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ABSTRACT

Guo, Dali PhD, Purdue University, December 2020. Modeling and Variability Esti-
mation of Network Collections. Major Professor: Mario Ventresca.

Despite the substantial progress made on the understanding and inference of com-

plex networks, the principles of generative process underlying observed empirical com-

plex systems (e.g. the mechanisms of social network development) remain unclear.

Thanks to the rapid development of modern measuring instruments, computational

power and storage capacity, massive complex network datasets are now more acces-

sible to researchers, which brings the study of statistical analysis and inference of

network collections to the forefront. Most empirical network modeling methods are

built on the premise of only a single input network, and the ignorance of inherent

variability (e.g. individual difference in brain networks) causes dubious and unreliable

models because of the non-deterministic nature of complex system. A clear definition

and measure of the inherent variability in a collection of multiple network observa-

tions are critical to understand, model, infer and predict the represented complex

system. To address the variability on a collection of multiple network observations,

this dissertation (1) proposes metrics for measuring variability on a network collec-

tion which provides an innovative angle to quantitatively define the distributional

properties of a network collection; (2) devises an action-based inferential model on a

series of networks that highlights the dynamics of functional connectivity during dif-

ferent states; (3) develops an variational auto-encoder based framework for inferring,

synthesizing and predicting a collection of functional brain networks along with the

extensibility to other types of network collections.

To measure the variability on a local topological structure level, an information

entropy based measure, entropic variability, on graphlets in network collection is
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proposed and applied to brain network collections inferred from Human Connectome

Project (HCP). The functional brain networks show a higher variability compared to

structural brain networks. Moreover, the subject-level variability and temporal vari-

ability are measured and analyzed by the entropic variability framework. The emotion

processing task causes the most intense reconfiguration (from resting-state) of vari-

ability in many functional regions. In addition, an action-based inferential model is

devised to model and predict a series of networks. The mechanism of interaction

dynamics is hypothesized and inferred under the framework, and the experimental

result shows the preference of actions varies according to the belonging community.

Limbic system has the most unstable preference while visual and default mode net-

work have very stable preference choice. Furthermore, the variational-autoencoder

(VAE) based network generative modeling framework is proposed as a generic model

for network collections. The experimental result shows that the basic VAE has the

ability to encode a network collection to low dimensional latent variables and re-

construct networks with respect to the inferred latent variables. An extended VAE

that utilizes sharable latent variables in common state is capable of disentangling the

state-related information and predicting the networks in unseen states.
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1. INTRODUCTION

1.1 Empirical Study of Complex Networks

With the rapid increase in computational power, storage capacity and computing

devices, the study of large data sets has become ever more popular. Many of these

data sets are network representations of complex systems, which are abstract math-

ematical structures containing vertices and edges, and may include attributes [1].

Network science provides a perspective focusing on the pattern of connections and

relationships in complex systems, e.g., communication system [2], human brain [3],

transportation [4], chemical reaction and genome expression [5], semantic relation-

ships [6]. The study of real world networks based on disciplines such as graph theory,

statistical inference, statistical mechanics, data mining, information theory, and algo-

rithm design sheds light on the understanding and control over the underlying com-

plex system. Moreover, the mathematical and computational tools of network science

provide systematic methods of inferring the characteristics and behavior of complex

systems, and have been shown to be able to make insightful mathematical predictions

about the state and processes on networks. For instance, knowledge of brain network

topology can be used to generate predictive models of the spread and functional con-

sequences of brain disease [7,8]. In a study of the recovery process of stroke patients

with attention deficits, it is shown that there exists significant relationship between

behavioral improvement and changes in functional brain networks [9]. Moreover, the

analysis of structure-function relations at multiple temporal scales shows the potential

to predict the cortical dynamics by anatomical connectivities [10].

Although there is no well-established definition for a complex system, accord-

ing to [11], real-world complex systems tend to be non-deterministic and exhibit

non-linear dynamics. However, local stochasticity caused by non-deterministic inter-
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actions shows robust organization and memory [11]. Therefore, a single observation

of a complex system (and associated network) is a combination of randomness and

regularity generated from potentially unknown generative process. From a modeling

perspective, the goal is to fit the observed data (networks) for both generalization

(measure of randomness) and accuracy (measure of regularity).

Due to the non-trivial structure of large-scale networks [12, 13], most existing

statistical methods and tools cannot be directly applied for inference and synthesis.

Network scientists have proposed algebraic tools such as spectral graph theory [14,

15] to study the network structure. Its main target is to study the properties of

a graph in relationship to the characteristic polynomial, eigenvalues/eigenvectors of

matrix representation of the graph such as adjacency matrix and Laplacian matrix

[16]. Although the matrix representation is determined by the labeling of nodes,

its spectrum and related properties are invariant to different matrix representation.

From the perspective of algebraic graph theory, the spectral properties represent

the characteristics of network. However, the spectral analysis is irreversible which

means the knowledge of graphs’ spectrum cannot itself reproduce networks. Hence,

it cannot directly answer questions such as “how a network evolves over time” and

“what a similar network looks like”.

Meanwhile, algorithmic methods with statistical prior (assumption) such as Erdös-

Rényi model [17–19], exponential random graph models [20, 21], latent space mod-

els [22], etc. derive the network structure by statistical hypothesis, i.e. prior prob-

ability distribution of edges, and fit observed data to the proposed structure. Note

that the algebraic methods and algorithmic methods are neither isolated nor con-

tradictory, and many network science studies utilize both methods, although the

two frameworks are driven by different perspectives. Normally, algorithmic methods

are aimed at proposing models to explain the observed networks by inference and

synthesizing networks similar to observed networks. However they are struggling to

find the balance between generalization and accuracy [23], and most of the time re-

searchers ignore the evaluation of generalization due to a limited number of network
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observations (often only a single observation is used as input) [24]. One approach, dk-

random graphs [23], is proposed to learn the randomness versus regularity by rewiring

a network with different constraints. Generally, weaker constraints leads to more ran-

domness and better ability of generalization, and stronger constraints leads to more

regularity and higher accuracy to the original network. Although dk-random graphs

shed some light on the problem of generalization of network models, it is a simpli-

fied framework that relies on interdependent degree and subgraph-based properties.

When multiple networks are observed, most times dk-random graphs are not able to

fit the observed networks because the inherent variability in the network collection is

not simply based on degree and subgraph-based properties [24]. The algorithmic mod-

eling methods in the past often ignore the variability existing in network collections

and as a result infer misleading models that do not match the observed networks [24].

1.1.1 Philosophy

We now have increased ability to observe many networks from a single phenomena

and by better understanding the variation in those networks we can create models

better suited to synthesizing realistic networks. Therefore, this dissertation advo-

cates that to better study the mechanisms that generate and control a real-world

non-deterministic complex system represented as a network, it is necessary to create

models from multiple network observations, i.e. a network collection, and its prop-

erties. More specifically, quantitatively defined variability of a network collection

is a critical statistical property, and generative models that include variability can

help us better understand the generative process and mechanism behind the observed

networks. A mathematical definition of network collection is as follows:

Definition 1.1.1 A network collection is a multiset of networks that are generated

by the same generative process, i.e., they are independent observations of the same

complex system. A network collection of cardinality k is denoted by G where G =

{Gi = (Vi, Ei) : i = 1, 2, . . . , k}.
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The node set and edge set of a network collection can be denoted by VG = {Vi :

i = 1, 2, . . . , k} and EG = {Ei = Vi × Vi : i = 1, 2, . . . , k}.

isomorphism randomness

accurate general

randomize
constrain

Figure 1.1. Empirical variability measure: accuracy versus generalization in network
inferential modeling.

The empirical variability of an observed network collection is a quantitative de-

scription of the degree of discrepancy between the networks in the collection1. For

instance, there are 2 extremes in Figure 1.1. To the left end, we have G1 = G2 =

· · · = Gk and there is no variability for the represented system with respect to the

observed network collection. To the right end, we have a G that includes all possible

networks with equal chance of getting observed, which has the maximum variability,

i.e. ER random graph [19]. However, most real world network collections are in the

middle, and quantification of the variability is critical to understand the represented

complex system due to the ignorance of variability in past complex network studies

and the important role that variability plays in statistics [25, 26].

1.2 Problem Statement

Networks in a collection are high-level objects themselves, which means classic

measures of variability such as range, variance, etc. cannot be directly applied to

network collection. In order to develop quantify the variability in network collection

and potential models that are capable of learning and regenerating the variabilities,

we proposed 3 research questions that will be answered in this thesis. Figure 1.2 shows

the typical generative modeling procedure from a single network and the extension
1Refer to 3 for a formal definition of network collection variability.
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to a network collection. Before stating the research questions of this thesis, we would

like to first outline the assumptions and scope used throughout this thesis.

INIT θ
FOR (i < n) DO
  ...
  ...
END

...

INIT θ
FOR (i < n) DO
  ...
  ...
END

...
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Figure 1.2. Paradigm of inferring generative model for a single network and a net-
work collection. On the left, the connections (e.g. correlation between time series,
functional connectivity between brain regions, traffic between stations) are observed
and abstracted to a single graph. A model is proposed and fits the network obser-
vation. The fitted model can synthesize networks. If the synthesized networks are
similar to the observations, we think it is a good model. On the right, when multiple
observations of one complex system (e.g. time series in different period, brain con-
nectivity of different subjects, traffic of different transportations between stations)
is observed, we get multiple network observations, which implies the distributional
properties should be considered for comparing the synthesized network collection and
the observed network collection.

1. The research objects (data sets) are network collections, which is composed

of multiple networks. Each network is treated as one complete noisy “data

point” from the population (See Definition 1.1.1). The networks in a network

collection are all simple, unweighted and undirected. Dynamic networks are

discrete, synchronous network collections.

2. The networks in a collection are generated by some common generative mech-

anisms. For instance, the development of brain structure is a product of a
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complex series of dynamic and adaptive processes operating within a highly

constrained, genetically organized but constantly changing context [27–29].

3. The networks in a collection have the same set of nodes, which means V1 =

V2 = · · · = Vk in VG in Definition 1.1.1. In other words, we are studying

networks of fixed set of entities (represented by nodes) and changing interactions

(represented by edges).

Based on the assumptions, we are considering the following research questions:

1. Can we empirically quantify the variability of a network collection? The ob-

served variability is composed of the known variability caused by individual

characteristics and random noise. A quantitative variability measure of net-

works reveals deeper properties of the network collection rather than the prop-

erty of individual network independently. Moreover, with the quantified vari-

ability, we are more confident on the comparison of synthetic networks (net-

works in blue) and input networks (networks in red) on the right panel of Figure

1.2.

2. Can we devise a model that can reproduce the variability of observed network

collection? A model that can reproduce the variability of observed network col-

lection is able to generate networks that have similar properties to the observed

network collection in Figure 1.1. On the right panel of Figure 1.2, we want to

ask can we devise a generative model that is capable to replicate the property

of input network collection.

3. Can we map the variability of network collection to interpretable features? To

extend the model devised in Question 2, we presume the level of variability is

related to observable features of the network collection. For instance, functional

brain networks are more diverse in cognition task than in resting-state. Based

on this assumption, we could devise model that can synthesize networks with

specific feature.
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1.2.1 Practical Significance of Research Questions

Variability plays a critical role in analysis, classification and generation of high

dimensional data. For instance, principal component analysis (PCA) is wildly used

for biomedical images classification [30, 31]. Research question 1 is raised to explore

potential quantification of variability of a network collection. The quantified variabil-

ity is not only an important characteristic in complex network analysis, but also a

possible objective in optimization. Generative network models that take a single in-

put network and propose theoretical hypothesis, e.g. it is assumed that every possible

edge occurs independently with a fixed probability in ER random graph, have difficul-

ties on explaining the observed non-deterministic complex networks in real world [24].

Since networks are high-level non-Euclidean data objects that cannot be measured by

standard and acknowledged measurement [32], it is necessary to formulate a frame-

work for answering questions such as, “what is the median of a network collection?”,

“is this network collection more diverse than another network collection?”, “what

feature contributes the most to network diversity?”. Among all typical statistical

questions, the study of variability has shown its importance by its extensive applica-

tions in statistical methods such as t-test, PCA and deep learning [30,33]. Although

these statistical methods cannot be directly applied to networks, the philosophy of

utilizing variability to study statistical objects sheds light on the study of network

collections. This dissertation is aimed at showing potential ways of quantitatively

studying the variability of the networks.

Based on the answer to question 1, research question 2 is raised to devise models

that are able to reproduce the variability for a collection of networks. As we discussed

in Section 1.1, the importance of the distributional property in network population

estimation is emphasized by devising a model that matches the variability. Further-

more, we can synthesize network collection that has similar distributional properties

to the observations by the devised model. A well-implemented network model can

describe the network population with extracted representation (e.g. parameters). In
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addition, the synthesized network samples will have similar characteristics as the real

world networks, which saves time and power for collecting data.

