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ABSTRACT

Variational inference (VI) or Variational Bayes (VB) is a popular alternative to MCMC,

which doesn’t scale well on complex Bayesian learning tasks with large datasets. Despite

its huge empirical successes, the statistical properties of VI have not been carefully studied

only until recently. In this dissertation, we are concerned with both the implementation and

theoretical guarantee of VI.

In the first part of this dissertation, we propose a VI procedure for high-dimensional linear

model inferences with heavy tail shrinkage priors, such as student-t prior. Theoretically, we

establish the consistency of the proposed VI method and prove that under the proper choice

of prior specifications, the contraction rate of the VB posterior is nearly optimal. It justifies

the validity of VB inference as an alternative of MCMC sampling. Meanwhile, comparing to

conventional MCMC methods, the VI procedure achieves much higher computational efficiency,

which greatly alleviates the computing burden for modern machine learning applications such

as massive data analysis. Through numerical studies, we demonstrate that the proposed

VI method leads to shorter computing time, higher estimation accuracy, and lower variable

selection error than competitive sparse Bayesian methods.

In the second part of this dissertation, we focus on sparse deep learning, which aims

to address the challenge of huge storage consumption by deep neural networks, and to

recover the sparse structure of target functions. We train sparse deep neural networks

with a fully Bayesian treatment under two classes spike-and-slab priors, and develop sets

of computationally efficient variational inferences via continuous relaxation of Bernoulli

distribution. Given a pre-specified sparse DNN structure, the corresponding variational

contraction rate is characterized that reveals a trade-off between the statistical estimation

error, the variational error, and the approximation error, which are all determined by the

network structural complexity (i.e., depth, width and sparsity). Note that the optimal network

structure, which strikes the balance of the aforementioned trade-off and yields the best rate,

is generally unknown. However, our methods could always achieve the best contraction

rate as if the optimal network structure is known. In particular, when the true function is

Hölder smooth, the variational inferences are capable to attain nearly minimax rate without

12



the knowledge of smoothness level. In addition, our empirical results demonstrate that the

variational procedures provide uncertainty quantification in terms of Bayesian predictive

distribution and are also capable to accomplish consistent variable selection by training a

sparse multi-layer neural network.
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1. INTRODUCTION

1.1 Variational Inference

Variational Inference (VI) or Variational Bayes (VB) (  Jordan et al. 1999  ;  Bishop 2006  ;

 Blei, Kucukelbir, et al. 2017 ) is an alternative to Markov Chain Monte Carlo (MCMC) for

Bayesian learning. It approximates the true posterior distribution by a simpler family of

distributions through an optimization problem.

Bayesian procedure makes statistical inferences from the posterior distribution πpθ|Dq9

πpθqpθpDq, where πpθq is the prior distribution for θ, and pθpDq is the likelihood given θ

and the dataset D. In the framework of variational inference, one seeks to find a good

approximation of the posterior πpθ|Dq via optimization rather than to simulate the posterior

distribution by long-run MCMC. Given a variational family of distributions, denoted by Q,

the goal is to minimize the KL divergence between distributions in Q and true posterior

distribution:

pqpθq “ arg min
qpθqPQ

KLpqpθq}πpθ|Dqq, (1.1)

and the variational posterior pqpθq is subsequently used for approximated inference.

Unfortunately the optimization problem ( 1.1 ) is intractable, but we note that KLpqpθq}πpθ|Dqq

“ C ` Ω, where C is some constant depending on data D only, and

Ω :“ ´Eqpθqrlog pθpDqπpθq

qpθq
s

is the so-called negative Evidence Lower Bound (ELBO). Then an equivalent optimization to

( 1.1 ) is

pqpθq “ arg min
qpθqPQ

Ω, (1.2)

which is usually conducted via gradient descent type algorithms.

An inspiring representation of Ω is

Ω “ ´Eqpθqrlog pθpDqs ` KLpqpθq}πpθqq, (1.3)

14



where the first term in (  1.3 ) can be viewed as the reconstruction error  Kingma and Welling

2014 and the second term serves as regularization. Hence the variational inference procedure

tends to be minimizing the reconstruction error while being penalized against prior distribution

in the sense of KL divergence.

Alternative divergences Besides the KL divergence used in ( 1.1 ), some alternative

divergences have also been considered:  Minka 2001  proposed expectation propagation based

on reciprocal KL divergence;  Li et al. 2016  ;  Jaiswal et al. 2019  investigated Rényi divergence,

 Dieng et al. 2017  considered χ2 divergence. Those alternative variational inference may lead

to better approximation, but could also cause difficulties in optimization or bring additional

hyperparameters to tune. In this dissertation, we will stick to the KL-based variational

inference.

1.1.1 Mean-field variational inference

For simplicity, it is commonly assumed that Q belongs to the mean-field family, i.e.

qpθq “

T
ź

i“1
qpθiq.

Although conceptually simple and computationally convenient, the major drawback of mean-

field variational interence is its inability to capture the covariance structure of the true

posterior distribution. Specifically, it turns to underestimate the marginal posterior variance,

which has long been observed in literature (  Wang and Titterington 2004 ;  Bishop 2006  ;  Li

et al. 2016 ;  Wang and Blei 2019  ). Some attempts to correct the variance could be found in

 Giordano et al. 2015 ;  2018 ;  Westling et al. 2019  . Alternatively, beyond mean-field family, one

could consider a structured variational family ( Ranganath, Tran, et al. 2016  ) or use copula

to model dependence (  Tran et al. 2015  ). Since our primary goal is efficient point estimation,

we will only consider the mean-field variational inference in the rest of this dissertation.
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1.1.2 Stochastic optimization

Beyond the closed form coordinate ascent/descent update for variational inference with

conditionally conjugate exponential families (  Blei, Kucukelbir, et al. 2017  ), stochastic opti-

mization has been widely used due to its flexibility with the choice of variational family and

capability of handling large datasets.  Hoffman et al. 2013 proposed traditional stochastic

variational inference limited to conditionally conjugate models;  Blei, Jordan, et al. 2012 

introduced naive stochastic gradient estimator combined with a control variate approach to

reduce the variance;  Ranganath, Gerrish, et al. 2013 expressed the gradient as an expectation

and then applied stochastic gradient descent with variance reduction.

More importantly, with the emergence of the reparameterization trick, stochastic varia-

tional inference is proposed for complex and deep generative models (  Kingma and Welling

2014 ;  Rezende et al. 2014 ), which paved the way for variational inference in deep learning. It

is worth noting that the reparameterization trick could also help reduce Monte Carlo variance

for nontrivial reasons (  Rezende et al. 2014  ). Specifically, when the variational family is

indexed by some hyperparameter ω, i.e., any q P Q can be written as qωpθq, then the negative

ELBO is a function of ω as Ωpωq. The KL divergence term in (  1.3 ) could usually be integrated

analytically, while the reconstruction error requires Monte Carlo estimation. Therefore, the

optimization of Ωpωq can utilize the stochastic gradient approach ( Kingma and Welling 2014  ).

To be concrete, if all distributions in Q can be reparameterized as qω
d
“ gpω, νq 

1
 for some

differentiable function g and random variable ν, then the stochastic estimator of Ωpωq and

its gradient are

rΩm
pωq “ ´

n

m

1
K

m
ÿ

i“1

K
ÿ

k“1
log pgpω,νkqpDiq ` KLpqωpθq||πpθqq,

∇ω
rΩm

pωq “ ´
n

m

1
K

m
ÿ

i“1

K
ÿ

k“1
∇ω log pgpω,νkqpDiq ` ∇ωKLpqωpθq||πpθqq,

(1.4)

where Di’s are randomly sampled data points and νk’s are iid copies of ν. Here, m and K

are minibatch size and Monte Carlo sample size, respectively.

1“ d
“” means equivalence in distribution
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1.1.3 Theoretical developments

Despite its huge empirical successes, the statistical properties of VI have not been carefully

studied only until recently. Early theoretical developments of variational inference centered

around specific models by analyzing the iterative updating algorithms directly:  You et al.

2014 ;  Ormerod et al. 2017  studied Bayesian linear models;  Hall, Ormerod, et al. 2011  ;  Hall,

Pham, et al. 2011  analyzed Poisson mixed-effects model;  Celisse et al. 2012 ;  Bickel et al. 2013  

examined stochastic blockmodels.

Recently, some general frameworks for analyzing the theoretical properties of VI has been

proposed:  Westling et al. 2019  connected the consistency of VI to M-estimation;  Wang and

Blei 2019  established frequentist consistency and asymptotic normality of VB methods under

LAN condition;  Alquier et al. 2017  ;  Pati et al. 2018  ;  Gao et al. 2020  ;  Yang, Pati, et al. 2020  

examined the general conditions for deriving the variational contraction rate. Those general

frameworks laid the foundation for our theoretical analyses under concrete models in this

dissertation.

1.2 Deep Neural Networks

Deep Neural Networks (DNNs) have achieved tremendous successes in AI fields such as

computer vision, natural language processing and reinforcement learning. One crucial factor

for the successes of DNN is that it possesses highly complex and nonlinear model architecture,

which allows it to approximate almost any complicated function  Cybenko 1989  ;  Mhasker

et al. 2017 ;  Rolnick et al. 2018 .

1.2.1 Sparse neural networks

DNN may face various problems despite its huge successes. Large and deep fully connected

networks are memory demanding (  Srivastava et al. 2014  ) and also slow in inference for some

real time tasks. Particularly, larger training sets and more complicated network structures

improve accuracy in deep learning, but always incur huge storage and computation burdens.

For example, small portable devices may have limited resources such as several megabyte

memory, while a dense neural networks like ResNet-50 with 50 convolutional layers would need
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more than 95 megabytes of memory for storage and numerous floating number computation

( Cheng et al. 2018  ). It is therefore necessary to compress deep learning models before

deploying them on these hardware limited devices.

Meanwhile, sparse neural nets have been shown to have accurate approximation and

strong generalization power ( Glorot et al. 2011  ;  Goodfellow et al. 2016  ). For example, the

popular Dropout regularization  Srivastava et al. 2014  could be interpreted as averaging over

l0 regularized sparse neural nets. From a nonparametric perspective,  Schmidt-Hieber 2017 

showed that sparse DNN with a ReLU activation function could achieve nearly minimax rate

in the regression setup.

In addition, sparse neural networks may recover the potential sparsity structure of the

target function, e.g., sparse teacher network in the teacher-student framework (  Tian 2018 ;

 Goldt et al. 2019  ). Another example is from nonparametric regression with sparse target

functions, i.e., only a portion of input variables are relevant to the response variable. A sparse

network may serve the goal of variable selection ( Feng et al. 2017  ;  Liang et al. 2018 ;  Ye et al.

2018 ), and is also known to be robust to adversarial samples against l8 and l2 attacks (  Guo

et al. 2018 ).

1.2.2 Bayesian neural networks

Bayesian neural nets (BNN) are perceived to perform well against overfitting due to

its regularization nature by enforcing a prior distribution. The study of Bayesian neural

nets could date back to  MacKay 1992  ,  Neal 1992 . Comparing to frequentist DNN, BNN

possesses the advantages of robust prediction via model averaging and automatic uncertainty

quantification (  Blundell et al. 2015 ). Conceptually, BNN can easily induce sparse network

selection by assigning discrete prior over all possible network structures. In particular, a

spike-and-slab prior  George et al. 1993  would switch a certain neuron off, and thus in nature

imposes l0 regularization and encourages network sparsity.  Polson et al. 2018  introduced the

Spike-and-Slab Deep Learning as a fully Bayesian alternative to Dropout for improving the

generalizability of DNN with ReLU activation, where the posterior distribution is proven to

concentrate at a nearly minimax rate.
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However, a well-known obstacle for BNN is its high computational cost for drawing

samples from posterior distribution via MCMC. Therefore, as a computationally efficient

method, VI has been used widely for neural networks  Graves 2011 ;  Kingma and Welling 2014  ;

 Rezende et al. 2014 ;  Blundell et al. 2015 . Another challenge remains for sparse BNN is the

lack of theoretical justification- the convergence property for variational BNN remains much

less explored. Specifically, it would be interesting to examine whether the variational inference

leads to the same rate of convergence compared to the Bayesian posterior distribution and

frequentist estimators.

1.2.3 Related work

A plethora of methods on sparsifying or compressing neural networks have been proposed

( Cheng et al. 2018 ;  Gale et al. 2019 ). The majority of these methods are pruning-based

( Han et al. 2016 ;  Frankle et al. 2018 ;  Zhu et al. 2018 ), which are ad-hoc on choosing the

threshold of pruning and usually require additional training and fine tuning. Some other

methods could achieve sparsity during training. For example,  Louizos et al. 2018  introduced l0
regularized learning and  Mocanu et al. 2018  proposed sparse evolutionary training. However,

the theoretical guarantee and the optimal choice of hyperparameters for these methods are

unclear. As a more natural solution to enforce sparsity in DNN, Bayesian sparse neural

network has been proposed by placing prior distributions on network weights:  Blundell et al.

2015 and  Deng et al. 2019  considered spike-and-slab priors with a Gaussian and Laplacian

spike respectively; Log-uniform prior was used in  Molchanov et al. 2017  ;  Ghosh, Yao, et al.

2018 chose to use the popular horseshoe shrinkage prior. These existing works actually yield

posteriors over the dense DNN model space despite applying sparsity induced priors. In

order to derive explicit sparse inference results, users have to additionally determine certain

pruning rules on the posterior. On the other hand, theoretical works regarding sparse deep

learning have been studied in  Schmidt-Hieber 2017  ,  Polson et al. 2018 and  Chérief-Abdellatif

2020 , but finding an efficient implementation to close the gap between theory and practice

remains a challenge for these mentioned methods.
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1.2.4 Network structure

An L-hidden-layer neural network will be used to model the target function. The number

of neurons in each hidden layer is denoted by pi for i “ 1, . . . , L. The weight matrix and bias

parameter in each layer are denoted by Wi P Rpi´1ˆpi and bi P Rpi for i “ 1, . . . , L ` 1. An

example neural network is illustrated in Figure  1.1 . Let σpxq be the activation function, and

for any r P Z` and any b P Rr, we define σb : Rr Ñ Rr as

σb

»

—

—

—

–

y1
...

yr

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

σpy1 ´ b1q

...

σpyr ´ brq

fi

ffi

ffi

ffi

fl

.

Then, given parameters p “ pp1, . . . , pLq and θ “ tW1, b1, . . . ,WL, bL,WL`1, bL`1u, the output

of this DNN model can be written as

fθpXq “ WL`1σbL
pWLσbL´1 . . . σb1pW1Xqq ` bL`1. (1.5)

In what follows, with slight abuse of notation, θ is also viewed as a vector that contains all

the coefficients in Wi’s and bi’s, , i.e., θ “ pθ1, . . . , θT q, where the length T :“
řL´1

l“1 pl`1ppl `

1q ` p1pp ` 1q ` ppL ` 1q. The notation of the DNN will be used in the following chapters.

Figure 1.1. Deep neural network
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Instead of using a fully connected neural net, i.e., θ is a dense vector, we will consider a

sparse NN fθ P FpL,p, sq, where

FpL,p, sq “ tfθ as in ( 1.5 ) : }θ}0 ď su,

s P N controls the sparsity level of NN connectivity. The set of θ under the constraint

FpL,p, sq is denoted as ΘpL,p, sq.

1.3 Our Contribution and Dissertation Organization

1) Firstly, we propose a variational Bayesian (VB) procedure for high-dimensional linear

model inferences with heavy tail shrinkage priors, such as student-t prior. Besides the

superiority in computation efficiency, theory-wise we establish the consistency of the proposed

VB method and prove that under the proper choice of prior specifications, the contraction

rate of the VB posterior is nearly optimal. This part of work can be found in our paper  Bai

et al. 2020b .

2) Secondly, our work on sparse neural networks aims to resolve the aforementioned two

important bottlenecks simultaneously by utilizing variational inference. On the computational

side, it can reduce the ultra-high dimensional sampling problem of Bayesian computing,

to an optimization task that can still be solved by a back-propagation algorithm. On the

theoretical side, we provide a proper prior specification, under which the variational posterior

distribution converges towards the truth. To the best of our knowledge, our work is the first

one that provides a complete package of both theory and computation for sparse Bayesian

DNN.

We achieve sparse deep learning by imposing a spike-and-slab prior (  George et al. 1993 ;

 Ishwaran et al. 2005 ) on all the edges (weights and biases) of a neural network, where the

spike component and slab component represent whether the corresponding edge is inactive

or active, respectively. Our work distinguished itself from prior works on Bayesian sparse

neural network by imposing the spike-and-slab prior with the Dirac spike function. Hence

automatically, all posterior samples are from exact sparse DNN models. This part of work is

published in our papers  Bai et al. 2019 ;  2020a .
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The rest of the dissertation will be organized as following: In Chapter  2 , we apply

variational inference to high dimensional linear regression problem under shrinkage priors.

Chapter  3 and Chapter  4 focus on sparse deep learning via varitional infererence. In Chapter

 3 , the emphasis is on theoretical development. In Chapter  4 , we further improve the

computational efficiency as well as remaining theoretical validity via an alternative prior

setting. Finally, all the results are summarized in Chapter  5 and the future directions are

outlined.
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2. HIGH DIMENSIONAL REGRESSION

2.1 Introduction

High dimensional sparse linear regression is one of the most commonly encountered

problems in machine learning and statistics communities (  Hastie et al. 2001 ). In the Bayesian

paradigm, this problem is approached by placing sparsity-inducing priors on the regression

coefficients. There are mainly two types of priors: the spike-and-slab prior (  Mitchell et al.

1988 ;  George et al. 1993  ;  Ishwaran et al. 2005  ) and the shrinkage prior (  Hans 2009 ;  Carvalho

et al. 2010 ;  Griffin et al. 2012  ). The spike-and-slab prior has been considered as the gold

standard for high dimensional linear regression, whose theoretical properties have been

thoroughly studied (  Johnson et al. 2012  ;  Song and Liang 2014  ;  Yang, Wainwright, et al.

2016 ;  Gao et al. 2020 ). Although theoretically sound, the posterior sampling cost under

spike-and-slab priors could be highly expensive, as it usually requires a tran-dimensional

MCMC sampler such as reversible-jump MCMC. Alternatively, shrinkage priors could lead

to equally good theoretical properties ( Ghosal 1999  ;  Armagan et al. 2013  ;  Song and Liang

2017 ) while enjoying computational efficiency via the use of conjugate Gibbs sampler.

Although switching to shrinkage prior could reduce the computational burden to some

extent, the nature of Bayesian computing (i.e., Markov chain Monte Carlo simulation)

inevitably requires a huge number of iterations in order to achieve good mixing behavior and

obtain accurate large-sample average. Consequently, people has sought to find frequentist

shortcuts for Bayesian estimators. For example,  Ročková et al. 2014 proposed EM algorithm

to find posterior modes under the spike-and-slab prior;  Ročková et al. 2018  obtained the

posterior modes by using penalized likelihood estimation;  Bhadra et al. 2019  searched posterior

modes under horseshoe prior via optimization methods. Those approaches are computational-

friendly, however completely ignore the distribution information of posterior and can not

derive any Bayesian inferences beyond point estimation.

Another computationally convenient alternative to MCMC is the variational inference

(VI or VB) (  Jordan et al. 1999  ;  Blei, Kucukelbir, et al. 2017 ). VI can provide an approximate

posterior via frequentist optimization, thus it delivers (approximate) distributional inferences

within a fairly small number of iterations. In the context of high dimensional linear regression,
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 Carbonetto et al. 2012  ,  Huang et al. 2016  and  Ray et al. 2020  have proposed algorithms to

carry out variational inferences under spike-and-slab priors. Besides their empirical successes,

the theoretical properties were also justified. Specifically,  Huang et al. 2016  showed their

algorithm could achieve asymptotic consistency, and  Ray et al. 2020  established the oracle

inequalities for their VB approximation. Therefore, by employing the scalable variational

inference, we would obtain the same theoretical guarantees as using MCMC while hugely

reducing the computational cost.

In this chaper, we focus on the variational inference for Bayesian regression with shrinkage

priors, which further improves the computational efficiency comparing to the one based on

the spike-and-slab prior. Meanwhile, by showing the nearly optimal contraction rate of the

proposed variational posterior, the validity of the proposed method is justified.

2.2 Preliminaries

2.2.1 High-dimensional Regression

Consider the linear regression model

Y “ Xβ ` σε, (2.1)

where Y P Rn is the response vector, X “ pXijq is a nˆpn design matrix, β “ pβ1, . . . , βpnq P

Rpn is the coefficient vector and ε „ N p0, Inq is the Gaussian random noise. pn denotes

the dimension of coefficient parameter β, and it can increase with the sample size n. The

research objective is to make consistent variational Bayesian inferences on the coefficient β.

Note that we are particularly interested in the high dimensional setting, i.e. pn " n, but our

developed theory and methodology hold for general dimensional setting. For the simplicity of

analysis, σ2 is assumed to be known throughout our theoretical analysis, while in practice it

can be estimated by frequentist methods (see  Reid et al. 2016 for a comprehensive review),

Empirical Bayesian approach (  Castillo et al. 2015  ), or full Bayesian analysis (for example,

placing inverse gamma prior on σ2 ( Ishwaran et al. 2005 ;  Park et al. 2008 )).

Let β0 denote the true coefficient vector, and we assume that β0 has certain sparsity

structure. The corresponding true model is denoted as ξ0 “ tj : βj ‰ 0u, and true sparsity
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is denoted as s “ }β0
}0 “ |ξ0|, which is the cardinality of the true subset model. Note that

s is allowed to increase with n as well. Let ξ Ď t1, . . . , pnu be the generic notation for any

subset model, and Xξ and βξ respectively denote the sub-matrix of X and sub-vector of β

corresponding to ξ.

The following regularity conditions are required for the main results:

Condition 2.2.1 The column norms of the design matrix are bounded by n, i.e.
ř

i X
2
ij “

}X j}
2
2 ď n.

Condition 2.2.2 There exist some integer p (depending on n and pn) and fixed constant λ0,

such that p ą s 

1
 and the smallest eigenvalue of XT

ξ Xξ is greater than nλ0 for any subset

model |ξ| ď p.

Condition 2.2.3 logpmaxj |β0
j |q “ Oplogppn _ nqq 

2
 .

Remark: Condition  2.2.1 is trivially satisfied when the covariates Xij are bounded by

1, or the design matrix is properly standardized. This bound condition is assumed for the

technical simplicity, readers of interest can generalize this condition to that all covariates

follow a sub-Gaussian distribution. Condition  2.2.2 imposes a regularity assumption on the

eigen structure of the design matrix which controls the multicollinearity. Similar conditions

are commonly used in the literature of high dimensional statistics ( Zhang 2010 ;  Narisetty

et al. 2014 ;  Song and Liang 2017  ). Under a random design scenario, if all entries of the design

matrix are i.i.d. sub-Gaussian variables, then the random matrix theory (e.g.,  Vershynin 2012  )

guarantees that w.h.p., the eigen structure restriction holds with p̄ being at least of order

n{ log pn, hence the condition p ą s is met w.h.p. by assuming the common dimensionality

condition s log pn ă n. Condition  2.2.3 imposes an upper bound for the magnitude of true

coefficients, it allows the magnitude of β increases polynomially with respect to pn _n. Similar

bounded conditions on true coefficient are common among Bayesian theoretical literature

e.g.,  Yang, Wainwright, et al. 2016  . Such conditions are necessary to ensure that the prior

density around β0 is bounded away from zero, such that the domination of posterior around

β0 becomes possible.
1an ă bn means limn an{bn “ 0.
2a _ b denotes maxpa, bq.
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2.2.2 Heavy Tail Shrinkage Prior and Variational Inference

Prior Distribution

To resemble a spike-and-slab prior, a reasonable choice of shrinkage prior shall (1) allocate

large probability mass around a small neighborhood of zero, i.e., a prior spike around 0; and

(2) possess a very flat tail, i.e., a prior slab over real line. Following the suggestion by recent

Bayesian literature (e.g.,  Ghosh and Chakrabarti 2015  ;  Song and Liang 2017 ;  Song 2020  ),

our work will implement heavy-tailed prior distribution, i.e., polynomially decaying prior

with properly tuning scale hyperparameter. For the simplicity of representation, this paper

will only consider the theory and computation under student-t prior, however, the general

insights obtained apply to any heavy tailed priors.

