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ABSTRACT

Variational inference (VI) or Variational Bayes (VB) is a popular alternative to MCMC,
which doesn’t scale well on complex Bayesian learning tasks with large datasets. Despite
its huge empirical successes, the statistical properties of VI have not been carefully studied
only until recently. In this dissertation, we are concerned with both the implementation and
theoretical guarantee of VI.

In the first part of this dissertation, we propose a VI procedure for high-dimensional linear
model inferences with heavy tail shrinkage priors, such as student-t prior. Theoretically, we
establish the consistency of the proposed VI method and prove that under the proper choice
of prior specifications, the contraction rate of the VB posterior is nearly optimal. It justifies
the validity of VB inference as an alternative of MCMC sampling. Meanwhile, comparing to
conventional MCMC methods, the VI procedure achieves much higher computational efficiency;,
which greatly alleviates the computing burden for modern machine learning applications such
as massive data analysis. Through numerical studies, we demonstrate that the proposed
VI method leads to shorter computing time, higher estimation accuracy, and lower variable
selection error than competitive sparse Bayesian methods.

In the second part of this dissertation, we focus on sparse deep learning, which aims
to address the challenge of huge storage consumption by deep neural networks, and to
recover the sparse structure of target functions. We train sparse deep neural networks
with a fully Bayesian treatment under two classes spike-and-slab priors, and develop sets
of computationally efficient variational inferences via continuous relaxation of Bernoulli
distribution. Given a pre-specified sparse DNN structure, the corresponding variational
contraction rate is characterized that reveals a trade-off between the statistical estimation
error, the variational error, and the approximation error, which are all determined by the
network structural complexity (i.e., depth, width and sparsity). Note that the optimal network
structure, which strikes the balance of the aforementioned trade-off and yields the best rate,
is generally unknown. However, our methods could always achieve the best contraction
rate as if the optimal network structure is known. In particular, when the true function is

Holder smooth, the variational inferences are capable to attain nearly minimax rate without

12



the knowledge of smoothness level. In addition, our empirical results demonstrate that the
variational procedures provide uncertainty quantification in terms of Bayesian predictive
distribution and are also capable to accomplish consistent variable selection by training a

sparse multi-layer neural network.
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1. INTRODUCTION

1.1 Variational Inference

Variational Inference (VI) or Variational Bayes (VB) (Jordan et al. 1999; Bishop 2006;
Blei, Kucukelbir, et al. 2017) is an alternative to Markov Chain Monte Carlo (MCMC) for
Bayesian learning. It approximates the true posterior distribution by a simpler family of
distributions through an optimization problem.

Bayesian procedure makes statistical inferences from the posterior distribution w(6|D)oc
7(0)pe(D), where m(0) is the prior distribution for 6, and pe(D) is the likelihood given 6
and the dataset D. In the framework of variational inference, one seeks to find a good
approximation of the posterior m(6|D) via optimization rather than to simulate the posterior
distribution by long-run MCMC. Given a variational family of distributions, denoted by Q,
the goal is to minimize the KL divergence between distributions in @ and true posterior
distribution:

a(6) = arg min KL(q(6)|n(6]D)) (1)

and the variational posterior q(f) is subsequently used for approximated inference.
Unfortunately the optimization problem (1.1) is intractable, but we note that KL(q(8)|m(0|D))

= (C + Q, where C' is some constant depending on data D only, and

po(D)(0)

Q:=—FE,@llo

|

is the so-called negative Evidence Lower Bound (ELBO). Then an equivalent optimization to
(1.1) is

() = in 0 1.2
q(0) = arg Juin 0, (1.2)

which is usually conducted via gradient descent type algorithms.

An inspiring representation of €2 is

Q= —Eqe[log po(D)] + KL(q(0)|(0)), (1.3)

14



where the first term in (1.3) can be viewed as the reconstruction error Kingma and Welling
2014 and the second term serves as regularization. Hence the variational inference procedure
tends to be minimizing the reconstruction error while being penalized against prior distribution
in the sense of KL divergence.

Alternative divergences Besides the KL divergence used in (1.1), some alternative
divergences have also been considered: Minka 2001 proposed expectation propagation based
on reciprocal KL divergence; Li et al. 2016; Jaiswal et al. 2019 investigated Rényi divergence,
Dieng et al. 2017 considered x? divergence. Those alternative variational inference may lead
to better approximation, but could also cause difficulties in optimization or bring additional
hyperparameters to tune. In this dissertation, we will stick to the KL-based variational

inference.

1.1.1 Mean-field variational inference

For simplicity, it is commonly assumed that Q belongs to the mean-field family, i.e.

q(0) = H q(0s).

T
i=1
Although conceptually simple and computationally convenient, the major drawback of mean-
field variational interence is its inability to capture the covariance structure of the true
posterior distribution. Specifically, it turns to underestimate the marginal posterior variance,
which has long been observed in literature (Wang and Titterington 2004; Bishop 2006; Li
et al. 2016; Wang and Blei 2019). Some attempts to correct the variance could be found in
Giordano et al. 2015; 2018; Westling et al. 2019. Alternatively, beyond mean-field family, one
could consider a structured variational family (Ranganath, Tran, ct al. 2016) or use copula

to model dependence (Tran et al. 2015). Since our primary goal is efficient point estimation,

we will only consider the mean-field variational inference in the rest of this dissertation.
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1.1.2 Stochastic optimization

Beyond the closed form coordinate ascent/descent update for variational inference with
conditionally conjugate exponential families (Blei, Kucukelbir, et al. 2017), stochastic opti-
mization has been widely used due to its flexibility with the choice of variational family and
capability of handling large datasets. Hoffman et al. 2013 proposed traditional stochastic
variational inference limited to conditionally conjugate models; Blei, Jordan, et al. 2012
introduced naive stochastic gradient estimator combined with a control variate approach to
reduce the variance; Ranganath, Gerrish, ¢t al. 2013 expressed the gradient as an expectation
and then applied stochastic gradient descent with variance reduction.

More importantly, with the emergence of the reparameterization trick, stochastic varia-
tional inference is proposed for complex and deep generative models (Kingma and Welling
2014; Rezende et al. 2014), which paved the way for variational inference in deep learning. It
is worth noting that the reparameterization trick could also help reduce Monte Carlo variance
for nontrivial reasons (Rezende et al. 2014). Specifically, when the variational family is
indexed by some hyperparameter w, i.e., any ¢ € Q can be written as ¢, (), then the negative
ELBO is a function of w as Q(w). The KL divergence term in (1.3) could usually be integrated
analytically, while the reconstruction error requires Monte Carlo estimation. Therefore, the
optimization of {2(w) can utilize the stochastic gradient approach (Kingma and Welling 2014).
To be concrete, if all distributions in Q can be reparameterized as g, < g(w,v)! for some
differentiable function g and random variable v, then the stochastic estimator of Q(w) and

its gradient are

- n 1 m K
O(w) = =o 0 2 21108 Py (D1) + KL(q. (0) |(0)).
i=1k=1 (1 4)
N n 1 m K ’
Vil (@) = =2 31> Ve log Py (D1) + VuKL(g(0)[[7(6)),
i=1 k=1

where D;’s are randomly sampled data points and 14’s are iid copies of v. Here, m and K

are minibatch size and Monte Carlo sample size, respectively.

d . e
1«2 means equivalence in distribution

16



1.1.3 Theoretical developments

Despite its huge empirical successes, the statistical properties of VI have not been carefully
studied only until recently. Early theoretical developments of variational inference centered
around specific models by analyzing the iterative updating algorithms directly: You et al.
2014; Ormerod et al. 2017 studied Bayesian linear models; Hall, Ormerod, et al. 2011; Hall,
Pham, et al. 2011 analyzed Poisson mixed-effects model; Celisse et al. 2012; Bickel et al. 2013
examined stochastic blockmodels.

Recently, some general frameworks for analyzing the theoretical properties of VI has been
proposed: Westling et al. 2019 connected the consistency of VI to M-estimation; Wang and
Blei 2019 established frequentist consistency and asymptotic normality of VB methods under
LAN condition; Alquier et al. 2017; Pati et al. 2018; Gao et al. 2020; Yang, Pati, et al. 2020
examined the general conditions for deriving the variational contraction rate. Those general
frameworks laid the foundation for our theoretical analyses under concrete models in this

dissertation.

1.2 Deep Neural Networks

Deep Neural Networks (DNNs) have achieved tremendous successes in Al fields such as
computer vision, natural language processing and reinforcement learning. One crucial factor
for the successes of DNN is that it possesses highly complex and nonlinear model architecture,
which allows it to approximate almost any complicated function Cybenko 1989; Mhasker

et al. 2017; Rolnick et al. 2018.