Last but not least, if we know the variability is related to the population charac-

teristics, is it possible to isolate the variabilities into interpretable and controllable

features? We claim that the bridge between observed features/factors of network col-

lection and parameters in network model 1) contributes to the understanding of the

generative mechanism; 2) facilitates the modeling accuracy by taking the extra in-

formation of the interpretable features; 3) extends the ability to synthesize networks

with specific features.

For instance in functional brain network research, if we know the brain networks

have distinct level of variability for different states, is it possible to reproduce accurate

network collections for a specified state? Given partial information of the functional

brain networks of a subject, is it possible to predict the networks in untested tasks?

Unveiling the mapping between variability and interpretable features could give merit

to the understanding of the generative mechanisms and synthesizing desired network

collections.

1.3 Overview of the Thesis

After the scope of this research is defined and the problems to be answered are

stated in Chapter 1, previous researches related to network collections and network

inferential modeling are introduced in Chapter 2. In Chapter 3, measures of variability

are proposed and tested with various data sets. In Chapter 4, a temporal action-based

model for network series is proposed and implemented with human brain network data

from HCP. Based on the work in Chapter 3 and 4, a generalized variational auto-

encoder model is proposed in Chapter 5 to learn the network collection observation

and reproduce the observed network variability.
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2. BACKGROUND

The mathematical notation of a network collection in Definition 1.1.1 is similar to that

of a multilayer network, and many analysis tools for multilayer networks can be used in

network collection modeling as introduced in Section 2.1. The main difference between

multilayer networks and a network collection is that for multilayer networks we are

interested in the topological properties of connections within and across layers of a

single observation, while the networks in network collections are seen as independent

samples of a complex system (which could be multilayer networks as well). In Section

2.3, the concept of a network ensemble, a statistical mechanics representation of a

random network, is reviewed. It is an concise and elegant framework for studying

the statistical properties of network collection but it is oversimplified for networks in

the real-world. In Section 2.4, we discuss the relationship between previous research

progress on network collection and the gaps we aim to fill.

2.1 Multilayer Networks

The study of multiple networks starts with the study of the heterogeneous fea-

tures of nodes and edges. In contrast to simple graphs where nodes and edges are

homogeneous, networks with multiple types of connections provide more information

for studying the real-world system. For example, in [34] a social network containing

14 individuals having 6 different types of connections was observed: participation in

horseplay, participation in arguments about open windows, friendship, antagonistic

(negative) behavior, helping others with work and the number of times workers traded

job assignments. These 6 types of connections are 6 types of edges in the networks

therefore giving 6 different layers of edges with same set of nodes.
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Figure 2.1. (a) An example multilayer network with 4 nodes and 4 layers. There
are two dimensions of the layer, {A,B} and {X,Y }, which gives the four layers:
(A,X), (B,X), (A, Y ), (B, Y ). The solid and dashed lines represent inner-layer and
inter-layer edges respectively. (b) The network in (a) can be flattened into a single
network where the non-isolated nodes are populated with the layers they belong to.
The adjacency matrices can be concatenated likewise. This figure is cited from [35].

A general form of a multilayer network is a quadrupletM = {VM , EM , V,L} where

V is the set of nodes (the same as single-layer network), L is the sequence of layers.

VM = V × L1 × L2 × · · · × Ld and EM = VM × VM [35]. Self-edges and multi-edges

are disallowed for simplicity1. A tensor representation of an unweighted multilayer

network is a rank − 2(d + 1) adjacency tensor A ∈ {0, 1}|V |×|V |×|L1|×|L2|×···×|Ld| and

the tensor representation can be flattened into a single-layer network as shown in

Figure 2.1 [35]. Multilayer networks of such form are typically studied with tensor-

decomposition methods [36, 37] and multiway data analysis [38]. Based on the basic

form of multilayer networks, one can categorize common multilayer networks by their

properties and constraints. Table 2.1 shows some typical multilayer networks with

properties and constraints. Due to the debates and unified term usage, the constraints

listed here are for reference only and some constraints are often relaxed for specific

methods or context. For instance, the dynamic networks in [39] have non-diagonal

couplings for the dynamics between neighbors. The categorization in Table 2.1 is

not strict and many networks can be converted between types depending on research
1It can be relaxed by constructing new layers to include self-edges and multi-edges but it will bring
interpretation issue of layers due to the heterogeneous definition of layers.
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purpose. For example, the dynamic networks are often modeled as multiplex networks

if the ordinal layers constraint is imposed.

Table 2.1. Examples of multilayer networks with properties and constraints. A mul-
tilayer network has Disjoint layers if the node sets of layers are disjoint. A multilayer
network has Independent layers if there is no dependency relations between layers.
A multilayer network has Diagonal couplings if inter-layer edges only exist between
the two nodes represent the same entity in different layers. A multilayer network has
ordinal layers if the layers are ordered by some sequence and inter-layer edges only
exist between adjacent layers.

Name Disjoint
layers

Independent
layers

Diagonal
couplings

Ordinal
layers

Example
references

Interdependent networks ✓ × × × [40]
Interconnect networks ✓ ✓ × × [41–44]
Network of networks ✓ ✓ × × [45]
Multiplex networks × × ✓ × [46–48]
Dynamic networks × × ✓ ✓ [49–51]

Based on the basic form and constraints, we can implement the multilayer network

analysis to real-world complex systems. For instance, [40] shows an interdependent

network application of a coupled system of electrical grid and communication network

in Italy. In this example, it has a electrical grid layer that has nodes representing

power stations and edges representing connection between power stations. Similarly,

the other layer, communication layer, has nodes represent servers and edges represent

connection between servers. Additionally, every server is considered to be connected

to the nearest power station. The robustness of such coupled system is analyzed and

the critical point of average degree is identified. An example of interconnect networks

is a network of sexually transmitted epidemic in which two layers are heterosexual

and homosexual networks of sexual contacts. And there exists bisexual individuals

who connect the two layers [42].

Generally, the measurements of topological structure devised for single-layer net-

works can be applied to multilayer networks by taking each layer as separate network

and aggregating the result by the cost of changing layers [44, 52–55]. Similarly, net-

work models such as ER model [18, 19] and configuration model [56] can be easily
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adapted to multilayer networks by modeling the layer independently or considering

the layer property such as layer joint degree distribution [41]. Moreover, there are

successful adaption of ERGM for multilayer networks as well [57, 58].

2.2 Information Entropy

In statistics, the variability of a given distribution is often measured by some scale

parameters such as standard deviation, range, etc. However, these dimensional vari-

ability measures are less legitimate for discrete distribution because discrete variables

are dimensionless. Information entropy and other information measures are widely

used for measuring the variability of discrete variables. In this section the concept of

information entropy is reviewed as background knowledge.

In information theory, an event is more informative when it happens with lower

probability because more bits are needed to code the event. Consider a discrete

random variable X and x is an observation of X. The information carried by x is

defined as

I(x) = − logP (x). (2.1)

The expectation of information for X,

H(X) = E[I(x)] = −
∑
x∈X

p(x) log p(x), (2.2)

is known as the information entropy of X. H(X) measures the degree of variability

and uncertainty of the random event X.

2.3 Network Ensembles

A network ensemble is a probability distribution over many possible networks

[26]. In other words, network ensemble specifies the probability that one network is

observed and the probability can be explicitly expressed. Theoretically most network
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ensembles can draw inference from the observed network collections and synthesize

network by sampling from the inferred distribution. As we discussed in 1.1, the

distribution of a set of networks is one form of network model and most of the models

are ensemble models [26]. The study of network ensembles reveals many topological

properties by mathematical derivation. For example, the ER model G(n, p), in which

edges between any 2 nodes out of the given n nodes are independently and uniformly

drawn with probability p, can be expressed as a multivariate Bernoulli distribution.

Therefore the degree distribution follows a binomial distribution. The entropy of a

network ensemble is

H(G) = −
∑
G∈G

P (G) logP (G) (2.3)

where P (G) is the probability of a specific G is observed and G is the set of all possible

networks2. For instance, the entropy of G(n, p) is the joint entropy of all edges

H(G) =
∑
i<j

H(Eij) =
n(n− 1)

2
H(p) (2.4)

where H(p) = −p log p− (1− p) log(1− p).

Furthermore, the entropy of other network ensembles such as the configuration

model and other constraints (given degree correlation, community structure, dis-

tance, etc.) is studied in [59, 60]. The researchers quantify the variability of network

ensembles and explain the relationship between network variability and a hypothet-

ical constraint. For instance, [59] proves that ensembles with fixed scale-free degree

distribution have lower entropy, i.e. lower variability, than the ensembles with ho-

mogeneous degree distribution, which means power law network ensemble is located

to the left of the network ensemble of homogeneous degree in Figure 1.1.

In [61,62], the principle of maximum entropy argues that with limited prior knowl-

edge, the distribution that maximizes the entropy is the distribution that best rep-

resents the current state of knowledge. When applied to network ensembles, it is
2It is replacing the X in 2.2 with G if you consider a network ensemble is a random variable
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proved that ERGM is the distribution of networks that maximizes the entropy sub-

ject to known constraints [26]. In ERGM the probability of a network is

P (G) =
e−θm(G)

Z
(2.5)

where m(G) is the vector of constraints to match and θ is the corresponding param-

eter (Lagrangian).

2.4 Relevance and Gaps

As stated in Section 1.1 and 1.2, this thesis targets the analysis and modeling

on multiple observations of a complex system. There are many similarities between

Definition 1.1.1 on network collection and the definition of multilayer network. How-

ever, multilayer network framework formulates the problem of the heterogeneity in

network observations by layering. It emphasizes how the inter-layer edges impact

the topology and dynamics in network. Meanwhile, our study on network collection

has no explicit definition of inter-layer edges. Theoretically, a network collection can

be categorized into a multilayer network with common set of nodes, interdependent

layers and diagonal couplings, although the topology of intra-layer and inter-layer

edges are off-topic with our statistical point of view. Layers in multilayer networks

are treated as characteristics and features of the system, while samples in network

collections are treated as observations of a system with stochasticity.

The variability of network ensembles is successfully studied in [59, 60], thanks to

the delicate statistical formulation of network ensembles. The entropy of network

ensembles quantifies the variability of statistical network models with constraints. It

is possible to compare the randomness of models and constraints in the information

theory perspective. However, the network ensembles are developed with hypothe-

ses that are not for inference purpose. For instance, Barabási-Albert (BA) model

is based on a strong assumption that new node is connected to existing nodes with

a probability that is proportional to degree of the node. Then some theoretical
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Figure 2.2. Distribution of global network properties assortativity and transitivity
of network collection of 100 structural brain networks and synthesized network col-
lections. The inability of network models to replicate the distributional properties
of the original process highlights the need for devising better techniques for training
and evaluating models using network populations.

properties (e.g. power law distribution of degree) are derived based on the model.

Sometimes observed empirical networks follow the theoretical properties sometimes

they do not [63]. Therefore the ensembles start with a strong assumption instead of

empirical observations, and they struggle with inferring real-world network observa-

tions due to limited knowledge on prior parameter assignment [64, 65]. In order to

assess the randomness in empirical networks, dk-random graphs [23] is proposed with

a similar philosophy that constrains on network ensembles can quantify the variabil-

ity of a set of networks. The experiment of dk-random graphs shows higher order

of degree distribution constraint shrinks the network space and consequently reduces

the variability of network ensembles. However, entropy of network ensembles and

dk-random graphs are not proposed for empirical network collections. The variability

in these statistical models are either a fuzzy hypothetic prior (ERGM) or specified

constraints (dk-random graph). In either case, when applied to real-world network

collections, they struggle to match the theoretical analysis with observations [24].
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An example in Figure 2.2 illustrates the performance of some generative network

models that are proposed to model one single network: dk-2.5 [23], ABNG [66] and

configuration model [56, 67]. The 100 structural brain networks (labeled as “real” in

Figure 2.2) are processed as described in [68]. As depicted in Figure 1.2, we typi-

cally observe a single network from the population and ideally would like a generative

model to be capable of generating similar network samples. Consequently, one net-

work from the population was selected at random as input for training all 3 models,

which were then used to synthesize populations of 100 networks each. Finally, we

compare the distribution of degree assortativity and transitivity in the 4 network

collections in Figure 2.2. We observe that the networks synthesized by dk-2.5 all

have exactly the same global network properties. While there is no variability in

these properties, a simple comparison with the observed network might lead to a

conclusion that the model aptly describes the generative process, which can prove

to be highly misleading. On the other hand, the population of networks synthesized

by ABNG and configuration shows more variability, but fails to match the network

properties of the original population (red dots). Therefore we need a non-parametric

method for measuring the variability of any observed network collection.