Consider an independent t prior for β, which can be rewritten as a scaled mixture of

Gaussian distribution with Inverse-Gamma scaling distributions, i.e., for j “ 1, . . . , pn,

πpβj|λjq “ N p0, λ´1
j q, πpλjq “ Gammapa0, bnq.

where a0, bn are user-specified hyperparameters. Thus, it yields a student-t prior of d.f. 2a0

with scale parameter
a

bn{a0. In other words, a0 determines the polynomial degree of prior

tail decay, i.e., the prior tail shape, while bn controls the scale of prior distribution. As

demonstrated by numerous Bayesian results (e.g.,  Van Der Pas, Kleijn, et al. 2014  ;  Van

Der Pas, Salomond, et al. 2016  ;  Song 2020  ), the prior scale needs to converge to zero as

dimensionality increases, hence we let a0 be a constant, and bn asymptotically decrease as n

increases.

Variational Inference

In this chapter, we choose Q as independent student-t distribution to resemble the prior

distribution, i.e.

qpβj|λjq “ N pµj, λ
´1
j q, qpλjq “ Gammapaj, bjq,

where µj P R, aj ą 0, bj ą 0 for j “ 1, . . . , pn.
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Remark: Choosing a different heavy tailed distribution as the prior distribution (e.g.,

horseshoe prior  Carvalho et al. 2009  ) and variational family Q doesn’t hurt the validity of the

consistency result displayed in the next section, except that we require a different condition

on the prior shape and scale hyperparameters. However, the difficulty of minimizing the

negative ELBO varies from case to case, depending on the existence of closed form for the

negative ELBO.

2.3 Theoretical Results

To establish consistency of variational Bayes posterior, we impose the following condition

on the prior specification.

Condition 2.3.1 a0 ą 1 and ppn _ nq´K ă bn{a0 ă s logppn _ nq{rnp2`1{a0
n ppn _ nqδ{a0s for

some large constant K and small constant δ ą 0.

a0 ą 1 ensures the existence of the second moment for the prior distribution, and the scale

bn is required to decrease polynomially w.r.t n and pn, such that the prior contains a steep

spike at 0.

First, we study the infimum of the negative ELBO Ω (up to a constant). Define the

loglikelihood ratio as

lnpP0, Pβq “ log ppY |β0q

ppY |βq
“

n
ÿ

i“1
log ppYi|β

0q

ppYi|βq
,

then we have the following theorem.

Theorem 2.3.1 With dominating probability for some C ą 0, we have

inf
qpβqPQ

!

KLpqpβq}πpβqq `

ż

lnpP0, Pβqqpβqdβ
)

ď Cs logppn _ nq. (2.2)

Remark: Theorem  2.3.1 establishes the upper bound of the loss function corresponding to

the variational posterior.

Our next theorem studies how fast the variational posterior contrasts toward the true β0.
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Theorem 2.3.2 With dominating probability, for any slowly diverging sequence Mn, we have

pqp}β ´ β0
}2 ě Mn

a

s logppn _ nq{nq “ op1q.

Remark: Theorem  2.3.2 implies that the contraction rate of the variational posterior pqpβq

is of order
a

s logppn _ nq{n. Under low dimensional setting, it reduces to
a

s{n log0.5
pnq

which is the optimal rate up to a logarithmic term; Under high dimensional setting, it

reduces to
a

s logppnq{n which is the near-optimal convergence rate  

3
 commonly achieved

in the literature. In other words, there is little loss in term of distributional convergence

asymptotics by implementing variational approximation. The variational inference procedure

delivers consistent Bayesian inferences.

2.4 Implementation

2.4.1 Updating Equations

The direct optimization of the negative ELBO requires stochastic gradient descent algo-

rithm, since there is no closed form for the KL divergence between two student-t distributions.

Therefore, for the purpose of efficient optimization, we instead consider minimizing the KL

divergence of the joint distribution of β and λ, where the negative ELBO is defined as

Ω “ ´

ż

log ppY |β, λqqpβ|λqqpλqdβdλ `

ż

KLpqpβ|λq}πpβ|λqqqpλqdλ ` KLpqpλq}πpλqq.

(2.3)

As showed by the toy examples in the Appendix  A , the variational inference results

derived based on minimizing the KL divergence of the joint distribution of pβ,λq has little

difference to the ones based on minimizing the KL divergence of marginal distribution of β.
3The optimal is of order

a

s logppn{sq{n.
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We minimize ( 2.3 ) by iteratively updating variational parameters in the fashion of

coordinate descent. Specifically, the negative ELBO is

Ω “ ´

ż

log ppY |β, λqqpβ|λqqpλqdβdλ `

ż

KLpqpβ|λq}πpβ|λqqqpλqdλ ` KLpqpλq}πpλqq

“const `

ż

!

´
Y T XErβ|λs

σ2 `
ErβTXTXβ|λs

2σ2

)

qpλqdλ `

pn
ÿ

j“1

ż

”

log λj

λj
`
λ´1

j ` µ2
j

2λ´1
j

ı

qpλjqdλj

`

pn
ÿ

j“1

”

a0 log bj

bn

´ log Γpajq

Γpa0q
` paj ´ a0qψpajq ´ pbj ´ bnq

aj

bj

ı

“const ´
Y T Xµ

σ2 `
µT XT Xµ

2σ2 `

pn
ÿ

j“1

ż

! nj

2σ2λ
´1
j

)

qpλjqdλj `

pn
ÿ

j“1

ż

´µ2
j λj

2

¯

qpλjqdλj

`

pn
ÿ

j“1

”

a0 log bj

bn

´ log Γpajq

Γpa0q
` paj ´ a0qψpajq ´ pbj ´ bnq

aj

bj

ı

,

(2.4)

where ψpxq is the digamma function, and nj “ rXT Xsj,j. Therefore,

Ω “const ´
Y T Xµ

σ2 `
µT XT Xµ

2σ2 `
1

2σ2

pn
ÿ

j“1

njbj

aj ´ 1 `

pn
ÿ

j“1
pµ2

j {2 ` bnq
aj

bj

`

pn
ÿ

j“1

”

a0 log bj

bn

´ log Γpajq

Γpa0q
` paj ´ a0qψpajq ´ aj

ı

,

and the gradients are

dΩ
dµ

“ ´
XT Y

σ2 `
XT Xµ

σ2 ` Λµ,

dΩ
daj

“ ´
nj

2σ2
bj

paj ´ 1q2 `
µ2

j {2 ` bn

bj
` paj ´ a0qψ1pajq ´ 1

dΩ
dbj

“
nj

2σ2
1

aj ´ 1 ´
pµ2

j {2 ` bnqaj

b2
j

`
a0

bj
,
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where ψ1pxq is the trigamma function and Λ “ diagpa1{b1, . . . , apn{bpnq. Solve the above

equations, we have

µ “ pXT X ` σ2Λq
´1XT Y ,

aj “ solvep´
nj

2σ2
bj

paj ´ 1q2 `
µ2

j {2 ` bn

bj
` paj ´ a0qψ1pajq ´ 1 “ 0q,

bj “

´a0 `

b

a2
0 ` 2njajpµ2

j {2 ` bnq{σ2paj ´ 1q

nj{σ2paj ´ 1q
.

If σ is unknown, then the above derivation is modified as:

Ω “const ` n log σ `
Y T Y

2σ2 ´
Y T Xµ

σ2 `
µT XT Xµ

2σ2 `
1

2σ2

pn
ÿ

j“1

njbj

aj ´ 1 `

pn
ÿ

j“1
pµ2

j {2 ` bnq
aj

bj

`

pn
ÿ

j“1

”

a0 log bj

bn

´ log Γpajq

Γpa0q
` paj ´ a0qψpajq ´ aj

ı

,

and the additional partial derivative w.r.t. σ is

dΩ
dσ

“
n

σ
´

pY ´ XµqT pY ´ Xµq

σ3 ´
1
σ3

pn
ÿ

j“1

njbj

aj ´ 1 .

Thus, the updates of µj, aj and bj keep the same, and the update of σ follows

σ “

d

pY ´ XµqT pY ´ Xµq `
řpn

j“1
njbj
aj´1

n
.

To summarize, the updating equations are provided in below.

Updating µ By fixing ajs and bjs, the mean vector µ “ pµ1, . . . , µpnqT is updated by

µ “ pXT X ` σ2Λq
´1XT Y , (2.5)

where Λ “ diagpa1{b1, . . . , apn{bpnq.

Updating aj By fixing µj and bj, aj is updated by solving the following equation

´
nj

2σ2
bj

paj ´ 1q2 `
µ2

j {2 ` bn

bj
` paj ´ a0qψ1pajq ´ 1 “ 0. (2.6)
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Updating bj By fixing µj and aj, bj is updated by

bj “

´a0 `

b

a2
0 ` 2njajpµ2

j {2 ` bnq{σ2paj ´ 1q

nj{σ2paj ´ 1q
. (2.7)

2.4.2 Computation for Large pn

The major computational bottleneck of the above updating rule is the inversion of the

large pn ˆ pn matrix pXT X ` σ2Λq in ( 2.5 ), which could lead to huge computation cost.

Instead, ( 2.5 ) could be improved by using the blockwise update strategy introduced by

 Ishwaran et al. 2005  . Specifically, decompose µ as pµp1q, . . . ,µpBqq
T , Λ as diagpΛp1q, . . . ,ΛpBqq

and X as rXp1q, . . . ,XpBqs, where B is the number of blocks. Denote the exclusion of the

kth block using subscript p´kq, then the blockwise update for µ is

µpkq “ pXT
pkqXpkq ` σ2Λpkqq

´1XT
pkqpY ´ Xp´kqµp´kqq, (2.8)

for k “ 1, . . . , B. The blockwise update will reduce the order of computational complexity

from Opp3
nq to OpB´2p3

nq ( ibid. ), which could alleviate the computation burden when pn is

huge.

To summarize, the variational inference with Student-t prior is shown in Algorithm  1 .

Algorithm 1 Variational inference with Student-t prior.
1: Hyperparameters: a0, bn

2: Initialize µ, taju
pn
j“1, tbju

pn
j“1

3: repeat
4: for k “ 1 to B do
5: µpkq Ð apply equation ( 2.8 )
6: for all j P t1, . . . , pnu do in parallel
7: aj Ð solve equation ( 2.6 )
8: bj Ð apply equation ( 2.7 )
9: end for

10: Ω Ð µ, taju
pn
j“1, tbju

pn
j“1 using ( 2.3 )

11: until convergence of Ω
12: return µ, taju

pn
j“1, tbju

pn
j“1
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Note that it is crucial that the algorithm allows us to update the key variational parameter

µ blockwisely. Comparing to Algorithm 1 of  Ray et al. 2020 which has to update variational

parameter entrywisely, our algorithm has a much better convergence speed. In addition,

Algorithm 1 of  ibid. also has to conduct more iterations of univariate numerical optimizations.

Therefore, as showed by our simulation studies, our algorithm has much faster computing

speed.

2.5 Numerical Studies

In this section, we validate the effectiveness of our method via simulation experiments.

To satisfy Condition  2.3.1 , throughout this section, we let a0 “ 2 and bn{a0 “ logppn _

nq{rnp2`1{a0
n ppn _ nq1{a0s. We use Lasso estimator to initialize µ. aj and bj are initialized as

pa0 ` 0.5q and pbn ` µ2
j q respectively. The following rule is used to derive variable selection

results: if the 95% credible interval of marginal t variational posterior contains 0, then the

corresponding predictor is not selected, and vice versa. This method of Bayesian model

selection under shrinkage priors is discussed by ( Van Der Pas, Szabó, et al. 2017 ). More

sophisticated approaches under variational Bayesian shrinkage for model selection could be a

future study direction.

Both variational inference (t-VB) and MCMC (t-MCMC) are implemented under the

same student-t prior for fair comparison, where t-MCMC is computed by Gibbs sampler

( Song and Liang 2017  ). We also compare our method to the following competitive methods:

variational Bayes for spike-and-slab priors with Laplace slabs (Laplace) (  Ray et al. 2020  ),

variational Bayes for spike-and-slab priors with Gaussian slabs (varbvs) (  Carbonetto et al.

Table 2.1. Regression Results for Example 1 (a): Strong Signal Case
Bayesian Non-Bayesian

t-VB t-MCMC Laplace varbvs SSLASSO EMVS

RMSE 0.29 ˘ 0.18 0.21 ˘ 0.20 0.23 ˘ 0.05 0.66 ˘ 0.38 0.13 ˘ 0.11 0.88 ˘ 0.04
FDR 0.18 ˘ 0.15 0.02 ˘ 0.09 0.01 ˘ 0.05 0.09 ˘ 0.17 0.01 ˘ 0.08 0.04 ˘ 0.11
TPR 0.96 ˘ 0.11 0.95 ˘ 0.13 0.99 ˘ 0.02 0.42 ˘ 0.41 0.99 ˘ 0.07 0.17 ˘ 0.07
Coverage of ξ0 0.88 ˘ 0.03 0.81 ˘ 0.03 0.87 ˘ 0.04 0.23 ˘ 0.04 - -
Coverage of pξ0qc 0.99 ˘ 0.01 0.99 ˘ 0.00 0.99 ˘ 0.00 0.99 ˘ 0.00 - -
Run time 0.54 ˘ 0.05 23.71 ˘ 0.71 7.65 ˘ 2.65 0.29 ˘ 0.11 0.06 ˘ 0.01 0.35 ˘ 0.06
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2012 ), the spike-and-slab LASSO (SSLASSO) ( Ročková et al. 2018  ), and the EM algorithm

for spike-and-slab prior (EMVS) ( Ročková et al. 2014 ).

For t-MCMC, we run Gibbs update for 1000 iterations with 200 burning in, and the

initialization is the same as t-VB. We employ the blocklization (  Ishwaran et al. 2005 ) for the

Gibbs update. For Laplace, we use hyper-parameter a0 “ 1, b0 “ n and λ “ 1. The ridge

estimator pXT X ` Iq´1XT Y is used for initialization and the unknown σ is estimated by

selectiveInference package (  Reid et al. 2016  ). For other methods, we use their associated R

packages with default parameters. All the methods are implemented on the MacBook Pro

with 2.7 GHz Intel Core i7.

The metrics reported are the Root Mean Squared Error between the posterior mean

estimator pβ and β0 (RMSE), the False Discovery Rate (FDR), True Postitive Rate (TPR),

and the run time. For Bayesian methods, the Coverage rates of 95% credible intervals for

non-zero coefficients ξ0 and zero coefficients pξ0qc are also calculated. All the experiments are

repeated 100 times and the mean metric together with its standard deviation are reported.

2.5.1 Example 1: Moderate Dimension Case

This is an example similar to the one in  Ray et al. 2020  . Let n “ 100, pn “ 400 and

s “ 20. All the nonzero coefficients are equal to logpnq (strong) or logpnq{2 (weak) and their

positions are randomly located within the pn dimension coefficient vector. Take the design

matrix Xij
iid
„ N p0, 1q and assume σ is known that equals 4. Since pn is moderate, we choose

B “ 1 when update µ and use 5 blocks for Gibbs update.

Table  2.1 shows for relatively large signal, SSLASSO achieves the best estimation accuracy

and the smallest selection error with the shortest run time, however it can not give second-

order inferences. Among Bayesian methods, our method achieves estimation accuracy close

to that of MCMC with the shortest run time. Meanwhile, the variable selection errors and

the coverage rates of our method are also close to those of MCMC. Table  2.2 exhibits when

the signal is relatively weak, our method obtains the estimation accurracy and selection error

close to the best ones (Laplace) with much shorter run time. The MCMC is underperformed

in this case probably due to insufficient number of Gibbs iterations. Note that the FDR for

EMVS is undefined since none of the predictors is selected.
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Table 2.2. Regression Results for Example 1 (b): Weak Signal Case.
Bayesian Non-Bayesian

t-VB t-MCMC Laplace varbvs SSLASSO EMVS

RMSE 0.38 ˘ 0.07 0.46 ˘ 0.78 0.36 ˘ 0.07 0.45 ˘ 0.07 0.42 ˘ 0.10 0.46 ˘ 0.01
FDR 0.29 ˘ 0.15 0.12 ˘ 0.16 0.16 ˘ 0.15 0.12 ˘ 0.21 0.26 ˘ 0.29 -
TPR 0.57 ˘ 0.20 0.27 ˘ 0.10 0.62 ˘ 0.18 0.19 ˘ 0.22 0.47 ˘ 0.18 0.00 ˘ 0.00
Coverage of ξ0 0.40 ˘ 0.05 0.22 ˘ 0.03 0.54 ˘ 0.04 0.14 ˘ 0.03 - -
Coverage of pξ0qc 0.99 ˘ 0.01 0.99 ˘ 0.00 0.99 ˘ 0.01 0.99 ˘ 0.00 - -
Run time 0.54 ˘ 0.04 23.52 ˘ 0.38 13.78 ˘ 8.71 0.29 ˘ 0.13 0.07 ˘ 0.02 0.18 ˘ 0.02

Table 2.3. Regression Results for Example 2.
Bayesian Non-Bayesian

t-VB t-MCMC Laplace varbvs SSLASSO EMVS

RMSE 0.01 ˘ 0.00 0.01 ˘ 0.00 0.06 ˘ 0.00 0.01 ˘ 0.00 0.01 ˘ 0.00 0.11 ˘ 0.00
FDR 0.00 ˘ 0.04 0.00 ˘ 0.00 0.07 ˘ 0.16 0.02 ˘ 0.07 0.00 ˘ 0.00 -
TPR 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 0.00 ˘ 0.00
Coverage of ξ0 0.99 ˘ 0.01 0.95 ˘ 0.03 0.90 ˘ 0.03 0.16 ˘ 0.02 - -
Coverage of pξ0qc 1.00 ˘ 0.00 1.00 ˘ 0.00 0.99 ˘ 0.00 0.99 ˘ 0.00 - -
Run time 0.48 ˘ 0.05 94.32 ˘ 3.40 37.61 ˘ 23.55 0.32 ˘ 0.11 0.75 ˘ 0.10 0.17 ˘ 0.01

2.5.2 Example 2: High Dimension Case

We consider an example similar to the one in  Ročková et al. 2014  . Let n “ 100, p “ 1000

and β0
“ p3, 2, 1, 0, . . . , 0qT . Generate the design matrix Xij

iid
„ N p0, 1q. Assume σ “ 1 and it

is unknown in the experiment. For our method, we use the Empirical Bayes estimator for σ

here. Specifically, by optimizing Ω w.r.t. σ, the Empirical Bayes (EB) update of σ follows

σ “

d

pY ´ XµqT pY ´ Xµq `
řpn

j“1
njbj
aj´1

n
. (2.9)

Due to the high dimensionality, we choose B “ 10 when updating µ and also use 10

blocks for Gibbs update. The results are reported in Table  2.3 .

Table  2.3 shows all the methods achieve good estimation accuracies expect Laplace and

EMVS. Our method also obtains similar selection errors and coverage rates to those of MCMC

with much shorter time. Again, the FDR for EMVS is undefined since all the estimated

coefficients are not selected.
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2.6 Conclusion and Discussion

We proposed a scalable variational inference algorithm for high dimensional linear regres-

sion under shrinkage priors. The established theoretical properties are justified by empirical

studies. A possible future direction is to explore and compare efficient implementation for

variational inference with other heavy tail shrinkage priors besides the Student-t.

2.7 Main Proofs

2.7.1 Proof of Theorem  2.3.1 

Proof 1 The marginal prior distribution for βj is

πpβjq “
1

?
ν0s0

´

1 ` ν´1
0

´βj

s0

¯2¯´
ν0`1

2
,

where s0 “
a

bn{a0 and ν0 “ 2a0. We define q˚pβjq as follows

q˚
pβjq “

1
?
ν˚s˚

´

1 ` pν˚
q

´1
´βj ´ β0

j

sj

¯2¯´
ν˚`1

2
,

where s˚ “
a

bn{a0 and ν˚ “ 2a0, and it is sufficient to show that KLpq˚pβq}πpβqq `
ş

lnpP0, Pβqq˚pβqdβ ď Cs logppn _ nq.

i) We first show
ż

lnpP0, Pβqq˚
pβqdβ ď C1s logppn _ nq., (2.10)

for some C1 ą 0. Note that

lnpP0, Pβq “
1

2σ2 p}Y ´ Xβ}
2
2 ´ }Y ´ Xβ0

}
2
2q

“
1

2σ2 p}Y ´ Xβ0
` Xβ0

´ Xβq}
2
2 ´ }Y ´ Xβ0

}
2
2q

“
1

2σ2 p}Xβ ´ Xβ0
}

2
2 ` 2xY ´ Xβ0,Xβ0

´ Xβyq.
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Denote

R1 “

ż

}Xβ ´ Xβ0
}

2
2q

˚
pβqdβ,

R2 “

ż

xY ´ Xβ0,Xβ0
´ Xβqyq˚

pβqdβ.

Noting that Y ´ Xβ0
“ σε „ N p0, σ2Inq, then

R2 “

ż

σεT
pXβ0

´ Xβqq˚
pβqdβ

“ σεT

ż

pXβ0
´ Xβqq˚

pβqdβ „ N p0, cfσ
2
q,

where cf “ }
ş

pXβ0
´ Xβqq˚pβqdβ}2

2 ď R1 due to Cauchy-Schwarz inequality. Then by

Gaussian tail bound

P0pR2 ě R1q ď expp
R2

1
2σ2R1

q,

which implies R2 ď R1 w.h.p.. Therefore, to prove ( 2.10 ) it suffices to establish that

R1 “ Ops logppn _ nqq. Note that

ż

}Xβ ´ Xβ0
}

2
2q

˚
pβqdβ ď }X}

2
2

ż

}β ´ β0
}

2
2q

˚
pβqdβ.

where }X}2 is the spectral norm of matrix X. Since }X}2
2 ď trpXT Xq “ npn, and

ż

}β ´ β0
}

2
2q

˚
pβqdβ “

pn
ÿ

j“1
s˚2 ν˚

ν˚ ´ 2 “ pn
bn

a0 ´ 1 ,

then
ż

}Xβ ´ Xβ0
}

2
2q

˚
pβqdβ ď np2

n

bn

a0 ´ 1 “ Ops logppn _ nqq.

for sufficiently large n.

ii) We next show

KLpq˚
pβq}πpβqq ď C2s logppn _ nq, (2.11)

for some C2 ą 0.
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Note that

KLpq˚
pβq}πpβqq “

pn
ÿ

j“1
KLpq˚

pβjq}πpβjqq

“
ÿ

j:β0
j ‰0

KLpq˚
pβjq}πpβjqq.

For each j,

KLpq˚
pβjq}πpβjqq

“
ν˚ ` 1

2

ż

log
ν˚s˚2 ` β2

j

ν˚s˚2 ` pβj ´ β0
j q2 q

˚
pβjqdβj.

If β0
j ą 0, then ν˚s˚2`β2

j
ν˚s˚2`pβj´β0

j q2 is maximized at pβj “
β0

j `

b

pβ0
j q2`4ν˚s˚2

2 , and the maximum is

ν˚s˚2 ` pβ2
j

ν˚s˚2 ` ppβj ´ β0
j q2

“

pβ0
j q2 ` β0

j

b

pβ0
j q2 ` 4ν˚s˚2 ` 4ν˚s˚2

pβ0
j q2 ´ β0

j

b

pβ0
j q2 ` 4ν˚s˚2 ` 4ν˚s˚2

ď

pβ0
j q2 ` β0

j

b

pβ0
j q2 ` 4ν˚s˚2 ` 4ν˚s˚2

pβ0
j q2 ´ β0

j pβ0
j `

4ν˚s2
0

2β0
j

q ` 4ν˚s˚2
“

pβ0
j q2 ` β0

j

b

pβ0
j q2 ` 4ν˚s˚2 ` 4ν˚s˚2

2ν˚s˚2 .

