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ABSTRACT 

Wheat blast, a disease caused by the fungal pathogen Magnaporthe oryzae pathotype Triticum, 

threatens global wheat production. Limited epidemiological information makes the wheat blast 

disease hard to contain and control, and without data, recommendations about the selection and 

deployment of resistant cultivars remain a challenge. Besides, cultivar selection relies on human 

visual disease evaluations, which can be time-consuming, labor-intensive, and subjective. We 

hypothesized that epidemiological parameters could be relevant to support wheat blast breeding 

tactics, and reliable visual estimates paired with images of wheat spike blast could be used to train 

deep convolutional neural networks (DCNN) models for disease severity classification. To test 

these hypotheses, we focused on the following objectives: 1) to evaluate ten cultivars for wheat 

blast resistance under field conditions using epidemiological parameters, and 2) develop accurate 

and reliable DCNN models to classify wheat spike blast severity under controlled conditions. For 

objective 1, we evaluated wheat leaf blast and wheat spike blast severity and estimated the total 

area under the disease progress curve (tAUDPC), final disease severity, and epidemic type. 

Disease progress curves of ten cultivars were fitted by the logistic (R2=0.70-0.96) and Gompertz 

(R2=0.64-0.94) models, pointing out to polycyclic epidemics. We concluded that tAUDPC, disease 

progression rate, and final disease severity could support cultivar selection for wheat blast 

resistance. For objective 2, wheat spike blast severity was visually estimated, and Red Green Blue 

images were acquired from six cultivars with various resistance levels under controlled conditions. 

Severity estimations were paired with each wheat spike image and created two datasets. Dataset 1 

(n=5,123) included maturing and non-matured wheat spikes, and Dataset 2 (n=4,509) had only 

non-matured spikes. Each dataset was analyzed for inter-rater agreement between disease severity 

estimation of two pathologists and disease measurements of Image J, then classified by severity 

categories to train and test the DCNN model. The model trained with only non-matured spikes had 

higher precision (0.90-0.95), F-1 (0.87-0.95), and recall (0.84-0.96) than the model trained with 

maturing and non-matured spikes (0.75-0.95, 0.79-0.95, and 0.74-0.96, respectively). We 

concluded that the trained DCNN model could be used as the basis of a phenotyping tool for wheat 

spike blast severity classification. 
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 INTRODUCTION 

An emergent disease called wheat blast is a threat to the production of wheat (Triticum 

aestivum), the second-largest food crop for human consumption (FAOSTAT, 2017). Wheat blast 

is a disease caused by the Ascomycetous fungus, Magnaphorthe oryzae pathotype Triticum (MoT). 

This fungus was first detected in Brazil in 1985 and later dispersed to neighboring countries, 

including Bolivia, Paraguay, and Argentina (Barea and Toledo, 1996; Cabrera and Gutierrez, 2007; 

Igarashi et al., 1986; Parello et al., 2015; Viedma, 2005). Since then, an increasing intercontinental 

movement of MoT has occurred. In 2016, a wheat blast outbreak was first reported in Bangladesh 

(Malaker et al., 2016; Aman, 2016), apparently due to the unintentional importation of MoT-

infected South American grain. Many countries in South Asia are actively monitoring wheat fields 

for the presence of MoT (Bhattacharya and Pal, 2017; Mottaleb et al., 2018). In 2020, the presence 

of MoT was reported in Zambia, Africa, which adds another continent to the list (Tembo et al., 

2020). The wheat blast fungus is also a threat to wheat production in the U.S. (Cruz et al., 2016a). 

Risk analyses have predicted that if the pathogen is introduced and established in the U.S., it can 

affect soft and hard-red winter wheat production in several states (Cruz et al., 2016a).  

Although MoT can infect leaves, stems, and seeds, the most described and studied symptoms 

are associated with spike blast. The spike encloses the grain, which is the plant’s most valuable 

product (Cruz and Valent, 2017; Cruz et al., 2015; Igarashi et al., 1986). Wheat spike blast occurs 

when the fungus infects the spike, spikelets, or raquis (Igarashi, 1990). The infection can then 

cause bleached spikes, becoming visible and easy to differentiate from healthy heads. MoT can 

decrease grain quality and yield, and a wide range of disease intensity can occur depending on the 

cultivars planted and the prevalent weather conditions during the growing season (Goulart and 

Paiva, 1992).  

The conducive conditions that lead to wheat blast outbreaks include a combination of warm 

temperatures, excessive rain, long and frequent spike wetness, use of susceptible cultivars, and 

poor fungicide efficacy (Goulart et al., 2007). The optimum conditions for wheat blast 

development include a temperature range between 25 to 30°C and spike surface wetness between 

25 to 40 hours (based on controlled conditions) (Cardoso et al., 2008). 

To protect wheat production from this emergent disease, there is a need for an increased 

understanding of the epidemiology of MoT. Plant disease epidemiology studies the increase in 
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disease intensity over time and space (Madden et al., 2007). Unfortunately, there are still many 

gaps in the epidemiological knowledge of wheat blast. Thus far, there are indications that wheat 

blast behaves as a polycyclic disease (Gongora-Canul et al., 2019). Therefore, after the occurrence 

of primary infections, which result from the contact between primary inoculum and host plants, 

secondary infections can occur during disease-conducive environmental conditions (Cruppe et al., 

2019; Gomes et al., 2019; Gongora et al., 2019; Mills et al., 2020; Salgado et al., unpublished). 

Secondary infections result from inoculum produced during a current epidemic, and they occur 

only in polycyclic epidemics (Madden et al., 2007). For instance, there is evidence of the 

occurrence of wheat leaf blast infections and the vertical movement of symptoms up to the spike 

(Cruppe, 2019; Salgado et al., unpublished). Still, the occurrence and intensity of wheat spike and 

leaf blast in cultivars with different levels of reaction to the disease are not entirely understood. 

We hypothesize that increasing the wheat blast epidemiological knowledge can assist breeders 

during the cultivar selection process. For example, the disease rate of development can help predict 

how slow or fast the disease progresses. The area under the disease progress curve can help 

compare the reaction of cultivars to disease. Ultimately, final disease severity will determine the 

highest disease severity that may occur on a cultivar.  

Currently, only the 2NVS translocation from Aegilops ventricosa (Tausch) provides useful 

yet partial and environment and/or genetic background-dependent resistance to wheat blast 

(Cruppe et al., 2019; Cruppe et al., 2020; Cruz et al., 2016b; Valent, 2016). For that reason, 

scientists continue to search for new sources of resistance to wheat blast. Plant disease assessment 

by human raters is the standard method used for plant disease phenotyping. Humans are trained to 

perform visual disease evaluations, and with the experience gained, their reliability can be 

improved. Plant disease assessments, or phytopathometry, refers to the measurement and 

quantification of plant disease severity or incidence, which is essential when studying and 

analyzing diseases at organ, plant, or population levels (Bock et al., 2010, Large, 1966, Nutter et 

al., 2006). These assessments are helpful, but they are subjective evaluations that can introduce 

variability (Bock et al., 2020).  

A digital agricultural revolution is occurring, where sensors and loggers collect data that can 

support growers and agricultural scientists to make better decisions. The combination of image-

based sensing and machine learning frameworks has transformed many areas of research, 

including agriculture. In the future, machine learning and sensing technology combined with 
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expert knowledge, will be key to answer disease and crop yield prediction questions (Chlingaryan 

et al., 2018).  

Digital images of diseased plants or plant organs can be used to train supervised machine 

learning models to classify those images in specific categories or scales in a faster, objective, and 

more accurate manner (Bock et al., 2020). In early 2019, a rice blast deep convolutional neural 

network model was trained with 5,812 Red Green Blue (RGB) images to recognize the disease 

under field conditions (Liang et al., 2019). Using wheat RGB field images, Alkhudaydi et al. 

developed a fully convolutional model to estimate the number of wheat spikelets (2019). 

In addition to research under field conditions, the use of controlled conditions can speed up 

the identification and selection of disease-resistant candidate cultivars (Mahlein, 2015). Current 

plant phenotyping's main goals embrace raising consistency, accuracy, and quality of plant disease 

assessments and throughput of phenotype inference while reducing costs via automation (Bock et 

al., 2010; Rahaman et al., 2015). For this reason, reliable disease classification deep learning 

models need to be developed.  

This document contributes new information on the wheat blast pathosystem with data 

collected under field and controlled-environment conditions in South America, where the disease 

is prevalent. It provides details on wheat blast epidemiology that can assist breeders during the 

selection process. It also includes developing an accurate deep learning model that can be used to 

classify wheat spike blast severity in three main groups under controlled conditions. The ultimate 

goal is to help scientists and decision-makers execute better decisions when fighting against the 

wheat blast disease. 
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 EPIDEMIOLOGICAL CRITERIA TO SUPPORT 

BREEDING TACTICS AGAINST THE EMERGING, HIGH 

CONSEQUENCE WHEAT BLAST DISEASE 

*This chapter has been published as a research article in Plant Disease Journal 

https://doi.org/10.1094/PDIS-12-19-2672-RE.   

 

2.1 Introduction  

Wheat Blast caused by the fungus Magnaporthe oryzae pathotype Triticum (MoT) 

(anamorph Pyricularia oryzae pathotype Triticum) is a significant disease and an emerging threat 

to global wheat production. Under favorable conditions, wheat blast can cause up to 100% yield 

losses (Barea and Toledo, 1996; Cabrera and Gutiérrez, 2007; Malaker et al., 2016; Viedma, 2005). 

MoT can infect wheat leaves and spikes (Cruz et al., 2016a; Cruz and Valent, 2017; Gomes et al., 

2019; Igarashi et al., 1986).  Wheat spike blast is the most visible symptom under field conditions, 

and the role of wheat leaf blast for spike blast development is practically unknown (Cruz et al., 

2015; Cruz and Valent, 2017; Cruz et al., 2019; Góngora-Canul et al., 2019). Unfortunately, there 

is limited ecological and epidemiological information on this pathosystem. Under such a scenario, 

decision-makers struggle to develop adequate wheat blast management strategies, and 

consequently, farmers rely heavily on fungicide applications. In Bolivia, for example, farmers 

could spray around three fungicide applications at heading stage to control wheat blast (Cruz et al., 

2015). However, under current guidelines, there is no compelling evidence to support general 

fungicide recommendations for wheat spike blast management (Cruz et al., 2019), and numerous 

applications at heading may not be the most cost-effective management strategy. Specific 

knowledge of wheat blast epidemiology, including the dynamics of inoculum buildup under 

different cultivar and background levels, is necessary to manage the disease. For instance, the 

limited epidemiological research conducted in this pathosystem has only involved one or a few 

susceptible cultivars (Gomes et al., 2019; Gongora-Canul et al., 2019). 

An international effort has been conducted towards the identification of sources of genetic 

resistance to wheat spike blast (Arruda et al., 2005; Cruppe et al., 2019; Cruz et al., 2012; Cruz et 

al., 2016b; Goulart and Paiva, 1992; Igarashi, 1990; Martinez et al., 2019; Prestes et al., 2007; 

Urashima et al., 1999; Urashima et al., 2004). However, over the years, there have been limited 

https://doi.org/10.1094/PDIS-12-19-2672-RE
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sources of genetic resistance to the disease, and the only effective genetic source for control is 

contained in the 2NVS translocation from Aegilops ventricosa (Cruppe et al., 2019; Cruz et al., 

2016b). In this sense, breeders have developed an excellent tactic, but without an adequate strategy, 

such tactic is at risk (Cruz and Valent, 2017). Boom-and-bust cycles (Priestly, 1978) appear to be 

frequently occurring after a period of widespread cultivation of wheat cultivars succumbing to 

wheat blast (Cruz et al., 2016a; Vales et al., 2018). In addition, wheat cultivars are not immune to 

wheat blast, and there is no known source of genetic resistance that can entirely eliminate the 

effects of wheat leaf blast, wheat spike blast, or both (Cruppe et al., 2019; Cruz and Valent, 2017). 