There are few investigations that focus on the distributional property of empirical

network collection. For instance, in [69], the distribution of degree, clustering coeffi-

cient and path lengths of 6 empirical network and synthetic networks simulated by

Kronecker model and ERGM are analyzed. Later in [70] an extension of Kronecker

model is proposed to fixed the low variance in original Kronecker model. The analysis

on network population starts to emphasize the natural variability of network met-

rics in network collection such as degree distribution, clustering coefficient, etc. and

nevertheless show the qualitative comparison instead of a quantification of the vari-

ability. Although in [69, 70] the generative network models take a network collection

as input, only one network out of all networks in a collection that is closest to the

median network is used as input in synthetic process.
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2.5 Dataset: Brain Networks

The datasets used in most of the experiments in this dissertation are functional

brain networks inferred from fMRI images in Human Connectome Project (HCP,

http://www.humanconnectome.org/). More specifically, the images are firstly pro-

cessed by [71] that includes 100 unrelated subjects from the HCP 900 subjects data

release [72]. The resting-state fMRI data for each individual was acquired over 2 sep-

arate days with 2 sessions per day and there are 7 task sessions in which task fMRI

data was acquired for each subject with 1 session per task. Detail of scan sessions

are shown in Table 2.2. The repetition time (TR) and echo time (TE) are 720ms and

33.1ms respectively. The HCP functional preprocessing pipeline was employed for the

fMRI data used here [73–78]. In addition, a bandpass first-order Butterworth filter in

forward and reverse directions [0.001Hz, 0.08Hz] and [0.001Hz, 0.25Hz] was applied to

the resting-state fMRI data and task fMRI data respectively [68, 79]. The processed

blood-oxygen-level-dependent (BOLD) signals reflects the changes deoxyhemoglobin

driven by localized changes in brain blood flow and blood oxygenation [80]. Most

fMRI research based on BOLD imaging takes the advantage of high spatial resolution

images of brain which helps identify localized fluctuation and activity [81]. However,

unlike electroencephalogram (EEG) which directly measures the electrical activity,

BOLD measures the the neural activity indirectly by haemodynamic response which

is relative and not individually quantitative. Although fMRI and underlying BOLD

signals have limitations, they are believed to be one of the most trustworthy mea-

sures of brain activity [82]. The the cerebral cortex was parcellated into 360 ROIs

(Figure ) with a multi-modal parcellation as proposed by [83]. This parcellation uti-

lizes a machine-learning classifier that can recognize the multi-modal “fingerprint” of

individuals which is a precise and robust parcellation map across individuals.

Functional brain networks are inferred from the preprocessed BOLD signals as

shown in Figure 2.4. The temporal Pearson correlation3 between BOLD signals of
3Pearson correlation is used for simplicity. Other measures such as partial correlation and Bayes net
models are possible alternatives [84].

http://www.humanconnectome.org/
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Figure 2.3. The HCP’s multi-modal parcellation by [83]. The 180 ROIs in both
left (top row) and right (bottom row) hemispheres on inflated (column 1 and 2) and
flatten cortical surface (column 3).
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Table 2.2. Format of Preprocessed BOLD data. Each task session is replicated twice
(resting-state is replicated 4 times).

Condition Number of runs Frame per run Run Duration (min:sec)
Resting-state 4 1200 14:33
Working Memory 2 405 5:01
Gambling 2 253 3:12
Motor 2 284 3:34
Language 2 316 3:57
Social Cognition 2 274 3:27
Relational Processing 2 232 2:56
Emotion Processing 2 176 2:16

different ROIs indicates the functional connectivity between ROIs. Then the corre-

lation matrix is then binarized by fixed threshold4 as adjacency matrix for functional

brain networks in which ROIs are represented by nodes and binarized correlations

are represented by edges.

4The global fixed threshold is implemented here for simplicity. Other methods such as network
fragmentation (e.g. first minimum spanning tree then add edges to desired density) are all possible
alternatives.
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Figure 2.4. The process of functional brain network inference. (a) Preprocessed fMRI
images in different time stamp. (b) Original cerebral cortex are parcellated into 360
ROIs with a multi-modal parcellation by [83]. (c) Calculating the pairwise Pearson
correlation gives a correlation matrix of the ROIs. (d) The real-valued correlation
matrix is binarized into a symmetric binary matrix that serves as the adjacency matrix
for an undirected functional brain network.
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3. MEASURES OF VARIABILITY ON A NETWORK

COLLECTION

In this chapter, a general form of variability on a network collection is defined with

proposed conditions. Then the variance of global network metrics and pairwise dissim-

ilarity are reviewed and analyzed. Moreover an information entropy based framework,

entropic variability, is introduced as an innovative way of measuring the variability

of network collections with respect to local structures. An experiment of comparing

all the introduced measures is conducted with the data set of stock price correlation

network, structural brain network and functional brain network. In addition, the

variability of functional brain networks that caused by individual difference and task

reconfiguration is analyzed with the proposed entropic variability.

3.1 Definition of Network Collection Variability

Given a network collection G = {Gi = (Vi, Ei) : i = 1, 2, . . . , k} and the node

and edge sets, V = {Vi : i = 1, 2, . . . , k} and E = {Ei : i = 1, 2, . . . , k}, a function

σ : G → R is defined as a measure of variability on G where the following conditions

are satisfied:

1. σ(G) ≥ 0.

2. σ(G) = 0 ⇔ There exists Ḡ such that Gi = Ḡ ∀ i ∈ {1, . . . , k}.

3. Suppose a mapping that coerces all node sets into one node set f : V → V̄

and the edge coercion mapping h|f : E → E ′, the variability σ(G) = σ(G′
i =

{(V̄ , E ′
i) : i = 1, 2, . . . , k}) + ϕ(V) where V̄ = f(V), E ′

i = h(Ei)|f(V) and ϕ(V)

is the variability of node set V .
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Condition 1 indicates that variability is non-negative. Condition 2 indicates that

the variability of a network collection equals zero if and only if all networks in the

collection are identical. In condition 3, the variability of a network collection is

divided into two components, the variability of node sets σ(V) and the variability

of the transformed networks that are regularized by f and h|f . For instance, if the

networks in the collection have different number of nodes and nodes are unlabeled,

one can merge similar nodes by clustering methods [85, 86] to compress all networks

to same size and then label the nodes by nodal attributes such as the sorted degree

sequence.

For simplicity, we assume that all networks in a collection have the same set of

nodes, i.e., V1 = V2 = . . . ,= Vk = V . Therefore the network collection is defined as

G = {Gi = (V,Ei) : i = 1, 2, . . . , k}. This assumption applies when the real-world

complex system has identical nodes but varied edges. For instance, the brain of any

human can be regularized into a common template where brain regions are consistent

for different individuals [87]. However, the pattern of brain physical and functional

connections likely vary per individual [88, 89]. The difference could also result from

temporal factors, for example the series of coauthorship networks [90] of the same

authors are changing over time.

In the following sections, variability of network collections are examined from

three perspectives: variance of network metrics, in-collection dissimilarity and the

information entropy carried by network components.

3.2 Variance in Network Morphospace

Complex networks are high dimensional data with non-trivial topological struc-

ture. To study the variability in a network collection, one can map networks in a

collection into a metric space of topological properties of interest, e.g., assortativity,

transitivity, modularity, etc [91, 92]. That metric space is a “network mophospace”

whose axes represent specific network traits and each point in the space represents
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one network [91]. Networks that are close in the morphospace share some common

“morphological” characteristics. Therefore variance of the metrics could indicate the

morphological variability of network collection. For instance, networks generated by

simulation are plotted in a morphospace of communication efficiency in Figure 3.1.

If networks in the network morphospace have lower variance then they are consid-

ered to have low variability. As a result the characteristics of networks are extracted

independently. This method measures σ(G) by measuring the variance of samples

{m(G)|G ∈ G} where m(G) is a vector of real-valued metrics of graph G (e.g. ||Ediff||

and ||Eroute in Figure 3.1.) Since variance is greater than 0 and equal to 0 when all

samples are identical by definition, condition 1 and 2 are satisfied.

However, measuring the variability of a network collection by the variance in this

morphospace has limitations. First, this measure depends on the choice of network

metrics. Without prior knowledge of the studied object, there is no legitimate way

to determine the metrics, and arbitrary selection of metrics could lead to misleading

conclusions [93, 94]. Secondly, the selected metrics are often used as constraints in

a network generative model, which will constrain the distribution of metrics and

consequently lose the model generalization ability. For example, networks generated

from dK-random graphs enforce exact joint degree distribution as the input network

and therefore the assortativity of degree of generated networks is identical to that

of the input network and has zero variance. Lastly, the changes in local structure

are ignored because each network is measured independently and the distributional

properties are based on independent measures. For instance, in the network collection,

edges in one community rewire to another community but the density does not change.

In the space of network density, the networks have zero variance but there does exist

density variation in local structure.
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Figure 3.1. Communication-efficiency morphospace from [91]. Each point represents
a network generated by optimization algorithms. The ||Ediff|| and ||Eroute|| represent
the efficiency of communication through random walk and shortest path respectively.
Green points indicate the location of the initial network collection; blue and red
points indicate the location of the lattice and random networks with respect to the
initial network collection, respectively; orange points show the location of the final
collection of networks generated by simulations with different objectives. Figure is
cited from [91].
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3.3 Pairwise Dissimilarity

Quantifying the topological distance or dissimilarity between a pair of networks

is a popular approach in the network science community due to its importance in

many applications such as protein ligand docking, video indexing and computer vision

[95,96]. A straight-forward idea is to measure the distance between adjacency matrices

by methods such as dissimilarity cross entropy, Jensen-Shannon distance (JSD) [97],

mean square error (MSE), etc. Note that this method relies on the assumption that

networks have the same set of nodes. A more general method for networks with

varied node sets is to measure the distance between distributional properties such as

degree distribution, centrality distribution, etc. For instance, the JSD between two

degree distributions measures the discrepancy of degree between the pair of networks.

Besides, there are similarity measures on networks based on graph matching such as

subgraph isomorphism [98]. Therefore one can measure the variability of the network

collection by the pairwise dissimilarity between networks. Generally, higher overall

dissimilarity indicates larger variability. The idea is to measure σ(G) by measuring the

pairwise dissimilarity {d(Gi, Gj) : i, j = 1, 2, . . . , k} where d(Gi, Gj) is a dissimilarity

measure between two networks Gi, Gj which satisfies (Gi, Gj) ≥ 0 and d(Gi, Gj) = 0

if Gi = Gj.

With the pairwise dissimilarity one can embed the networks into lower dimensional

space with ordination techniques such as multidimensional scaling (MDS), and get

the distribution of network as well as the variability of network collection. Pairwise

dissimilarity exploits pairwise dependence between networks while methods of statis-

tics of global measures ignores the dependence. However, the computational cost

of pairwise dissimilarity increases quadratically with the grow of network collection

size1, while making a single comparison is very computational costly [99].
1For a network collection consists n networks, we need to make n(n−1)

2 comparisons.
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3.4 Information Entropies

Since network models are probability distributions as well, the entropic measure of

variability of network models can be calculated as Equation 2.2 where x is an network

observation and X is the random variable for all possible network observations [26].

With real-world network data, the probability P (X = x) can be approximated by the

empirical probability. However, the number of distinct networks increases exponen-

tially when number of nodes increases and therefore the observations are too sparse

in the network space to approximate empirical probability well. One solution is to

decompose the network into localized structures and study the entropy of local struc-

ture over all observations such as graph motifs and graphlets. The “decompose and

measure” is applied to single network [100–102] but has not been applied to network

collection. In this section, two specific localized entropy measures are proposed and

analyzed.

3.4.1 Localized Entropy Measures

For a network collection with a fixed set of nodes, the change of local structure

leads to the change of topological structure. Then we can measure the entropy of

the local structure by computing the empirical distribution of specific local structure

over all samples. In this section, two localized entropy measures, edge existence

entropy and geodesic entropy, that measures the entropy of edge and geodesic distance

respectively are introduced.