Therefore, for sufficiently large n,

KLpq˚
pβjq}πpβjqq ď

ν˚ ` 1
2 ˆ Oplogpβ0

j {s˚
qq “ Oplogppn _ nqq.

Similar result holds if β0
j ă 0 as well. This imples that KLpq˚pβq}πpβqq “ Opsn logppn _ nqq,

and hence verifies ( 2.11 ).

Therefore, ( 2.2 ) immediately follows from ( 2.10 ) and ( 2.11 ).

The next lemma states the existence of testing condition. Define rp as some sequence

satisfying s ď rp ď p̄ ´ s, rp ă pn and lim rp “ 8. Let εn “
a

rp logppn _ nq{n. Denote Bn as

the truncated parameter space

Bn “ tβ : at most rp entries of |β{σ| is larger than anu
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and

Cn “ tβ : Bn X t}β ´ β0
}2 ě Mnεnu,

where an —
a

s logppn _ nq{n{pn, Mn is any diverging sequence as Mn Ñ 8.

2.7.2 Proof of Theorem  2.3.2 

Lemma 2.7.1 There exists some testing function φn P r0, 1s and c1 ą 0, c2 ą 1{3, such that

Eβ0φn ď expp´c1nε
2
nq

sup
βPCn

Eβp1 ´ φnq ď expp´c2nM
2
nε

2
nq

Proof 2 The construction of the testing function is similar to that of  Song and Liang 2017 .

Consider the following testing function

φn “ max
tξĄξ0,|ξ|ďrp`su

1t}pXT
ξ Xξq

´1XT
ξ Y ´ β0

ξ}2 ě σMεnu

for some constant M .

i) For any ξ, such that ξ Ą ξ0, |ξ| ď rp ` s,

Eβ01t}pXT
ξ Xξq

´1XT
ξ Y ´ β0

ξ}2 ě σMεnu “ Eβ01t}pXT
ξ Xξq

´1XT
ξ ε}2 ě Mεnu

ďPrp}pXT
ξ Xξq

´1
}2pεT Hξεq ě M2ε2

nq ď Prpχ2
|ξ| ě nλ0M

2ε2
nq ď expp´c1M

2nε2
nq

for some constant c, where Hξ “ XξpXT
ξ Xξq´1XT

ξ , and the last inequality is due to the

sub-exponential properties of chi-square distribution and |ξ| ! nε2
n. This further implies that

Eβ0φn ď
ÿ

tξĄξ0,|ξ|ďrp`su

Eβ01t}pXT
ξ Xξq

´1XT
ξ Y ´ β0

ξ}2 ě σMεnu

ď prp`s
n expp´c1M

2nε2
nq ď expp´c1nε

2
nq

when M is sufficiently large.
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ii) Let rξ “ tk : |βk{σ| ą anu Y ξ0, then

sup
βPCn

Eβp1 ´ φnq “ sup
βPCn

Eβ min
|ξ|ďrp`s

1t}pXT
ξ Xξq

´1XT
ξ Y ´ β0

ξ}2 ď σεnu

ď sup
βPCn

Eβ1t}pXT
rξ
X

rξq
´1XT

rξ
Y ´ β0

rξ
}2 ď σεnu

“ sup
βPCn

Prt}pXT
rξ
X

rξq
´1XT

rξ
Y ´ β0

rξ
}2 ď σεnu

“ sup
βPCn

Prt}pXT
rξ
X

rξq
´1XT

rξ
σε ` β

rξ ` pXT
rξ
X

rξq
´1XT

rξ
X

rξcβrξc ´ β0
rξ
}2 ď σεnu

ď sup
βPCn

Prt}pXT
rξ
X

rξq
´1XT

rξ
ε}2 ě p}β

rξ ´ β0
rξ
}2 ´ σεn ´ }pXT

rξ
X

rξq
´1XT

rξ
X

rξcβrξc}2q{σu.

Note that }X
rξcβrξc}2 ď

?
npn}β

rξc}2 ď
?
npn ¨

?
pnσan ď c

?
nσεn for some constant c, and

}pXT
rξ
X

rξq
´1XT

rξ
X

rξcβrξc}2{σ ď

b

}pXT
rξ
X

rξq´1}2c
?
nεn ď

a

1{nλ0
?
ncεn ď cεn{

a

λ0,

where the second inequality is due to |rξ| ď rp ` s ď p. Besides,

}β
rξ ´ β0

rξ
}2 ě }β ´ β0

}2 ´
?
p

n
σan.

Therefore, p}β
rξ ´ β0

rξ
}2 ´ σεn{2 ´ }pXT

rξ
X

rξq´1XT
rξ
X

rξcβrξc}2q{σ ě Mnεn{p2σq when Mn is

sufficiently large, and

sup
βPCn

Eβp1 ´ φnq ď sup
βPCn

Prt}pXT
rξ
X

rξq
´1XT

rξ
ε}2 ě Mnεn{p2σqu ď expp´c2nM

2
nε

2
nq.

As a technical tool, we restates the Donsker and Varadhan’s representation for the KL

divergence in the following lemma, whose proof can be found in  Boucheron et al. 2013 .

Lemma 2.7.2 For any two probability measures P and Q, and any measurable function f

such that
ş

efdP ă 8,
ż

fdQ ď KLpQ}P q ` log
ż

efdP.

The next two lemmas bound the contraction rate of pqpβq on Bn and Bc
n respectively.
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Lemma 2.7.3 With dominating probability,

pqpBn X t}β ´ β0
}2 ě Mnεnuq “ op1q,

where εn “
a

rp logppn _ nq{n and Mn is any diverging sequence as Mn Ñ 8.

Proof 3 We denote rπpβq and rqpβq as the truncated distribution of πpβq and pqpβq on set

Bn, i.e.

rπpβq “ πpβq1pβ P Bnq{πpBnq,

rqpβq “ pqpβq1pβ P Bnq{pqpBnq.

Define V pPβ, P0q “ Mnεn1p}β ´ β0
}2 ě Mnεnq and

log ηpPβ, P0q “ lnpPβ, P0q `
n

3V
2
pPβ, P0q.

Lemma  2.7.1 implies the existence of testing function within Bn and by the same argument

used in Theorem 3.1 of  Pati et al. 2018 , it can be shown that w.h.p.,

ż

Bn

ηpPβ, P0qrπpβqdβ ď eC1nε2
n

for some C1 ą 0. By Lemma  2.7.2 , it follows that w.h.p.,

n

3pqpBnq
M2

nε
2
npqpBn X t}β ´ β0

}2 ě Mnεnuq

“
n

3pqpBnq

ż

Bn

V 2
pPβ, P0qpqpβqdβ

“
n

3

ż

Bn

V 2
pPβ, P0qrqpβqdβ

ďC1nε
2
n ` KLprqpβq}rπpβqq ´

ż

Bn

lnpPβ, P0qrqpβqdβ.
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Noting that,

KLprqpβq}rπpβqq

“
1

pqpBnq

ż

Bn

log pqpβq

πpβq
pqpβqdβ ` log πpBnq

pqpBnq

“
1

pqpBnq
KLppqpβq}πpβqq ´

1
pqpBnq

ż

Bc
n

log pqpβq

πpβq
pqpβqdβ ` log πpBnq

pqpBnq
,

and similarly,

ż

Bn

lnpPβ, P0qrqpβqdβ “
1

pqpBnq

ż

lnpPβ, P0qpqpβqdβ ´
1

pqpBnq

ż

Bc
n

lnpPβ, P0qpqpβqdβ.

Combine the above three inequalities, we obtain that

M2
nε

2
npqpBn X t}β ´ β0

}2 ě Mnεnuq

ďCpqpBnqε2
n `

3
n

!

KLppqpβq}πpβqq ´

ż

lnpPβ, P0qpqpβqdβ
)

`
3
n

ż

Bc
n

lnpPβ, P0qpqpβqdβ `
3
n

ż

Bc
n

log πpβq

pqpβq
pqpβqdβ `

3pqpBnq

n
log πpBnq

pqpBnq
. (2.12)

By Theorem  2.3.1 , the second term in the RHS of ( 2.12 ) is bounded by 3ε2
n.

Apply the similar argument used in the proof of Theorem  2.3.1 , the third term in the

RHS of ( 2.12 ) is bounded by

3
n

ż

Bc
n

lnpPβ, P0qpqpβqdβ

“
3

2nσ2

!

´2σεT

ż

Bc
n

pXβ0
´ Xβqpqpβqdβ ´

ż

Bc
n

}Xβ0
´ Xβ}

2
2pqpβqdβ

)

.

Note that ´2σεT
ş

Bc
n
pXβ0

´ Xβqpqpβqdβ follows a normal distribution N p0, V 2q, where

V 2 “ 4σ2}
ş

Bc
n
pXβ0

´ Xβqpqpβqdβ}2 ď 4σ2 ş

Bc
n

}Xβ0
´ Xβ}2

2pqpβqdβ. Thus the third term

in the RHS of ( 2.12 ) is bounded by

3
2nσ2

„

N p0, V 2
q ´

V 2

4σ2



. (2.13)
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Noting that N p0, V 2q “ OppGnV q for any diverging sequence Gn, (  2.13 ) is further bounded,

w.h.p., by
3

2nσ2 pGnV ´
V 2

4σ2 q ď
3

2nσ2σ
2G2

n.

Therefore, the third term in the RHS of (  2.12 ) can be bounded by ε2
n w.h.p. (by choosing

G2
n — nε2

n).

The fourth term in the RHS of ( 2.12 ) is bounded by

3
n

ż

Bc
n

log πpβq

pqpβq
pqpβqdβ ď

3
n

pqpBc
nq log πpBc

nq

pqpBc
nq

ď
3
n

sup
xPp0,1q

rx logp1{xqs “ Op1{nq.

Similarly, the fifth term in the RHS of ( 2.12 ) is bounded by Op1{nq.

Therefore, we have that w.h.p.,

M2
nε

2
npqpBn X t}β ´ β0

}2 ě Mnεnuq ď CpqpBnqε2
n ` 3ε2

n ` ε2
n ` 1{n,

that is, pqpBn X t}β ´ β0
}2 ě Mnεnuq “ Opp1{M2

nq “ opp1q.

Lemma 2.7.4 With dominating probability, pqpBc
nq “ op1q.

Proof 4 By Theorem  2.3.1 , we have that w.h.p.,

KLppqpβq}πpβqq `

ż

lnpP0, Pβqpqpβqdβ “ inf
qpβqPQ

!

KLpqpβq}πpβqq `

ż

lnpP0, Pβqqpβqpdβq

)

ďCnε2
n,

where C is some constant. By the similar argument used in the proof of Theorem  2.3.1 in

the main text,

ż

lnpP0, Pβqpqpβqdβ ď
1

2σ2
ε

ˆ
ż

||Xβ ´ Xβ0
||

2
2pqpβqpdβq ` Z

˙

where Z is a normal distributed N p0, σ2c0q, where c0 ď c0 “
ş

||Xβ ´ Xβ0||22pqpβqpdβq.

Therefore, ´
ş

lnpP0, Pβqpqpβqdβ “ p1{2σ2qr´c0 ` Opp
?
c0qs, and KLppqpβq}πpβqq ď Cnε2

n `

p1{2σ2qr´c0 ` Opp
?
c0qs “ Oppnε2

nq.
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For any βj „ pqpβjq, define γj “ 1p|βj{σ| ą anq, then

KLppqpβq}πpβqq ě KLppqpγq}πpγqq

“

pn
ÿ

j“1

”

pqpγj “ 1q log pqpγj “ 1q

πpγj “ 1q
` pqpγj “ 0q log pqpγj “ 0q

πpγj “ 0q

ı

.
(2.14)

Choose α0 “ p´1
n and let A “ tj : pqpγj “ 1q ě α0u, and denote α “ πpγj “ 1q. Noting that by

the condition of a0 and bn, we can obtain that

α “ πpγj “ 1q — α0{pn _ pnq
δ,

thus (  2.14 ) implies
ř

jPA pqpγj “ 1q logpα0{αq ď Cnε2
n{2 for some C and

ř

jPA pqpγj “ 1q “ Oprpq.

Under pq, by Markov inequality,

Prp
ÿ

jPA

γj ě rp{2q ď Prp
ÿ

jPA

γj ě rp{3 ` E
ÿ

jPA

γjq ď 9Varp
ÿ

jPA

γjq{rp2
ď 9E

ÿ

jPA

γj{rp2
“ op1q.

by Chernoff bound,

Prp
ÿ

jRA

γj ě rp{2q ď PrpBinppn, α0q ě rp{2q

ď exp
!

´pn

´

rp

2pn

log rp{p2pnq

α0
`

´

1 ´
rp

2pn

¯

log 1 ´ rp{p2pnq

1 ´ α0

¯)

ď expp´crpq “ op1q,

for some constant c, since rp Ñ 8.

Combine the above results together, it is trivial to conclude that pqpBc
nq “ op1q.

Proof of Theorem  2.3.2 

Proof 5 Trivially combine Lemmas  2.7.3 and  2.7.4 , we obtain that pqpt}β ´β0
}2 ě Mnεnuq “

opp1q for any diverging Mn, where εn “
a

rp logppn _ nq{n. Due to the arbitrariness of Mn

and rp, we can let Mn

a

rp{s ď Mn, and the theorem naturally holds.
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3. SPARSE DEEP LEARNING

3.1 Introduction

In this chapter, we mainly focus on investigating the theoretical behavior of variational

posterior for Bayesian DNN under spike-and-slab modeling. Our specific goals are to

understand how fast the variational posterior converges to the truth and how accurate

the prediction carried out by variational inferences is. It is not surprising that the choice

of the network structure, i.e., network depth, width and sparsity level, plays a crucial role

for the success of variational inference. Notably, there exists a trade-off phenomenon for the

choice of network architecture: an overly complex structure leads to a large variational error,

while an overly simplified network may not be able to capture the nonlinear feature of true

underlying regression function (i.e., large approximation error).

The optimal network structure, which yields the best contraction rate, is generally

unknown in reality. This motivates us to develop an adaptive variational inference procedure

that performs automatic variational architecture selection based on the penalized ELBO

criterion. The selection procedure could lead to a data-dependent network structure that

achieves the same best rate as if it were derived under the optimal structure choice.

The developed general theory is further applied to two particular examples, where the

true underlying function 1) is Hölder smooth, or 2) exactly corresponds to some unknown

sparse DNN model. For the formal case, we show that if the smoothness level is known, the

variational posterior possesses minimax contraction rate (up to a logarithm factor) when the

network structure is carefully chosen based on the known smoothness level. Even when the

smoothness level is unknown, the proposed adaptive variational inference procedure still leads

to the same theoretical guarantee. For the latter case, we find that the rate of convergence

doesn’t suffer from the curse of dimensionality, in the sense that the input dimension has at

most a logarithmic effect to the convergence rate.

It is worth noting that the focus of this chapter lies on the theory of variational inference

on sparse DNN, and the prior used for deriving the theoretical results leads to intractable

ELBO optimization. Although the variational inferences could be implemented by utilizing

certain approximation, computation-friendly priors will be developed in the next chapter.
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3.1.1 Notations

Throughout this Chapter as well as Chapter  4 , the following notations are used. Denote

KLp¨}¨q and dp¨, ¨q as the KL divergence and Hellinger distance between two probability

measures, respectively. For a vector x “ px1, . . . , xmqT , we define }x}8 :“ maxm
i“1 |xi|,

}x}0 :“
řm

i“1 Ipxi ‰ 0q, }x}p :“ p
řm

i“1 |xi|
pq1{p for p ą 0. For any Lebesgue integrable

function f , we denote the Lp norm for f as }f}p :“ p
ş

fpq1{p and }f}8 :“ supyPY |fpyq|.

3.2 Nonparametric Regression Via Bayesian Deep Learning

Consider a nonparametric regression model with random covariates Xi „ Upr´1, 1spq 

1
 

and

Yi “ f0pXiq ` εi, i “ 1, . . . , n (3.1)

where U denotes the uniform distribution, εi
iid
„ N p0, σ2

ε q is the noise term, and f0 : r´1, 1sp Ñ

R is the underlying true function. For simplicity of the analysis, we assume that σε is a

known constant, while in practice we could use the empirical Bayes method or full Bayes

method (by placing an Inverse-Gamma prior on σε) to estimate it.

3.2.1 Regularization via spike-and-slab prior

Given a specified sparse network configuration, we impose a fully Bayesian modeling with

a spike-and-slab prior on θ. Denoting δ0 as the Dirac at 0 and γ “ pγ1, . . . , γT q as a binary

vector indicating the inclusion of each edge in the network. The prior distribution πpθq thus

follows:

πpθi|γiq “ γiM0pθiq ` p1 ´ γiqδ0, πpγq91t
ÿ

γi “ su (3.2)

for 1 ď i ď T , where we assign uniform prior over all possible s-sparse network structures,

and the slab distribution M0pθiq is either a uniform distribution Upr´B0, B0sq or a Gaussian
1The bounded support assumption is common in the literature ( Schmidt-Hieber 2017  ;  Polson et al. 2018  ) and
applies to standardized data.
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distribution N p0, σ2
0q with predetermined constant B0 ą 1 and σ2

0 ą 0. Our developed theory

holds for both uniform slab and Gaussian slab modeling.

We denote Di “ pXi, Yiq and D “ pD1, . . . , Dnq as the observations. Let P0 denote the

underlying probability measure of data, and p0 denote the corresponding density function,

i.e., p0pDiq “ ψprYi ´ f0pXiqs{σεq{σε where ψ is the normal pdf. Similarly, let Pθ and pθ be

the distribution and density functions induced by the parametric NN model ( 1.5 ). Thus, the

posterior distribution is written as πpθ|Dq9πpθq ¨ pθpDq.

3.3 Variational Inference

Technically, the variational family Q can be chosen freely. But for the sake of efficient

implementation and optimization, it is often selected as some simple distribution family. In

our case, Q is chosen as the spike-and-slab distribution to resemble the prior distribution,

i.e., for i “ 1, . . . , T ,

qpθi|γiq “ γiMpθiq ` p1 ´ γiqδ0, qpγiq “ Bernpφiq, (3.3)

where Mpθiq is either Upli, uiq with ´B0 ď li ď ui ď B0 or N pµi, σ
2
i q depending on the slab

choice M0 in (  3.2 ), and 0 ď φi ď 1. Note that since the posterior can not have a larger

support than the prior distribution, the ELBO optimizer must satisfy pφi P t0, 1u and
ř

pφi “ s.

3.4 VB Posterior Asymptotics

In this section, we establish the distributional convergence of the variational Bayes

posterior pqpθq, towards the true regression function f0, under the squared Hellinger distance

dp¨, ¨q, which is

d2
pPθ, P0q “ EX

ˆ

1 ´ exp
"

´
rfθpXq ´ f0pXqs2

8σ2
ε

*˙

.

Note that in section  3.7 , the results under L2 norm will be studied.

Denote the log-likelihood ratio between p0 and pθ as

lnpP0, Pθq “ log p0pDq

pθpDq
“

n
ÿ

i“1
log p0pDiq

pθpDiq
,
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then the negative ELBO can be expressed as

´Ω “ KLpqpθq}πpθqq `

ż

lnpP0, Pθqqpθqdθ ` C,

where C “ ´ log p0pDq is a constant with respect to qpθq.

Our first lemma provides an upper bound for the negative ELBO for sparse DNN model

under the prior specification (  3.2 ) and variational family Q. Let ΘBpL,p, sq “ tθ P ΘpL,p, sq :

}θ}8 ď Bu for some constant B ą 0.

Lemma 3.4.1 Given any network family FpL,p, sq with an equal width p “ p12pN, . . . , 12pNq,

we have that, with dominating probability for some C 1 ą 0,

inf
qpθqPQ

!

KLpqpθq}πpθqq `

ż

lnpP0, Pθqqpθqdθ
)

ď C 1nprn ` ξnq

holds, where

rn :“ rnpL,N, sq “
pL ` 1qs

n
logp12BpNq `

s

n
logpnpL ` 1q{sq,

and

ξn :“ ξnpL,N, sq “ inf
θPΘBpL,p,sq

}fθ ´ f0}
2
8,

where B “ B0 under uniform prior setting, and B ě 2 under normal prior setting.

The upper bound (  3.4 ) consists of two terms: the first term rn is the variational error

caused by the variational Bayes approximation; the second term ξn is the approximation error

of approximating f0 by sparse ReLU DNN whose weight and bias parameters are bounded

by B. Note that since B is a pre-specific constant, its value doesn’t affect the rate of rn

Our next lemma links the contraction rate of variational posterior with the negative

ELBO discussed in Lemma  3.4.1 .
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Lemma 3.4.2 Given network family FpL,p, sq with equal width p “ p12pN, . . . , 12pNq, if

maxts logpnpL ` 1q{sq, pL ` 1qs logppNqu “ opnq, then with probability at least p1 ´ e´Cnε2
nq

for some C ą 0, we have

ż

d2
pPθ, P0qpqpθqdθ ď Cε2

n `
3
n

inf
qpθqPQ

!

KLpqpθq}πpθqq `

ż

lnpP0, Pθqqpθqdθ
)

,

where

εn :“ εnpL,N, sq “ M

c

s logpnpL ` 1q{sq ` pL ` 1qs logppNq

n
logδ

pnq

for any δ ě 1 and some large constant M .

Note that Lemma  3.4.2 holds regardless of the choice of prior specification πpθq and

variational family Q.

The LHS of (  3.4 ) is the variational Bayes posterior mean of the squared Hellinger distance.

On the RHS, the first term εn represents the estimation error under Hellinger metric, such

that it is possible to test the true distribution P0 versus all alternatives tPθ : dpPθ, P0q ě

εn, θ P ΘpL,p, squ with exponentially small error probability (refer to Lemma 1.2 in the

supplementary material); the second term, as discussed above, is the negative ELBO (up to

a constant), which has been elaborated in Lemma  3.4.1 .

Combining the above two lemmas together, one can easily obtain the following theorem:

Theorem 3.4.1 Given any network family FpL,p, sq with equal width p “ p12pN, . . . , 12pNq,

if the conditions of Lemmas  3.4.1 and  3.4.2 hold, then

ż

d2
pPθ, P0qpqpθqdθ ď Cε2

n ` 3C 1rn ` 3C 1ξn. (3.4)

The three terms in the RHS of (  3.4 ) correspond to estimation error, variational error and

approximation error respectively. All the three terms depend on the complexity of network

structure. Specifically,

ε2
n „ rn „ max

ˆ

s logpnpL ` 1q{sq

n
,

pL ` 1qs logppNq

n

˙

,
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up to only logarithmic difference. Thus both ε2
n and rn are nearly linearly dependent on

the sparsity and depth of the network structure specification. On the other hand, the

approximation error ξn generally decreases as one increases the complexity of networks

configuration (i.e., the values of N , L and s). Therefore, it reveals a trade-off phenomenon

on the choice of network structure. Note that such trade-off echoes with those observed in

the literature of nonparametric statistics: as one increases the domain of parameter space

(e.g., increases the number of basis functions in spline regression modeling), it usually leads

to smaller bias but larger variance.

As mentioned in  Chérief-Abdellatif 2020  , we would like to bring out the concept of the

bias-variance trade-off in the variational inference, where we name the third and second term

in RHS of (  3.4 ) by bias and variance respectively. The variance component is controlled by

rn with an order that is always linearly dependent on the sparsity level of the DNN, which is

consistent with our perception. However, its linear dependence on the depth L versus the

logarithmic dependence on the width N conflicts with the result that a deeper neural net

generalizes better than a shallower one as often empirically observed. In the meantime, a

deeper neural net could yield a smaller approximation error with fixed neurons ( Rolnick et al.

2018 ), which would then compensate for the increased variance caused by a deeper neural

net. This reveals an interesting bias-variance trade-off phenomenon.