1.2.1 Sparse neural networks

DNN may face various problems despite its huge successes. Large and deep fully connected
networks are memory demanding (Srivastava ct al. 2014) and also slow in inference for some
real time tasks. Particularly, larger training sets and more complicated network structures
improve accuracy in deep learning, but always incur huge storage and computation burdens.
For example, small portable devices may have limited resources such as several megabyte

memory, while a dense neural networks like ResNet-50 with 50 convolutional layers would need

17



more than 95 megabytes of memory for storage and numerous floating number computation
(Cheng et al. 2018). It is therefore necessary to compress deep learning models before
deploying them on these hardware limited devices.

Meanwhile, sparse neural nets have been shown to have accurate approximation and
strong generalization power (Glorot et al. 2011; Goodfellow et al. 2016). For example, the
popular Dropout regularization Srivastava et al. 2014 could be interpreted as averaging over
lp regularized sparse neural nets. From a nonparametric perspective, Schmidt-Hieber 2017
showed that sparse DNN with a ReLU activation function could achieve nearly minimax rate
in the regression setup.

In addition, sparse neural networks may recover the potential sparsity structure of the
target function, e.g., sparse teacher network in the teacher-student framework (Tian 2018;
Goldt et al. 2019). Another example is from nonparametric regression with sparse target
functions, i.e., only a portion of input variables are relevant to the response variable. A sparse
network may serve the goal of variable selection (Feng et al. 2017; Liang et al. 2018; Ye et al.
2018), and is also known to be robust to adversarial samples against [, and [y attacks (Guo

et al. 2018).

1.2.2 Bayesian neural networks

Bayesian neural nets (BNN) are perceived to perform well against overfitting due to
its regularization nature by enforcing a prior distribution. The study of Bayesian neural
nets could date back to MacKay 1992, Ncal 1992. Comparing to frequentist DNN, BNN
possesses the advantages of robust prediction via model averaging and automatic uncertainty
quantification (Blundell et al. 2015). Conceptually, BNN can easily induce sparse network
selection by assigning discrete prior over all possible network structures. In particular, a
spike-and-slab prior George et al. 1993 would switch a certain neuron off, and thus in nature
imposes [y regularization and encourages network sparsity. Polson et al. 2018 introduced the
Spike-and-Slab Deep Learning as a fully Bayesian alternative to Dropout for improving the
generalizability of DNN with ReLLU activation, where the posterior distribution is proven to

concentrate at a nearly minimax rate.
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However, a well-known obstacle for BNN is its high computational cost for drawing
samples from posterior distribution via MCMC. Therefore, as a computationally efficient
method, VI has been used widely for neural networks Graves 2011; Kingma and Welling 2014;
Rezende et al. 2014; Blundell et al. 2015. Another challenge remains for sparse BNN is the
lack of theoretical justification- the convergence property for variational BNN remains much
less explored. Specifically, it would be interesting to examine whether the variational inference
leads to the same rate of convergence compared to the Bayesian posterior distribution and

frequentist estimators.

1.2.3 Related work

A plethora of methods on sparsifying or compressing neural networks have been proposed
(Cheng et al. 2018; Gale et al. 2019). The majority of these methods are pruning-based
(Han et al. 2016; Frankle et al. 2018; Zhu et al. 2018), which are ad-hoc on choosing the
threshold of pruning and usually require additional training and fine tuning. Some other
methods could achieve sparsity during training. For example, Louizos et al. 2018 introduced [,
regularized learning and Mocanu et al. 2018 proposed sparse evolutionary training. However,
the theoretical guarantee and the optimal choice of hyperparameters for these methods are
unclear. As a more natural solution to enforce sparsity in DNN, Bayesian sparse neural
network has been proposed by placing prior distributions on network weights: Blundell et al.
2015 and Deng et al. 2019 considered spike-and-slab priors with a Gaussian and Laplacian
spike respectively; Log-uniform prior was used in Molchanov ¢t al. 2017; Ghosh, Yao, ct al.
2018 chose to use the popular horseshoe shrinkage prior. These existing works actually yield
posteriors over the dense DNN model space despite applying sparsity induced priors. In
order to derive explicit sparse inference results, users have to additionally determine certain
pruning rules on the posterior. On the other hand, theoretical works regarding sparse deep
learning have been studied in Schmidt-Hieber 2017, Polson et al. 2018 and Chérief-Abdellatif
2020, but finding an efficient implementation to close the gap between theory and practice

remains a challenge for these mentioned methods.
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1.2.4 Network structure

An L-hidden-layer neural network will be used to model the target function. The number
of neurons in each hidden layer is denoted by p; for i = 1,..., L. The weight matrix and bias
parameter in each layer are denoted by W, € RPi-1*Pi and b; € RP fori=1,..., L+ 1. An
example neural network is illustrated in Figure 1.1. Let o(z) be the activation function, and

for any r € Z" and any b € R", we define g, : R” — R" as

0 o(yr — b1)

Then, given parameters p = (py,...,pr) and 0 = {Wy,by,..., W, by, W 1,br41}, the output
of this DNN model can be written as

fg(X) = WL+10bL<WLUbL_1 ... O0py (WlX)) + bL+1- (15)

In what follows, with slight abuse of notation, 8 is also viewed as a vector that contains all
the coefficients in Wi’s and b;’s, , i.e., 0 = (0y,...,0r), where the length T := ZIL:_II P (pr +
1)+ pi(p+ 1) + (pr + 1). The notation of the DNN will be used in the following chapters.

%
fo(X) p;: width of ith hidden layer,

i=1,..,L
Hidden Layer

L: number of hidden layers

Hidden Layer

p: dimension of X

Figure 1.1. Deep neural network
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Instead of using a fully connected neural net, i.e., 6 is a dense vector, we will consider a

sparse NN fp € F(L, p, s), where

F(L,p,s) = {fgasin (1.5) : |0]lo < s},

s € N controls the sparsity level of NN connectivity. The set of 6§ under the constraint

F(L,p,s) is denoted as O(L, p, s).

1.3 Owur Contribution and Dissertation Organization

1) Firstly, we propose a variational Bayesian (VB) procedure for high-dimensional linear
model inferences with heavy tail shrinkage priors, such as student-t prior. Besides the
superiority in computation efficiency, theory-wise we establish the consistency of the proposed
VB method and prove that under the proper choice of prior specifications, the contraction
rate of the VB posterior is nearly optimal. This part of work can be found in our paper Bai
et al. 2020b.

2) Secondly, our work on sparse neural networks aims to resolve the aforementioned two
important bottlenecks simultaneously by utilizing variational inference. On the computational
side, it can reduce the ultra-high dimensional sampling problem of Bayesian computing,
to an optimization task that can still be solved by a back-propagation algorithm. On the
theoretical side, we provide a proper prior specification, under which the variational posterior
distribution converges towards the truth. To the best of our knowledge, our work is the first
one that provides a complete package of both theory and computation for sparse Bayesian
DNN.

We achieve sparse deep learning by imposing a spike-and-slab prior (George et al. 1993;
Ishwaran ct al. 2005) on all the edges (weights and biases) of a neural network, where the
spike component and slab component represent whether the corresponding edge is inactive
or active, respectively. Our work distinguished itself from prior works on Bayesian sparse
neural network by imposing the spike-and-slab prior with the Dirac spike function. Hence
automatically, all posterior samples are from exact sparse DNN models. This part of work is

published in our papers Bai et al. 2019; 2020a.
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The rest of the dissertation will be organized as following: In Chapter 2, we apply
variational inference to high dimensional linear regression problem under shrinkage priors.
Chapter 3 and Chapter 4 focus on sparse deep learning via varitional infererence. In Chapter
3, the emphasis is on theoretical development. In Chapter 4, we further improve the
computational efficiency as well as remaining theoretical validity via an alternative prior
setting. Finally, all the results are summarized in Chapter 5 and the future directions are

outlined.
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2. HIGH DIMENSIONAL REGRESSION

2.1 Introduction

High dimensional sparse linear regression is one of the most commonly encountered
problems in machine learning and statistics communities (Hastie et al. 2001). In the Bayesian
paradigm, this problem is approached by placing sparsity-inducing priors on the regression
coefficients. There are mainly two types of priors: the spike-and-slab prior (Mitchell et al.
1988; George et al. 1993; Ishwaran et al. 2005) and the shrinkage prior (Hans 2009; Carvalho
et al. 2010; Griffin et al. 2012). The spike-and-slab prior has been considered as the gold
standard for high dimensional linear regression, whose theoretical properties have been
thoroughly studied (Johnson et al. 2012; Song and Liang 2014; Yang, Wainwright, et al.
2016; Gao et al. 2020). Although theoretically sound, the posterior sampling cost under
spike-and-slab priors could be highly expensive, as it usually requires a tran-dimensional
MCMC sampler such as reversible-jump MCMC. Alternatively, shrinkage priors could lead
to equally good theoretical properties (Ghosal 1999; Armagan et al. 2013; Song and Liang
2017) while enjoying computational efficiency via the use of conjugate Gibbs sampler.