As Definition 1.1.1, consider a network collection G = {G1, . . . , Gk} that have the

same set of nodes. Suppose A(k) represents the adjacency matrix of Gk. The empirical

distribution of edge eij is P (eij = 1) = 1
N

∑N
k=1A

(k)
ij and P (eij = 0) = 1

N

∑N
k=1(1 −

A
(k)
ij ). Then we propose edge existence entropy which indicates the variability of

connection eij among all samples can then be defined as

He(eij) = −(p1 log p1 + p0 log p0) (3.1)
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Figure 3.2. An example of edge existence entropy in a network collection of 4 binary
undirected network samples. Consider the edge between node 2 and node 9. Among
the 4 samples we have 2 samples with an edge between 2 and 9, and 2 samples without
an edge. That means the probability of 1 (exists edge) and 0 (no edge) are 0.5 and 0.5
respectively. Therefore the edge existence entropy for this pair is 1. Combining the
edge existence entropy of all pairs we get the edge existence entropy of the network
collection.
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where p1 = P (eij = 1) and p0 = P (eij = 0). For a pair of nodes (vi, vj), if they

are connected in all network samples, there is no information provided per sample,

as He = 0, because there is only one possible outcome eij = 1. Edge existence

entropy reaches its maximum when p1 = p0 = 0.5 where the connection is most

unstable. Figure 3.2 shows an example of calculating the edge existence entropy of

a network collection of 4 undirected binary networks. An edge existence entropy can

be computed for each potential edge in the network and therefore study the overall

variability by the statistics of the distribution of edge existence entropy. For instance,

the mean of entropies indicates the average level of variability and the variance of

entropies indicates the deviation of variabilities.

Edge existence entropy sheds light on the variability of connection density of

complex network collections. Meanwhile, the communication efficiency is another

critical property that helps explain the dynamical process operating on a network.

For instance, the distance between nodes, which is the length of shortest path between

them, implies the communication efficiency. Hereby the geodesic entropy is proposed

as:

Hd(dij) = −
∞∑
d=0

pd log pd (3.2)

where pd is the proportion of network samples where the distance between node vi

and vj is d among all N network samples.

3.4.2 Mutual Information in Clustering Effect

Edge existence entropy measures the variability of edges over all samples inde-

pendently. The transitivity of variability in network collection can be studied with

information entropy as well. In this section, we are going to discuss a basic application

of mutual information in studying the clustering effect in network collections.

In information theory, mutual information of two random variables measures the

amount of uncertainty decrease of one random variable after considering another

random variable. For example, if two random variable are independent, knowing one
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Figure 3.3. Venn diagram showing the relationships of different information with
respect to variable X and Y . Left I(X;Y ) (purple area) represents the mutual infor-
mation of X and Y .
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random variable does not help reduce the uncertainty of the other random variable.

Therefore the mutual information between the two random variables are 0. As shown

in Figure 3.3, the mutual information I(X;Y ) between random variables X and Y

can be calculated as:

I(X;Y ) = H(X) +H(Y )−H(X,Y ) (3.3)

where H(X) and H(Y ) are the entropy of X and Y , and H(X,Y ) is the joint entropy

of X and Y .

Consider the local clustering effect in graphs with random variable X representing

node A has connections to both B and C, and random variable Y representing node

B and C are connected. With multiple networks observation we can calculate H(X)

and H(Y ) indicating the variability of the connection to any two neighbors and the

connection between the two neighbors, respectively. Then the transitive mutual in-

formation of a triad (A,B,C) thus can be calculated as Equation 3.3 and I(X;Y ) is

the information reduction in uncertainty of the connection between a pair of nodes

due to the knowledge of the connection of a common neighbor. Higher I(X;Y ) in-

dicates higher influence of variability of the transitive relation, and the connection

between a pair of nodes and their common neighbor are independent if I(X;Y ) = 0.

3.5 Experimental Result

In this section, measures introduced in Section 3.2, 3.3, and 3.4 are applied to three

network collections for comparison. A set of structural brain networks (networks in-

ferred from physical structure that vary by individuals), resting-state functional brain

networks (networks inferred from correlation that vary by individuals) and the cor-

relation networks of SP500 stock price (networks inferred from correlation that vary

by time) are tested. The structural and functional brain networks of 100 subjects

are processed based on the Human Connectome Project (HCP) 900 dataset [72]. The

processing of the diffusion weighted imaging (DWI) data to get the structural brain
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networks are described in [71]. The functional brain networks are inferred by thresh-

olding correlation matrix of functional MRI blood-oxygen-level-dependent (BOLD)

signal between regions of interest (ROIs) in resting-state [71]. The correlation net-

works of SP500 stock price is generated by inferring the Pearson correlation matrices

between SP500 stocks from 1997 to 2017 with time window of 3 months2. A basic

description of the network collections are shown in Table 3.1.

Table 3.1. Description of Three Network Collections. Sample size indicates the num-
ber of networks in each network collection. The density, transitivity and diameter
are reported with mean± standard deviation.

Name Sample Size # of Nodes Density Transitivity Diameter
structural brain 100 360 0.032± 0.001 0.422± 0.011 8.11± 0.65
functional brain 100 360 0.050± 0.014 0.580± 0.051 9.22± 1.37
stock price 80 193 0.132± 0.110 0.674± 0.074 10.23± 2.51

3.5.1 Statistics of Global Measures

This experiment shows the variance of transitivity, assortativity of degree and

modularity distribution of the three network collections for comparison. Transitiv-

ity measures the frequency of triangles and then the strength of transitive relation

between nodes. Assortativity of degree indicates the similarity of node degrees. Mod-

ularity measures the strength of community structure and high modularity implies a

dense intra-community connection and sparse inter-community structure. The mod-

ularity is based on predefined community structure. For structural and functional

brain networks from HCP, the community is 7 resting-state networks (RSN) [87].

For stock price correlation networks, the community structure is the 11 industries

contained in the consumer discretionary sector. and the results are shown in Figure

3.4.

The variances of transitivity σ2
trans for structural brain networks, functional brain

networks and stock price correlation networks are 0.00012, 0.00264 and 0.00554 re-
2We only include the stocks that have records no later than 2017 which gives the 193 qualified stocks.
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Figure 3.4. The transitivity, assortativity and modularity of three network collections.

spectively. The variances of assortativity σ2
assort are 0.0017, 0.0137 and 0.0154. And

the variances of modularity σ2
mod are 0.00014, 0.00231 and 0.00215. By an one

side F-test for two sample variance test with 5% confidence level, we can conclude

that σ2
trans(struturalBrain) < σ2

trans(functionalBrain) < σ2
trans(stockPriceCor),

σ2
assort(struturalBrain) < σ2

assort(functionalBrain) ≈ σ2
assort(stockPriceCor) and

σ2
mod(struturalBrain) < σ2

mod(functionalBrain) ≈ σ2
mod(stockPriceCor). That

means in all 3 graph metrics, structural brain networks have the lowest variability

(most consistent) than functional brain networks and stock price correlation networks.

3.5.2 Pairwise Dissimilarity

In this experiment, the pairwise dissimilarity of degree distribution is analyzed.

The JSD of degree distribution between each pair of networks in network collections

is computed and the histogram of it are shown on the left in Figure 3.5. High JSD

indicates greater discrepancy of degree distribution within the network collection. In

the right panel, an abstract space of networks is constructed by 2 dimension MDS on

the JSD matrices as distance matrices. From the experimental result, the network

collection of stock price correlation has higher internal degree distribution discrepancy.
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Structural brain networks have the lowest variability among the three. This result is

consistent with the variance in network morphospace computed in Section 3.5.1.

Figure 3.5. Left: histogram of the distribution of pairwise JSD of degree distributions
for three network collections. Right: Recover the JSD to 2 dimensional space by
multidimensional scaling (MDS). The stress value measures the goodness of fit of the
recovery. Lower stress value indicates better fit.

3.5.3 Information Entropy

As described in Section 3.4, the information entropy of network collections are

computed. Figure 3.6 shows the edge existence entropy and geodesic entropy of the

three network collections. The structural brain network collection has most edge

existence entropies close to 0 implying the topological structure is more consistent

compared to functional brain networks and stock price correlation networks. That

implies the individual difference of brain structure is lower than the functional con-

nectivity with respect to this measure. As a comparison, the stock price correlation

networks have the largest variability among the three.

Figure 3.7 shows the distribution of transitive mutual information for all triads.

Here H(X), H(Y ) and H(X,Y ) are computed with base of 2. The structural brain

networks have 0 mutual information for most triads and functional brain networks

have higher mutual information, which implies the knowledge of common neighbors

does not reduce the uncertainty of connection in structural and functional brain

networks in most cases. As shown in Figure 3.4 where stock price correlation networks
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Figure 3.6. The histogram and 2D density plot (with kernel density estimation)
of edge existence entropy versus geodesic entropy of the structural brain network
collections, functional brain networks and stock price correlation networks. The left
panel shows the histogram of edge existence entropy and geodesic entropy and the
vertical dashed lines represent the mean. Right panel shows the distribution in edge
existence entropy versus geodesic entropy space.

have the highest variance of transitivity among the three, they are expected to have

higher transitive mutual information than structural and functional brain networks

as shown in Figure 3.6.

3.6 Entropic Variability of Structural Brain Networks3

In this section, the edge existence entropy and geodesic entropy of structural

brain networks and synthesized networks by dk-2.5 [23], ABNG [66] and configura-

tion model [56, 67] are tested. The 100 structural brain networks are processed by
3A version of this section has been previously published in Network Science (DOI:
https://doi.org/10.1017/nws.2019.63) [24].

https://doi.org/10.1017/nws.2019.63
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Figure 3.7. Histogram of transitive mutual information. Structural brain networks
have lowest transitive mutual information which means variability of the connections
to the common neighbors does not provide as much information to variability of the
connection between the common neighbors compared to functional brain networks
and stock price correlation networks.

diffusion weighted imaging (DWI) data as described in [71]. Instead of randomly pick-

ing one network from the network collection as input, we parameterize each model

using multiple input networks assuming that the additional information will enhance

the ability of models to synthesize collections that are representative of the input

distribution. It is known that sample size will impact the accuracy of entropy mea-

sure [103]. In addition to the model training and synthesis on the complete dataset,

partial input is considered by bootstrapping to verify the modeling performance and

the effect of sample size on the entropy measures.

To verify the effect of sample size to the entropy methods, 20 replications are

done for each sample size si ∈ S = {2, 3, 5, 10, 20, 50, 80, 100}. In each replication,

si networks are randomly drawn from the 100 networks without replacement, thus

creating a network collection with sample size si, which is then used to compute edge

existence entropy and geodesic entropy. Given a sampled network collection, a mean

degree sequence is estimated by averaging the degree sequences of the si networks in

the collection. This mean degree sequence is then used by the configuration model to

synthesize a network collection. Similarly, for ABNG, mean value of the user-defined
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Figure 3.8. Distribution of edge existence entropy versus geodesic entropy for brain
networks and synthetic networks with different sample sizes. Each point represents
the edge and geodesic entropy of one network collection containing multiple networks.
With increasing sample size, the geodesic entropy increases and gets peaked at around
sample size of 10 and then decreases. That is caused by insufficient sample size and
network sparsity. Models that are better on matching the variability will have scatters
closer to “full dataset”.

characteristics in the network collection can be used for learning action matrices for

the collection. For the dk-random graph model, a probability matrix is created by av-

eraging the adjacency matrices of the si networks in the collection. A network is then

sampled from the probability matrix as representative network, which is repeatedly

rewired using the 2.5k-rewiring scheme to synthesize network collections.

Figure 3.8 shows the edge and geodesic entropies of structural brain networks and

networks synthesized using the configuration model, dk-random graphs, and ABNG.

The real network collections lie on the left side of the space, and the synthesized

network collections of three models are positioned right of them. That implies syn-
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thesized networks have higher edge existence entropy compared to real networks. The

edge and geodesic entropy of the full dataset (100 structural brain networks) and col-

lection synthesized by different models are annotated in the plot. Network collections

with bootstrapping are colored by their sample sizes. For the three models and input,

the edge existence entropy and geodesic entropy both increase with increasing sample

size before 10 samples despite the geodesic entropy decreases when the sample size is

larger than 10. Both entropy measures converge for more than 50 samples. Generally,

limited sample size will reduce the accuracy of entropy measures.

The performance of network generative models on local variability can be eval-

uated by comparing the entropy of input network collection and model synthesized

network collections. All three models overestimate edge existence entropies which

means in this scenario, true structural brain networks have lower variability in local

connectivity than the models express overall. ABNG gets a better estimate than the

other two models with respect to edge existence entropy. As for geodesic entropy,

both ABNG and dk-random graph models overestimate it but the configuration model

estimates the geodesic entropy accurately. In conclusion, none of the three models

can match the variability of input network collection across all measures. They either

overestimate the edge existence entropy or overestimate geodesic entropy.

Figure 3.9 shows the assortativity-transitivity space, for the 100 structural brain

networks and network collections synthesized in the results presented in Figure 3.8.