3.5 Adaptive Architecture Search

In Section  3.4 , we establish the distributional convergence of VB posterior (  3.4 ) under the

Hellinger metric, with a pre-specified DNN architecture, say depth L, width N and sparsity

s. Ideally, one would like to choose the network structure that minimizes the RHS of ( 3.4 ),

thus leading to a better convergence guarantee. However, this best choice is generally not

available due to the fact that the approximation error ξn critically depends on the nature (e.g.,

continuity and smoothness) of the unknown f0. Therefore, in this section, we will develop

an adaptive variational Bayes inference procedure, under which the variational posterior

contraction achieves the same convergence rate as if the optimal choice of network structure

was given.
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To simplify our analysis, we assume that the network depth L is already well specified,

and are only concerned about the adaptivity with respect to the network width and sparsity.

Note that for a certain family of f0, e.g., f0 is Hölder smooth, the optimal choice of L can

indeed be specified without additional knowledge of f0 (refer to Section  3.6 for detail).

To be more specific, we define

pN˚, s˚
q “ arg min

N,s
trnps, L,Nq ` ξnps, L,Nqu,

and consider 12pN˚ and s˚ to be the optimal network structure configuration for width and

sparsity respectively. Such a choice strikes an optimal balance between variational error and

approximation error. It is worth mentioning that the estimation error term ε2
n is of the same

order as rn (up to a logarithmic term). Therefore, the optimal choice ps˚, N˚q does minimize

the RHS of ( 3.4 ) (up to a logarithmic term). We further define

ε˚
n “ M 1

c

pL ` 1qs˚ logN˚ ` s˚ logppL ` 1qn{s˚q

n
logδ

pnq

for some constant M 1, r˚
n “ rnpL,N˚, s˚q and ξ˚

n “ ξnpL,N˚, s˚q. They represent the

estimation error, variational error and approximation error respectively, under optimal

choices N˚ and s˚.

In addition, the following conditions are imposed on the optimal values N˚ and s˚:

Condition 3.5.1 1 ă maxtpL`1qs˚ logppN˚q, s˚ logpnpL`1q{s˚qu “ opnαq for some α ă 1.

Condition 3.5.2 r˚
n — ξ˚

n.

Condition 3.5.3 s˚ ě 12pN˚ ` L ` 1.

Condition  3.5.1 assumes that the optimal network structure, in the asymptotic sense, is a

sparse one. This is reasonable as it essentially requires that the data can be well approximated

by a sparse DNN model. If this condition fails, there will be no basis for conducting sparse

DNN modeling. Condition  3.5.2 implies that the choice pN˚, s˚q, which minimizes rn ` ξn,

also strikes the balance between rn and ξn. Condition  3.5.3 avoids the redundancy of network

width. If this condition is violated, then there must be redundant node (i.e., node without

50



connection) in every hidden layers. In such a situation, all these redundant nodes shall be

removed from the network configuration, leading to a narrower network.

In the Bayesian paradigm, the adaptivity can be achieved by impose a reasonable prior

on pN, sq. In other words, we expand the prior support to

F “

8
ď

N“1

HN
ď

s“0
FpL,pL

N , sq,

where pL
N “ p12pN, . . . , 12pNq P RL and TN is the total possible number of edges in the

L-hidden-layer network with layer width 12pN . The prior specification on the network

structure is similar to  Polson et al. 2018 , that is

πpNq “
λN

peλ ´ 1qN ! for N ě 1,

πpsq9e´λss for s ě 0,
(3.5)

where λs satisfies nε˚2
n {s˚ ą λs ě apL ` 1q log n for some a ą 0.

To implement variational inference, we consider the variational family QN,s that restricts

the VB marginal posterior of N and s to be a degenerate measure: every distribution qpθ,N, sq

in QN,s follows

qpNq “ δ
sN , qpsq “ δ

ss, qpγi|N, sq “ Bernpφiq,

qpθi|γiq “ γiMpθiq ` p1 ´ γiqδ0,
(3.6)

for some sN P Z` and ss P Zě0. This choice of variational family means that the VB posterior

will adaptively select one particular network structure p pN, ŝq by minimizing

pqpθ,N, sq “ arg max
qpθ,N,sqPQN,s

KLpqpθ,N, sq}πpθ,N, s|Dqq.

Note that KLpqpθ,N, sq}πpθ,N, s|Dqq “ ´ log πp sN, ssq ` KLpqpθ| sN, ssq}ppθ,D| sN, ssqq ` C, for

some constant C. Let

Ωp sN, ssq “ max
qpθ| sN,ssq

r´KLpqpθ| sN, ssq}ppθ,D| sN, ssqqs
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be the maximized ELBO given the network structure determined by parameters sN and ss.

Then

p pN, psq “ arg max
sN,ss

rΩp sN, ssq ` log πp sN, ssqs. (3.7)

In other words, the above VB modeling leads to a variational network structure selection

based on a penalized ELBO criterion, where the penalty term is the logarithm of the prior of
sN and ss.

In Bayesian analysis, model selection relies on the (log-)posterior: log πpD| sN, ssq `

log πp sN, ssq. Thus, the proposed variational structure selection procedure is an approxi-

mation to maximum a posteriori (MAP) estimator, by replacing the model evidence term

log πpD| sN, ssq with the ELBO Ωp sN, ssq.

Our next theorem shows that the proposed variational modeling attains the best rate of

convergence without the knowledge of optimal network architecture N˚ and s˚.

Theorem 3.5.1 Under the adaptive variational Bayes modeling described above, we achieve

that
ż

d2
pPθ, P0qpqpθqdθ ď C 1

rε˚2
n ` r˚

n ` ξ˚
ns (3.8)

holds with dominating probability for some constant C 1 ą 0.

It is worth mentioning that the above result doesn’t imply the adaptive variational

procedure exactly finds the optimal choice such that pN « N˚ and ps « s˚. The proof of

Theorem  3.5.1 only shows that the adaptive VB procedure avoids over-complicated network

structures, such that pN and ps will not be overwhelmingly larger than the N˚ and s˚

respectively. Note that pN˚, s˚q is the universal optimal choice, in the sense that it ensures

that for any data set generated from the underlying model (  3.1 ), the corresponding variational

inference is the best. Note that p pN, psq is a data-dependent choice, which differs from data to

data and may be quite different from pN˚, s˚q.

3.6 Applications

In this section, we will apply the general theoretical results to two important types of

ground truth: 1) f0 is some unknown Hölder smooth function and 2) f0 exactly corresponds
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to an unknown sparse DNN model, i.e., the teacher-student framework  Tian 2018 ;  Goldt

et al. 2019 .

3.6.1 Hölder smooth function

we assume the unknown f0 belongs to the class of α-Hölder smooth functions Hα
p , defined

as

Hα
p “

!

f : }f}
α
H :“

ÿ

κ:|κ|ăα

}B
κf}8 `

ÿ

κ:|κ|“tαu

sup
x,yPr´1,1sp

x‰y

|Bκfpxq ´ Bκfpyq|

|x ´ y|
α´tαu
8

ď 8

)

.

To quantify the approximation error ξn, certain knowledge of approximation theory is

required. There is rich literature on the approximation properties of neural networks. For

instance,  Cheang and Barron 2000  and  Cheang 2010 provided tight approximation error

bound for simple indicator functions;  Ismailov 2017  studied approximation efficiency of

shallow neural network. Some recent works characterize the approximation accuracy of

sparsely connected deep nets  Schmidt-Hieber 2017 ;  Bauler et al. 2019  ;  Bölcskei et al. 2019  as

well.

The following lemma is due to  Schmidt-Hieber 2017 , Theorem 3.

Lemma 3.6.1 Assume f0 P Hα
p for some α ą 0, then there exists a neural net pf P FpL,p, sq

with p “ p12pN, . . . , 12pNq P RL whose bias and weight parameters are bounded by 1, and

L “ 8 ` ptlog2 nu ` 5qp1 ` rlog2 psq,

s ď 94p2
pα ` 1q

2pNpL ` rlog2 psq,

N “ CN tnp{p2α`pq
{ logpnqu,

(3.9)

for some positive constant CN , such that

} pf ´ f0}8 ď p2}f0}
α
H ` 1q3p`1N

n
` }f0}

α
H2α

pNq
´α{p. (3.10)

Lemma  3.6.1 summarizes the expressibility of sparse ReLU DNN in terms of its depth,

width and sparsity. It trivially implies that if L,N, s satisfy ( 3.9 ) and p “ Op1q, then
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maxpξn, rn, ε
2
nq “ Opn2α{p2α`pq logδ nq for some δ ą 1. Therefore, Theorem  3.4.1 implies the

following corollary.

Corollary 3.6.1 Assume f0 P Hα
p for some known α ą 0, where p “ Op1q. Choose L, s and

N as in ( 3.9 ). Then, our variational modeling satisfies that

ż

d2
pPθ, P0qpqpθqdθ ď C 1

rn´α{p2α`pq logδ
pnqs

2, (3.11)

with dominating probability, for some δ ą 1 and some constant C 1 ą 0.

Corollary  3.6.1 establishes the rate minimaxity (up to a logarithmic factor) of variational

sparse DNN inference. The established rate matches the contraction rate of the true Bayesian

posterior (  Polson et al. 2018  ) and therefore implies that there is no sacrifice in statistical

rate with variational inference. Note that ( 3.11 ) also implies that the VB posterior mass of

tdpPθ, P0q ě C 1n´α{p2α`pq logδ
pnqu converges to zero in probability, hence almost all of the

VB posterior mass contracts towards a small Hellinger ball with (near-) minimax radius

centered at P0.

The choices of N and s in ( 3.9 ), although lead to rate-minimaxity, relies on the smoothness

parameter α which is usually unknown in practice. Therefore, the adaptive variational

modeling discussed in Section  3.5 can be implemented here to select a reasonable N and s

adaptively, such that the rate (near-)minimax convergence still holds.

Corollary 3.6.2 Assume f0 P Hα
p for some unknown α ą 0, where p “ Op1q. Choose L as

in (  3.9 ) and let N and s follow the prior ( 3.5 ). Then result ( 3.11 ) still holds for the adaptive

variational approach.

3.6.2 Teacher-student framework

Under the Hölder smooth assumption, the rate of convergence n´α{p2α`pq suffers from

the curse of dimensionality. Note that this rate merely represents the worse-case analysis

among all Hölder smooth functions, which may not be suitable for real structured dataset.

Hence, in this section, we are interested in the teacher-student framework, i.e., the underlying

f0 is exactly an unknown fixed sparse ReLU network (so-called teacher network), that is,
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f0 P FpL0,p0, s0q for some L0, p0 “ pp0,1, . . . , p0,L0q1 and s0, and its network parameter is

denoted by θ0.

Our variational Bayes modeling with spike and slab prior can be used to train the so-called

student network, based on data generated by the teacher network. Adopting this teacher-

student framework can better facilitate the understanding of how deep neural networks work

in high-dimensional data as it provides an explicit target function with bounded complexity.

When certain information of teacher network structure is available, we have the following

result.

Corollary 3.6.3 Under the teacher-student framework, if we choose L “ L0, s ě s0 and N ě

max1ďiďL0 p0,i{p12pq, B0 ě }θ0}8 (under uniform prior) and maxtpL`1qs logppNq, s logpnpL`

1q{squ “ opnq holds, then our variational Bayes approach satisfies

ż

d2
pPθ, P0qpqpθqdθ ď C 1

ˆ

s logpnpL ` 1q{sq ` pL ` 1qs logppNq

n
log2δ

pnq

˙

, (3.12)

with dominating probability, for some constant C 1 ą 0 and any δ ą 1.

The choice of (N, s) means that we delibrately choose a wider and denser network structure,

which ensures that the approximation error ξn “ 0.

When the information of s0 and p0 is not available, by adopting the adaptive variational

modeling we also have the following result:

Corollary 3.6.4 If the teacher network structure satisfies that maxtpL0`1qs0 logppmax p0,iq,

s0 logpnpL0 ` 1q{s0qu “ opnαq for some α P p0, 1q, and we choose L “ L0, and let N and

s follow the prior ( 3.5 ), B0 ě }θ0}8 (under uniform prior), then our adaptive variational

Bayes approach satisfies

ż

d2
pPθ, P0qpqpθqdθ ď C 1

ˆ

s0 logpnpL0 ` 1q{s0q ` pL0 ` 1qs0 logppmax p0,iq

n
log2δ

pnq

˙

,

(3.13)

with dominating probability, for any δ ą 1 and some constant C 1 ą 0.

The above two corollaries show that, under the teacher-student framework, the input

dimension p (i.e., input layer width) and hidden layer width p0 have at most logarithmic
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effect on the VB posterior convergence rate. Therefore, it doesn’t suffer from the curse of

dimensionality.

3.7 Convergence under L2 Norm

Our main theorems  3.4.1 and  3.5.1 concern the posterior convergence with respect to

the Hellinger metric. Although commonly used in the Bayesian literature (  Ghosal and

Van Der Vaart 2007 ;  Pati et al. 2018 ;  Zhang and Gao 2019 ), Hellinger distance is of less

practical interest than L2 norm, i.e., EX |fθpXq ´ f0pXq|2, for regression problems. However,

a result directly addressing the L2 convergence may not be reasonable due to the extreme

flexibility of DNN models. For instance, given p “ 1, two ReLU DNN networks fθpxq ” 0

and fθ1pxq ” Mσpx ´ 1 ` εq can have arbitrarily large L2 distance when M is sufficiently

huge, but are impossible to be discriminated when ε is so tiny that no sampled Xi visits the

interval r1 ´ ε, 1s.

Accordingly, our L2 convergence result will exclude the “irregular” DNN model fθ’s whose

L2 distances from f0 are mostly contributed by the integral of rfθpxq ´ f0pxqs2 over some

tiny-measure subset of r´1, 1sp. To be more precise, we define the L2 distance between fθ

and f0 as L2
2pfθ, f0q “ EX |fθpXq ´ f0pXq|2, and let G Ă FpL,p, sq be the subset class of all

“regular” DNNs that satisfy

EXt|fθpXq ´ f0pXq|
21pX P Squ ě κL2

2pf0, fθq,

for some constant 0 ă κ ď 1, where

S “ tX : |fθpXq ´ f0pXq|
2

ď γnL
2
2pf0, fθqu,

for some γn Ñ 8. G represents the DNNs that possesses a large enough expected square

L2 distance between fθ and f0 on a set S where |fθpXq ´ f0pXq|2 is upper bounded, and

the integral of rfθpxq ´ f0pxqs2 over Sc doesn’t make dominating contribution to L2
2pf0, fθq.

Naturally, G excludes the cases when L2
2pfθ, f0q is mainly determined by the data from only

a small set of the support of X.
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Let rε2
n denote the Hellinger convergence rate in Theorem  3.4.1 or  3.5.1 , i.e., rε2

n is of the

same order as the RHS of equation (  3.4 ) or (  3.8 ). We have the following convergence result

regarding L2 metric, which states that the variational posterior mass over the irregular DNNs,

which have L2 error greater than Mnrε2
n, is negligible.

Theorem 3.7.1 Given any pre-specified network family as Theorem  3.4.1 or under the

adaptive variational Bayes modeling as Theorem  3.5.1 , if γnrε2
n “ op1q, then we have that

w.h.p.
ż

GXtL2
2pf0,fθqěMn rε2

nu

pqpθqdθ “ op1q,

for any sequence Mn Ñ 8.

Remark In the literature, there do exist some direct results regarding L2 convergence

rate of DNN learning and these results usually rely on some regularity condition such as

the L8 boundedness of DNNs in the model space (  Schmidt-Hieber 2017 ;  Polson et al. 2018 ).

However, in practice, it is usually infeasible to ensure that the trained DNN models meet the

pre-specified bound, since the relationship between the magnitude of θ and |fθ|8 is rather

complicated.

3.8 Gumbel-softmax Approximation

To conduct optimization of negative ELBO via stochastic gradient optimization, we need

to find certain reparameterization for any distribution in Q. One solution is to use the inverse

CDF sampling technique. Specifically, if θ „ q P Q, its marginal θi’s are independent mixture

of ( 3.3 ). Let Fpµi,σi,φiq be the CDF of θi, then θi
d
“ F´1

pµi,σi,φiq
puiq holds where ui „ Up0, 1q.

This inverse CDF reparameterization, although valid, can not be conveniently implemented

within the state-of-art python packages like PyTorch. Rather, a more popular way in VB is

to utilize the Gumbel-softmax approximation.
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In particular, since it is impossible to reparameterize the discrete variable γ by a continuous

system, we apply the continuous relaxation - Gumbel-softmax approximation (  Jang et al.

2017 ;  Maddison et al. 2017 ) for the binary variable γi „ Bernpφiq, that is

rγi “ gτ pφi;uiq “
1

1 ` expp´plog φi
1´φi

` log ui
1´ui

q{τq
, ui „ Up0, 1q,

where τ is called the temperature, and as it approaches 0, γ̃i converges to γi in distribution

(refer to Figure  3.1 ). In addition, one can show that

P prγi ą 0.5q “ φi,

which implies

γi
d
“ 1prγi ą 0.5q.

Thus, rγi is viewed as a soft version of γi, and will be used in the backward pass to enable the

calculation for gradients, while the hard version γi will be used in the forward pass to obtain

a sparse network structure. In practice, τ is usually chosen no smaller than 0.5 for numerical

stability.

The Gumbel-softmax approximation introduces an additional error that may jeopardize

the validity of our theorems. Our exploratory studies (refer to Appendix  B ) demonstrates little

differences between the results of using inverse-CDF reparameterization and using Gumbel-

softmax approximation in some simple model. Therefore, we conjecture that Gumbel-softmax

approximation doesn’t hurt the VB convergence, and thus will be implemented in our

numerical studies.

3.8.1 Comparison between Bernoulli variable and the Gumbel softmax approx-
imation

Denote γi „ Bernpφiq and rγi “ gτ pφi;uiq, rewrite γi as

γi :“ gpφi;uiq “ 1pui ď φiq where ui „ Up0, 1q.
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Fig  3.1 demonstrates the functional convergence of gτ towards g as τ goes to zero. In

Fig  3.1 (a), by fixing φip“ 0.9q, we show gτ converges to g as a function of ui. Fig  3.1 (b)

demonstrates that gτ converges to g as a function of αi “ logpφi{p1 ´ φiqq when uip“ 0.2q

is fixed. These two figures show that as τ Ñ 0, gτ Ñ g. Formally,  Maddison et al. 2017  

rigorously proved that rγi converges to γi in distribution as τ approaches 0.

(a) Fix φi “ 0.9. (b) Fix ui “ 0.2.

Figure 3.1. The convergence of gτ towards g as τ approaches 0.

3.9 Implementation

In this section, the implementation details of Adaptive Sparse Variational Inference (ASVI)

are provided.

3.9.1 Approximated negative ELBO

The exact AVSI algorithm requires one to figure out ΩpN, sq and compare ΩpN, sq across

different choices of N and s. Our approximation integrates out the sparsity variable s in the

hierarchical modeling, i.e., we consider the prior

πpNq “
λN

peλ ´ 1qN ! , for some N P Z`,

πpγ|Nq “ c1e´λsΓ
{

ˆ

T

Γ

˙

, with Γ “

T
ÿ

i“1
γi, for c1 ą 0,

πpθi|γiq “ γiM0pθiq ` p1 ´ γiqδ0,

(3.14)
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where T is the total number of possible connections given width multiplier N . The corre-

sponding VB family is

qpNq “ δ
sN , qpγi|Nq “ Bernpφiq,

qpθi|γiq “ γiMpθiq ` p1 ´ γiqδ0,

for some sN P Z`.

Under Gaussian slab distribution, the negative ELBO (up to a constant) corresponding

to the above VB modeling is a function of sN,µi, σi and φi’s,

´Ω “ ´

ż

log ppD|θ, γ, sNqdθdγ

`

T
ÿ

i“1
qpγi “ 1qKLpN pθi;µi, σ

2
i q}N pθi; 0, σ2

0qq

` KLpqpγ| sNq}πpγ| sNqq ´ log πp sNq.

Let

L “ ´

ż

log ppD|θ, γ, sNqdθdγ

`

T
ÿ

i“1
qpγi “ 1qKLpN pθi;µi, σ

2
i q}N pθi; 0, σ2

0qq

` KLpqpγ| sNq}πpγ| sNqq

:“L1 ` L2 ` L3,

and

´ Ωp sNq “ arg min
tµi,σi,φiu

L. (3.15)

Thus the optimal N value pN maximizes the penalized ELBO: Ωpp sNq “ Ωp sNq ` log πp sNq.

To approximate and optimize L, we study each of the three terms:

i) L1 “ ´
ş

log ppD|θ, γqqpθ|γqqpγ| sNqdθdγ requires Monte Carlo estimation. We use

reparameterization trick (  Kingma and Welling 2014  ;  Rezende et al. 2014  ) for the normal
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slab distribution Mpθq, i.e., Mpθiq is equivalent in distribution to µi ` σiεi for εi „ N p0, 1q.

In other words, let ηpµi, σi, φi; εi, uiq “ 1pgτ pφi;uiq ą 0.5qpµi ` σiεiq and rηpµi, σi, φi; εi, uiq “

gτ pφi;uiqpµi ` σiεiq, then the stochastic estimator ( Kingma and Welling 2014  ) for L1 (used

for forward pass) is

ĂL1 “ ´
n

m

1
K

m
ÿ

j“1

K
ÿ

k“1
log ppDj|θ

pkq
q, (3.16)

where θpkq “ pθ
pkq

1 , . . . , θ
pkq

T q1, θ
pkq

i “ ηpµi, σi, φi; εpkq

i , u
pkq

i q. Dj’s are randomly drawn from D,

ε
pkq

i ’s and u
pkq

i ’s are randomly drawn from N p0, 1q and Up0, 1q respectively, n is the sample

size, m is the minibatch size and K is the Monte Carlo sample size. The stochastic estimator

for ∇L1 (used for backward pass) is

r∇µiL1 “ ´
n

m

1
K

m
ÿ

j“1

K
ÿ

k“1
∇µi log ppDj|rθ

pkq
q,

r∇σiL1 “ ´
n

m

1
K

m
ÿ

j“1

K
ÿ

k“1
∇σi log ppDj|rθ

pkq
q,

r∇φiL1 “ ´
n

m

1
K

m
ÿ

j“1

K
ÿ

k“1
∇φi log ppDj|rθ

pkq
q.

(3.17)

where rθpkq “ prθ
pkq

1 , . . . , rθ
pkq

T q1, rθ
pkq

i “ rηpµi, σi, φi; εpkq

i , u
pkq

i q.

ii) L2 is straightforward that

T
ÿ

i“1
qpγi “ 1qKLpN pθi;µi, σ

2
i q}N pθi; 0, σ2

0qq

“

T
ÿ

i“1
φiplog σ0

σi
`
σ2

i ` µ2
i

2σ2
0

´ 0.5q. (3.18)
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iii) To compute L3, certain approximation is needed. Denote ΓT as the set of all possible

γ “ pγ1, . . . , γT q, then

KLpqpγ| sNq}πpγ| sNqq

“
ÿ

γPΓT

log qpγ1, . . . , γT q

πpγ1, . . . , γT q
qpγ1, . . . , γT q

“

T
ÿ

t“0

ÿ

Γ“t

log qpγ1, . . . , γT q

πpγ1, . . . , γT q
qpγ1, . . . , γT q

For the sake of fast computation, we approximate the VB distribution qpγq by iid Bernoulli

distribution qpγq «
ś

rφγip1 ´ rφq1´γi , where rφ “ 1
T

řT
i“1 φi. Under this approximation:

ÿ

Γ“t

log qpγ1, . . . , γT q

πpγ1, . . . , γT q
qpγ1, . . . , γT q

«
ÿ

Γ“t

log
rφtp1 ´ rφqT ´t

πpγ|Γ “ tq
rφt

p1 ´ rφq
T ´t

“

ˆ

T

t

˙

log
rφtp1 ´ rφqT ´t

πpγ|Γ “ tq
rφt

p1 ´ rφq
T ´t

“ log
`

T
t

˘

rφtp1 ´ rφqT ´t

`

T
t

˘

πpγ|Γ “ tq

ˆ

T

t

˙

rφt
p1 ´ rφq

T ´t

“ logPrpΓ “ tqPrpΓ “ tq ` λstPrpΓ “ tq ` C1

where C1 is some constant. Therefore, KLpqpγq}πpγqqq is approximated by
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ÿ

γPΓT

log qpγ1, . . . , γT q

πpγ1, . . . , γT q
qpγ1, . . . , γT q

“

T
ÿ

t“0

ÿ

Γ“t

log qpγ1, . . . , γT q

πpγ1, . . . , γT q
qpγ1, . . . , γT q

“

T
ÿ

t“0
logPrpΓ “ tqP pΓ “ tq ` λs

T
ÿ

t“0
tPrpΓ “ tq ` C2

“ ´ HpΓq ` λsEpΓq ` C2

« ´ 0.5 log2p2πe
ÿ

φipT ´
ÿ

φiq{T q ` λs

T
ÿ

i“1
φi ` C2

:“ĂL3 (3.19)

where HpΓq is the entropy of Γ and C2 is some constant.