Plant disease epidemiology provides a better understanding of the temporal and spatial dynamics 

of disease intensity in host populations (Madden et al., 2007). This epidemiological information is 

critical for the development of integrated disease management strategies.  

We hypothesize that epidemiological parameters are relevant to support wheat blast breeding 

tactics. To test this hypothesis, we focused on the following objective: to assess ten spring cultivars 

for wheat blast resistance using epidemiological parameters. To this aim, wheat leaf blast and 

wheat spike blast dynamics were evaluated in multiple environments.  

2.2 Materials and methods 

2.2.1 Locations 

 Experiments were carried out at two locations in Bolivia during the 2018-2019 growing 

season. Experiments were established on the 5 and 21 December 2018 at the Municipalities of 

Quirusillas and Bermejo, respectively. At each location, two experimental fields were planted and 

surrounded by infected seeds. However, in Quirusillas, wheat blast had been reported previously 

under natural conditions, not in Bermejo.  

2.2.2 Genetic materials and crop management 

Ten South American spring wheat cultivars with different levels of resistance to wheat spike 

blast (Table 1.1) were planted at 70-80 seeds per linear meter at a depth of 2-3 cm. Herbicides and 

insecticides were used for post-emergent management of weeds and pests based on local 

recommendations. Both locations relied on supplemental irrigation to promote wheat blast disease 

development. 
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Table 2.1 List of cultivars of different wheat spike blast resistance groups planted in two 

locations in Bolivia during the 2018-2019 season. 

Number Cultivar Source Wheat spike 

blast resistance 

Data source 

1 Atlax ANAPO, Bolivia S Cruz et al., 2019 

2 Urubó ANAPO, Bolivia R Cruppe et al., 2019 

3 TBIO-

Sossego 

ANAPO, Bolivia MR Cruppe et al., 2019 

4 San Pablo ANAPO, Bolivia R Baldelomar et al., 2015 

5 AN-120 ANAPO, Bolivia R Cruppe et al., 2019 

6 Motacú CIAT, Bolivia MR/MS Cruz et al., 2016; Vales 

et al., 2018 

7 BR-18 ANAPO, Bolivia MR/MS Cruz et al., 2016 

8 TBIO-Mestre Biotrigo, Brazil MR/MS Cruppe et al., 2019 

9 TBIO-

Mirante 

Biotrigo, Brazil MS Biotrigo Genética 

10 TBIO-

Alvorada 

Biotrigo, Brazil S Biotrigo Genética 

S: susceptible, R: resistant, MT: moderately resistant, and MS: moderately susceptible. 

2.2.3 Experimental design 

Two experiments were established at each location, for a total of four environments. The 

experimental design was a randomized complete block with four replications as block factors and 

ten treatments (cultivars) randomly assigned into blocks. The experimental units (i.e., plots) 

measured 2 m x 2 m. Plots were separated by 1 m border rows of corn to minimize interplot 

interference. At each location, experiment one was surrounded by susceptible plants of the cultivar 

Atlax. Plants were grown from naturally MoT-infected seed from a seed lot with 10% MoT 

incidence (based on blotter test) and used as inoculum spreader. Meanwhile, experiment two was 

surrounded by moderately resistant plants of the cultivar Urubó grown from untreated seed; 
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however, each individual plot of the experiment was surrounded by susceptible plants of the 

cultivar Atlax grown from MoT-infected seed and used as a source of inoculum. Consequently, 

separate analyses were performed by experiment and location. 

2.2.4 Visual disease assessment and grain weight 

Visual assessment of severity was used to study the epidemiology of wheat leaf blast and 

wheat spike blast. Severity was assessed as the percentage of diseased area within individual leaf 

or spike. Fifteen plants per plot and their plant organs, corresponding to flag leaf (F) and the six 

leaves below, flag leaf – 1 (F-1), flag leaf -2 (F-2), through flag leaf -6 (F-6), and spikes (S), were 

individually evaluated at each assessment time. Visual estimations were taken twelve times in both 

experiments in Bermejo, and nine times for both experiments in Quirusillas. All plots were 

harvested by hand at the end of the season, and one hundred randomly selected seeds were weighed 

per plot (g 100-seed-1).  

2.2.5 Data analysis 

The area under the disease progress curve (AUDPC) was computed using the trapezoidal 

integration method (Campbell and Madden, 1990). The total AUDPC (tAUDPC) was calculated 

considering wheat leaf blast and wheat spike blast severity data. Leaf AUDPC (lAUDPC) and 

spike AUDPC (sAUDPC) were calculated separately, considering wheat leaf blast and wheat spike 

blast severity, respectively. Repeated measurement analysis was conducted using the PROC 

MIXED procedure in SAS v.9.4 (SAS, Cary NC) to evaluate the effect of disease severity 

(converted to Arcsine root square transformation), among experiments (EXP), days after 

emergence (DAE), cultivars (CUL), and organ position (leaves and spike) for each location.  

Graphics of untransformed y versus t or transformed y* versus t, where y*=ln(y), were used 

to characterize the temporal dynamics of wheat leaf blast and wheat spike blast severity over time.  

The independent variable was DAE, and the dependent variable was wheat blast expressed as 

wheat leaf blast or wheat spike blast severity (y/100, and when y=0 and y=100, were corrected as 

y=+0.0001 and y=-0.0001, respectively). Severity was calculated by taking the average of all the 

plant organs of fifteen plants per plot. Four population growth models were fitted for ten cultivars 

(Table 2.1) in their linearized form to describe wheat blast epidemics: exponential (ln[y]=ln(y0)+rE 
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t), logistic (ln[y/(1-y)]=ln[y0/(1-y0)]+rL t), monomolecular (ln[1/(1-y)]=ln[1/(1-y0)]+rM t), and 

Gompertz (-ln[-ln(y)]=-ln(-ln(y0))+ rG t) (Cambell and Madden, 1990; Madden et al., 2007) where 

y0 is the initial disease, y the amount of the disease, t is time, and r is rate of disease progress. 

Ordinary least squares regression was achieved with SAS v.9.4 (SAS Institute, Cary, NC) for each 

possible model (Campbell and Madden, 1990; Madden et al., 2007). To select the most adequate 

model(s) that best describe each type of epidemic we compared the following criteria: the observed 

and transformed disease progress curve (DPC), the coefficients of determination (R2), the root 

mean square error (RMSE), and the residual errors plots versus predicted values (Campbell and 

Madden, 1990). Then, the delta Akaike’s Information Criterion (ΔAIC) was used to compare the 

two best-selected models; ΔAIC contemplates the AIC of all comparing models. AIC= 𝑁 ∗ (
𝑆𝑆

𝑁
) +

2𝐾, where N is the number of the observations used in the model, SSE is the sum of square of the 

errors, and K the number of parameters, and ΔAIC=AICi – min AIC (Renner-Martin et al., 2016; 

Mazerolle., 2006; Kaplan and Gürcan, 2018; Raji et al., 2014). 

The SAS Lsmeans statement was used within the PROC GLIMMIX procedure on tAUDPC, 

best fit model apparent infection rate (r*= unit day-1), final disease severity (Ymax=%), and grain 

weight (g 100-seed-1) to obtain the contrast estimates and the associated standard error among all 

cultivars. This procedure was also used to detect differences in disease severity between cultivars, 

blocks in experiment 1 and 2 at both locations as influenced by the design of inoculum spreader 

by considering T-test pairwise comparison. Pearson correlation was performed to test the 

association between disease epidemiological parameters (tAUDPC, rL*, and Ymax) and grain weight. 

Linear regression between tAUDPC and grain weight was performed using PROG REG ALL 

procedure on SAS v.9.4 (SAS Institute, Cary, NC) to estimate grain weight loss rate per location 

and experiment. 

2.3 Results 

Wheat leaf blast and wheat spike blast symptoms occurred at different severity levels in the 

two experiments conducted at each location (Tables 2.2 and 3.3) (Figure 2.1). Also, there were 

differences in wheat blast resistance among cultivars, considering all plant organs (from leaf F-6 

to S), with severity values ranging from 0 to 100%. MoT inoculum spreader location induced 

differences in wheat blast severity pressure. In general, the inoculum source on experiment two 
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induced more wheat blast severity pressure than that established on experiment one, for both 

locations (p<0.01) (Table 2.4). The reason was that on experiment two, the susceptible Atlax plants 

grown from MoT-infected seed were planted closer to individual plots than the inoculum source 

planted around the perimeter of experiment one (Table 2.4). 

Wheat blast symptoms were present in all plant organs, leaves, and spikes, at different 

evaluation times after crop emergence (DAE). However, in location one, there were differences in 

the amount of disease over time for each plant organ considered in the analysis (Table 2.2). Also, 

differences were found between experiments except for leaves F-6, F-2, F, and S (Table 2.2). There 

were differences among cultivars regarding their reaction to wheat blast on all leaves and spikes 

(Table 2.2). In location two, there were differences in wheat blast severity over time in all plant 

organs, except for leaves F-6 and F-5 (Table 2.3). Differences in wheat blast severity were found 

between experiments in all plant organs except for leaf F-6 (Table 2.3). There were cultivar 

differences in terms of their reaction to wheat leaf blast (all leaves) and wheat spike blast (Table 

2.3). For both locations, there were substantial interactions among cultivar, DAE, and experiments 

on plant organ severity (Tables 2.2 and 2.3). 

 

Table 2.2. Analysis of variance of repeated measurement analysis of wheat blast severity (Pr>F) 

in different plant organs in Bermejo, Bolivia, during the 2018-2019 season. 

Source of 

variation 

F-6 F-5 F-4 F-3 F-2 F-1 F S 

DAE <0.0001 <0.0001 <0.0001 <0.0001 1.0000 <0.0001 <0.0001 <0.0001 

EXP 1.0000 <0.0005 0.0046 0.0024 0.9998 0.0399 0.6821 0.2545 

EXP*DAE 1.0000 <0.0001 <0.0001 <0.0001 1.0000 0.0022 0.0446 0.3397 

CUL <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

CUL *DAE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

EXP* CUL 1.0000 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

EXP* CUL *DAE 1.0000 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0010 <0.0001 

DAE: days after emergence, EXP: experiment, CUL: cultivar. F-6: flag leaf -6, F-5: flag leaf -5, F-4: flag leaf -4,        

F-3: flag leaf -3, F-2: flag leaf -2, F-1: flag leaf -1, F: flag leaf, and spikes (S).
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Table 2.3. Analysis of variance of repeated measurement analysis of wheat blast severity (Pr>F) 

in different plant organs in Quirusillas, Bolivia, during the 2018-2019 season.  

 Source of 

variation 

F-6 F-5 F-4 F-3 F-2 F-1 F S 

DAE 0.5216 0.6975 0.0121 0.0003 <0.0001 <0.0001 <0.0001 <.0001 

EXP 0.8455 0.0010 0.0010 0.0284 0.0252 0.0097 0.0051 0.0011 

EXP*DAE … 0.1338 0.1056 0.0003 0.1865 0.0195 0.0195 0.1668 

CUL 0.0013 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

CUL*DAE .. 0.2166 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

EXP*VAR … <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

EXP*CUL*DAE … 0.2231 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

DAE: days after emergence, EXP: experiment, CUL: cultivar. F-6: flag leaf -6, F-5: flag leaf -5, F-4: flag leaf -4,        

F-3: flag leaf -3, F-2: flag leaf -2, F-1: flag leaf -1, F: flag leaf, and spikes (S).
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Table 2.4. Parameters of the pairwise comparison T-test of three susceptible cultivars for wheat 

blast severity in two experiments with different spreader design at two locations in Bolivia, 

2018-2019. 