Although switching to shrinkage prior could reduce the computational burden to some
extent, the nature of Bayesian computing (i.e., Markov chain Monte Carlo simulation)
inevitably requires a huge number of iterations in order to achieve good mixing behavior and
obtain accurate large-sample average. Consequently, people has sought to find frequentist
shortcuts for Bayesian estimators. For example, Rockova et al. 2014 proposed EM algorithm
to find posterior modes under the spike-and-slab prior; Rockova et al. 2018 obtained the
posterior modes by using penalized likelihood estimation; Bhadra et al. 2019 searched posterior
modes under horseshoe prior via optimization methods. Those approaches are computational-
friendly, however completely ignore the distribution information of posterior and can not
derive any Bayesian inferences beyond point estimation.

Another computationally convenient alternative to MCMC is the variational inference
(VI or VB) (Jordan et al. 1999; Blei, Kucukelbir, et al. 2017). VI can provide an approximate
posterior via frequentist optimization, thus it delivers (approximate) distributional inferences

within a fairly small number of iterations. In the context of high dimensional linear regression,
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Carbonetto et al. 2012, Huang et al. 2016 and Ray et al. 2020 have proposed algorithms to
carry out variational inferences under spike-and-slab priors. Besides their empirical successes,
the theoretical properties were also justified. Specifically, Huang et al. 2016 showed their
algorithm could achieve asymptotic consistency, and Ray et al. 2020 established the oracle
inequalities for their VB approximation. Therefore, by employing the scalable variational
inference, we would obtain the same theoretical guarantees as using MCMC while hugely
reducing the computational cost.

In this chaper, we focus on the variational inference for Bayesian regression with shrinkage
priors, which further improves the computational efficiency comparing to the one based on
the spike-and-slab prior. Meanwhile, by showing the nearly optimal contraction rate of the

proposed variational posterior, the validity of the proposed method is justified.

2.2 Preliminaries

2.2.1 High-dimensional Regression

Consider the linear regression model

Y = X3 + o€, (2.1)

where Y € R” is the response vector, X = (Xj;) is a n x p,, design matrix, 8 = (f1,...,05p,) €
RP» is the coefficient vector and € ~ N(0,I,) is the Gaussian random noise. p, denotes
the dimension of coefficient parameter 3, and it can increase with the sample size n. The
research objective is to make consistent variational Bayesian inferences on the coefficient 3.
Note that we are particularly interested in the high dimensional setting, i.e. p, » n, but our
developed theory and methodology hold for general dimensional setting. For the simplicity of
analysis, 02 is assumed to be known throughout our theoretical analysis, while in practice it
can be estimated by frequentist methods (see Reid ct al. 2016 for a comprehensive review),
Empirical Bayesian approach (Castillo et al. 2015), or full Bayesian analysis (for example,
placing inverse gamma prior on o2 (Ishwaran et al. 2005; Park et al. 2008)).

Let B° denote the true coefficient vector, and we assume that B° has certain sparsity

structure. The corresponding true model is denoted as £ = {j : 5; # 0}, and true sparsity
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is denoted as s = | 8%y = |€°|, which is the cardinality of the true subset model. Note that
s is allowed to increase with n as well. Let £ < {1,...,p,} be the generic notation for any
subset model, and X¢ and B, respectively denote the sub-matrix of X and sub-vector of 8
corresponding to &.

The following regularity conditions are required for the main results:

Condition 2.2.1 The column norms of the design matriz are bounded by n, i.e. Y Xi? =

| X5 < n.

Condition 2.2.2 There exist some integer p (depending on n and p,) and fized constant Ay,
such that p > s and the smallest eigenvalue of XgTXg is greater than n)\y for any subset

model €] < P.
Condition 2.2.3 log(max; |3)]) = O(log(p, v n))*.

Remark: Condition 2.2.1 is trivially satisfied when the covariates Xj; are bounded by
1, or the design matrix is properly standardized. This bound condition is assumed for the
technical simplicity, readers of interest can generalize this condition to that all covariates
follow a sub-Gaussian distribution. Condition 2.2.2 imposes a regularity assumption on the
eigen structure of the design matrix which controls the multicollinearity. Similar conditions
are commonly used in the literature of high dimensional statistics (Zhang 2010; Narisetty
et al. 2014; Song and Liang 2017). Under a random design scenario, if all entries of the design
matrix are i.i.d. sub-Gaussian variables, then the random matrix theory (e.g., Vershynin 2012)
guarantees that w.h.p., the eigen structure restriction holds with p being at least of order
n/log p,, hence the condition p > s is met w.h.p. by assuming the common dimensionality
condition slogp, < n. Condition 2.2.3 imposes an upper bound for the magnitude of true
coeflicients, it allows the magnitude of B increases polynomially with respect to p,, v n. Similar
bounded conditions on true coefficient are common among Bayesian theoretical literature
e.g., Yang, Wainwright, et al. 2016. Such conditions are necessary to ensure that the prior
density around B° is bounded away from zero, such that the domination of posterior around

B° becomes possible.

Ya,, < b, means lim,, a, /b, = 0.
2a v b denotes max(a, b).
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2.2.2 Heavy Tail Shrinkage Prior and Variational Inference

Prior Distribution

To resemble a spike-and-slab prior, a reasonable choice of shrinkage prior shall (1) allocate
large probability mass around a small neighborhood of zero, i.e., a prior spike around 0; and
(2) possess a very flat tail, i.e., a prior slab over real line. Following the suggestion by recent
Bayesian literature (e.g., Ghosh and Chakrabarti 2015; Song and Liang 2017; Song 2020),
our work will implement heavy-tailed prior distribution, i.e., polynomially decaying prior
with properly tuning scale hyperparameter. For the simplicity of representation, this paper
will only consider the theory and computation under student-t¢ prior, however, the general
insights obtained apply to any heavy tailed priors.

Consider an independent ¢ prior for 8, which can be rewritten as a scaled mixture of

Gaussian distribution with Inverse-Gamma scaling distributions, i.e., for j =1,..., p,,
n(ﬂjp‘j) = N(07 )‘j_l)> TC<)‘J') = G@mm@(ao, bn)

where aq, b,, are user-specified hyperparameters. Thus, it yields a student-t prior of d.f. 2aq
with scale parameter \/m . In other words, ag determines the polynomial degree of prior
tail decay, i.e., the prior tail shape, while b, controls the scale of prior distribution. As
demonstrated by numerous Bayesian results (e.g., Van Der Pas; Kleijn, et al. 2014; Van
Der Pas, Salomond, et al. 2016; Song 2020), the prior scale needs to converge to zero as
dimensionality increases, hence we let ag be a constant, and b,, asymptotically decrease as n

increases.

Variational Inference

In this chapter, we choose Q as independent student-¢ distribution to resemble the prior
distribution, i.e.

a(BilN) = Ny, A7Y),  a(Ny) = Gamma(ay, by),

where p; € R, a; > 0,b; >0for j=1,...,p,.
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Remark: Choosing a different heavy tailed distribution as the prior distribution (e.g.,
horseshoe prior Carvalho et al. 2009) and variational family Q@ doesn’t hurt the validity of the
consistency result displayed in the next section, except that we require a different condition
on the prior shape and scale hyperparameters. However, the difficulty of minimizing the
negative ELBO varies from case to case, depending on the existence of closed form for the

negative ELBO.

2.3 Theoretical Results

To establish consistency of variational Bayes posterior, we impose the following condition

on the prior specification.

Condition 2.3.1 ag > 1 and (p, v n) ™% < b,/ag < slog(p, v n)/[np2+/%(p, v n)%®] for

some large constant K and small constant § > 0.

ap > 1 ensures the existence of the second moment for the prior distribution, and the scale
b,, is required to decrease polynomially w.r.t n and p,, such that the prior contains a steep
spike at 0.

First, we study the infimum of the negative ELBO 2 (up to a constant). Define the

loglikelihood ratio as

O n YI 0
Io(Py, Pg) = log Y”ﬂﬂ = Ylog f;((y|‘ ))7
i=1 1

then we have the following theorem.

Theorem 2.3.1 With dominating probability for some C' > 0, we have

int {KLGOIRE) + | 1Py Pa)a(B)dB} < Cslog(pa v n) 2.2

Remark: Theorem 2.3.1 establishes the upper bound of the loss function corresponding to
the variational posterior.