3.9.2 Algorithm

An additional re-parametrization transformation for σ and φ is used,

σ1
i “ logpexppσiq ´ 1q, φ1

i “ logp
1 ´ φi

φi
q,

such that σ1
i and φ1

i P R. Let rL and r∇L denote the working approximations of L and ∇L,

then rL “ ĂL1 ` L2 ` ĂL3 using (  3.16 ), (  3.18 ) and ( 3.19 ). Furthermore, there exist explicit

gradients of L2 and ĂL3 with respect to φ1
i, µi and σ1

i, which facilitates the calculation of the

approximate gradient r∇L along with ( 3.17 ).

The complete adaptive sparse variational inference is described in Algorithm  2 , where we

use rΩp sNq and rΩpp sNq to denote the working approximations of Ωp sNq and Ωpp sNq respectively.

3.10 Experiments

In this section, we investigate the performance of the proposed Adaptive Sparse Variational

Inference (ASVI) with Gaussian slab prior through empirical studies. To implement ASVI,

after pre-specifying the depth L, one needs to assign prior distributions for N and s according
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Algorithm 2 Adaptive sparse variational inference with normal slab distribution.
1: Hyperparameters: λ, λs, σ0
2: Parameters: µ, σ1, φ1

3: Candidate set of sN : NA

4: for all sN P NA do in parallel
5: repeat
6: tDju

m
j“1 Ð Sample a minibatch of size m

7: tε
pkq

i u1ďkďK,1ďiďT Ð i.i.d. samples from N p0, 1q

8: tu
pkq

i u1ďkďK,1ďiďT Ð i.i.d. samples from Up0, 1q

9: rL Ð ( 3.16 ), ( 3.18 ) and ( 3.19 )
10: r∇µiL, r∇σiL, r∇φiL Ð Gradients of L2 and ĂL3 together with ( 3.17 )
11: r∇σ1

i
L Ð r∇σiL ¨ ∇σ1

i
σi

12: r∇φ1
i
L Ð r∇φiL ¨ ∇φ1

i
φi

13: µi, σ
1
i, φ

1
i Ð Update with r∇µiL, r∇σ1

i
L, r∇φ1

i
L using gradient descent algorithms

14: (e.g. RMSprop or Adam)
15: until convergence of rL
16: ´rΩp sNq Ð rL
17: ´rΩpp sNqÐ ´rΩp sNq ´ log πp sNq with ( sN , λ)
18: end for
19: pN = arg min

sNPNA
p´rΩpp sNqq

20: return pN and pµ, σ1, φ1| pNq
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Table 3.1. Results for teacher network experiment. The average test RMSE
with standard error and average posterior number of edges with standard error
are exhibited.

Test RMSE # of edges

Width ASVI SVI HS-BNN Dense-BNN ASVI SVI HS-BNN Dense-BNN

2 - 2.193 ˘ 0.195 2.193 ˘ 0.163 2.131 ˘ 0.097 - 48.28 ˘ 2.099 51.00 ˘ 0.000 51.00 ˘ 0.000
4 - 1.636 ˘ 0.069 1.715 ˘ 0.160 1.591 ˘ 0.087 - 94.43 ˘ 4.499 109.0 ˘ 0.000 109.0 ˘ 0.000
6 - 1.210 ˘ 0.049 1.322 ˘ 0.179 1.190 ˘ 0.033 - 125.7 ˘ 8.805 175.0 ˘ 0.000 175.0 ˘ 0.000
8 - 1.065 ˘ 0.038 1.108 ˘ 0.048 1.046 ˘ 0.021 - 135.5 ˘ 10.87 249.0 ˘ 0.000 249.0 ˘ 0.000
10 - 1.014 ˘ 0.023 1.058 ˘ 0.029 1.014 ˘ 0.010 - 151.1 ˘ 13.25 331.0 ˘ 0.000 331.0 ˘ 0.000
12 - 1.019 ˘ 0.085 1.035 ˘ 0.016 1.010 ˘ 0.007 - 166.1 ˘ 14.41 421.0 ˘ 0.000 421.0 ˘ 0.000
14 - 1.018 ˘ 0.093 1.034 ˘ 0.010 1.011 ˘ 0.009 - 177.3 ˘ 15.62 519.0 ˘ 0.000 519.0 ˘ 0.000
16 - 1.011 ˘ 0.037 1.032 ˘ 0.010 1.009 ˘ 0.005 - 186.1 ˘ 16.48 625.0 ˘ 0.000 625.0 ˘ 0.000
18 - 1.005 ˘ 0.008 1.030 ˘ 0.010 1.010 ˘ 0.005 - 190.3 ˘ 15.87 739.0 ˘ 0.000 739.0 ˘ 0.000
20 - 1.003 ˘ 0.006 1.029 ˘ 0.008 1.010 ˘ 0.007 - 192.5 ˘ 13.78 861.0 ˘ 0.000 861.0 ˘ 0.000

Adaptive 1.003 ˘ 0.010 - - - 155.9 ˘ 15.58 - - -

to (  3.5 ), and assign uniform prior (  3.2 ) over the network structure γ given s. However, as

emphasized in the introduction, it is not computationally feasible to solve ASVI, since the

exact minimization of negative ELBO requires exhaustively search over all possible sparse

network structures. As a consequence, in this numerical studies section, an approximated

solution of pq is used instead. The details of the approximation and implementation of ASVI

are presented in Section 2 of the Appendix. In short words, we integrate out the sparsity

variable s in the hierarchical prior (  3.5 ), and only consider the marginal modelling of N and θ.

Given the width multiplier N , the maximized ELBO ΩpNq is obtained by back propagation

with the help of some approximation and binary relaxation. The optimal structure is then

selected by the penalized ELBO criterion similar to (  3.7 ). In this simulation, we typically

specify 5-10 levels of width choices and compute ΩpNq for different N in parallel.

For all the numerical studies, we use the VB posterior mean estimator pf “
ř30

i“1 fθi{30 to

assess the prediction accuracy, where θi’s are randomly drawn from the VB posterior pqpθq.

We use ps “
řH

i“1 φi{H to measure the posterior network sparsity. We compare our method to

Horseshoe BNN (HS-BNN) (  Ghosh, Yao, et al. 2018  ) and dense BNN (  Blundell et al. 2015  ).

3.10.1 Simulation study

We consider a simulated experiment under the teacher-student framework. As shown in

Fig  3.2 (a), we use a 2-hidden-layer teacher network with ReLU activation, where the specific

structure is 20-10-10-1. The edges of the teacher network are first randomly generated from

Up0.5, 1.5q and then randomly set to 0 by a rate of 50% to ensure a sparse structure. We
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(a) Teacher network (b) Selected width

Figure 3.2. (a) Teacher network with structure 20-10-10-1, where 50% of
the edges are set to 0 randomly. (b) Frequency of the selected width in 50
replications.

Table 3.2. Average test RMSE with standard error for UCI regression datasets.
Dataset n (p) SVI HS-BNN PBP
Kin8nm 8192 (8) 0.08˘0.00 0.08˘0.00 0.10˘0.00
Naval 11934 (16) 0.00˘0.00 0.00˘0.00 0.01˘0.00
Power Plant 9568 (4) 4.02˘0.18 4.03˘0.15 4.12˘0.03
Protein 45730 (9) 4.36˘0.04 4.39˘0.04 4.73˘0.01
Wine 1599 (11) 0.62˘0.03 0.63˘0.04 0.64˘0.01
Year 515345 (90) 8.85˘NA 9.26˘NA 8.88˘NA

fix the depth L of student net to 2 in the experiment, and consider the width of student

net to range from 2 to 20 with a increment of 2. We randomly generate 50 datasets of

size 10000 from the teacher network with random noise variance σε “ 1 for training, and

the adaptive variational inference is performed on each of these datasets to select the best

network structure. The remaining implementation details can be found in the Appendix.

Fig  3.2 (b) plots the frequency of the selected width among the 50 replications. It shows

that in most time the ASVI selects width 10 or 12, which is close to the true width. We

compare the test Root Mean Squared Error (RMSE) of ASVI against non-adaptive SVI (i.e.,

ASVI without width selection), HS-BNN and Dense-BNN with all the choices of width. The

result is displayed in Table  3.1 . It shows that ASVI achieves best test Root Mean Squared

66



Error (RMSE), which is quite close to the random noise (σε “ 1). In addition, the number of

edges selected by ASVI is also close to the ground truth (around 165.5).

3.10.2 Real data

We compare the performance of our method to others on UCI regression tasks and MNIST

data. For UCI datasets, following the same experimental protocol as  Hernández-Lobato

et al. 2015  , a single layer neural network of 50 units with ReLU activation is used for all the

datasets, except for the larger ones ”Protein” and ”Year”, where 100 units are used. For

the smaller datasets, we randomly select 90% and 10% for training and testing respectively,

and the process is repeated for 20 times. For ”Protein”, only 5 replication is performed. For

”Year”, where the training and testing datasets are predefined, the process is only done once.

We compare our method to HS-BNN and probabilistic backpropagation (PBP) of  ibid. For

MNIST, we use a two hidden layer ReLU network with width of t400, 500, 600, 700, 800u.

Other Implementation details can be found in the Appendix.

Table  3.2 shows our method (SVI) performs as well as or better than the other methods

on UCI datasets with pre-determined architecture. Figure  3.3 shows our method achieves

best test accuracy for MNIST data, with a selected width of 700 and posterior sparsity of

6.01% (62855 edges) at epoch 300.

Figure 3.3. Test accuracy for MNIST data
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3.10.3 Remaining implementation details

Teacher network The batch size is set as m “ 1024, and Monte Carlo size K “ 1 during

training. Adam is used for optimization with a learning rate of 5 ˆ 10´3, and the number of

epochs is 7000. λs is chosen as 3 (a “ 0.1) and λ is chosen as 10, σ0 is fixed at 0.8.

UCI datasets For all the datasets, the batch size is set as m “ 256, Monte Carlo size K

is set as 1 during training, and Adam is used for optimization with a learning rate of 1 ˆ 10´3.

The number of epochs is 1000 for ”Naval”, ”Power Plant” and ”Protein”, 2000 for ”Kin8nm”

and 100 for ”Year”. σ0 and σε are determined by a grid search that yields the best prediction

accuracy.

MNIST The batch size is set as m “ 512, and Monte Carlo size K “ 1 during training.

RMSprop is used for optimization with a learning rate of 5 ˆ 10´3, and the number of epochs

is 300. λs is chosen as 50 (a “ 1.5) and λ is chosen as 600, σ0 is fixed at 2. MNIST data is

standardized by mean of 0.1307 and standard deviation of 0.3081.

3.11 Conclusion and Discussion

In this chapter, we investigate the theoretical aspects of variational inference for sparse

DNN models. Although theoretically sound, the spike and slab modeling with Dirac spike is

difficult to implement in practice, and some continuous relaxation is required that deserves

further theoretical investigation. In addition, despite the fact that the proposed uniform

prior distribution for s guarantees good theoretical properties, it is also not practical and

some approximation is involved in our implementation. Therefore, some alternative choice of

prior distribution could be investigated in the future.

3.12 Main Proofs

The detailed proofs for our lemmas and theorems are included in this section.
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3.12.1 Proof of Lemma  3.4.1 

Lemma  3.12.1 restates the Donsker and Varadhan’s representation for the KL divergence,

its proof can be found in  Boucheron et al. 2013 .

Lemma 3.12.1 For any probability measure λ and any measurable function h with eh P L1pλq,

log
ż

ehpηqλpdηq “ sup
ρ

„
ż

hpηqρpdηq ´ KLpρ}λq.



The next lemma proves the existence of a testing function which can exponentially separate

P0 and tPθ : dpP0, Pθq ě εn, Pθ P FpL,p, squ. The existence of such testing function is crucial

for Lemma  3.4.1 .

Lemma 3.12.2 Let εn “ M
b

s logpnL{sq`Ls logppNq

n
logδ

pnq for any δ ě 1 and some large

constant M. Then there exists some testing function φ P r0, 1s and C1 ą 0, C2 ą 1{3, such

that

EP0pφq ď expt´C1nε
2
nu,

sup
PθPFpL,p,sq

dpPθ,P0qąεn

EPθ
p1 ´ φq ď expt´C2nd

2
pP0, Pθqu.

Proof 6 Due to the well-known result (e.g.,  Le Cam 1986  , page 491 or  Ghosal and Van

Der Vaart 2007 , Lemma 2), there always exists a function ψ P r0, 1s, such that

EP0pψq ď expt´nd2
pPθ1 , P0q{2u,

EPθ
p1 ´ ψq ď expt´nd2

pPθ1 , P0q{2u,

for all Pθ P FpL,p, sq satisfying that dpPθ, Pθ1q ď dpP0, Pθ1q{18.

Let K “ Npεn{19,FpL,p, sq, dp¨, ¨qq denote the covering number of set FpL,p, sq, i.e.,

there exists K Hellinger-balls with radius εn{19, that completely cover FpL,p, sq. For any

θ P FpL,p, sq (W.O.L.G, we assume Pθ belongs to the kth Hellinger ball centered at Pθk
),
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if dpPθ, P0q ą εn, then we must have that dpP0, Pθk
q ą p18{19qεn and there exists a testing

function ψk, such that

EP0pψkq ď expt´nd2
pPθk

, P0q{2u

ď expt´p182
{192

{2qnε2
nu,

EPθ
p1 ´ ψkq ď expt´nd2

pPθk
, P0q{2u

ď expt´npdpP0, Pθq ´ εn{19q
2
{2u

ď expt´p182
{192

{2qnd2
pP0, Pθqu.

Now we define φ “ maxk“1,...,K ψk. Thus we must have

EP0pφq ď
ÿ

k

EP0pψkq ď K expt´p182
{192

{2qnε2
nu

ď expt´pp182
{192

{2qnε2
n ´ logKqu.

Note that

logK “ logNpεn{19,FpL,p, sq, dp¨, ¨qq

ď logNp
?

8σεεn{19,FpL,p, sq, } ¨ }8q

ď ps ` 1q logp
38

?
8σεεn

pL ` 1qp12pN ` 1q
2pL`1q

q

ď s log 1
εn

` s logpnpL ` 1q{sq ` spL ` 1q logppNq

ď nε2
n{4, for sufficiently large n, (3.20)

where the first inequality is due to the fact

d2
pPθ, P0q ď 1 ´ expt´

1
8σ2

ε

}f0 ´ fθ}
2
8u

and εn “ op1q, the second inequality is due to Lemma 10 of  Schmidt-Hieber 2017  . Therefore,

EP0pφq ď
ÿ

k

P0pψkq ď expt´C1nε
2
nu,

70



for some C1 “ 182{192{2 ´ 1{4. On the other hand, for any θ, such that dpPθ, P0q ě εn, say

Pθ belongs to the kth Hellinger ball, then we have

EPθ
p1 ´ φq ď EPθ

p1 ´ ψkq ď expt´C2nd
2
pP0, Pθqu,

where C2 “ 182{192{2. Hence we conclude the proof.

Now, we are ready to prove Lemma  3.4.1 .

Proof 7 It suffices to construct some q˚pθq P Q, such that w.h.p,

KLpq˚
pθq}πpθqq `

ż

lnpP0, Pθqq˚
pθqdθ

ďnrn `
3n
2σ2

ε

inf
θ

}fθ ´ f0}
2
8 `

3nrn

2σ2
ε

. (3.21)

Let θ˚ “ arg minθPΘBpL,p,sq }fθ ´ f0}2
2 and we choose the same q˚pθq that has been used

in the proof of Theorem 2 of  Chérief-Abdellatif 2020  . Specifically, for all h “ 1, . . . , T ,

γ˚
h “ Ipθ˚

h ‰ 0q, and

i) For uniform slab distribution,

θh „ γ˚
hUprθ˚

h ´ an, θ
˚
h ` ansq ` p1 ´ γ˚

hqδ0, (3.22)

where an “ s
4n

p12BpNq´2Ltpp ` 1 ` 1
12BpN´1q2 L2

p12BpNq2 ` 1
p12BpNq2´1 ` 2

p12BpN´1q2 u´1.

ii) For Gaussian slab distribution,

θh „ γ˚
hN pθ˚

h, σ
2
nq ` p1 ´ γ˚

hqδ0, (3.23)

where σ2
n “ s

16n
logp36pNq´1p24BpNq´2Ltpp ` 1 ` 1

12BpN´1q2 ` 1
p24BpNq2´1 ` 2

p24BpN´1q2 u´1.

According to the proof of Theorem 2 in  ibid. ,
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KLpq˚
pθq}πpθqq ď nrn, (3.24)

ż

}fθ ´ fθ˚}
2
8q

˚
pθqdθ ď rn, (3.25)

and the first term on L.H.S of ( 3.21 ) is bounded.

To upper bound the second term on L.H.S of ( 3.21 ), note that

lnpP0, Pθq “
1

2σ2
ε

p}Y ´ fθpXq}
2
2 ´ }Y ´ f0pXq}

2
2q

“
1

2σ2
ε

p}Y ´ f0pXq ` f0pXq ´ fθpXqq}
2
2 ´ }Y ´ f0pXq}

2
2q

“
1

2σ2
ε

p}fθpXq ´ f0pXq}
2
2 ` 2xY ´ f0pXq, f0pXq ´ fθpXqyq.

Denote

R1 “

ż

}fθpXq ´ f0pXq}
2
2q

˚
pθqdθ,

R2 “

ż

xY ´ f0pXq, f0pXq ´ fθpXqyq˚
pθqdθ.

Since }fθpXq ´ f0pXq}2
2 ď n}fθ ´ f0}2

8 ď n}fθ ´ fθ˚}2
8 ` n}fθ˚ ´ f0}2

8,

R1 ď nrn ` n}fθ˚ ´ f0}
2
8.

Noting that Y ´ f0pXq “ ε „ N p0, σ2
ε Iq, then

R2 “

ż

εT
pf0pXq ´ fθpXqqq˚

pθqdθ

“ εT

ż

pf0pXq ´ fθpXqqq˚
pθqdθ

„ N p0, cfσ
2
ε q,

where cf “ }
ş

pf0pXq ´ fθpXqqq˚pθqdθ}2
2 ď R1 due to Cauchy-Schwarz inequality. Then by

Gaussian tail bound

P0pR2 ě R1q ď expp´
R2

1
2σ2

ε R1
q,
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which implies R2 ď R1 w.h.p.. Therefore,

ż

lnpP0, Pθqq˚
pθqdθ “ R1{2σ2

ε ` R2{σ2
ε ď 3nprn ` }fθ˚ ´ f0}

2
8q{2σ2

ε , w.h.p.,

which concludes this lemma together with ( 3.24 ).

3.12.2 Proof of Lemma  3.4.1 

The proof is adapted from the proof of Theorem 3.1 in  Pati et al. 2018 .

Proof 8 We claim that with high probability (w.h.p),

M “

ż

Θ
ηpPθ, P0qπpθqdθ ď eCnε2

n (3.26)

for some C ą 0, where log ηpPθ, P0q “ lnpPθ, P0q ` n
3d

2pPθ, P0q. Thus by Lemma  3.12.1 ,

w.h.p.,

n

3

ż

d2
pPθ, P0qpqpθqdθ

ďCnε2
n ` KLppqpθq}πpθqq ´

ż

lnpPθ, P0qpqpθqdθ

ďCnε2
n ` KLpqpθq}πpθqq ´

ż

lnpPθ, P0qqpθqdθ

holds for any distribution qθ. The last inequality holds since that KLpqpθq}πpθqq´
ş

lnpPθ, P0qqpθqdθ

is the negative ELBO function up to a constant, which is minimized at pqpθq. This concludes

Lemma 4.3.

To prove ( 3.26 ), we define

M1 “

ż

dpPθ,P0qďεn

ηpPθ, P0qπpθqdθ,

M2 “

ż

dpPθ,P0qąεn

ηpPθ, P0qπpθqdθ,

and will bound both M1 and M2.
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For M1, by Fubini’s theorem,

EP0M1 “

ż

dpPθ,P0qďεn

ż

pθpDq

p0pDq
e

n
3 d2pPθ,P0q

dP0pDqπpθqdθ

“

ż

dpPθ,P0qďεn

e
n
3 d2pPθ,P0q

πpθqdθ

ďe
n
3 ε2

n .

It follows from Markov inequality that M1 ď eCnε2
n w.h.p..

For M2, we further decompose it as M2 “ M21 ` M22,

M21 “

ż

dpPθ,P0qąεn

φηpPθ, P0qπpθqdθ,

M22 “

ż

dpPθ,P0qąεn

p1 ´ φqηpPθ, P0qπpθqdθ,

where the testing function φ is defined in Lemma  3.12.2 .

For M21, since EP0rφs ď e´C1nε2
n , φ ď e´C1

1nε2
n for some C 1

1 ą 0 w.h.p., thus M21 ď

e´C1
1nε2

nM2 w.h.p.

For M22, by Fubini’s theorem and Lemma  3.12.2 ,

EP0M22 “

ż

dpPθ,P0qąεn

EPθ
p1 ´ φqe

n
3 d2pPθ,P0q

πpθqdθ

ď e´pC2´1{3qnε2
n :“ e´C1

2nε2
n .

Thus, M2 ď e´C1
1nε2

nM2 ` e´C1
2nε2

n w.h.p., which implies that M2 ď e´C2nε2
n w.h.p. for some

C2 ą 0.

Combine the boundedness results for both M1 and M2, we conclude ( 3.26 ).

3.12.3 Proof of Theorem  3.5.1 

The following Lemmas  3.12.3 and  3.12.4 consider the situation that the network width N

and s are not specified. These two lemmas prepares our proof for Theorem  3.5.1 .
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Lemma 3.12.3 Let Nn “ cN rpL ` 1qs˚ logN˚ ` s˚ logppL ` 1qn{s˚qs log2δ
pnq — nε˚2

n and

snλs “

csrpL ` 1qs˚ logN˚ ` s˚ logppL ` 1qn{s˚qs log2δ
pnq — nε˚2

n for some constant cN and cs (N˚,

s˚ and ε˚
n are defined in Section 5). If the neural network width N and sparsity s follow some

truncated priors with support t1, . . . , Nnu and t0, . . . , snu respectively, and this prior satisfies

´ log πpN “ N˚, s “ s˚q “ Opnε2
nq. Then similar results of Lemma  3.4.1 and Lemma  3.4.1 

holds, that is for some C ą 0 and C 1 ą 0, we have

ż

d2
pPθ, P0qpqpθqdθ ď Cε˚2

n `
3
n

inf
qpθqPQ

!

KLpqpθq}πpθqq `

ż

lnpP0, Pθqqpθqdθ
)

, and

inf
qpθqPQ

!

KLpqpθq}πpθqq `

ż

lnpP0, Pθqqpθqdθ
)

ď C 1npε˚2
n ` r˚

n ` ξ˚
nq

(3.27)

hold with dominating probability.

Proof 9 To prove the first result of (  3.27 ), similarly to the proof of Lemma  3.4.1 , it is essential

to show that there exists some testing function that achieves exponentially small error probabil-

ity. This further requires a bounded covering number ofNpε˚
n{19,

ŤNn

N“1
Ťsn

s“0 FpL,pL
N , sq, dp¨, ¨qq.