Bermejo 

Experiment Block Cultivar Experiment Block Cultivar Estimate SE t Value Pr > |t| 

1 1 Atlax 2 1 Atlax -0.13 0.019 -6.89 <.0001 

    
TBIO-

Mirante 
    

TBIO-

Mirante 
-0.11 0.020 -5.37 <.0001 

    
TBIO-

Alvorada 
    

TBIO-

Alvorada 
-0.13 0.020 -6.37 <.0001 

  2 Atlax   2 Atlax -0.11 0.020 -5.28 <.0001 

    
TBIO-

Mirante 
    

TBIO-

Mirante 
0.01 0.020 0.46 0.6436 

    
TBIO-

Alvorada 
    

TBIO-

Alvorada 
-0.07 0.020 -3.51 0.0004 

  3 Atlax   3 Atlax -0.01 0.020 -0.46 0.6474 

    
TBIO-

Mirante 
    

TBIO-

Mirante 
-0.01 0.020 -0.64 0.5233 

    
TBIO-

Alvorada 
    

TBIO-

Alvorada 
-0.02 0.020 -0.90 0.3662 

  4 Atlax   4 Atlax -0.05 0.020 -2.31 0.0211 

    
TBIO-

Mirante 
    

TBIO-

Mirante 
0.03 0.019 1.60 0.1102 

    
TBIO-

Alvorada 
    

TBIO-

Alvorada 
0.07 0.019 3.41 0.0006 

Quirusillas 

1 1 Atlax 2 1 Atlax -0.11 0.024 -4.68 <.0001 

    
TBIO-

Mirante 
    

TBIO-

Mirante 
-0.14 0.025 -5.71 <.0001 

    
TBIO-

Alvorada 
    

TBIO-

Alvorada 
-0.09 0.024 -3.72 0.0002 

  2 Atlax   2 Atlax -0.28 0.025 -11.38 <.0001 

    
TBIO-

Mirante 
    

TBIO-

Mirante 
-0.11 0.024 -4.49 <.0001 

    
TBIO-

Alvorada 
    

TBIO-

Alvorada 
-0.09 0.025 -3.64 0.0003 

  3 Atlax   3 Atlax -0.04 0.026 -1.34 0.1789 

    
TBIO-

Mirante 
    

TBIO-

Mirante 
-0.14 0.026 -5.13 <.0001 

    
TBIO-

Alvorada 
    

TBIO-

Alvorada 
-0.11 0.024 -4.69 <.0001 

  4 Atlax   4 Atlax -0.12 0.025 -4.86 <.0001 

    
TBIO-

Mirante 
    

TBIO-

Mirante 
-0.07 0.026 -2.68 0.0073 

    
TBIO-

Alvorada 
    

TBIO-

Alvorada 
-0.10 0.026 -4.08 <.0001 

SE: standard error.
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Figure 2.1. Disease progress curves for ten wheat cultivars (untransformed data y vs t (DAE: 

days after emergence)), in epidemics induced by Magnaporthe oryzae pathotype Triticum. 

Disease progress curves show the wheat leaf blast and wheat spike blast severity across all plant 

organs (from leaf F-6 to spike). Experiments 1 (A) and 2 (B) at Bermejo, (C) and (D) at 

Quirusillas conducted during the 2018-2019 growing season. 

2.3.1 Temporal modeling 

Ordinary least square regression performed on disease progress data for all ten cultivars by 

location and experiment showed that overall the logistic model provided an adequate description 

of wheat blast DPCs. In location one, experiment one, the logistic model best described the curves 

of all ten cultivars (R2= 0.75-0.96; RMSE= 0.67-2.63). On experiment two, the logistic model 

described seven curves (R2= 0.88-0.93; RMSE= 1.06-2.44), and the Gompertz model described 

three curves (R2= 0.91-0.94; RMSE= 0.13-0.23) (Table 2.5). In location two, experiment one, the 

logistic model best described the curves for all 10 cultivars (R2= 0.63-0.92; RMSE= 0.70-2.70). In 
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experiment two, the logistic model described seven curves (R2= 0.7-0.96; RMSE= 0.89-2.80), and 

Gompertz described three curves (R2= 0.64-0.77; RMSE= 0.34-0.51) (Table 2.5). The exponential 

and monomolecular models were deemed inadequate to describe any wheat blast progress curve 

based on the statistical model selection criteria. 

Delta AIC (ΔAIC) for model selection between logistic and Gompertz, in location one 

showed that, by experiment, Gompertz had lower averages values (37.06 and 34.76) than logistic 

(51.18 and 56.57) for experiments one and two, respectively (Table 2.6). In location two, 

Gompertz had lower values (21.34 and 14.48) than logistic (39.84 and 30.40) for experiments one 

and two, respectively. However, the adjusted R2 (AdjR2) was higher for logistic than Gompertz. 

At location one, the logistic AdjR2 values were 0.72-0.96 in experiment one, and 0.85-0.92 in 

experiment two, while the Gompertz AdjR2 values were 0.45-0.92 in experiment one, and 0.52-

0.94 in experiment two. At location two, the logistic AdjR2 values were 0.58-0.92 experiment one, 

and 0.58-0.96 in experiment two, while the Gompertz AdjR2 were 0.45-0.80 in experiment one, 

and 0.60-0.87 in experiment two (Table 2.6). Due to the above reasons for model selection criteria, 

logistic curves were selected to describe the temporal progress of wheat blast. 
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Table 2.5. Summary of statistical parameters of four linearized temporal growth models for wheat blast severity in two locations in 

Bolivia 2018-2019. 

Location one 

   Experiment one   Experiment two 

 Cultivar Model Intercept Slope R2 RMSE Resid. Pr>F Model Intercept Slope R2 RMSE Resid. P>F 

Atlax Logistic -18.432 0.324 0.88 2.461 S <0.0001 Logistic -16.646 0.292 0.93 1.666 S <0.0001 

Urubó Logistic -13.149 0.153 0.94 0.761 S <0.0001 Gompertz -2.892 0.026 0.94 0.126 S <0.0001 

TBIO 

Sossego 
Logistic -14.057 0.196 0.95 0.923 S <0.0001 Gompertz -3.375 0.046 0.94 0.230 S <0.0001 

San 

Pablo 
Logistic -13.681 0.162 0.93 0.923 S <0.0001 Logistic -12.635 0.149 0.89 1.057 S <0.0001 

AN-120 Logistic -13.191 0.151 0.95 0.671 S <0.0001 Gompertz -2.964 0.029 0.91 0.181 S <0.0001 

Motacú Logistic -15.442 0.193 0.75 2.271 NS 0.0003 Logistic -14.475 0.19 0.86 1.539 S <0.0001 

BR-18 Logistic -18.571 0.322 0.87 2.577 S <0.0001 Logistic -17.964 0.323 0.88 2.441 S <0.0001 

TBIO-

Mestre 
Logistic -14.397 0.204 0.96 0.8193 S <0.0001 Logistic -13.839 0.202 0.89 1.426 S <0.0001 

TBIO-

Mirante 
Logistic -18.302 0.331 0.90 2.185 S <0.0001 Logistic -15.411 0.253 0.93 1.388 S <0.0001 

TBIO- 

Alvorada 
Logistic -18.922 0.331 0.87 2.627 S <0.0001 Logistic -15.041 0.241 0.92 1.406 S <0.0001 

 

  



 

 

 

2
8
 

 

Table 2.5 continued 

Location two 

  

 

Experiment one 

 

Experiment two 

 Cultivar Model Intercept Slope R2 RMSE Resid. Pr>F Model Intercept Slope R2 RMSE Resid. P>F 

Atlax Logistic -18.112 0.246 0.92 1.111 S <0.0001 Logistic -17.969 0.290 0.81 2.242 NS 0.0009 

Urubó Logistic -15.048 0.118 0.63 1.466 NS 0.0107 Gompertz -4.009 0.040 0.77 0.346 S 0.0017 

TBIO-

Sossego 
Logistic -18.502 0.204 0.87 1.250 NS 0.0002 Gompertz -4.267 0.048 0.70 0.512 NS 0.0049 

San 

Pablo 
Logistic -15.556 0.147 0.92 0.700 S <0.0001 Logistic -20.638 0.234 0.87 1.454 S 0.0002 

AN-120 Logistic -18.505 0.189 0.69 2.031 NS 0.0053 Gompertz -4.207 0.041 0.64 0.494 NS 0.0087 

Motacú Logistic -19.975 0.225 0.73 2.173 NS 0.0031 Logistic -21.141 0.248 0.78 2.087 S 0.0014 

BR-18 Logistic -21.865 0.262 0.77 2.309 NS 0.0018 Logistic -17.223 0.220 0.94 0.890 S <0.0001 

TBIO-

Mestre 
Logistic -20.804 0.24 0.70 2.501 NS 0.0045 Logistic -17.727 0.214 0.96 0.664 S <0.0001 

TBIO-

Mirante 
Logistic -29.855 0.483 0.92 2.237 S <0.0001 Logistic -21.062 0.363 0.81 2.806 NS 0.0009 

TBIO- 

Alvorada 
Logistic -24.480 0.351 0.81 2.704 NS 0.0009 Logistic -20.862 0.338 0.76 3.080 NS 0.0022 

       RMSE: root mean square error, S: scatter, NS: no scatter, and Resid.: residual. 
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Table 2.6. Summary of statistical parameters and Akaike’s information criterium (AIC) and delta Akaike’s information criterium (Δ 

AIC) of linearized logistic and Gompertz models for ten cultivars at two locations in Bolivia in 2018-2019. 

  Location one 

  Experiment one   Experiment two 

Cultivars Model SSE Adj.R2 N K AIC ΔAIC  SSE Adj.R2 N K AIC ΔAIC 

Atlax 
Logistic 60.56 0.87 12 2 23.43 64.66  27.75 0.92 12 2 14.06 61.93 

Gompertz 75.91 0.58 12 2 26.14 67.37  27.81 0.72 12 2 14.09 61.95 

Urubó 
Logistic 5.80 0.94 12 2 -4.72 36.52  5.42 0.93 12 2 -5.54 42.33 

Gompertz 0.28 0.92 12 2 -41.24 0.00  0.16 0.94 12 2 -47.87 0.00 

TBIO-

Sossego 

Logistic 8.53 0.94 12 2 -0.10 41.14  17.40 0.88 12 2 8.46 56.32 

Gompertz 2.00 0.85 12 2 -17.47 23.77  0.53 0.94 12 2 -33.44 14.43 

San 

Pablo 

Logistic 8.52 0.92 12 2 -0.10 41.13  11.18 0.88 12 2 3.15 51.01 

Gompertz 0.45 0.90 12 2 -35.40 5.84  0.40 0.89 12 2 -36.94 10.92 

AN-120 
Logistic 4.51 0.95 12 2 -7.74 33.50  9.74 0.89 12 2 1.49 49.36 

Gompertz 0.31 0.91 12 2 -39.94 1.29  0.33 0.91 12 2 -39.16 8.71 

Motacú 
Logistic 51.57 0.72 12 2 21.50 62.73  23.67 0.85 12 2 12.15 60.02 

Gompertz 14.59 0.45 12 2 6.35 47.58  11.12 0.52 12 2 3.09 50.95 

BR-18 
Logistic 66.41 0.85 12 2 24.53 65.77  59.60 0.87 12 2 23.23 71.10 

Gompertz 79.65 0.55 12 2 26.71 67.95  71.84 0.59 12 2 25.47 73.34 

TBIO-

Mestre 

Logistic 6.71 0.96 12 2 -2.97 38.27  20.34 0.88 12 2 10.33 58.20 

Gompertz 1.97 0.87 12 2 -17.70 23.53  2.37 0.85 12 2 -15.45 32.41 

TBIO-

Mirante 

Logistic 47.78 0.89 12 2 20.58 61.82  19.27 0.93 12 2 9.68 57.55 

Gompertz 65.78 0.63 12 2 24.42 65.65  9.80 0.80 12 2 1.57 49.43 

TBIO-

Alvorada 

Logistic 69.01 0.85 12 2 24.99 66.23  19.77 0.92 12 2 9.99 57.86 

Gompertz 77.57 0.59 12 2 26.39 67.63   7.02 0.81 12 2 -2.43 45.44 
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Table 2.6 continued 