Instead of 20 replications for each sample size setting, Figure 3.9 only shows one

replication. Each point in the plot represents the assortativity and transitivity of

one network. Among the three models, configuration model, dk-random graphs and

ABNG, dk-random graph model performs the best on matching the centroid which

represents the average metrics. However, it has the lowest generalized variance im-

plying it fails at matching the variability of the group. ABNG outperforms the other

two models at matching the generalized variance implying its capability of captur-

ing the variability of input networks. Furthermore, there is no significant relation



38

Figure 3.9. First row shows distribution of assortativity of vertex degree and tran-
sitivity in network collections of structural brain networks and networks synthesized
from them by configuration model, dk-random graphs and ABNG. Second row shows
the centroid distance between synthesized networks and input networks. Lower dis-
tance means better estimate on mean value. Last row shows the generalized variance
of assortativity and transitivity of synthesized networks while the dashed line repre-
sents the level of input networks. Being closer to dashed line indicates better estimate
on the variance on both metrics.

between sample size (annotated by color) and the goodness-of-fit in the space for all

three models.

3.7 Entropic Variability of Functional Brain Networks

3.7.1 Subject-level variability

In order to measure the variability caused by individual difference among subjects,

we compute the edge existence entropy and geodesic entropy of functional brain net-

works over the 100 randomly selected subjects in resting-state and performing tasks
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respectively. The 2D distribution of edge existence entropy versus geodesic entropy

of different regions in different tasks are shown accordingly. The functional brain

networks are generated from the Pearson correlation between 360 ROIs in pairs. Any

correlation higher than 0.2 is kept as an edge in networks therefore (100 subjects ×

8 sessions × 2 encoding phases =) 1900 networks are generated. The 1900 networks

are divided into 19 groups by tasks and phases. Each group has 100 networks which

is defined as a network collection, and the edge existence entropy and geodesic en-

tropy are computed with respect to Equation 3.1 and 3.2 for each group. The edge

existence entropy and geodesic entropy of each pair of nodes are computed according

to the group setting, which implies the variability of connection and communication

efficiency over the 100 subjects in different states.

Considering the resting state network (RSN) partition [87] of the 360 ROIs, there

are intra-RSN connections representing the interaction within same functional com-

munity and inter-RSN connections representing the interaction between different

functional communities. Since the networks are sparser for inter-RSN connections

and denser for intra-RSN connections, the entropies for inter-community connections

are ignored for the following analysis to focus on the variability of connections within

functional areas. For each group (task and phase), the pairs within RSNs are divided

into 8 different RSNs that the pair belongs to.

Figure 3.10 shows the 2D density plot of the edge existence entropy versus geodesic

entropy in different states by RSNs. Figure 3.10 shows the distribution of entropic

variability changes for different states. That implies different tasks require different

levels of entropic variability change. If the distribution in resting-state is considered

as baseline, the distributional distance of entropic variabilities from resting-state to

task indicates the reconfiguration of intra-RSN variability for each task. Kernel max-

imum mean discrepancy is used to measure the distance between pair of bivariate

distribution estimated by observed samples.

Figure 3.11 shows that except for subcortical area, all regions have consistent vari-

ability reconfiguration between test (resting-state 1 as baseline) and retest (resting-
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Figure 3.10. 2D kernel density estimation of edge existence entropy and geodesic
entropy distribution grouped by RSNs. X axis and Y axis represents edge existence
entropy (ranged from 0 to 1) and geodesic entropy (ranged from 0 to 1) respectively.
Red indicates more points (denser distributed) in area. Blue indicates less (sparser
distributed) points in area.

state 2 as baseline). Limbic system requires the most intense reconfiguration for all

7 tasks because it has the largest area of polygon.
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Figure 3.11. Kernel maximum mean discrepancy between resting-state (baseline) and
different tasks grouped by RSNs. The 8 tasks performed are emotion (EM), gambling
(GB), language (LG), motor (MT), relation (RL), social (SC) and working memory
(WM). Solid line and dashed line indicate comparison to resting-state session 1 and
seesion 2 respectively. Lower value in the plot implies more similar to resting-state.
Larger area implies more intense reconfiguration from resting-state in general.

3.7.2 Temporal variability

In Section 3.7.1, the variability caused by individual difference is analyzed by

deriving a network for each subject. In order to study the variability caused by

time during the scan session, the temporal network variability is studied by taking

a series of temporal networks as network collection. First, we randomly select one

fraction of time series of the same length for all tasks to exclude the impact of length of

session. Then the multidimensional time series is decomposed into multiple snapshots

by sliding window method with step size of one. One network is generated for each

snapshot therefore a series of networks is generated. In this section, the total length

selected is 150 frames and the window size is 90. Therefore one series contains 61

networks as samples. Since the step size is one, the change of the network topological

structure is very small and the geodesic entropy is close to 0. In this section, we only

study the edge existence entropy with respect to time.
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Figure 3.12. Box plot of edge existence entropy. Y axis indicates the mean edge
existence entropy of different subjects. Higher edge existence entropy implies higher
variability over time. The edge existence entropy is divided into two group: edges
within community (in blue) and edges across communities (in red).

Figure 3.12 shows the distribution of mean edge existence entropy of different

subjects for different tasks grouped by if the connection is intra-RSN or inter-RSN.

Resting-state shows a homogeneity of edge variability for both intra-RSN and inter-

RSN connections compared to all other tasks. For the 2 resting-state sessions, the

p-values of t-test between mean edge existence entropy among intra-RSN connection

and inter-RSN connection are 0.0774 and 0.1717 respectively, which implies there are

no significant difference in mean between the two group of data for both sessions.

Moreover, the intra-RSN edge existence entropy stays at the same level for both

resting-state and task-state (except for emotion task), while inter-state connectivity

variability decreases significantly for all task-states.

3.8 Conclusion

In this chapter, a general form of network variability is defined. The specific

case that all networks in collection share the same set of nodes is discussed in the

following sections. Based on the concept of network morphospace [91], the variance
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of global metrics are firstly introduced as a variability measure. Then a pairwise

dissimilarity method is introduced by taking account of the dependence between

network observations. In addition, an entropic variability is proposed based on the

concept that the variability of local structure (i.e. subgraphs and their topological

properties) contributes to the overall variability.

These three methods are applied to three network collection data sets with dif-

ferent data source and format (including structural brain networks, functional brain

networks and stock price correlation networks) for comparison. These three methods

give the consistent conclusion that structural brain networks have the lowest vari-

ability, functional brain networks has higher variability and stock price correlation

networks have the highest variability. Although these three methods have distinct

concepts and calculation, they share the consensus on the variability of our network

collection data sets.

Similar to the comparison of classic variability measures such as variance, in-

terquartile range, median absolute deviation, etc., there is no conclusion that which

measure is superior than other measures. These proposed network variability mea-

sures are defined with different conditions and concepts, and the measured variability

should be interpreted according to the definition and scenario of application.
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4. INFERENTIAL MODELING OF A NETWORK

SERIES1

In this chapter, a network generative model is proposed to tackle the Question 2 “Can

we devise a model that can reproduce the variability of observed network collection”

with a specific case: variability in network collection introduced by time. Given a

series of networks that have fixed set of nodes, the change of edges indicates the

temporal variability. For instance, if the network does not change for the whole time

series (i.e. all networks in series are identical), this network series has zero variability.

To model the change and hence reproduce the network series, we assume that the

changes of edges are related to some local structure (e.g. nodes with less neighbors

are less likely to change associated edges.).

In this section, we applied the proposed model to the temporal functional brain

networks in resting-state of 100 unrelated subjects. The experimental results show

that the proposed model is able to reproduce similar network series, and the com-

munity of node has impact on the change of associated edges over time. In Section

4.1 and 4.2, an action-based network method is proposed for modeling the network

changes. Performance evaluation and experimental results are shown in Section 4.3

and 4.4.

4.1 Action-based Network Generator

Action-based networks (ABN) [66] are based on the premise that nodes create,

rewire or delete edges by probabilistically choosing from a set of predefined actions

that locally modify network topology. Since interactions such as creation, rewiring or
1A version of this chapter has been previously published in International Conference on Complex
Networks and their Applications (DOI: https://doi.org/10.1007/978-3-319-72150-7_103) [104].

https://doi.org/10.1007/978-3-319-72150-7_103
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deletion of edges occurs many times in a complex system and we do not have complete

information at node level to state with high accuracy why changes of networks are

made, it is natural to represent the actions as a probability distribution. Hence we

can infer the proposed probability distribution from the observations via estimation

methods such as maximum likelihood.

Suppose we are given a starting network G0 = {V,E0} with n = |V | and m0 = |E0|

edges at time t = 0 and an action matrix M⃗n×k with k actions. In action matrix M⃗n×k,

each column represents an action that can be chosen by node vi where
∑

j M⃗ij =

1 ∀i = 1, · · · , n. Each row represents the probability distribution over all actions,

which means M⃗n×k is an uncompressed representation of the action preference. At

time point t, every edge with endpoint vi probabilistically chooses an action according

to M⃗i· and then rewires it to some other node according to the rule(s) of the action.

Note that “do not rewire” is included as an action that would keep the edge for

completeness of actions. Actions can be deterministic such as rewiring to the node

with highest degree, or probabilistic such as rewiring with a probability proportional

to node degree. Gt+1 is the network that after all nodes complete such rewiring of edges

in Gt. Then repeat the process until some stopping criteria. Instead of synthesizing a

series of networks independently, this algorithm generates the edge changes over time

based on node actions and network structure at previous time point. In this way, we

can synthesize a series of networks < G0,G1, · · · ,GT > by sampling from M⃗n×k. An

synthetic example of the algorithm is shown in Figure. 4.1.

Assume that we have a starting graph G0 as shown in Figure. 4.1(a) and 4 ac-

tions are preferential attachment on degree, PageRank, closeness and no rewiring.

There are 8 nodes and 10 edges. If we only consider node v3, it has two neigh-

bors v2, v5 implying that the nodes to be rewired to are v1, v4, v6, v7, v8. Con-

sider an action matrix with 3rd row M⃗3· =
[
0.4 0.3 0.2 0.1

]
, by which (v3, v2)

and (v3, v5) are choosing their actions. With such probability distribution M⃗3·,

(v3, v2) chooses degree and (v3, v5) chooses PageRank. Among the unconnected

nodes, (v3, v2) would be rewired to v1, v4, v6, v7, v8 with probability of
[
1
3

1
9

0 1
3

2
9

]



46

1

2

3

4 5

6

7

8

(a)

1

2

3

4 5

6

7

8

(b)

1

2

3

4 5

6

7

8

(c)

Figure 4.1. A toy example explaining the synthetic algorithm. (a) Starting network
generated with Erdős-Rényi model Gnm(n = 8,m = 10). (b) According to the action
vector M⃗3, v3 rewired the two red dotted edges to the two green dashed edges. (c)
After all nodes rewire based on their own action vector, the network in next time
stamp.
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since degre(v1, v4, v6, v7, v8) = (3, 1, 0, 3, 2). Similarly, (v3, v5) would be rewired to

v1, v4, v6, v7, v8 with probability of
[
0.23 0.21 0.08 0.25 0.23

]
as their closeness.

With a trial, (v3, v2) and (v3, v5) are rewired to (v3, v1) and (v3, v7) respectively. The

result is shown in Figure. 4.1 (b). After a rewiring for all existed edges in G0 with the

same action vector
[
0.4 0.3 0.2 0.1

]
, a synthetic G1 is shown in Figure. 4.1 (c).

With a series of observed networks, maximum likelihood was applied to estimate

the action matrix M⃗ . Based on network Gt, all edges rewired at t+1 can be represented

by a graph∆Gt = Gt−Gt−1 where t = 1, · · ·T . In other words, ∆Gt gives the difference

in edge set of Gt and Gt+1. The posterior can be expressed by:

P (M⃗i·|{G0,G1, · · · ,GT}) =
T∏
t=1

 ∏
vj∈Ni(∆Gt)

M⃗i· · p⃗(t−1)
ij

 (4.1)

where Ni(∆Gt) is the set of all first order neighbors (neighbors within one step

away) of vi in ∆Gt (which are all rewired edges for node vi), p⃗(t−1)
ij is the decision

vector between node vi and vj at time point t, which determines the other endpoint

for rewired edge. For instance, if action k is preferential attachment on closeness, the

kth element of p⃗(t−1)
ij can be expressed by closeness(vj)∑

v∈V \{Ni,vi}
closeness(v) , which is the proportion

of closeness of node vj to the sum of closeness of all non-neighbor nodes.

An example of p⃗ijk is shown in Figure. 4.2. Consider the two graphs as a series

of networks and 4 actions: preferential attachment on degree, closeness, PageRank,

and no rewiring. For node v3, it rewired edge (v3, v2) to (v3, v7) and (v3, v8) at t = 1.