Similar to ( 3.20 ), we have that

Npε˚
n{19,

Nn
ď

N“1

sn
ď

s“0
FpL,pL

N , sq, dp¨, ¨qq

ď logNp
?

8σεε
˚
n{19,

Nn
ď

N“1

sn
ď

s“0
FpL,pL

N , sq, } ¨ }8q

ď logpsnq ` logpNnq ` psn ` 1q logp
38

?
8σεε˚

n

pL ` 1qp12pNn ` 1q
2pL`1q

q

ďnε˚2
n {4, given a large n,

where the last inequality holds due to the fact that logpNnq — log n, sn logp1{ε˚
nq —

sn log n and λs ě apL ` 1q log n for some a ą 0. Therefore, by the argument of Lemma

 3.12.2 , there still exists a testing function that separate P0 and tPθ : dpP0, Pθq ě εn, Pθ P

ŤNn

N“1
Ťsn

s“0 FpL˚,pL˚

N , squ with exponentially small error probability. By the argument used

in the proof of Lemma  3.4.1 , implies that first result of ( 3.27 ) holds.
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The proof of the second result of ( 3.27 ) follows the same argument used in Lemma  3.4.1 .

We can choose the q˚pθ,N, sq P QN,s as q˚pNq “ δN˚ , q˚psq “ δs˚ , and q˚pθ|N˚, s˚q “ q˚pθq as

defined in (  3.22 ). Trivially, (  3.25 ) still holds, and KLpq˚pθ,N, sq}πpθ,N, sqq ď nr˚
n´log πpN “

N˚, s “ s˚q “ Opnε˚2
n ` nr˚

nq. It hence concludes the result.

The next Lemma is an improved result of Corollary 6.1 in  Polson et al. 2018 .

Lemma 3.12.4 Under prior specification (13),

πpN ě Nn or s ě sn|Dq ď expt´c0nε
˚2
n u,

where constant c0 increases to infinity as cs (defined in Lemma  3.12.3 ) increases.

Proof 10 Due to Lemma A.4 in  Song and Liang 2017 , it suffice to show that

πpN ě Nn or s ě snq ď expt´c1nε
˚2
n u (3.28)

log mpDq

p0pDq
ě expt´c2nε

˚2
n u, w.h.p. (3.29)

where c1 increases to infinity as cs increases, c2 ą 0 is an absolute constant, mpDq “
ş

pθpDqdπpθq is the marginal density.

Inequality ( 3.28 ) is true, since

´ log πpN ą Nnq — Nn logNn ą nε˚2
n and

´ log πps ą snq ě Cλssn — nε˚2
n ,

hold for some constant C.

To prove ( 3.29 ), it is suffice to find a subset Fs Ă F , such that πpFsq ě expt´c3nε
˚2
n u

and w.h.p. pθpDq{p0pDq ě expt´c4nε
˚2
n u for any pθ P Fs. Such Fs can be defined as

tfθ P FpL,p˚ “ p12pN˚, . . . , 12pN˚q1, s˚q : }fθ ´ f0}8 ď ε˚
nu,
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First, we show that pθpDq{p0pDq ě expt´c4nε
˚2
n u for any pθ P Fs. Note that

´ log pθpDq{p0pDq

“ ´
1

2σ2
ε

n
ÿ

i“1
rpYi ´ f0pXiqq

2
´ pYi ´ fθpXiqq

2
s

ď
1

2σ2
ε

rn}fθ ´ f0}
2
8 ` 2|xY ´ f0pXq, fθpXq ´ f0pXqy|s.

Note that Y ´ f0pXq is a vector of i.i.d. normal Np0, σ2
ε q, then by concentration inequality,

w.h.p,

|xX ´ f0pXq, fθpXq ´ f0pXqy| ď cnε˚2
n

for some c ą 0, and we can conclude that w.h.p.,

pθpDq

p0pDq
ě expt´c4nε

˚2
n u

Second, we prove that πpFsq ě expt´c3nε
˚2
n u in the following. By Condition  3.5.2 ,

ξ˚
n — r˚

n “ opε˚2
n q, hence there must exists a NN pf

pθ P FpL,p˚s˚, pγq, where pγ denotes a specific

pattern of nonzero links among pθ, s.t.

}f̂θ̂ ´ f0}8 À ε˚
n{2.

By triangle inequality,

tfθ P FpL,p˚, s˚
q : }fθ ´ f0}8 ď ε˚

nu

Ątfθ P FpL,p˚, s˚, pγq : }fθ ´ pf
pθ}8 ď

ε˚
n

2 u.

Furthermore, from the proof of Lemma 10 of  Schmidt-Hieber 2017 , we have

tfθ P FpL,p˚, s˚, pγq : }fθ ´ f̂θ̂}8 ď
ε˚

n

2 u

Ątfθ : }θ}8 ď 1 and }θ ´ θ̂}8 ď
ε˚

n

2V pL ` 1q
u,

where V “ pL ` 1qp12pN˚ ` 1q.
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Therefore,

πtfθ P FpL,p˚, s˚
q : }fθ ´ f0}8 ď ε˚

nu

ą
πtfθ P FpL,p˚, s˚, pγq : }fθ ´ pf

pθ}8 ď
ε˚

n

2 u
`

T
s˚

˘

ąe´pL`1qs˚ logp12pN˚q
πtθ : }θ}8 ď 1 and }θ ´ θ̂}8 ď

ε˚
n

2V pL ` 1q
u,

where T denotes the total number of edge in network FpL,p˚, s˚q. Note that

πtθ : }θ}8 ď 1 and }θ ´ θ̂}8 ď
ε˚

n

2V pL ` 1q
qu

« expt´s˚ logp
2V pL ` 1q

ε˚
n

qu.

Therefore, it is sufficient to show that

pL ` 1qs˚ logp12pN˚
q ` s˚ logp

2pL ` 1q2p12pN˚ ` 1q

ε˚
n

q

ďc3nε
˚2
n ,

which hold trivially due to the definition of ε˚
n.

We are ready to prove Theorem  3.5.1 .

Proof 11 Denote δ
pN and δ

ps be the degenerate VB posterior of N and s. We claim that with

dominating probability,

pN ă Nn and ps ă sn. (3.30)

Therefore, it will be equivalent to consider the truncated prior rπpNq9πpNq1pN ă Nnq and

rπpsq9πpsq1ps ă snq.
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Note that

´ log πpN “ N˚
q ď ´ log rπpN “ N˚

q

ďλ ` logN˚! ´ N˚ log λ — N˚ logN˚

ďs˚ logN˚
“ Opnε˚2

n q,

and

´ log πps “ s˚
q “ Opλss

˚
q “ Opnε˚2

n q.

Therefore, the conditions of Lemma  3.12.3 hold and we conclude the proof.

Recall q˚pθ,N, sq P QN,s which is defined in the proof of Lemma  3.12.3 , and we prove

( 3.30 ) by showing that w.h.p.,

KLpq˚
pθ,N, sq}πpθ,N, s|Dqq ď KLpqpθ,N, sq}πpθ,N, s|Dqq, (3.31)

for any q P QN,s whose marginal degenerate distribution of N is large than Nn or marginal

degenerate distribution of s is greater than sn. Note that

1
n

KLpq˚
pθ,N, sq}πpθ,N, s|Dqq

“
1
n

KLpq˚
pθ,N, sq}πpθ,N, sqq `

1
n
Eq˚ log p0pDq

pθpDq

`
1
n

log mpDq

p0pDq
.

The sum of the first two terms in above equation, as shown in the proof of Lemma  3.12.3 , is

Opε˚2
n ` r˚

nq “ Opε˚2
n q. For the third term, by LLN, it converges to constant ´KLpP0}mq ď 0.

Due to Lemma  3.12.4 , KLpqpθ,N, sq}πpθ,N, s|Dqq ě c0nε
˚2
n , and the constant c0 increases

to infinity as cs increases. Therefore, providing a sufficiently large cs, ( 3.31 ) holds.
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3.12.4 Remarks for proofs of Corollaries  3.6.1 - 3.6.4 .

The proofs for Corollaries  3.6.1 and  3.6.3 are straightforward, and they are directly implied

by Theorem  3.4.1 .

For the proofs of Corollaries  3.6.2 and  3.6.4 , we comment that Theorem  3.5.1 actually

holds for any pN˚, s˚q which satisfies Conditions  3.5.1 ,  3.5.3 and ξ˚
n “ Opr˚

nq, but is not

necessarily the exact minimization of r˚
n ` ξ˚

n. Therefore, in this case we can still use Theorem

 3.5.1 to prove Corollaries  3.6.2 and  3.6.4 .

3.12.5 Proof of Theorem  3.7.1 

Proof 12 For any Mn Ñ 8, there always exists some ĂMn satistfying that 1 ă ĂMn “ OpMnq

and γn
ĂMnrε2

n “ op1q.

Then, for any θ P G X tθ : L2
2pf0, fθq ě ĂMnrε2

nu,

d2
pPθ, P0q ě

ż

S

p1 ´ expt´pfθpxq ´ f0pxqq
2
{8σ2

ε uqdP pxq

ě
p1 ´ expt´γnL

2
2pf0, fθq{8σ2

ε uq

γnL2
2pf0, fθq

ż

S

pfθpxq ´ f0pxqq
2dP pxq

ě
p1 ´ expt´γnL

2
2pf0, fθq{8σ2

ε uq

γn

κ

ě
p1 ´ expt´γn

ĂMnrε2
n{8σ2

ε uq

γn

κ ě cM
ĂMnrε2

n, (3.32)

for some constant cM ą 0, where the second inequality holds since |fθpXq ´ f0pXq|2 is upper

bounded by γnL
2
2pf0, fθq on S, and the last inequality is due to the fact that γn

ĂMnrε2
n “ op1q.

( 3.32 ) implies

G X tL2
2pf0, fθq ě ĂMnrε2

nu Ă td2
pPθ, P0q ě cM

ĂMnrε2
nu. (3.33)

By Theorem  3.4.1 , w.h.p.,

ż

d2
pPθ, P0qpqpθq “ Oprε2

nq,
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which implies that
ż

d2pPθ,P0qěcM
ĂMn rε2

n

pqpθq “ Op1{ĂMnq “ op1q.

Combined with ( 3.33 )

ż

GXtL2
2pf0,fθqąMn rε2

nu

pqpθq ď

ż

GXtL2
2pf0,fθqą ĂMn rε2

nu

pqpθq

ď

ż

d2pPθ,P0qěcM
ĂMn rε2

n

pqpθq “ Op1{ĂMnq “ op1q, w.h.p.
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4. COMPUTATIONALLY EFFICIENT SPIKE AND SLAB

PRIOR

4.1 Introduction

In this chapter, we improve the variational inference dicussed in Chapter  3 by placing

a computationally efficient prior while remaining theoretically soundness. Specifically, the

prior distribution for the inclusion variable γi follows independent Bernoulli distribution. In

addition, we will only consider Gaussian slab distribution, since VI with uniform slab lacks

of practical implementation and only possesses theoretical significance.

More importantly, with carefully chosen hyperparameter values, especially the prior

probability that each edge is active, we establish the variational posterior consistency, and the

corresponding convergence rate strikes the balance of statistical estimation error, variational

error and the approximation error.

The theoretical results are validated by various simulations and real applications. Empiri-

cally we also demonstrate that the proposed method possesses good performance of variable

selection and uncertainty quantification. While ( Feng et al. 2017 ;  Liang et al. 2018  ;  Ye et al.

2018 ) only considered the neural network with single hidden layer for variable selection, we

observe correct support recovery for neural networks with multi-layer networks.

4.2 Alternative Spike-and-slab Prior

As in Chapter  3 , we aim to approximate f0 in the generative model ( 3.1 ) by a sparse

neural network. Specifically, given a network structure, i.e. the depth L and the width p,

f0 is approximated by DNN models fθ with sparse parameter vector θ P Θ “ RT . From

a Bayesian perspective, we impose the following spike-and-slab prior (  George et al. 1993  ;

 Ishwaran et al. 2005 ) on θ:

θi|γi „ γiN p0, σ2
0q ` p1 ´ γiqδ0, γi „ Bernpλq, (4.1)

for i “ 1, . . . , T , where λ and σ2
0 are hyperparameters representing the prior inclusion

probability and the prior Gaussian variance, respectively. The choice of σ2
0 and λ play an
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important role in sparse Bayesian learning, and in Section  4.3 , we will establish theoretical

guarantees for the variational inference procedure under proper deterministic choices of σ2
0 and

λ. Alternatively, hyperparameters may be chosen via an Empirical Bayesian (EB) procedure,

but it is beyond the scope of this work. We assume Q is in the same family of spike-and-slab

laws:

θi|γi „ γiN pµi, σ
2
i q ` p1 ´ γiqδ0, γi „ Bernpφiq (4.2)

for i “ 1, . . . , T , where 0 ď φi ď 1.

Comparing to pruning approaches e.g.  Molchanov et al. 2017  ;  Frankle et al. 2018  ;  Zhu

et al. 2018 that don’t pursue sparsity among bias parameter bi’s, the Bayesian modeling

induces posterior sparsity for both weight and bias parameters.

 Polson et al. 2018 ;  Chérief-Abdellatif 2020  as well as Chapter  3 imposed sparsity spec-

ification as follows ΘpL,p, sq “ tθ as in model p 1.5 q : ||θ||0 ď su that not only posts great

computational challenges, but also requires tuning for optimal sparsity level s. For example,

it has been showed in Chapter  3 that given s, two error terms occur in the variation DNN

inference: 1) the variational error rnpL,p, sq caused by the variational Bayes approximation

to the true posterior distribution and 2) the approximation error ξnpL,p, sq between f0 and

the best bounded-weight s-sparsity DNN approximation of f0. Both error terms rn and ξn

depend on s (and their specific forms are given in next section). Generally speaking, as the

model capacity (i.e., s) increases, rn will increase and ξn will decrease. Hence the optimal

choice s˚ that strikes the balance between these two is

s˚
“ argmin

s
trnpL,p, sq ` ξnpL,p, squ.

Therefore, one needs to develop a selection criteria for ps such that ps « s˚. In contrast, our

modeling in this chapter directly works on the whole sparsity regime without pre-specifying

s, and is shown later to be capable of automatically attaining the same rate of convergence

as if the optimal s˚ were known.
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4.3 Theoretical Results

In this section, we will establish the contraction rate of the variational sparse DNN

procedure, without knowing s˚. For simplicity, we only consider equal-width neural network

similar as in Chapter  3 .

The following assumptions are imposed:

Condition 4.3.1 pi ” N P Z` that can depend on n, and limT “ 8.

Condition 4.3.2 σpxq is 1-Lipschitz continuous.

Condition 4.3.3 The hyperparameter σ2
0 is set to be some constant, and λ satisfies logp1{λq “

OtpL`1q logN`logpp
a

n{s˚qu and logp1{p1´λqq “ Opps˚{T qtpL`1q logN`logpp
a

n{s˚quq.

Condition  4.3.2 is very mild, and includes ReLU, sigmoid and tanh. Note that Condition

 4.3.3 gives a wide range choice of λ, even including the choice of λ independent of s˚ (See

Theorem  4.3.1 below).

We first state a lemma on an upper bound for the negative ELBO. Denote the log-likelihood

ratio between p0 and pθ as lnpP0, Pθq “ logpp0pDq{pθpDqq “
řn

i“1 logpp0pDiq{pθpDiqq. Given

some constant B ą 0, we define

r˚
n :“ rnpL,N, s˚

q “ ppL ` 1qs˚
{nq logN ` ps˚

{nq logpp
a

n{s˚q,

ξ˚
n :“ ξnpL,N, s˚

q “ inf
θPΘpL,p,s˚q,}θ}8ďB

||fθ ´ f0||
2
8.

Recall that rnpL,N, sq and ξnpL,N, sq denote the variational error and the approximation

error.

Lemma 4.3.1 Under Condition  4.3.1 - 4.3.3 , then with dominating probability,

inf
qpθqPQ

!

KLpqpθq||πpθ|λqq `

ż

Θ
lnpP0, Pθqqpθqdθ

)

ď Cnpr˚
n ` ξ˚

nq (4.3)

where C is either some positive constant if limnpr˚
n ` ξ˚

nq “ 8, or any diverging sequence

if lim supnpr˚
n ` ξ˚

nq ‰ 8.
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Noting that KLpqpθq||πpθ|λqq`
ş

Θ lnpP0, Pθqqpθqpdθq is the negative ELBO up to a constant,

we therefore show the optimal loss function of the proposed variational inference is bounded.

The next lemma investigates the convergence of the variational distribution under the

Hellinger distance, which is defined as

d2
pPθ, P0q “ EX

´

1 ´ expt´rfθpXq ´ f0pXqs
2
{p8σ2

ε qu

¯

.

In addition, let sn “ s˚ log2δ´1
pnq for any δ ą 1. An assumption on s˚ is required to strike

the balance between r˚
n and ξ˚:

Condition 4.3.4 maxts˚ logpp
a

n{s˚, pL ` 1qs˚ logNu “ opnq and r˚
n — ξ˚

n.

Lemma 4.3.2 Under Conditions  4.3.1 - 4.3.4 , if σ2
0 is set to be constant and λ ď T´1 expt´Mnr˚

n{snu

for any positive diverging sequence M Ñ 8, then with dominating probability, we have

ż

Θ
d2

pPθ, P0qpqpθqdθ ď Cε˚2
n `

3
n

inf
qpθqPQ

!

KLpqpθq||πpθ|λqq `

ż

Θ
lnpP0, Pθqqpθqdθ

)

, (4.4)

where C is some constant, and

ε˚
n :“ εnpL,N, s˚

q “
a

rnpL,N, s˚q logδ
pnq, for any δ ą 1.

Remark The result ( 4.4 ) is of exactly the same form as in the existing literature (  Pati

et al. 2018  ), but it is not trivial in the following sense. The existing literature require

the existence of a global testing function that separates P0 and tPθ : dpPθ, P0q ě ε˚
nu with

exponentially decay rate of Type I and Type II errors. If such a testing function exists only

over a subset Θn Ă Θ (which is the case for our DNN modeling), then the existing result

( Yang, Pati, et al. 2020 ) can only characterize the VB posterior contraction behavior within

Θn, but not over the whole parameter space Θ. Therefore our result, which characterizes

the convergence behavior for the overall VB posterior, represents a significant improvement

beyond those works.

The above two lemmas together imply the following guarantee for VB posterior:
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Theorem 4.3.1 Let σ2
0 be a constant and ´ log λ “ logpT q ` δrpL` 1q logN ` log

?
nps for

any constant δ ą 0. Under Conditions  4.3.1 - 4.3.2 ,  4.3.4 , we have with high probability

ż

Θ
d2

pPθ, P0qpqpθqdθ ď Cε˚2
n ` C 1

pr˚
n ` ξ˚

nq,

where C is some positive constant and C 1 is any diverging sequence.

The ε˚2
n denotes the estimation error from the statistical estimator for P0. The variational

Bayes convergence rate consists of estimating error, i.e., ε˚2
n , variational error, i.e., r˚

n, and

approximation error, i.e., ξ˚
n. Given that the former two errors have only logarithmic difference,

our convergence rate actually strikes the balance among all three error terms. The derived

convergence rate has an explicit expression in terms of the network structure based on the

forms of ε˚
n, r˚

n and ξ˚
n, in contrast with general convergence results in  Pati et al. 2018  ;  Zhang

and Gao 2019 ;  Yang, Pati, et al. 2020 .

Remark Theorem  4.3.1 provides a specific choice for λ, which can be relaxed to the general

conditions on λ in Lemma  4.3.2 . In contrast to the heuristic choices such as λ “ expp´2 log nq

BIC;  Hubin et al. 2019  , this theoretically justified choice incorporates knowledge of input

dimension, network structure and sample size. Such an λ will be used in our numerical

experiments in Section  4.5 , but readers shall be aware of that its theoretical validity is only

justified in an asymptotic sense.

Remark The convergence rate is derived under Hellinger metric, which is of less practical

relevance than L2 norm representing the common prediction error. One may obtain a

convergence result under L2 norm via a VB truncation (refer to Section  4.7.3 , Theorem  4.7.1 ).

Remark If f0 is an α-Hölder-smooth function with fixed input dimension p, then by

choosing some L — log n, N — n{ log n, combining with the approximation result  Schmidt-

Hieber 2017 , Theorem 3, our theorem ensures rate-minimax convergence up to a logarithmic

term.
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4.4 Implementation

As in Chapter  3 , to conduct optimization of negative ELBO via stochastic gradient

optimization, we need to utilize the Gumbel-softmax approximation. Rewrite the loss

function Ω as

´Eqpθ|γqqpγqrlog pθpDqs `

T
ÿ

i“1
KLpqpγiq||πpγiqq `

T
ÿ

i“1
qpγi “ 1qKLpN pµi, σ

2
i q||N p0, σ2

0qq. (4.5)

Apply Gumbel-softmax approximation (  Jang et al. 2017  ;  Maddison et al. 2017  ) to γi „

Bernpφiq, that is

rγi “ gτ pφi;uiq “
1

1 ` expp´plog φi
1´φi

` log ui
1´ui

q{τq
, ui „ Up0, 1q,

where τ is called the temperature and is chosen as 0.5 in the experiment. Besides, the normal

variable N pµi, σ
2
i q is reparameterized by µi ` σiεi for εi „ N p0, 1q.

Recall that Q is reparameterized as qω
d
“ gpω, νq for some differentiable function g and

random variable ν, then the stochastic estimator of the negative ELBO Ωpωq and its gradient

are

rΩm
pωq “ ´

n

m

1
K

m
ÿ

i“1

K
ÿ

k“1
log pgpω,νkqpDiq ` KLpqωpθq||πpθqq,

∇ω
rΩm

pωq “ ´
n

m

1
K

m
ÿ

i“1

K
ÿ

k“1
∇ω log pgpω,νkqpDiq ` ∇ωKLpqωpθq||πpθqq,

(4.6)

where Di’s are randomly sampled data points and νk’s are iid copies of ν. Here, m and K

are minibatch size and Monte Carlo sample size, respectively.

The complete variational inference procedure with Gumbel-softmax approximation is

stated below.
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Algorithm 3 Variational inference for sparse BNN with normal slab distribution.
1: parameters: ω “ pµ, σ1, φ1q ,

2: where σi “ logp1 ` exppσ1
iqq, φi “ p1 ` exppφ1

iqq´1, for i “ 1, . . . , T

3: repeat

4: Dm Ð Randomly draw a minibatch of size m from D

5: εi, ui Ð Randomly draw K samples from N p0, 1q and Up0, 1q

6: rΩmpωq Ð Use ( 4.6 ) with (Dm, ω, ε, u); Use γ in the forward pass

7: ∇ω
rΩmpωq Ð Use ( 4.6 ) with (Dm, ω, ε, u); Use rγ in the backward pass

8: ω Ð Update with ∇ω
rΩmpωq using gradient descent algorithms (e.g. SGD or Adam)

9: until convergence of rΩmpωq

10: return ω

4.5 Experiments

We evaluate the empirical performance of the proposed variational inference through

simulation study and MNIST data application. For the simulation study, we consider a

teacher-student framework and a nonlinear regression function, by which we justify the

consistency of the proposed method and validate the proposed choice of hyperparameters. As

a byproduct, the performance of uncertainty quantification and the effectiveness of variable

selection will be examined as well.

For all the numerical studies, we let σ2
0 “ 2, the choice of λ follows Theorem  4.3.1 

(denoted by λopt): logpλ´1
optq “ logpT q ` 0.1rpL` 1q logN ` log

?
nps. The remaining details of

implementation (such as initialization, choices of K, m and learning rate) are provided in the

Section. We will use VB posterior mean estimator pfH “
řH

h“1 fθh
{H to assess the prediction

accuracy, where θh „ pqpθq are samples drawn from the VB posterior and H “ 30. The

posterior network sparsity is measured by ps “
řT

i“1 φi{T . Input nodes who have connection

with φi ą 0.5 to the second layer is selected as relevant input variables, and we report the

corresponding false positive rate (FPR) and false negative rate (FNR) to evaluate the variable

selection performance of our method.
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Our method will be compared with the dense variational BNN (VBNN) (  Blundell et al.