  
Location two 

  
Experiment one   Experiment two 

Cultivars Model SSE Adj.R2 N K AIC ΔAIC  SSE Adj.R2 N K AIC ΔAIC 

Atlax 
Logistic 8.64 0.92 9 2 3.64 32.03  35.20 0.82 9 2 16.27 34.52 

Gompertz 3.50 0.78 9 2 -4.50 23.9  34.87 0.65 9 2 16.19 34.44 

Urubó 
Logistic 15.04 0.58 9 2 8.62 37.02  29.82 0.65 9 2 14.78 33.03 

Gompertz 0.49 0.50 9 2 -22.21 6.18  0.84 0.75 9 2 -17.35 0.90 

TBIO-

Sossego 

Logistic 10.95 0.86 9 2 5.77 34.16  27.57 0.59 9 2 14.07 32.32 

Gompertz 0.83 0.77 9 2 -17.42 10.98  1.84 0.66 9 2 -10.31 7.94 

San 

Pablo 

Logistic 3.44 0.91 9 2 -4.66 23.73  14.80 0.85 9 2 8.48 26.73 

Gompertz 0.25 0.8 9 2 -28.39 0.00  1.26 0.76 9 2 -13.72 4.53 

AN-120 
Logistic 28.89 0.65 9 2 14.50 42.89  36.66 0.58 9 2 16.64 34.89 

Gompertz 1.12 0.65 9 2 -14.73 13.67  1.71 0.6 9 2 -10.95 7.30 

Motacú 
Logistic 33.08 0.70 9 2 15.72 44.11  30.49 0.76 9 2 14.98 33.23 

Gompertz 2.04 0.68 9 2 -9.36 19.03  1.83 0.75 9 2 -10.35 7.90 

BR-18 
Logistic 37.34 0.74 9 2 16.81 45.20  5.54 0.93 9 2 -0.36 17.88 

Gompertz 3.02 0.72 9 2 -5.82 22.58  1.32 0.86 9 2 -13.28 4.97 

TBIO-

Mestre 

Logistic 43.79 0.67 9 2 18.24 46.63  3.08 0.96 9 2 -5.64 12.61 

Gompertz 2.40 0.69 9 2 -7.91 20.48  0.76 0.87 9 2 -18.25 0.00 

TBIO-

Mirante 

Logistic 35.04 0.91 9 2 16.23 44.63  55.11 0.79 9 2 20.31 38.56 

Gompertz 53.25 0.74 9 2 20.00 48.40  52.74 0.71 9 2 19.91 38.16 

TBIO-

Alvorada 

Logistic 51.20 0.79 9 2 19.65 48.04  66.39 0.73 9 2 21.98 40.23 

Gompertz 51.88 0.45 9 2 19.77 48.16   55.56 0.63 9 2 20.38 38.63 

                          SSE: sum of squares of the error, Adj.R2: adjusted R2, N: number of observations used in the model, K: number of parameters. 
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2.3.2 Effect of cultivar resistance on disease and grain weight 

 According to the analysis of variance, in location one (Bermejo), both experiments showed 

significant differences in tAUDPC among cultivars (Table 2.7). In experiment one Urubó, San 

Pablo, and AN-120 (tAUDPC =157-204) had the lowest amount of disease as determined from 

tAUDPC, while in experiment two Urubó was the lowest, but was not significantly different from 

San Pablo and AN-120 (tAUDPC = 107-186). In experiment one, TBIO-Mirante had the highest 

level of disease, but was not significantly different from TBIO-Alvorada and Atlax (tAUDPC 

=1390-1687). In experiment two Atlax, BR-18, TBIO-Mirante, and TBIO-Alvorada had the 

highest level of disease (tAUDPC =1604-1873). The logistic apparent infection rates (rL*) were 

significantly different among cultivars in the both experiments. Urubó, San Pablo, and AN-120 

had the lowest rates (0.14-0.16 unit day -1), while Atlax, BR-18, TBIO-Mirante, and TBIO-

Alvorada had the highest infection rate in both experiments (0.29-0.34 unit day -1). For final disease 

severity (Ymax), in both experiments, the lowest severity was for cultivars Urubó, San Pablo, and 

AN-120 (Ymax = 8-17%), while cultivars Atlax, BR-18, TBIO-Mirante, Motacú, and TBIO-

Alvorada had the highest values (Ymax = 95-100%). Grain weight loss values were different 

among cultivars, in both experiments, and the lowest grain weights were for Atlax, Motacú, BR-

18, TBIO-Mirante, and TBIO-Alvorada (0.00 g 100-seeds-1). While in experiment one, the highest 

grain weight was obtained with cultivar Urubó, AN-120, and San Pablo (15-17 g 100-seeds-1). 

Similarly, in experiment two the highest grain weight was obtained with cultivar Urubó and AN-

120, but were not significantly different from San Pablo (15-16 g 100-seeds-1). 

  

In location two, both experiments showed significant differences in tAUDPC among 

cultivars (Table 2.7). In experiment one, Urubó and San Pablo had the lowest amount of disease 

as determined from tAUDPC, but was not significantly different from Motacú (tAUDPC =7-222), 

while in experiment two, Urubó and AN-120 had the lowest amount of disease, but was not 

significantly different from San Pablo and TBIO-Sossego (tAUDPC = 127-306). In experiment 

one, TBIO-Mirante had the highest level of disease (tAUDPC =1167), and in experiment two, 

cultivars Atlax and TBIO-Mirante had the highest amount of disease (tAUDPC =1417-1366). The 

logistic apparent infection rates (rL*) were significantly different among cultivars in both 

experiments. In experiment one, Urubó and San Pablo had the lowest disease rate (0.10-0.11 unit 

day -1), while in experiment two, TBIO-Sossego had the lowest rate, but was not significantly 
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different from Urubó, San Pablo, and AN-120 (0.18-0.21 unit day -1). In experiment one, TBIO-

Mirante had the highest infection rate (0.48 unit day -1), and in experiment two, cultivars Atlax, 

TBIO-Alvorada, and TBIO-Mirante had the highest disease infection rate (0.35-0.37 unit day -1). 

For final disease severity (Ymax), in experiment one, the lowest disease severity were for cultivars 

Urubó, San Pablo, and AN-120 (Ymax = 5-13%), while in experiment two, Urubó had the lowest 

severity, but was not significantly different from AN-120 (Ymax = 16-33%). In both experiments, 

Atlax, TBIO-Mirante, and TBIO-Alvorada had the highest values (Ymax = 93-100%). Grain 

weight loss values were different among cultivars, in both experiments, and the lowest grain 

weights were for Atlax, TBIO-Mirante, and TBIO-Alvorada (0.00-2.90 g 100-seeds-1). While in 

experiment one, the highest grain weight was obtained with cultivar Urubó and AN-120, but was 

not significantly different from San Pablo, TBIO-Sossego, and TBIO-Mestre (25-29 g 100-seeds-

1). In experiment two, the highest grain weight was obtained with cultivar AN-120, but were not 

significantly different from Urubó and San Pablo (26-29 g 100-seeds-1) (Table 2.7).  

 

The tAUDPC differed by locations. Location one (Bermejo) had higher values than location 

two (Quirusillas). However, within each location, cultivars in each of the two established 

experiments followed similar trends regarding to levels of wheat blast resistance (Figure 2.2). In 

location one, all ten cultivars in both experiments showed different levels of lAUDPC and 

sAUDPC (P= 0.0063); leaf values were 15.31-1,443.77, and spike values were 97.28-1,553.80. In 

location two, lAUDPC values ranged 0.00-669.29 and sAUDPC ranged 12.05-1521.46 (P= 0.0003) 

(Figure 2.3). 
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Figure 2.2. The total area under the disease progress curve of wheat leaf and spike (tAUDPC) 

blast of ten wheat cultivars in location one (A)  according to experiments one and two. Results 

for location two (B) include experiment one and experiment two. Experiments were conducted in 

Bolivia during the 2018-2019 wheat growing season. 
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Figure 2.3. Area under the disease progress curve of wheat leaf and spike (AUDPC) blast of ten 

wheat cultivars in location one according to experiments one (A) and two (B). Results for 

location two include experiment one (C) and experiment two (D). Experiments were conducted 

in Bolivia during the 2018-2019 wheat growing season. 
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Table 2.7. Main effect of resistance (among ten cultivars) on wheat blast severity at two locations in Bolivia in 2018-2019.  

Location one (Bermejo) 

  tAUDPC 

rL* Ymax  Grain weight 

(unit day-1) (%) (g 100-seeds-1) 

Cultivar Exp 1 Exp 2 Exp1 Exp 2 Exp1 Exp 2 Exp1 Exp 2 

Atlax 1472.82 AB 1873.53 A 0.34 A 0.31 A 100.00 A 99.83 A 0.00 D 0.00 D 

Urubó 156.91 E 107.50 E 0.15 C 0.14 C 12.49 C 7.82 D 17.49 A 16.52 A 

TBIO-Sossego 779.10 C 672.97 CB 0.20 B 0.18 B 70.22 B 44.74 C 13.13 B 8.87 B 

San Pablo 203.86 E 186.04 DE 0.16 C 0.14 C 17.01 C 14.98 D 15.46 AB 14.76 A 

AN-120 157.39 E 184.73 DE 0.14 C 0.14 C 14.24 C 15.41 D 17.08 A 16.19 A 

Motacú 468.90 D 546.42 CD 0.20 B 0.20 B 96.75 A 95.58 A 0.00 D 0.00 D 

BR-18 1390.00 B 1604.28 A 0.32 A 0.33 A 100.00 A 100.00 A 0.00 D 0.00 D 

TBIO-Mestre 900.44 C 1027.39 B 0.23 B 0.22 B 72.62 B 75.51 B 0.00 C 5.30 C 

TBIO-Mirante 1687.23 A 1720.79 A 0.34 A 0.30 A 100.00 A 97.58 A 0.00 D 0.00 D 

TBIO-

Alvorada 
1460.32 AB 1626.55 A 0.34 A 0.29 A 100.00 A 94.75 AB 0.00 D 0.00 D 
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Table 2.7 continued 

Location two (Quirusillas) 

  tAUDPC 

rL* Ymax  Grain weight 

(unit day-1) (%) (g 100-seeds-1) 

Cultivar Exp 1 Exp 2 Exp1 Exp 2 Exp1 Exp 2 Exp1 Exp 2 

Atlax 763.63 B 1366.35 A 0.35 B 0.35 A 92.70 A 100.00 A 2.90 D 0.00 F 

Urubó 6.95 E 126.63 E 0.10 E 0.18 DE 4.90 E 16.47 D 29.02 A 27.63 AB 

TBIO-Sossego 97.46 D 305.96 DE 0.20 C 0.18 E 27.50 D 47.91 CB 25.20 AB 23.97 BC 

San Pablo 20.41 E 283.49 DE 0.11 E 0.21 CDE 6.37 E 33.07 C 26.65 AB 25.62 ABC 

AN-120 72.26 D 131.82 E  0.18 CD 0.19 DE 13.49 E 32.70 CD 28.33 A 29.00 A 

Motacú 221.81 CDE 328.68 D 0.22 C 0.24 B 37.71 D 38.47 C 23.75 B 19.68 D 

BR-18 451.15 C 626.02 C 0.25 C 0.22 BC 55.63 B 62.32 B 17.35 C 14.69 E 

TBIO-Mestre 306.20 CD 330.83 D 0.23 C 0.22 BCD 50.44 CB 45.31 CB 25.21 AB 22.74 DC 

TBIO-Mirante 1167.57 A 1416.59 A 0.48 A 0.36 A 100.00 A 100.00 A 0.00 D 0.00 F 

TBIO-

Alvorada 
839.91 B 1191.74 B 0.41 B 0.37 A 100.00 A 100.00 A 0.00 D 0.00 F 

         

           tAUDPC: total AUDPC, rL*: logistic rate, and ymax: final disease severity. 
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2.3.3 Correlation among disease parameters 

 Significant correlations existed among disease parameters in both experiments at each of 

the two locations. For location one, tAUDPC, the infection rate rL* and Ymax were negatively 

correlated with grain weight, (r= -0.79, -0.81, P <0.01), (r= -0.81, -0.82, P <0.01) and (r= -0.90, -

0.96, P <0.01), respectively. For location two, tAUDPC, infection rate rL*, and Ymax were also 

negatively correlated with grain weight, (r= -0.88,-0.95, P <0.01), (r= -0.87,-0.90, P <0.01) and 

(r= -0.89,-0.92, P <0.01). In location one, there were negative correlations between disease 

parameters, tAUDPC, rL*, and Ymax (P <0.05) (Table 2.8). 