Our next theorem studies how fast the variational posterior contrasts toward the true 8.
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Theorem 2.3.2 With dominating probability, for any slowly diverging sequence M, , we have

Q1B = B°l2 = Mar/slog(pa v n)/n) = o(1).

Remark: Theorem 2.3.2 implies that the contraction rate of the variational posterior ¢(3)

is of order 4/slog(p, v n)/n. Under low dimensional setting, it reduces to 4/s/nlog”"(n)
which is the optimal rate up to a logarithmic term; Under high dimensional setting, it
reduces to 4/slog(p,)/n which is the near-optimal convergence rate® commonly achieved
in the literature. In other words, there is little loss in term of distributional convergence
asymptotics by implementing variational approximation. The variational inference procedure

delivers consistent Bayesian inferences.

2.4 Implementation

2.4.1 Updating Equations

The direct optimization of the negative ELBO requires stochastic gradient descent algo-
rithm, since there is no closed form for the KL divergence between two student-¢ distributions.
Therefore, for the purpose of efficient optimization, we instead consider minimizing the KL

divergence of the joint distribution of 8 and A, where the negative ELBO is defined as

Q=- flogp(Ylﬁ, A a(BIA)g(A)dBdA + JKL(Q(ﬂIA)Iﬂ(BIA))Q(A)dA + KL(g(A)[m(A)).

(2.3)

As showed by the toy examples in the Appendix A, the variational inference results
derived based on minimizing the KL divergence of the joint distribution of (3, A) has little

difference to the ones based on minimizing the KL divergence of marginal distribution of 3.

3The optimal is of order 4/slog(p,/s)/n.
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We minimize (2.3) by iteratively updating variational parameters in the fashion of

coordinate descent. Specifically, the negative ELBO is

0= f log p(Y8, Na(BIN)a(A\)dBdA + j KL(g(BIN)|m(BIA))a(A)dA + KL(g(A)|m(\))

—const + J{—YTX;F;W)‘] + E[ﬂT);;Xﬂ'A A)dX + Zf . /\ :MJ ]q(/\J)dAj
- frmton g 04+ oy~ o) bnﬁj;]
—const — Yi)f“ T “T);;X“ J S Y a(y)d +2J(“?2Aj)q(m)dm
[t g 4+ oy~ ot bnﬁjj],
(2.4)
where () is the digamma function, and n; = [X” X|;;. Therefore,
Q1 =const — YTJ)2(;1, + MT};;XM + 2(172 Jpz": ajnj_b.l i( 2/2 4+ b )bfj

j=1

+ Zn[ao logf — log 11:((&0)) + (a; — ao)¥(a;) — aj],

=1
and the gradients are

o _ XY XTXN

A
dl,l, 0_2 + u’
dQ) n b; 14; 2/2 + by
dej 20_2 ( — 1) bj + (aJ a0)¢1<aj)
a1 (/24 ba)g LG
db " 202 a; — 1 ij by’
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where 94 (x) is the trigamma function and A = diag(a,/by, ..., ap,/b,,). Solve the above

equations, we have

p=(XTX 42N XY,

colpe(l b 2 NP
a; = solve( 207 (a; — 1) + b + (a; — ap)1(a;) — 1 =0),

—ag + \/ao + 2nja; (/2 + by) /02(a; — 1)
- n/o?(a; — 1)

If o is unknown, then the above derivation is modified as:

Y'Y YTXp, uTXTXu a;
202 o2 202 2022 Z /2+b bf

J

Q) =const +nlogo +

Pn

+ Z[ao logg —log 5((23))) + (aj — ag)Y(a;) — aj],

and the additional partial derivative w.r.t. o is

do o o3 .

0 n (Y -Xp)"(Y —Xp) 1 mbh

Thus, the updates of y;, a; and b; keep the same, and the update of o follows

U:\/(Y—Xu) (Y — X+ S0

n
To summarize, the updating equations are provided in below.

Updating p By fixing a;s and b;s, the mean vector g = (1, ..., )7 is updated by

p=(X"X+o*A) XY,

(2.5)
where A = diag(ai/bs, ..., a,,/bp,).
Updating q; By fixing p; and b;, a; is updated by solving the following equation
2
nj bj /Lj /2 + bn
P — )—1=0. 2.6
i (@ @) (2.6
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Updating b; By fixing p; and a4, b; is updated by

—ag + \/ag + 2n5a; (13 /2 + by) /0% (a; — 1)
by = : (2.7)
n/o?(a; — 1)

2.4.2 Computation for Large p,

The major computational bottleneck of the above updating rule is the inversion of the
large p, X p, matrix (X7 X + ¢?A) in (2.5), which could lead to huge computation cost.

Instead, (2.5) could be improved by using the blockwise update strategy introduced by
[shwaran et al. 2005. Specifically, decompose p as (,u(l), e ,M(B))T, A as diag(Aqy, ..., M)
and X as [X(1),..., X (p)], where B is the number of blocks. Denote the exclusion of the

kth block using subscript (—k), then the blockwise update for p is

ty = (XX w) + 0 Aw) ™ X (Y = X b ), (2.8)
for k =1,...,B. The blockwise update will reduce the order of computational complexity

from O(p2) to O(B~?p?) (ibid.), which could alleviate the computation burden when p,, is
huge.

To summarize, the variational inference with Student-¢ prior is shown in Algorithm 1.

Algorithm 1 Variational inference with Student-¢ prior.

1: Hyperparameters: ag, b,

2: Initialize p, {a;}7" ), {05}

3: repeat

4: for k =1to B do

5 Ky < apply equation (2.8)

6 for all je {1,...,p,} do in parallel
7 a; < solve equation (2.6)

8 b; < apply equation (2.7)

9 end for

10: Q — p, {a;}72y, {bs}i2, using (2.3)
11: until convergence of €2

12: return g, {a;}i", {0},
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Note that it is crucial that the algorithm allows us to update the key variational parameter
p blockwisely. Comparing to Algorithm 1 of Ray et al. 2020 which has to update variational
parameter entrywisely, our algorithm has a much better convergence speed. In addition,
Algorithm 1 of ibid. also has to conduct more iterations of univariate numerical optimizations.
Therefore, as showed by our simulation studies, our algorithm has much faster computing

speed.

2.5 Numerical Studies

In this section, we validate the effectiveness of our method via simulation experiments.
To satisfy Condition 2.3.1, throughout this section, we let ag = 2 and b,/ay = log(p, v
n)/[npZ /% (p, v n)Y%]. We use Lasso estimator to initialize p. a; and b; are initialized as
(ag + 0.5) and (b, + p) respectively. The following rule is used to derive variable selection
results: if the 95% credible interval of marginal ¢ variational posterior contains 0, then the
corresponding predictor is not selected, and vice versa. This method of Bayesian model
selection under shrinkage priors is discussed by (Van Der Pas, Szabé, et al. 2017). More
sophisticated approaches under variational Bayesian shrinkage for model selection could be a
future study direction.

Both variational inference (-VB) and MCMC (¢--MCMC) are implemented under the
same student-t prior for fair comparison, where --MCMC is computed by Gibbs sampler
(Song and Liang 2017). We also compare our method to the following competitive methods:

variational Bayes for spike-and-slab priors with Laplace slabs (Laplace) (Ray ct al. 2020),

variational Bayes for spike-and-slab priors with Gaussian slabs (varbvs) (
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2012), the spike-and-slab LASSO (SSLASSO) (Rockova et al. 2018), and the EM algorithm
for spike-and-slab prior (EMVS) (Rockové et al. 2014).

For --MCMC, we run Gibbs update for 1000 iterations with 200 burning in, and the
initialization is the same as t-VB. We employ the blocklization (Ishwaran et al. 2005) for the
Gibbs update. For Laplace, we use hyper-parameter ag = 1,bp = n and A = 1. The ridge
estimator (X7 X + I)"'X"Y is used for initialization and the unknown ¢ is estimated by
selectivelnference package (Reid et al. 2016). For other methods, we use their associated R
packages with default parameters. All the methods are implemented on the MacBook Pro
with 2.7 GHz Intel Core i7.

The metrics reported are the Root Mean Squared Error between the posterior mean
estimator 3 and 3° (RMSE), the False Discovery Rate (FDR), True Postitive Rate (TPR),
and the run time. For Bayesian methods, the Coverage rates of 95% credible intervals for
non-zero coefficients £€° and zero coefficients (£°)¢ are also calculated. All the experiments are

repeated 100 times and the mean metric together with its standard deviation are reported.

2.5.1 Example 1: Moderate Dimension Case

This is an example similar to the one in Ray et al. 2020. Let n = 100, p, = 400 and
s = 20. All the nonzero coefficients are equal to log(n) (strong) or log(n)/2 (weak) and their
positions are randomly located within the p, dimension coefficient vector. Take the design
matrix Xj; i A (0,1) and assume o is known that equals 4. Since p,, is moderate, we choose
B =1 when update g and use 5 blocks for Gibbs update.

