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ABSTRACT 

The current study is aimed at developing a well-posed and objective, i.e., frame invariant, Eulerian 

one-dimensional (1D) Two-Fluid Model (TFM) to predict flow regime transition from dispersed 

to clustered bubbly and slug flow for vertical adiabatic two-phase flows. Two-phase flows in 

general are characterized by local material wave or void fraction wave instabilities and flow regime 

transitions are one of the important consequences of these instabilities. The physical mechanism 

of wake entrainment for clustering of dispersed bubbles is proposed, leading to formation of bubble 

clusters and Taylor bubbles. The focus of the work is on simulation of the local interfacial 

structures for bubble clusters and Taylor bubbles, using a well-posed, unstable and non-linearly 

bounded 1D Shallow Water TFM. 

The first part of the current study investigates the dynamic behavior of the well posed 1D 

mechanistic TFM obtained from the averaging approach of Ishii [1], due to wake entrainment 

instability. For this, a 1D Shallow Water TFM derived from the 1D mechanistic TFM is used, 

which retains the same dynamic behavior as that of the latter at short wavelengths and the required 

wake entrainment force is derived mechanistically. Three stability approaches are followed to 

study the dynamic behavior of the 1D Shallow Water TFM: characteristics, dispersion analysis, 

and nonlinear numerical simulations. An in-house code is used for the 1D numerical simulations 

of the growth of void fraction waves due to wake entrainment. The simulation results are validated 

with the experimental data of Cheng and Azzopardi [2] and Song et al. [3] To conclude the first 

part, the 1D results of the two-equation Shallow Water TFM are carried over to the complete four-

equation TFM for quasi 1D simulations using the commercial CFD code of ANSYS Fluent.  

As an alternative to the mechanistic approach, which is based on Newtonian mathematics, a 

variational approach based on Lagrangian and Hamiltonian mathematics is used in the second part 

of the thesis. While the mechanistic approach operates in terms of forces acting on the two-phase 

mixture, the variational approach operates in terms of energies of the two-phase system. To derive 

the equations of motion using the variational approach, the extended Hamilton principle of least 

action is applied to the Lagrangian density of the two-phase mixture. One of the appealing features 
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of this procedure is that the derived equations of motion are objective (Geurst [4]), in particular 

the added mass terms.  

Thus, the second part of the current study focuses on deriving an objective, well-posed and 

unstable 1D TFM as well as developing a constitutive model for the wake entrainment effect using 

the variational method. Additional momentum transfer terms present in both the liquid phase and 

gas phase momentum equations, which render the variational TFM objective, are discussed. The 

variational method is then used to derive the 1D Shallow Water TFM using the fixed flux 

assumption. The conservative interfacial momentum transfer terms require formulation of the 

inertial coupling between the phases. Potential flow theory is first used to derive the inertial 

coupling coefficient for a single bubble and then for a pair of bubbles to consider interaction 

between the two bubbles. Then, a lumped parameter model is used to derive the inertial coupling 

coefficient for the wake entrainment effect. A local drag coefficient is obtained for the non-

conservative interfacial drag force from the experimental data using kinematic approximation, i.e., 

force balance between drag and gravity. The linear and non-linear stability analyses are used to 

address the stability of the 1D variational Shallow Water TFM. The presence of appropriate short-

wave physics makes the 1D Shallow Water TFM hyperbolic well-posed and kinematically 

unstable. Finally, numerical simulations are performed to demonstrate the development of void 

fraction waves due wake entrainment. The growth of void fraction waves is non-linearly bounded, 

i.e., Lyapunov stable. The simulation results are compared with the experimental data to validate 

the propagation properties of void fraction waves for bubble clusters and Taylor bubbles. This 

work illustrates the short-wave two-phase flow simulation capability of the TFM for the bubbly to 

slug flow regime transition.   
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  INTRODUCTION 

1.1 Significance of Problem 

The bubbly and slug flow regimes occur in many industrial applications and predicting these 

regimes and the bubbly to slug flow regime transition is critical for the safety and reliability of 

two-phase flow systems. The bubbly flow regime is encountered in thermal hydraulic systems used 

across, but not limited to, the nuclear, chemical and manufacturing industries. For example, due to 

the good mixing and heat transfer properties present in the bubbly flow regime, it is used for 

chemical processes like catalytic cracking and gasification. Within the nuclear industry, the 

cooling of the reactor core in the boiling water reactor involves bubbly flow. The slug flow regime 

is one of the characteristic flow patterns in vertical two-phase flows. The slug flow consists of a 

long-elongated Taylor bubble (Davies and Taylor [5]) with an adjacent liquid film flowing 

downwards between the bubble and the channel wall. The Taylor bubble has an axially symmetric 

bullet shape and it occupies almost the entire cross-sectional area of the flow channel. This is 

followed by the liquid slug region which may or may not have dispersed bubbles present in it. One 

of the most common scenarios for the slug flow regime is the two-phase flow in pipelines 

connecting the seabed wells to the production platforms in the oil and gas industry. Slug flow 

regime is also encountered in boiling water reactors and during emergency core cooling of the 

nuclear reactor core. The slug flow regime has enhanced heat transfer but it also has pressure 

fluctuations leading to undesirable vibrations and even water hammer in pipeline flows. Hence, it 

is important to have good modelling and simulation capabilities that can predict the complex 

thermo-fluid dynamics associated with bubbly and slug flows for design and development of two-

phase flow systems.    

 

Computational Fluid Dynamics (CFD) analysis has been used extensively to simulate two-phase 

flow regimes. Among a variety of transient two-phase flow models that can be found based on the 

Eulerian-Eulerian formulation approach, the Two-Fluid Model (TFM) is the most elaborate two-

phase flow model that is also practical. In comparison with the Drift Flux Model (DFM) of Ishii 

[1], the strength of the TFM lies in its capability to simulate both local and system two-phase flow 

instabilities. This lies in the underlying physical basis on which the DFM and the TFM 
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formulations differ. The DFM uses a single velocity field for both the phases, which is the center 

of mass velocity. In addition, the relative velocity between the two-phases in the DFM is fixed by 

prescribing the drift velocity using a kinematic approximation and this removes the dynamics 

associated with the relative motion between the two fluids. Though this makes the DFM easier to 

solve and applicable to simulate the system instabilities, it cannot simulate local instabilities that 

depend on the relative velocity. On the other hand, since the TFM uses independent velocity fields 

for each phase, it allows for localized non-equilibrium effects between the two phases to be 

modelled. Not only does this make the TFM more complete when compared to the DFM, but it 

makes it complicated by requiring the constitutive relations to define the interfacial transfer terms 

as well as the number of equations to solve. It also raises the difficulty of ill-posed behavior. It is 

important to note that the local instabilities are responsible for two-phase flow regime transitions 

which are transient process and only the TFM can resolve these in comparison to the DFM. To 

model two-phase flow regime transitions, the TFM used for CFD analysis must account for the 

flow physics pertaining to relevant local two-phase flow instabilities. In addition, the fundamental 

property of objectivity, i.e. frame invariance, is also addressed in this thesis.  

 

In general, both the mechanistic and the variational approaches have been used in the past for 

rigorous derivation of the TFM. The mechanistic TFM is derived using the Newtonian 

mathematics approach where the fluid flow behavior is analyzed in terms of the forces acting on 

the fluids. On the other hand, the variational approach falls within the framework of Lagrangian 

and Hamiltonian mathematics. The variational approach differs from the Newtonian approach as 

its formulation is based on analyzing the energy of the system as opposed to the forces acting on 

the system. Any two-phase flow formulation requires constitutive modelling with the constraint of 

objectivity. Though both the mechanistic and the variational approaches have been used in the past 

for constitutive modelling, the requirement of objectivity has been a challenge for the mechanistic 

approach. But the constitutive models obtained from the variational formulation are inherently 

objective, Geurst [4]. One of the important differences between the two approaches is that though 

the variational approach provides the analytical equations of motion explicitly, the physical 

significance of each of the individual terms in terms of forces is not obvious. The mechanistic 

approach does exactly the opposite, as the physical meaning of each constitutive relation is 

generally understood, but their analytical form is unknown. It can be stated that the variational 
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approach provides an alternative way to derive objective constitutive models and the two 

approaches complement each other. 

 

The mechanistic TFM is the only TFM used for numerical calculations, like in the nuclear reactor 

safety codes such as RELAP 5 and TRAC use the mechanistic 1D TFM. In contrast, numerical 

simulations have never been performed using the variational TFM for two-phase flow engineering 

applications. Much of the literature regarding variational approach deals with the scientific 

development of the variational TFM and the relation between the mechanistic and the variational 

TFM. But the work presented here is the first demonstration of the variational approach for 

constitutive model development, used for performing non-linear simulations of bubbly to slug flow 

regime transition, relevant for designing engineering systems. The 1D TFM used in the nuclear 

reactor safety codes is ill-posed due to the local stability of the TFM not being addressed. Moreover, 

the local instabilities are responsible for two-phase flow regimes transition and this requires 

accurate modelling of the interfacial momentum transfer mechanisms.   It is shown here that the 

variational modelling approach captures inertial coupling precisely to address the local short-wave 

linear and non-linear stability of the 1D TFM, which will be beneficial to improve TFM used for 

nuclear safety assessment.  

1.2 Previous Work 

A unique feature of the two-phase flow systems is the existence of a broad range of system and 

local instabilities. The system instabilities are associated with the entire response of the system 

and occur at the length scale of the entire flow channel. Some examples of these include the density 

wave instability and flow excursion (Ruspini et al. [6]). The local instabilities are associated with 

the interaction of the two-phases at the length scale of the local interfacial structures and include 

the Shallow Water Theory (SWT) or kinematic instability and the Kelvin-Helmholtz (KH) 

instability (Lopez de Bertodano et al. [7]). The KH instability arises at the interface between two 

fluids of different densities and velocities and is unique to two-phase flows. The SWT instability 

is associated with the kinematic waves i.e. continuity waves, and is caused by the interfacial drag 

forces between the two-phases. This instability arises when the drag experienced by the flow 

structures decreases as they grow in size and has been extensively studied for single-phase flows 

(Whitham [8]). 
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Wallis [9] suggested the use of wave theory for analyzing the propagation of material or void 

fraction waves to examine flow regime transitions. Several experimental studies have been pursued 

towards understanding the propagation of the void fraction waves. Nassos and Bankoff [10] were 

the first to measure the void fraction waves. Mercadier [11] found that bubbly flow exhibited 

damping of void fractions waves, which decreased with increase in the mean void fraction. 

Matuszkiewicz et al. [12] performed statistical analysis of void fraction disturbances to prove the 

existence of a relation between the local void fraction instability and bubbly to slug flow regime 

transition. Park et al. [13] measured the void fraction wave propagation speeds and amplifications 

for bubbly clusters in oil-water two-phase flow, implying bubble coalescence and Taylor bubble 

formation. A more elaborate study on void fraction waves for bubbly to slug flow regime transition 

was presented by Song et al. [3] and Cheng and Azzopardi [2]. The probability density function 

(PDF) was used to describe the local void fraction distribution for air-water two-phase flow 

regimes. The PDF had a single peak for dispersed bubbles, followed by broadening of the PDF 

and an elongated tail for bubble clusters. For the slug flow regime, the PDF exhibited two distinct 

peaks: one representing the low void fraction in the liquid slug and the other representing high 

void fraction in the Taylor bubble region. Furthermore, Park et al. [13] suggested using 

experimental data about void fraction waves to develop mechanistic models to predict bubbly to 

slug flow regime transition due to local instabilities. Hence, a two-phase flow Computational Fluid 

Dynamics (CFD) model should be able to resolve local instabilities to simulate the bubbly to slug 

flow regime transition.  

 

Numerical simulations of vertical slug flow have been performed in the past. Taha and Cui [14] 

used the Volume of Fluid (VOF) Model to resolve the shape and flow around Taylor bubbles. 

Abdulikadir et al. [15] also used the VOF model to simulate development of Taylor bubbles. But 

the TFM has been scarcely used to simulate the development of Taylor bubbles in vertical slug 

flows. A 1D TFM was used by Galleni and Issa [16] to simulate development of the Taylor bubbles 

in vertical channels due to SWT instability. However, it did not have the conservative inertial 

forces due to virtual mass. In addition, the requirement of objectivity, i.e., frame invariance, was 

not addressed. Within the mechanistic framework, Ishii and Hibiki [17] provide a comprehensive 

list of the conservative inertial forces due to virtual mass in the TFM. Drew and Lahey [18] showed 

that the lift force needs to be added along with the symmetric virtual mass term as an ad-hoc in the 
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mechanistic TFM to attain objectivity. But Wallis [19] stated that there is always the issue of the 

same physical mechanism being double counted when the physical mechanisms are included via 

ad-hoc basis. As an alternative approach for modelling and objectivity, Geurst [4] first applied the 

variational approach or formulation of the TFM for dispersed bubbly flows. Pauchon and Smereka 

[20] performed an equivalent variational TFM derivation to Geurst [21]. The variational approach 

starts from the Lagrangian of the two-phase mixture defined in terms of the averaged variables. 

The conservative equations of motion are then derived systematically from the Lagrangian by 

applying the extended Hamilton principle of least action. In the variational TFM, the interfacial 

momentum transfer terms due to virtual mass require formulation of the inertial coupling 

coefficient for closure, which accounts for the inertial interactions between the two phases. The 

potential flow theory was used by Wallis [22], Wijngaarden [23], Smereka and Militon [24] and 

Kok [25] for formulating the inertial coupling coefficient for dilute and non-dilute bubbly flows. 

Wallis [22] applied the variational technique to derive the inertial coupling for various flow 

configurations including potential slug flow. To use the TFM to simulate two-phase flow 

instabilities, which are physically valid phenomena, the TFM needs to transition from being stable 

to an unstable model. This is feasible only when appropriate two-phase models are present that 

account for the inertial coupling between the two-phases.  

 

The stability of the TFM, which is dependent on the mathematical behavior of the governing partial 

differential equations (PDEs), plays an important role in understanding its capability to simulate 

two-phase instabilities. Significant issues where found when the one-dimensional (1D) TFM was 

used to perform CFD analysis in the nuclear reactor safety codes. Gidaspow [26] stated that the 

1D TFM without the viscous dissipation terms is ill-posed or elliptic as an Initial Value Problem 

(IVP) depending on the constitutive models and flow conditions. It is important for any system of 

governing differential equations for fluid flow to be well-posed, so that a physically meaningful 

solution is obtained. This led to the common misconception that the TFM is flawed. Historically, 

the ill-posedness has been addressed by using either excessive numerical damping or adding 

unphysical closure models implemented to remove the unstable behavior of the TFM. 

Unfortunately, these methods remove the inherent dynamics associated with the two-phase flows, 

making the TFM incapable of resolving the very two-phase flow instabilities, which only the TFM 

can resolve. 
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The linear stability theory consisting of the charteristic and dispersion analysis has been widely 

used for understanding the mathematical behavior of the TFM. A model is considered as ill-posed 

when the growth rate is infinite at zero wavelengths for the two-phase waves. Using characteristic 

analysis for the compressible TFM, it was shown by Drew and Passman [27] that the problem of 

ill-posedness is associated with the material waves or the void fraction waves, and not the acoustic 

as they are always real. This led to change in focus towards the local material wave stability 

analysis of the TFM. The ill-posedness of the TFM is due to lack of appropriate short-wave physics 

which get often neglected due to the incomplete averaging and over simplification of the TFM 

when used for CFD simulations. It is the physical mechanisms operating at short wavelengths, of 

the scale of the local interfacial structures, that make the TFM well-posed or ill-posed. Lopez de 

Bertodano et al. [7] stated that the TFM by default has the KH instability embedded in it due to 

the existence of two independent velocity fields in its fundamental formulation. Ramshaw and 

Trapp [28] and Pauchon and Banerjee [29] proposed that addition of physically relevant short-

wave mechanisms like surface tension and interfacial pressure within the TFM can make it well-

posed at least in the linear stability sense while retaining the unstable nature of it leading to material 

wave growth. It was shown by Barnea and Taitel [30] and Fullmer et al. [31] that the TFM can 

become unstable due to either kinematic instability (SWT instability) or the dynamic instability 

(KH instability) or both. But the non-linear stability, in the sense of boundedness of the material 

wave growth, of the linearly well-posed and unstable TFM was not explored and resolved in detail 

until the work of Lopez de Bertodano et al. [7] They clearly demonstrated the evolution of the 

growth of material waves and the inherent chaos associated with their non-linear evolution, while 

being non-linearly bounded or Lyapunov stable at the same time. 

1.3  Outline of the Thesis 

The goal of the work presented here is to derive objective constitutive models and address the 

stability of the 1D TFM to simulate bubbly to slug flow regime transition using a 1D Shallow 

Water TFM. The wake entrainment phenomenon is proposed as the physical mechanism causing 

clustering of dispersed bubbles to form bubble clusters and Taylor bubbles. The mechanistic 

approach towards development of the constitutive models, the linear and nonlinear stability 

analysis of the time averaged 1D TFM of Ishii [1] is presented first in Section 2. To begin with, 

the mechanistic TFM is discussed and following Lopez de Bertodano et al. [7], it is demonstrated 
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that the 1D Shallow Water TFM is an asymptotic case of the 1D TFM. To include appropriate 

physics relevant for growth of the void fraction waves due to clustering, the wake entrainment 

force model is developed. This is followed by inclusion of the elastic collision force model to 

account for the random bubble interactions and viscous diffusion model. To analyze the stability 

of the TFM, the characteristic and the dispersion analyses are used to determine the nature of the 

governing PDEs and the local wake entrainment instability, as well as the well-posedness. This is 

followed by the non-linear stability analysis in which, the numerical method used for the 

simulations is first described. The numerical simulations of the development of the local interfacial 

structures for clustered bubbly flow regime are validated with experimental data. The propagation 

properties of the void fraction waves for bubble clusters are compared with the data. The 

mechanistic approach is followed by the variational approach in Section 3 to address both the 

stability and objectivity of the TFM. Following Geurst [4] and Pauchon and Smereka [20], the 

variational derivation of the 1D TFM is presented. A comparison is made between the variational 

and the 1D mechanistic TFM to show that there are additional momentum transfer terms in 

variational TFM making it objective or frame invariant.  Then, the variational derivation of 1D 

Shallow Water TFM of Pauchon and Smereka [20] is presented and modified to include 

conservative surface tension and gravity forces. The non-conservative interfacial drag force is 

added as an ad-hoc. It is demonstrated that the variational and mechanistic equations are equivalent 

when written in terms of the primitive variables. The constitutive models for conservative inertial 

forces for wake entrainment are developed through formulation of inertial coupling using the 

lumped parameter model of Wallis [22]. A local drag coefficient is obtained from the experimental 

data for the interfacial drag force. Similar to the mechanistic approach in Section 2, the linear 

stability analysis is then used to study the stability of the 1D variational TFM. The well-posed and 

unstable 1D variational Shallow Water TFM is then solved numerically to show the development 

of local interfacial structures associated with bubble clusters and Taylor bubbles. The wave 

propagation properties of the void fraction waves are then compared with experimental data.  
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 MECHANISTIC TWO-FLUID MODEL 

The Two-Fluid Model (TFM) is the most detailed Eulerian multiphase flow model for two-phase 

flows. In the TFM, each phase has its own transport equation for conservation of mass, momentum 

and energy, and these equations are linked through interfacial transfer terms supplemented by the 

jump conditions. The difficult aspect of modeling two-phase flows using a Eulerian framework is 

the presence of multiple moving and deformable interfaces based on the flow pattern. Apart from 

having Navier-Stokes equations for each for the two-phases, matching boundary conditions are 

required at the interface and local instantaneous formulation ends up being a multi-boundary 

problem which is mathematically impractical to solve (Ishii and Hibiki [17]). This issue has been 

tackled by using proper averaging techniques to obtain macroscopic two-phase flows formulation 

(Ishii and Mishima [32]). The mechanistic approach uses the averaging as the very first step for 

formulation of the TFM to be applicable for macroscopic analysis of two-phase systems. Three 

distinct averaging techniques have been used so far for rigorous derivation of the TFM from the 

local instantaneous governing equations; the ensemble averaging by Drew [33] , time averaging 

by Ishii [1] and volume averaging by Morel [34]. The averaging procedure filters out the local 

instantaneous fluctuations of flow variables by averaging across the interface. In essence, the 

interface is no longer tracked, but the contribution of the interfaces affecting the macroscopic flow 

is considered in a statistical sense. This is achieved through constitutive relations for the interfacial 

transfer terms.  

 

The Eulerian time averaging was used by Ishii [1] to formulate the three-dimensional (3D) TFM. 

The 3D TFM equations for dispersed two-phase vertical flows without phase change are: 

 
𝜕

𝜕𝑡
𝛼𝑘𝜌𝑘 + 𝛻. 𝛼𝑘𝜌𝑘𝑢̅𝑘 = 0 (1)  

 

𝜕

𝜕𝑡
𝛼𝑘𝜌𝑘𝑢̅𝑘 + ∇. 𝛼𝑘𝜌𝑘𝑢̅𝑘 𝑢̅𝑘 

= −𝛼𝑘∇𝑝̅𝑘 + ∇. 𝛼𝑘(𝜏𝑘̅ + 𝜏𝑘̅
𝑡 ) + 𝛼𝑘𝜌𝑘𝑔̅ + 𝑀̅𝑘𝑖 + (𝑝̅𝑘𝑖 − 𝑝̅𝑘)∇𝛼𝑘 + (𝜏𝑘̅𝑖

− 𝜏𝑘̅). ∇𝛼𝑘 

(2)  

 

where the index 𝑘 = 1 is for the continuous liquid phase and 2 is for the dispersed gas phase. 

Here, 𝛼𝑘 , 𝜌𝑘 , 𝑢̅𝑘  and 𝑝̅𝑘  are the averaged phasic void fraction, density, velocity, and pressure, 

respectively. Eq. (1) is the continuity or mass conservation equation without mass transfer between 
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the phases. Eq. (2) is the momentum conservation equation representing the Newtonian principle 

of rate of change of momentum being equal to net force acting on the system. 𝜏𝑘̅ and 𝜏𝑘̅
𝑡  are laminar 

and turbulent Reynolds stresses in the bulk fluid. and 𝜏𝑘̅𝑖 is the interfacial shear stress. The term 

𝑀̅𝑘𝑖   collectively represents interfacial forces per unit volume, defining the interfacial momentum 

transfer across the interface. From interfacial jump conditions, the void fractions satisfy  

  ∑ 𝛼𝑘

2

𝑘=1

= 0 (3)  

 

and the interfacial momentum transfer terms satisfy  

 ∑ 𝑀̅𝑘𝑖

2

𝑘=1

= 0 (4)  

 

which basically means that the interfacial momentum transfer terms for both the phases form an 

action-reaction pair, satisfying Newton’s third law of motion. Depending on the flow regime, the 

constitutive relations for interfacial momentum transfer terms are different and much of the 

challenge in two-phase flow modelling is attributed to 𝑀̅𝑘𝑖 formulation. For a dispersed two-phase 

mixture, 𝑀̅𝑘𝑖 in general consists of drag 𝑀̅𝑘𝑖
𝐷 , lift 𝑀̅𝑘𝑖

𝐿 , turbulent dispersion 𝑀̅𝑘𝑖
𝑇𝐷, wall 𝑀̅𝑘𝑖

𝑊, virtual 

mass 𝑀̅𝑘𝑖
𝑉𝑀 and Basset force 𝑀̅𝑘𝑖

𝐵  such that 

 𝑀̅𝑘𝑖 = 𝑀̅𝑘𝑖
𝐷 + 𝑀̅𝑘𝑖

𝐿 + 𝑀̅𝑘𝑖
𝑇𝐷 + 𝑀̅𝑘𝑖

𝑊 + 𝑀̅𝑘𝑖
𝑉𝑀 + 𝑀̅𝑘𝑖

𝐵  (5)  

 

A detailed description regarding individual forces within 𝑀̅𝑘𝑖  can be found in Ishii and Hibiki 

[17]and only a brief explanation is given here.  

