the classically mixed state. The fidelity

starts to converge after R ∼ 10 measurements, and for the final measurement R = 21,

we report a state fidelity of 93 ± 2% and 2.23 ± 0.02 ebits7. Note that the theoret-

7Maximal amount of ebits for a bipartite is log2d, equal to log25 = 2.32 ebits in this case
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Fig. 6.8. Summary of Bayesian QST results. Convergence plots
for (a) the d = 5 Werner state using simulated data sets, and (c) real
experimental data sets for a d = 5 BFC input.

ical fidelity between the ideal Bell state and Werner state with λ = 0.95 is 95.2% in

theory, which is consistent with the deviation in our fidelity from unity. Indeed, if

we compute the fidelity with respect to the Werner state with λ = 0.95 instead, our

converged fidelity is 98 ± 2%, indicating strong overlap with a uniform noise model.

In this section, we propose and experimentally demonstrate high-dimensional QST

using random measurements and Bayesian analysis to estimate the density matrix

of a BFC state and quantify the dimensionality of the entanglement. There are

various parts of our methods that are worth investigating in the future, including

(i) connection to existing literature, (ii) the range and the number of EO amplitudes

required, (iii) convergence for input states other than Werner states, etc. Nevertheless,
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our preliminary results represent the highest dimensions demonstrated so far in the

frequency-bin QIP community and can be effortlessly scaled to larger dimensions.
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Fig. 6.9. Density matrix plots. (a) Ideal state, a d = 5 Bell states
(cf. Eq. 6.2) with an added dispersion of 20-meter SMF fiber. (b-c)
Real and imaginary part of the average density matrix from Bayesian
QST, after a total number of (b) R = 1 and (c) R = 21 measurements.
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6.3 In-Band Quantum Frequency Conversion (QFC)

6.3.1 Motivation

The management of optical wavelength resources is critical in classical commu-

nications, and will grow in importance for quantum communications as the size of

deployed networks grows. Handling bandwidth contention at the network edge and in-

terfacing with matter qubits will both benefit from agile conversion of optical carrier

frequencies. In classical telecommunications, transferring data from one frequency

channel onto another is a nontrivial task. From a practical side, the simplest ap-

proach is through optical-to-electrical-to-optical (OEO) conversion: detecting the

symbols on one wavelength and electrically modulating them onto the desired output

wavelength. However, such OEO conversion is precluded in any QIP protocol since

optical detection inevitably destroys an arbitrary quantum state.

Accordingly, quantum frequency conversion (QFC) without OEO conversion is

required. QFC has been the focus of dedicated research for many years, with typ-

ical approaches utilizing nonlinear parametric processes mediated by strong pump

fields [66, 149, 150]. One approach that has shown particular promise is based on

four-wave mixing Bragg scattering (FWM-BS), which has been demonstrated in both

highly nonlinear fiber (HNLF) and optical microresonators. The FWM-BS process

is particularly attractive because it supports QFC separations ranging from a few

GHz to a few THz with, in theory, no additional noise. Conversion efficienes of 95%

have been demonstrated in HNLF for separations of around 800 GHz [115], while

frequency shifts tunable over a range of 0.7 THz – 1.7 THz have been reported us-

ing multiple pump fields [151]. One drawback to this approach is that suppression

of Raman scattering requires low temperatures and one still needs optical filters to

remove background noise from watt-class optical pumps. FWM-BS has also been

demonstrated in nanophotonic platforms like silicon nitride [152–154], where reso-

nant structures enable efficient QFC using pump fields with only tens of milliwatts

of optical power. Light generated by quantum dots [153] and parametric down con-
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verion [154] has been frequency shifted over hundreds of GHz, albeit with conversion

efficiencies below 25%, as both up- and down-shifts occur with equal probability. An-

other drawback to this approach is that QFC is limited to multiples of the resonator

free spectral range and the minimum achieveable shift is set by the dimensions of the

device. In general, nonlinearity-based approaches are very suitable for interband QFC

to transform photons in visible wavelengths (usually from stationary atomic memo-

ries) to traveling infrared photons for long-distance fiber transmission. However,

arbitrary and reconfigurable control of QFC is extremely challenging with paramet-

ric approaches, which—coupled with the presence of noise (e.g., Raman) at optical

wavelengths—poses difficulties for QFC in a DWDM network.

In terms of electro-optic approaches, one can use serrodyne modulation (saw-

tooth waveform) for unidirectional frequency shifts [155], but this method introduces

unwanted distortion in the signal. Over the last couple of years, there have been sev-

eral demonstrations of frequency swapping based on so-called “photonic molecules”

or coupled-cavity EO modulators [49]. These devices mimic two-level systems and

are capable of both frequency shifts and frequency swaps. While prototypes have

delivered exceptional experimental results [114, 156, 157],the flexibility in choosing

operating wavelengths and channel spacings remains unclear from the existing liter-

ature.

6.3.2 Methods and Preliminary Results

The QFP protocol offers a promising alternative to the standard QFC, especially

for intraband-type conversion. The translation of optical frequencies is realized all-

optically, yet the controls are pure electrical. This hybrid approach enables precise,

reconfigurable frequency conversion within a specific band, while adding no extra noise

to the quantum state. Moreover, the QFP allows not only uni-directional frequency

shifts, but also simultaneous frequency swaps, interleaved frequency swaps, and any-

to-any frequency hops in higher dimensions [61,158]. [See Fig. 6.10].
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Previously, we have experimentally demonstrated a Pauli-X gate [cf. Fig. 5.3]

with near-unity fidelity and success probability close to 80% and 95% on a three-

element setup driven by single and two RF tones, respectively. From the perspective

of frequency-bin QIP, the Pauli-X gate can be visualized as an unitary operation

which alters the quantum wave-function of a frequency-encoded single-qubit state.