2015 ) with independent centered normal prior and independent normal variational distribution,

the AGP pruner ( Zhu et al. 2018 ), the Lottery Ticket Hypothesis (LOT) (  Frankle et al. 2018  ),

the variational dropout (VD) (  Molchanov et al. 2017  ) and the Horseshoe BNN (HS-BNN)

( Ghosh, Yao, et al. 2018  ). In particular, VBNN can be regarded as a baseline method without

any sparsification or compression. All reported simulation results are based on 30 replications

(except that we use 60 replications for interval estimation coverages). Note that the sparsity

level in methods AGP and LOT are user-specified. Hence, in simulation studies, we try a

grid search for AGP and LOT, and only report the ones that yield highest testing accuracy.

Furthermore, note that FPR and FNR are not calculated for HS-BNN since it only sparsifies

the hidden layers nodewisely.

4.5.1 Simulation I: Teacher-student networks setup

We consider two teacher network settings for f0: (A) densely connected with a structure

of 20-6-6-1, p “ 20, n “ 3000, σpxq “ sigmoidpxq, X „ Upr´1, 1s20q, ε „ N p0, 1q and network

parameter θi is randomly sampled from Up0, 1q; (B) sparsely connected as shown in Figure

 4.1 (c), p “ 100, n “ 500, σpxq “ tanhpxq, X „ Upr´1, 1s100q and ε „ N p0, 1q, the network

parameter θi’s are fixed (refer to Section  4.8 for details).

Table 4.1. Simulation results for Simulation I. SVBNN represents our sparse
variational BNN method. The sparsity levels specified for AGP are 30% and
5%, and for LOT are 10% and 5%, respectively for the two cases.

RMSE Input variable selection

Method Train Test FPR(%) FNR(%) 95% Coverage (%) Sparsity(%)

D
en

se

SVBNN 1.01 ˘ 0.02 1.01 ˘ 0.00 - - 97.5 ˘ 1.71 6.45 ˘ 0.83
VBNN 1.00 ˘ 0.02 1.00 ˘ 0.00 - - 91.4 ˘ 3.89 100 ˘ 0.00
VD 0.99 ˘ 0.02 1.01 ˘ 0.00 - - 76.4 ˘ 4.75 28.6 ˘ 2.81
HS-BNN 0.98 ˘ 0.02 1.02 ˘ 0.01 - - 83.5 ˘ 0.78 64.9 ˘ 24.9
AGP 0.99 ˘ 0.02 1.01 ˘ 0.00 - - - 30.0 ˘ 0.00
LOT 1.04 ˘ 0.01 1.02 ˘ 0.00 - - - 10.0 ˘ 0.00

Sp
ar

se

SVBNN 0.99 ˘ 0.03 1.00 ˘ 0.01 0.00 ˘ 0.00 0.00 ˘ 0.00 96.4 ˘ 4.73 2.15 ˘ 0.25
VBNN 0.92 ˘ 0.05 1.53 ˘ 0.17 100 ˘ 0.00 0.00 ˘ 0.00 90.7 ˘ 8.15 100 ˘ 0.00
VD 0.86 ˘ 0.04 1.07 ˘ 0.03 72.9 ˘ 6.99 0.00 ˘ 0.00 75.5 ˘ 7.81 20.8 ˘ 3.08
HS-BNN 0.90 ˘ 0.04 1.29 ˘ 0.04 - - 67.0 ˘ 8.54 32.1 ˘ 20.1
AGP 1.01 ˘ 0.03 1.02 ˘ 0.00 16.9 ˘ 1.81 0.00 ˘ 0.00 - 5.00 ˘ 0.00
LOT 0.96 ˘ 0.01 1.04 ˘ 0.01 19.5 ˘ 2.57 0.00 ˘ 0.00 - 5.00 ˘ 0.00
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(a) λ ď λopt. (b) λ ě λopt. (c) Sparse teacher network.

Figure 4.1. (a) λ “ t10´200, 10´150, 10´100, 10´50, 10´20, 10´5, λoptu. (b) λ “

tλopt, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99u. (c) The structure of the target sparse teacher
network. Please note that the x axes of figures (a) and (b) are in different
scales.

First, we examine the impact of different choices of λ on our VB sparse DNN modeling.

A set of different λ values are used, and for each λ, we compute the training square root MSE

(RMSE) and testing RMSE based on pfH . Results for the simulation setting (B) are plotted

in Figure  4.1 along with error bars (Refer to Section  4.8 for the plot under the simulation

setting (A)). The figure shows that as λ increases, the resultant network becomes denser and

the training RMSE monotonically decreases, while testing RMSE curve is roughly U-shaped.

In other words, an overly small λ leads to over-sparsified DNNs with insufficient expressive

power, and an overly large λ leads to overfitting DNNs. The suggested λopt successfully

locates in the valley of U-shaped testing curve, which empirically justifies our theoretical

choice of λopt.

We next compare the performance of our method (with λopt) to the benchmark methods,

and present results in Table  4.1 . For the dense teacher network (A), our method leads to

the most sparse structure with comparable prediction error; For the sparse teacher network

(B), our method not only achieves the best prediction accuracy, but also always selects the

correct set of relevant input variables. Besides, we also explore uncertainty quantification of

our methods, by studying the coverage of 95% Bayesian predictive intervals (refer to Section
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 4.8 for details). Table  4.1 shows that our method obtains coverage rates slightly higher than

the nominal levels while other (Bayesian) methods suffer from undercoverage problems.

4.5.2 Simulation II: Sparse nonlinear function

Consider the following sparse function f0:

f0px1, . . . , x200q “
7x2

1 ` x2
1

` 5 sinpx3x4q ` 2x5, ε „ N p0, 1q, (4.7)

all covariates are iid N p0, 1q and data set contains n “ 3000 observations. A ReLU network

with L “ 3 and N “ 7 is used. Similar to the simulation I, we study the impact of λ,

and results in Figure  4.2 justify that λopt is a reasonable choice. Table  4.2 compares the

performances of our method (under λopt) to the competitive methods. Our method exhibits

the best prediction power with minimal connectivity, among all the methods. In addition,

our method achieves smallest FPR and acceptable FNR for input variable selection. In

comparison, other methods select huge number of false input variables. Figure  4.2 (c) shows

the selected network (edges with φi ą 0.5) in one replication that correctly identifies the

input variables.

(a) λ ď λopt. (b) λ ě λopt. (c) Selected network structure.

Figure 4.2. (a) λ “ t10´200, 10´150, 10´100, 10´50, 10´20, 10´5, λoptu. (b) λ “

tλopt, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99u. (c) A selected network structure for (  4.7 ).

91



Table 4.2. Results for Simulation II. The sparsity levels selected for AGP and
LOT are both 30%.

Method Train RMSE Test RMSE FPR(%) FNR(%) Sparsity(%)
SVBNN 1.19 ˘ 0.05 1.21 ˘ 0.05 0.00 ˘ 0.21 16.0 ˘ 8.14 2.97 ˘ 0.48
VBNN 0.96 ˘ 0.06 1.99 ˘ 0.49 100 ˘ 0.00 0.00 ˘ 0.00 100 ˘ 0.00
VD 1.02 ˘ 0.05 1.43 ˘ 0.19 98.6 ˘ 1.22 0.67 ˘ 3.65 46.9 ˘ 4.72
HS-BNN 1.17 ˘ 0.52 1.66 ˘ 0.43 - - 41.1 ˘ 36.5
AGP 1.06 ˘ 0.08 1.58 ˘ 0.11 82.7 ˘ 3.09 1.33 ˘ 5.07 30.0 ˘ 0.00
LOT 1.08 ˘ 0.09 1.44 ˘ 0.14 83.6 ˘ 2.94 0.00 ˘ 0.00 30.0 ˘ 0.00

Figure 4.3. Testing accuracy for MNIST

MNIST application.

We evaluate the performance of our method on MNIST data for classification tasks, by

comparing with benchmark methods. A 2-hidden layer DNN with 512 neurons in each layer is

used. We compare the testing accuracy of our method (with λopt) to the benchmark methods

at different epochs using the same batch size (refer to Section  4.8 for details). Figure  4.3 

shows our method achieves best accuracy as epoch increases, and the final sparsity level for

SVBNN, AGP and VD are 5.06%, 5.00% and 2.28%.

In addition, an illustration of our method’s capability for uncertainty quantification on

MNIST can be found in Section  4.8 , where additional experimental results on UCI regression

datasets can also be found.
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4.6 Conclusion and Discussion

We proposed a variational inference method for deep neural networks under spike-and-slab

priors with theoretical guarantees. Future direction could be investigating the theory behind

choosing hyperparamters via the EB estimation instead of deterministic choices.

Furthermore, extending the current results to more complicated networks (convolutional

neural network, residual network, etc.) is not trivial. Conceptually, it requires the design

of structured sparsity (e.g., group sparsity in  Neklyudov et al. 2017  ) to fulfill the goal of

faster prediction. Theoretically, it requires deeper understanding of the expressive ability

(i.e. approximation error) and capacity (i.e., packing or covering number) of the network

model space. For illustration purpose, we include an example of Fashion-MNIST task using

convolutional neural network in Section  4.8.5 , and it demonstrates the usage of our method

on more complex networks in practice.

4.7 Main Proofs

In this section, the detailed proofs for the theoretical results are provided.

4.7.1 Proof of Lemma 4.1

As a technical tool for the proof, we first restate the Lemma 6.1 in  Chérief-Abdellatif and

Alquier 2018 as follows.

Lemma 4.7.1 For any K ą 0, the KL divergence between any two mixture densities
řK

k“1 wkgk and
řK

k“1 w̃kg̃k is bounded as

KLp

K
ÿ

k“1
wkgk||

K
ÿ

k“1
w̃kg̃kq ď KLpw||w̃q `

K
ÿ

k“1
wkKLpgk||g̃kq,

where KLpw||w̃q “
řK

k“1 wk log wk

w̃k
.

We begin the proof of Lemma 4.1
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Proof 13 It suffices to construct some q˚pθq P Q, such that w.h.p,

KLpq˚
pθq||πpθ|λqq `

ż

Θ
lnpP0, Pθqq˚

pθqpdθq

ďC1nr
˚
n ` C 1

1n inf
θ

||fθ ´ f0||
2
8 ` C 1

1nr
˚
n,

where C1, C 1
1 are some positive constants if limnpr˚

n ` ξ˚
nq “ 8, or any diverging sequences if

lim supnpr˚
n ` ξ˚

nq ‰ 8.

Recall θ˚ “ arg minθPΘpL,p,s˚,Bq ||fθ ´ f0||28, then q˚pθq P Q can be constructed as

KLpq˚
pθq||πpθ|λqq ď C1nr

˚
n, (4.8)

ż

Θ
||fθ ´ fθ˚ ||

2
8q

˚
pθqpdθq ď r˚

n. (4.9)

We define q˚pθq as follows, for i “ 1, . . . , T :

θi|γ
˚
i „ γ˚

i N pθ˚
i , σ

2
nq ` p1 ´ γ˚

i qδ0,

γ˚
i „ Bernpφ˚

i q,

φ˚
i “ 1pθ˚

i ‰ 0q,

(4.10)

To prove ( 4.8 ), denote ΓT as the set of all possible binary inclusion vectors with length T ,

then q˚pθq and πpθ|λq could be written as mixtures

q˚
pθq “

ÿ

γPΓT

1pγ “ γ˚
q

T
ź

i“1
γiN pθ˚

i , σ
2
nq ` p1 ´ γiqδ0,

and

πpθ|λq “
ÿ

γPΓT

πpγq

T
ź

i“1
γiN p0, σ2

0q ` p1 ´ γiqδ0,
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where πpγq is the probability for vector γ under prior distribution π. Then,

KLpq˚
pθq||πpθ|λqq

ď log 1
πpγ˚q

`
ÿ

γPΓT

1pγ “ γ˚
qKL

!
T

ź

i“1
γiN pθ˚

i , σ
2
nq ` p1 ´ γiqδ0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

T
ź

i“1
γiN p0, σ2

0qq ` p1 ´ γiqδ0

)

“ log 1
λs˚

p1 ´ λqT ´s˚ `

T
ÿ

i“1
KL

!

γ˚
i N pθ˚

i , σ
2
nq ` p1 ´ γ˚

i qδ0||γ˚
i N p0, σ2

0qq ` p1 ´ γ˚
i qδ0

)

“s˚ logp
1
λ

q ` pT ´ s˚
q logp

1
1 ´ λ

q `

T
ÿ

i“1
γ˚

i

!1
2 log

´σ2
0
σ2

n

¯

`
σ2

n ` θ˚2
i

2 ´
1
2

)

ďC0nr
˚
n `

s˚

2 σ
2
n `

s˚

2 pB2
´ 1q `

s˚

2 log
´σ2

0
σ2

n

¯

ďpC0 ` 1qnr˚
n `

s˚

2 B
2

`
s˚

2 log
´8n
s˚

logp3pNqp2BNq
2L`2

!

pp ` 1 `
1

BN ´ 1q
2

`
1

p2BNq2 ´ 1 `
2

p2BN ´ 1q2

)¯

ďpC0 ` 2qnr˚
n `

B2

2 s˚
` pL ` 1qs˚ logp2BNq `

s˚

2 log logp3BNq `
s˚

2 log
´ n

s˚
p2

¯

ďpC0 ` 3qnr˚
n ` pL ` 1qs˚ logN ` s˚ log

´

p

c

n

s˚

¯

ďC1nr
˚
n, for sufficiently large n,

where C0 and C1 are some fixed constants. The first inequality is due to Lemma  4.7.1 and

the second inequality is due to Condition 4.4.

Furthermore, by Appendix G of  Chérief-Abdellatif 2020 , it can be shown

ż

Θ
||fθ ´ fθ˚ ||

2
8q

˚
pθqpdθq

ď8a2
n logp3BNqp2BNq

2L`2
!

pp ` 1 `
1

BN ´ 1q
2

`
1

p2BNq2 ´ 1 `
2

p2BN ´ 1q2

)

ď
s˚

n
ď r˚

n.
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Noting that

lnpP0, Pθq “
1

2σ2
ε

p||Y ´ fθpXq||
2
2 ´ ||Y ´ f0pXq||

2
2q

“
1

2σ2
ε

p||Y ´ f0pXq ` f0pXq ´ fθpXqq||
2
2 ´ ||Y ´ f0pXq||

2
2q

“
1

2σ2
ε

p||fθpXq ´ f0pXq||
2
2 ` 2xY ´ f0pXq, f0pXq ´ fθpXqyq,

Denote

R1 “

ż

Θ
||fθpXq ´ f0pXq||

2
2q

˚
pθqpdθq,

R2 “

ż

Θ
xY ´ f0pXq, f0pXq ´ fθpXqyq˚

pθqpdθq.

Since ||fθpXq ´ f0pXq||22 ď n||fθ ´ f0||28 ď n||fθ ´ fθ˚ ||28 ` n||fθ˚ ´ f0||28,

R1 ď nr˚
n ` n||fθ˚ ´ f0||

2
8.

Noting that Y ´ f0pXq “ ε „ N p0, σ2
ε Iq, then

R2 “

ż

Θ
εT

pf0pXq ´ fθpXqqq˚
pθqpdθq “ εT

ż

Θ
pf0pXq ´ fθpXqqq˚

pθqpdθq „ N p0, cfσ
2
ε q,

where cf “ ||
ş

Θpf0pXq ´ fθpXqqq˚pθqpdθq||22 ď R1 due to Cauchy-Schwarz inequality. There-

fore, R2 “ Opp
?

R1q, and w.h.p., R2 ď C 1
0R1, where C 1

0 is some positive constant if

limnpr˚
n ` ξ˚

nq “ 8 or C 1
0 is any diverging sequence if lim supnpr˚

n ` ξ˚
nq ‰ 8. Therefore,

ż

Θ
lnpP0, Pθqq˚

pθqpdθq “ R1{2σ2
ε ` R2{σ2

ε ďp2C 1
0 ` 1qnpr˚

n ` ||fθ˚ ´ f0||
2
8q{2σ2

ε

ďC 1
1pnr˚

n ` ||fθ˚ ´ f0||
2
8qq, w.h.p.,

which concludes this lemma together with ( 4.8 ).
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4.7.2 Proof of Lemma 4.2

Under Condition 4.1 - 4.2, we have the following lemma that shows the existence of testing

functions over Θn “ ΘpL,p, snq, where ΘpL,p, snq denotes the set of parameter whose L0

norm is bounded by sn.

Lemma 4.7.2 Let ε˚
n “ Mn´1{2

b

pL ` 1qs˚ logN ` s˚ logpp
a

n{s˚q logδ
pnq for any δ ą 1

and some large constant M. Let sn “ s˚ log2δ´1 n. Then there exists some testing function

φ P r0, 1s and C1 ą 0, C2 ą 1{3, such that

EP0pφq ď expt´C1nε
˚2
n u,

sup
PθPFpL,p,snq

dpPθ,P0qąε˚
n

EPθ
p1 ´ φq ď expt´C2nd

2
pP0, Pθqu.

Proof 14 Due to the well-known result (e.g.,  Le Cam 1986  , page 491 or  Ghosal and Van

Der Vaart 2007 , Lemma 2), there always exists a function ψ P r0, 1s, such that

EP0pψq ď expt´nd2
pPθ1 , P0q{2u,

EPθ
p1 ´ ψq ď expt´nd2

pPθ1 , P0q{2u,

for all Pθ P FpL,p, snq satisfying that dpPθ, Pθ1q ď dpP0, Pθ1q{18.

Let K “ Npε˚
n{19,FpL,p, snq, dp¨, ¨qq denote the covering number of set FpL,p, snq, i.e.,

there exists K Hellinger-balls with radius ε˚
n{19, that completely cover FpL,p, snq. For any

θ P FpL,p, snq (W.O.L.G, we assume Pθ belongs to the kth Hellinger ball centered at Pθk
),

if dpPθ, P0q ą ε˚
n, then we must have that dpP0, Pθk

q ą p18{19qε˚
n and there exists a testing

function ψk, such that

EP0pψkq ď expt´nd2
pPθk

, P0q{2u

ď expt´p182
{192

{2qnε˚2
n u,

EPθ
p1 ´ ψkq ď expt´nd2

pPθk
, P0q{2u

ď expt´npdpP0, Pθq ´ ε˚
n{19q

2
{2u

ď expt´p182
{192

{2qnd2
pP0, Pθqu.
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Now we define φ “ maxk“1,...,K ψ. Thus we must have

EP0pφq ď
ÿ

k

EP0pψkq ď K expt´p182
{192

{2qnε˚2
n u

ď expt´p182
{192

{2qnε˚2
n ´ logKu.

Note that

logK “ logNpε˚
n{19,FpL,p, snq, dp¨, ¨qq

ď logNp
?

8σεε
˚
n{19,FpL,p, snq, } ¨ }8q

ď psn ` 1q logp
38

?
8σεε˚

n

pL ` 1qpN ` 1q
2pL`1q

q

ď C0psn log 1
ε˚

n

` sn logpL ` 1q ` snpL ` 1q logNq

ď snpL ` 1q log n logN ď s˚
pL ` 1q logN log2δ n

ď nε˚2
n {4, for sufficiently large n, (4.11)

where C0 is some positive constant, the first inequality is due to the fact

d2
pPθ, P0q ď 1 ´ expt´

1
8σ2

ε

||f0 ´ fθ||
2
8u

and ε˚
n “ op1q, the second inequality is due to Lemma 10 of  Schmidt-Hieber 2017   

1
 , and the

last inequality is due to sn logp1{ε˚
nq — sn log n. Therefore,

EP0pφq ď
ÿ

k

P0pψkq ď expt´C1nε
˚2
n u,

for some C1 “ 182{192{2 ´ 1{4. On the other hand, for any θ, such that dpPθ, P0q ě ε˚
n, say

Pθ belongs to the kth Hellinger ball, then we have

EPθ
p1 ´ φq ď EPθ

p1 ´ ψkq ď expt´C2nd
2
pP0, Pθqu,

1Although  Schmidt-Hieber 2017  only focuses on ReLU network, its Lemma 10 could apply to any 1-Lipchitz
continuous activation function.
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where C2 “ 182{192{2. Hence we conclude the proof.

Lemma  4.7.3 restates the Donsker and Varadhan’s representation for the KL divergence,

whose proof can be found in  Boucheron et al. 2013 .

Lemma 4.7.3 For any probability measure µ and any measurable function h with eh P L1pµq,

log
ż

ehpηqµpdηq “ sup
ρ

„
ż

hpηqρpdηq ´ KLpρ||µq



.

We are now ready to prove Lemma 4.2

Proof 15 Denote Θn as the truncated parameter space tθ :
řT

i“1 1pθi ‰ 0q ď snu, where sn

is defined in Lemma  4.7.2 . Noting that

ż

θPΘ
d2

pPθ, P0qpqpθqdθ “

ż

θPΘn

d2
pPθ, P0qpqpθqdθ `

ż

θPΘc
n

d2
pPθ, P0qpqpθqdθ, (4.12)

it suffices to find upper bounds of the two components in RHS of ( 4.12 ).

We start with the first component. Denote rπpθq to be the truncated prior πpθq on set

Θn, i.e., rπpθq “ πpθq1pθ P Θnq{πpΘnq, then by Lemma  4.7.2 and the same argument used in

Theorem 3.1 of  Pati et al. 2018 , it could be shown

ż

Θn

ηpPθ, P0qrπpθqdθ ď eC0nε˚2
n ,w.h.p. (4.13)

for some C0 ą 0, where log ηpPθ, P0q “ lnpPθ, P0q ` n
3d

2pPθ, P0q. We further denote the pqpθq

restricted on Θn as qqpθq, i.e., qqpθq “ pqpθq1pθ P Θnq{pqpΘnq, then by Lemma  4.7.3 and (  4.13 ),

w.h.p.,

n

3pqpΘnq

ż

Θn

d2
pPθ, P0qpqpθqdθ “

n

3

ż

Θn

d2
pPθ, P0qqqpθqdθ

ďCnε˚2
n ` KLpqqpθq||rπpθqq ´

ż

Θn

lnpPθ, P0qqqpθqdθ.

(4.14)
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Furthermore,

KLpqqpθq||rπpθqq “
1

pqpΘnq

ż

θPΘn

log pqpθq

πpθq
pqpθqdθ ` log πpΘnq

pqpΘnq

“
1

pqpΘnq
KLppqpθq||πpθqq ´

1
pqpΘnq

ż

θPΘc
n

log pqpθq

πpθq
pqpθqdθ ` log πpΘnq

pqpΘnq
,

and similarly,

ż

Θn

lnpPθ, P0qqqpθqdθ “
1

pqpΘnq

ż

Θ
lnpPθ, P0qpqpθqdθ ´

1
pqpΘnq

ż

Θc
n

lnpPθ, P0qpqpθqdθ.

Combining the above two equations together, we have

n

3pqpΘnq

ż

Θn

d2
pPθ, P0qpqpθqdθ ď Cnε˚2

n ` KLpqqpθq||rπpθqq ´

ż

Θn

lnpPθ, P0qqqpθqdθ

“Cnε˚2
n `

1
pqpΘnq

ˆ

KLppqpθq||πpθqq ´

ż

Θ
lnpPθ, P0qpqpθqdθ

˙

´
1

pqpΘnq

ˆ
ż

Θc
n

log pqpθq

πpθq
pqpθqdθ ´

ż

Θc
n

lnpPθ, P0qpqpθqdθ

˙

` log πpΘnq

pqpΘnq
.

(4.15)

The second component of ( 4.12 ) trivially satisfies that
ş

θPΘc
n
d2pPθ, P0qpqpθqdθ ď

ş

θPΘc
n

pqpθqdθ

“ pqpΘc
nq. Thus, together with (  4.15 ), we have that w.h.p.,

ż

d2
pPθ, P0qpqpθqdθ ď 3pqpΘnqCε˚2

n `
3
n

ˆ

KLppqpθq||πpθqq ´

ż

Θ
lnpPθ, P0qpqpθqdθ

˙

`
3
n

ż

Θc
n

lnpPθ, P0qpqpθqdθ `
3
n

ż

Θc
n

log πpθq

pqpθq
pqpθqdθ `

3pqpΘnq

n
log πpΘnq

pqpΘnq
` pqpΘc

nq.