 

The momentum transfer due to virtual mass represents the transient inviscid force acting on the 

dispersed phase, when it tries to accelerate in a continuum. It defines the additional drag force a 

bubble experiences when it tries to push liquid behind to move ahead. Following Drew and Lahey 

[18], 

 

𝑀̅2𝑖
𝑉𝑀 = 𝛼2𝜌1𝑐𝑣𝑚 (

𝐷1𝑢̅1 

𝐷𝑡
−

𝐷2𝑢̅2 

𝐷𝑡
) 

𝐷𝑘

𝐷𝑡
=

𝜕

𝜕𝑡
+ 𝑢̅𝑘 . ∇ 

(6)  
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where 𝑐𝑣𝑚 is the virtual mass coefficient and is 1/2 for dilute bubby flows. For void fractions above 

the dilute limit (𝛼1 →1), interaction between the bubbles becomes significant and its effect on the 

virtual mass coefficient was formulated by Zuber [35] as 

 𝑐𝑣𝑚 =
1

2
(
1 + 2𝛼2

1 − 𝛼2
) (7)  

 

The virtual mass term plays a significant role on the propagation properties of the void fraction 

waves and hence plays an important role on stability of the TFM.  

The distribution of dispersed flow structures is influenced by the pressure between the interface 

and the bulk region of the fluid. Using potential flow of liquid past a solid sphere, Stuhmiller [36]  

proposed the following definition for the interfacial pressure difference, 

 𝑝̅1𝑖 − 𝑝̅1 = −𝑐𝑝𝜌1|𝑢̅𝑟|
2 (8)  

 

with 𝑐𝑝 = 0.25 for dilute bubbly flows and is a function of 𝛼2 just like the virtual mass coefficient 

for void fractions higher than the dilute limit. 𝑢̅𝑟 = 𝑢̅2 − 𝑢̅1 is the relative velocity betweent the 

gas and liquid phase. According to Drew and Passman [27] the pressure in the bulk region of the 

dispersed phase is almost equal to the pressure at the interface and hence 𝑝̅2𝑖 ≈ 𝑝̅1. Pauchon and 

Banerjee [29] found that for vertical bubbly flows, the interfacial pressure difference gives real 

Eigenvalues to the TFM. Just like virtual mass force, the void fraction wave propagation properties 

are also dependent on the interfacial pressure difference.  

The general form of momentum transfer due to steady state drag force is given by, 

 𝑀̅𝑘𝑖
𝐷 = −

3

4
𝛼2𝜌1

𝑐𝐷

𝐿𝐷

|𝑢̅𝑟|𝑢̅𝑟 (9)  

 

where 𝐶𝐷 is the interfacial drag coefficient and is a function of void fraction 𝛼2. The definition of 

𝐶𝐷 is unique for a given flow regime. For example, the 𝑐𝐷 for distorted particles is given by (Ishii 

and Hibiki [17]), 

 𝑐𝐷 =
2𝐷𝑏

3
√

𝑔∆𝜌

𝜎
 (

1 + 17.67 𝑓(𝛼2)
6
7

18.67 𝑓(𝛼2)
)

2

 (10)  

where 

 𝑓(𝛼2) = (1 − 𝛼2)
1.5 (11)  
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In the above equations, the mean bubble diameter is given by 𝐷𝑏 , 𝜎  is the surface tension 

coefficient, and ∆𝜌 = 𝜌1 − 𝜌2 is the density difference. In addition,  𝐿𝐷 is an appropriate length 

scale for interfacial drag force and represents the characteristic length scale of the interfacial 

structures.  

Due to the presence of wall surface, liquid flow past a bubble has difference in velocity between 

the wall side and bulk side of the liquid. This generates a force that pushes bubbles away from the 

near-wall region and is known as the wall force. Following Antal [37],  

 𝑀̅2𝑖
𝑊 = −𝛼2𝜌1𝑐𝑤𝑎𝑙𝑙|𝑢̅𝑟|

2 (12)  

 

The wall coefficient 𝑐𝑤𝑎𝑙𝑙 is given by,  

 𝑐𝑤𝑎𝑙𝑙 = 𝑚𝑖𝑛 {0, (
𝑐𝑤1̇

𝐷𝑏
+

𝑐𝑤2̇

𝑦𝑤𝑎𝑙𝑙
)} (13)  

 

where 𝑐𝑤1̇  and 𝑐𝑤2̇  are constants and 𝐷𝑏 is the bubble diameter. The wall force plays an important 

role in near-wall modelling for CFD and enables realization of physically relevant void fractions 

in the region closer to the wall.  

The presence of bubbles induces additional turbulence in the flow. The turbulent liquid eddies 

disperse bubbles from regions of higher to lower void fractions and the force representing this 

phenomenon following Lopez de Bertodano [38] is the turbulent dispersion force defined as  

 𝑀̅2𝑖
𝑇𝐷 = −𝑐𝑇𝐷𝜌1𝑘1∇𝛼2 (14)  

 

where the turbulent dispersion coefficient 𝑐𝑇𝐷 = 0.25 is generally used for bubbly flows.  

The velocity gradients in the liquid phase cause transverse displacement of the dispersed flow 

structures through lift force. Important for the near-wall region, following Drew and Lahey [18] 

and Auton [39], the lift force is given by, 

 𝑀̅2𝑖
𝐿 = −𝛼2𝜌1𝑐𝐿 × (∇ × 𝑢̅1) (15)  

 

For bubbly flows, the lift coefficient 𝑐𝐿 = 0.25 and a wide variety of empirical correlations have 

been proposed by Tomiyama et al. [40] and Frank et al. [41].  

 

Finally, for the continuous liquid phase, the stress terms due to viscous diffusion are represented 

by,  

 𝜏1̅ + 𝜏1̅
𝑡 = 𝜌1  (𝜈1,𝑛𝑒𝑡 (∇ 𝑢̅1 + ∇ 𝑢̅1

+) − (
2

3
𝜈1,𝑛𝑒𝑡 − 𝜆1) ∇. 𝑢̅1

𝐼) (16)  
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In the above equation, the net effective kinematic viscosity is denoted by 𝜈1,𝑛𝑒𝑡 and 𝜆1 is the bulk 

viscosity of the of the liquid phase. 

2.1 1D Two-Fluid Model 

The three-dimensional (3D) TFM obtained from averaging the local balance equations describes 

the phasic interactions in detail. In general, when the flow features are more dominant along the 

axial direction of the flow channel, a one-dimensional (1D) TFM derived from area averaging the 

3D TFM is more convenient. Since this dissertation focuses on the local KH and SWT instabilities 

in the void fraction, 1D form of the TFM is used as it eliminates the hydrodynamics associated 

with turbulence. Following Lopez de Bertodano et al. [7], the 1D approximation has been found 

to be sufficient to address the ill-posed nature of the TFM caused by the lack of short-wave physics. 

Moreover, 1D approximation helps focus towards development of constitutive relations for 

interfacial momentum transfer terms and their effect on the stability of the TFM, since these 

interfacial terms are the most important characteristic feature of the TFM.  

The 1D TFM is obtained by area averaging the full 3D TFM. Ishii and Hibiki [17] provide more 

information regarding the area averaging procedure. For vertical adiabatic and incompressible 

dispersed two-phase flows, the 1D TFM is given by  

𝜕𝛼1

𝜕𝑡
+

𝜕

𝜕𝑥
𝛼1𝑢1 = 0 (17)  

𝜕𝛼2

𝜕𝑡
+

𝜕

𝜕𝑥
𝛼2𝑢2 = 0 

(18)  

𝜌1𝛼1 (
𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
)

= −𝛼1

𝜕𝑝1

𝜕𝑥
+

𝜕

𝜕𝑥
𝛼1(𝜏𝑘 + 𝜏𝑘

𝑡 ) − 𝛼1𝜌1𝑔 − 𝑀2𝑖
𝑉𝑀 − 𝑀2𝑖

𝐷

− (𝑝1𝑖 − 𝑝1)
𝜕𝛼1

𝜕𝑥
 

(19)  

𝜌2𝛼2 (
𝜕𝑢2

𝜕𝑡
+ 𝑢2

𝜕𝑢2

𝜕𝑥
) = −𝛼2

𝜕𝑝1𝑖

𝜕𝑥
− 𝛼2𝜌2𝑔 + 𝑀2𝑖

𝑉𝑀 + 𝑀2𝑖
𝐷  (20)  
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In the above equations, 𝛼𝑘 , 𝜌𝑘 , 𝑢𝑘  and 𝑝𝑘  are the area averaged phasic void fraction, density, 

velocity and bulk pressure for phase 𝑘. The laminar and turbulent axial liquid shear stresses are 

denoted by 𝜏𝑘 and 𝜏𝑘
𝑡  respectively. The momentum transfer term due to mass flux is absent as there 

is no mass transfer. Under the 1D assumption, lift and wall forces are dropped.  

2.2 Wake Entrainment  

Wake entrainment phenomenon is proposed as the physical mechanism responsible for clustering 

of dispersed bubbles to form bubbles clusters and slug flow. The bubble in the wake of a leading 

bubble experiences less drag, which results in the trailing bubbles accelerating and eventually 

catching up with the leading bubble. It is important to include this mechanism in the TFM 

formulation to model the flow regime transition from discrete bubbly flow to clustered bubbly and 

slug flow. As a first order approximation, the momentum transfer term due to wake entrainment is 

based on linearization of the interfacial drag force term. For a 1D framework, the drag coefficient 

of churn-turbulent flow from Ishii and Chawla [42], given by 

 𝑐𝐷 =
8

3
(1 − 𝛼2)

2 (21)  

 

is used for deriving wake entrainment force from  𝑀2𝑖
𝐷 .The decreasing trend of drag coefficient in 

Eq. (21) with increasing 𝛼2 is due to wake entrainment. The interfacial drag force can be linearized 

with respect to 𝛼2 by  

 𝑀2𝑖
𝐷 = 𝑀2𝑖

𝐷 |𝛼20
+ 𝑀2

𝑊𝐸|𝛼20
 (22)  

Using Taylor’s expansion and taking into consideration only first order terms, 

 𝑀2𝑖
𝐷 = 𝑀2𝑖

𝐷 |𝛼20
+ 

𝜕𝑀2𝑖
𝐷

𝜕𝛼2

|
𝛼20

𝛿𝛼2 (23)  

 

Combining Eqs. (21)-(23) gives the momentum transfer term due to wake entrainment as 

 𝑀2
𝑊𝐸 = 𝜌1𝐶𝑊𝐸

𝐿𝑊𝐸

𝐿𝐷

(3𝛼2
2 − 4𝛼2 + 1)𝑢𝑟

2
𝜕𝛼2

𝜕𝑥
 

(24)  

 

where linearization of the interfacial drag gives 𝐶𝑊𝐸 = 2. Distinct length scales for the interfacial 

drag force 𝐿𝐷𝑟𝑎𝑔 and wake entrainment term 𝐿𝑊𝐸  are proposed for dispersed and clustered bubbly 

flow regimes. For dispersed bubbly flows,  𝐿𝑊𝐸 = 10 𝐷𝑏  and 𝐿𝐷 = 𝐷𝑏  and 𝐿𝑊𝐸 = 20 𝐷𝑏  and 

𝐿𝐷 = 2 𝐷𝑏 for clustered bubbly flows and the reader can refer to Appendix A for more details. 
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2.3  Collision 

In addition to the wake entrainment, another important mechanism that needs to be taken into 

consideration when bubbles interact with each other is collision. The increase in packing fraction 

with increase in gas flow rate (higher void fraction) increases the bubble collision frequency. The 

kinetic theory of finite sized particles was developed by Chapman and Cowling [43] using the 

Enskog kinetic equation. Following their work, several models to account for the collision effect 

in the field of fluid-particle flows were formulated. For the current work, the model of Alajbegovic 

et al. [44] for collision induced momentum transfer term 𝑀𝑐𝑜𝑙𝑙 is considered, 

 𝑀𝑐𝑜𝑙𝑙 = −∇. [(𝜌2 + 𝜌1𝑐𝑣𝑚) 𝑞(𝛼2)𝛼2
2(2𝑢2

′ 𝑢2
′̅̅ ̅̅ ̅̅ + 𝑢2

′ . 𝑢2
′̅̅ ̅̅ ̅̅ ̅𝐼)] (25)  

 

It is important to note that the collision force term is only valid for the dispersed gas phase 

momentum equation and hence its action-reaction counterpart is absent in the liquid phase 

momentum equation. The increase in collision frequency due to increase in void fraction is defined 

by 𝑞(𝛼2), which is the pair distribution function. Following Carnahan and Starling [45],  

 
𝑞(𝛼2) =

2 − 𝛼2

2(1 − 𝛼2)
3
 

(26)  

 

Eq. (25) is further simplified to give, 

 
𝑀𝑐𝑜𝑙𝑙 = −𝑐𝑐𝑜𝑙𝑙𝜌1𝐶𝑣𝑚

2 ∇. [𝑞(𝛼2)𝛼2
3|𝑢𝑟|

2𝐼] 
(27)  

Assuming an isotropic particle stress tensor (Vaidheeswaran [46]), 𝑀𝑐𝑜𝑙𝑙  reduces to following 

form for the 1D TFM with 𝑐𝑐𝑜𝑙𝑙 = 1.8 and more details are given in Appendix B, 

 
𝑀𝑐𝑜𝑙𝑙 = −𝑐𝑐𝑜𝑙𝑙𝜌1𝐶𝑣𝑚

2 [(3𝛼2
2𝑢𝑟

2𝑞(𝛼2) + 𝛼2
3𝑢𝑟

2
𝑑𝑞(𝛼2)

𝑑𝛼2

)
𝜕𝛼2

𝜕𝑥
+ 2𝛼2

3𝑢𝑟𝑞(𝛼2)
𝜕𝑢𝑟

𝜕𝑥
] 

(28)  

2.4  Viscous Stresses 

Following Lopez de Bertodano et al. [38], two viscous diffusion mechanisms, bubble induced and 

eddy induced viscosity, are taken into consideration using linear superposition. The bubble 

induced diffusion is given by the bubble induced viscosity νSato of Sato [47] and, likewise, the 
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eddy diffusivity νeddy  is based on Prandtl’s mixing length model (Pope [48]). Hence, the net 

effective kinematic viscosity follows, 

 

𝜈1,𝑛𝑒𝑡 = 𝜈𝑙𝑎𝑚 + 𝜈𝑆𝑎𝑡𝑜 + 𝜈𝑒𝑑𝑑𝑦  

𝜈𝑙𝑎𝑚 = 1.03 × 10−6  

𝜈𝑆𝑎𝑡𝑜 = 𝑐𝑆𝑎𝑡𝑜|𝑢𝑟|𝐷𝑏𝛼2 

𝜈𝑒𝑑𝑑𝑦 = (
𝐷𝑝𝑖𝑝𝑒

10
) |𝑢𝑟| 

(29)  

 

where 𝑐𝑆𝑎𝑡𝑜 = 0.6, 𝐷𝑝𝑖𝑝𝑒 and 𝐷𝑏 are the pipe and bubble diameters. The importance of viscous 

diffusion mechanism will be discussed in the linear stability analysis.  

2.5  1D Shallow Water Two-Fluid Model 

As stated earlier, the TFM has the capability to resolve both system/global and local instabilities. 

To focus solely on the local void fraction wave instabilities, an asymptotic case of the 1D TFM 

was presented by Lopez de Bertodano et al. [7] for dispersed two-phase flows by using the fixed-

flux assumption. The full 4-equation 1D TFM was then reduced to a 2-equation Shallow Water 

TFM. This greatly simplified the analysis of the two local instabilities, i.e., the KH and 

SWT/kinematic instabilities for adiabatic incompressible two-phase flows. 

The 1D TFM presented in the previous section for adiabatic dispersed two-phase flows serves as 

the starting point for derivation of the Shallow Water TFM. The first step involves adding the two 

continuity equations without phase change to obtain  

 
𝜕

𝜕𝑡
(𝜌1𝛼1 + 𝜌2𝛼2) +

𝜕

𝜕𝑥
(𝜌1𝛼1𝑢1 + 𝜌2𝛼2𝑢2) = 0 (30)  

 

The next step is to subtract the liquid momentum equation Eq. (19) and the gas momentum 

equation Eq. (20) as,  

 

(1 +
𝑐𝑣𝑚

𝛼1
)
𝐷1

𝐷𝑡
𝜌1𝑢1 − (1 +

𝑐𝑣𝑚

𝑟𝑝𝛼1
)

𝐷2

𝐷𝑡
𝜌2𝑢2 +

𝜕

𝜕𝑥
𝑐𝑝𝜌1(𝑢2 − 𝑢1)|𝑢2 − 𝑢1|

+
𝑐𝑝𝜌1(𝑢2 − 𝑢1)

2

𝛼1

𝜕𝛼1

𝜕𝑥
= −(𝜌1 − 𝜌2)|𝑔| +

𝑀2𝑖
𝐷

𝛼1𝛼2
 

(31)  
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where 𝑟𝑝 = 𝜌2/𝜌1 . The fixed flux condition is obtained when the incompressible (constant 

densities) and adiabatic flow conditions (no phase change) are imposed. Then sum of the continuity 

equations using 𝛼1 + 𝛼2 = 1 constraint follows,  

 
𝜕

𝜕𝑡
(𝛼1 + 𝛼2) +

𝜕

𝜕𝑥
(𝛼1𝑢1 + 𝛼2𝑢2) =

𝜕

𝜕𝑥
(𝛼1𝑢1 + 𝛼2𝑢2) =

𝜕𝑗

𝜕𝑥
= 0 (32)  

 

From Eq. (32), it can be seen that the net volumetric flux of the two-phase mixture is only a 

function of time, i.e., 𝑗(𝑥, 𝑡) = 𝑗(𝑡) and is constant at every axial location of the 1D domain. Now 

the fixed-flux condition is obtained when it is further assumed that the net volumetric flux 𝑗 is 

independent of time such that 𝑗(𝑥, 𝑡) =  𝑗0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. In vector form, ∇. 𝒋 = 0 is equivalent to 

the incompressible single-phase flow condition of the divergence of the of velocity being zero. 

Physically, from Ishii and Hibiki [49] (Eq. (13-88) of Chapter-13), the fixed-flux condition means 

that there is no change in the volumetric flux due to the amount of phase change and 

compressibility of the two-phase flow.  This renders the flow adiabatic (no heat transfer) and 

isochoric (constant density). An important consequence of the fixed-flux assumption is that the 

flow dynamics associated with net change in the volumetric flux due to large acoustic interactions 

(from sudden pressurization or depressurization) and mass generation, which cause long wave 

system instabilities like level swell and density wave instabilities, are eliminated. Furthermore, the 

TFM momentum equations are reduced to a single equation, representing the two phases together 

as a pseudo fluid and solves for the relative velocity between the phases. This is essential for 

addressing the ill-posedness issue of the TFM, which is a local short-wave stability problem.  

To obtain the Shallow Water TFM equations, the two PDEs from the sum of the continuity 

equations and the difference of the momentum equations are recast into  

 
𝑑

𝑑𝑡
𝜓 + 

𝑑

𝑑𝑥
ф = 𝜁 (33)  

 

where 

 
𝜓 = [

𝜌1𝛼1 + 𝜌2𝛼2

(1 +
𝑐𝑣𝑚

𝛼1
) 𝜌1𝑢1 − (1 +

𝑐𝑣𝑚

𝑟𝑝𝛼1
)𝜌2𝑢2

] 

 

(34)  

 

ф = [

𝜌1𝛼1𝑢1 + 𝜌2𝛼2𝑢2

1

2
(1 +

𝑐𝑣𝑚

𝛼1
) 𝜌1𝑢1

2 −
1

2
(1 +

𝑐𝑣𝑚

𝑟𝑝𝛼1
)𝜌2𝑢2

2 + 2𝑐𝑝𝜌1(𝑢2 − 𝑢1)
2  

] 

 

(35)  
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𝜁 = [

0

−(𝜌1 − 𝜌2)|𝑔| −
𝑓1

𝛼1𝐷𝑝𝑖𝑝𝑒
𝜌1|𝑢1|𝑢1 +

𝑀2𝑖
𝐷

𝛼1𝛼2

] 

(36)  

 

Writing the above system of PDEs in terms of the primitive variables 𝜑 =  [𝛼1 , 𝑢1]
𝑇 gives 

  𝑨
𝜕

𝜕𝑡
𝜑 +  𝑩

𝜕

𝜕𝑡
𝜑 = 𝐹 (37)  

 

where 𝑨 = 𝑰. Using Taylor series expansion of the terms in 𝑩 for low density ration 𝑟𝑝 ≪ 1 

applicable for air-water two-phase mixture, the simplified matrix 𝑩 will be  

  𝑩 ≅ [

𝑢1 𝛼1

(1 + 𝛼1)𝑐𝑣𝑚 − 𝑐𝑝

𝑐𝑣𝑚 + 𝛼1 − 𝛼1
2

(𝑢2 − 𝑢1)
2 𝑢1 +

2𝛼1(𝑐𝑣𝑚 − 𝑐𝑝)

𝑐𝑣𝑚 + 𝛼1 − 𝛼1
2
(𝑢2 − 𝑢1)

] (38)  

 

and the source term is  

   𝐹 ≅ [

0

−|𝑔| −
𝑓1

𝛼1𝐷𝑝𝑖𝑝𝑒

|𝑢1|𝑢1 +
𝑀2𝑖

𝐷

𝜌1𝛼1𝛼2

] (39)  

 

The 1D mechanistic Shallow Water TFM as an asymptotic case of the 1D TFM using the fixed-

flux assumption is,  

 
 
𝜕 𝛼1

𝜕𝑡
+ 𝑢1

𝜕𝛼1

𝜕𝑥
+ 𝛼1

𝜕𝑢1

𝜕𝑥
= 0 

 
(40)  

 
 
𝜕𝑢1

𝜕𝑡
+ 𝐵21

𝜕𝛼1

𝜕𝑥
+ 𝐵22

𝜕𝑢1

𝜕𝑥
=

𝛼1𝛼2

𝑐𝑣𝑚 + 𝛼1𝛼2
[−|𝑔| +

𝑀2𝑖
𝐷

𝜌1𝛼1𝛼2
] 

(41)  

where  
 

𝐵21 =
(1 + 𝛼1)𝑐𝑝 − 𝑐𝑣𝑚

𝑐𝑣𝑚 + 𝛼1𝛼2

𝑢𝑟
2 

(42)  

 
𝐵22 = 𝑢1 +

2𝛼1(𝑐𝑣𝑚 − 𝑐𝑝)

𝑐𝑣𝑚 + 𝛼1𝛼2

𝑢𝑟 
(43)  

Now, the addition of the collision force terms modifies the 𝐵21 and 𝐵22 as, 

 

 
𝐵′21 = 𝐵21 +

𝑐𝐶𝑜𝑙𝑙 𝑐𝑣𝑚
2  𝑢𝑟

2

𝛼1
3

(1 − 𝛼1)
2(3 − 𝛼1

2)

(𝑐𝑣𝑚 + 𝛼1 − 𝛼1
2)

 

 

(44)  
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 𝐵′22 = 𝐵22 −
𝑐𝐶𝑜𝑙𝑙 𝑐𝑣𝑚

2 𝑢𝑟

𝛼1
2

(1 − 𝛼1)
2(1 + 𝛼1)

(𝑐𝑣𝑚 + 𝛼1 − 𝛼1
2)

 (45)  

 

Furthermore, when the wake entrainment force terms is included, the coefficient for the void 

gradient term follows,  

 𝐵"21 = 𝐵′21 +
𝐿𝑊𝐸

𝐿𝐷𝑟𝑎𝑔

𝑐𝑊𝐸  (3𝛼2
2 − 4𝛼2 + 1)

1 − 𝛼1
2

𝑐𝑣𝑚 + 𝛼1 − 𝛼1
2 𝑢𝑟

2 
(46)  

 

Finally, the second order viscous diffusion term modifies the momentum equation and inclusion 

completes the 1D mechanistic Shallow Water TFM as,  

 
 
𝜕𝛼1

𝜕𝑡
+ 𝑢1

𝜕𝛼1

𝜕𝑥
+ 𝛼1

𝜕𝑢1

𝜕𝑥
= 0 

(47)  

 
 
𝜕𝑢1

𝜕𝑡
+ 𝐵21

𝜕𝛼1

𝜕𝑥
+ 𝐵22

𝜕𝑢1

𝜕𝑥

=
𝛼1𝛼2

𝑐𝑣𝑚 + 𝛼1𝛼2
[−|𝑔| +

𝑀2𝑖
𝐷

𝜌1𝛼1𝛼2
+ (

𝜈1,𝑛𝑒𝑡

𝛼1
)

𝜕

𝜕𝑥
(𝛼1

𝜕𝑢1

𝜕𝑥
)] 

(48)  

 

A remarkable feature of the 1D Shallow Water TFM equations in Eqs. (47)-(48) is that their 

mathematical form is similar to the 1D SWT equations, which have been extensively studied for 

solving problems dealing with SWT instability and kinematic wave propagation (Whitham [8]). 