However, if a single photon (potentially carrying quantum information in another

DoF) populates a single frequency mode, such an operation results in a unidirectional

frequency conversion from, for example, mode 0 to mode 1; in addition, given two

quantum signals originally occupying two different frequency channels, the Pauli-X

gate realizes a simultaneous frequency swap between two input photons!

Due to the inherent high-dimensionality of the QFP platform, we can consider an

even more general version of the frequency-swap operation—a cyclic frequency hop,

which can be described by the d× d permutation matrix Sd, with elements

(Sd)mn = δ[(m− n− 1) mod d], (6.3)

Fig. 6.10. Frequency Hops with QFP. Concept illustration of vari-
ous forms of quantum frequency conversion supported by the quantum
frequency processor protocol. [Courtesy of Navin Lingaraju]
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and m,n ∈ {0, 1, ..., d − 1}. In words, this transformation hops the fields at each

frequency according to the prescription ω0 → ω1, ω1 → ω2, ..., ωd−1 → ω0. All other

possible shifts that preserve this sense of ordering can then be written as powers of

Sd: Sd, S
2
d , ..., S

d−1
d . (Sdd returns the identity and the sequence repeats.) Of these

d − 1 terms, only powers through floor(d/2) need to be considered in design, as the

remaining are simply transposes which can be obtained physically by reversing ele-

ment order and conjugating all phases. We then repeat the optimization procedures

and search for optimal solutions to implement cyclic frequency hop operations on a

three-element QFP. Unlike the high-d DFT operation discussed earlier [cf. Chap-

ter 2.5], there is no evident scaling relation between the dimension and the number of

RF tones required. Appendix A summarize the results we obtained numerically, and

the preliminary conclusion we can draw now is increasing the number of RF tones

on a fixed QFP circuit does boost the success probability, but does not scale well

Fig. 6.11. 3-d cyclic hop. Experimentally measured spectra for
specific coherent state inputs. (a) Mode 0 → Mode 2, (b) Mode 1 →
Mode 0, and (c) Mode 2 → Mode 1. The dashed box represents the
computational space.
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compared to the case of DFTs. Figure 6.11 is an example of experimentally obtained

spectra for S2
3 synthesized on our three-element QFP driven by two RF tones. 8

Interestingly, we note that the chosen frequency-hopping transformation [Eq. (6.3)]

can be related to the DFT operation Fd [Eq. (A.1)] by a straightforward decompo-

sition: Sxd = F †dD
x
dFd, where Dd is a diagonal matrix consisting of all dth roots of

unity, i.e., (Dd)mm = e2πim/d. This relationship implies that if one can realize the

d-dimensional DFT, a permutation of any power follows simply by adding a pulse

shaper and a second (conjugated) DFT. Since our previous exploration on high-D

DFT operation suggests a three-element QFP with d − 1 RF tones can potentially

implement Fd with near-unity fidelity and success probability ≥ 95% [cf. Chap-

ter 2.5], a 4EOM/3PS system driven by d − 1 RF tones should potentially realize

any d-dimensional frequency cyclic hop, which can be an attractive route for future

integrated QFP systems. Though more than doubling the number of components

compared to the 2EOM/1PS QFP, such system offers better success probability (≥

95%) for all cyclic operations and does not require additional simulation to obtain

the solution.

8This cyclic hop operation is equivalent to S−13 , which can be reconfigure from S3 by reversing
element order and conjugating phases.
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7. FINAL THOUGHTS

In this dissertation, we have explored a thorough set of experiments in manipulating

the quantum state of single and entangled photons in the frequency domain, including

a universal gate set for scalable quantum computing; parallel quantum operations for

two-qubit state control and tomography; arbitrary qubit rotations; and a frequency-

domain Bell-state analyzer for potential applications such as dense coding, quantum

teleportation, and entanglement swapping in future quantum networks. Each work

represents a significant contribution to the field of frequency-bin QIP—though given

that this field is still in an embryonic stage compared to other DoFs, it is difficult to

predict its future directions and the specific roles our works will play.

At this point in time, there is still a huge gap between the development of tools to

generate and to control such states. The presence of frequency entanglement is natural

and ubiqutious since biphotons share the same temporal birth and follow energy

conservation in the generation process. Indeed, generation of a broadband, frequency-

entangled state is generally more straightforward than creating polarization-entangled

photons. However, it was not until the past decade that scientists began developing

the tools needed to explore this seemingly unbounded dimension of entanglement

and further realize its potential. We have had the opportunity to be one of the

pioneers to advance this field by filling that vacancy, but we also realize many more,

general questions remain unsolved. For example, there remains the need to (i) develop

quantum memories compatible with the frequency DoF, (ii) balance the tradeoffs in

BFC sources (frequency-bin spacing is either too small to address, or too large to

mix with), (iii) narrow the gap between the amount of inherent entanglement and

the dimensionality we can truly exploit, (iv) derive analytical recipes for building

arbitrary quantum operations, and (v) figure out the niche for the frequency DoF as

the either the information carrier, an assisting DoF in hyper-entangled photons, or
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a channel for information encoded in other DoFs. In addition to what we proposed

in the outlook section at the end of each chapter, we believe the aforementioned

questions can help trigger further discussion and help this community envision a

future, large-scale quantum system based on photonic frequency.



REFERENCES



103

REFERENCES
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A. GATE SIMULATION RESULTS

• Procedures:

1. Particle swarm optimization to minimize the following cost function (C):

When F < 0.9999, C = Plog10(1−F); otherwise, C = −4P

2. Followed by interior-point method (fmincon) with the previous best particle

as the initial guess. Minimize 1− P with F constrained over 0.9999.