Table 2.1 shows for relatively large signal, SSLASSO achieves the best estimation accuracy
and the smallest selection error with the shortest run time, however it can not give second-
order inferences. Among Bayesian methods, our method achieves estimation accuracy close
to that of MCMC with the shortest run time. Meanwhile, the variable selection errors and
the coverage rates of our method are also close to those of MCMC. Table 2.2 exhibits when
the signal is relatively weak, our method obtains the estimation accurracy and selection error
close to the best ones (Laplace) with much shorter run time. The MCMC is underperformed
in this case probably due to insufficient number of Gibbs iterations. Note that the FDR for

EMVS is undefined since none of the predictors is selected.
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Table 2.2. Regression Results for Example 1 (b): Weak Signal Case.

Bayesian Non-Bayesian
t-VB t-MCMC Laplace varbvs SSLASSO EMVS
RMSE 0.38 + 0.07 0.46 £ 0.78 0.36 £ 0.07 0.45 4+ 0.07 0.42 +£ 0.10 0.46 + 0.01
FDR 0.29 + 0.15 0.12+0.16 0.16 £0.15 0.12 4+ 0.21 0.26 + 0.29 -
TPR 0.57 +0.20 0.27 £0.10 0.62 +0.18 0.19 +0.22 0.47 + 0.18 0.00 + 0.00
Coverage of £° 0.40 + 0.05 0.22 £ 0.03 0.54 +£ 0.04 0.14 £+ 0.03 - -
Coverage of (¢°)¢ 0.99 £ 0.01 099 + 0.00  0.99 £ 0.01  0.99 + 0.00 - -
Run time 0.54 + 0.04 23.52 +0.38 13.78 +8.71 0.29 + 0.13 0.07 +£ 0.02 0.18 + 0.02
Table 2.3. Regression Results for Example 2.
Bayesian Non-Bayesian
t-VB t-MCMC Laplace varbvs SSLASSO EMVS
RMSE 0.01 £ 0.00 0.01 £+ 0.00 0.06 +£ 0.00  0.01 £ 0.00 0.01 +0.00 0.11 + 0.00
FDR 0.00 +£ 0.04 0.00 £+ 0.00 0.07 £ 0.16  0.02 £ 0.07 0.00 + 0.00 -
TPR 1.00 £ 0.00  1.00 + 0.00 1.00 £ 0.00  1.00 £ 0.00 1.00 + 0.00 0.00 + 0.00
Coverage of ¢° 0.99 +£ 0.01 0.95 + 0.03 0.90 £ 0.03  0.16 + 0.02 - -
Coverage of (€°)¢  1.00 £ 0.00  1.00 + 0.00 0.99 +£ 0.00  0.99 £+ 0.00 - -
Run time 0.48 +£ 0.05 94.32 + 3.40 37.61 + 23.55 0.32 +£0.11 0.75 + 0.10 0.17 £+ 0.01

2.5.2 Example 2: High Dimension Case

We consider an example similar to the one in Rockova et al. 2014. Let n = 100, p = 1000

and 8° = (3,2,1,0,...,0)T. Generate the design matrix Xj; i N(0,1). Assume o = 1 and it

is unknown in the experiment. For our method, we use the Empirical Bayes estimator for o

here. Specifically, by optimizing Q2 w.r.t. o, the Empirical Bayes (EB) update of ¢ follows

-

(Y - Xp)"(Y - Xp) + 37, 222

j:1 ajfl

n

(2.9)

Due to the high dimensionality, we choose B = 10 when updating p and also use 10

blocks for Gibbs update. The results are reported in Table 2.3.

Table 2.3 shows all the methods achieve good estimation accuracies expect Laplace and

EMVS. Our method also obtains similar selection errors and coverage rates to those of MCMC

with much shorter time. Again, the FDR for EMVS is undefined since all the estimated

coefficients are not selected.
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2.6 Conclusion and Discussion

We proposed a scalable variational inference algorithm for high dimensional linear regres-
sion under shrinkage priors. The established theoretical properties are justified by empirical
studies. A possible future direction is to explore and compare efficient implementation for

variational inference with other heavy tail shrinkage priors besides the Student-t.

2.7 Main Proofs

2.7.1 Proof of Theorem 2.3.1

Proof 1 The marginal prior distribution for f; is

_yo+l1

") = (1t (2))

where sy = \/m and vy = 2a9. We define ¢*(/5;) as follows

" o1 (B — BO\ 2\
78 = e (00 (FUE)) T

where s* = 4/b,/ag and v* = 2ag, and it is sufficient to show that KL(¢*(8)|n(B)) +

§1.(Po, Ps)g*(B)dB < Cslog(p, v n).
i) We first show

[ 1B P 818 < Custogton v ). (2.10)

for some C; > 0. Note that

1
n\10,48) = 55 - 2 - 2
(P, Pa) = 55 (1Y = XBI3 — Y = XBI3)

(Y X80+ X8~ XB)I3~ Y — XB')

— L (1X8 — X3 + oY — XB" XB"— X)),
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Denote

Ry — J IX5 — XB°24"(B)dB.
Ry — f Y — XB°, XB° — XB)q*(B)dp.

Noting that Y — X 8° = e ~ N(0,02%1,,), then

Ry = JUET(XﬂO — XB)q*(B)dB
—oe! J(Xﬂo — XB)¢*(B)dB ~ N(0,¢07),

where ¢; = | {(XB° — XB)q¢*(B)dB|2 < Ry due to Cauchy-Schwarz inequality. Then by

Gaussian tail bound

which implies Ry < R; w.h.p.. Therefore, to prove (2.10) it suffices to establish that
R1 = O(slog(p, v n)). Note that

f IXB — X124 (B)dB < | X2 f 18— 8°124° (8)dB.

where || X |, is the spectral norm of matrix X. Since | X |3 < tr(X" X) = np,, and

Jlﬂ—ﬂoiq*(ﬁ)dﬂ=is*2 AN

= Pn
= vt —2 ag— 1’

then
by

ag —

[ 18- X830 (8108 < w2 = OGsto(p, v )

for sufficiently large n.

ii) We next show

KL(¢*(B)|r(B)) < Cyslog(p, v n), (2.11)

for some Cy > 0.
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Note that

KL(¢"(B)|7(8) = 3 KL(" (5)In(5))
= Y KL(¢*(8)In(5).

For each j,

KL(¢*(8;)|m(5;))
vt v*s*? 4 sz
= f Ogy*s*2+(ﬁj—ﬂj0)

v s*21 32 ﬂjo-h /(6?)2-‘1-41/*3*2 . .
, and the maximum is

Nt . . A. _
T is maximized at 5 5

4" (By)dp;.

If ) > 0, then

IJ*S*Q—f—a}? (ﬁjo)z+ﬂj0\/(5j0>2+4V*8*2+4l/*8*2

v*s*2 + (B\J — B))? - (8))% = BJO\/(BJO>2 + dv*s*2  4p*s*2

() + B+ a2+ 4 (3 )+ e+ 4
< .

2
(87 = B(8) + “555°) + A2 2vrs™

Therefore, for sufficiently large n,

2

KL(q*(8;)|7(5;) < “—— x O(log(8°/s*)) = O(log(ps v n)).

Similar result holds if 3 < 0 as well. This imples that KL(¢*(8)|n(8)) = O(s,log(p, v 1)),
and hence verifies (2.11).
Therefore, (2.2) immediately follows from (2.10) and (2.11). u

The next lemma states the existence of testing condition. Define p as some sequence

satisfying s < p<p—35, p < p, and limp = oo0. Let ¢, = \/ﬁlog(pn v n)/n. Denote B, as

the truncated parameter space
B, = {B: at most p entries of |3/0| is larger than a,}
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and

Cn = {/8 : BTL N {”5 - IBOHQ = Mngn}v

where a,, = \/s log(p, v n)/n/p,, M, is any diverging sequence as M,, — o0.

2.7.2 Proof of Theorem 2.3.2

Lemma 2.7.1 There exists some testing function ¢, € [0,1] and ¢; > 0, ¢ > 1/3, such that

Ego < exp(—cine?)

sup Eg(1 — ¢,) < exp(—conM2e?)
BeChp

Proof 2 The construction of the testing function is similar to that of Song and Liang 2017.