However, in terms of the local physical instabilities, the 1D Shallow Water TFM has the KH 

instability in addition to the kinematic instability and hence in terms of the stability analysis, it is 

more complex. Moreover, the two-equation 1D Shallow Water TFM is computationally simpler 

and less expensive than the full four-equation 1D TFM because it eliminates pressure and provides 

an elegant mathematical formulation to address the local stability issue of the 1D TFM. 

2.6  Linear Stability  

A model represented by a system of equations is well-posed if apart from the fact that a solution 

exists, the solution should be unique based on the flow conditions. The 1D Shallow Water TFM 

needs to be well-posed and unstable to be able to simulate flow regime transitions due to the 

presence of local instabilities. Following Ishii and Hibiki [17], the number of unknows in the TFM 

can be as high as 33 and formulation of constitutive models for interfacial transfer terms is not 

straightforward and remains under development. To solve the TFM numerically, it is often the 
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tendency to neglect terms to simplify it based on flow regime of interest. This can make the TFM 

ill-posed if one of the neglected terms is associated with short wave physics. Ramshaw and Trapp 

[28] and Lopez de Bertodano et al. [7] demonstrated the significance of short-wave physical 

mechanisms such as surface tension and viscous diffusion for making the TFM well-posed. Since 

the 1D Shallow Water TFM is an asymptotic case of the 1D TFM, the ill-posedness caused due to 

lack of short-wave physics in the 1D TFM is the same as for the 1D Shallow Water TFM. The 

linear stability analysis helps to address the ill-posedness of the 1D Shallow Water TFM when 

appropriate short-wave physics is included in the model pertaining to the specific flow regimes.  

Using the linear stability theory comprising of the characteristic and the dispersion analysis, the 

nature of the PDEs in the TFM and the effect of appropriate physical mechanisms on the TFM 

stability and well-posedness can be addressed. Since the acoustic roots of the TFM are always real 

(Drew and Passman [27]), the incompressible TFM is used to perform linear stability analysis as 

the ill-posedness is associated with the material roots which are the void fraction waves for the 

work presented here. 

2.6.1 Characteristic Analysis 

Since flow regime transitions can be analyzed using wave theory, the TFM is nevertheless 

expected to be a wave propagation model. In the characteristic analysis, the eigenvalues of the 1D 

Shallow Water TFM are solved and they indicate its mathematical behavior. A model is hyperbolic 

if it has two real and distinct characteristic speeds, which are the Eigenvalues of the systems of 

PDEs. The presence of imaginary Eigenvalues makes the model elliptic. Another interesting case 

is when the system of PDEs has only one real Eigenvalue and this renders the model parabolic.  

The mathematical nature of the 1D Shallow Water TFM equations can be examined by solving for 

the Eigenvalues. The system of PDEs are first recast into a quasi-linear form as,  

 𝑨
𝜕

𝜕𝑡
𝜙 + 𝑩

𝜕

𝜕𝑥
𝜙 + 𝑫

𝜕2

𝜕𝑥2
𝜙 + 𝑭 = 0 (49)  

 

where, 𝜙 = [𝛼1  𝑢1  ]
𝑇. The Eigenvalues are obtained by solving the following constraint equation, 

 Det(𝑨 𝐶 − 𝑩) = 0 
(50)  

This results in two Eigenvalues,  
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 𝐶 = [𝐶1   𝐶2 ]
𝑇 

(51)  

 

which define the propagation speed of the void fraction waves. Following Pauchon and Banerjee 

[29] the non-dimensional eigenvalues are given by, 

 𝐶1,2
∗ =

𝐶1,2 − 𝑢1

𝑢𝑟

  
(52)  

 

The non-dimensional eigenvalues are shown in Fig. 1 to examine the effect of interfacial pressure, 

virtual mass, collision and wake entrainment. The virtual mass force present in all the cases by 

default. Pauchon and Banerjee [29] found that that without the interfacial pressure, the 1D Shallow 

Water TFM is ill-posed as an initial value problem over the entire void fraction range when 𝑢1 ≠

 𝑢2, which represents the inhomogeneous flow. But when the interfacial pressure is included in the 

analysis with 𝑐𝑝 = 0.25, the model becomes well-posed conditionally up to 𝛼2= 0.26 only as seen 

for the P-B curve (Pauchon and Banerjee [29]). Due to addition of the bubble collision mechanism 

for 𝑐𝑐𝑜𝑙𝑙 = 1.8 , the 1D Shallow Water TFM ends up being unconditionally hyperbolic 

for 0 ≤ 𝛼2 ≤ 1. Now when the wake entrainment force is included with distinct length scales as 

stated in Section 2.2, for the stable dispersed bubbly flow case, the model is hyperbolic only for 

0 ≤ 𝛼2 ≤ 0.15 and 0.36 ≤ 𝛼2 ≤ 1. Finally, for the unstable clustered bubbly flow case the model 

becomes elliptic for 0 ≤ 𝛼2 ≤ 0.04 and 0.44 ≤ 𝛼2 ≤ 1.  
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Figure 1 : Eigenvalues of mechanistic 1D Shallow Water TFM  

2.6.2 Dispersion Analysis 

Unlike the characteristic analysis, the dispersion relation allows the inclusion of the interfacial 

drag, gravity as well as higher order viscous dissipation and surface tension forces. So, in terms of 

the flow physics, dispersion analysis gives a more comprehensive picture regarding the stability. 

In particular, the dispersion analysis helps in addressing the issue of ill-posedness as it helps 

analyzing the propagation properties of the void fraction waves for all the wavelengths λ in the 

Fourier space as opposed to the characteristic analysis which is only applicable for 𝜆 → 0.  

In the dispersion analysis, the system of PDEs of the 1D Shallow Water TFM are perturbed and 

linearized to solve for the dispersion relation, i.e., the relation between the angular frequency 

𝜔 (1/𝑠) and the wave number 𝑘 = 2𝜋/𝜆  (1/𝑚). The 1D Shallow Water TFM equations are first 

recast into the form, 
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 𝑨
𝜕

𝜕𝑡
𝛿𝜙 + 𝑩

𝜕

𝜕𝑥
𝛿𝜙 + 𝑫

𝜕2

𝜕𝑥2
𝛿𝜙 +

𝜕𝑭

𝜕𝜙
𝛿𝜙 = 0 

(53)  

 

The perturbation of the forma of travelling wave is introduced as,  

 𝛿𝜙 = 𝛿𝜙0𝑒
𝑖(𝑘𝑥−𝜔𝑡) 

(54)  

 

For a non-trivial solution to exist, the constraint equation reduces to, 

 det [𝜔𝑨 − 𝑘𝑩 − 𝑖𝑘2𝑫 +
𝜕𝑭

𝜕𝜙
] 𝛿𝜙 = 0 

(55)  

 

The dispersion relation is obtained by solving the above equation for 𝜔(𝑘). The real part of 

𝜔 corresponds to the propagation speed of the void fraction waves defined by 𝜔/𝑘. The presence 

of an imaginary 𝜔 represents an unstable model due to the presence of local instabilities in the 

void fraction waves. When there is an instability, there are two imaginary components of 𝜔 and 

the larger of the two dominates the growth of void fractions waves leading to development of 

interfacial structures. In the context of the dispersion analysis, the model is ill-posed when there is 

infinite growth rate, i.e., very large 𝜔𝑖 as 𝜆 → 0. Similar to the characteristic analysis, the effect 

of interfacial pressure, collision and wake entrainment forces on the stability and the well-

posedness of the 1D Shallow Water TFM is discussed here. The complete picture of linear stability 

analysis and fulfillment of the two required attributes of the 1D Shallow Water TFM, namely the 

well-posedness and unstable becomes clearer by looking at dispersion relation in Fig. 2. 
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Figure 2: Dispersion relation of mechanistic 1D Shallow Water TFM   

 

The presence of viscosity along with the first order derivative terms make the 1D Shallow Water 

TFM well-posed as 𝜔𝑖  is finite as 𝜆 → 0. The absence of real characteristics in Fig. 1 due to 

presence of local wake entrainment instability is confirmed by positive wave growth rate seen in 

Fig. 2. It is crucial to note the role played by viscous diffusion mechanisms makes the wave growth 

rate negative at zero wavelength, which is required for the 1D Shallow Water TFM to be well-

posed. To summarize, well-posedness of the model is confirmed by negative wave growth rate at 

zero wavelengths instead of infinite growth rate and the unstable nature is corroborated by a 

positive wave growth rate at finite (non-zero) short wavelengths.  

2.7  Numercial Simulations 

2.7.1 Numerical Method  

The 1D Shallow Water TFM equations were solved numerically using in an in-house 1D 

subchannel code in FORTRAN language. The equations are discretized using a finite difference 
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method on a staggered grid arrangement as shown in Fig. 3. The 1D spatial domain is divided into 

finite volumes, with each volume having a cell center 𝑐 and junctions 𝑗̌ and 𝑗̌+1 at its two ends. 

The void fractions 𝛼𝑘are located at the cell centers and the velocity 𝑢𝑘 is located at the junctions. 

 

 

Figure 3: Staggered grid arrangement for 1D domain 

 

The staggered grid arrangement in Fig. 3 is based on a uniform grid with  𝑥𝑗̌+1 − 𝑥𝑗̌ = 𝑥𝑐̌+1 − 𝑥𝑐̌ =

∆𝑥  is constant and a constant time step ∆𝑡  is used. For a staggered grid, the variables for 

convection not defined at the required cell centers or junctions are determined by donoring based 

on the SMART flux limiter scheme of Gaskell and Lau [49] described here briefly. For positive 

local velocity, the donoring of void fraction at right face with respect to the cell center 𝑐 is, 

 𝛼̂𝑘,𝑅
𝑛 = 𝛼𝑘,𝑐̌

𝑛 + 𝛿𝑥𝑐̌𝛹(𝑟̅) (
𝜕𝛼𝑘

𝜕𝑥
)

𝑈𝐷
 

(56)  

 

where the subscript R refers to the right center or junction of the reference location. The upwind 

derivative is given by, 

 (
𝜕𝛼𝑘

𝜕𝑥
)

𝑈𝐷
= 

𝛼𝑘,𝑐̌
𝑛 − 𝛼𝑘,𝑐̌−1

𝑛

∆𝑥
 (57)  

and the variable 𝑟̅ is, 

 𝑟̅ =  
𝛼𝑘,𝑐̌+1

𝑛 − 𝛼𝑘,𝑐̌
𝑛

𝛼𝑘,𝑐̌
𝑛 − 𝛼𝑘,𝑐̌−1

𝑛  
(58)  

 

Likewise, for negative velocity, donoring of void fraction is from the cell center 𝑐̌ + 1 and the 

upwind derivative and 𝑟  are defined by 𝛼𝑘,𝑐̌+2
𝑛 − 𝛼𝑘,𝑐̌+1

𝑛 . In Eq. (56), 𝛹(𝑟̅) is the flux limiter 

function based on general-piecewise limiter scheme of Waterson and Deconick [50] defined as, 

 𝛹(𝑟̅) = max [0,𝑚𝑖𝑛 {  (2 + 𝑎)𝑟̅ ,
(1 + 𝑘̀)𝑟̅

2
+

(1 − 𝑘̀)𝑟̅

2
 , 𝑀̆}]  (59)  
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In the general piecewise limiter function, the SMART flux limiter scheme is defined for 𝑎 =

0, 𝑘̀ = 1/2 and 𝑀̆ = 4. The SMART scheme was chosen due to its capability to resolve shock like 

structures compared to the other flux limiter schemes. The donoring of velocity follows similar 

procedure given by Eqs. (56)-(59) with the spatial location shifted by ∆𝑥/2. For time advancement 

of the state variables 𝜙 = [𝛼1   𝑢1]
𝑇, the three stage third order Runge-Katta scheme of Gottlieb 

and Shu [51] is used as, 

 

𝜕𝜙

𝜕𝑡
= 𝐹̆ (𝜙)  

𝜙(1) = 𝜙𝑛 + ∆𝑡 𝐹̆ (𝜙𝑛) 

𝜙(2) =
1

4
𝜙(1) +

3

4
𝜙𝑛 +

1

4
∆𝑡 𝐹̆ (𝜙(1)) 

𝜙(𝑛+1) =
2

3
𝜙(2) +

1

3
𝜙𝑛 +

2

3
∆𝑡 𝐹̆ (𝜙(2)) 

(60)  

 

It was demonstrated by Lopez de Bertodano et al. [7] that the overall order of accuracy of the SWT 

TFM code being used is higher than second order but less than third order accuracy.  

2.7.2 Validation 

The 1D Shallow Water TFM simulations with the wake entrainment instability are validated 

against the experimental results of Cheng and Azzopardi [2] and Song et al. [3] to capture transition 

from dispersed to clustered bubbly flow. Cheng and Azzopardi [2] performed air-water two-phase 

flow experiments in a 4 m long vertical annular pipe, having a diameter of 28.9 mm, for flow 

pattern transition from bubbly to slug flow. For a constant liquid velocity of 0.356 m/s, bubbly 

two-phase phase mixture was injected into the pipe by varying the gas flow rate. The liquid and 

gas flow rates were measured using flowmeters and the void fraction waves were measuring using 

impedance void fraction meters. It was found that the critical void fraction for bubbly to slug flow 

transition decreased with increase in the initial bubble size. Song et al. [3] performed similar air-

water two-phase bubbly flow experiments using a 25 mm diameter pipe having a height of 3 m for 

different bubble sizes over a wide range of flow conditions. The void fraction signals were 

measured using impedance void fraction meters to statistically analyze the void fraction wave 

propagation properties, such as spatial growth rates, wavelengths and wave speeds. It was found 

that spatial amplification rates were sensitive to the bubble size for a given liquid flux. The smaller 
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bubbles of 2.7 mm mean diameter did not form clusters, but larger bubbles of 4.78 mm mean 

diameter formed clusters. In both experiments, the transition from bubbly to slug flow, which 

involves the formation of bubble clusters depending on the bubble size and net volumetric flux, 

was analyzed due to instabilities in the void fraction waves.  

Table 1 : Experimental conditions for dispersed and clustered bubbly flow 

 

 

Table 1 summarizes the experimental conditions used for validation of non-linear numerical 

simulation results of the 1D Shallow Water TFM. The temporal evolution of void fraction waves 

from the numerical simulations are compared with that of the experimental cases given in Table 1. 

For the non-linear simulation results presented here, a mesh size ∆𝑥 = 5 mm for the 1D spatial 

domain of length 1 m and the time step ∆𝑡, defined based on ∆𝑡 = 0.001 s were used. Fig. 4 and 

Fig. 5 show the stable bubbly and unstable clustered bubbly flow simulations of Cheng and 

Azzopardi [2] for the mean bubble diameter of 3.62 mm respectively. It can be seen for lower void 

fractions, which correspond to the stable bubbly flow, the void fraction waves do not grow from 

their initial condition and we have a uniform void fraction distribution. This is due to the fact that 

the wake entrainment force is not strong enough as the bubbles are dispersed or spread out such 

that the interaction between the bubbles is negligible in terms of wake entrainment. But when the 

void fraction is increased, which corresponds to the case of the clustered bubbly flow case, the 

perturbations in the initial condition grow and distinct interfacial structures unique to bubble 

clusters are formed. At higher void fractions, the wake entrainment is strong and a trailing bubble 

experiences lesser drag due to the wake of the leading bubble. But the amplitude of interfacial 

structures for bubble clusters obtained from the numerical calculations are significantly lower than 

the experimental observations. While at present, the onset of instability and wave characteristics 

including wavelengths and wave propagation speeds have been characterized with the proposed 

model, the reason for significant deviation in the amplitude predictions remains to be understood. 

Experiment 𝐷𝑏(mm) 

Dispersed Bubbly Flow Clustered Bubbly Flow 

𝛼2 𝑗2(m/s) 𝑗1(m/s) 𝛼2 𝑗2(m/s) 𝑗1(m/s) 

Cheng and 

Azzopardi [2]  

3.62 0.13 0.1315 0.356 0.20 0.138 0.356 

Song et al. [3] 4.8 0.05 0.021 0.18 0.139 0.084 0.18 
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Figure 4: Comparison of data and simulation for bubbly flow at 13% void fraction 
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Figure 5: Comparison of data and simulation for clustered bubbly flow at 20% void fraction 

 

Fig. 6 and Fig. 7 show the simulation results for the dispersed and clustered bubbly flow of Song 

et al. [3], where the simulation data had been collected at distance of 2.5 m from the inlet. Song 

et. al. [3] provide time series data for the voltage signal from impedance void meters. An empirical 

correlation defines the void fraction 𝛼2  in terms of the voltage as, 

 
𝑉

𝑉0
= 0.996 − 1.674 𝛼2 + 0.134𝛼2

2 (61)  

 

where 𝑉0 is the voltage signal for 𝛼2 = 0, not given explicitly by the authors. When the mean void 

fraction is 0.05, the instability does not occur as observed previously for the low void fraction case 
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of Cheng and Azzopardi [2]. When a mean void fraction of 0.10 is used to prescribe the initial 

conditions, wave growth can be seen. 

 

 

 

Figure 6: Comparison of data and simulation for discrete bubbly flow of Song et al. [3] 
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Figure 7: Comparison of data and simulation for clustered bubbly flow of Song et al. [3] 

 

Table 2 summarizes the wave speeds 𝐶𝑤, wavelengths 𝜆𝑤 and relative velocities of the bubble 

cluster waves obtained from the experimental data and simulations. Though wavelengths and wave 

speeds are in reasonable agreement with the experiments, the amplitudes of bubble cluster waves 

obtained from the numerical calculations are under-predicted. Hence, it can be concluded that it is 

possible to model the instability resulting in the clustered bubbly flows using the 1D Shallow 

Water TFM when the wake entrainment mechanism is considered. It is important to note that the 
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wake entrainment effect is present only in the axial direction in the present model. Other physical 

clustering mechanisms present along the transverse and longitudinal directions, which require 

additional modelling efforts and are out of the scope of the present work. 

 

Experiment 𝜆𝑤
𝑒𝑥𝑝

 𝜆𝑤
𝑠𝑖𝑚 𝐶𝑤

𝑒𝑥𝑝
 𝐶𝑤

𝑠𝑖𝑚 𝑢𝑟
𝑒𝑥𝑝

 𝑢𝑟
𝑠𝑖𝑚 

Cheng and Azzopardi [2] 30 cm 27 cm 80 cm/s 71 cm/s 28 cm/s 27 cm/s 

Song et al. [3] 33 cm 25 cm 45 cm/s 40 cm/s 34 cm/s 32 cm/s 

 

  

Table 2: Comparison of wavelengths and wave speeds 
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 VARIATIONAL TWO-FLUID MODEL 

Historically, two-phase flow formulations using the Eulerian description have been approached in 

using two different ways. The most well-known approach is the mechanistic approach based on 

Newtonian physics. The mechanistic approach starts with two separate local instantaneous 

equations for conservation of mass, momentum and energy for the two phases at the microscopic 

level. The microscopic equations are then linked together using interfacial jump conditions. But 

for engineering design applications, such a detailed microscopic description of the flow physics is 

not very useful. So the local instantaneous equations are averaged using different averaging 

techniques. In order to complete the macroscopic formulation based on averaging, the constitutive 

relations for the interfacial force terms need to be defined in terms of the macroscopic state 

variables. And this is where significant challenges have been encountered in the past. For each and 

every different physical mechanism, a force term is added into the momentum equation. Even 

though objectivity (material frame invariance) has been used as one of the criteria for obtaining 

constitutive relations, a general consensus is yet to be attained for the interfacial momentum 

transfer terms. It is important to note that use of mathematically and physically incoherent 

constitutive terms will not only induce unphysical/artificial instabilities within the flow, but will 

also violate the objectivity constraint.  

 

To address the stability and objectivity issues posed by the mechanistic formulation for two-phase 

mixtures, a second approach based on Hamilton’s variational principle in Eulerian coordinates by 

Seliger and Whitham [52] offers an alternative. The variational principle has been used in the past 

for deriving the single-phase Euler equations by Bedford and Drumheller [53] and Clausse [54] 

and was extended for immiscible adiabatic two-phase mixtures. The application of variational 

principles for two-phase mixtures was motivated by its use for the two-phase behavior of 

superfluid 4He by Zilsel [55] and it was presented comprehensively for adiabatic two-phase 

dispersed flows by Geurst [21] for the first time. The variational approach starts with the definition 

of the Lagrangian density defined in terms of the average state variables (macroscopic) and hence 

averaging is done at the beginning of the formulation approach. Whereas, averaging is performed 

at the end in the mechanistic approach. This is followed by application of the extended Hamilton’s 

principle of least action to the Lagrangian density, which yields the non-dissipative momentum 
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equations for the two phases, proved to be objective by Geurst [21]. At least for objectivity, the 

variational approach is superior, but the physical meaning of the momentum transfer terms is not 

always clear. Moreover, Wallis [22] suggested that adding each force term separately, as in the 

mechanistic approach, can lead to double counting the effects of the same physical mechanism.  It 

is reasonable to state that both the mechanistic and variational approaches should be considered as 

complimentary to each other. 