3. See Ch 1.3 for more details.

• Parameters: A total of Q elements (EOMs+PSs).

Sum of sinewaves in the EO modulation (a total number of p harmonics).

– Goal: d-dimensional discrete Fourier transform (DFT) gate,

[Fd]mn =
1√
d
e2πimn

d ; m,n ∈ {0, 1, ..., d− 1} (A.1)

Q d p log10(1−F) P Filename Implemented?

3

2 1 -4.0 0.9760 20200826-2-48 Y [21]

2 1 -6.0 0.9748 20200827-2-48 Y [159]

3 2 -4.0 0.9733 20200826-3-48 Y [21]

4 3 -3.9 0.9703 20200826-4-48

N

5 4 -3.8 0.9679 20200826-5-48

6 5 -3.8 0.9665 20200826-6-48

7 6 -3.7 0.9685 20200826-7-48

8 7 -3.6 0.9688 20200826-8-48

9 8 -3.6 0.9668 20200826-9-48

10 9 -3.6 0.9681 20200826-10-48
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– Discussions:

∗ In our demonstration of frequency beamsplitter (2-d DFT) and tritter

(3-d DFT) in [21], we notice a favorable scaling between the dimension

of the DFT and the number of RF harmonics (p) introduced to the EO

modulation, without increasing the total number of components (Q).

∗ A more balanced beamsplitter is implemented in [159], where we utilize

parallel Hadamard gates for the purpose of quantum simulation of sub-

atomic many-body physics. The fidelity is increased to 1 − 10−6, with

only a minor reduction in the success probability.

– Example: 7-dimensional DFT Gate

Fig. A.1. 7-dimensional DFT gate design. (a) temporal phase
modulation applied to the first EOM [red] and second EOM [blue],
plotted over one period T . (b) Corresponding microwave power spec-
tra for the first EOM. (c) phases applied to each frequency mode by
the PS, where modes 0 to 6 denote the computational space. (d-f)
Simulated optical transformation for single-line inputs and superpo-
sition of seven comb lines input.
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– Goal: d-dimensional Pauli-X gate,

[Sd]mn = δ[(m− n− 1) mod d]; m,n ∈ {0, 1, ..., d− 1},

and consider Sd, S
2
d , ..., S

d−1
d for all possible frequency hops.

(A.2)

– Discussion: A traditional Pauli-X gate (d = 2) realizes a frequency hop op-

eration between the two computational states (i.e., ω0 → ω1, ω1 → ω0), while

high-dimensional Pauli-X performs frequency cyclic hops for all frequency

modes. We only focus on d = 2 at this point, while our recent paper [61]

provides more results (with slightly different constraints, F ,P ≥ 0.99) for

larger d. From the limited data sets we possess, the realization of Pauli-X

is relatively difficult, and will require more resources than the DFT gates.
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Q d p log10(1−F) P Filename Implemented?

3 2 1 -4 0.7590 328-001 Y

3 2 2 -4 0.9458 328-002 Y

5 2 1 -7 0.9955 5-328-002

N
3

3

2

-4

0.4590 0621-3

3 0.5887 20200927-3

4 0.7184 20200927-4

5 0.7660 20200927-5

10 0.8356 20200927-10

4(S4)

4 0.4876 20200926-4

5 0.6240 20200927-5

6 0.6507 20200927-6

10 0.7471 20200927-10

4(S2
4)

4 0.5601 20200926-4

5 0.6279 20200927-5

6 0.7174 20200927-6

10 0.8515 20200927-10

5(S5)

7 0.4586 20200928-7

8 0.6782 20200929-8

9 0.7151 20200929-9

10 0.7355 20200929-10

5(S2
5)

8 0.6625 20200930-8

9 0.6937 20200930-9

10 0.7071 20200930-10

6(S6)

8 0.3569 20200930-8

9 0.6533 20200930-9

10 0.6766 20200930-10



119

– Goal: Coincidence-basis cnot gate.

U =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (A.3)

Q p 1−F P Filename Implemented?

3 1 10−4 0.0445 1104-001 Y [25]

5 1 10−4 1/9 1105-002 N

– Method: Assume the computational-basis states for the two-qubit Hilbert

space are: |C0T0〉, |C0T1〉, |C1T0〉, and |C1T1〉1, where C0, C1, T0, and T1

represents a specific frequency bin for encoding [cf. Fig. 4.3]. In the numer-

ical optimization procedures, we firstly construct the mode transformation

V using Eq. 1.9, and then calculate the state transformation W as

WCpTq←CmTn = VCpCmVTqTn + VCpTnVTqCm ; {m,n, p, q} ∈ {0, 1}, (A.4)

– Discussion: For a 3EOM/2PS QFP (Q = 5), we can realize a frequency-

bin CNOT at the theoretical optimal success probability of P = 1/9, while

a smaller circuit (Q = 3) can do so with reduced success.

– Numerical Solution (Q = 3): V = [rnn′]φnn′ ] =
0.4407]−2.5976 0.0022]0.2103 0.0026]1.2938 0.0010]−2.0353

0.0022]0.2104 0.4343]−2.6045 0.4596]−1.5754 0.4549]1.5710

0.0026]1.2939 0.4596]−1.5754 0.4830]2.5973 0.0030]−2.8778

0.0010]−2.0352 0.4549]1.5710 0.0030]−2.8779 0.4783]2.5979

 .
(A.5)