In addition, (v3, v5) are not rewired at t = 1. At time t = 0, the degree of v7 and v8

takes 0.33 and 0.22 among degree of all potential nodes (v1, v4, v6, v7, v8), which means

p
(0)
3,7,1 = 0.33 and p

(0)
3,8,1 = 0.22. Likewise, calculating the proportions of PageRank and

closeness, we have p⃗(0)3,7 =
[
0.33 0.25 0.30 0

]
and p⃗

(0)
3,8 =

[
0.22 0.23 0.22 0

]
. For

the unchanged edge (v3, v5), p⃗(0)3,5 =
[
0 0 0 1

]
.
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Figure 4.2. An example showing observed networks in t = 0 and t = 1. The probabil-
ity of this rewiring can be calculated based on the action matrix and corresponding
graph metrics.



49

With the posterior probability, we can estimate each M⃗i· by solving the constrained

optimization problem:

maximize
M⃗i·

log(P (M⃗i·|{G0,G1, · · · ,GT}))

subject to 1⃗ · M⃗i· = 1

M⃗i· ⪰ 0⃗

(4.2)

where M⃗i· ⪰ 0⃗ means M⃗i· is componentwisely greater or equal to 0.

4.2 Choice of Actions

The choice of actions is critical since the fundamental assumption is that nodes

rewire edges based on actions related to local structure. For the data set of functional

brain networks, the measures are classified into 6 main categories: basic concepts and

measures, measures of integration, measures of segregation, measures of centrality,

network motifs and measures of resilience [89]. Since network motifs and measures of

resilience only have global measures instead of local measures on each node, we only

consider the first 4 categories. Among the 4 categories, considering representativeness

and computational cost, we chose 6 measures to be the basis of action set as shown

in Table 4.1.

After the measures are determined, we need to devise the action based on these

measures. Preferential attachment is a common strategy, however there is no prior

information about the nodes behavior in brain networks. In other words, we do not

know whether a node prefers or disfavors to rewire to nodes with higher metric value.

Note that the dynamic action based network is different from the original ABNG

in [66], which is the mechanism generating desired networks from sparse network.

Therefore, we need to test whether a node prefers to connect nodes with higher

statistic or inversely. To test, we estimate the action matrix on a sample of 16

subjects with both measurements and their inverse by maximizing the likelihood as
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Equation 4.2. The 16 subjects are randomly selected from the 100 subjects and such

sampling is due to the computational cost.
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Figure 4.3. The mean probability of actions being chosen by subject. The actions in
x-axis from left to right are degree, inverse of degree, clustering coefficient, inverse
of clustering coefficient, closeness, inverse of closeness, betweenness, inverse of be-
tweenness, local efficiency, inverse of local efficiency, modular similarity, inverse of
modular similarity and no rewiring. An action matrix is estimated for each subject
and there are 16 random subjects in this experiment. Lower mean probability indi-
cates the action is less favored.

As shown in Figure. 4.3, the probability of preference on all measures are signifi-

cantly higher than their inverse except for clustering coefficient. That implies nodes

are less likely to rewire to a node with higher clustering coefficient over time. Thus,

the actions will be used in the experiment are preferential attachment on degree,

inverse of clustering coefficient, closeness, betweenness, local efficiency, RSN7 and no

rewiring.

4.3 Evaluating Generator Goodness-of-fit

Our goal is to find a model that can synthesize networks with a similar global

structure to the observed sequence of networks. Note that the likelihood of prior is

served as an objective in our optimization. Past research used energy as an objective
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[105,106] that is related to the global structure. The choice of measures to be included

in such energy introduced bias into the optimization. Since our objective is the

likelihood, our model is free from such bias introduced by predefined objective.

To evaluate the fitted model, synthetic networks are generated from the action

matrix. Then we measure the pairwise similarity of some measures (such as degree

distribution or closeness) between the raw network series and its synthetic networks

in each time step. The similarity can be measured by the D-statistic in a two-

sample Kolmogorov-Smirnov test (KS test). A lower D-statistic means two samples

are drawn from sufficiently similar distribution. In this paper, KS test is applied to

degree, clustering coefficient, closeness, betweenness and local efficiency distribution.

The reason for selecting these metrics is the same as we chose actions in Section 4.2.

4.4 Experiments and Result

The resting-state fMRI data used in this experiment is preprocessed as Section

2.5. To divide the time series, we chose a window length of 100 time points (about

1.2 mins) since such a window endures long enough to allow adequate estimation of

correlations over the frequencies that are present in the wavelet band of interest [0.001

Hz, 0.08 Hz]. Each scan session is then composed of 12 windows in total. For each pair

of windows, a Pearson correlation coefficient on BOLD time series is computed, which

generates a series of symmetric matrices overtime. A false discovery rate correction

at level of q < 0.05 is applied to adjust p-values for multiple comparisons. These

matrices can be transformed into networks if we assume that higher absolute value of

correlation coefficient implies a stronger connection. To binarize the matrix, global

thresholding is not a good choice since it tends to generate an either too dense network

or network with too many isolated nodes and components. The isolated nodes and

components impair some graph metrics such as shortest path length. In order to

avoid this issue, we compute a correlation cutoff that can make all nodes connected

as a giant component for each network. More specifically, starting with an empty
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network, edges are added to the network sequentially as correlation increase until all

nodes are connected.

As stated before, we fit the ABN model to brain networks generated from fMRI

data of 100 unrelated subjects. To compare the mean and standard deviation of net-

work structure metrics, each series of networks yields one estimated action matrix and

the synthetic series of networks are generated from that action matrix for evaluation.
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Figure 4.4. The density, transitivity and modularity of network series synthesized by
our algorithm (in red) and raw observed network series (in blue). 20 replications are
done for calculating the statistics. Mean value of the metrics is represented by lines
and standard deviation is represented by ribbon.

Figure. 4.4 shows the result of fitted model. We find that the action-based model

can mimic the dynamics of brain networks in some global structures, though the

accuracy of prediction is decreasing with time. For instance, the degree is fitted in

the first two steps but a smooth increase is observed in the next few steps. This can

be partly explained by the cumulative error during the process. Since the raw series

of networks is assumed to be a consistent process and our model cannot correct the

bias when generating the series, some bias caused by random factor may lead the

network away from the original network.

Another issue is the variance of the network. Compared to the raw data, the

density, modularity [107] (with community of RSN7) and transitivity of synthetic

networks all tend to converge in synthetic networks, however the raw data does not

show such convergence. This may be caused by the synthetic algorithm we designed

and actions we used. As a preliminary experiment, this model is not able to synthesize
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most structures but since raw and synthetic networks have same trend at the first 3

time steps, the result seems nonetheless promising.

Figure 4.5. D-statistics of two sample KS test of betweenness, closeness, clustering
coefficient, degree and local efficiency between raw network series and synthetic net-
work series. Experiment is replicated 20 times for calculating the statistics. Line
represents the mean value and ribbon indicates the standard deviation. Lower value
means better fits.

Figure. 4.5 shows the result of two sample KS test on degree, closeness, between-

ness, closeness, clustering coefficient and local efficiency distribution between target

networks and synthetic networks. Betweenness distribution gets the best fit to target

networks among all measures but closeness, clustering coefficient and local efficiency

distribution exceed 0.5 at the second step. Degree distribution, as an important

marker of network development and resilience, also exceeds 0.5 after the fourth step.

To investigate the discovered node-based action matrix grouped by node commu-

nities (RSN7), a nonmetric multidimensional scaling (MDS) is applied. MDS can

represent the distances among the objects in a parsimonious way by reducing the

dimension of the variables. We reduce the 7 variables (actions) to 2 by MDS and the

corresponding result is shown in Figure. 4.6. The example shown in Figure. 4.6 is

representative for all subjects and the results of other subjects are not shown due to

page limits.
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Figure 4.6. The action vectors of all ROIs of subject 100307 in session resting 1
with LR phase after nonmetric multidimensional scaling (MDS) grouped by RSN7
scheme as an example. The stress value of MDS is 17.82% indicating a fair dimension
reduction. The action vector with length of 7 is reduced to vector in 2 abstract
dimensions for visualization. One point represents the reduced action for one ROI,
and denser distribution implies more consistent action preference within RSN. Note
that the subcortical cerebellum is included for completeness.

We can find nodes in different resting-state networks have different preference

on actions. For instance, nodes in RSN5 spread more sparsely in the plot which

can be explained by a flexible action preference within modular and nodes in RSN3

are more unanimous on choosing actions. Although we only have 3 nodes in RSN8

which belongs to cerebellum, the actions of them are very different from nodes in

cerebrum. Such dissimilarity of action preference across modular may be caused by

brain functionality isolation.

4.5 Conclusion

In this chapter, we designed an action-based network model for dynamic networks

and presented preliminary results. Our study makes some novel contribution of mod-

eling a time series of networks. For the data set of functional brain networks, by

estimating the action matrix of nodes, we can synthesize series of network with our
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rewiring algorithm. The choice of actions shows nodes of brain networks prefer to

rewire to nodes has higher degree, closeness, betweenness, local efficiency and modular

similarity,but lower clustering coefficient. The investigation of action matrix shows

nodes of different RSN tends to have different action settings. Although the synthetic

networks can mimic the dynamics of raw data to some degree, our action based model

is not as consistent as the raw networks. This may be caused by inaccurate synthetic

algorithm and insufficient information of nodes. This action-based network model

based on rewiring is a preliminary experimental generative model of brains dynamics

which need further improvement. In addition, the decision of nodes rewiring should

not only depend on the graph topological metrics. There should be some more at-

tributes of brain ROIs included for completeness, such as the coordination of ROIs

and functional relations between ROIs.
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5. NETWORK COLLECTION MODEL BASED ON

VARIATIONAL AUTO-ENCODER

In Chapter 4 we introduced an action-based model for synthesizing a series of network

and implemented the model for dynamic functional brain networks. The result implies

that the network series can be modeled by an action matrix over the rewiring between

snapshots, which is equivalent to lag-1 difference in time series analysis. It hypoth-

esizes that the network series is stationary, and the difference between consecutive

observations dominates the variability. However, we cannot implement differencing

method (such as computing edge switches in Chapter 4) with network collection that

are not time series due to the lack of temporal dependence. To learn and reproduce the

attributes of a collection of networks, we need tool that can process high-dimensional

relational data. Variational autoencoder, a neural network-based generative model,

has shown capability of learning the variability of high dimensional data such as im-

ages [108]. In what follows, we will discuss the implementation of VAE on graphs

and some experimental results.

5.1 Variational Autoencoder

The recent burst of deep learning methods has shown great success on classification

tasks and especially for recognizing patterns in images, audio, video and text [108–

110]. Research questions on graph, as a non-Euclidean data structure, such as node

classification, link prediction can utilize the deep learning framework for its high

extensibility. The application of neural networks on graph data starts with recursive

neural networks on tree structured data [111]. Then we have graph neural networks

(GNN) and neural network for graphs (NN4G) that are able to handle general graph
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data [112,113]. Based on the idea of NN4G, the graph convolutional network (GCN) is

proposed and shows prominent performance on tasks such as node classification [114].

Besides the deep learning methods targeting at single networks, there are network

models that learn the whole network as one object to complete tasks such as graph

classification. One intuitive way of learning networks is to aggregate the learned

nodal representations with deep sets [115]. Another way is to decompose the networks

into paths generated from random walk and learn the path with RNN/LSTM [116].

However, most of these methods are implemented with small-scale networks such as

molecules. The implementation of most current graph deep learning methods will

incur computation issues on large-scale complex networks.

Besides the deep learning methods mentioned above, variational autoencoder

(VAE) shows its preeminence on modeling and synthesizing high-dimensional data.

An autoencoder is a category of unsupervised learning methods that try to regenerate

high dimensional input data by a set of encoder and decoder functions [117]. Gener-

ally, the encoder compresses the input data into latent variables in lower dimensional

space (feature space) and the decoder recovers the latent variables in feature space

back to the space of input data [108, 117–119]. Normally the encoder and decoder

are neural networks. In recent years, the implementation of VAE on networks has

shown great potential on learning network structure. For instance, [120] proposed

GraphVAE that takes adjacency matrix, edge attributes, nodal attributes and label

of graphs as input X to generate valid chemical molecules. [121] has shown an im-

plementation of VAE on citation network and achieved competitive results on edge

prediction task compared to other deep learning methods. Although VAE achieves

success on many graph related tasks, the computational cost is high especially for

large networks (with more than 100 nodes).