3.1 1D Two-Fluid Model  

The procedure presented here to derive the 1D variational TFM follows Geurst [4] and Pauchon 

and Smereka [20]. For an adiabatic two-phase mixture, the phasic void fraction 𝛼𝑘  (𝑘 = 1 for 

continuous liquid phase and 𝑘 = 2 for dispersed gas phase) with 𝛼1 + 𝛼2 = 1 and the volume 

averaged velocity 𝑢𝑘  are the state variables. The volume averaged Lagrangian density 𝐿 ̃is the 

difference between the kinetic energy 𝐾 and the potential energy 𝑃 density as, 

 𝐿 ̃ = 𝐾 − 𝑃 (62)  

 

The volume averaged kinetic energy density 𝐾 consists of contributions from individual phases 

and an additional part due to coupling/interaction between the two phases which accounts for the 

virtual mass effect.  

 𝐾 =  
1

2
 𝜌1 𝛼1 𝑢1

2 +
1

2
 𝜌2 𝛼2 𝑢2

2 +
1

2
 𝜌1 𝑚(𝛼2) (𝑢2 − 𝑢1)

2 (63)  

 

In the above definition for 𝐾, 𝜌𝑘 is the phasic density, 𝑚(𝛼2) is the inertial coupling/virtual mass 

coefficient (discussed later) and 𝑢𝑟 = 𝑢2 − 𝑢1  is the relative velocity. The additional kinetic 

energy due to phasic interactions represents the energy due to motion of liquid with respect to its 

mass center and it is neglected for the gas phase (Geurst [4]). For isothermal, adiabatic and 

incompressible flow, the potential energy density 𝑃 = 0. Since mass conservation principle and 

𝛼1 + 𝛼2 = 1 have not been considered in the Lagrangian density, the Lagrangian is modified as,  

 
𝐿̂ = 𝐿 ̃ + 𝜁1 (

𝜕𝜌1𝛼1

𝜕𝑡
+

𝜕𝜌1𝛼1𝑢1

𝜕𝑥
) + 𝜁2 (

𝜕𝜌2𝛼2

𝜕𝑡
+

𝜕𝜌2𝛼2𝑢2

𝜕𝑥
)

+ 𝜁3 (𝛼1 + 𝛼2 ) 

(64)  

 



 

 

51 

where 𝜁1, 𝜁2 and 𝜁3 are the Lagrange multipliers. The introduction of constraints through Lagrange 

multipliers is a common practice followed for finding the optimum value of a functional, which is 

the Lagrangian here.  

 

The extended Hamilton’s principle for classical fluid mechanics states that the equations of fluid 

motion are equivalent to minimization of the action,  

 𝐴̂ =  𝛿 ∫𝑑𝑡 ∫𝑑𝑥 𝐿̂ = 0 (65)  

 

The above statement is also known as the least action principle and it states that of all the 

trajectories a system can follow, the system will follow the one that will minimize 𝐴̂. Using 

integration by parts,  

 𝐴̂ =  𝛿 ∫𝑑𝑡 ∫𝑑𝑥 𝐿̂ = 0 (66)  

where  

 𝐿̂ =  𝐿 ̃ − 𝜌1𝛼1 (
𝜕𝜁1
𝜕𝑡

+ 𝑢1

𝜕𝜁1
𝜕𝑥

) − 𝜌2𝛼2 (
𝜕𝜁2

𝜕𝑡
+ 𝑢2

𝜕𝜁2

𝜕𝑥
) + 𝜁3 (𝛼1 + 𝛼2 ) (67)  

 

Taking variations with respect to the state variables gives following Euler-Lagrange equations,  

 𝛿𝛼1 :   
1

2
 𝜌1 𝑢1

2 − 𝜌1 (
𝜕𝜁1
𝜕𝑡

+ 𝑢1

𝜕𝜁1
𝜕𝑥

) + 𝜁3 = 0 (68)  

 

 𝛿𝛼2 :  
1

2
 𝜌2 𝑢2

2 +
1

2
 𝜌1 𝑚

′(𝛼2) 𝑢𝑟
2 − 𝜌2 (

𝜕𝜁2

𝜕𝑡
+ 𝑢2

𝜕𝜁2

𝜕𝑥
) + 𝜁3 = 0 (69)  

 

 𝛿𝑢1:  𝜌1 𝛼1𝑢1 − 𝜌1 𝑚(𝛼2) (𝑢2 − 𝑢1) − 𝜌1𝛼1

𝜕𝜁1
𝜕𝑥

= 0 (70)  

 

 𝛿𝑢2:  𝜌2 𝛼2𝑢2 + 𝜌2 𝑚(𝛼2) (𝑢2 − 𝑢1) − 𝜌2𝛼2

𝜕𝜁2

𝜕𝑥
 =  0 (71)  

 

The following momentum equations are obtained by eliminating the Lagrange multipliers,  

 

(
𝜕

𝜕𝑡
+ 𝑢1

𝜕

𝜕𝑥
 ) (𝑢1 −

𝑚(𝛼2)

𝛼1

(𝑢2 − 𝑢1)) −
𝑚(𝛼2)

𝛼1

(𝑢2 − 𝑢1)
𝜕𝑢1

𝜕𝑥

+
𝜕

𝜕𝑥
(
𝜁2

𝜌1
+

1

2
 𝑚′(𝛼2)(𝑢2 − 𝑢1)

2) = 0 

(72)  
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 (
𝜕

𝜕𝑡
+ 𝑢2

𝜕

𝜕𝑥
 ) (𝑢2 −

𝜌1𝑚(𝛼2)

𝜌2𝛼1

(𝑢2 − 𝑢1)) +
𝜌1𝑚(𝛼2)

𝜌2

(𝑢2 − 𝑢1)
𝜕𝑢2

𝜕𝑥
+

𝜕𝜁2

𝜕𝑥
= 0 (73)  

 

where 𝜁2 = 𝑝2 . It can be seen that the variational approach for derivation of the TFM gives 

equations of motion similar to averaging technique and the relevant physical forces are present in 

the momentum equation along with their constitutive relations. It is important to note that the 

variational approach presented here leads to equations of motion corresponding to the 

conservative/non-dissipative mechanisms and hence non-conservative/dissipative forces like 

interfacial drag and viscous stresses need to be added as ad-hoc for completion.  

3.1.1 Comparison of Variational and Mechanistic TFM 

This section focuses first and foremost on the fundamental 1D TFM equations derived from the 

variational approach in the previous section. Then a comparison is made with the mechanistic 1D 

TFM equations. The TFM used by Pauchon and Banerjee [29] for stable and dispersed bubbly 

flows is chosen as the reference model to study the variational TFM. The extra terms present in 

the variational 1D TFM when compared with the mechanistic 1D TFM are stated clearly in this 

section and the implications of these terms at present are still under study and are yet to be 

understood. From the previous section, the 1D momentum equations for the continuous liquid 

phase and the dispersed gas phase can be written as,  

 

𝜌1 (
𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
) =  −

𝜕 

𝜕𝑥
(𝑝2 + (

𝑚(𝛼2) + 𝛼1𝑚(𝛼2)
′

2𝛼1
 ) 𝜌1𝑢𝑟

2) 

                                                

−(
𝑚(𝛼2) + 𝛼1𝑚(𝛼2)

′

2𝛼1
2

)𝑢𝑟
2
𝜕𝛼1

𝜕𝑥
 

 

     −𝜌1 (
𝑚(𝛼2)

𝛼1
)(

𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
−

𝜕𝑢2

𝜕𝑡
− 𝑢2

𝜕𝑢2

𝜕𝑥
) 

 

                    +(𝜌1𝑢𝑟) (
𝜕

𝜕𝑡
(
𝑚(𝛼2)

𝛼1
) + 𝑢1

𝜕

𝜕𝑥
(
𝑚(𝛼2)

𝛼1
)) 

 

(74)  

 
𝜌2 (

𝜕𝑢2

𝜕𝑡
+ 𝑢2

𝜕𝑢2

𝜕𝑥
) =  −

𝜕𝑃2 

𝜕𝑥
 

 

(75)  
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                         −𝜌1 (
𝑚(𝛼2)

𝛼2
)(

𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
−

𝜕𝑢2

𝜕𝑡
− 𝑢2

𝜕𝑢2

𝜕𝑥
) 

 

            −𝜌1𝑢𝑟 (
𝜕

𝜕𝑡
(
𝑚(𝛼2)

𝛼2
) − (

𝑚(𝛼2)

𝛼2
)

𝜕𝑢𝑟

𝜕𝑥
) 

 

 

The momentum equations of the mechanistic 1D TFM with just the conservative forces are,  

 𝜌1 (
𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
) =  −

𝜕𝑝1

𝜕𝑥
−

(𝑝1𝑖 − 𝑝1)

𝛼1

𝜕𝛼1

𝜕𝑥
−

𝑀2𝑖
𝑉𝑀

𝛼1
  (76)  

 

 𝜌2 (
𝜕𝑢2

𝜕𝑡
+ 𝑢2

𝜕𝑢2

𝜕𝑥
) =  −

𝜕𝑝2

𝜕𝑥
+

𝑀2𝑖
𝑉𝑀

𝛼2
 (77)  

 

When Eqs. (74)-(75) are compared with Eqs. (76)-(77), the virtual mass term in the momentum 

equation can be written alternatively as, 

 

𝑀2𝑖
𝑉𝑀 = 𝛼2𝜌1𝑐𝑣𝑚 [(

𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
) − (

𝜕𝑢2

𝜕𝑡
+ 𝑢2

𝜕𝑢2

𝜕𝑥
)] 

 

          = 𝜌1𝑚(𝛼2) [(
𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
) − (

𝜕𝑢2

𝜕𝑡
+ 𝑢2

𝜕𝑢2

𝜕𝑥
)] 

(78)  

 

The virtual mass term in Eq. (78) is the same as the one proposed by Drew and Lahey [27] and 

relation between 𝑐𝑣𝑚 and 𝑚(𝛼2) was given by Wallis [19] as , 

 𝑐𝑣𝑚 =
𝑚(𝛼2)

𝛼2
 (79)  

 

Regarding the interfacial pressure force, Stuhmiller [36] proposed the following expression, 

 𝑝1𝑖 − 𝑝1 = −𝐶𝑝𝜌1(𝑢1 − 𝑢2)
2 (80)  

where 𝑐𝑝 is the interfacial pressure coefficient and its relation with the inertial coupling coefficient 

𝑚(𝛼2) according to Wallis [19] is. 

 𝑐𝑝 =
𝑚(𝛼2) + 𝛼1𝑚′(𝛼2)

2𝛼1
 (81)  

 

An important inference from the comparison of variational 1D TFM and the mechanistic 1D TFM 

is that mechanistic model is present within the variational model. In addition, comparison of Eq. 
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(74)-(75) and Eqs. (76)-(77) gives few terms that are missing in the R.H.S of the mechanistic 1D 

TFM equations as shown below, 

 

𝑀̅1𝑖
𝑉𝑎𝑟 =  𝑢𝑟𝜌1 (

𝜕

𝜕𝑡
(
𝑚(𝛼2)

𝛼1
) + 𝑢1

𝜕

𝜕𝑥
(
𝑚(𝛼2)

𝛼1
)) 

 

𝑀̅2𝑖
𝑉𝑎𝑟 = −𝜌1𝑢𝑟 (

𝜕𝑐𝑣𝑚

𝜕𝑡
+ 𝑐𝑣𝑚

𝜕𝑢𝑟

𝜕𝑥
) 

(82)  

 

where 𝑀̅1𝑖
𝑉𝑎𝑟 and 𝑀̅2𝑖

𝑉𝑎𝑟 are the missing terms in the mechanistic 1D TFM momentum equations of 

the liquid phase and the gas phase respectively. By analyzing the mathematical form of the missing 

terms, Wallis [19] calls the missing terms in the liquid momentum equation, 𝑀̅1𝑖
𝑉𝑎𝑟, a transport 

term for the inertial coupling coefficient, 𝑚(𝛼2). Further simplification of 𝑀̅1𝑖
𝑉𝑎𝑟 gives,  

 𝑀̅1𝑖
𝑉𝑎𝑟 = (−2𝜌1𝑢𝑟

𝑐𝑝 

𝛼1
) (

𝜕𝛼1

𝜕𝑡
+ 𝑢1

𝜕𝛼1

𝜕𝑥
) (83)  

 

Meanwhile, the missing term in the gas momentum equation, 𝑀̅2𝑖
𝑉𝑎𝑟, has a more complicated form 

and is yet to have a convincing interpretation. Nevertheless, since both the terms relate to the 

inertial coupling coefficient, they are assumed to be good models for phase-configuration 

mechanisms. At present, the importance of these missing terms is yet to be understood.  

3.2 1D Shallow Water Two-Fluid Model  

Similar to the previous section, the use of variational approach to derive the two-equation 1D 

Shallow Water TFM equations is presented here. It is shown that the mechanistic and the 

variational Shallow Water TFM equations are equivalent, except for few additional momentum 

transfer terms present in the variational equations, as was the case even with the full 4-equation 

TFM. Pauchon and Smereka [20]  were the first to demonstrate the use of variational method for 

deriving the 1D fixed flux TFM using the fixed-flux assumption, i.e.,  𝑗0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. In order to 

derive the Shallow Water TFM equations, a frame of reference moving with 𝑗0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 is 

used. This transforms the phasic velocities in the moving frame as, 

 

𝑢2
∗ = 𝑢2 − 𝑗 = 𝑢2 − (𝛼1𝑢1 + 𝛼2𝑢2) = (1 − 𝛼2)𝑢𝑟 

𝑢1
∗ = 𝑢1 − 𝑗 = −𝛼2𝑢𝑟 

(84)  
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A remarkable result of writing the phasic velocities in the moving frame in terms of the relative 

velocity 𝑢𝑟 = 𝑢2 − 𝑢1= 𝑢2
∗ − 𝑢1

∗ is that the two continuity equations are the same, 

 
𝜕𝛼2

𝜕𝑡
+

𝜕𝐽

𝜕𝑥∗
= 0 (85)  

 

where 𝑥∗ = 𝑥 − 𝑗0 𝑡 and the superscript * will be dropped from here for convenience. The drift 

flux 𝐽 is defined as,  

 𝐽 = 𝛼2(1 − 𝛼2)𝑢𝑟 = 𝛼2𝑉𝑔𝑗 (86)  

 

and 𝑉𝑔𝑗 is the drift velocity. Now the volume average Lagrangian density of the two-phase mixture, 

which is the difference between the kinetic energy 𝐾 and potential energy 𝑃 density is, 

 𝐿 ̃ = 𝐾 − 𝑃 (87)  

 

where the kinetic energy density for the dispersed two-phase mixture can be written as,  

 
𝐾 =

1

2
 𝛤𝐽 2 

(88)  

 

The net effective inertia 𝛤 is defined as, 

 𝛤 =
𝜌1

(1 − 𝛼2)
+

𝜌2

𝛼2
+

𝜌1 𝑚(𝛼2)

𝛼2
2(1 − 𝛼2)2

 (89)  

 

In the definition of 𝛤, 𝑚(𝛼2) is the inertial coupling coefficient. Use of 𝛤 enables representation 

of the two-phase mixture collectively as a pseudo fluid with added mass included in it. The 

potential energy density consists of contributions from the elastic energy of the interface as well 

as the gravitational energy,  

 𝑃 = 𝐸 + 𝐺 (90)  

 

The interfacial elastic energy is derived using a geometrical representation of interface for the two-

phase mixture in an averaged sense as shown in Fig. 8. The differential interfacial area 𝜕𝐴𝑖  is,  

 𝜕𝐴𝑖 = 𝜕𝑧√𝜕𝑥2 + 𝐷𝑝𝑖𝑝𝑒
2(𝜕𝛼2)2 (91)  

 

This will give the interfacial area per unit projected area as,  

 𝐴𝑖̅ =
𝜕𝐴𝑖

𝜕𝑧 𝜕𝑥
= √1 + 𝐷𝑝𝑖𝑝𝑒

2 (
𝜕𝛼2

𝜕𝑥
)
2

 
(92)  
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Then the elastic energy of the interface per unit volume is,  

 𝐸 =
𝜎𝐴𝑖̅

𝐷𝑝𝑖𝑝𝑒
 (93)  

 

Figure 8: Interfacial geometry for elastic potential energy calculation 

 

where 𝐷𝑝𝑖𝑝𝑒 the pipe diameter is used as the length scale and 𝜎 is the surface tension coefficient. 

Hence the elastic energy of the interface per unit volume will be,   

 𝐸 =
𝜎𝐴𝑖̅

𝐷𝑝𝑖𝑝𝑒
=

𝜎

𝐷𝑝𝑖𝑝𝑒

√1 + 𝐷𝑝𝑖𝑝𝑒
2 (

𝜕𝛼2

𝜕𝑥
)
2

 
(94)  

 

The gravitational potential energy per unit volume for the two-phase mixture can be written as,  

 𝐺 = 𝑔𝑥(𝜌1 − 𝜌2)(1 − 𝛼2) (95)  

 

If the fields (state variables) 𝛼2 and 𝐽 are defined using the potential 𝜒(𝑥, 𝑡) as,  
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𝛼2 =

𝜕𝜒

𝜕𝑥
= 𝜒𝑥 

𝐽 =
−𝜕𝜒

𝜕𝑡
= −𝜒𝑡 

(96)  

 

then Lagrangian density can be rewritten as,  

 𝐿 ̃(𝜒𝑡, 𝜒𝑥, 𝜒𝑥𝑥) =
Γ(𝜒𝑥)

2
𝜒𝑡

2 − 𝐸(𝜒𝑥𝑥) − G(𝜒𝑥) (97)  

 

From the least action principle for fields, the Euler-Lagrange equation is, 

 
𝜕

𝜕𝑡
(
𝜕𝐿 ̃

𝜕𝜒
𝑡

)
𝜕

𝜕𝑥
(

𝜕𝐿 ̃

𝜕𝜒𝑥

) −
𝜕2

𝜕𝑥2
(

𝜕𝐿 ̃

𝜕𝜒𝑥𝑥

) = 0  (98)  

 

which gives the following momentum conservation equation, 

 𝜕𝛤𝐽

𝜕𝑡
+

𝜕

𝜕𝑥
(−

1

2
𝛤′𝐽2 + 𝜎 К) + (𝜌1 − 𝜌2)|𝑔| = 0 

(99)  

 

where the interfacial curvature К assuming 𝐷𝑝𝑖𝑝𝑒
2 𝛼2𝑥

2 ≪ 1 is,  

 К = 
𝐷𝑝𝑖𝑝𝑒  𝛼2𝑥𝑥

(1 + 𝐷𝑝𝑖𝑝𝑒
2 𝛼2𝑥

2)
3
2

≅ 𝐷𝑝𝑖𝑝𝑒

𝜕2𝛼2

𝜕𝑥2
 (100)  

 

To complete the model, the dissipative interfacial drag force term is added ad-hoc to Eq. (99) to 

get the complete two-equation 1D variational Shallow Water TFM as,  

 

𝜕𝛼2

𝜕𝑡
+

𝜕𝐽

𝜕𝑥
= 0 (101)  

 𝜕𝛤𝐽

𝜕𝑡
−

𝜕

𝜕𝑥
(
1

2
𝛤′𝐽2) + 𝜎𝐷𝑝𝑖𝑝𝑒

𝜕3𝛼2

𝜕𝑥3

= −𝜌1 (
𝑐𝐷

𝐷𝑝𝑖𝑝𝑒
 

𝐽

𝛼2(1 − 𝛼2)
 |

𝐽

𝛼2(1 − 𝛼2)
| + (1 −

𝜌2

𝜌1
) |𝑔|) 

(102)  

 

The first equation is the mass conservation equation and the second equation is the momentum 

conservation equation in a frame of reference moving at 𝑗0. The relative velocity 𝑢𝑟  has been 

written in terms of the state variable 𝐽 as 𝑢𝑟 = 𝐽/𝛼2(1 − 𝛼2), 𝑐𝐷 is the interfacial drag coefficient 

and 𝐷𝑝𝑖𝑝𝑒  is the pipe diameter. For the closure of the conservative momentum transfer terms, 

formulation of the inertial coupling coefficient 𝑚(𝛼2) is required.  
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3.2.1 Comparison of Variational and Mechanistic Shallow Water TFM  

Interestingly enough, the variational Shallow Water TFM equations can be written in terms of the 

primitive variables 𝛼1 and 𝑢1 .The non-dimensional inertia 𝛤∗ for 𝑟𝑝 ≪ 1 follows,   

  𝛤∗ =
1

(1 − 𝛼2)
+

 𝑚(𝛼2)

𝛼2
2(1 − 𝛼2)

2
 (103)  

 

Following Wallis [19], 𝑐𝑣𝑚 = 𝑚(𝛼2)/ 𝛼2 and using 𝐽 =  −(1 − 𝛼2)𝑢1, Eqs. (101)-(102) without 

the surface tension force terms in terms of 𝛼1 and 𝑢1 are,  

 
 
𝜕 𝛼1

𝜕𝑡
+ 𝑢1

𝜕𝛼1

𝜕𝑥
+ 𝛼1

𝜕𝑢1

𝜕𝑥
= 0 

 

(104)  

 
 
𝜕𝑢1

𝜕𝑡
+ 𝐵21

𝑣𝑎𝑟 𝜕𝛼1

𝜕𝑥
+ 𝐵22

𝑣𝑎𝑟 𝜕𝑢1

𝜕𝑥
=

𝛼1𝛼2

𝑐𝑣𝑚 + 𝛼1𝛼2
[−|𝑔| +

𝑀2𝑖
𝐷

𝜌1𝛼1𝛼2
] 

(105)  

 

where, 

 
 𝐵21

𝑣𝑎𝑟 = 𝛼2
2𝛼1 [2𝛤∗′ − 𝛼1𝛤

∗′′ − (
 𝑚(𝛼2)

𝛼2
2𝛼1

)

′

] 𝑢𝑟
2 

 

(106)  

 
 𝐵22

𝑣𝑎𝑟 = −𝛼2 [(1 − 𝛼2) (
 𝑚(𝛼2)

𝛼2
2𝛼1

)

′

+ 2𝛤∗𝛼1
2𝑢1] 𝑢𝑟 

(107)  

 

The superscript ′ refers to derivative with respect to 𝛼2. By comparing the Eqs. (104)-(105) with 

Eqs. (47)-(48), we can see the that the variational and the mechanistic Shallow Water TFM 

equations are equivalent mathematical representations when written in terms of the primitive 

variables 𝛼1 and 𝑢1. This reveals that void fraction 𝛼2 and drift flux 𝐽 are natural variables for 

modeling adiabatic incompressible two-phase mixture with the fixed flux assumption. Using these 

as the state variables leads to an elegant and concise mathematical representation of the equations 

of motion. The inertial coupling coefficient 𝑚(𝛼2) is the relevant constitutive model which for 

interaction between the phases.  

3.3 Bubbly Flow Inertial Coupling  

The momentum transfer terms in the variational TFM require formulation of the inertial coupling 

coefficient 𝑚(𝛼2 ) for closure. The distribution of the dispersed phase and the nature of interaction 

between the two phases determines the inertial coupling coefficient. The variational approach for 
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deriving constitutive relations for TFM only becomes practically feasible provided 𝑚(𝛼2 ) is 

known for a given flow regime. For formulation of 𝑚(𝛼2 ) , potential flow theory has been 

suggested and used over the years by Wallis [22], Wijngaarden [23], Smereka and Militon [24] 

and Kok [25] . From potential flow theory calculation, 𝑚(𝛼2 ) is the coefficient of the kinetic 

energy density of two-phase mixture due to coupling between the phases. This part of the report 

starts with the use of potential flow theory for formulation of 𝑚(𝛼2 ) for single bubble motion, 

followed by interaction between a pair of bubbles.  