1Usually expressed as |00〉, |01〉, |10〉, and |11〉 for shorthand notation.
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using the phasor shorthand rnn′]φnn′ ≡ rnn′e
iφnn′ . We can use Eq. A.4 to

compute the corresponding state transformation matrix

W = [rnn′]φnn′ ] =
0.2128]−1.0882 0.0013]−0.2822 0.0001]−0/9929 0.0005]1.5953

0.0013]−0.2823 0.2108]−1.0877 0.0012]1.7805 0.0006]1.8263

0.0001]−0.9930 0.0012]1.7805 0.0015]1.7557 0.2100]−1.0880

0.0005]1.5954 0.0006]1.8264 0.2100]−1.0880 0.0016]−2.1786

 ,
(A.6)

where the four large elements (highlighted in red) share almost identical

amplitude and phase, aligned well with respect to those in the Eq. A.3.
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Fig. A.2. CNOT gate design. Numerical solutions found for the
time-frequency phases required to implement the coincidence-basis
cnot gate on a 2EOM/1PS QFP circuit, with a theoretical perfor-
mance of F = 0.9999 and P = 0.0445. (a) Temporal phase modu-
lation applied to the first [solid red] and second [dotted blue] EOM,
plotted over on period T . (b) Spectral phase applied to each frequency
mode by the pulse shaper, where modes 0 and 6 denote the control
bins {C0, C1}, and modes 7 and 8 represent the target bins {T0, T1}.
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B. PROCEDURE FOR MEASURING

TRANSFORMATION MATRIX

Our calculations of F and P rely on complete characterization of the d× d multiport

Vd×d. We utilize an analogue of the spatial technique shown in Ref. [81], and here we

provide additional details on precisely how to determine each of the matrix elements.

This technique relies on high-power coherent state probing, which is justified because

the operation of interest is, at its basic level, a linear multiport; thus its distinguishing

behavior holds for high-flux coherent states as well as single photons.

The definition of success probability P is

P =
Tr(V †d×dVd×d)

Tr(U †U)
=

Tr(V †d×dVd×d)

d
, (B.1)

where U is the desired state transformation and Vd×d denotes the infinite-dimensional

transformation V truncated to the dimension of U1. This can be written equivalently

as

P =
1

d

d−1∑
m=0

d−1∑
n=0

|Vmn|2, (B.2)

from which we see that P depends on only the moduli of the d2 matrix elements. To

find these values, we probe our frequency multiport with a single optical frequency

from index n = 0 to d − 1. The information we need to calculate P , namely |Vmn|2,

is then given by the output optical power in mode m when the input is set to n. And

by measuring the total throughput of the system in all modes (even those beyond d),

we can normalize each matrix element by overall transmissivity, distinguishing the

insertion loss (photon is missing) from scatter loss (photon remains, but has left d-

dimensional subspace), so that P can quantify the latter. Thus, a value P = 1 means

1For single-qudit operation, the state transformation W is equivalent to the mode transformation V
operating on the d× d computational space, thus we have W = Vd×d for calculation of P and F .
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that, given that the input photon exits the system, it is guaranteed to have undergone

the desired operation and has remained in the d-mode computational subspace.

On the other hand, the fidelity F involves the full Hilbert-Schmidt inner product:

F =
Tr(V †d×dU) Tr(U †Vd×d)

Tr(V †d×dVd×d) Tr(U †U)
, (B.3)

or alternatively

F =
1

d2P

∣∣∣∣∣
d−1∑
m=0

d−1∑
n=0

V ∗mnUmn

∣∣∣∣∣
2

, (B.4)

which indeed depends on the phase and amplitude information of Vd×d. To determine

these phases, we next probe the setup with superpositions of two frequency modes,

scanning the relative phase φ from 0 to 2π. Extracting the power in specific modes

from a series of optical spectra yields interference patterns over φ, and the unknown

phase terms in Vd×d can be obtained by performing sinusoidal fitting on each curve.

In our experiments, we apply the above technique to d = 2 and d = 3. The

corresponding frequency multiport matrices are V2×2 and V3×3, and the input op-

tical field E(t) =
∑d−1

m=0

√
pme

iφme−iωnt can be expressed in mode matrix form as

[
√
p0e

iφ0
√
p1e

iφ1 · · · √pd−1e
iφd−1 ]T . We write a general matrix element of Vd×d in po-

lar form as Vmn = rmne
iφmn . Since phase is only physically meaningful up to a unitary

rotation, we follow the procedure of Ref. [81] and define the phases of the first row and

column as zero: this effectively provides a reference for zero phase on our input state

preparation. Finally, though the matrices in the following equations are expressed in

d dimensions for brevity, experimentally the optical power can be scattered out of the

d-mode computational space into adjacent sidebands. Therefore, the sensitivity of

the OSA should be high enough so that we can collect the optical power in as many

modes as possible for accurate normalization. Experimentally, we found that only 6-8

modes were needed to encompass all the optical power (to within 10−4 accuracy).

The tests cases for a single-frequency-mode probe are (note that the OSA functions

as a frequency-resolved square-law detector):



2× 2

3× 3

2× 2

3× 3
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r00 r01

r10 r11e
iφ11

√p
0

 =
√
p

r00

r10

 OSA−−→ p

r2
00

r2
10


r00 r01

r10 r11e
iφ11

 0
√
p

 =
√
p

 r01

r11e
iφ11

 OSA−−→ p

r2
01

r2
11



r00 r01 r02

r10 r11e
iφ11 r12e

iφ12

r20 r21e
iφ21 r22e

iφ22



√
p

0

0

 =
√
p


r00

r10

r20

 OSA−−→ p


r2

00

r2
10

r2
20



r00 r01 r02

r10 r11e
iφ11 r12e

iφ12

r20 r21e
iφ21 r22e

iφ22




0
√
p

0

 =
√
p


r01

r11e
iφ11

r21e
iφ21

 OSA−−→ p


r2

01

r2
11

r2
21



r00 r01 r02

r10 r11e
iφ11 r12e

iφ12

r20 r21e
iφ21 r22e

iφ22




0

0
√
p

 =
√
p


r02

r12e
iφ12

r22e
iφ22

 OSA−−→ p


r2

02

r2
12

r2
22

 (B.5)

We thus see that by these measurements we can obtain all d2 amplitudes of Vd×d.