Regression between grain weight and tAUDPC to predict grain weight loss, showed that 

slope coefficient as estimator of grain weight loss, was higher in location two (Quirusillas) (-0.021, 

-0.025 g-1) than in location one (Bermejo) (-0.008, -0.010 g-1) for each unit of tAUDPC (Figure 

2.4).  
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Table 2.8. Pearson correlation coefficients for total area under the disease progress curve 

(tAUDPC), linearized logistic infection rate of disease progress (rL*), final wheat blast disease 

severity (Ymax), grain weight, in two locations in Bolivia, 2018-2019. 

 Location one (Bermejo) 

 Experiment one  Experiment two 

  

tAUDPC rL*  

(day-1) 

Ymax  

(%) 

Grain weight 

 (g 100-seeds-

1) 

 

tAUDPC rL* 

(day-1) 

Ymax  

(%) 

Grain weight 

 (g 100-

seeds-1) 

tAUDPC … 0.972** 0.861** -0.791**   … 0.951** 0.852** -0.818** 

rL* (unit day-1)   … 0.851** -0.816**     … 0.864** -0.828** 

Ymax (%)     … -0.906**       … -0.963** 

Grain weight 

(g 100-seeds-1) 
      … 

  
      … 

 Location two (Quirusillas) 

 Experiment one  Experiment two 

tAUDPC … 0.959** 0.912** -0.888**   … 0.930** 0.940** -0.951** 

rL* (per unit day-

1) 
  … 0.926** -0.873** 

  
  … 0.880** -0.908** 

Ymax (%)     … -0.898**       … -0.920** 

Grain weight 

(g 100-seeds-1) 
      … 

  
      … 

ns: non-significant, **: p<0.01, and *: p<0.05. 
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Figure 2.4. Linear regression between grain weight and wheat blast severity of ten cultivars, (A) 

and (B) experiments in location one (Bermejo), (C), and (D) experiments in location two 

(Quirusillas). Experiments were conducted in Bolivia during the 2018-2019 wheat growing 

season. 

2.4 Discussion 

This study provides clear evidence of the relevance of plant disease epidemiological criteria 

to support breeding tactics against wheat blast. As a starting point, cultivar resistance levels 

influenced the dynamics of wheat leaf blast and wheat spike blast development in various 

environments. In addition, epidemiological parameters associated with wheat blast resistance were 

critical for selection and deployment of germplasm. In general, wheat blast symptoms developed 

overtime on all plant organs, starting from the lower canopy in all cultivars. At both locations, 

there were differences in disease severity between experiments. These differences were likely due 
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to the distance between the MoT inoculum source and individual plots. According to Salgado et 

al. (unpublished) MoT infections initially develop at the lower canopy, where leaf blast severity 

reaches higher values compared to upper canopy leaves. This might be due to the early senescence 

of lower leaves caused by MoT infections (Góngora-Canul et al., 2019). In addition, a massive 

influx of MoT conidia from the lower canopy and subsequent compounding secondary infection 

cycles in the upper canopy may have occurred and caused high wheat blast severity (Góngora-

Canul et al., 2019; Salgado et al., unpublished).  

Regardless of environment, the logistic model best described wheat blast progress. In both 

locations, the logistic model described 17 out of 20 DPCs (85%) and the Gompertz model 

described 3 out of 20 (15%). Similar results were found by Góngora et al., (2019) and Mohapatra 

et al., on a rice blast study, (2008). ΔAIC for model selection showed that Gompertz had lower 

values than the logistic model in all experiments, but the logistic model had higher AdjR2 values. 

The latter indicated that the logistic model better fit the data. The AdjR2 values alone can 

consistently choose complex models compared to selection based on AIC values, and those models 

can reproduce better empirical datasets than those chosen by AIC (Gayawan and Ipinyomo, 2009). 

For those reasons, the logistic model was deemed more adequate and selected to describe the 

temporal progress of wheat blast. 

In both locations, there were significant differences in tAUDPC of blast severity among the 

10 spring wheat cultivars evaluted. Cultivars Urubó, San Pablo and TBIO Sossego had the lowest, 

and cultivars Atlax, TBIO-Mirante and TBIO-Alvorada had the highest values of tAUDPC, 

respectively. The apparent infection rate, (rL*) (units day-1) of linearized logistic model was low 

for cultivars Urubó, San Pablo and TBIO-Sossego and the higher rL* were for Atlax, TBIO-

Mirante and TBIO-Alvorada. In general, more tAUDPC led to higher apparent infection rates; 

however, cultivar Motacú was the exception. This cultivar had low values of tAUDPC, but high 

rL*, because it provided sufficient resistance to wheat leaf blast but not enough for wheat spike 

blast (Figure 2.3). This early maturity cultivar, which became popular in Bolivia over the last few 

years (Vales et al., 2018), is known for its moderate to insufficient wheat spike blast resistance 

reaction, which can vary by location and season (Cruz et al., 2016a; Vales et al., 2018). This was 

the only case in which low tAUDPC not necessary implied a lower rL*.  

Pratt et al. (1993) reported that AUDPC was more important for cultivar selection than rate, 

since AUDPC as a measure of quantitative disease resistance entails repeated disease assessment. 
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However, Jeger and Viljanen-Rollinson, (2001) mentioned that the effect of resistance should be 

expressed in terms of rate parameter (‘rate-reducing’ effect) and not based on the asymptotic level 

of disease (maximum amount of disease level without increase) in adult plants. Fry (1978) reported 

that AUDPC is more reliable than r* and final disease severity (Ymax) for describing cultivar 

resistance, arguing that Ymax was useful only if epidemic did not progress to completion or near 

completion by the end of the season, and that r* is influenced by weather. Regarding Ymax, cultivars 

Urubó, AN-120 and San Pablo had the lowest values, up to 4.9% severity. Atlax, TBIO-Mirante 

and TBIO-Alvorada cultivars had values of up to 100% severity. The general trend is that a higher 

Ymax, the higher AUDPC and rL*. Final disease severity evaluation is a practical and cheap 

estimator when many cultivars are being evaluated for resistance. However, using final disease 

severity alone could be risky if disease pressure is not high and temporal dynamics are not 

understood in terms of disease onset and temporal rates of progress, as it was the example of 

cultivar Motacú discussed above. There were significant differences in grain weight (g 100-seeds-

1). Overall, cultivars in location one had less grain weight than in location two. Cultivars that had 

low or zero grain weight were Atlax, TBIO-Mirante and TBIO-Alvorada, and cultivars with higher 

grain weight were Urubó, AN-120 and San Pablo. The reduction of grain weight affected by 

disease severity (tAUDPC, rL* and Ymax) was due to reduction of leaf green area in early phases of 

the epidemic and by the infection of the spike resulting in no grain formation or shriveled grain.  

Differences were observed among cultivars in their combined reaction to wheat leaf blast 

and wheat spike blast, in both locations. Cultivars that had lowest tAUDPC such as Urubó, San 

Pablo and TBIO-Sossego, had the lowest lAUDPC and sAUDPC, respectively. Susceptible 

cultivars such Atlax, TBIO-Mirante and TBIO-Alvorada had the highest tAUDPC as well as the 

lAUDPC and sAUDPC respectively. In contrast, cultivar Motacú had the lowest lAUDPC but not 

the lowest sAUDPC. Differences in reaction to wheat blast according to plant age and organs have 

been previously reported (Cruppe et al., 2019; Cruz et al., 2012; Martinez et al., 2019). Wheat blast 

disease can be found in spike and leaf organs, and weak correlations have been reported between 

seedling and adult plant resistance across multiple cultivars (Cruppe et al., 2019; Cruz et al., 2012; 

Maciel et al., 2014). Different mechanisms for wheat blast resistance (Cruz and Valent, 2017) 

might exist in leaves and spikes of cultivar Motacú.  

There were significant (P <0.01) positive correlations among tAUDPC, apparent infection 

rates (r*) and final disease severity (Ymax) in both locations, indicating differences in resistance 
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among cultivars. However, the correlation was higher between tAUDPC and rL*, than tAUDPC 

and Ymax. This indicated that tAUDPC or r* can be chosen for cultivar selection in a wheat blast 

breeding program. However, Ymax could be a cheap and easy estimator, since tAUDPC and rL* are 

tedious and labor intensive due to repeated measurements are needed (Smith et al., 1998). tAUDPC, 

rL* and Ymax had significant negative correlations with grain weight (g 100 seeds-1) at both 

locations (r>0.79) (P <0.01). However, Ymax had the highest correlation with grain weight, 

indicating that it can be used as a predictor in a single-point grain-weight loss model (critical-point) 

for wheat blast since it requires less data over time. tAUDPC and rL* can also be used as predictors 

in a multiple-point grain-weight loss wheat blast model (multiple-point); however, they require 

several disease assessments over time, and that may not be in feasible in some cases. Multiple-

point models are usually more accurate than critical-point models because of their more thorough 

description of the epidemic (Madden, 1983).  

The development and release of new cultivars occur in the face of multiple breeding 

objectives such as improved yield, quality, disease and drought resistance. In certain countries, the 

selection of newly released cultivars is less based on resistance to blast than on early maturity 

(Vales et al., 2018). Motacú, an early maturity cultivar was preferred in Bolivian breeding 

programs, although it had insufficient resistance levels to wheat spike blast. The decision to deploy 

Motacú was risky because the wheat blast temporal dynamics were not understood at the time of 

selection. Today we understand that this widely deployed cultivar in Bolivia is characterized by 

moderate to insufficient wheat spike blast resistance, which can vary depending on location and 

year. Wheat cultivars resistant to wheat leaf blast can help reduce the rate of wheat blast epidemics. 

Cultivars with better performance for both wheat leaf blast and wheat spike blast resistance should 

be preferred over those that only perform well for either leaf blast or spike blast. There is evidence 

that 2NVS-based cultivars are not immune to wheat spike blast but this translocation provides 

cultivars some ability to deal with a given MoT load (Cruz et al., 2016b). 

This is the first study that provides evidence that germplasm with different resistance 

background can influence the dynamics of wheat leaf blast and wheat spike blast development 

under multiple environments. Moreover, this study provides enough evidence and strongly 

supports the use of epidemiological parameters such as AUDPC, rL* and Ymax, which could be 

used to help pathologists and breeders better select germplasm for wheat blast resistance. Given 
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the threat of the introduction of the disease to new areas of the world, a better epidemiological 

understanding of wheat blast development on novel genetic resources is needed. 
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 WHEAT SPIKE BLAST IMAGE CLASSIFICATION 

USING DEEP CONVOLUTIONAL NEURAL NETWORKS 

*This chapter will be submitted as a research article. 

3.1 Introduction  

Wheat blast is a disease caused by the fungus Magnaporthe oryzae Triticum (MoT). MoT 

infects leaves and spikes of wheat, but wheat spike blast is the most remarkable symptom of this 

disease (Cruz et al., 2015; C. Cruz & Valent, 2017; Ceresini et al., 2019). Wheat blast is present 

in South America and South Asia, particularly in locations where warm temperatures 25-30°C, 

long wetness duration (25 to 40h), and high relative humidity (>90%) are predominant (Cardoso 

& Moreira, 2008; Igarashi et al., 1986). Recently, MoT was reported in Zambia, Africa (Tembo et 

al., 2020). Under conducive field conditions, the fungus can kill up to 100% of susceptible wheat 

spikes in a period of 2.5 to 3 weeks (Gongora-Canul et al., 2020). The search for wheat spike blast 

resistance sources has been intense since 1985 when the disease was first detected (Cruppe et al., 

2020; Cruz et al., 2016a; Igarashi et al.,1986; Prestes et al., 2007; Urashima et al., 2004). However, 

only limited wheat germplasm has been tested. To date, the only useful source of genetic resistance 

for wheat spike blast is contained in the 2NVS translocation from the wild wheat relative, Aegilops 

ventricosa (Cruz et al., 2016a, Cruppe et al., 2020). Obtaining tissue samples from phenotyped 

wheat entries and testing for the presence or absence of the 2NVS segment is relatively easy and 

routine (Cruppe et al., 2019; Cruz et al., 2016a). Nevertheless, given that there is evidence that 

2NVS-based resistance may be overcome sooner or later, additional sources of wheat spike blast 

resistance should be identified (Cruppe et al., 2019; Cruppe et al., 2020; Cruz et al., 2016a). A 

bottleneck in the identification of novel sources of resistance is measuring disease intensity (i.e., 

plant disease phenotyping), which is considered a limiting factor in the assessment of genotype 

performance in plant breeding programs (Mahlein, A.-K, 2015; Sakoor et al., 2017). Therefore, 

innovative and transformative solutions for quantification of plant disease symptoms at the 

individual and host population levels are needed (Camargo et al., 2009; Kumar et al., 2020). 