 

To begin with, a short introduction is given regarding basics of potential flow theory. The 

formulation of potential functions for different kinds of flows is described briefly to outline in 

particular the potential functions to be used for two-phase flow problems being analyzed. For an 

irrotational flow, the vorticity 𝝎 follows 𝝎 = ∇ × 𝒖 = 0 . Since the curl of a gradient of any 

scalar field is zero, the velocity field can be written as, 

 𝒖 = ∇𝜙 (108)  

 

where, 𝜙 (r, t) is called the velocity potential. Since ∇. 𝒖 = 0 from the mass conservation equation 

for steady incompressible flow, the velocity field can be rewritten as, 

 ∇. 𝒖 =  ∇. (∇𝜙) =  ∇2𝜙 (𝒓) (109)  

 

where 𝜙 (𝒓) is a harmonic function satisfying the Laplace equation. The Laplace equation can be 

solved using the method of separation of variables in a spherical geometric representation.  
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Figure 9: Spherical Coordinate System 

 

For the spherical geometry shown in Fig. 9, the azimuthal angle 𝜃 is measured from the y-axis and 

the polar angle 𝜑 is measured from the z-axis. Using spherical coordinate system and assuming 

azimuthal symmetry, i.e., symmetric in 𝜃 with 0 ≤ 𝜃 ≤ 2𝜋, the velocity potential can be written 

in terms of harmonic functions as, 

 𝜙 (𝒓) = 𝑅(𝑟) ≬ (𝜑) =  ∑{𝐴𝑛𝑟𝑛 + 𝐵𝑛𝑟−(𝑛+1)}𝑃̇𝑛 (𝑐𝑜𝑠𝜑

∞

𝑛=0

) (110)  

 

In Eq. (110), 𝜑  is the polar angle, 𝐴𝑛  and 𝐵𝑛  are arbitrary constants yet to be defined, 𝑃̇𝑛  

represents the Legendre polynomial of degree 𝑛 (𝑃̇0(𝜇̇) = 1,  𝑃̇1(𝜇̇) = 𝜇,  𝑃̇2(𝜇̇) =  
3

2
𝜇̇2 −

1

2
 ) 

and 𝑟 is the spherical radius such that 𝑟2 = 𝑧2 + 𝑦2 + 𝑥2 with 𝑧 = 𝑟 𝑐𝑜𝑠𝜑. It is worthwhile to 

note that Laplace equation is linear and solutions of Laplace equation can be linearly superimposed. 

So considering only the first three non-trivial terms with coefficients 𝐵0, 𝐴1 and 𝐵1, the velocity 

potentials for uniform flow, a dipole and uniform flow over a sphere can be determined . 

Uniform Flow 

Let 𝐵𝑛
′𝑠 = 0 and 𝐴𝑛 = 0 except  𝐴1. This will give, 
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𝜙𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝐹𝑙𝑜𝑤  =  𝐴1𝑟 𝑐𝑜𝑠𝜑 =  𝐴1𝑧 

or 

𝒖 =  ∇𝜙 = 𝐴1𝑒𝑧   
(111)  

 

where 𝑒𝑧 is the unit vector along z-axis. Eq. (111) represents uniform flow along the z-direction 

and the velocity magnitude is given by constant 𝐴1.  

Dipole 

Let 𝐴𝑛
′ 𝑠 = 0 and 𝐵𝑛′𝑠 = 0 except for 𝐵1. The velocity potential will then be, 

 

𝜙𝐷𝑖𝑝𝑜𝑙𝑒  =  
𝐵1𝑐𝑜𝑠𝜑

𝑟2
=

𝐵1𝑧

𝑟3
  

              = lim
𝛿𝑧→0

−𝐵1/𝛿𝑧

[(𝑧 +
𝛿𝑧
2 )

2

+ 𝑦2 + 𝑥2]

1/2
+

𝐵1/𝛿𝑧

[(𝑧 −
𝛿𝑧
2 )

2

+ 𝑦2 + 𝑥2]

1/2
 (112)  

 

Now Eq. (112) represents a dipole (velocity dipole), also known as doublet (velocity doublet).  

Uniform Flow over a Sphere 

By linear superposition of the potentials due to dipole and uniform flow, the axisymmetric 

potential flow over a sphere is 

 𝜙 𝑆𝑝ℎ𝑒𝑟𝑒  =  (𝐴1𝑟 +
𝐵1

𝑟2
) 𝑐𝑜𝑠𝜑 (113)  

 

Choosing 𝐴1 = 𝑤 will satisfy 𝜙 𝑆𝑝ℎ𝑒𝑟𝑒 → 𝑤 𝑟 𝑐𝑜𝑠𝜑 as 𝑟 → ∞. By applying kinematic boundary 

condition  𝜕𝜙 𝑆𝑝ℎ𝑒𝑟𝑒/𝜕𝑟 = 0  at 𝑟 = 𝑎 and solving for 𝐵1 yields 𝐵1 = 𝑎3𝑤/2. The final form of 

Eq. (113) turns out to be, 

 𝜙 𝑆𝑝ℎ𝑒𝑟𝑒   = 𝜙𝐷𝑖𝑝𝑜𝑙𝑒 + 𝜙𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝐹𝑙𝑜𝑤 =  𝑤 (𝑟 +
𝑎3

2𝑟2
) 𝑐𝑜𝑠𝜑  (114)  

Eq. (114) gives uniform flow along z-direction with the sphere being stationary, which means 

visualizing the motion of liquid and the sphere from a frame of reference moving with the velocity 

of the sphere. This gives physical meaning to the 𝑤 as the relative velocity. To look at the same 

problem from a frame moving within the liquid, additional potential of 𝜙1 = −𝑤𝑧 =  −𝑤 𝑟 𝑐𝑜𝑠𝜑 

needs to be added. This additional potential 𝜙1 will give the potential for a single sphere moving 

through the liquid given by,  

 𝜙(𝑟, 𝜑)  =  
𝑤𝑎3

2𝑟2
𝑐𝑜𝑠𝜑 

(115)  



 

 

62 

3.3.1 Single Bubble 

Now consider the motion of a single bubble (dilute limit) moving through a liquid. The bubble is 

considered to be incompressible and perfectly spherical in shape and the velocity potential is given 

by Eq. (114). Let the void fraction of the bubble and the liquid be defined as 

 

𝛼2 = 
𝑉𝑏𝑢𝑏𝑏𝑙𝑒

𝑉𝑡𝑜𝑡𝑎𝑙
=

4
3𝜋𝑎3

𝑉𝑡𝑜𝑡𝑎𝑙
 

 

𝛼1 = 
𝑉𝑙𝑖𝑞𝑢𝑖𝑑

𝑉𝑡𝑜𝑡𝑎𝑙
= 1 −

𝑉𝑏𝑢𝑏𝑏𝑙𝑒

𝑉𝑡𝑜𝑡𝑎𝑙
= 1 − 𝛼2 

(116)  

 

where 𝑎 is the radius of the spherical bubble. The potential for a single spherical bubble moving 

at a vertical speed 𝑤 through a fluid in spherical coordinates is given by, 

 𝜙(𝑟, 𝜑) =  
𝑤𝑎3𝑐𝑜𝑠𝜑

2 𝑟2
 (117)  

 

The above velocity potential in Eq. (117) takes into consideration the azimuthal symmetry. The 

total liquid kinetic energy is then given by, 

 𝐾′
1 =

𝜌1

2
 ∫𝑢2 𝑑𝑉 =

𝜌1

2
 ∫∇𝜙. ∇𝜙 𝑑𝑉  (118)  

 

where 𝐾′
1 represents the kinetic energy of the liquid with respect to a reference frame moving 

with the average liquid velocity. Eq. (118) can be simplified using the well know vector identity 

 ∇𝜙. ∇𝜙 =  ∇. (𝜙∇𝜙) −  𝜙∇2𝜙 = ∇. (𝜙∇𝜙)  (119)  

 

Applying Gauss divergence theorem, Eq. (119) can be written as, 

 

𝐾′
1  =

𝜌1

2
 ∫∇𝜙. ∇𝜙 𝑑𝑉 = 

𝜌1

2
 ∫∇. (𝜙∇𝜙) 𝑑𝑉                        

=  
𝜌1

2
 ∫𝑛. (𝜙 ∇𝜙) 𝑑𝑠 =  

𝜌1

2
 ∫𝜙 𝒖. 𝒏𝑑𝑠 

(120)  

 

Now Eq. (120) needs to be evaluated at two surfaces, one on the sphere 𝑆𝑏 and the other one 𝑆 far 

away from the sphere as, 

 𝐾′
1 =

𝜌1

2
 ∫ ∅ 𝒖. 𝒆𝒓𝑑𝑠 + ∫∅ 𝒖. 𝒆𝒓𝑑𝑠

𝑆𝑆𝑏

 (121)  
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where 𝑆𝑏 stands for the surface of the bubble and 𝒆𝒓 is the unit vector along the radial direction. 

Since the velocity varies with distance from the center of the sphere as 1/𝑟3 , the surface integral 

at infinity is negligible and Eq. (121) yields, 

 𝐾′
1 =

𝜌1 𝑤
2

4
 ∫ (

 𝑎 𝑐𝑜𝑠𝜑

2
)  2𝜋 𝑎2 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

𝜋

0

𝑑𝜑 =
𝜌1 𝑤

2

2
(
1

2
) (

4

3
𝜋𝑎3)  (122)  

 

Eq. (122) gives kinetic energy of the liquid for the entire volume of the liquid; kinetic energy of 

the liquid per unit volume of the two-phase mixture will be 

 𝐾′
1 = 

𝜌1 𝑤
2

2 (
1
2) (

4
3𝜋𝑎3) 

𝑉𝑡𝑜𝑡𝑎𝑙
=

𝜌1 𝑤
2

2
(
𝛼2

2
)  

(123)  

 

Assuming that the single-bubble configuration (isolated) is the most elemental one can think for 

bubbly flow, for a more general case, Eq. (123) can be written alternatively as,  

 𝐾′
1 = 

𝜌1 𝑤
2

2
𝑘̆(𝛼2)  

(124)  

In the dilute limit,  

 lim
𝛼2→0

𝑘̆(𝛼2)  =  
𝛼2

2
  (125)  

 

The 𝑘̆(𝛼2)  represents the liquid kinetic energy density coefficient in the reference frame moving 

with the average liquid velocity. The relation between 𝑚(𝛼2)  in the Lagrangian density defined 

by Geurst [21] and 𝑘̆(𝛼2) was given by Kok [25] through coordinate transformations as, 

 

𝑘̆(𝛼2) = 0.5 𝑀1𝛼2(1 + 𝑀2𝛼2 + 𝑀3𝛼2
2 + ⋯+ 𝑀𝑛𝛼2

𝑛) + 𝑂(𝛼2
𝑛+1) 

 

𝑚(𝛼2) = 0.5 𝑀1𝛼2 [1 −
𝑀1(2 − 𝑀2) + 2

𝑀1
𝛼2  +

𝑀1(1 − 2𝑀2 + 𝑀3) + 2

𝑀1
𝛼2

2 ]

+ 𝑂(𝛼2
4) 

(126)  

 

From Eqs. (125)-(126), 𝑀1 = 1  and 𝑀𝑖 = 0 , for i = 2, 3…n. Hence the inertial coupling 

coefficient of the net kinetic energy density of the single bubble motion will be, 

 𝑚(𝛼2) =
𝛼2

2
 (127)  

 

Following Wallis [22], the virtual mass and interfacial pressure coefficients can be calculated for 

a single sphere in the dilute limit 𝛼2 → 0 as, 
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𝑐𝑣𝑚 =
𝑚(𝛼2)

𝛼2
= 

1

2
 

𝑐𝑝 = 
𝑚(𝛼2) + 𝛼1𝑚′(𝛼2)

2𝛼1
=

1

4
  

(128)  

 

The 𝑐𝑣𝑚 =  0.5  and 𝑐𝑝 =  0.25  in Eq. (128) here correspond to the values used for dispersed 

bubbly flows in the mechanistic TFM and are valid only in the limit 𝛼2 → 0. It is worthwhile to 

note that 𝑚(𝛼2) in Eq. (127) is for single bubble and lacks the physics of interaction with other 

bubbles, but considers the kinetic coupling with the surrounding liquid. 

3.3.2 Two-Body: Motion along the line of centers 

 

Figure 10: Motion of two bubbles along the line joining their centers 

 

Consider the problem of two bubbles (two spheres) of same radii and equal velocities moving 

along the line joining their centers in polar coordinates, assuming azimuthal symmetry as shown 

in Fig. 10. Since both the spheres are of same radius 𝑎, the dipole strengths should be the same 

due to symmetry. By linear superposition of potential functions of each velocity dipoles, the net 

potential for motion of the two bubbles can be written as, 

 𝜙𝑛𝑒𝑡 = 𝜙1(𝑟, 𝜑) + 𝜙2(𝑟
′, 𝜑′) =  

𝑤𝑎3𝑐𝑜𝑠𝜑

2 𝑟2
+

𝑤𝑎3𝑐𝑜𝑠𝜑′

2 𝑟′2
 (129)  
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where 𝜑′  and  𝑟′2  correspond to the second sphere and are defined using transformation of 

coordinates as, 

 

𝜑′ = 𝑡𝑎𝑛−1 [
𝑦′

𝑧′
] =  𝑡𝑎𝑛−1[

𝑟 𝑠𝑖𝑛𝜑

𝑟 𝑐𝑜𝑠𝜑 − 𝑏
] 

 

𝑟′2 = 𝑟2 + 𝑏2 − 2𝑟𝑏𝑐𝑜𝑠𝜑 

(130)  

 

The net kinetic energy of the liquid will be, 

 𝐾′
1 =

𝜌1

2
 ∫ 𝜙𝑛𝑒𝑡 𝒖. 𝒆𝒓𝑑𝑠 + ∫ 𝜙𝑛𝑒𝑡 𝒖. 𝒆𝒓𝑑𝑠

𝑆2𝑆1

 (131)  

 

where 𝑆1 and 𝑆2 represent the two bubble surfaces over which, the surface integral needs to be 

evaluated. Eq. (131) gives the net liquid kinetic energy as, 

 𝐾′
1 = 

𝜌1 𝑤
2

2
𝑘̆(𝛼2, 𝑏) (132)  

 

Using Eqn. 132, The coefficients 𝑘(𝛼2, 𝑠) and 𝑚(𝛼2, 𝑠), where 𝑠 = 𝑏/ 𝑎 is the non-dimensional 

distance between the bubbles, are,  

 

𝑘̆(𝛼2, 𝑠) = 𝑚(𝛼2, 𝑠)    

=
𝛼2

32𝑠3√1 + 𝑠2
[−12𝑠 + 36𝑠3 + 16𝑠3√1 + 𝑠2

− (3 + 6𝑠2 + 9𝑠4)Log(1 − 𝑠)2 + (3 − 6𝑠2 − 9𝑠4)Log(1 + 𝑠)2] 

(133)  

 

The virtual mass coefficient,  𝑐𝑣𝑚 (𝑠) , for the configuration shown in Fig. 16 using 𝑐𝑣𝑚 =

𝑚(𝛼2)/ 𝛼2  will be, 

 
𝐶𝑣𝑚 (𝑠)  =

1

32𝑠3√1 + 𝑠2
[−12𝑠 + 36𝑠3 + 16𝑠3√1 + 𝑠2 − (3 + 6𝑠2 + 9𝑠4)Log(1 − 𝑠)2

+ (3 − 6𝑠2 − 9𝑠4)Log(1 + 𝑠)2] 

(134)  

 

In Eq. (92), 𝑐𝑣𝑚 (𝑠) decreases as the distance between the bubbles is decreasing and similar trend 

was been obtained by Wijngaarden [23] given by, 

 𝑐𝑣𝑚
𝑊𝑖𝑗𝑛𝑔𝑎𝑎𝑟𝑑𝑒𝑛

= 
1

2
[1 − 3 (

1

𝑠
)

3

+ 3(
1

𝑠
)
6

+ 9(
1

𝑠
)

8

− 3(
1

𝑠
)
9

+ ⋯] (135)  

 

Eq. (135) was obtained by Wijngaarden [23] by solving 3D potential over two spheres in spherical 

coordinates and using a complete spherical harmonic solution of the Laplace equation for the 

velocity potential. From Eq. (134), the virtual mass coefficient for a pair of bubbles (s = 2) is 0.33, 
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a value close to 0.35 obtained by Bentwich and Miloh [56] .By solving for the liquid kinetic energy 

using stream function rather than potential function, Bentwich and Miloh [56] derived the exact 

solution for the two-body problem using bi-spherical coordinates. The variation of 𝐶𝑣𝑚 (𝑠) with 

respect to non-dimensional distance 𝑠, along with its comparison with the analytical solutions of 

Wijngaarden [23] and Bentwich and Miloh [56] is shown in Fig. 11.  

 

Figure 11: Virtual mass coefficient for bubbles moving along the center line 

3.4  Slug Flow Inertial Coupling 

In the first part of this section, the derivation of an analytical expression for inertial coupling 

coefficient 𝑚(𝛼2 ) is performed using the lumped parameter model proposed by Wallis [22] and 

will referred to as Wallis model and also discussed by Clausse. The lumped parameter model uses 

an idealized flow pattern and corresponding average flow velocities for the two-phase distribution. 

The essence of this model lies in analyzing the kinetic coupling (interaction) between the gas phase 

and the liquid phase. In the second part, the wake entrainment effect is proposed as the physical 

mechanism responsible for clustering of Taylor bubbles. Therefore, a modified model with a 

trailing vortex is developed. 
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3.4.1 Wallis Model 

Consider a unit cell configuration of a cylindrical bubble moving in the axial direction along with 

the liquid in a vertical pipe as shown in Fig. 12. The bubble moves with velocity 𝑢2 and it occupies 

a fraction 𝛼𝑠 of the cross-section of the pipe. The liquid has two different velocities, 𝑢𝑓 in the film 

around the bubble, and  𝑢𝑠 in the liquid slug, where 𝑢𝑠 = 0 because the reference frame is moving 

at 𝑗0. From Fig. 12, the volume averaged gas void fraction, 

 𝛼2 = 
𝐻𝑔 𝐷𝑔

2

𝐻 𝐷2
    (136)  

 

The fraction of the cross-sectional area of the pipe occupied by the cylindrical bubble is given by,  

       𝛼𝑠 = 
 𝐷𝑔

2

 𝐷2
 (137)  

 

Using the fixed flux approximation with respect to the moving frame  𝑗 = 𝛼2𝑢2 + 𝛼1𝑢1 =

0 across the Taylor bubble and liquid slug region, we have, 

  𝑢1 =
−𝛼2𝑢2

𝛼1
, 𝑢𝑠 =  0, 𝑢𝑓 = (

𝛼𝑠

1 − 𝛼𝑠
) 𝑢2  (138)  

 

where 𝛼1 and 𝑢1 are the void fraction and volume averaged velocity of the liquid region in the unit 

cell. Now we can define the volume averaged kinetic energy density 𝐾 of the two-phase mixture 

in the unit cell as, 

 𝐾 = 
1

2
𝜌2𝛼2𝑢2

2 +
1

2
𝜌1(1 − 𝛼𝑠) (

𝐻𝑔

𝐻
)𝑢𝑓

2 (139)  
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Figure 12: Wallis model for slug flow 

 

By using the definition 𝐽 = 𝛼1𝛼2𝑢𝑟 for drift flux, 𝑢1, 𝑢2 and 𝑢𝑓 can be written as, 

 

𝑢1 =
−𝐽

𝛼1
    

𝑢2 =  
𝐽

𝛼2
   

𝑢𝑓 = (
−𝛼𝑠

1 − 𝛼𝑠
)

𝐽

𝛼2
 

(140)  

 

Using 𝐻𝑔/𝐻 =𝛼2/𝛼𝑠, the kinetic energy density 𝐾 in can be rewritten as, 

 
𝐾 = 

1

2

𝐽2

𝛼2
(𝜌2 + 𝜌1 (

𝛼𝑠

1 − 𝛼𝑠
)) (141)  
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Representing the net effective inertia of the two-phase mixture as Г𝑊𝑎𝑙𝑙𝑖𝑠, following Pauchon and 

Smereka [20], the kinetic energy density can be written as, 

 𝐾 =  
1

2
Г 𝐽2 (142)  

where  

 
Г =  

(𝜌2 + 𝜌1 (
𝛼𝑠

1 − 𝛼𝑠
))

𝛼2
 

(143)  

 

Now the definition of the inertial coupling coefficient 𝑚(𝛼2) can be obtained from the definition 

of Г by using the following relation (Pauchon and Smereka [20]), 

 Г =
𝜌1

𝛼1
+ 

𝜌2

𝛼2
+

𝜌1 𝑚(𝛼2)

𝛼1
2𝛼2

2
 (144)  

 

Using Eq. (142) and Eq. (144), 𝑚(𝛼2) may be obtained by performing some elementary algebraic 

operations. However, a much more physically intuitive way to obtain 𝑚(𝛼2)𝑊𝑎𝑙𝑙𝑖𝑠 is to rewrite the 

volume averaged kinetic energy density 𝐾 given by Eq. (142), using the definitions of 𝐽 = 𝛼1𝛼2𝑢𝑟 

and 𝑢1, 𝑢2 and 𝑢𝑓 in Eq. (47), in the following form, 

 𝐾 =
𝜌1

2
𝛼1𝑢1

2 + 
𝜌2

2
𝛼2𝑢2

2 +
𝜌1

2
𝑚(𝛼2)𝑊𝑎𝑙𝑙𝑖𝑠𝑢𝑟

2
 (145)  

 

and this gives, 

 𝑚(𝛼2)𝑊𝑎𝑙𝑙𝑖𝑠 = (1 − 𝛼2)𝛼2 (
𝛼𝑠 − 𝛼2

1 − 𝛼𝑠
) (146)  

 

It is important to note that the 𝑚(𝛼2)𝑊𝑎𝑙𝑙𝑖𝑠 has been obtained for a moving Taylor bubble in a 

fixed 𝑗0 frame of reference. A nice feature of the 𝑚(𝛼2)𝑊𝑎𝑙𝑙𝑖𝑠 in Eq. (146) is that it leads to zero 

added mass for the limiting case of 𝛼1 = 0 and 𝛼2 = 0. Fig. 13 shows the plot of the behavior of 

𝑚(𝛼2)𝑊𝑎𝑙𝑙𝑖𝑠 for 𝛼𝑠 = 0.87. 