Variational autoencoder is introduced by [108] based on the concept of variational

inference on compressed latent variables in feature space. In Figure 5.1, X is the

high dimensional input data, and encoder Q is a neural network that outputs two
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Figure 5.1. Examples of VAE implementation [119]. Left is without the ‘reparame-
terization trick’, and right is with it.

vectors µ(X) and ΣX, which are latent mean vector and latent variance vector1 of X,

respectively. z is the latent variable that follows standard normal distribution. For

scheme without reparameterization, Σ(X) is the covariance matrix and z is sampled

from N (µ(X),Σ(X)) for specific X. Reparameterization trick replaces the sampling

step with first sampling from ϵ ∼ N (0, I), and then computing z = µ(X) + Σ
1
2 (X)

as sample. The decoder P is a neural network as well. VAE has two objectives:

generating f(z) that is similar to input X, and encoding X into z that is similar to

N (0, I). The two objectives can optimized by minimizing the L2 norm of X − f(z)2

and the KL divergence between N (µ(X),Σ(X)) and N (0, I):

||X − f(z)||+KL[N (µ(X),Σ(X))||N (0, I)

1Variational inference assumes independent Gaussian (zero covariance) for its simplicity.
2Depending on the objective and input type, this reconstruction loss can be replaced by other
objective such as cross entropy between reconstructed Xrec and input X
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5.2 Learn Functional Brain Networks with VAE

In this chapter, the implementation of VAE on functional brain networks are

shown as an example of learning the distributional properties underlying complex

network generative process. Brain networks modeling is a current frontier neuro-

science for complementing simple descriptions with mechanistic predictions [82,122].

For brain network activation prediction that predicts the activated area in brain in dif-

ferent states, it has shown that the task activation in pre-surgical populations can be

predicted by resting connectivity [123]. Machine learning methods, such as neural net-

works, can also be implemented for predicting brain states based on fMRI [124,125].

Although, prediction on brain network states has been studied for decades, there is

a lack of models that are capable of predicting the whole brain connectivity [122].

Based on the high adaptability of VAE framework as generative model for high di-

mensional data and its successful application in different scenario, we believe VAE

can be implemented as a generative network model for network collections.

The functional brain network data is processed as described in Section 2.5. The

input networks are resting-state and 7 tasks functional brain networks of 100 subjects

encoded in both LR and RL phase. Because the length of fMRI scan sessions varies

for different tasks, the length of session will impact the prediction as an attribute. To

eliminate the impact of the length of time series for task comparison, for each network

sample we randomly select 150 consecutive frames3 and compute the corresponding

correlation matrices. The encoder contains one Multilayer Perceptron (MLP) with

20 neurons for µ(X) and one simple MLP with 20 neurons for Σ(X).

Let G = {G1, G2, . . . , Gn} be a collection of n network observations that share the

same set of nodes. For example, network Gi represents the functional connectivity,

i.e., the network derived from binarized correlation matrix of BOLD signal between

ROIs, of subject i in resting-state. A generative model f(G) (VAE) learns the distri-
3The longest session is in resting-state including 1200 frames, and the shortest session is emotion
processing including 176 frames.
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bution of the network collection G and is capable of generating networks with similar

distributional properties to G.

The implementation of VAE is shown in Figure 5.2. A basic VAE consists of an

encoder q(z|X) and a decoder p(X|z). The encoder q(z|X) is a neural network that

embeds X into continuous representation z = (µx, σx). For simplicity, the vectorized

upper/lower triangular of the adjacency matrix represents graph G, which means for a

graph G of n nodes, the input X ∈ R
n(n−1)

2 . In practice, latent variable z is in a lower

dimensional space compared to input X. In addition, VAE has a strong assumption

that the latent representation follows a standard Gaussian distribution, z ∼ N (0, I).

The decoder p(X|z) is a neural network that recovers z to its original space to which

X belongs.

For a graph represented by its vectorized adjacency matrix X, the loss function

for the basic VAE is:

L(X) = −Ez∼q(z|X)[log p(X|z)] +DKL(q(z|X)||p(z)) (5.1)

The first term −Ez∼q(z|X)[log p(X|z)] is the reconstruction loss measured by cross

entropy. It measures the distance between the input and reconstructed sample. Lower

reconstruction loss indicates less information loss after the encoding and decoding

process. The second term is the regularization loss measured by Kullback-Leibler

divergence. It measures the information lost if we represent z with our regularizer

(e.g. N (0, I) in this case). Lower regularization loss indicates better representation

of the variance and diversity. In order to implement backpropagation for the loss

function with random variable z, a reparameterization trick is applied by sampling

from q(z|x) to get a deterministic z = µ + σ · ϵ. It’s proved that the derivative of

loss function by this reparameterization trick converges to the gradient of Equation

5.1 [108].
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Figure 5.2. The implementation of VAE for brain networks represented by adjacency
matrix. Gx on the left is the adjacency matrix of input network. Gx is then fed into
the encoder (a neural network) which compresses the input matrix into lower dimen-
sional latent variable zx that follows N (µx, σx). Then a decoder (a neural network)
recovers the latent variable back to the form of Gx, which is Grec

x . There are two
objectives, Gaussian regularization loss that measures the difference between learned
z and Gaussian distribution, and reconstruction loss that measures the difference be-
tween regenerated graph and real input graph, respectively.

5.2.1 Unsupervised Learning: Clustering Brain States

The functional brain networks are derived from the BOLD signal series of the 360

ROIs preprocessed as Section 2.5. For simplicity, all correlation matrices are binarized

with a threshold of 0.5, i.e., ROI i and ROI j are connected if and only if the Pearson

correlation between them rij >= 0.5.

The encoder should be capable of extracting the information of brain states when

taking the scan. Since the length of scan sessions varies according to tasks/state,

the derived correlation matrices are impacted by the difference in precision and ef-

fectiveness introduced by different sample size4. Therefore we randomly truncate 150

consecutive frames from original sessions as our data (the longest session, emotion

processing, has 176 frames) to rule out the sample size factor. With the 360 dimen-

sional time series of length 150, a 360 × 360 correlation matrix is derived for each
4The length of scan session are difference for different tasks but are fixed for the same task. The
information of session length should not be identified as the effective factor for prediction.
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run of each all conditions according to Table 2.2. With this dataset, the capability of

feature extraction of encoder is verified. The networks that are derived from sessions

of the same task are expected to be clustered in the latent space.

In this experiment, the encoder has one fully connected layers. The input vector is

a (n(n−1)
2

=)64620 dimension binary vector. The hidden layer has 400 dimension with

rectified linear unit (ReLU) activation function. The output layer has 2 identical

densely connected networks of 20 dimensions that output means and variances of

latent z respectively. The value of z computed with given means and variances is

then fed into the decoder. The decoder has 1 densely connected layers of dimension

(400, 64620) to recover the adjacency matrix.

Figure 5.3. The distribution of functional brain networks of 40 subjects in encoded
latent space of means by brain states. x and y axes are 2 abstract dimensions of the
20-dimension variable after t-SNE.

The trained z latent variable of the functional brain networks of 40 random sub-

jects in 9 states (2 resting-state plus 7 tasks) are visualized in two dimensional ab-
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stract space by t-Distributed Stochastic Neighbor Embedding (t-SNE) technique5 in

Figure 5.3. Networks in different states are clustered without the explicit informa-

tion of state as input in training. This implies the encoder is capable of extract the

state-related information of input functional brain networks. A comparison of the

clustering in trained latent space and the original adjacency matrix space can be

found in supplementary material in Section 7.2.

5.2.2 VAE as Network Collection Generative Model

The generalization capability of decoder can be verified by checking the distri-

bution of synthetic networks as discussed in Section 1.1. In this experiment, the

training networks are functional brain networks in resting-state for simply learning

the variability caused by individual difference. Since the latent variable z is assumed

to follow standard Gaussian distribution, the networks recovered from Gaussian sam-

ples by trained decoder are expected to have similar distribution with respective to

training networks.

The architecture of the VAE is same as in Section 5.2.1. To compare the distri-

butional properties of real resting-state functional brain networks and the synthetic

networks, we choose three basic graph metrics: density, degree assortativity and

transitivity as metrics.

Figure 5.4 shows the result of this experiment. The input network collection is

fitted well with VAE in density and assortativity however the model underestimate

the transitivity. There exist outliers in density metric are not captured by the model

as well because of the long tailed distribution of input networks.

The underestimate of transitivity is potentially caused by the incapability of VAE

embedding to reproduce the dependent relationship in low-degreed local structure in

sparse complex networks [126]. The low dimensional embeddings destroyed the local
5t-SNE constructs a probability distribution over the distance between all pairs of samples in high
dimension that the pair of similar (closer) samples has high probability. Then it constructs a lower
dimensional space consists of all samples which are close to their location in original space.
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real networks data
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from VAE

Figure 5.4. The density, assortativity and transitivity of 100 resting-state networks
versus 100 synthetic networks synthesized from standard Gaussian samples z. In
lower triangle, blue dots are networks of real data and red dots are networks syn-
thesized from VAE. Diagonal plots are the kernel density estimate of the samples
in corresponding metric. If red dots (curves) are closer to blue dots (curves), the
synthesized networks are similar to input networks which means a good model with
respect to the chosen metrics.

triangles. Although the distribution is shifted left due to the lost of triangles, the

variance is captured pretty well due to the Gaussian assumption.

In addition to the synthetic results of resting-state brain networks, the results of

synthetic networks in other task states are shown in Section 7.1. The result shows

that the VAE generative model can also be applied to other non-resting states.

5.3 Task and Subject Disentanglement

VAE in previous sections has latent variable z as an abstract representation of

the characteristics of input networks. Although we could find the relationship be-

tween z and network features by dimensional reduction methods such as Figure 5.3,
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the features are entangled and we cannot directly specify the feature we want. For

instance, if we want to extract the feature of tasks as task-related latent variable, zt,

then zt = 1 represents functional brain networks in resting-state, zt = 2 represents

networks with motor task, etc. With respect to zt and other dimensions of z we could

infer the state of input networks and synthesize brain networks in other states.

rfMRI_REST1_100307

Neural Network
Encoder

reconstruction loss

Gaussian
regularizer

task-grouped z 

Neural Network
Decoder

rec

Figure 5.5. The implementation of task-disentangled multi-level VAE for brain net-
works represented by adjacency matrix. Gx on the left is the adjacency matrix of
input network. Gx is then fed into the encoder (a neural network) which compresses
the input matrix into two lower dimensional latent variable: task-related zt that fol-
lows N (µt, σt), and subject-related zs that follows N (µs, σs). Input networks in same
states share the same zt while all networks generate their own zs as before. Then
a decoder (a neural network) recovers the latent variables back to the form of Gx,
which is Grec

x . There are two objectives, Gaussian regularization loss that measures
the difference between learned z and Gaussian distribution, and reconstruction loss
that measures the difference between regenerated graph and real input graph, respec-
tively.

In order to learn a disentangled representation of task and subject features, we

implement the multi-level variational autoencoder [127]. The networks are grouped

by tasks, i.e. group 1 is the subset of networks in resting-state, group 2 is the subset

of networks in motor task, etc. Then we separate the latent variable into 2 parts

z = {zt, zs} with task latent variable zt representing the feature of task and indi-

vidual latent variable zs representing the feature of individual subject. Figure 5.5

shows an diagram of the task-disentangled VAE for functional brain networks. The
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regularization loss for zs is calculated for each individual independently (same as the

regular VAE regularization loss we did in last section). However for the task-grouped

loss for zt, the grouped regularization loss is calculated by multiplying the normal

density functions:

q(tx = t) ∝
∏
i∈G

q(ti = t|xi). (5.2)

5.3.1 Task Disentanglement: Multi-level VAE

In this experiment, we take the functional brain networks generated with full scan

session as input for a multi-level VAE (MLVAE). The information of task is grouped

as zt. We train the ML-VAE model with functional brain networks of all tasks of the

randomly selected 80 subjects. Based on the trained encoder, decoder and grouped

task latent variable, the resting-state functional brain networks of the 20 subjects

in test set are fed into the encoder to get an individual zs. With respect to the zs

concluded from individual resting-state brain networks and the zt concluded from

the collection of functional brain networks in all 7 states, the model can predict the

functional networks of this individual in all 7 states. Both encoder and decoder have

one hidden layer including 400 neurons. Both task-disentangled latent variable zt and

individual latent variable zs have dimension of 20.

In addition, an arithmetic model is implemented in this experiment as a baseline.

It has been shown that group-averaging of functional brain networks gives valuable

insight into typical organization of a population [128]. Therefore we assume that the

reconfiguration between task and resting-state conditions [125] of individuals can be

represented by the group-average reconfiguration. More specifically, assume we have

the training set of adjacency matrices of N subjects, {A(i)
t |i = 1, 2, · · · , N} where t

represents the state of the subject (e.g. resting-state, gambling test, etc.). Then we

have a grouped-average adjacency matrix for state t where At =
1
N

∑N
i=1 A

(i)
t . We can

estimate the the difference of adjacency matrices in different states by corresponding

difference of grouped-average matrices. That means with a set of trained At and
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the individual adjacency matrix in resting-state, A(i)
rest, we can predict the individual

adjacency matrix in any state t that is included in the training set by A
(i)
t = A

(i)
rest −

(Arest − At).
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Figure 5.6. The comparison of real networks (row 2), ML-VAE reconstructed net-
works (row 1) and arithmetic method reconstructed networks (row 3). Both top row
and bottom row are predicted by the individual adjacency matrix in resting-state
(the one in red square). Closer to real networks in vertical means better prediction
performance.