Implementation of advanced phenotyping platforms could reduce the phenotyping bottleneck 

during breeding and enhance the understanding of genotype-phenotype relationships (Sakoor et 

al., 2017). Currently, phenotyping of wheat spike blast disease severity relies on visual estimation 



 

 

48 

made by humans (Cruz et al., 2016b). Due to issues associated with agreement in data acquisition, 

inter-rater agreement among other statistical tests have been used to compare the consensus or 

agreement between raters’ estimations of disease severity (Bock et al., 2010, 2020; Madden et al., 

2007; Nutter et al., 1993). Reliable disease estimations, paired with corresponding images of 

diseased wheat spikes, can be used as input for deep learning models.  In the future, automated 

image analysis systems, together with deep learning models, might enable considerable increases 

in the throughput of trait measurements by offsetting the phenotyping bottleneck (Barbedo, 2016).  

In recent years, computer vision and machine learning have emerged as new approaches to 

develop plant phenotyping platforms. Recent developments in machine learning have more focus 

on deep learning, a branch of machine learning inspired by the functions of the human brain called 

a neural network.  The most frequently used method of deep learning for image classification are 

Deep Convolutional Neural Networks (DCNN). Recent studies have further enhanced the scope 

for using a deep-learning-based approach for classifying, identifying, and quantifying plant 

diseases (Singh et al., 2018). 

A variety of DCNN classification models are available for plant diseases such as those 

developed for bacterial pustule (Xanthomonas axonopodis pv. glycines), sudden death syndrome 

(SDS, Fusarium virguliforme), Septoria brown spot (Septoria glycines), bacterial blight 

(Pseudomonas savastanoi pv. glycinea), and several abiotic stresses in soybean (Ghosal et al., 

2018). In tomato (Lycopersicum esculentum), deep learning models were developed with and 

without pre-training models with images from nine leaf tomato diseases from the website 

www.PlantVillage.org, obtaining better performance using pre-training models (Brahimi et al., 

2018). A total of 54,306 leaf images from several crops with 26 diseases were obtained from 

PlantVillage.org and trained using AlexNet and GoogleLeNet pre-trained models with a leaf 

segmented dataset, obtaining an accuracy of 99.35 % (Mohanty et al., 2016). On wheat, an in-field 

automatic diagnosis system for powdery mildew (Blumeria graminis f. sp. tritici), smut (Urocystis 

agropyri), leaf blotch (Septoria tritici), black chaff (Xanthomonas campestris pv. undulosa), stripe 

rust (Puccinia striiformis f. sp. tritici), and leaf rust (Puccinia recondita f. sp. tritici) was developed 

using deep learning and multiple instance learning techniques from the Wheat Disease Database 

2017 (Lu et al. 2017). Although this database is a significant contribution for wheat disease 

identification based on images (labeled by agronomist experts), aspects regarding reliability of the 

labeler (ground truth) may be compromised (Lobet, 2017). It is necessary that detection and 
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quantification studies of plant disease provide evidence of ground truth estimation's agreement 

analysis before using the labeled images as dataset for training deep learning models. Without such 

information, results can be inconsistent. 

We hypothesize that deep convolutional neural networks models can be trained for wheat 

spike blast severity image classification for pre-screening of wheat blast cultivar resistance under 

a controlled environment. To test this hypothesis, we focused on the following objectives: 

i) Generate a wheat spike blast image library labeled with disease severity 

ii) Analyze the agreement of the disease severity’s model training set between two 

experts in plant pathology and an image software 

iii) Develop an accurate deep convolutional neural network model to detect and classify 

wheat spike blast symptoms in three severity categories.  

3.2 Materials and methods 

3.2.1 Plant cultivation and genetic materials 

 Two experiments were conducted under controlled conditions in a growth room at the 

Asociación de Productores de Oleaginosas y Trigo (ANAPO) research facility in Santa Cruz de la 

Sierra, Bolivia. Wheat cultivars were planted in pots of 15 cm diameter, filled with 3/4 vermicast 

and 1/4 silt, and grown at 18-25°C, 14 h light/10 h dark photoperiod, and 60% relative humidity. 

Plants were fertilized, and insecticide treatments were sprayed when needed. Plants were arranged 

in a randomized complete block design with six wheat cultivars having various levels of resistance 

to MoT (Fernández-Campos et al., 2020), two inoculation levels (inoculated and non-inoculated), 

and four replicates (Table 3.1). Wheat cultivars used in this study included South American spring 

cultivars Atlax, BR-18, Motacú, Urubó, AN-120, and San Pablo (Table 3.1) (Baldelomar et al., 

2015; Fernández-Campos et al., 2020). 
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Table 3.1. Final wheat spike blast severity (Ymax) of wheat cultivars assessed at 19 days after 

inoculation 

Cultivar Atlax BR-18 Motacú Urubó AN-120 San Pablo 

Ymax (%) 100 8.69 3.75 1.88 3.31 32.88 

3.2.2 Inoculation 

Plants were inoculated at the growth stage Feekes 10.5 with MoT isolate 008-C (Fig. 3.1a) 

according to a modified inoculation protocol (C. D. Cruz et al., 2016b). A conidial suspension was 

adjusted to 20,000 spores/ml, and each spe received 1mL of the spore suspension. Immediately 

after the spikes were sprayed with the MoT inoculum, plants were moved to a dew chamber (Fig. 

3.1b) to induce MoT infection (i.e., 24-26°C, 95-98% RH, and 14h light photoperiod). Forty-eight 

hours after inoculation, plants were removed from the dew chamber and left under controlled 

environment room conditions (24-26°C and relative humidity of 50-60%), until the end of the 

experiment. 

 

Figure 3.1. Flow process: (a) Magnaphorthe oryzae pathotype Triticum inoculation, (b) dew 

chamber provided optimal conditions for fungal infection, and (c) wheat spike imaging 

3.2.3 Data collection 

Following phytopatometry terminology, we used the term estimate for visual disease 

estimations made by humans and the term measurement for estimations made by image analysis 

(Bock et al., 2010; Gongora-Canul et al., 2020). 

Visual estimations of wheat spike blast symptoms were taken seven times, at different days after 

inoculation (DAI). Wheat spikes of plants of experiment one (4, 6, 9, 12, 14, 16, 19 DAI) and 

  (a) Inoculation   (b) Incubation    (c) Imaging     
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experiment two (0, 5, 7, 10, 12, 14, 19 DAI) were visually phenotyped, accordingly. Each spike 

side (four sides total) was assessed visually as the percentage of the area showing spike blast 

symptoms (C. D. Cruz et al., 2016b; Vales et al., 2018). Simultaneously, an image from each spike 

side was captured with a DSLR EOS 6D Canon camera (Canon Inc., Tokyo, Japan) using a 

photography studio setup with umbrellas, lights, and screens that helped create a uniform light and 

smooth environment (Fig. 3.1c). Each image size was adjusted to 512 × 256 pixels and used for 

the DCNN model training. 

3.2.4 Disease severity 

The criteria for the division of severity categories was based on literature review that 

indicated that pathologists and breeders considered resistant those cultivars with 20% or less 

severity (Baldelomar et al., 2015; Cruppe et al., 2020; Cruz et al., 2016a; Fernández-Campos et 

al., 2020; Vales et al., 2018;). Thus, to define the categories for our DCNN model, the 

corresponding image and disease severity of the spikes was divided into three categories according 

to the amount of severity by a pathologist (Rater 1). Non-inoculated spikes were assessed for wheat 

spike blast severity and served as the negative control. Category 1 included spikes with no 

symptoms, Category 2 included spikes with low levels of disease symptoms, and Category 3 

included spikes with intermediate and high levels of disease symptoms (Tables 3.1 and Table 3.2). 

The final wheat spike blast severity (Ymax) was visually estimated at 19 DAI (Table 3.1), when 

Atlax, a well-known susceptible cultivar (Cruppe et al., 2020; Cruz et al., 2016a) had reached 100 % 

of severity.  

 

Table 3.2. Severity ranges of wheat spike blast images per category. 

 Category 1 Category 2 Category 3 

Severity (%) 0 0.1-20 20.1-100 

3.2.5 Inter-rater agreement of wheat spike blast severity estimations 

An inter-rater analysis was needed to determine the reliability of visual estimations (Bock et 

al., 2020; Madden et al., 2007). Inter-rater agreement assesses the degree of agreement between 

two or more raters who obtain independent ratings about the characteristics of a set of subjects. 
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Subjects of interest include people, things, or events that are rated (Everitt, 2002). The estimated 

and measured disease severity values were analyzed for inter-rater agreement in two scenarios, 

one with a scale of 0-100 % disease severity (continuous data), and the other with the images 

divided in three categories of disease severity (ordinal data). To determine the degree of agreement 

between disease estimation by humans and estimations based on measurements made by ImageJ, 

we computed the Lin's Concordance Coefficient, Fleiss kappa, and weighted kappa statistics. 

The Lin's concordance coefficient (ρc or CCC) is used to estimate the accuracy1 between two 

raters using continuous data. From the analysis, we obtained the estimation of accuracy1, precision1, 

and bias of the disease estimations and disease measurements between two raters (Bock et al., 

2010; Lin, L. I.-K., 1989; Madden et al., 2007). For accuracy1 (ρc) and precision1 (r), values range 

from 0 to 1; values close to 1 indicate high accuracy1 and precision1. Bias (Cb) ranges from 0 to 1, 

and values close to 1 indicate less bias; however, in this study, bias was represented as 1-(Cb) (Nita 

et al., 2003). Lin's concordance analysis was performed by using PROG REG ALL procedure on 

SAS v.9.4 (Cary, NC), based on the macro developed by Lawrence Lin and verified by Min Yang 

(Lin, L. et al., 2002). 

To determine the degree of association between estimation of categorical information 

provided by the two raters (inter-rater agreement), the weighted kappa statistic was computed 

(Chmura, 1992; Graham and Jackson, 1993; Nelson and Edwards, 2015). The weighted kappa 

coefficient ranges from 0 to 1. A value from 0.5 to 1 indicates that the agreement is better than 

what would be expected by chance (Mitani et al., 2017; Tang et al., 2015). 

The Fleiss kappa coefficient was used to compare the agreement of categorical information 

among more than two raters, (i.e. disease severity estimations of Rater 1, Rater 2 and ImageJ) 

(Fleiss et al., 2003). The value of the Fleiss kappa coefficient ranges from 0 to 1. Values from 0.5 

to 1 indicate that the agreement is better than what is expected by chance (Gamer and Maintainer, 

2019; Nelson and Edwards, 2015). The Fleiss kappa statistics and weighted kappa were computed 

with the irr package of the R software (Team, 2017). 