 



 

 

70 

 

Figure 13: Inertial coupling coefficient for Wallis model 

 

The 𝑚(𝛼2)𝑊𝑎𝑙𝑙𝑖𝑠 in Eq. (146) can be verified by comparing it with the mechanistic inertial 

coupling coefficient for slug flows derived by Ishii and Mishima [32]. By using potential flow 

theory to derive the virtual mass force based on relative acceleration between a Taylor bubble and 

the liquid, Ishii and Mishima [32] obtain the virtual mass force acting for the Taylor bubble 𝑀⃗⃗ 2𝑖
𝑉𝑀 

as,  

 𝑀⃗⃗ 2𝑖
𝑉𝑀 = −𝜌15𝛼2

[
 
 
 

0.66 + 0.34

(

 
1 −

𝐷𝑔

𝐻𝑔

1 −
𝐷𝑔

3𝐻𝑔)

 

]
 
 
 

(
𝐷2𝑢𝑟

𝐷𝑡
− 𝑢𝑟

𝜕𝑢1

𝜕𝑥
) (147)  

 

According to the variational formulation of the 1D Two-Fluid Model of Pauchon and Smereka 

[20], the virtual mass force acting on the dispersed phase 𝑀⃗⃗ 2𝑖
𝑉𝑀 is, 

 𝑀⃗⃗ 2𝑖
𝑉𝑀 = −𝜌1𝑚(𝛼2) (

𝐷2𝑢𝑟

𝐷𝑡
− 𝑢𝑟

𝜕𝑢1

𝜕𝑥
) (148)  

It can be inferred from a straight forward comparison between Eq. (147) and Eq. (148) that the 

𝑚(𝛼2) from the virtual mass force term of Ishii and Mishima [32] is, 

 𝑚(𝛼2)𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑡𝑖𝑐 = 5𝛼2

(

 
 

0.66 + 0.34

(

 
1 −

𝐷𝑔

𝐻𝑔

1 −
𝐷𝑔

3𝐻𝑔)

 

)

 
 

 (149)  

 

For the case of a cylindrical bubble, using 𝐻𝑔 ≫ 𝐷𝑔, Eq. (56) simplifies to a linear relation in 𝛼2, 
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 𝑚(𝛼2)𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑡𝑖𝑐 = 5𝛼2 + 𝑂[𝛼2]
2 (150)  

 

which is a first order approximation of 𝑚(𝛼2)𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑡𝑖𝑐. In the current analysis of Wallis’s slug 

flow model without the Taylor bubble’s confined vortex, for 𝛼𝑠 = 0.90 (which is a physically 

reasonable approximation for slug flows), Eq. (146) gives, 

 𝑚(𝛼2)𝑊𝑎𝑙𝑙𝑖𝑠 = 5. 67𝛼2 + 𝑂[𝛼2]
2 (151)  

3.4.2 Averaging and Inertial Coupling 

The purpose of this section is to demonstrate analytically, the range of applicability and 

mathematical accuracy of the formulation of the inertial coupling coefficient using the variational 

method. It is shown here that the inertial coupling coefficient derived from variational principles 

can be used for solving both the local interfacial structures as well for the averaged solution where 

there are no flow structures being resolved (uniform profile). The kinetic energy of the liquid, 

obtained from the SWT using variational approach for three different conceptual models is 

analyzed and compared.  

Model-1: 

The lumped parameter model with 𝛼2 = 𝛼𝑠 represents the model of Wallis [22] in theory as shown 

in Fig. 14.  
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Figure 14: Slug flow unit cell of Wallis model for Model-1 

 

The volume averaged kinetic energy density of the liquid phase in the unit cell from theory is,  

 𝐾1,𝑡ℎ𝑒𝑜𝑟𝑦 =
1

2
(
𝐻𝑔

𝐻
)𝜌1(1 − 𝛼2)𝑢1

2 = (
𝐻𝑔

𝐻
)
𝜌1

2

𝐽2

(1 − 𝛼𝑠)
 (152)  

 

Now consider the Wallis’ slug flow model for the case when 𝛼2 = 𝛼𝑠, since 𝛼𝑠 is the maximum 

value the local void fraction 𝛼2 can attain. From the Lagrangian,  

 𝐾1,𝑚𝑜𝑑𝑒𝑙1 =
1

𝐻
∫

1

2
 𝛤 〈𝐽〉2 𝑑𝑥

𝐻𝑔

0

= (
𝐻𝑔

𝐻
)
1

2
 𝛤 〈𝐽〉2 (153)  

 

If the kinetic energy density of the Taylor bubble is not considered due to 𝜌2 ≪ 𝜌1 , then with  

𝛼2 = 𝛼𝑠 , 〈𝐽〉 =  𝛼2𝑢2 and  𝐽 =  𝛼𝑠𝑢2 we have, 

 𝐾1,𝑚𝑜𝑑𝑒𝑙1 = (
𝐻𝑔

𝐻
)
𝜌1

2

𝐽2

(1 − 𝛼𝑠)
 (154)  
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which agrees with 𝐾1,𝑡ℎ𝑒𝑜𝑟𝑦. This shows that if the local void fraction ever reaches 𝛼𝑠, then the 

inertial coupling terms vanish and this case corresponds to a Direct Numerical Simulation (DNS) 

type model which has no virtual mass in it.  

Model-2  

Now consider the averaged case as shown in Fig. 15, in which the local interfacial structures are 

not resolved.  

 

Figure 15 : Averaged two-phase flow model  

 

For this case, the averaged void fraction 〈𝛼2〉 = 𝛼2 and uniform averaged values for void fraction, 

bubble velocity and the drift flux and the local drift flux follow,  

 
〈𝛼2〉  = 𝛼𝑠 (

𝐻𝑔 

𝐻 
) , 〈𝑢2〉 =  𝑢2 

 

(155)  

〈𝐽〉 = 𝛼2 𝑢2 , 𝐽 = 𝛼𝑠 𝑢2  

Then the averaged kinetic energy density from the Lagrangian for the liquid phase gives,  

 𝐾1,𝑚𝑜𝑑𝑒𝑙2 =
1

2
𝜌1 (

1

1 − 𝛼2
+

𝛼𝑠 − 𝛼2

𝛼2(1 − 𝛼2)(1 − 𝛼𝑠)
) 〈𝐽〉2 (156)  

 

Using Eq. (155),  
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 𝐾1,𝑚𝑜𝑑𝑒𝑙2 = (
𝐻𝑔

𝐻
)
𝜌1

2

𝐽2

(1 − 𝛼𝑠)
 (157)  

 

The 𝐾1,𝑚𝑜𝑑𝑒𝑙2 is same as the theory if 𝐾1,𝑡ℎ𝑒𝑜𝑟𝑦 is written in terms of 𝛼𝑠. Model-2 represents the 

stable averaged case generally used for CFD simulations using the TFM.  

Model-3: 

 

Figure 16: Slug flow unit cell of Wallis model for unstable simulations 

 

Now consider the case for 𝛼2 < 𝛼𝑠 as shown in Fig. 16. This case corresponds to the simulation 

type in which the liquid film is thicker and the length of the Taylor bubble 𝐻𝑔2 is longer than 𝐻𝑔 

of Wallis’ model, such that the void fraction in the cell remains the same. This gives the following 

relation,  

 
𝐻𝑔2

𝐻
=

𝛼𝑠

𝛼2
(
𝐻𝑔

𝐻
) (158)  

 

The volume averaged kinetic energy density for liquid in the unit cell is,  
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 𝐾1,𝑚𝑜𝑑𝑒𝑙3 =
1

𝐻
∫

1

2
 𝛤 𝐽2 𝑑𝑥

𝐻𝑔2

0

=  
𝛼𝑠

𝛼2
(
𝐻𝑔

𝐻
)
1

2
 𝛤 𝐽2 (159)  

where, 

 
𝛼2 = 𝛼𝑠

𝐻𝑔2 

𝐻 
 

〈𝐽〉 = 𝛼2 𝑢2 

𝐽 = 𝛼𝑠 𝑢2  

(160)  

 

Using the definitions in Eq. (159) and assuming 〈𝛼2〉 = 𝛼2,  

 𝐾1,𝑚𝑜𝑑𝑒𝑙3 = (
𝐻𝑔

𝐻
) 

𝜌1

2

𝐽2

1 − 𝛼𝑠
 (161)  

According to the Wallis’ model, writing the kinetic energy density of the liquid in terms of the 

liquid film gives,  

 𝐾𝑡ℎ𝑒𝑜𝑟𝑦 =
𝜌1

2
(
𝐻𝑔

𝐻
) (1 − 𝛼𝑠) 𝑢𝑓

2 = (
𝐻𝑔

𝐻
) 

𝜌1

2

𝐽2

1 − 𝛼𝑠
  (162)  

 

which agrees with the model as required. For this case where 𝛼2 < 𝛼𝑠, certain amount of averaging 

is still present, and this is the model being used for present work for unstable simulations of SWT-

TFM. Also, this case lies between the other two extremes, the one which corresponds to the DNS 

type and the other where the stable averaged solution is solved for.  

3.4.3 Vortex Model 

The purpose of this section is to develop a model for the presence of a confined toroidal vortex 

behind a Taylor bubble using data obtained by Shemer et al. [57]in air-water slug flow in vertical 

circular pipes, for different pipe diameters at various Reynolds numbers based on average liquid 

velocity 𝑅𝑒𝐿. The flow field obtained by Shemer et al. [57] using the PIV technique for a confined 

vortex behind the Taylor for turbulent wake (𝑅𝑒𝐿 = 7400) given in Fig. 17. 
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Figure 17: Mean flow field of confined vortex for Re = 7400 (Shemer et al. [57]) 

 

Shemer et al. [57]  measured the axial distribution of the wake’s axial velocity (𝑢𝑐𝑙) normalized 

using the Taylor bubble’s terminal velocity 𝑢𝑡𝑟 and the mean liquid velocity 𝑢1 (𝑢𝐿) as shown in 

Fig. 18.  

 

Figure 18: Axial distribution of centerline axial velocity of confined vortex 
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Let us assume, for simplicity, separation of the spatial variables, 𝑥 and 𝑟, is applicable. Then the 

spatial distribution of the confined vortex velocity field in the reference system for which 𝑗 = 0 

can be written as, 

 
               𝑢𝑤(𝑥∗, 𝑟∗) = 𝑢2 𝑄(𝑟∗) 𝑋(𝑥∗) (163)  

 

where 𝑥∗ = 𝑥/𝐻𝑤 and 𝑟∗ = 𝑟/𝑅𝑝𝑖𝑝𝑒 , with 𝐻𝑤  and 𝑅𝑝𝑖𝑝𝑒  being an appropriate length scale for 

vortex decay and radius of the pipe respectively. 𝑄(𝑟∗)  and 𝑋(𝑥∗)  are the radial and axial 

distribution functions respectively. Since the flow is incompressible and adiabatic, for the fixed 

flux assumption 𝑗0 = 0 to be satisfied, the radial distribution of the type in Eq. (164) displayed in 

in Fig. 20 is assumed, which is consistent with the experimental data of Shemer et al. [57]. 

 𝑄(𝑟∗) = 𝑐𝑜𝑠(𝜋 𝑟∗2)   (164)  
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Figure 19: Lumped parameter unit cell with confined vortex behind the Taylor bubble 
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Figure 20: Radial distribution function of vortex 

 

The 𝑄(𝑟∗) in Eq. (164) makes sure that j vanishes at any axial position x and also ensures that 𝑢𝑤 

vanishes at any position 𝑥∗ independently of the axial distribution function 𝑋(𝑥∗)  since,  

 ∫𝑄(𝑟∗)

1

0

2𝜋𝑟∗ 𝑑𝑟∗ = 0   (165)  

 

The axial distribution function 𝑋(𝑥∗) is chosen to be,  

 𝑋(𝑥∗) = 𝑋0 (
1

𝑥∗ + 1
) (166)  

 

as visualized by Fig. 21 for 𝑋0 = 1,  
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Figure 21: Axial distribution function of vortex 

 

Now the confined vortex’ contribution to the volume averaged kinetic energy density will be, 

 𝐾𝑤 =
𝜌1

2

∫ ∫ 𝑢𝑤
2(𝑥∗, 𝑟∗)

1

0
 2𝜋𝑟∗𝑑𝑟∗𝐻𝑠/𝐻𝑤

0
 𝑑𝑥∗

∫ ∫ 2𝜋𝑟∗𝑑𝑟∗1

0
 𝑑𝑥∗𝐻/𝐻𝑤

0
 

 (167)  

 

In terms of the spatial distribution functions, 𝐾𝑤 will be,  

 𝐾𝑤 =
𝜌1𝑢2

2

2
(
𝐻𝑤

𝐻
)(∫𝑄(𝑟∗)2

1

0

2𝜋𝑟∗ 𝑑𝑟∗)(∫ 𝑋(𝑥∗)2𝑑𝑥∗
𝐻𝑠/𝐻𝑤

0

) (168)  

 

Using Eq. (166) and Eq. (164), the net volume averaged kinetic energy density associated with the 

confined toroidal vortex is, 

 𝐾𝑤 =
𝜌1𝑢2

2

2
[
𝑋0

2𝑏𝑤

2
(

(𝛼𝑠 − 𝛼2)

(𝛼𝑠 − 𝛼2) + 𝛼𝑠𝑏𝑤
)] (169)  

 

where 𝑏𝑤 = 𝐻𝑤/𝐻 . In terms of the drift-flux 𝐽, 𝐾𝑤 can be written as,  

 𝐾𝑤 =
𝜌1 𝐽

2

2
[
𝑋0

2 𝑏𝑤 

2 𝛼2
2 (

(𝛼𝑠 − 𝛼2)

(𝛼𝑠 − 𝛼2) + 𝛼𝑠𝑏𝑤
)] =

𝐽2

2
Г𝑣𝑜𝑟𝑡𝑒𝑥 (170)  

The net Г is obtained by adding the net effective inertia from Wallis model and that of the confined 

vortex Г𝑣𝑜𝑟𝑡𝑒𝑥 as, 
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 𝛤 = [
𝜌2 + 𝜌1 (

𝛼𝑠

(1 − 𝛼𝑠)
)

𝛼2
] + 𝜌1 [

𝑋𝑜
2 𝑏𝑤 

2 𝛼2
2 (

(𝛼𝑠 − 𝛼2)

(𝛼𝑠 − 𝛼2) + 𝛼𝑠𝑏𝑤
)] (171)  

 

The net inertial coupling coefficient with contribution from the confined vortex behind the Taylor 

bubble is, 

 

𝑚(𝛼2)𝑣𝑜𝑟𝑡𝑒𝑥 = 𝛼2(1 − 𝛼2) (
𝛼𝑠 − 𝛼2

1 − 𝛼𝑠
)

+ (1 − 𝛼2)
2 (

𝑋𝑜
2 𝑏𝑤 

2 
) (

𝛼𝑠 − 𝛼2

(𝛼𝑠 − 𝛼2) + 𝛼𝑠𝑏𝑤
) 

(172)  

 

A comparison of 𝑚(𝛼2)𝑣𝑜𝑟𝑡𝑒𝑥 and 𝑚(𝛼2)𝑤𝑎𝑙𝑙𝑖𝑠 is shown in Fig. 22 for 𝑋0 = 4, 𝑏𝑤 = 0.1 and a 

constant value of  𝛼𝑠 = 0.87. The 𝑚(𝛼2)𝑣𝑜𝑟𝑡𝑒𝑥 from the lumped parameter model is only valid for 

0.2 ≤ 𝛼2 ≤ 𝛼𝑠. The higher value of 𝑚(𝛼2)𝑣𝑜𝑟𝑡𝑒𝑥 is attributed to the additional kinetic energy from 

the confined vortex. It is important to note that for lower void fractions, i.e., as 𝛼2 → 0, the value 

of 𝛼𝑠 = 0.87  is no longer valid and an approximation similar to  𝛼𝑠  ≅ 𝛼2  would be more 

appropriate. 

 

Figure 22: Comparison of inertial coupling coefficients with and without confined vortex  
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3.5  Linear Stability  

3.5.1 Characteristic Analysis  

The analysis of eigenvalues of a system of equations give an understanding of the mathematical 

behavior. As mentioned before, depending on the nature of the characteristic roots, the TFM 

system can be classified as either well-posed or ill-posed. To understand the linear stability of the 

variational fixed-flux model due to the inertial coupling between the two phases, the 1D variational 

Shallow Water TFM given in Eqs. (101)-(102) are recast into the following form in terms of the 

variables 𝛼2 and 𝑈̃ as,  

 (
𝛼2

𝑈̃
)
𝑡
+

(

 
 

−𝑈̃𝛤′

𝛤2

1

𝛤

−𝑈̃2

2
 (

𝛤′

𝛤2
)

′
−𝑈̃𝛤′

𝛤2
)

 
 

(
𝛼2

𝑈̃
)
𝑥
 = 0 (173)  

where 𝑈̃ = 𝛤𝐽. The Eigenvalues of the system of equations in Eq. (173) are,  

 𝐶1,2 =
𝑈̃𝛤′

𝛤2
 (−1 ± √

2𝛤′2 − 𝛤𝛤′′

2𝛤′2
) (174)  

 

The stability criteria for the variational fixed flux model is dependent on ∆̇ defined as, 

 
∆̇ = 2𝛤′2 − 𝛤𝛤′′ (175)  

 

where 𝛤′ =  𝜕𝛤/𝜕𝛼2  and 𝛤′′ = 𝜕2𝛤/𝜕𝛼2
2 .For  ∆̇ > 0 , the variational fixed flux model is 

hyperbolic as it will have real eigenvalues and ∆̇ = 0 renders the model parabolic. For ∆̇ < 0 , the 

model becomes elliptic as the eigenvalues are imaginary for this case. 

Wallis Model 

The behavior of the variational fixed flux model for Wallis slug flow model for the Taylor bubble 

without confined vortex is analyzed here. The 𝛤 for Wallis slug flow model in Eq. (143) is used 

for the calculation of ∆̇ as follows,  

 
𝛤 = 

(𝜌2 + 𝜌1 (
𝛼𝑠

1 − 𝛼𝑠
))

𝛼2
 

(176)  
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𝛤′  =

−(𝜌2 + 𝜌1 (
𝛼𝑠

1 − 𝛼𝑠
))

𝛼2
2

 

 

𝛤′′  =

2 (𝜌2 + 𝜌1 (
𝛼𝑠

1 − 𝛼𝑠
))

𝛼2
3

 

∆̇ = 2𝛤′2 − 𝛤𝛤′′ =  0 

 

As seen from Eq. (176), the variational fixed flux model is parabolic for the Wallis’s slug flow 

model, since ∆̇ = 0 and the two eigenvalues coincide and give only one characteristic speed. The 

non-dimensional Eigen values 𝐶1,2
∗ = 𝐶1,2/𝑢𝑟 = (1 − 𝛼2) are shown in Fig. 23.  

 

Figure 23: Non-dimensional Eigenvalues for Wallis Model 

 

Vortex Model 

The nature of the variational fixed flux TFM with a confined vortex behind the Taylor bubble is 

discussed here. The Eigenvalues of the system of equations in Eq. (173) are solved for the vortex 

model, with the Г given in Eq. (171) and the non-dimensional Eigenvalues are shown in Fig. 24. 
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Figure 24: Non-dimensional Eigen values for confined vortex model 

 

It is important to note that stability analysis with the vortex model is only valid for 𝛼2 ≤ 𝛼𝑠 and 

the presence of real Eigenvalues shows that the 1D variational Shallow Water TFM is hyperbolic 

even with a confined vortex behind the Taylor bubble. The addition of the vortex behind the Taylor 

bubble makes the variational fixed flux TFM hyperbolic from being parabolic.  

 

2.1.1 Dispersion Analysis  

The purpose of this section it to look into the linear stability behavior of the variational fixed-flux 

model in terms of dispersion relation. By including the drag and gravity forces into the momentum 

equation for the variational fixed flux TFM, the dispersion relation is obtained by perturbing the 

system of equations in Eq. (41)-(42) and recast into the form, 

 𝑨
𝜕

𝜕𝑡
𝛿𝜙 + 𝑩

𝜕

𝜕𝑥
𝛿𝜙 + 𝑫

𝜕2

𝜕𝑥2
𝛿𝜙 +

𝜕𝑭

𝜕𝜙
𝛿𝜙 = 0 

(177)  

 

where 

 𝜙 =  [𝛼2 , 𝑈]
𝑇
 

(178)  
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𝑭 =  𝜌1 [
𝐶𝐷

𝐷𝑝𝑖𝑝𝑒

(
𝑈

𝛤 𝛼2 (1 − 𝛼2)
)

2

 + 𝑔 ] 

𝜕𝑭

𝜕𝜙
= (

0 0
𝐹′ 𝐹𝑢

) = (

0 0
𝜕𝑭

𝜕𝛼2

𝜕𝑭

𝜕𝑈

) 

 

For a perturbation assumed to be a travelling wave given by, 

 𝛿𝜙 = 𝛿𝜙0𝑒
𝑖(𝑘𝑥−𝜔𝑡) 

(179)  

 

where 𝑘 = 2𝜋/𝜆 and the constraint equation for the growth rate reduces to following expression 

for a non-trivial solution to exist,  

 det [𝜔𝑨 − 𝑘𝑩 − 𝑖𝑘2𝑫 +
𝜕𝑭

𝜕𝜙
] 𝛿𝜙 = 0 

(180)  

and the dispersion relation is,  

 𝜔1,2(𝑘) =  
1

2

(

 −
2𝑘𝑈𝛤′

𝛤2
− 𝑖𝐹𝑢  ±

√−4𝑖 𝐹𝛼2
𝑘 𝛤3 − 𝐹𝑢

2𝛤4 + 2 𝑘2 𝑀2(2 𝛤′2 − 𝛤𝛤′′)

 𝛤2
 

)

  
(181)  

 

Wallis Model 

The dispersion relation for Г from the slug flow model of Wallis without drag and gravity forces 

is visualized Fig. 25. 
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Figure 25: Dispersion relation for Wallis’s slug flow model 

 

The dispersion relation shown in Fig. 25 agrees with the stable parabolic nature of the variational 

fixed flux TFM obtained from the characteristic analysis for Wallis’s slug flow model.  

 

3.6  Interfacial Drag  

The importance of the interfacial drag force for modeling the development of Taylor bubbles is 

discussed here. The variational Shallow Water TFM requires the constitutive models for the non-

conservative (dissipative) interfacial drag force in addition to the conservative inertial forces. To 

model the clustering of local interfacial structures, the interfacial drag force needs to account for 

the acceleration of the dispersed bubbles based on the local void fraction and not on average void 

fraction. Hence, a localized drag coefficient has been used as opposed to using an averaged drag 

coefficient of Ishii and Chawla [42] for slug flow, which is based on average void fraction and is 

given by, 

 
〈𝑐𝐷〉 =  9.8 (1 − 𝛼2)

3 
(182)  

The local drag coefficient 𝑐𝐷 has been obtained from the experimental data of Cheng and 

Azzopardi [2] and Song et al. [3] using force balance between interfacial drag and gravity as 

displayed in Fig. 26.  
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 𝑐𝐷 = 𝑒(1.3 +9𝛼2−44.4𝛼2
2+45𝛼2

3−13.5𝛼2
4) (183)  

 

Figure 26: Local interfacial drag coefficient based on experimental data 

 

In order to check if the localized 𝑐𝐷 in Eq. (183) matches in an averaged sense with the average 

drag coefficient 〈𝑐𝐷〉 in Eq. (182) for slug flow, the Eulerian time averaging procedure was used 

as shown below, to calculate 〈𝑐𝐷〉 and 〈𝛼2〉 from the numerical simulation data for slug flows, 

  〈𝑐𝐷〉 =  
∫  𝑐𝐷 𝑑𝑡

𝑡+∆𝑡

𝑡

∆𝑡
=

∫  (
𝑔𝐷𝑝𝑖𝑝𝑒

𝑢𝑟
2 )  𝑑𝑡

𝑡+∆𝑡

𝑡

∆𝑡
 

 

(184)  

 〈𝛼2〉 =  
∫  𝛼2 𝑑𝑡

𝑡+∆𝑡

𝑡

∆𝑡
 

(185)  

 

The simulation data from the last 500 seconds of a 1000 seconds simulation at 0.5 m from the inlet 

of a 1 m long domain with periodic boundary conditions was used to calculate 〈𝑐𝐷〉 and 〈𝛼2〉. The 

calculated 〈𝑐𝐷〉 is compared with Ishii and Hibiki [17] as seen in Fig. 27. It can be seen that the 

average of the local drag coefficient falls in 90% agreement for 0.2 ≤ 𝛼2 ≤ 0.5 range, which 

corresponds to the slug flow regime. 
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Figure 27: Comparison of the averaged interfacial drag coefficients 

 

The use of localized drag coefficient induces SWT instability and the vortex model eliminates the 

KH instability as seen from dispersion relation in Fig. 28 for 𝑋0 = 4, 𝑏𝑤 = 0.1 and 𝛼𝑠 = 0.92. 