Subsequently, we probe the system with superpositions of two frequency modes, and

scan the relative phase φ ∈ [0, 2π] between them. The different configurations are:

r00 r01

r10 r11e
iφ11

 √p√
peiφ

 =
√
p

 r00 + r01e
iφ

r10 + r11e
i(φ+φ11)

 OSA−−→ p

 r2
00 + r2

01 + 2r00r01 cosφ

r2
10 + r2

11 + 2r10r11 cos(φ+ φ11)



r00 r01 r02

r10 r11e
iφ11 r12e

iφ12

r20 r21e
iφ21 r22e

iφ22



√
p

√
peiφ

0

 OSA−−→ p


r2

00 + r2
01 + 2r00r01 cosφ

r2
10 + r2

11 + 2r10r11 cos(φ+ φ11)

r2
20 + r2

21 + 2r20r21 cos(φ+ φ21)



r00 r01 r02

r10 r11e
iφ11 r12e

iφ12

r20 r21e
iφ21 r22e

iφ22



√
p

0
√
peiφ

 OSA−−→ p


r2

00 + r2
02 + 2r00r02 cosφ

r2
10 + r2

12 + 2r10r12 cos(φ+ φ12)

r2
20 + r2

22 + 2r20r22 cos(φ+ φ22)

 (B.6)
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For each curve, we then perform sinusoidal fitting with respect to the input phase φ

and obtain all the phase values in Vd×d. And from this, we can calculate fidelity F .

To give an idea of what our measurements produce, we provide two examples of

matrices obtained using the previous characterization method. An example mode

transformation for the beamsplitter is

V2×2 =

√0.4871
√

0.4869
√

0.4866
√

0.4871ei3.1400

 . (B.7)

These values correspond to P = 0.9739 and F = 0.9999 when compared to the ideal

Hadamard gate. Error bars from repeating the full characterization four more times

then gave P = 0.9739± 0.0003 and F = 0.99998± 0.00003.

For the three-mode DFT, an example transformation measured is

V3×3 =


√

0.3261
√

0.3126
√

0.3062
√

0.3183
√

0.3290ei2.0925
√

0.3339ei4.1775

√
0.3202

√
0.3476ei4.1365

√
0.3256ei2.0425

 , (B.8)

with associated success P = 0.9731 and fidelity F = 0.9992 with respect to the

perfect (i.e., not numerically simulated) DFT matrix. Averaging over five repeated

measurements then yielded P = 0.9730± 0.0002 and F = 0.9989± 0.0004, as in the

main text [cf. Chapter 2.2].
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C. BAYESIAN MEAN ESTIMATION MODEL

C.1 Entanglement Witness

To calculate the conditional entropies corresponding to the measurements shown

in Fig. 3.5, we employ Bayesian mean estimation (BME) on the raw count data [93,94].

To produce as conservative an estimate as possible, we make no specifying assump-

tions about the underlying state. For each situation in Fig. 3.5, we posit a three-

parameter multinomial likelihood function (four probabilities minus normalization),

with counts taken directly from the raw data; we take the prior as uniform. The esti-

mated means and standard deviations of the conditional entropies are then calculated,

as shown in Eq. 3.9.

C.2 Two-Qubit Density Matrix Reconstruction

To estimate the complete two-qubit density matrix, we assume a single quantum

state underlying all four measurements in Fig. 3.5. As discussed in Chapter 3.5, these

four combinations are equivalent to joint measurements of the two-qubit observables

{ZA ⊗ ZB, XA ⊗ ZB, ZA ⊗ XB, XA ⊗ XB}, where 1 and H permits measurement of

Z and X, respectively. Despite the fact that our measurements is tomographically

incomplete, we are nevertheless able to infer a complete state estimate, with appro-

priately higher uncertainties in the unmeasured bases (e.g., Pauli Y ). Finally, we

emphasize that experimentally we only have access to the detector click (or no-click)

events that are more naturally described in terms of positive-operator valued mea-

sures (POVMs) rather than von Neumann type projectors on the eigenvectors of Pauli

X and Z operators.
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For a specific two-qubit observable and chosen pair of frequency bins, we have the

POVMs Λ(A,B) = {Π̂(A,B),1−Π̂(A,B)} for subsystem A and B, where Π̂(A,B) correspond

to photon clicks, 1− Π̂(A,B) to the absence of a click. Absence of a click can be due to

detection inefficiency or the photon being in an unmonitored mode. An outcome of a

two-qubit POVM Λ(A) ⊗ Λ(B) will fall into one of the three experimentally recorded

numbers: coincidence counts (CAB), singles counts on detector A (SA), and singles

counts on detector B (SB). These form our specific data set D = {CAB, SA, SB}.

In our model, we assume fixed channel efficiencies for A and B propagation and

detection (ηA and ηB), and the following normalized probabilities under no loss and

perfect detection: pAB (coincidence, one photon in mode A and one photon in mode

B), pA0 (one photon in mode A and no photon in mode B), p0B (one photon in mode

B and no photon in mode A), p00 (no photon in mode A or B).

Letting N denote the number of photon pairs generated in the measured time

interval, we can enumerate the following four experimental possibilities, formed by

the products of all operators from this POVM pair (3: click, 7: no click).