The power analysis Wilcoxon signed-rank test was selected to determine the sample size for 

the inter-rater agreement studies of the two training datasets. The test consisted of an evaluation 

of 31 and 29 images for training Dataset 1 and training Dataset 2, respectively. Two raters assessed 

the wheat spike blast severity from the corresponding images, and results were compared with the 

measurement of disease severity from ImageJ. The gold standard of the model was Rater 1 (a 
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pathologist rater with experience on wheat blast, rice blast, and other diseases), who estimated 

disease severity from all images used for the training and testing datasets. Rater 2 was an 

experienced researcher with more than four years working with the wheat blast disease. Raters 

estimated the disease severity by observing the disease area covered in the spike and assigned a 

corresponding severity from 0-100%. Subsequently, each image was assigned to a given category 

(Table 3.2) for ordinal analysis. Spike disease area was manually measured using an (Red Green 

Blue) RGB color threshold segmentation with Fiji ImageJ v.1.52a (Schindelin et al., 2012). First, 

we obtained the measurement of the total spike area. Next, we measured the diseased area. Finally, 

the percent diseased severity (DS) of the individual spike was calculated (Eq. 1), where ADiseased is 

the proportion of the area of spike that is diseased divided by the total area of the spike ATotal. 

 

Equation 1.        𝐷𝑆 =  
𝐴𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑

𝐴𝑇𝑜𝑡𝑎𝑙
 × 100 

3.2.6 Data 

 Wheat was inoculated at the Feekes 10.5 growth stage of the host plant. Every two days 

after the inoculation, spike images were collected, allowing us to capture the development of 

symptoms and corresponding spike blast severity levels. Indirectly, we recorded progressive 

physiological changes in spikes, from milk and dough stages to maturity (when the spike loses its 

green color) (Large, 1954). The collected images were divided into three categories, where each 

category was defined according to a range of disease severity (Table 3.2). Images of healthy spikes, 

and spikes with moderate and high wheat spike blast severity are shown in Figure 3.2. We trained 

the proposed DCNN model using two datasets. Dataset 1, which included maturing and non-

matured wheat spikes; and Dataset 2, which included only non-matured spikes. Dataset 2 was used 

because the spike can turn white or yellow as it matures and can mimic spikes with wheat spike 

blast symptoms, which can lead to confusion when training the model. Each dataset was randomly 

separated, with 80% of images used as training set, and the remaining 20% as a testing set. Tables 

3.3 and 3.4 list the original distribution of the number of images in Dataset 1 and Dataset 2, 

respectively. However, the number of images in each category was extremely imbalanced, and 

using them indiscriminately could have resulted in a biased model. Fortunately, there are several 

viable methods to cope with the disproportionate training data in each category. Data augmentation 
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was used in this study to balance the number of images in each category. Thus, for Dataset 1, 

training data was triplicated in Category 2, and quadrupled in Category 3 (Table 3.3). For Dataset 

2, training data was quadrupled in Category 2, and quintupled in Category 3 (Table 3.4).  
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(a) (b) (c) (d) 
 

(e) (f) (g) (h) 
 

(i) (j) (k) (l) 

Figure 3.2. Examples of images per category: (a-d) healthy wheat spikes no disease (0% severity, 

Category 1); (e-h) spikes with moderate severity (0.1-20 %, Category 2); and (i-l) spikes with 

high severity (20.1-100 %, Category 3). 
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Table 3.3. Training and testing data distribution and number of images in Dataset 

1 (maturing and non-matured spikes) 

 Category 1 Category 2 Category 3 

Training  1,595 640 402 

Training* 1,595 1,920 1,608 

Testing 381 178 110 

*Augmented training data 

 

 

Table 3.4. Training and testing data distribution and number of images in Dataset 

2 (non-matured spikes only) 

 Category 1 Category 2 Category 3 

Training  1,430 386 307 

Training* 1,430 1,544 1,535 

Testing 327 120 90 

*Augmented training data 

3.2.7 Deep learning model 

In recent years, the feasibility of using artificial intelligence, in particular deep learning, is 

acknowledged by researchers for a variety of applications (Atha and Jahanshahi, 2018; Chen and 

Jahanshahi, 2018; Kumar et al., 2018; Wu and Jahanshahi, 2019).  

Deep learning is a branch in machine learning, which enables computers to automatically extract 

features from a huge amount of data and learn to classify data. In this study, wheat spike blast 

symptoms were automatically detected, and classified in three severity categories using a pre-

trained DCNN model, which can be more efficient than classifying images visually. To obtain a 

general and reliable DCNN model, the network needed to be trained using a large labeled training 

dataset). The wheat blast training dataset was not large enough, and over-fitting could have 
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occurred. To address this issue, transfer learning was used as a practical solution where a network 

was trained using a typically different large dataset such as ImageNet. A major advantage of using 

transfer learning is that it can adapt the parameters trained from an abundant number of images. 

Transfer learning starts with a pre-trained model, e.g., VGG16 model, and replaces the fully- 

connected (FC) layers of the model with new FC layers. A network trained on ImageNet dataset 

was used to initialize the network parameters, and the whole network was fine-tuned since the 

nature of our dataset was very different from the ImageNet dataset. An FC layer that consists of 

three nodes, representing three categories, were appended to the end of the network. ResNet101, 

a DCNN model with 152 layers trained on ImageNet data (He et al., 2016), was selected as the 

pre-trained model.   Furthermore, the loss function, which was used to optimize the parameter in 

a neural network, was transformed into a weighted loss function (Equation 2) by assigning 

individual weights to different categories due to the unbalance dataset (number of images in each 

category was different) in this study. Equation 2 defines the cross-entropy loss function in the 

DCNN model where ωcategory is the assigned weight to each of the category, the first term in 

equation 2 is a negative log-likelihood loss, and the second term in the is log-softmax. We tested 

four cases of study with individual weight set to the loss functions assigned to different categories. 

Here, “cases” refer to specific combinations of weight loss functions for each of the three disease 

severity categories (Table 3.5). Case 1 was the non-weight set, with all categories sharing the same 

class weight. Case 2 used [1, 10, 1] class weights in loss function, meaning that the highest weight 

was for Category 2, which includes plants at early disease stages and low levels of disease 

symptoms. Case 3 used [2, 5, 1] class weights in loss function, meaning that the higher weight was 

assigned to Categories 1 (no symptoms) and 2 (early stages and low levels of disease symptoms). 

Case 4 had class weights [2, 1, 1] in loss function, assigning a higher weight to category 1 (no 

symptoms) (Table 3.5). 

 

Equation 2.        𝑙𝑜𝑠𝑠(𝑥, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦) = −𝜔category  ∗ log
ⅇ

𝑥𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

∑ ⅇ
𝑥𝑗

𝑁

𝑗=1

            

                                            = −𝜔category   (−𝑥category  + log (∑ exp (xj)

j

)) 
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The network was trained for 15 epochs using stochastic gradient descent (SGD) (Bottou, 2010) 

optimizer, a learning rate of 0.0001 was used, and the batch size was 16. Additionally, 5-folds 

cross-validation was applied to the training process. The training took place on a Linux server with 

Ubuntu 14.04. The server included two Intel Xeon E5-2620 v4 CPUs, 256-GB DDR4 memories, 

and four NVIDIA Titan X Pascal GPUs. Pytorch (Paszke et al., 2017) was used to implement the 

DCNN. 

 

Table 3.5.  Two datasets trained the four cases of study with different loss functions in three 

categories. [Category 1: 0%, Category 2: 0.1-20%, Category 3: 20.1-100% severity] 

  Values of weighted loss function per category [1, 2, 3] 

Model 

Dataset 1 

 (Maturing and non-matured 

spikes) 

Dataset 2 

(Non-matured spikes) 

Case 1  [1,1,1] [1,1,1] 

Case 2 [1,10,1] [1,10,1] 

Case 3 [2,5,1] [2,5,1] 

Case 4 [2,1,1] [2,1,1] 

3.2.8 Model performance evaluation 

The performance of the DCNN model was evaluated via the classified results of the testing 

dataset. We used a 3 × 3 confusion matrix to describe the prediction result of the model. Each row 

of the confusion matrix represented the ground truth of the data, and each matrix column 

corresponded to a predicted category by the DCNN model. Thus, the diagonal elements of the 

matrix, called true positive (TP), were the number of wheat images correctly classified into the 

ground truth. The false positive (FP) for each Category was the sum of the all errors in that column. 

For example, the FP of Category 1 was the number of Category 2 and 3 severities that were 

incorrectly classified as Category 1. Based on the confusion matrix, additional evaluation metrics 

were calculated. 

Accuracy2 was defined as the total number of the TP among three categories divided by the 

total number of the predictions. Precision2 was defined as the total number of the TP instances 
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divided by the total number of predicted positive examples, which was the summation of TP and 

FP instance in binary classification task (Equation 3). Similarly, the precision2 of the multi-classes 

task illustrates the number of instances that were correctly predicted given all the predicted labels 

for a given category. Recall was defined as TP instance divided by all the positive samples (TP 

and FN) (Equation 4). F1 score, a single metric which encompass both precision2 and recall 

(Equation 5). Accuracy2, precision2, recall, and F1 score metrics ranged from 0 to 1, where higher 

values indicate high predictive ability of the model. 

 

 

              Equation 3. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛₂ =  
𝑇𝑃

𝑇𝑃+𝐹𝑃 
 

   

Equation 4.   𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    

 

                    Equation 5.         𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 × 
𝑝𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟ⅇ𝑐𝑎𝑙𝑙

𝑝𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟ⅇ𝑐𝑎𝑙𝑙 
 

3.3 Results  

3.3.1 Cultivar response to wheat spike blast under controlled conditions 

All cultivars received a single inoculation with MoT under controlled environmental 

conditions. Cultivar Atlax exhibited the highest disease severity of all the cultivars and had a high 

level of susceptibility to wheat spike blast. San Pablo exhibited a moderate susceptibility, while 

BR-18, Motacú, Urubó and AN-120 exhibited resistance under our controlled environmental 

conditions (Table 3.2). 

3.3.2 Inter-rater agreement analysis 

The Lin’s concordance correlation analysis showed a high accuracy1 (ρc= 0.89-0.91), high 

precision1 (r= 0.91-0.94), and less bias (Cb= 0.003-0.0499) in Dataset 2 than in Dataset 1 (ρc = 

0.74-0.85, precision1 r= 0.80-0.90, and bias Cb= 0.02-0.09) (Table 3.6). In Dataset 1, the highest 

accuracy1 was between Rater 1 and Rater 2 (ρc= 0.85) followed by Rater 1 and Image J (ρc= 0.81). 

In Dataset 2, the highest accuracy1 value was between Rater 1 and Image J (ρc= 0.92), followed 

by Rater 2 and Image J (ρc= 0.91). In both datasets, strong accuracy1, high precision1, and low bias 
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involved the ground truth (Rater 1), providing evidence that ratings of disease based on continuous 

data were done correctly for further classification of the images into categories for model training. 

 

Table 3.6.  Values of accuracy1 (ρc), precision1 (r), and bias (Cb) for agreement between raters’ 

visual estimations and disease measurements of ImageJ in both datasets of wheat spike blast  

  Raters ρc Precision1 (r) Bias (Cb) 

Dataset 1 

Rater 1 vs ImageJ 0.811 0.896** 0.0943 

Rater 2 vs ImageJ 0.744 0.803** 0.0735 

Rater 1 vs Rater 2 0.846 0.867** 0.0237 

Dataset 2 

Rater 1 vs ImageJ 0.915 0.942** 0.0292 

Rater 2 vs ImageJ 0.895 0.942** 0.0499 

Rater 1 vs Rater 2 0.912 0.914** 0.0031 

           ** p<0.01 

 

The weighted kappa statistics (κ), used to quantify inter rater-agreement, were higher in 

Dataset 1 than in Dataset 2, with κ= 0.72-0.88 (p<0.01) and κ= 0.78-0.85 (p<0.01), respectively 

(Table 3.7).  In Dataset 1, the highest agreement occurred between Rater 1 and ImageJ (κ = 0.88), 

and in Dataset 2 was between Rater 1 and Rater 2 (κ= 0.85). In both datasets, substantial agreement 

involved the ground truth (Rater 1), providing evidence that ratings were done correctly for further 

classification of the images into categories for model training. 
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Table 3.7.  Values of weighted Kappa (κ) analysis for inter-rater agreement between raters and 

ImageJ in two datasets of wheat spike blast under controlled environment 

  Dataset 1 Dataset 2 

Categories  κ z κ Z 

Rater 1 vs ImageJ 0.882** 4.93 0.822** 4.45 

Rater 2 vs ImageJ 0.727** 4.13 0.776** 4.32 

Rater 1 vs Rater 2 0.747** 4.32 0.849** 4.65 

** p<0.01 

 

The Fleiss kappa coefficient (Fκ), which compared the association of ordinal categorical 

information of two or more raters, showed a Fκ = 0.77 for Dataset 1 and 0.69 for Dataset 2, 

indicating substantial agreement among the three raters in both datasets (p<0.001). However, 

Dataset 1 possessed a higher Fleiss kappa coefficient index than Dataset 2 (Table. 3.8), both 

presented substantial agreement between the rates and Image J. Yet, the evidence supported the 

fact that the three raters correctly estimated the amount of the disease from the same image.  