The model is stable for void fraction values of 𝛼2 = 0.2 and 0.7 which correspond to the bubbly 

flow and churn-annular flow regimes respectively. But the model is unstable for the intermediate 

void fraction range which corresponds to the clustered bubbly and slug flow regimes.  
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Figure 28: Dispersion relation for vortex model with local drag coefficient 

 

The growth rate of the SWT instability in general is dependent on both the slope and magnitude 

of the interfacial drag coefficient and the same applies for making the 1D Shallow Water TFM 

unstable due to its resemblance to the 1D SWT equations. Using the fixed flux assumption 𝑗0 = 0, 

the kinematic wave speed 𝑉𝑤 following Whitham [8] and Wallis [9] is,  

 𝑉𝑤 = −
𝐹𝛼2

 𝛤 𝐹𝑢

 
(186)  

 

The dispersion relation can then be written in terms of 𝑉𝑤 as, 

 𝜔1,2(𝑘) = −
𝑘𝑈𝛤′

𝛤2
−

𝑖𝐹𝑢

2
 ± √(𝑖

1

2
𝐹𝑢 + 𝑐̂𝑘)

2

+ 𝑖𝑘𝐹𝑢(𝑉𝑤 − 𝐶) (187)  

where the dynamic wave speed 𝐶 is,  

 𝐶 =  
𝑈𝛤′

𝛤2
 (−1 ± √

2𝛤′2 − 𝛤𝛤′′

2𝛤′2
) 

(188)  

 

The kinematic stability criterion is then 𝑉𝑤 = 𝐶 , which can be simplified as, 



 

 

90 

 (
2 𝛤′ 

𝛤
+

2 − 4𝛼2

𝛼2 (1 − 𝛼2)
) −

√4 𝛤′2 − 2𝛤𝛤′′ 

𝛤
=

𝐶𝐷
′

𝐶𝐷

 (189)  

 

The roots of the Eq. (189) for 0 ≤ 𝛼2 ≤ 1 are shown in Fig. 29 where the R.H. S of Eq. (189) is 

plotted against the L. H. S for both the averaged and local drag coefficients using 𝑋0 = 4 , 𝑏𝑤 =

0.1 and 𝛼𝑠 = 0.92. The stability map obtained from the dispersion relation is also shown in Fig. 

30 to better visualize the SWT instability and the effect of using a localized drag coefficient. The 

stability map was obtained by taking the average of the dispersion relation at every 5 cm 

wavelength for 0 ≤ 𝜆 ≤ 1. The roots of Eq. (189), where the curves intersect for the local drag 

coefficient define the upper and lower void fractions limits for the unstable region (𝜔𝑖 > 0 ) in 

Fig. 30. The model is unstable when L. H. S > R. H. S of Eq. (189), which is equivalent to 𝑉𝑤 > 𝑐̂, 

as it is for the local drag coefficient. But the averaged drag coefficient of Ishii and Chawla [42] 

gives a stable model since L. H. S < R. H. S as seen in Fig. 29, and has a stabilizing effect as 

opposed to the destabilizing effect of the local drag coefficient. Furthermore, the lower and the 

upper limits of 𝛼2 for the unstable region in the stability map should define the lower bound and 

upper bound for the slug flow waves in the numerical simulations. It can be stated that the 

interfacial drag force with localized drag coefficient makes the variational 1D Shallow Water TFM 

model unstable while the model is unconditionally hyperbolic and well-posed. The drag force 

causes the void fraction waves to grow or decay. The amplitude of the fully developed slug flow 

waves should to some extent be determined by these limits and it would not be unreasonable to 

state that without the upper limit for 𝛼2, the waves will continue to grow without any constraint. 

Hence it will limit the size of the Taylor bubbles in terms of local void fraction values. Moreover, 

the growth rate and non-linear evolution of the shape of the slug flow waves is dependent on the 

localized drag coefficient in conjunction with the 𝑚(𝛼2) from the vortex model used for the 

conservative forces.  
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Figure 29: Effect of average and local interfacial drag on linear stability 

 

Figure 30: Linear stability map from dispersion relation  
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3.7  Numerical Simulations 

3.7.1 Verification 

Burgers Equation 

For verification of the numerical simulations, the 1D variational Shallow Water TFM equations 

without the interfacial drag, gravity, and surface tension for the 𝛤 from Wallis slug flow model are 

analyzed here. The Eq. (101)-(102) are written in terms of 𝛼2, 𝑈̃ and 𝛤 as, 

 

𝜕𝛼2

𝜕𝑡
+

𝜕

𝜕𝑥
(
𝑈̃

𝛤
) = 0 

(190)  

 𝜕𝑈̃

𝜕𝑡
−

𝜕

𝜕𝑥
(
𝛤′𝑈̃2

2 𝛤2
) = 0 

(191)  

By introducing 𝑟𝑝 = 𝜌2/𝜌1 ≪ 1 for air-water two phase mixture in the definition of 𝛤,  

 
𝛤 =  

1

1 − 𝛼2
+

𝑟

𝛼2
+

(𝛼𝑠 − 𝛼2)

𝛼2 (1 − 𝛼2) (1 − 𝛼𝑠)
= (

𝛼𝑠

1 − 𝛼𝑠
)

1

𝛼2
 

 

(192)  

 
𝛤′ = −(

𝛼𝑠

1 − 𝛼𝑠
)

1

𝛼2
2
 

(193)  

 

Using Eq. (193), the set of equations in Eqs. (190)-(191) can be simplified as,   

  

𝜕𝛼2

𝜕𝑡
+

𝜕𝛼2𝑈̃
∗ 

𝜕𝑥+
= 0 

 

(194)  

 𝜕𝑈̃

𝜕𝑡
+ 𝑈̃∗  

𝜕𝑈̃∗ 

𝜕𝑥+
= 0 

(195)  

 

where 𝑥+ = (1 − 𝛼𝑠)𝑥/𝛼𝑠 . We can see that the slug flow model of Wallis for negligible 𝑟𝑝 

simplifies the momentum equation of the 1D variational Shallow Water TFM equations into a 

Burgers equation as shown in Eq. (195). Furthermore, Eq. (195) is decoupled from the continuity 

equation given in Eq. (194). The importance of solving the Burgers equation for verification lies 

in the fact that it has the well-known analytical solution obtained by method of characteristics. 

Therefore, these equations are used next to verify the TFM for a piecewise linear initial condition. 

For a piecewise initial condition of the form,  
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𝑈̃∗(𝑥∗(0), 0) = 𝑈̃0
∗
= 𝑎̃ + 𝑏̃ 𝑥+ 

𝑎̃ = 2.03 

𝑏̃ =  {

0.2𝑥+, 𝑓𝑜𝑟 𝑥+ ≤ 0.1

−0.02(1 − 10(𝑥+ − 0.1)),   𝑓𝑜𝑟 0.1 ≤ 𝑥+ ≤ 0.2

0, 𝑓𝑜𝑟 𝑥+ ≥ 0.2

 

(196)  

 

the analytical solution from the method characteristics is,  

 𝑈̃∗(𝑥∗, 𝑡) =
𝑎̃ + 𝑏̃𝑥+

1 + 𝑏̃ 𝑡
 (197)  

 

Given in Fig. 31 is the comparison of the simulation results for different mesh sizes with the 

analytical solution, where a piecewise initial condition is used for 𝑈̃∗. The simulations were run 

using a 1 m long domain with periodic boundary conditions for 2 seconds. 

 

Figure 31: Comparison of Burgers equation simulations with the analytical solution 
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Void Propagation Equation 

Once the solution of the momentum equations is verified, the next step is the solution of the 

continuity equation when coupled with the momentum equation of the variational Shallow Water 

TFM. A piecewise initial condition is used for 𝛼2 as,  

 

𝛼2( 𝑥
+(0), 0) = 𝛼20

= 𝑝 + 𝑞̃ 𝑥+ 

𝑝 = 0.5 

𝑞̃ =  {

0.05 𝑥+, 𝑓𝑜𝑟  𝑥+ ≤ 0.1

−0.05(1 − 10( 𝑥+ − 0.1)),   𝑓𝑜𝑟 0.1 ≤  𝑥+ ≤ 0.2

0, 𝑓𝑜𝑟  𝑥+ ≥ 0.2

 

(198)  

The same initial condition as in the Burgers equation solution is used for 𝑈̃∗. For 𝑈̃∗(𝑥+, 𝑡) given 

by Eq. (197), the solution for the continuity equation is,  

 𝛼2(𝑥
+, 𝑡) =  

𝑝 + 𝑞̃𝑥+ + (𝑏̃ 𝑡 − 𝑎̃ 𝑞̃)𝑡

(1 + 𝑏̃ 𝑡)2
 (199)  

 

Given in Fig. 32 is the comparison of the simulation results for different mesh sizes with the 

analytical solution for 𝛼2(𝑥
+, 𝑡). 



 

 

95 

 

Figure 32: Comparison of void propagation solution with the analytical solution 

 

Wave Propagation 

The kinematically stable Wallis model with interfacial drag is used for verification here. The 1D 

Shallow Water TFM equations in Eq. (101)-(102) without the surface tension term are solved for 

the drag coefficient, 

 𝑐𝐷 = 
1 − 𝛼2

𝛼2
   (200)  

 

This 𝐶𝐷 gives a stable Wallis model according to the dispersion relation in Fig. 33 for 𝛼2 = 0.5.  
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Figure 33 : Dispersion relation for kinematically stable Wallis model with simplified drag 

 

This stable SWT wave propagation problem was solved numerically, and the simulation result for 

different mesh sizes is shown in Fig. 34 for the piecewise initial condition for 𝛼2 and with 𝛤∗𝐽= 

constant. It can be seen that a converged solution can be obtained as the number of nodes is 

increased. 
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Figure 34: Simulation of stable wave propagation for Wallis model with simplified drag 
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The 1D variational Shallow Water TFM with the confined vortex model was used to perform 

numerical simulations for dispersed bubbly, clustered bubbly and slug flow regimes. The 
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Song et al. [3] is discussed here. For the non-linear simulation results presented here, a mesh size 
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constant 𝑗, the 𝛼2 and 𝑈̃∗ were obtained in the lab frame by translating the position of the probe 

accordingly. For this, the position of the probe in the moving 𝑗 frame is first calculated using the 

MOD functionality in FORTRAN. Then the node to the left of the probe and the corresponding 

position are determined. This is followed by the calculation of 𝛼2 and 𝑈̃∗, by taking their position 

weighted average using node to the left of the probe as reference. Based on the parametric study 

discussed in Appendix 6.4, the vortex model with 𝑋0 = 4, 𝑏𝑤 = 0.1 and 𝛼𝑠 = 0.92, and the drag 

coefficient 𝐶𝐷 defined in Eq. (183) were used for validation of the numerical simulations. 

Slug Flow  

Table 3 summarizes the air-water two-phase flow conditions from the experimental data of Cheng 

and Azzopardi [2] and Song et al. [3], used for validation of the slug flow simulation results. 

Table 3: Flow conditions for numerical simulations of slug flow  

Experiment 𝐿𝑝𝑖𝑝𝑒(𝑚) 𝐷𝑝𝑖𝑝𝑒(𝑚𝑚) 𝑗1 (𝑚/𝑠) 𝑗2 (𝑚/𝑠) 𝛼2 

Cheng and Azzopardi [2] 4.1 28.9 0.356 0.5033 0.463 

Cheng and Azzopardi [2] 4.1 28.9 0.356 0.767 0.527 

Song et al. [3] 3 25 0.275 0.364 0.405 

Song et al. [3] 3 25 0.275 0.392 0.44 

 

Fig. 35 and Fig. 36 show the temporal evolution of 𝛼2  for the slug flow data of Cheng and 

Azzopardi [2] for mean gas void fraction of 𝛼2 = 0.527 and 0.463 respectively. The 𝛼2(𝑡) values 

were obtained at 0.5 m from the inlet of a 1 m periodic domain.  
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Figure 35: Comparison of simulation with data of Cheng and Azzopardi [2] 

 

Figure 36: Numerical simulation result for Cheng and Azzopardi [2] data 
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The amplitude and frequency (number of pulses per second) of the slug flow waves from the data 

and simulations are compared below in Table 4 for 𝛼2 = 0.527and the error is less than 12%.  

Table 4 : Comparison of simulation results with the data of Cheng and Azzopardi [2] 

 Data Simulation Error (%) 

Amplitude  0.7 0.65 7.1 

Frequency (1/s) 1.5 1.67 11.3 

 

 

Figs. 37-38 and Figs. 39-40 show the comparison of the numerical simulations with the 

experimental data of Song et al. [3], for mean gas void fraction of 𝛼2 = 0.405  and 0.44 

respectively. 

 

Figure 37: Voltage signal from Song et al. [3] 
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Figure 38: Numerical simulation result for the data of Song et al. [3]  

 

 

Figure 39: Voltage signal from Song et. al. [3]  

0

0.2

0.4

0.6

0.8

1

25 25.5 26 26.5 27 27.5

V
o

id
 f

ra
ct

io
n

 (
α

2
)

time (s)



 

 

102 

 

Figure 40: Numerical simulation result for the data of Song et al. [3] 

 

The wave propagation properties are compared using the frequency and width of the slug flow 

pulses for the data of Song et al. [3] in Table 5 and agreement is within 41%. In addition, the wave 

propagation speeds from simulations are compared with the data in Table 4 and the agreement is 

within 15%.  

Table 5: Comparison of numerical simulations with data of Song et al. [3]  

𝛼2 Frequency (1/s) Width (s) 

Data Simulation Error (%) Data  Simulation Error (%) 

0.405 2.7 1.6 40.7 0.3 0.325 8.3 

0.44 2.4 1.8 25.0 0.35 0.3 14.3 

 

Table 6: Comparison of wave propagation speeds for data of Song et al. [3]  

𝛼2 Wave Propagation Speed 𝐶𝑤 (m/s) 

Data Simulation Error (%) 

0.405 0.88 0.75 14.8 

0.44 0.88 0.78 11.4 

 

It can be seen that there is some discrepancy when the void fraction wave propagation properties 

from simulation are compared with that of the data. The discrepancy can be attributed to the lack 

of information regarding axial wake profiles for different average void fractions for slug flows 
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used to obtain the 𝑏𝑤 and 𝑋0 values chosen for the numerical calculation. To analyze the non-

linear dynamics associated with the slug flow material waves, the two-dimensional (2D) phase 

space plot of 𝑈̃∗ = 𝛤∗𝐽  and 𝛼2  is used. The simulations were run for 5000 seconds and the 

trajectories of 𝑈̃∗ and 𝛼2 are shown in Figs. 41, 42 and 43 for mean gas void fraction of 0.405, 

0.44 and 0.527, using the last 500 seconds of simulation data. It can be seen that though the 

trajectories seem chaotic as they cross each other as opposed to being well defined. But they are 

bounded and hence the model in Lyapunov stable since the growth of the void fraction waves is 

non-linearly bounded.  

 

Figure 41: 2D Phase space plot for 40.5 % slug flow case of Song et al. [3]  



 

 

104 

 

Figure 42: 2D Phase space plot for 46% slug flow case of Song et al. [3]  

 

Figure 43: 2D Phase space plot for 52.7% slug flow case of Cheng and Azzopardi [2]   
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From the 2D phase space plots, the solutions look chaotic. For the grid convergence test, the 

temporal evolution of 𝛼2 is visualized for different grid sizes are shown in Fig. 44.  

 

 

 

Figure 44: Slug flow at different mesh sizes for 52.7 % void fraction 
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To demonstrate chaos and grid convergence in the spectral sense, the amplitude spectra in the 

frequency domain of the interfacial structures is used. The simulations were run for 5000 seconds 

and the data from last 200 seconds were used. The data was collected at the center of the 1D 

domain and using the Fast Fourier Transform (FFT), the amplitude |𝐴 (𝛼2)| in the frequency 

domain is calculated as,  

 |𝐴 (𝛼2)| =
𝐹𝐹𝑇(𝛼2 − 〈𝛼2〉)

𝑁/2
 (201)  

 

where N is the number of nodes and 〈𝛼2〉 is the mean gas void fraction. In the Fig. 45, it can be 

seen that the solution converges at 1000 nodes (1 mm mesh) and spectral convergence is obtained. 

Furthermore, the continuous distributions in the frequency domain demonstrate the chaotic nature 

of the interfacial structures for slug flow.   

 

 

Figure 45: Slug flow amplitude spectra for 52.7 % void fraction 
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Clustered Bubbly Flow 

In order to test the capability of the vortex model to resolve development of flow structures for 

clustered bubbly flows, the simulation results obtained for lower α2 values in the range of 0.27 ≥

α2 ≤0.3 are presented here. A typical time series plot of α2= 0.2 from the clustered bubbly flow 

data of Cheng & Azzopardi [2] along with the simulation results for α2 = 0.27 and α2 = 0.3 are 

given in Fig. 46, Fig. 47 and Fig. 48 respectively.  

 

Figure 46: Clustered bubbly flow data of Cheng and Azzopardi [2]  

 

Figure 47: Clustered bubbly flow simulation for 27% void fraction 
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Figure 48: Clustered bubbly flow simulation for 30% void fraction 

 

Similar to the slug flow simulations, the clustered bubbly flow simulations were run for 5000 

seconds to visualize the 2D phase space trajectories for 𝛤∗𝐽 as a function of 𝛼2. From Fig. 49 and 

Fig. 50, the trajectories correspond to limit cycles as the trajectories are well defined and are not 

interwoven. Similar to slug flow regime, the model is found to be Lyapunov stable for clustered 

bubbly flow regime. 

 

Figure 49: 2D phase space plot of clustered bubbly flow simulation at 27% void fraction 
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Figure 50: 2D phase space plot for clustered bubbly flow simulation at 30% void fraction 

 

Performing the mesh refinement test further demonstrates the limit cycle (non-chaotic) behavior 

of the interfacial structures for bubble clusters as shown in Fig. 51, for mean gas void fraction of 

27%. It can be seen that the solution converges at 1000 nodes or ∆𝑥 = 1 mm.  
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Figure 51: Grid convergence of 2D phase space plot for clustered bubbly flow simulation 

Dispersed Bubbly Flow  

The capability of the 1D Shallow Water TFM to simulate bubbly flow is tested here. Cheng and 

Azzopardi [2] report dispersed bubbly for lower value of 𝛼2 = 0.13 as shown in Fig 52. According 

to the stability map in Section 3.6, the model predicts stable dispersed bubbly flow in the range 

0.15 ≤ 𝛼2 ≤ 0.26 and the time series plot for 𝛼2 = 0.15 is given in Fig. 53. The perturbation 

present in the initial condition decays with time as the model is SWT stable as opposed to being 

unstable as is the case for clustered bubbly and slug flow regimes. But similar to the case of 

clustered bubbly flow regime, there is a discrepancy in the prediction capability of the model when 

it comes to stable dispersed bubbly flows. The model should have been stable for the lower void 

fractions where in general stable dispersed bubbly flow and this is due to high constant value of 

𝛼𝑠 = 0.92 being used and for stable bubbly flow, the 𝛼𝑠 should more or less follow 𝛼𝑠  ≅ 𝛼2. 
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Figure 52 Time series plot of stable bubbly flow data from Cheng & Azzopardi [2]  

 

Figure 53: Stable dispersed bubbly flow simulation at 15% void fraction 
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 CONCLUSIONS 

4.1  Mechanistic TFM  

1) The 1D mechanistic TFM of Ishii [1] can be made well-posed, unstable and Lyapunov stable 

provided appropriate physical mechanisms pertaining to the phasic interactions are included.  

2) The physical mechanism of wake entrainment is proposed for clustering of dispersed bubbles 

leading to formation of bubble clusters, useful for predicting bubbly to slug flow regime 

transition in vertical adiabatic two-phase flows.  

3) The wake entrainment force was derived from a first order linearization of the interfacial drag 

force using a churn turbulent flow drag law.  

4) The mechanistic 1D Shallow Water TFM, which is an asymptotic case of the mechanistic 1D 

TFM, was used to analyze the local instability due to wake entrainment.  

5) The linear stability analysis comprising of the characteristic and dispersion analyses was used 

to determine the stability of the TFM. Due to the presence of the wake entrainment instability, 

the 1D Shallow Water TFM was found to be KH unstable.  

6) The numerical simulations were used to analyze the nonlinear stability of the 1D mechanistic 

TFM.  

7) The simulations of the 1D Shallow Water TFM were validated for the case of dispersed and 

clustered bubbly flows: 

a) For the dispersed bubbly flow regime at lower void fractions, the void fractions waves are 

stable and there is no amplification because the wake entrainment effect is negligible as 

the bubbles are far away from each other and do not.  

b) For higher void fractions, the wake entrainment instability induced clustering. This caused 

the void fraction waves to grow, leading to the development of interfacial structures 

specific to bubble clusters.  

8) The wavelengths and the wave speeds of the numerical calculations are in reasonable 

agreement with the experimental data of Cheng and Azzopardi [2] and Song et al. [3]. However, 

the amplitude of the void wave simulations is low when compared to the experimental data for 

bubble clusters.  
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9) The instabilities can be predicted with 3D CFD. However, due to the significant amount of 

numerical diffusion present in the CFD TFM solver in Fluent, very fine mesh sizes were 

necessary.  

4.2  Variational TFM  

1) A well posed and unstable 1D variational TFM capable of simulating the development of 

clusters and Taylor bubbles for vertical adiabatic air-water two-phase flows was proposed. 

2) A comparison of the 1D mechanistic TFM with the variational TFM showed that there are 

additional conservative interfacial momentum transfer terms in the variational TFM, which 

make it objective, i.e., frame invariant (Geurst [4], [21]). 

3) The variational approach was used to derive the 1D Shallow Water TFM equations following 

the formulation of Pauchon and Smereka [20]. It is shown that the void fraction and drift flux 

are the natural variables to model local two-phase instabilities.   

4) Potential flow theory was used for formulation of the inertial coupling coefficient for a single 

bubble moving in liquid, applicable for dilute bubbly flows. The values of the virtual mass and 

interfacial pressure coefficients obtained from the inertial coupling coefficient agree with the 

values generally used in the mechanistic TFM for stable dispersed bubbly flows.  

5) Potential flow theory was then used to model interaction between two bubbles arranged in an 

in-line configuration and the virtual mass coefficient is in decent agreement with the analytical 

solutions available in literature.  

6) Using a lumped parameter model, objective constitutive models for the conservative interfacial 

forces were developed for wake entrainment through the formulation of the inertial coupling. 

7) Starting from the Taylor bubble model of Wallis, a confined vortex behind the Taylor bubble 

was added to the lumped parameter model for wake entrainment.  

8) The local drag coefficient was obtained from the experimental data using the kinematic 

approximation, i.e., the force balance between drag and gravity for the interfacial drag force. 

9) The Eigenvalues of the 1D variational Shallow Water TFM were calculated using 

characteristic analysis. The model was found to be hyperbolic, i.e., with real Eigenvalues 

which represent the propagation speed of the void waves. 