Consider the following testing function

¢ = max W[ X{X)T' XY — B2 = oMe,}

(et [E|<p+s)

for some constant M.

i) For any &, such that £ > &%, |¢] < D + s,

Epol{|(X{Xe) ' X{Y — BE2 = oMe,} = Egol {|(X{ X¢) ' X €|, > Me,}

<Pr([(XEXQ™ b€ Hee) > M2 < Pr(xly = nhoM’e}) < exp(~erM?ne?)

for some constant ¢, where Hy = X (X gX )X fT, and the last inequality is due to the

sub-exponential properties of chi-square distribution and |£| « ne2. This further implies that

Egodn < >, Epl{|(X{X) ' X[Y — B> > oMe,)}
{£280,|¢l<p+s}

< PP exp(—c M*ne?) < exp(—cine?)

when M is sufficiently large.
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i) Let € = {k : |Be/o| > an} U £°, then

sup B (1= ¢n) = sup Bg min 1{|(X{X¢) ' X{Y = Bglh < o2}
BeCh BeCh |§|<p+s

<BsuCpE51{H(X§X) 'XTY — B¢la < 0en)
€Cln

= sup PT’{H(XTX) 1XTY B£H2 oen}

BeCn
= sup Pr{|(XEX;y) ' XEoe+ B + (XEXy) ' XEX 2Bz — BY> < 0en}
eCn
;;g) PT{H(XTX )~ 1X§€H2 = (H,Bg - 63”2 — 0, — H<X§X§>71X§X§5£~CHQ)/U}

Note that | X z 8.

2 K /NPy * A/ P0G, < c\/ﬁagn for some constant ¢, and

I(XEX0) " XX aBela/o < AJIXEX ) aevnzn < /1ndovice, < cea/v/Ao

where the second inequality is due to \E | < p+ s < Pp. Besides,

18z = BEla = 18 — B> — v/p,00.

9)/o = Mye,/(20) when M, is

Therefore, (|8 — Bg”z — 0, /2 — H(X?Xg)_ngXgﬁgc
sufficiently large, and

sup Ea(1 = 6,) < sup Pr{[(XEXE) ' XEely > Moeu/(20)} < expl—eanM2z2).
ﬂECn ﬂecn

As a technical tool, we restates the Donsker and Varadhan’s representation for the KL

divergence in the following lemma, whose proof can be found in Boucheron et al. 2013.

Lemma 2.7.2 For any two probability measures P and ), and any measurable function f
such that SefdP < 0,
de@ L(Q||P) +logjefdP.

The next two lemmas bound the contraction rate of g(8) on B,, and B, respectively.
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Lemma 2.7.3 With dominating probability,

QB 0 {8 = B2 = Myen}) = o(1),

where €, = /plog(p, v n)/n and M, is any diverging sequence as M, — 0.

Proof 3 We denote (8) and () as the truncated distribution of n(8) and g(83) on set
B,, ie.

%<B) = 71',(,3)1(,3 € Bn)/n(Bn)a
q(B) = 4(B)L(B € B,)/q(By)-

Define V(Pg, Py) = Mne,1(|8 — B°|2 = M,e,) and
n
IOgW(P/%Po) = ln(Pﬁapo) + gVQ(P[%PO)'

Lemma 2.7.1 implies the existence of testing function within B,, and by the same argument

used in Theorem 3.1 of Pati et al. 2018, it can be shown that w.h.p.,

j 0(Pa, Po)R(B)dB < <7

n

for some C7 > 0. By Lemma 2.7.2, it follows that w.h.p.,

3 A ABa 0 {18 = 812 > Maea})
T |, VAP R

:g f V2( Py, P)i(B)dp

n

<Cine? + KL((B) [(B)) - f L(Ps, Po)i(B)dB.

n
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Noting that,

KL((8)|=(8))

L T8 s 10T
3B, Lnl 8 (@) 1P)IP +los g
1

KL@O)Im(8)) ~ - | 10w Z0Na(8)a8 + o

n(Bn)
q(Bn)’

q(Bn) q(Bn) n(B)

and similarly,

f 1(Ps. P)3(8)dB =

n

f 1(Ps, P)A(B)dB — —~ L 1(Ps, Py)a(B)dB.

a(By) a(B.)

c
n

Combine the above three inequalities, we obtain that

Msgi‘/ﬂBn N {8 — IBOH2 > Myen})

<Ca(B)= +  {KL@B)Im(B) ~ [ 1u(Fs. Po(B)d8)}

2(8) . 3(B,)  n(B.)
ap) PP+ — e gy

(2.12)

3 3
2 (P P)ABYB+ 2| 1
n f (P, Po)(8)dB + j o8

n n

By Theorem 2.3.1, the second term in the RHS of (2.12) is bounded by 3&2.
Apply the similar argument used in the proof of Theorem 2.3.1, the third term in the
RHS of (2.12) is bounded by

s {—2e [ (xp0 - xpaB)e - | 1X8° - XBl3aB)AB}

B B¢
Note that —2c€” { . (XB° — X 8)q(B)dB follows a normal distribution N (0,V?), where
V2 =402 (,.(XB" — XB)q(B)dB|* < 402 (. | X B — X B|33(B)dB. Thus the third term
in the RHS of (2.12) is bounded by

{N(o, V3 — Vz] : (2.13)

2no? 402
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Noting that A (0,V?) = O,(G, V) for any diverging sequence G, (2.13) is further bounded,

w.h.p., by
3 V2 3
o

< 5 o*G2.
2no

2no?
Therefore, the third term in the RHS of (2.12) can be bounded by £2 w.h.p. (by choosing
G? = ne?).

The fourth term in the RHS of (2.12) is bounded by

. © e 28 o i 5n) 3 sup [xlog(1l/z)| = n
o | o Ty 18 < LA o Gt < s oloe(1/)] = 00/

Similarly, the fifth term in the RHS of (2.12) is bounded by O(1/n).
Therefore, we have that w.h.p.,

M2E2G(B,, n {|B — B2 = Muen)) < CG(B,)e2 + 32 + 2 + 1/n,
that is, (B, {18 — Bl > Maca}) = Op(1/M2) = 0,(1). .
Lemma 2.7.4 With dominating probability, q(BS) = o(1).

Proof 4 By Theorem 2.3.1, we have that w.h.p.,

KL(@(8)|m(8)) + f L(Py, Pa)d(B)dB = inf_{KL(q(8)|(B)) + j 1n(Po, Pa)a(B)(dB) }

q(B)EQ

2
<Chne;,

where C' is some constant. By the similar argument used in the proof of Theorem 2.3.1 in

the main text,

[ruraasas < o ([ 1x6 - xplza8)49) + 2)

where Z is a normal distributed N (0,0%¢), where ¢y < ¢y = {|| X8 — XB°|37(B)(dB).
Therefore, — §1,(Py, P3)q(B)dB = (1/20%)[—co + Op(4/co)], and KL(q(B)|n(B)) < Cne? +
(1/20%)[—co + Op(\/co)] = Op(ne?).
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For any f5; ~ q(;), define ~; = 1(|5;/0| > a,,), then

KL(G(8)|m(8)) = KL(g(v)|n(v))

Z[ i=1) 1ogm+ q(; —O)logw:m]

(2.14)

Choose ap = p,;* and let A = {j: q(7; = 1) = a}, and denote a = w(; = 1). Noting that by

the condition of ay and b,,, we can obtain that

a="7(y=1)=a/(nvp,),

thus (2.14) implies ., §(7; = 1) log(an/a) < Cnel /2 for some C and 3, G(vy; = 1) = O(p).
Under ¢, by Markov inequality,

Z’YJ/p/2 Z’YJ/p/B—i—EZ’yJ 9V&r2%/ 9E2’yj/p = o(1).

JEA JEA JEA JEA JEA

by Chernoff bound,

Pr(> 7 = p/2) < Pr(Bin(p,, o) > p/2)

JEA
coxpfpn (o P L (1 DY g BN
exp{ p <2pn S ST A exp(—cp) = o(1)
for some constant ¢, since p — 0.
Combine the above results together, it is trivial to conclude that g(BS) = o(1). u

Proof of Theorem 2.3.2

Proof 5 Trivially combine Lemmas 2.7.3 and 2.7.4, we obtain that §({|8 — 8°|s = M,e,}) =

0p(1) for any diverging M,,, where ¢, = \/p log(p, v n)/n. Due to the arbitrariness of M,
and p, we can let M,,n/p/s < M, and the theorem naturally holds. [ |
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3. SPARSE DEEP LEARNING

3.1 Introduction

In this chapter, we mainly focus on investigating the theoretical behavior of variational
posterior for Bayesian DNN under spike-and-slab modeling. Our specific goals are to
understand how fast the variational posterior converges to the truth and how accurate
the prediction carried out by variational inferences is. It is not surprising that the choice
of the network structure, i.e., network depth, width and sparsity level, plays a crucial role
for the success of variational inference. Notably, there exists a trade-off phenomenon for the
choice of network architecture: an overly complex structure leads to a large variational error,
while an overly simplified network may not be able to capture the nonlinear feature of true
underlying regression function (i.e., large approximation error).