(4.16)

The second term in the RHS of ( 4.16 ) is bounded by C 1pr˚
n `ξ˚

nq w.h.p., due to Lemma 4.1,

where C 1 is either positive constant or diverging sequence depending on whether npr˚
n ` ξ˚

nq

diverges.
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The third term in the RHS of ( 4.16 ) is bounded by

3
n

ż

Θc
n

lnpPθ, P0qpqpθqdθ

“
3

2nσ2
ε

ż

Θc
n

«

n
ÿ

i“1
ε2

i ´

n
ÿ

i“1
pεi ` f0pXiq ´ fθpXiqq

2

ff

pqpθqdθ

“
3

2nσ2
ε

ż

Θc
n

«

´2
n

ÿ

i“1
pεi ˆ pf0pXiq ´ fθpXiqq ´

n
ÿ

i“1
pf0pXiq ´ fθpXiqq

2

ff

pqpθqdθ

“
3

2nσ2
ε

#

´2
n

ÿ

i“1
εi

ż

Θc
n

pf0pXiq ´ fθpXiqqpqpθqdθ ´

ż

Θc
n

n
ÿ

i“1
pf0pXiq ´ fθpXiqq

2
pqpθqdθ

+

.

Conditional on Xi’s, ´2
řn

i“1 εi
ş

Θc
n
pf0pXiq ´ fθpXiqqpqpθqdθ follows a normal distribution

N p0, V 2q, where V 2 “ 4σ2
ε

řn
i“1p

ş

Θc
n
pf0pXiq´fθpXiqqpqpθqdθq2 ď 4σ2

ε

ş

Θc
n

řn
i“1pf0pXiq´fθpXiqq2

pqpθqdθ. Thus conditional on Xi’s, the third term in the RHS of ( 4.16 ) is bounded by

3
2nσ2

ε

„

N p0, V 2
q ´

V 2

4σ2
ε



. (4.17)

Noting that N p0, V 2q “ OppMnV q for any diverging sequence Mn, (  4.17 ) is further bounded,

w.h.p., by
3

2nσ2
ε

pMnV ´
V 2

4σ2
ε

q ď
3

2nσ2
ε

σ2
εM

2
n.

Therefore, the third term in the RHS of ( 4.16 ) can be bounded by ε˚2
n w.h.p. (by choosing

M2
n “ nε˚2

n ).

The fourth term in the RHS of ( 4.16 ) is bounded by

3
n

ż

Θc
n

log πpθq

pqpθq
pqpθqdθ ď

3
n

pqpΘc
nq log πpΘc

nq

pqpΘc
nq

ď
3
n

sup
xPp0,1q

rx logp1{xqs “ Op1{nq.

Similarly, the fifth term in the RHS of ( 4.16 ) is bounded by Op1{nq.

For the last term in the RHS of ( 4.16 ), by Lemma  4.7.5 in below, w.h.p., pqpΘc
nq ď ε˚2

n .

Combine all the above result together, w.h.p.,

ż

d2
pPθ, P0qpqpθqdθ ď Cε˚2

n `
3
n

ˆ

KLppqpθq||πpθqq ´

ż

Θ
lnpPθ, P0qpqpθqdθ

˙

` Op1{nq,
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where C is some constant.

Lemma 4.7.4 (Chernoff bound for Poisson tail) Let X „ poipλq be a Poisson random

variable. For any x ą λ,

P pX ě xq ď
peλqxe´λ

xx
.

Lemma 4.7.5 If λ ď T´1 expt´Mnr˚
n{snu for any positive diverging sequence M Ñ 8, then

w.h.p., pqpΘc
nq “ Opε˚2

n q.

Proof 16 By Lemma 4.1, we have that w.h.p.,

KLppqpθq||πpθ|λqq `

ż

Θ
lnpP0, Pθqpqpθqdθ “ inf

qθPQ

!

KLpqpθq||πpθ|λqq `

ż

Θ
lnpP0, Pθqqpθqpdθq

)

ďCnr˚
n pNote that r˚

n — ξ˚
nq

where C is either a constant or any diverging sequence, depending on whether nr˚
n diverges.

By the similar argument used in the proof of Lemma 4.1,

ż

Θ
lnpP0, Pθqpqpθqdθ ď

1
2σ2

ε

ˆ
ż

Θ
||fθpXq ´ f0pXq||

2
2pqpθqpdθq ` Z

˙

where Z is a normal distributed N p0, σ2
ε c0q, where c0 ď c0 “

ş

Θ ||fθpXq ´ f0pXq||22pqpθqpdθq.

Therefore, ´
ş

Θ lnpP0, Pθqpqpθqdθ “ p1{2σ2
ε qr´c0 ` Opp

?
c0qs, and KLppqpθq||πpθ|λqq ď Cnr˚

n `

p1{2σ2
ε qr´c0 `Opp

?
c0qs. Since Cnr˚

n Ñ 8, we must have w.h.p., KLppqpθq||πpθ|λqq ď Cnr˚
n{2.

On the other hand,

KLppqpθq||πpθ|λqq “

T
ÿ

i“1
KLppqpθiq||πpθi|λqq ě

T
ÿ

i“1
KLppqpγiq||πpγi|λqq

“

T
ÿ

i“1

„

pqpγi “ 1q log pqpγi “ 1q

λ
` pqpγi “ 0q log pqpγi “ 0q

1 ´ λ



.

(4.18)

Let us choose λ0 “ 1{T , and A “ ti : pqpγi “ 1q ě λ0u, then the above inequality ( 4.18 )

implies that
ř

iPA pqpγi “ 1q logpλ0{λq ď Cnr˚
n{2. Noting that λ ď T´1 expt´Mnr˚

n{snu, it

further implies
ř

iPA pqpγi “ 1q ď sn{M ă sn.
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Under distribution pq, by Bernstein inequality,

Prp
ÿ

iPA

γi ě 2sn{3q ď Prp
ÿ

iPA

γi ě sn{2 `
ÿ

iPA

Epγiqq ď exp
ˆ

´
s2

n{8
ř

iPA Erγ2
i s ` sn{6

˙

“ exp
ˆ

´
s2

n{8
ř

iPA pqpγi “ 1q ` sn{6

˙

ď exp p´csnq “ Opε˚2
n q

for some constant c ą 0, where the last inequality holds since logp1{ε˚2
n q “ Oplog nq ă sn.

Under distribution pq,
ř

iRA γi is stochastically smaller than BinpT, λ0q. Since T Ñ 8,

then by Lemma  4.7.4 ,

Prp
ÿ

iRA

γi ě sn{3q ď PrpBinpT, λ0q ě sn{3q Ñ Prppoip1q ě sn{3q

“Opexpt´C 1snuq “ Opε˚2
n q

for some C 1 ą 0. Trivially, it implies that w.h.p, Prp
ř

i γi ě snq “ Opε˚2
n q for VB posterior pq.

4.7.3 Main theorem

Theorem 4.7.1 Under Conditions 4.1-4.2, 4.4 and set ´ log λ “ logpT q ` δrpL` 1q logN `

log
?
nps for any constant δ ą 0, we then have that w.h.p.,

ż

Θ
d2

pPθ, P0qpqpθqdθ ď Cε˚2
n ` C 1

pr˚
n ` ξ˚

nq,

where C is some positive constant and C 1 is any diverging sequence. If }f0}8 ă F , and we

truncated the VB posterior on ΘF “ tθ : }fθ}8 ď F u, i.e., pqF 9pq1pθ P ΘF q, then, w.h.p.,

ż

ΘF

EX |fθpXq ´ f0pXq|
2
pqF pθqdθ ď

Cε˚2
n ` C 1pr˚

n ` ξ˚
nq

CF pqpΘF q

where CF “ r1 ´ expp´4F 2{8σ2
ε qs{4F 2, and pqpΘF q is the VB posterior mass of ΘF .

Proof 17 The convergence under squared Hellinger distance is directly result of Lemma 4.1

and 4.2, by simply checking the choice of λ satisfies required conditions. The convergence
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under L2 distance relies on inequality d2pPθ, P0q ě CFEX |fθpXq ´ f0pXq|2 for CF “ r1 ´

expp´4F 2{8σ2
ε qs{4F 2 when both fθ and f0 are bounded by F . Then, w.h.p,

ż

ΘF

EX |fθpXq ´ f0pXq|
2
pqF pθqdθ ď C´1

F

ż

ΘF

d2
pPθ, P0qpqF pθqdθ

ď
1

CF pqpΘF q

ż

Θ
d2

pPθ, P0qpqpθqdθ ď
Cε˚2

n ` C 1pr˚
n ` ξ˚

nq

CF pqpΘF q
.

4.8 Additional experimental results

4.8.1 Algorithm implementation details for the numerical experiments

Initialization As mentioned by  Sønderby et al. 2016  and  Molchanov et al. 2017  , training

sparse BNN with random initialization may lead to bad performance, since many of the

weights could be pruned too early. In our case, we assign each of the weights and biases a

inclusion variable, which could reduce to zero quickly in the early optimization stage if we

randomly initialize them. As a consequence, we deliberately initialize φi to be close to 1 in our

experiments. This initialization strategy ensures the training starts from a fully connected

neural network, which is similar to start training from a pre-trained fully connected network

as mentioned in  ibid. The other two parameters µi and σi are initialized randomly.

Other implementation details in simulation studies We setK “ 1 and learning rate

“ 5 ˆ 10´3 during training. For Simulation I, we choose batch size m “ 1024 and m “ 128

for (A) and (B) respectively, and run 10000 epochs for both cases. For simulation II, we

use m “ 512 and run 7000 epochs. Although it is common to set up an annealing schedule

for temperature parameter τ , we don’t observe any significant performance improvement

compared to setting τ as a constant, therefore we choose τ “ 0.5 in all of our experiments.

The optimization method used is Adam.

The implementation details for UCI datasets and MNIST can be found in Section  4.8.3 

and  4.8.4 respectively.

104



4.8.2 Teacher student networks

The network parameter θ for the sparse teacher network setting (B) is set as following:

W “ tW1,11 “ W1,12 “ W2,11 “ W2,12 “ 2.5,W1,21 “ W1,22 “ W2,21 “ W2,22 “ 1.5,W3,11 “

3 and W3,21 “ 2u; b “ tb1,1 “ b2,1 “ b3,1 “ 1 and b1,2 “ b2,2 “ ´1u.

Figure  4.4 displays the simulation result for simulation I under dense teacher network

(A) setting. Unlike the result under sparse teacher network (B), the testing accuracy seems

monotonically increases as λ increases (i.e., posterior network gets denser). However, as

shown, the increasing of testing performance is rather slow, which indicates that introducing

sparsity has few negative impact to the testing accuracy.

(a) λ ď λopt. (b) λ ě λopt. (c) Dense teacher network.

Figure 4.4. (a) λ “ t10´200, 10´150, 10´100, 10´50, 10´20, 10´5, λoptu. (b) λ “

tλopt, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99u. (c) The structure of the target dense teacher
network.

Coverage rate In this paragraph, we explain the details of how we compute the coverage

rate values of Bayesian intervals reported in the main text. A fixed point px
p˚q

1 , . . . , xp˚q
p q

is prespecified, and let xp1q, . . . , xp1000q be 1000 equidistant points from ´1 to 1. In each

run, we compute the Bayesian credible intervals of response means (estimated by 600 Monte

Carlo samples) for 1000 different input x’s: pxp1q, x
p˚q

2 , . . . , xp˚q
p q, . . . , pxp1000q, x

p˚q

2 , . . . , xp˚q
p q. It

is repeated by 60 times and the average coverage rate (over all different x’s and 60 runs)

is reported. Similarly, we replace xp˚q

2 (or xp˚q

3 ) by xpiq (i “ 1, . . . , 1000), and compute their
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average coverage rate. The complete coverage rate results are shown in Table  4.3 . Note that

Table 1 in the main text shows 95% coverage of x3 for (A) and 95% coverage of x1 for (B).

Table 4.3. Coverage rates for teacher networks.
90 % coverage (%) 95% coverage (%)

Method x1 x2 x3 x1 x2 x3

D
en

se

SVBNN 93.8 ˘ 2.84 93.1 ˘ 4.93 93.1 ˘ 2.96 97.9 ˘ 1.01 97.9 ˘ 1.69 97.5 ˘ 1.71
VBNN 85.8 ˘ 2.51 82.4 ˘ 2.62 86.3 ˘ 1.88 92.7 ˘ 2.83 91.3 ˘ 2.61 91.4 ˘ 2.43
VD 61.3 ˘ 2.40 60.0 ˘ 2.79 64.9 ˘ 6.17 74.9 ˘ 1.79 71.8 ˘ 2.33 76.4 ˘ 4.75
HS-BNN 83.1 ˘ 1.67 80.0 ˘ 1.21 76.9 ˘ 1.70 88.1 ˘ 1.13 84.1 ˘ 1.48 83.5 ˘ 0.78

Sp
ar

se

SVBNN 92.3 ˘ 8.61 94.6 ˘ 5.37 98.3 ˘ 0.00 96.4 ˘ 4.73 97.7 ˘ 3.71 100 ˘ 0.00
VBNN 86.7 ˘ 10.9 87.0 ˘ 11.3 93.3 ˘ 0.00 90.7 ˘ 8.15 91.9 ˘ 9.21 96.7 ˘ 0.00
VD 65.2 ˘ 0.08 63.7 ˘ 6.58 65.9 ˘ 0.83 75.5 ˘ 7.81 74.6 ˘ 7.79 76.6 ˘ 0.40
HS-BNN 59.0 ˘ 8.52 59.4 ˘ 4.38 56.6 ˘ 2.06 67.0 ˘ 8.54 68.2 ˘ 3.62 66.5 ˘ 1.86

4.8.3 Real data regression experiment: UCI datasets

We follow the experimental protocols of  Hernández-Lobato et al. 2015 , and choose five

datasets for the experiment. For the small datasets ”Kin8nm”, ”Naval”, ”Power Plant” and

”wine”, we choose a single-hidden-layer ReLU network with 50 hidden units. We randomly

select 90% and 10% for training and testing respectively, and this random split process is

repeated for 20 times (to obtain standard deviations for our results). We choose minibatch

size m “ 128, learning rate “ 10´3 and run 500 epochs for ”Naval”, ”Power Plant” and

”Wine”, 800 epochs for ”Kin8nm”. For the large dataset ”Year”, we use a single-hidden-layer

ReLU network with 100 hidden units, and the evaluation is conducted on a single split. We

choose m “ 256, learning rate “ 10´3 and run 100 epochs. For all the five datasets, λ is

chosen as λopt: logpλ´1
optq “ logpT q ` 0.1rpL ` 1q logN ` log

?
nps, which is the same as other

numerical studies. We let σ2
0 “ 2 and use grid search to find σε that yields the best prediction

accuracy. Adam is used for all the datasets in the experiment.

We report the testing squared root MSE (RMSE) based on pfH (defined in the main text)

with H “ 30, and also report the posterior network sparsity ps “
řT

i“1 φi{T . For the purpose

of comparison, we list the results by Horseshoe BNN (HS-BNN) (  Ghosh and Doshi-Velez

2017 ) and probalistic backpropagation (PBP) (  Hernández-Lobato et al. 2015  ). Table  4.4 
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demonstrates that our method achieves best prediction accuracy for all the datasets with a

sparse structure.

Table 4.4. Results on UCI regression datasets.
Test RMSE Posterior sparsity(%)

Dataset nppq SVBNN HS-BNN PBP SVBNN

Kin8nm 8192 (8) 0.08 ˘ 0.00 0.08 ˘ 0.00 0.10 ˘ 0.00 64.5 ˘ 1.85
Naval 11934 (16) 0.00 ˘ 0.00 0.00 ˘ 0.00 0.01 ˘ 0.00 82.9 ˘ 1.31
Power Plant 9568 (4) 4.01 ˘ 0.18 4.03 ˘ 0.15 4.12 ˘ 0.03 56.6 ˘ 3.13
Wine 1599 (11) 0.62 ˘ 0.04 0.63 ˘ 0.04 0.64 ˘ 0.01 59.9 ˘ 4.92
Year 515345 (90) 8.87 ˘ NA 9.26 ˘ NA 8.88 ˘ NA 20.8 ˘ NA

4.8.4 Real data classification experiment: MNIST dataset

The MNIST data is normalized by mean equaling 0.1306 and standard deviation equaling

0.3081. For all methods, we choose the same minibatch size m “ 256, learning rate “ 5ˆ10´3

for our method and 3ˆ10´3 for the others, total number of epochs is 400 and the optimization

algorithm is RMSprop. AGP is pre-specified at 5% sparsity level.

Besides the testing accuracy reported in the main text, we also examine our method’s

ability of uncertainty quantification for MNIST classification task. We first create ambiguous

images by overlaying two examples from the testing set as shown in Figure  4.5 (a). To

perform uncertainty quantification using our method, for each of the overlaid images, we

generate θh from the VB posterior pqpθq for h “ 1, . . . , 100, and calculate the associated

predictive probability vector fθh
pxq P R10 where x is the overlaid image input, and then use

the estimated posterior mean pfpxq “
ř100

h“1 fθh
pxq{100 as the Bayesian predictive probability

vector. As a comparison, we also calculate the predictive probability vector for each overlaid

image using AGP as a frequentist benchmark. Figure  4.5 (b) shows frequentist method gives

almost a deterministic answer (i.e., predictive probability is almost 1 for certain digit) that is

obviously unsatisfactory for this task, while our VB method is capable of providing knowledge

of certainty on these out-of-domain inputs, which demonstrates the advantage of Bayesian

method in uncertainty quantification on the classification task.
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(a) Overlaid images (on the last column) (b) Predictive distribution for overlaid images

Figure 4.5. Top row of (b) exhibits the predictive distribution for the top
overlaid image, which is made by 5 and 6; Middle row of (b) exhibits the
predictive distribution for the middle overlaid image, which is made by 2 and 3;
Bottom row of (b) exhibits the predictive distribution for the bottom overlaid
image, which is made by 2 and 7.

4.8.5 Illustration of CNN: Fashion-MNIST dataset

In this section, we perform an experiment on a more complex task, the Fashion-MNIST

dataset. To illustrate the usage of our method beyond feedforward networks, we consider

using a 2-Conv-2-FC network: The feature maps for the convolutional layers are set to be

32 and 64, and the filter size are 5 ˆ 5 and 3 ˆ 3 respectively. The paddings are 2 for both

layers and the it has a 2 ˆ 2 max pooling for each of the layers; The fully-connected layers

have 64 ˆ 8 ˆ 8 neurons. The activation functions are all ReLUs. The dataset is prepocessed

by random horizontal flip. The batchsize is 1024, learning rate is 0.001, and Adam is used

for optimization. We run the experiment for 150 epochs.

We use both SVBNN and VBNN for this task. In particular, the VBNN, which uses

normal prior and variational distributions, is the full Bayesian method without compressing,

and can be regarded as the baseline for our method. Figure  4.6 exhibits our method attains
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(a) Accuracy. (b) Sparsity.

Figure 4.6. Fashion-MNIST experiment.

higher accuracy as epoch increases and then decreases as the sparisty goes down. Meanwhile,

the baseline method - full BNN suffers from overfitting after 80 epochs.
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5. SUMMARY

We apply variance inference as a computational efficient alternative to high dimensional linear

regression and sparse deep learning, respectively. For both problems, we are able to provide

the theoretical guarantees as well as efficient algorithms.

Possible future directions are (1) to explore efficient implementation other than black-

box variational inference for other heavy tail shrinkage priors besides the Student-t under

the high dimensional regression setting, and attempt to provide theoretical guarantee for

variable selection; (2) to extend the current results on Bayesian sparse deep learning to

more complicated networks (convolutional neural network, residual network, etc.) both

theoretically and computationally as mentioned in Section  4.6 . Furthermore, proposing a

theoretical framework regarding uncertainty quantification for sparse Bayesian neural network

is also a challenging but promising topic.
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A. APPENDIX TO CHAPTER  2 

A.1 Comparison of Minimizing Joint KL and Marginal KL

Our presented theory investigates the asymptotics of the variational Bayes distribution

that minimizes the marginal KL divergence of β. In such case, the negative ELBO is

rΩ “ ´

ż

log ppY |βqqpβqdβ ` KLpqpβq}πpβqq, (A.1)

where for j “ 1, . . . , pn,

πpβjq “
1

?
ν0s0

´

1 ` ν´1
0

´βj

s0

¯2¯´
ν0`1

2
, and qpβjq “

1
?
νs

´

1 ` pνq
´1

´βj ´ rµj

sj

¯2¯´
ν`1

2
,

with s0 “
a

bn{a0, ν0 “ 2a0, s “
a

bj{aj and ν “ 2aj. However KLpqpβq}πpβqq has no

analytical expression, and the optimization of (  A.1 ) will then require Monte Carlo estimation

and gradient descent type algorithms.

Therefore, for the simplicity of the computation, the ELBO optimization algorithm

described in Section  2.4 targets to minimize the joint KL divergence of pβ,λq rather than

the marginal KL divergence of β. In other words, there is a gap between our computational

algorithm and our theory.

To justify that our implemented procedure (i.e., minimizing the joint KL divergence of

pβ,λq) is a close approximation of the variational procedure studied by our theory (i.e.,

minimizing the marginal KL divergence of pβq), We compare the two procedures via a toy

example. Specifically, we would like to compare variational posterior means µ (by minimizing

( 2.4 )) and rµ (by minimizing ( A.1 )). Consider a linear model with n “ 100, pn “ 100 and

β0
“ p10, 10, 10, 10, 10, 0, . . . , 0qT . Suppose σ is known and equals 1. For both two procedures,

we choose a0 “ 2 and bn{a0 “ logppnq{rnp2`1{a0
n p6{a0

n s. We use Lasso estimator for both the

initial value of µ and rµ, and Adam (  Kingma and Ba 2015  ) is used for minimizing (  A.1 ) with

the learning rate being 0.001.

We run the experiment for 100 times, and the means and standard deviations of the

mean squared error (MSE) p
řK

k“1pµk ´ rµkq2{Kq for both the nonzero entries βξ0 and zero
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entries βpξ0qc are reported: For βξ0 , the MSE is 0.0108 ˘ 0.0038; For βpξ0qc , the MSE is

0.0006 ˘ 0.0008.

This toy example shows there is little estimation difference in minimizing (  2.4 ) or ( A.1 ),

and thus in practice the Algorithm 1 in the main text is preferred due to its simple form of

coordinate descent update.
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B. APPENDIX TO CHAPTER  3 

B.1 Toy Example: Linear Regression

In this section, we aim to demonstrate that there is little difference between the results

using inverse-CDF reparameterization and Gumbel-softmax approximation via a toy example.

Consider a linear regression model:

Yi “ XT
i β ` εi, εi „ N p0, 1q, i “ 1, . . . , n,

We simulate a dataset with 1000 observations and 200 predictors, where β50 “ β100 “

β150 “ 10, β75 “ β125 “ ´10 and βj “ 0 for all other j.

A spike-and-slab prior is imposed on β such that

βj|γj „ γjN p0, σ2
0q ` p1 ´ γjqδ0, γj „ Bernpλq,

for j “ 1, . . . , 200, where σ0 “ 5 and λ “ 0.03. The variational distribution qpβqQ is chosen

as

βj|γj „ γjN pµj, σ
2
j q ` p1 ´ γjqδ0, γj „ Bernpφjq.

We use both Gumbel-softmax approximation and inverse-CDF reparameterization for the

stochastic optimization of ELBO, and plot posterior mean E
pqpβqpβj|γjq (blue curve) against the

true value (red curve). Figure  B.1 shows that inverse-CDF reparameterization exhibits only

slightly higher error in estimating zero coefficients than the Gumbel-softmax approximation,

which indicates the two methods has little difference on this toy example.
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(a) Gumbel-softmax reparametrization (b) Inverse-CDF reparametrization

Figure B.1. Linear regression
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