 

Table 3.8.  Values of Fleiss Kappa (Fκ) analysis among two raters and ImageJ agreement in two 

datasets of wheat spike blast under a controlled environment 

  κ n z p>F 

Dataset 1 0.771 31 9.26 <0.0001 

Dataset 2 0.697 29 8.1 <0.0001 

3.3.3 Deep convolutional neural networks model performance.  

To train the proposed DCNN model, we used two different datasets. As mentioned in Section 

3.2.6, Dataset 1 included matured and non-matured wheat spikes. On the other hand, Dataset 2 

included only non-matured spikes. Four cases were applying different weight set of loss functions 

in both Datasets. Case 1 was the non-weight set, meaning that all categories shared the same class 

weight. Case 2 used [1, 10, 1] class weights in loss function, Case 3 used [2, 5, 1] class weights in 
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loss function, and Case 4 had class weights [2, 1, 1] in loss function. The performance of the 

DCNN model was evaluated via the classified result of testing data. 

The testing accuracy2 of the model trained with Dataset 1 was 90.1% in Case 1, 90.4% in 

Case 2, 90% in Case 3, and 87.7% in Case 4. The testing accuracy2 of Dataset 2 was 98.4% in 

Case 1, 93.9% in Case 2, 95.0% in Case 3, and 94.2% in Case 4.  Dataset 2 presented higher 

accuracy2 values compared to Dataset 1, suggesting that the model was accurate. However, it was 

not sufficient to claim the model was reliable based on accuracy2 (model performance metric) 

alone since the dataset in this study was unbalanced. In addition to accuracy2, other metrics can 

help evaluate the performance of the DCNN model such as precision2, recall, and F1 score.  

Precision2 indicates the ability to correctly classify an instance in all predicted positive 

instances. We wanted to focus on DCNN model’s performance in Category 2 as this was the 

category that breeders and pathologists will concentrate on for breeding purposes. Dataset 1 Case 

2 showed the lowest precision (75.4%) among all cases value (Table 3.9). Moreover, the confusion 

matrix of Dataset 1 Case 2 showed that the model misclassified 38 images of Category 1 (no 

symptoms) as Category 2 (early disease stages and low levels of disease symptoms), which was 

the highest number of wrongly classified images among all the cases (Fig. 3.3b). This suggested 

that the class weight of Category 2 might be too high since it misclassified images that belonged 

to other categories as Category 2. Hence, the class weight combination was modified by lowering 

the weight in Category 2 and increasing the weight in Category 1 as to not overemphasize the 

impact from Category 2. Precision2 of Category 2 significantly increased from 75.4% in Case 2 to 

84.1% in Case 3, and to 85% in Case 4. (Table 3.9). In Case 2, precision2 of Category 2 

significantly increased, from 75.4% in Dataset 1, to 90.2% in Dataset 2 (Table 3.9). Precision2 of 

Category 2 significantly increased from 90.2% in Case 2 to 92.7% in Case 3, and to 94.1% in Case 

4 (Table 3.9). 

Another metric for evaluating DCNN model was recall, which indicates the ability to 

correctly recognize a category. In Dataset 1 and 2, the recall of Category 2 was the lowest, 

illustrating the model’s challenge to classify images of Category 2 (early disease stages and low 

levels of disease symptoms) (Table 3.9). The highest recall of Dataset 1 Category 2, was 86.0% in 

Case 2, and the lowest was 74.2% in Case 1 (Table 3.9). This was expected given that Case 2 had 

higher weight in loss function of Category 2 compared to Case 1 (non-weighted loss function). In 

Case 2, Dataset 1, the recall values were similar among the three categories (Table 3.9). In Dataset 
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2 Category 2, the lowest recall was 75.0% in Case 1, and the highest recall was 84.2% in Case 2 

and 3 (Table 3.9). The model in these two cases had the highest weight in loss function of Category 

2 (early disease stages and low levels of disease symptoms). 

F1 score is a common indicator of the DCNN model’s overall performance. In Dataset 1 and 

2, the F1 score of Category 2 was the lowest, reaffirming the difficulty of classifying images of 

Category 2 by the model (Table 3.9). The lowest F1 score of Dataset 1 Category 2, was 79.3% in 

Case 1, while the highest was 82% in both Case 3 and Case 4 (Table 3.9). In Dataset 2 Category 

2, the lowest F1 score was 82.6% in the Case 1, and the highest F1 score was 88.2% in Case 3 

followed by Case 2 with 87.1% (Table 3.9). 

 

Table 3.9.  Precision, recall and F1 score of the test data for different model in both datasets. 

  
Dataset 1 Dataset 2  

Model 
Performance 

Index 

Category 

1 

Category 

2 

Category 

3 

Category 

1 

Category 

2 

Category 

3 

Case 1  

Precision 0.891 0.852 0.955 0.923 0.918 0.967 

Recall 0.945 0.742 0.955 0.985 0.750 0.967 

F-1 0.917 0.793 0.955 0.953 0.826 0.967 

Case 2 

Precision 0.926 0.754 0.950 0.952 0.902 0.936 

Recall 0.890 0.860 0.864 0.963 0.842 0.978 

F-1 0.908 0.803 0.905 0.957 0.871 0.957 

Case 3 

Precision 0.915 0.841 0.938 0.953 0.927 0.967 

Recall 0.929 0.803 0.955 0.985 0.842 0.967 

F-1 0.922 0.822 0.946 0.968 0.882 0.967 

Case 4 

Precision 0.915 0.850 0.946 0.942 0.941 0.946 

Recall 0.937 0.798 0.964 0.991 0.792 0.967 

F-1 0.926 0.823 0.955 0.966 0.860 0.956 
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A comparison of outcomes revealed that Category 2 was the most difficult category to 

classify correctly (Figure 3.3). This difficulty was attributed to the disease symptoms being barely 

visible at the early stage of infection, and some wheat spikes in Category 1 were maturing, and 

their color were similar to that of MoT infected spikes. We observed that the highest number of 

images exactly classified as Category 2 was obtained with the Case 2 Dataset 1 (Figure 3.3b). 

These results suggested that Case 2 was the most appropriate to classify wheat spike blast images 

in Dataset 1 because it was capable of detecting the infection at an early stage. Even though Case 

2 had a slightly lower precision, we consider this usual trade-off between precision2 and recall for 

disease classification purposes. The recall, precision2, and F1 score increased after the images of 

maturing spikes were omitted when training the model with Dataset 2 (Figure 3.4). The Cases 2 

and 3 of Dataset 2 presented the highest number of images exactly classified as Category 2 (Figure 

3.4b,c). Cases 2 and 3 were the most appropriate to detect the wheat spike blast in Dataset 2 

because the model was capable of detecting the infection in early stages. Additionally, in all Cases, 

the model was more stable predicting Category 3, which is relevant because it covers disease 

severity from 20.1 to 100%, potentially aiding breeders and pathologists to discern higher levels 

of susceptibility among cultivars. Although the DCNN model misclassified some images of 

Category 2, it still provided a robust approach to classify the severity of the disease. Moreover, the 

computational time for estimation of disease severity of a single image was 0.02 seconds. 
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Figure 3.3. Confusion matrix of the images of Dataset 1 (maturing and non-matured spikes): (A) 

Case 1, (B) Case 2, (C) Case 3 and (D) Case 4 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Confusion matrix of the images of Dataset 1 (non-matured spikes only): (A) Case 1, 

(B) Case 2, (C) Case 3 and (D) Case 4 
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3.4 Discussion 

This is the first study presenting a deep convolutional neural networks model to detect, quantify, 

and classify wheat spike blast symptoms in three severity categories under controlled 

environments. Wheat spike blast symptoms developed on all tested cultivars, with reactions to 

MoT infection consistent with previous reports, except for BR-18 and San Pablo that showed 

resistance and moderate susceptibility, respectively (Baldelomar et al., 2015, Cruppe et al., 2020; 

Gongora-Canul et al., 2020; Cruz et al., 2016a). Images of spikes with and without wheat spike 

blast symptoms were useful for non-destructive disease estimation by humans and disease 

measurement by image analysis. There was a consistent agreement of disease severity estimations 

between and among raters, using continuous and discrete data. In general, there was a higher 

agreement when using percent disease severity (continuous data) compared to categorical data.  A 

DCNN model trained with percent disease severity data is challenging because it requires multiple 

images showing symptoms of each disease severity percentage (i.e. 300 images of 50% severity, 

300 images 68% severity). Multiple images of each disease severity percentage were limited in 

this study, thus categorical data was used to train the DCNN model. Nevertheless, agreement 

analysis of categorical data showed substantial agreement in disease estimations and 

measurements between raters and Image J, respectively. The ground truth (Rater 1) was 

consistently in agreement with other raters. The results showed that the DCNN model correctly 

classified wheat spike blast images in the corresponding severity categories with an average 

accuracy2, precision2, recall and F1 score up to 0.98, 0.97, 0.98, 0.97, respectively. Consequently, 

the proposed approach is promising for wheat spike blast severity evaluation under controlled 

environment conditions, supported by a substantial agreement between disease estimations of the 

ground truth, an expert in wheat blast and the disease measurement of Image J. Wheat breeders 

could benefit from the proposed model classification. They can do a pre-selection of wheat 

cultivars under a controlled environment, taking images of spikes and classifying them 

automatically with the wheat spike blast DCNN model. Next, the breeders can focus on the 

cultivars that fall into Categories 1 and 2, which in general terms, are considered resistant or 

moderately resistant, which may reduce the high number of cultivars tested under field conditions. 

More research in this area is needed, mainly under field conditions where the environment can 

affect the output of the model. Nevertheless, the promising model and results of this study establish 

a foundation of using state-of-the-art computer vision techniques in wheat blast. The wheat spike 
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blast DCNN model may accelerate cultivar screening and identification of new sources of wheat 

spike blast resistance. Also, the results in this study show an opportunity to apply a similar 

approach in other pathogens.   

 

3.5 Conclusion 

Wheat blast is spreading worldwide, and a few resistant cultivars are available. It is crucial 

to identify more resistant sources, consequently more cultivars disease estimations are needed, an 

alternative can be testing more cultivars under controlled environments using a wheat spike blast 

deep convolutional neural networks model. Moreover, a wheat spike blast dataset was obtained 

with 3,306 images labeled with each respective disease severity estimation. The labeled disease 

severity estimation attached at each image of the training datasets used for the deep convolutional 

neural networks model demonstrated substantial agreement with the disease estimations of an 

expert in wheat blast and disease measurement of ImageJ. This is the first study presenting a deep 

convolutional neural network model trained to detect and classify wheat spike blast symptoms in 

three severity categories, which can aid in pre-screening of wheat blast cultivar resistance under 

controlled conditions.  

The deep convolutional neural networks model was trained to classify only three categories 

and is limited to images of wheat spike blast under controlled conditions. In the future, variability 

in disease estimations can be reduced if we standardize protocols (Cruz et al., 2016a), especially 

with state-of-the-art technology as deep learning (Yang et al., 2020). The next step in this research 

is to deploy the model in a web app where breeders and pathologists can submit their images, and 

the model will automatically classify them by categories. More images of wheat spike blast 

infected with different isolates will add symptom variability and make the model more robust to 

improve the proposed model. The model can eventually be retrained with multiple images of each 

disease severity percentage, allowing flexibility to predict wheat spike blast severity beyond the 

three categories.  
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