The optimal network structure, which yields the best contraction rate, is generally
unknown in reality. This motivates us to develop an adaptive variational inference procedure
that performs automatic variational architecture selection based on the penalized ELBO
criterion. The selection procedure could lead to a data-dependent network structure that
achieves the same best rate as if it were derived under the optimal structure choice.

The developed general theory is further applied to two particular examples, where the
true underlying function 1) is Holder smooth, or 2) exactly corresponds to some unknown
sparse DNN model. For the formal case, we show that if the smoothness level is known, the
variational posterior possesses minimax contraction rate (up to a logarithm factor) when the
network structure is carefully chosen based on the known smoothness level. Even when the
smoothness level is unknown, the proposed adaptive variational inference procedure still leads
to the same theoretical guarantee. For the latter case, we find that the rate of convergence
doesn’t suffer from the curse of dimensionality, in the sense that the input dimension has at
most a logarithmic effect to the convergence rate.

It is worth noting that the focus of this chapter lies on the theory of variational inference
on sparse DNN, and the prior used for deriving the theoretical results leads to intractable
ELBO optimization. Although the variational inferences could be implemented by utilizing

certain approximation, computation-friendly priors will be developed in the next chapter.
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3.1.1 Notations

Throughout this Chapter as well as Chapter 4, the following notations are used. Denote
KL(:||-) and d(-,-) as the KL divergence and Hellinger distance between two probability
measures, respectively. For a vector @ = (z1,...,7,)7, we define ||z], = max™, |z,
lzlo = X", I(z; # 0), |z, := (X, [:")/? for p > 0. For any Lebesgue integrable
function f, we denote the L, norm for f as ||f[, := (§ f?)"? and | f]w := supyey | f(y)]-

3.2 Nonparametric Regression Via Bayesian Deep Learning

Consider a nonparametric regression model with random covariates X; ~ U([—1,1]7)!

and

Yi=fo(Xi) +a,i=1,...,n (3.1)

where U denotes the uniform distribution, ¢ * N (0,02) is the noise term, and fy : [—1,1]7 —
R is the underlying true function. For simplicity of the analysis, we assume that o, is a
known constant, while in practice we could use the empirical Bayes method or full Bayes

method (by placing an Inverse-Gamma prior on o.) to estimate it.

3.2.1 Regularization via spike-and-slab prior

Given a specified sparse network configuration, we impose a fully Bayesian modeling with
a spike-and-slab prior on 6. Denoting &y as the Dirac at 0 and v = (71,...,7r) as a binary
vector indicating the inclusion of each edge in the network. The prior distribution w(6) thus

follows:

(i) = 1 Mo(6) + (1= 2)d0, —(y)1{D % = s} (3.2)

for 1 <i < T, where we assign uniform prior over all possible s-sparse network structures,

and the slab distribution Mg(6;) is either a uniform distribution U ([— By, By]) or a Gaussian

!The bounded support assumption is common in the literature (Schmidt-Hieber 2017; Polson et al. 2018) and
applies to standardized data.
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distribution N(0, 03) with predetermined constant By > 1 and 3 > 0. Our developed theory
holds for both uniform slab and Gaussian slab modeling.

We denote D; = (X;,Y;) and D = (Dy,...,D,) as the observations. Let P denote the
underlying probability measure of data, and py denote the corresponding density function,
i.e., po(Di) = Y([Yi — fo(Xi)]/o:)/o. where ¢ is the normal pdf. Similarly, let Py and py be
the distribution and density functions induced by the parametric NN model (1.5). Thus, the

posterior distribution is written as (6| D)ocn(f) - pg(D).

3.3 Variational Inference

Technically, the variational family Q can be chosen freely. But for the sake of efficient
implementation and optimization, it is often selected as some simple distribution family. In
our case, Q is chosen as the spike-and-slab distribution to resemble the prior distribution,

ie,fori=1,...,T,

q(0i]n) = %M(0:) + (1 —)do, q(71) = Bern(¢y), (3.3)

where M (6;) is either U (l;, u;) with —By < I; < u; < By or N (s, 02) depending on the slab
choice My in (3.2), and 0 < ¢; < 1. Note that since the posterior can not have a larger

support than the prior distribution, the ELBO optimizer must satisfy ggi € {0,1} and > Qgi = s.

3.4 VB Posterior Asymptotics

In this section, we establish the distributional convergence of the variational Bayes
posterior ¢(6), towards the true regression function fy, under the squared Hellinger distance

d(-,-), which is

d*(Py, Py) = Ex (1 — exp {_[fe(X) — fo(X* }) .

8o2
Note that in section 3.7, the results under L, norm will be studied.

Denote the log-likelihood ratio between py and py as

D S Dy
L,(Py, Py) = log po(D) _ Zlogp(]( )7



then the negative ELBO can be expressed as
0 — KL(q(0)x(0)) + J 1L (Po, Py)g(6)d0 + C,

where C' = —logpy(D) is a constant with respect to g(6).
Our first lemma provides an upper bound for the negative ELBO for sparse DNN model
under the prior specification (3.2) and variational family Q. Let ©Og(L,p,s) = {0 € O(L, p, s) :

|10]|c < B} for some constant B > 0.

Lemma 3.4.1 Given any network family F (L, p, s) with an equal widthp = (12pN, ..., 12pN),

we have that, with dominating probability for some C' > 0,

it {KLGOI7(®) + [ 1P Pa()d8} < C'nlr + 6,

holds, where

L+1
Tni=1p(L,N,s) = L+1)s log(12BpN) + l log(n(L +1)/s),
n
and
o _ 2
En 1= gn(Lva S) 966;1(121),5) ||f9 f0H007

where B = By under uniform prior setting, and B = 2 under normal prior setting.

The upper bound (3.4) consists of two terms: the first term r, is the variational error
caused by the variational Bayes approximation; the second term &, is the approximation error
of approximating fy by sparse ReLU DNN whose weight and bias parameters are bounded
by B. Note that since B is a pre-specific constant, its value doesn’t affect the rate of r,

Our next lemma links the contraction rate of variational posterior with the negative

ELBO discussed in Lemma 3.4.1.
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Lemma 3.4.2 Given network family F(L,p, s) with equal width p = (12pN, ..., 12pN), if
max{slog(n(L + 1)/s), (L + 1)slog(pN)} = o(n), then with probability at least (1 — e~Cmen)

for some C' > 0, we have

| @) < o224 2 int {KLGOIn(®) + [ (P Pa6)ds

N q(0)eQ

where

log’ (n)

e e (LN, 5) — M\/slog(n(L +1)/s) + (L + 1)slog(pN)

n

for any 6 = 1 and some large constant M.

Note that Lemma 3.4.2 holds regardless of the choice of prior specification () and
variational family Q.

The LHS of (3.4) is the variational Bayes posterior mean of the squared Hellinger distance.
On the RHS, the first term ¢, represents the estimation error under Hellinger metric, such
that it is possible to test the true distribution Py versus all alternatives {Py : d(FPy, Po) =
en,0 € O(L,p,s)} with exponentially small error probability (refer to Lemma 1.2 in the
supplementary material); the second term, as discussed above, is the negative ELBO (up to
a constant), which has been elaborated in Lemma 3.4.1.

Combining the above two lemmas together, one can easily obtain the following theorem:
Theorem 3.4.1 Given any network family F (L, p, s) with equal widthp = (12pN, ..., 12pN),
if the conditions of Lemmas 8.4.1 and 3.4.2 hold, then

f P (Py, P)a(6)do < C=2 + 3C"r, + 3¢, (3.4)

The three terms in the RHS of (3.4) correspond to estimation error, variational error and
approximation error respectively. All the three terms depend on the complexity of network

structure. Specifically,

&2 ~ 1, ~ max (slog(n(i + 1)/5), (L + 1)5;log(pN)) 7
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up to only logarithmic difference. Thus both €2 and r, are nearly linearly dependent on
the sparsity and depth of the network structure specification. On the other hand, the
approximation error &, generally decreases as one increases the complexity of networks
configuration (i.e., the values of N, L and s). Therefore, it reveals a trade-off phenomenon
on the choice of network structure. Note that such trade-off echoes with those observed in
the literature of nonparametric statistics: as one increases the domain of parameter space
(e.g., increases the number of basis functions in spline regression modeling), it usually leads
to smaller bias but larger variance.