POVMs A B Occurrence Probability Counts

Π̂(A) ⊗ Π̂(B) 3 3 ηAηBpAB CAB

Π̂(A) ⊗ [1− Π̂(B)] 3 7 ηA[pAB(1− ηB) + pA0] SA − CAB
[1− Π̂(A)]⊗ [Π̂(B)] 7 3 ηB[pAB(1− ηA) + p0B] SB − CAB

[1− Π̂(A)]⊗ [1− Π̂(B)] 7 7
p00 + pAB(1− ηA)(1− ηB)

+ pA0(1− ηA) + p0B(1− ηB)
N − SA − SB + CAB

Our likelihood function, P (D|β), is then a multinomial distribution over the afore-

mentioned probabilities and outcomes, where β = {ρ̂, ηA, ηB, N} is the underlying

parameter set of interest. The idealized probabilities {pAB, pA0, p0B, p00} are all func-

tions of the density matrix ρ̂, which we limit to physically allowable states [94].

Up to this point, we have focused on a specific choice of POVMs, Λ(A) ⊗ Λ(B).

To account for all 16 POVM combinations (basis pairs and frequency-bin pairs) in
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the two-qubit space of Fig. 3.5, we form the product over all settings, leaving the

complete posterior distribution

P (β|D) =

[∏
j P (Dj|β)

]
P (β)

P (D)
, (C.1)

where the bolded D represents the union of the respective results Dj from each

particular setting (j = 1, 2, ..., 16). Our prior P (β) is taken to be uniform in a

Haar-invariant sense, and the marginal P (D) is found by integrating the numerator

in Eq. (C.1). With this posterior distribution, we can estimate any parameter of

interest via integration, such as the mean density matrix

ρ̂BME =

∫
dβ P (β|D)ρ̂. (C.2)

Due to the complexity of integrals of this form, we employ numerical slice sampling

for their evaluation [106]. The resulting estimates are discussed in the main text and

plotted in Fig. 3.6.

C.3 CNOT Gate Characterization

In order to make use of the observed data to estimate the key parameters of our

quantum gate, we first derive a realistic model connecting the underlying gate oper-

ation to photon counts, encapsulated in a likelihood function P (D|β), for the model

parameters β given data D. In our case, the set β contains mode transformation

matrix V , pair generation probability µ and the system efficiencies ηA and ηB.

For a particular counting experiment, we take the prepared input state as

|Ψ〉 = |1u1v〉 = â†uâ
†
v|vac〉, (C.3)

where u 6= v. Specifying such a state relies on several assumptions. First of all, it

discards any contribution from other frequency-bin pairs, justified experimentally by

the >40 dB extinction ratio on the BFC shaper. Moreover, this state expression—

and the multiport model in general—treats each frequency bin as a pure single mode.
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Experimentally, as a consequence of the pump laser’s ∼kHz linewidth (much nar-

rower than our 1.8 GHz-thick bins determined by the etalon), a given photon pair

is highly frequency-entangled, containing substructure absent in the separable state

of Eq. (C.3). While such hidden entanglement would markedly reduce, e.g., the pu-

rity of heralded frequency-bin photons, it does not degrade the correlations in the

two-photon experiments we conduct here. The counts registered for a particular pair

of bins do result from a continuum of photon pairs with slightly different frequency

offsets, implying that the net result is the incoherent sum of partially distinguishable

probability amplitudes. However, as all such frequency pair combinations under the

same bin lineshapes undergo matching frequency operations, the net measurement

result is identical to the case in which all bins are purely single mode, apart from an

overall scaling constant (see discussion of frequency filtering below). Finally, Eq. (C.3)

does not include higher-order pair generation explicitly. Incidentally, the ansatz we

incorporate for accidental coincidences [see Eq. (C.9) below] ends up capturing the

main effects of multiple photon pairs on our data in a simpler fashion.

We define pµ(1m1n) as the probability for one photon to be found in mode m and

the other in mode n at the output (again assuming no loss). This is given by

pµ(1m1n) =

∣∣∣∣∣〈vac|b̂†mb̂†nâuâv|vac〉√
1 + δmn

∣∣∣∣∣
2

=
|VmuVnv + VmvVnu|2

1 + δmn
. (C.4)

When n = m (two photons in the same mode), the probability is

pµ(2m) = 2 |VmuVmv|2 , (C.5)

with the factor of two a consequence of boson statistics. From these results, we can

also compute the marginal probability for one-photon occupancy in a particular mode,

pµ(1m) =
∞∑

n=−∞
n6=m

|VmuVnv + VmvVnu|2

=
∞∑

n=−∞

(
|VmuVnv + VmvVnu|2

)
− 4|VmuVmv|2

= |Vmu|2 + |Vmv|2 − 4|VmuVmv|2, (C.6)
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where all the cross terms are neglected, following from the unitarity of V and the fact

that u 6= v in our input state.

We then map these fundamental “per-pair” probabilities to expected detection

rates. For accounting purposes, we define all detection probabilities within a specific

temporal frame τ , the time within which clicks on detector A (tA) and B (tB) are

deemed coincident: |tA − tB| < τ . Our stationary (continuous-wave pumped) source

ensures that all such probabilities are equal in every length-τ time bin. With µ defined

as the pair generation probability within such a frame, the marginal probabilities for

single-detector clicks are

pA = µ [ηA + (1− ηA)ηA] pµ(2m) + µηApµ(1m) + dA

pB = µ [ηB + (1− ηB)ηB] pµ(2n) + µηBpµ(1n) + dB (C.7)

for detector A monitoring frequency bin m and B frequency bin n. These marginal

probabilities include three terms: (i) both photons arrive, but detector misses one,