Figure 5.6 shows the prediction result of one individual. The brain networks in

middle row are the objective networks for prediction. Our ML-VAE method is better

than the baseline arithmetic method because it is able to reconstruct the networks

in unseen states and predict the local structure. On the other side, the arithmetic

method is closer to replications of resting-state networks because the networks in task

state are sparse and information on task states are evened out by averaging.

Based on the prediction on 7 tasks of 20 subject in test set, we compare the differ-

ence between the predicted networks and objective real networks. Figure 5.7 shows

the Euclidean distance and difference of graph metrics between predicted and objec-

tive adjacency matrices for ML-VAE and baseline arithmetic method. The ML-VAE

outperforms baseline on all tasks in this comparison. The ML-VAE outperforms base-

line on all metrics and tasks except for social task on assortativity and transitivity,

and working memory task on transitivity. The performance of baseline on recon-

structing resting-state 2 (REST2) is expected to be no worse than ML-VAE because

REST2 is just a replication of REST1.
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Figure 5.7. Euclidean distance of adjacency matrix and difference of density, as-
sortativity of degree and transitivity comparison of ML-VAE and arithmetic method
among 20 subjects. Closer to 0 (red dotted line) means better prediction on respective
metric. The value above or below the boxes are p-value of t test between 2 methods.
Values lower than 0.05 are shown on green otherwise red. Lower value means higher
confidence that ML-VAE outperforms arithmetic method.

In addition, the prediction result varies for different input state for zs. For in-

stance, in the experiment above, the resting-state functional brain networks are taken

as input network for extracting zs since resting-state scan session is the longest session

which makes more samples for correlation estimation. Also the resting-state connec-

tivity is considered a good biomarker identification tool due to its reliability and

reproducibility [129]. In the following experiment, the same experiment is repeated

for cases that different states are served as individual latent variable zs input. Then

we compute the p-value as in Figure 5.7 to see if ML-VAE outperforms the baseline.

Figure 5.8 shows the result for the test. The null hypothesis that “ML-VAE

is no better than arithmetic method (baseline) with respect to Euclidean distance

between predicted and real adjacency matrix” is rejected for all tests, which means

our method outperform baseline with all states as zs encoding. 6. Note that p-value is

not a metric for evaluating the performance of prediction. We can conclude that, with
6The results for “self-prediction” are removed because baseline method gives exact input adjacency
matrix. Mathematically, when we predict the resting-state with resting-state, t = rest, A

(i)
t =

A
(i)
rest − (Arest − At) = A

(i)
rest. Moreover, the result for predicting one resting-state network with the

other resting-state network (e.g. predict “REST2” with “REST1”) is removed for the same reason.
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Figure 5.8. The p-value of t-test for comparing ML-VAE and baseline (arithmetic
method) with different zs encoding states. X axis represents 8 different states from
which the ML-VAE encodes for zs. Y axis is the p-value of the one sided t test that
has null hypothesis “the prediction by baseline method is better than ML-VAE”.

the same sample size, the null hypothesis can be rejected with the lowest threshold

for resting-state functional brain network served as zs.

5.4 Discussion

We have fitted a basic variational autoencoder (VAE) and a task-disentangled

multi-level variational autoendoer (ML-VAE) on the functional brain networks ob-

tained from the Pearson correlation matrices of 100 unrelated patients sampled from

HCP data release in 8 different states. The basic VAE we implemented here has a

simple one-layer encoder and decoder with 400 neurons in the hidden layer. It is

shown that VAE can reproduce the distributional properties of functional brain net-

works, and ML-VAE can disentangle the task-related information in latent variable

therefore predict the functional brain network in unseen states based on the network

observed in resting-states.

For the basic VAE, we see in Figure 5.3 that the latent variable is closely related to

the state of subject. Resting state, social task, language task are clustered separately
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and the rest tasks are clustered in one group. A classification of target states can be

done with the extracted latent variables as in [125]. Based on the prediction results

in Figure 5.4 we can see the potential of this model on modeling the variability of

network collections on different scale. In other words, this proposed model can predict

better than baseline that (1) which area is activated under specific state; (2) what is

the global/local topological structure of the activation in the network.

The task-disentangled prediction model predicts the connectivity in unseen states

on the activation scale and topological scale as well. The proposed method outper-

forms baseline in most of the tasks. We choose the arithmetic method as baseline,

although arithmetic method has an known issue on predicting networks in sparse

networks with high variability. Future study includes finding a better baseline and

include more topological metrics for evaluation. In our ML-VAE model, the topo-

logical patterns are not explicitly considered although the latent variable implicitly

learned the features. To get better understanding of the topological structure, in the

future we could include the topological information in our input explicitly as well.
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6. CONCLUSION

In this thesis, we firstly emphasized the importance of variability in complex network

generative process. The network collection is defined and analyzed in Chapter 3.

The an action-based temporal model is proposed in Chapter 4, and a VAE network

generative framework that is applied to general network collection is proposed in

Chapter 5. The research findings solved the research questions we proposed in Section

1.2 along with the paradigm in Figure 6.1:
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Figure 6.1. Paradigm of inferring generative model for a single network (left) and a
network collection (right).

1. Can we empirically quantify the variability of a network collection?

In Chapter 3 we defined a general form of network variability. From global topo-

logical measuring to local structure, 3 different types of measures are proposed

and implemented on 3 sets of network collections. The 3 different measures have

consistent results on the experimental datasets. A more general and extensible

measuring framework on graphlets, entropic variability, is proposed and ana-
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lyzed. It has shown that the entropic variability plays a crucial role in network

generative models based on deep learning methods.

2. Can we devise a model that matches the variability?

In Chapter 4, a specific case of network collection, temporal network, is dis-

cussed. An action-based model is implemented to the temporal functional brain

network by inferring the edge switchings with its local topological structures.

The synthesized networks are similar to the input network series, and it is

shown that the preference on local structures are related to the functionality of

the brain regions.

In Chapter 5, a variational autoencoder (VAE) is implemented for functional

brain networks as a general network generative models for network collection.

The encoder in VAE has the ability to compress the input network into lower

dimension latent variable. The trained decoder can reconstruct the latent vari-

able to the network that keeps the distributional properties including variability

of input network.

3. What can we do to map the variability of network collection to interpretable

features?

In Chapter 5, a multi-level VAE (ML-VAE) is proposed to disentangle the

separate latent variables that are mapped to known network features. The

state of subjects when taking fMRI scans are set as interpretable feature in

the experiments. In ML-VAE, a specific latent variable that is shared by all

networks under the same state stores the information of subjects’ state. The

experimental results show that ML-VAE can learn the variability of task/resting

states and infer the functional brain networks of a subject in unknown states.
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6.1 Limitation and Future Work

The variability studied in this dissertation is based on the assumption in Section

1.2 that All networks in collection have same set of nodes. This is realistic assumption

for many scenario for example brain networks. However it is not true when we consider

the node-evolving networks such as social network. At the beginning of Section 3 we

know it is possible to relax this assumption to more general case that networks have

changing nodes which is a potential future work for this dissertation. It requires a

regularization step for networks with different set of nodes. In other words, some

algorithm is able to cluster nodes or create nodes for individual graphs where all

networks share the same set of nodes after the clustering or creation of nodes. At

the same time, individual networks should keep the similar topological structure.

Although there is no established way of regularizing networks into the same set, we do

have tools to cluster nodes such as weighted graph cuts [85], network embedding with

exponential family [86] and graph convolutional networks [114]. The main challenges

include choosing a general regularization method and defining the variability change

after the regularization of networks.

The temporal model introduced in Chapter 4 shows the change of an edge between

two nodes over time is related to the local topological properties of both nodes. An

action based method is implemented in the experiments. The advantage of the intro-

duced action based model is intuitive however there is still room for improvements

on the prediction accuracy. A potential future work is to utilize some neural network

method to predict the edge dynamics. Artificial neural networks show the ability to

improve the prediction accuracy with the cost of degree of freedom [130].
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7. SUPPLEMENTARY MATERIALS

7.1 VAE on All States

In Section 5.2.2, the comparison of synthesized networks and input resting-state

functional brain networks is shown and analyzed. The resting-state is chosen because

1) the scan session of resting-state is the longest session; 2) the resting-state is the

most consistent session because in other tasks there exist activation and deactivation

of functional brain regions due to the process of tasks. However, the application of

VAE is not restricted to resting-state networks. The synthetic results of other tasks

are shown in Figure 7.1

The graph density is fitted well for all 7 tasks. However, for most tasks we can

find several outliers in real network collection that are not synthesized from VAE.

Especially in task Working Memory (WM), there exist a group of outliers (for density

metric) that are far away from the main group. The distribution of density in WM

task is long-tailed and a potential explanation for the distribution is that people

are varied on the memory ability and such distinction are not Gaussian distributed.

VAE failed at capturing the long tail distribution due to its Gaussian distribution

assumption on latent variable.

Overall the assortativity of degree is fitted well except for some degree of under-

estimation. Working memory task is the most underestimated one again compared

to other tasks.

The transitivity are not fitted very well as the observation of resting-state in

main text. Although the mean/median is not captured, we can see the variance of

transitivity is captured very well. For most tasks, the distribution is “shifted” to

the left due to the inherent drawbacks of low-dimensional embeddings of complex

network [126].
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Figure 7.1. The comparison of graph density, assortativity of degree and transitivity
between input functional brain networks in 7 task states (notated on top left) and
respective synthetic networks by VAE.
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Figure 7.1. continued
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Figure 7.1. continued
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Figure 7.1. continued
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7.2 Performance of VAE Encoder on Unsupervised Clustering

In Section 5.2.1, we found that the encoded z latent variable in trained VAE

is a good indicator of the state during scan. In this section, the z latent variable

clustered by its state is compared to a clustering by original adjacency matrix. If

the z latent variable is able to extract the information of the input network, the

represented networks should be more separable with respect to its state compared to

adjacency matrix.

A simple VAE of 2-layer encoder and 2-layer decoder with a 20 dimension latent

variable is trained for the functional brain networks of 100 subjects in 9 states1. With

the trained VAE, 40 subjects in 9 different states are selected for the experiment

in Section 5.2.1. For each session, 150 random consecutive frames are selected for

all 360 ROIs, and the correlation matrix of the 360 ROIs are computed2. For the

processed data set that consists of functional brain networks of 40 subjects in 9 states,

we compressed both the encoded z latent variable and vectorized lower triangular

adjacency matrix with t-SNE into 2 dimension for visualization.

Figure 7.2 shows the comparison result. The original vectorized adjacency matrix

contains information of the states, and network in different states are separated to

different areas. While encoded z shows a better separability which indicates the

information of state is extracted and enlarged during the encoding process. The

networks in social recognition task are most distinct in both methods, while VAE

shows its ability to separate resting-state from the large group.

1Refer to Section 5.2.2 for details on VAE architecture.
2Check Section 5.2.1 for explanation and experiment setup details
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(a) (b)

Figure 7.2. The comparison of encoded z latent variable and vectorized adjacency
matrix after t-SNE. (a) encoded z after t-SNE; (b) vectorized lower triangular matrix
after t-SNE. In both (a) and (b) there are 360 points representing 360 networks (40
subjects in 9 states). 9 states are represented by 9 colors where REST1 and REST2
are same resting state in replicated sessions. More distance between clusters implies
better separability.
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7.3 Network Prediction Based on Task State Networks by MLVAE

In Section 5.3.1, the functional brain network of individuals under unseen states

are predicted based on the individual latent variable extracted from resting-state

network. The reason for choosing resting-state networks as input is that resting-state

has longest scan session and most stable scan condition (subjects are asked to perform

specific task and rest during task sessions). In this section, the predicted functional

brain networks in unseen states based on other task sessions are supplemented and

analyzed.

Figure 7.3 and Table 7.1 shows the Euclidean distance by input states. The

results with resting-state as input outperformed all other results. This result indicates

that resting-state is the best state for extract the individual latent variable. One

potential reason is resting-state has the longest scan time therefore the correlation is

the most consistent and stable. Second potential reason is the individual discrepancy

in functional connectivity is higher when people conducting some task than people

in resting state. In other words, people are more similar when stay still than doing

task.
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Figure 7.3. The Euclidean distance between synthesized networks and real networks
by input states. The one on the top is result with resting-state as input. The results
for tasks follow below with input states notated on the top left.
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Figure 7.3. continued
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Figure 7.3. continued
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