10) Through dispersion analysis, it was shown that the 1D variational Shallow Water TFM is SWT 

well-posed and SWT unstable. 
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11) For verification of the 1D variational Shallow Water TFM simulations, it was first shown for 

the model of Wallis [22] that when the gas to liquid density ratio is negligible, the momentum 

equation reduces to the well-known Burgers equation. Moreover, the Burgers equation was 

found to be decoupled from the continuity equation so verifications of the numerical solutions 

for both the continuity and momentum equations were possible. 

12) For validation, the model was then solved numerically to simulate the development of 

interfacial structures associated with bubble clusters and Taylor bubbles: 

13) For the slug flow regime at higher void fractions, the void fraction waves grow due to 

clustering and the unique interfacial structures associated with Taylor bubbles were obtained.  

14) Extrapolation of the wake entrainment model for lower void fractions led to the formation of 

bubble clusters due to growth of the void waves. Discrepancy was found in the flow regime 

boundary prediction for clustered bubbly flows. The model predicts onset of clustered bubbly 

flow regime at void fractions higher than the experimental data.  

15) When the model was extrapolated further to even lower void fractions, stable void fraction 

waves were obtained as the initial perturbations decay. But the extrapolation fails for very low 

void fractions. 

16) The growth rate and development of the void fraction waves for clustered bubbly and slug flow 

were shown to be non-linearly bounded. 

17) The comparison of wave propagation properties of the void fraction waves in terms of the 

frequency, amplitude, width and propagation speeds, agrees with the experimental data.  

18) Thus, the short-wave two-phase flow simulation capability of the TFM is demonstrated for 

slug flow and the bubbly to slug flow regime transition in vertical adiabatic two-phase flows. 
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 FUTURE WORK 

The following recommendations are proposed:  

1) The model can be improved by revising the definition of 𝛼𝑠 for lower void fractions to make 

the 1D variational Shallow Water TFM is SWT stable for 𝛼2 ≤ 0.15. The definition of 𝛼𝑠 such 

that 𝛼𝑠 ≥ 0.87  for unstable clustered bubbly and slug flow regimes is physically valid. 

However, for the stable dispersed bubbly flow regime, the 𝛼𝑠 that can be attained should be 

approximately the same magnitude as that of 𝛼2, i.e., 𝛼𝑠 ≈ 𝛼2 would be more accurate.  

 

2) The proposed 1D variational Shallow Water TFM can be more complete by adding a viscous 

diffusion term in the momentum equation. The viscous diffusion mechanism will be significant 

due to eddy diffusivity in the liquid slug region because of the presence of the toroidal vortex. 

This would require a localized formulation of the net viscosity based on the local void fraction 

and the effect of eddy diffusivity on the linear and non-linear stability of TFM will require 

more analysis.  

 

3) The 1D industrial codes such as RELAP 5 use the full TFM. Since the 1D Shallow Water TFM 

is an asymptotic case of the 1D TFM, the constitutive models developed for the Shallow Water 

TFM may be transferred to the full four equation TFM for real-world engineering applications.  
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APPENDIX 

A.1 Drag and Wake Entrainment Length Scales 

The two experimental data sets of Cheng and Azzopardi [2] and Song et al. [3] are shown in Fig. 

54 in a flow regime map, 

 

Figure 54 : Flow regime map for dispersed and clustered bubbly flow data 

 

The marked data set in Fig. 54 is for the mean bubble diameter of 3.62 mm of Cheng and Azzopardi 

[2], while the rest of the data is for 4.8 mm of Song et al. [3] 𝑗1 and 𝑗2 correspond to the liquid and 

gas volumetric flux (superficial velocities) respectively and the flow regime map in Fig. 54 covers 

the dispersed and clustered bubbly flows. The experimental data sets of dispersed and clustered 

bubbles are separated from each other for given mean bubble diameter and flow conditions. Since 

the wake entrainment force is directly proportional to the square of the relative velocity, the 
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transition from dispersed to clustered bubbles can be predicted if the right relative velocity is 

obtained by choosing a suitable length scale combination for the interfacial drag and wake 

entrainment force. This is the motivation behind defining a relationship of length scales for the 

wake entrainment force and the interfacial drag force, 𝐿𝑊𝐸  and  𝐿𝐷 , as 𝐿𝑊𝐸  = 10𝐿𝐷 . This is 

consistent with the wavelengths of void fraction waves for bubble clusters from experiments found 

to be approximately ten times the mean bubble diameter.  

 

With the force balance between gravity and interfacial drag determining the relative velocity,  

𝐿𝐷𝑟𝑎𝑔 = 𝐷𝑏 for dispersed bubbles and 𝐿𝐷𝑟𝑎𝑔 =  2𝐷𝑏 for clustered bubbles were found to give a 

reasonable prediction of the range of relative velocity measurements as shown in Fig. 55. 

 

 

Figure 55: Relative velocity calculation using the kinematic approximation 
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A.2 Collision Force 

The collision force model of Alajbegovic [44] is given by, 

 𝑀𝑐𝑜𝑙𝑙 = −∇. [(𝜌2 + 𝜌1𝑐𝑣𝑚) 𝑞(𝛼2)𝛼2
2(2𝑢2

′ 𝑢2
′̅̅ ̅̅ ̅̅ + 𝑢2

′ . 𝑢2
′̅̅ ̅̅ ̅̅ ̅𝐼)] (202)  

where 𝐼 is the identity tensor. The stress tensor in the gas phase and the liquid phase can be related 

using the assumption of equilibrium in turbulence as, 

 
𝑢2

′ 𝑢2
′̅̅ ̅̅ ̅̅ =  

1

1 +
𝜏𝑝

𝜏𝑐

 𝑢1
′ 𝑢1

′̅̅ ̅̅ ̅̅  
(203)  

 

Since eddies are generated due to presence of bubbles in the continuous liquid phase, their time 

constant 𝜏𝑐 is,  

 
𝜏𝑐 = 

𝐷𝑏

𝑢𝑟

 
(204)  

In the above equation,  𝑢𝑟 is the relative velocity between the phases and 𝐷𝑏 is the bubble diameter. 

From force balance on a single bubble, the relaxation time 𝜏𝑝 for bubbles when assumed to be 

solid spheres can be obtained as,  

 
(𝜌2 + 𝜌2 𝑐𝑣𝑚)

𝑑𝑢2

𝑑𝑡
= −

3

4
 
𝑐𝐷 𝑅𝑒 𝜇1 𝜇2

 𝐷𝑏
2  

 

(205)  

 
𝜏𝑝 =

4

3
 
(𝜌2 + 𝜌1 𝑐𝑣𝑚) 𝐷𝑏

2

 𝑐𝐷 𝑅𝑒 𝜇1

 
(206)  

 

Following Lopez de Bertodano et al. [38], the stress tensor for liquid phase due to bubble induced 

turbulence is,  

 

𝑢1
′ 𝑢1

′̅̅ ̅̅ ̅̅ =  [

4/5 0 0
0 3/5 0
0 0 3/5

] 
1

2
 𝑐𝑣𝑚 𝛼2 |𝑢𝑟|

2 

(207)  

 

Assuming the stress tensor to be isotropic for the bubble induced component, 

 𝑀𝑐𝑜𝑙𝑙 = −𝑐𝑐𝑜𝑙𝑙  𝜌1 𝑐𝑣𝑚
2  ∇. [𝑔 (𝛼2) 𝛼2

3 |𝑢𝑟|
2 𝐼]  (208)  

For the 1D TFM, the collision can be reduced to, 
 

𝑀𝑐𝑜𝑙𝑙 = −𝑐𝑐𝑜𝑙𝑙𝜌1𝑐𝑣𝑚
2 [(3𝛼2

2𝑢𝑟
2𝑞(𝛼2) + 𝛼2

3𝑢𝑟
2
𝑑𝑞(𝛼2)

𝑑𝛼2

)
𝜕𝛼2

𝜕𝑥
+ +2𝛼2

3𝑢𝑟𝑞(𝛼2)
𝜕𝑢𝑟

𝜕𝑥
] 

(209)  

 

where 𝑞(𝛼2) is the pair correlation function.  
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A.3 CFD Simulations 

A.3.1 Methodology 

In the previous section, it was shown that the wake entrainment instability can be triggered by 

adding the wake entrainment force term which of the form of a gradient of void fraction term. This 

section presents the extension of the in-house 1D mechanistic Shallow Water TFM results to the 

complete TFM present in commercial CFD package, ANSYS Fluent (version 15.0). Quasi-1D 

simulations were performed in a 2D domain to check if it is possible to simulate the growth of 

void fraction waves due to wake entrainment. 

The computational domain and boundary conditions used for the Fluent calculations are given in 

Fig. 56 and Table 7 respectively. A constant volumetric flux is set at the inlet. The mesh size of 

0.5 mm was used to counter high numerical diffusion present in the Eulerian TFM solver of Fluent. 

To cut down the computational cost due to very small mesh size being used, the dimensions of 

computational domain were reduced to 60 cm and 5 cm along axial and transverse direction 

respectively. Use of periodic fixed flux boundary condition at inlet and outlet didn’t give 

convergent results, as the implementation of periodic boundary conditions in Fluent led to increase 

in the liquid and gas velocities with time, giving unrealistic velocity values. The MUSCL scheme 

(flux-limiter numerical scheme) was chosen for spatial discretization of momentum terms. The 

bounded second order implicit scheme for time advancement and Phase-Coupled SIMPLE scheme 

of pressure-velocity coupling were used. The Fluent simulations were run in parallel on 8 

processors, for total physical time of 1 second due to high computational cost associated with using 

0.5 mm mesh. 

The collision and wake entrainment forces were included in the momentum equations of the TFM 

through User Defined Functions (UDFs), loaded dynamically within ANSYS Fluent to modify and 

add to its standard features. The UDFs are defined using DEFINE macros provided by Fluent and 

are compiled first and then built into the library prior to initializing the domain and running the 

respective Fluent case files. An additional UDF was defined for the purpose of storing the void 

fraction as well as velocity gradient, since the collision force, wake entrainment and interfacial 

pressure terms are defined in terms of these gradients. Table 8 gives a brief outline of the different 

UDFs used for the CFD calculations.  



 

 

120 

 

Figure 56: Quasi-1D domain used for CFD simulations in Fluent 

 

Table 7: Boundary conditions used in Fluent for quasi-1D simulations 

Boundary Conditions 

Top Pressure Outlet 

Bottom Velocity Inlet 

Left Symmetry 

Right Symmetry 
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Table 8: List of UDFs used for the TFM solver in ANSYS Fluent 

UDF (.c file) Flow Direction Purpose 

PintSource_x.c X Add interfacial pressure, collision force terms 

PintSource_y.c Y Add interfacial pressure, collision force & wake entrainment 

terms 

Store_void_grad.c X and Y Create memory locations for storing void fraction & velocity 

gradients 

VF_in.c Y Initialization of the domain with perturbed void fraction 

profile  

CD.c X and Y Modify interfacial drag coefficient  

 

A.3.2CFD Results 

The transport of a Gaussian wave was used to check the feasibility of predicting void wave 

instabilities using Eulerian TFM solver in Fluent. Three different grid sizes of 1.2 mm, 0.6 mm 

and 0.3 mm were used along the axial direction. The grid size used for transverse direction (x-axis) 

was 1.25 mm and the simulations were run for 5 seconds. Fig. 57 shows the contour plot of the 

propagation of the Gaussian wave using quasi 1D simulation in Fluent for 0.6 mm grid size. The 

initially perturbed void wave grows in size, as the void wave peak reaches up to 27% from the 

initial peak of 25%.  
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Figure 57: Contour plot of void fraction from Fluent using 0.5 mm mesh in axial direction 

 

Figure 58: Comparison of Shallow Water TFM and CFD simulations for different grid sizes 
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Figure 59: Fluent results with perturbed initial condition for mesh size of 1 mm 
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Figure 60: CFD results with perturbed initial condition for mesh size of 0.5 mm 

 

A comparison of the 1D Shallow Water TFM results with the quasi-1D CFD results is also shown 

Fig. 58. It can be seen that the void wave does not grow unless a fine mesh of 0.5 mm is used due 

to high numerical viscosity present in the TFM solver of Fluent. Also, a fully converged solution 

could not be demonstrated for the mesh sizes used. As the next step, the domain was initialized 

with a perturbed void fraction profile similar to the 1D Shallow Water TFM calculations. As seen 

in Fig. 58, the perturbed void fraction waves get attenuated for a coarse mesh of 1 mm. But the 

waves do grow in amplitude in Fig. 60 only when a fine mesh of 0.5 mm is used and this agrees 

with the results in of Fig. 58. Also, the wavelengths of the void fraction waves in Fig. 60 are in 



 

 

125 

reasonable agreement with the most dangerous wavelength of ≈ 5 cm  obtained from the 

dispersion analysis. It can be concluded that the stability analysis of 1D Shallow Water TFM to 

CFD calculations. But the prediction of growth of void waves due to wake entrainment instability 

requires use of very fine mesh sizes and this leads to high computational cost associated with CFD 

calculations, as has been verified for quasi 1D simulations (8-9 hours). The computational cost for 

full 3D CFD simulations look prohibitive at this time. A rough estimate based on the computations 

of Vaidheeswaran [46] for a bubble plume with a mesh size of 1 mm is that a similar simulation 

would take 8-12 months.  

A.4 Parametric Study 

The aim of the parametric study presented here is to determine the values of 𝑋0 , 𝑏𝑤 and 𝛼𝑠 

parameters in the inertial coupling coefficient of the confined vortex model.  Since the main 

objective of the current work is to have a well-posed and unstable 1D Shallow Water TFM that 

can simulate flow regime transition from dispersed bubbly to clustered bubbly and slug flow, the 

following criteria for evaluation of the values for 𝑋0, 𝑏𝑤 and 𝛼𝑠 parameters are defined: 

a) A stable bubbly flow regime should exist for 0 < 𝛼2 ≤ 0.2. If any perturbation is introduced 

in 𝛼2 and/or 𝛤𝐽, the perturbation should decay to a steady state value. 

b) An unstable region is needed for 0.2 ≤ 𝛼2 ≤ 0.3 for the clustered bubbly flow regime. Any 

perturbation introduced in 𝛼2 and/or 𝛤𝐽 should lead to growth and non-linear evolution of the 

void fraction waves corresponding to the interfacial structure of bubble clusters. 

c) An unstable region for 0.3 ≤ 𝛼2 ≤ 0.55 for the slug flow regime is required. Any perturbation 

introduced in 𝛼2 and/or 𝛤𝐽 will lead to growth and non-linear development void fraction waves 

associated with the Taylor bubbles. 

An overlapping criterion for all the three flow regimes is that the shape, amplitude and frequency 

of the void fraction signals obtained from the numerical simulations should resemble the 

experimental measurements. The three criteria (a, b, c) are an idealization and give a reference 

point against which the required parametric study can be performed. The complicated thermo-fluid 

dynamics of two-phase flows are dependent on various factors like fluid properties, operating 

pressure, flow geometry and flow boundary conditions. These affect the onset and transition of 

different two-phase flow patterns. For example, the clustered bubbly flow regime can start for void 

fractions as low as 𝛼2 = 0.10  depending on the inlet flow conditions. Nevertheless, the 
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aforementioned criteria still serve as a good starting point for the parametric study, such that stable 

dispersed bubbly, unstable clustered bubbly and slug flow regimes can be resolved dynamically 

while simultaneously confirming to the experimental observations as much as possible. 

 

A.4.1Calibration of Vortex Parameters 

The calibration for the range of 𝑋0 and 𝑏𝑤 values is obtained from air-water slug flow experiments 

of Shemer et al. [57]. The axial profile of centerline velocity for the confined vortex behind a 

Taylor bubble in a 26 mm dimeter pipe and for 𝑅𝑒𝐿 = 13800 is chosen, as it is closest to the slug 

flow data of Song et al. [3] for 𝛼2 = 0.405 in a 25 mm diameter pipe. A comparison of the flow 

conditions from the two different experimental data sets is given in Table 9. 

 

Table 9: Comparison of the flow conditions for calibration of vortex parameters 

Data 𝐷𝑝𝑖𝑝𝑒(𝑚) 𝑢1 (𝑚/𝑠) 𝑢2 (𝑚/𝑠) 𝑅𝑒𝐿 

Song et al. [3] 0.025 0.46 0.73 12951.53 

Shemer et al. [57] 0.026 0.53 0.81 13800 

 

According to the definition of vortex velocity 𝑢𝑤(𝑥∗, 𝑟∗) in Eq. (163), the axial distribution of the 

centerline velocity is,  

 𝑢𝑤(𝑥∗, 0)

𝑢2
= 𝑋0 (

1

𝑥∗ + 1
)   

(210)  

 

Based on vortex velocity at the trailing edge of the Taylor bubble 𝑥∗ = 0, 𝑋0 can be varied. Since 

𝑥∗ = 𝑥/𝐻𝑤 , with 𝐻𝑤 as an appropriate length scale for vortex decay, 𝐻𝑤  can be defined as a 

function of the pipe diameter 𝐷𝑝𝑖𝑝𝑒 as, 

 𝐻𝑤 = 𝑐𝑤𝐷𝑝𝑖𝑝𝑒   (211)  

The axial distribution of the centerline velocity will be,  

 
𝑢𝑤(𝑥∗, 0)

𝑢2
= 𝑋0 [

1

(
𝑥

𝑐𝑤𝐷𝑝𝑖𝑝𝑒
) + 1

]     

(212)  

 

Now from the definitions of 𝛼2 and 𝛼𝑠  in the lumped parameter model and for 𝐻𝑔/𝐷𝑝𝑖𝑝𝑒  = 3 

from the data of Shemer et al. [57], the 𝐷𝑝𝑖𝑝𝑒/𝐻 ratio and 𝑏𝑤 can be written as, 
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 𝐷𝑝𝑖𝑝𝑒

𝐻
= 

𝛼2

3 𝛼𝑠
    

(213)  

 𝑏𝑤 =
𝑐𝑤 𝛼2

3 𝛼𝑠
  (214)  

 

Hence a range of 𝑏𝑤 values can be obtained for different 𝑐𝑤 values, which determine the rate of 

axial vortex decay. For first approximation, assuming that the differences in the flow geometry 

and flow conditions in Table 9 do not lead to much variation in the mean void fraction value of 

𝛼2 = 0.405, three sets of 𝑋0 and 𝑏𝑤 values are given in Table 10 for 𝛼𝑠 = 0.92.  

 

Table 10: Set-I, II and III vortex parameters 

 𝑐𝑤 𝑏𝑤 𝑋0 

Set-I 1 0.2 5 

Set-II 0.5 0.1 4 

Set-II 0.25 0.05 3 

 

The axial profile of the confined vortex’s centerline velocity from the lumped parameter model for 

the three sets of 𝑋0 and 𝑏𝑤 values is shown in Fig. 61 for 𝑅𝑒 = 13800 and 𝐷𝑝𝑖𝑝𝑒 = 26 𝑚𝑚 from 

the data of Shemer et al. [57]. The range of 𝑋0 and 𝑏𝑤 values obtained do cover an acceptable 

range with regard to the vortex intensity and the axial decay rate of the vortex velocity. A small 

discrepancy near the trailing edge of the Taylor bubble does exist and this inconsistency is ignored 

as a first approach for the modeling work presented.  
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Figure 61: Calibration of vortex parameters for centerline vortex velocity  

 

A.4.2 Effect of Vortex Parameters on Linear and Non-linear Stability 

The linear and non-linear stability of the 1D variational Shallow Water TFM are used for analyzing 

the effect of 𝑋0 and 𝑏𝑤 parameters. The goal is to find a fixed set of 𝑋0 and 𝑏𝑤 values that can 

resolve development of interfacial structures for dispersed bubble, clustered bubbly and slug flow 

regimes such that the three criteria stated before are satisfied. The stability map from dispersion 

relation and the numerical simulations are employed for linear and non-linear stability analysis. 

For bubble clusters and Taylor bubbles, the value of 𝛼𝑠  ≈ 0.90. From the stability map, it was 

found that as the value of 𝛼𝑠  increases, the range of 𝛼2 for which the model is SWT unstable 

increases along with an increase in the amplitude of the void fractions waves. The optimum value 

of 𝛼𝑠 = 0.92 was chosen such that the model is unstable for widest possible range of 𝛼2 to cover 
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both the clustered bubbly and slug flow regimes and the growth of void fraction waves is bounded.   

The simulation results presented were performed using a 1 mm mesh size and for 𝛼𝑠 = 0.92.  

The stability map for 𝑋0 = 5, 𝑏𝑤 = 0.2  from Set-I is shown in Fig. 62 and the numerical 

simulations for mean gas void fraction of 0.4, 0.44 and 0.5 are shown in Fig. 63 respectively.  

 
Figure 62: Stability map for Set-I vortex parameters 
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Figure 63: Set-I results for 40%, 44% and 50% mean void fraction (top to bottom) 
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For 𝑋0 = 5, 𝑏𝑤 = 0.2 and 𝛼𝑠 = 0.92, the model is stable as evident from the stability map in the 

range of 0.15 ≤ 𝛼2 < 0.4. From first observation, Set-I fails to account for the unstable clustered 

bubbly flow regime. Though the model is unstable for the slug flow regime in the range of 

0.4 ≤ 𝛼2 ≤ 0.5, the void fractions signals from the simulations do not resemble the experimental 

data in terms of their shape and amplitude. Moreover, the growth rate is also underpredicted as it 

takes close to 50 seconds for the void waves to grow and evolve. For Set-III, the stability map with 

𝑋0 = 3, 𝑏𝑤 = 0.05 is displayed in Fig. 64 and Fig. 65 shows the simulation results for mean void 

fraction of 0.3, 0.4 and 0.44 respectively.  

 

 

Figure 64: Stability map for Set-II vortex parameters 
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Figure 65: Set-III results for 30%, 40% and 44% void fraction (from top to bottom) 
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For 𝑋0 = 3, 𝑏𝑤 = 0.05 , the model is unstable according to the stability map in the range of 

0.22 ≤ 𝛼2 < 0.5. But the void fraction waves resemble that of the slug flow regime even for low 

void fraction range where it is desired to have a clustered bubbly flow regime. Though the growth 

rate is more than that of Set-I and is reasonable, the model predicts slug flow regime throughout 

the unstable region and hence fails to capture the clustered bubbly flow regime. At last, the stability 

map for 𝑋0 = 4, 𝑏𝑤 = 0.1 from Set-II are given in Fig. 66. The numerical simulation results for 

mean gas void fraction of 0.27, 0.3, 0.4 and 0.5 are shown in Fig. 67 respectively.  

 

 

Figure 66: Stability map for Set-III vortex parameters 
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Figure 67: Set-II results for 27%, 30%, 40% and 50% void fraction (from top to bottom) 
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For 𝑋0 = 4, 𝑏𝑤 = 0.1 , the model is unstable according to the stability map in the range of 

0.27 ≤ 𝛼2 ≤ 0.5. For the intermediate void fraction values of 𝛼2 = 0.27 and 0.3, the void fraction 

waves resemble clustered bubbly flow regime. In addition, for 0.4 ≤ 𝛼2 ≤ 0.5 , the void fractions 

waves are similar to the slug flow regime. The growth rate is similar to that of Set-III and the shape 

of the waves is similar to that observed in the experiments. This confirms the capability of the 

model to predict clustered bubbly flow and slug flow regimes dynamically as stated in the criteria. 

Hence 𝑋0 = 4, 𝑏𝑤 = 0.1 and 𝛼𝑠 = 0.92 are by far the best possible values that can be assigned to 

the vortex model and are chosen for validation of the numerical simulation results.  
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