(ii) one photon arrives, and detector registers one click, and (iii) no photon arrives,

but detector fires due to dark counts. The probabilities dA and dB represent the

dark count probabilities; we measure these independently and take them as fixed at

dA = 9.60× 10−7 and dB = 7.77× 10−7, corresponding to dark count rates of 640 Hz

and 518 Hz, respectively. The efficiencies ηA and ηB include all loss effects through

the system, from generation in the crystal to photon detection; we assume them to

be mode-independent—validated by the relatively small bandwidth comprising all

modes of interest (∼500 GHz)—yet they can vary by the different relative efficiencies

of our superconducting nanowire detectors. And while spectral filtering per se does

not modify these general considerations, the multimode frequency substructure (men-

tioned above), coupled with the Lorentzian linewidth profile of the etalon, introduces

an effective transmission given by the average over all frequency offsets—we believe

this contributes to lower overall ηA and ηB retrieved in BME. Next we make use of
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the fact that the system efficiencies ηA, ηB � 1. Plugging in Eqs. (C.5) and (C.6),

we obtain

pA = µηA

(
|Vmu|2 + |Vmv|2

)
+ dA

pB = µηB

(
|Vnu|2 + |Vnv|2

)
+ dB. (C.8)

The simple addition of pair and dark-count contributions is justified in our case by

their small values (∼10−6), so that there is no concern for pA or pB approaching or

exceeding 1 in the numerical analysis below.

To establish the probability for a coincidence between detectors A and B in our

model, we make a sharp distinction between two types of events: (i) correlated coinci-

dences, deriving from two photons of the same pair; and (ii) accidental coincidences,

in which two random clicks (from at least one dark count, or photons from two

different pairs) overlap within the resolving time τ . For event (i), the click proba-

bility follows from multiplying the per-pair probability pµ(1m1n) by µηAηB, so that

p
(i)
AB = µηAηB |VmuVnv + VmvVnu|2, which assumes that τ is sufficiently large to in-

tegrate over the full two-photon correlation time. Regarding event (ii), in general

the rate of accidental coincidences between two independent detectors is given by a

product of the rates of the two detectors individually: R
(ii)
AB = 2τRARB [103, 104],

where the factor of two follows from the fact that—under our definition of τ—all

events such that (tA − tB) ∈ (−τ, τ) register as coincidences. Making the connec-

tion pj = τRj then allows us to write p
(ii)
AB = 2pApB, so that the total coincidence

probability becomes

pAB = p
(i)
AB + p

(ii)
AB

= µηAηB

∣∣∣VmuVnv + VmvVnu

∣∣∣2 + 2pApB, (C.9)

with pA and pB defined as in Eq. (C.8). Expanding 2pApB, the expected noise sources

appear naturally: a µ2 term reflects clicks from two different pairs, while µdA and

µdB terms give coincidences from a photon and dark count. In this way, we can

recover noise effects otherwise absent in the physical model, via what can be called
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an “accidentals correction” term 2pApB. Finally, we emphasize that the accuracy of

Eq. (C.9) relies again on the relative order of magnitudes of the probabilities involved:

p
(i)
AB ∼ 10−10, so that the differences between alternative forms one could conceivably

argue for—such as pB → pB− p(i)
AB, to help ensure that singles counts from correlated

coincidences do not also count toward accidental probabilities—become numerically

inconsequential.

Finally, with these probabilities established, we can write the likelihood using a

multinomial distribution for all event types. Over the course of a single measurement

of duration T , we experience M = T/τ total frames, in which we can register one of

the four mutually exclusive outcomes: click on A only, click on B only, coincidence,

or no clicks. The likelihood for the specific input/output mode configuration (defined

by the mode numbers uv → mn) is

P (Dmnuv |β) = (pA − pAB)NA−NAB(pB − pAB)NB−NAB

×pNAB
AB (1− pA − pB + pAB)M−NA−NB+NAB , (C.10)

where we emphasize that both the dataset Dmnuv = {NA, NB, NAB} and probabili-

ties {pA, pB, pAB} themselves depend on the mode configuration uvmn. The total

likelihood follows by multiplying out all 16 individual combinations

P (D|β) =
∏

u,m∈{C0,C1}
v,n∈{T0,T1}

P (Dmnuv |β) . (C.11)

This likelihood forms the basis for estimating the parameters β = {V, µ, ηA, ηB} from

the dataset D =
⋃
Dmnuv . To estimate these values along with their uncertainties, we

make use of Bayes’ rule for the posterior probability distribution

P (β|D) ∝ P (D|β)P (β), (C.12)

P (β) represents the prior probability distribution for the parameters. We take P (β)

as uniform over (0, 1) for each of µ, ηA, and ηB; uniform over (0, 2π) for all phases

φnn′ = arg Vnn′ which are not taken as fixed {φC0C0 , φC1C1 , φC1T0 , φC1T1 , φT0C1 , φT1C1};

and uniform for all squared moduli r2
nn′ subject to the constraint

∑
nn′ r

2
nn′ = 1.6558
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from Eq. (A.5). This uninformative prior allows the estimates to be fully determined

by the counting data itself.

Due to the complexity of integrating Eq. (C.12) over our parameter space, we

employ slice sampling [106] and retrieve 4096 samples of all 28 parameters from the

unnormalized P (D|β)P (β). We use best guesses of all parameters as the starting

point to enable convergence, invoking a burn-in period and thinning until stationarity

is achieved. At each sample of β, we can compute any quantity of interest, and use the

statistics over all samples to produce the mean and standard deviation. Specifically,

we find

µ = 0.024± 0.002 (C.13)

ηA = (3.5± 0.3)× 10−4 (C.14)

ηB = (4.7± 0.3)× 10−4 (C.15)

FBME = 0.91± 0.01. (C.16)

The retrieved pathway efficiencies are smaller by ∼9 dB compared to our insertion loss

alone, which we estimate to be ∼25 dB from generation to detection. While we have

fully characterized the insertion loss of the gate components themselves (12.9 dB in

total: each EOM contributes ∼2.8 dB; the pulse shaper, ∼4.7 dB; and the remainder

comes from polarization controllers and fiber patch cords), uncertainties remain in the

state preparation and measurement components, such as the breakdown of loss inside

the fiber-pigtailed photon source, as well as questions of how strongly the spectrally

varying transmission of the etalon reduces its effective transmission from its peak

value. Otherwise, the retrieved µ and fidelity match predictions. Even though FBME

is smaller and has higher uncertainty than the classically inferred Finf , the fact it

still exceeds 90% with fairly sparse measurements is strong confirmation of excellent

performance, particularly in light of the uninformative prior, which permits high

fidelity only based on the strength of the observed data.
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We also compute the mean and standard deviation for all elements of the retrieved

transformation V , for both the magnitude and phase:

[rnn′ ] =


0.452± 0.005 0.124± 0.009 0.06± 0.01 0.02± 0.02

0.06± 0.03 0.465± 0.008 0.475± 0.006 0.411± 0.006

0.04± 0.01 0.463± 0.005 0.470± 0.005 0.03± 0.01

0.028± 0.009 0.455± 0.005 0.02± 0.01 0.413± 0.005

 (C.17)

[φnn′ ] =


−2.5976± 0 −2.8± 0.2 1.3± 0.1 −2.01± 0.09

0.30± 0.09 −2.6045± 0 −1.5754± 0 1.5710± 0

1.35± 0.09 −1.5754± 0 2.6± 0.1 0.7± 0.2

−2.0± 0.1 1.5710± 0 0.3± 0.1 2.5± 0.1

 . (C.18)

As before, the phases with uncertainties ±0 are those fixed prior to parameter re-

trieval. Comparing this result to the design [Eq. (A.5)], the most significant mis-

match occurs for the element in row 1, column 2 (the coupling from mode C1 to

C0). At 0.124, this value is significantly larger than designed, and contributes to

the higher error for the cases |C1T0〉 → |C0T0〉 and |C1T1〉 → |C0T1〉 in Fig. 4.7.

While the source of this error is still uncertain, experimentally we did observe ex-

traneous counts on detector A during these integration times, beyond the theoretical

prediction. Bayesian retrieval succeeds in finding matrix elements to account for this

observation, as intended.
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D. SINGLE-QUBIT QFP TRANSFORMATION

SYMMETRIES

Consider a QFP composed ofN+1 EOMs andN pulse shapers in an alternating series,

and configured to realize single-qubit transformation W = gU(θ, 0, 0) [see Eq. (1) in

the main text for the definition], where |g|2 ≤ 1 represents the gate success. Assume

the first and last EOMs are driven by A(t) and B(t) (each 2π
∆ω

-periodic waveforms),

and the first and last pulse shapers are programmed with spectral phases pk and qk on

the k-th frequency mode. The corresponding transformation by frequency multiport

V , with projection of W onto the single-qubit space (m,n ∈ {0, 1}) is then

Wmn =
∞∑

k=−∞

∞∑
l=−∞

dm−ke
iqkTkle

iplcl−n (D.1)

where Tkl is the mode transformation from all elements in the QFP apart from the

first and last EOM/shaper pair. In the case of N = 1 (EOM/shaper/EOM QFP), T

is an identity matrix and the center pulse shaper is programmed with pk + qk. The

factors cl−n and dm−k are the mode coupling coefficients between modes n and l and

modes k and m, for the first and last EOM, respectively. They represent the Fourier

series coefficients of the periodic modulation, and can be expressed as

cl−n =
1

T

∫
T

dt eiA(t)ei(l−n)∆ωt

dm−k =
1

T

∫
T

dt eiB(t)ei(m−k)∆ωt,

(D.2)

where the integration is over any full period T = 2π
∆ω

.

To actualize U(θ, ϕ, λ), our goal is to reconfigure the QFP such that the new mode

transformation W̃mn equals ei(mϕ+nλ)Wmn, or gU(θ, ϕ, λ) by specification. Suppose

that we delay the RF signals applied to the first and last EOM by τa and τb, re-
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spectively, and introduce additional phase shifts δk and εk to the first and last pulse

shaper, respectively. We obtain the modified mode transformation

W̃mn = ei∆ω(mτb−nτa)

∞∑
k=−∞

∞∑
l=−∞

ei(εk−k∆ωτb)

×
[
dm−ke

iqkTkle
iplcl−n

]
ei(δl+l∆ωτa)

(D.3)

In order to fulfill W̃mn = ei(mϕ+nλ)Wmn, we can set the delays such that ∆ωτb = ϕ,

∆ωτa = −λ, and make the double summation in Eq. (D.3) identical to Wmn by

choosing εk = k∆ωτb and δl = −l∆ωτa. Thus, we arrive at a simple method for

reconfiguring the QFP for U(θ, ϕ, λ) given U(θ, 0, 0): delay the RF signals applied

to the first and last EOM by τa = − λ
∆ω

and τb = ϕ
∆ω

, respectively, and add linear

phases δk = kλ and εk = kϕ to the first and last pulse shaper, respectively. The

remaining settings of the QFP are unchanged. This procedure readily extends to

higher-dimensional unitaries. For example, if the QFP is originally programmed

to implement U , we could follow the same method to reconfigure QFP and realize

D1UD2, as long as D1 (D2) is a diagonal unitary with a constant phase increment

ϕ (λ) across the diagonal elements. Intuitively, this process works because a linear

phase is equivalent to a delay (while for a two-dimensional system, any arbitrary

phase shift between two modes can be seen as a delay); tuning the bookend EOMs

redefines the input/output phase references, while the pulse shaper corrections ensure

that, inside the QFP, the frequency-bin mixing operation proceeds unaffected.
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