As mentioned in Chérief-Ahdellatif 2020, we would like to bring out the concept of the
bias-variance trade-off in the variational inference, where we name the third and second term
in RHS of (3.4) by bias and variance respectively. The variance component is controlled by
r, with an order that is always linearly dependent on the sparsity level of the DNN, which is
consistent with our perception. However, its linear dependence on the depth L versus the
logarithmic dependence on the width N conflicts with the result that a deeper neural net
generalizes better than a shallower one as often empirically observed. In the meantime, a
deeper neural net could yield a smaller approximation error with fixed neurons (Rolnick et al.
2018), which would then compensate for the increased variance caused by a deeper neural

net. This reveals an interesting bias-variance trade-off phenomenon.

3.5 Adaptive Architecture Search

In Section 3.4, we establish the distributional convergence of VB posterior (3.4) under the
Hellinger metric, with a pre-specified DNN architecture, say depth L, width N and sparsity
s. Ideally, one would like to choose the network structure that minimizes the RHS of (3.4),
thus leading to a better convergence guarantee. However, this best choice is generally not
available due to the fact that the approximation error &, critically depends on the nature (e.g.,
continuity and smoothness) of the unknown fy. Therefore, in this section, we will develop
an adaptive variational Bayes inference procedure, under which the variational posterior
contraction achieves the same convergence rate as if the optimal choice of network structure

was given.
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To simplify our analysis, we assume that the network depth L is already well specified,
and are only concerned about the adaptivity with respect to the network width and sparsity.
Note that for a certain family of fy, e.g., fo is Holder smooth, the optimal choice of L can
indeed be specified without additional knowledge of f; (refer to Section 3.6 for detail).

To be more specific, we define
(N*,s%) = argr%in{rn(s,L,N) + &n(s, L, N)},

and consider 12p/N* and s* to be the optimal network structure configuration for width and
sparsity respectively. Such a choice strikes an optimal balance between variational error and
approximation error. It is worth mentioning that the estimation error term &2 is of the same
order as 7, (up to a logarithmic term). Therefore, the optimal choice (s*, N*) does minimize

the RHS of (3.4) (up to a logarithmic term). We further define

log’(n)

. M,\/(L +1)s*log N* + s*log((L + 1)n/s*)

n

for some constant M’ r* = r,(L,N* s*) and &' = &,(L, N*,s*). They represent the
estimation error, variational error and approximation error respectively, under optimal
choices N* and s*.

In addition, the following conditions are imposed on the optimal values N* and s*:

Condition 3.5.1 1 < max{(L+ 1)s*log(pN*), s*log(n(L+1)/s*)} = o(n®) for some a < 1.
Condition 3.5.2 7} = .
Condition 3.5.3 s* > 12pN* + L + 1.

Condition 3.5.1 assumes that the optimal network structure, in the asymptotic sense, is a
sparse one. This is reasonable as it essentially requires that the data can be well approximated
by a sparse DNN model. If this condition fails, there will be no basis for conducting sparse
DNN modeling. Condition 3.5.2 implies that the choice (N*, s*), which minimizes r, + &,,
also strikes the balance between r,, and &,. Condition 3.5.3 avoids the redundancy of network

width. If this condition is violated, then there must be redundant node (i.e., node without
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connection) in every hidden layers. In such a situation, all these redundant nodes shall be
removed from the network configuration, leading to a narrower network.
In the Bayesian paradigm, the adaptivity can be achieved by impose a reasonable prior

on (N, s). In other words, we expand the prior support to

OOHN

U UZF&.pk. ),

N=1s5=0

J’.'

where p% = (12pN,...,12pN) € RF and Ty is the total possible number of edges in the
L-hidden-layer network with layer width 12p/N. The prior specification on the network
structure is similar to Polson et al. 2018, that is
)\N
T(N)= = for N>1,
(6/\ — 1>N' (35)

n(s)oce ™ for s =0,

where \; satisfies ne¥?/s* > Ay = a(L + 1) logn for some a > 0.
To implement variational inference, we consider the variational family Oy s that restricts
the VB marginal posterior of N and s to be a degenerate measure: every distribution ¢(#, N, s)

in Qs follows

q(N) =0y, q(s) =105 q(nlN,s) = Bern(¢),
q(0i]) = nM(0:) + (1 —71)do,

(3.6)

for some N € Z* and 5 € Z>°. This choice of variational family means that the VB posterior

will adaptively select one particular network structure (]/\\f ,8) by minimizing

q(0,N,s) = argmax KL(q(0, N, s)|n(0, N,s|D)).
q(0,N,s)eQnN,s

Note that KL(q(d, N, s)|(0, N, s|D)) = —logn(N,5) + KL(¢(0|N, 5)|p(0, D|N,5)) + C, for

some constant C. Let
ON,5) = max [~KL(a(0|N,5)]p(6, DIN, 5))]
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be the maximized ELBO given the network structure determined by parameters N and 5.

Then

A~ — —

(N,3) = arg r?vagc[Q(N, 5) + log (N, 5)]. (3.7)

In other words, the above VB modeling leads to a variational network structure selection
based on a penalized ELBO criterion, where the penalty term is the logarithm of the prior of
N and 5.

In Bayesian analysis, model selection relies on the (log-)posterior: logm(D|N,3) +
logn(N,5). Thus, the proposed variational structure selection procedure is an approxi-
mation to maximum a posteriori (MAP) estimator, by replacing the model evidence term
log t(D|N, 5) with the ELBO Q(N,5).

Our next theorem shows that the proposed variational modeling attains the best rate of

convergence without the knowledge of optimal network architecture N* and s*.

Theorem 3.5.1 Under the adaptive variational Bayes modeling described above, we achieve
that
f (P, Po)Q(0)d6 < C'[e2 + 7% + €7] (3.8)

holds with dominating probability for some constant C" > 0.

It is worth mentioning that the above result doesn’t imply the adaptive variational

procedure exactly finds the optimal choice such that N ~ N* and § ~ s*.

The proof of
Theorem 3.5.1 only shows that the adaptive VB procedure avoids over-complicated network
structures, such that N and 5 will not be overwhelmingly larger than the N* and s*
respectively. Note that (IN*, s*) is the universal optimal choice, in the sense that it ensures
that for any data set generated from the underlying model (3.1), the corresponding variational

inference is the best. Note that (ﬁ ,S) is a data-dependent choice, which differs from data to

data and may be quite different from (N*, s*).

3.6 Applications

In this section, we will apply the general theoretical results to two important types of

ground truth: 1) fy is some unknown Hoélder smooth function and 2) fy exactly corresponds
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to an unknown sparse DNN model, i.e., the teacher-student framework Tian 2018; Goldt

et al. 2019.

3.6.1 Holder smooth function

we assume the unknown fy belongs to the class of a-Holder smooth functions H;, defined

as

50 = 25 )

Ho = {Fofl5= D) 10 fle+ D, swp e
Kilk|<a k:|K|=|a] z,yex[;;,l]p ’l’ o y’@

To quantify the approximation error &,, certain knowledge of approximation theory is
required. There is rich literature on the approximation properties of neural networks. For
instance, Cheang and Barron 2000 and Cheang 2010 provided tight approximation error
bound for simple indicator functions; Ismailov 2017 studied approximation efficiency of
shallow neural network. Some recent works characterize the approximation accuracy of
sparsely connected deep nets Schmidt-Hieber 2017; Bauler et al. 2019; Bolcskei et al. 2019 as
well.

The following lemma is due to Schmidt-Hieber 2017, Theorem 3.

Lemma 3.6.1 Assume fy € Hy for some a > 0, then there exists a neural net fe F(L,p,s)

with p = (12pN, ..., 12pN) € RY whose bias and weight parameters are bounded by 1, and

L = 8 + ([logy n] + 5)(1 + [log, p]),
s < 94p* (o + 1)* N (L + [log, p]), (3.9)
N = Ol flog(n),

for some positive constant Cy, such that
2 N
If = follo < @l folS, + 1)37F = + | foll 5,22 (N) =/, (3.10)
n

Lemma 3.6.1 summarizes the expressibility of sparse ReLU DNN in terms of its depth,
width and sparsity. It trivially implies that if L, N,s satisfy (3.9) and p = O(1), then
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max(&p, T, €2) = O(n?*/(2o+P) 1og° n) for some § > 1. Therefore, Theorem 3.4.1 implies the

following corollary.

Corollary 3.6.1 Assume fo € Hy for some known a > 0, where p = O(1). Choose L, s and

N as in (8.9). Then, our variational modeling satisfies that
JdQ(Pg, P)a(0)do < C'[n/Co4D) 1og? (n) ]2, (3.11)

with dominating probability, for some 0 > 1 and some constant C' > 0.

Corollary 3.6.1 establishes the rate minimaxity (up to a logarithmic factor) of variational
sparse DNN inference. The established rate matches the contraction rate of the true Bayesian
posterior (Polson et al. 2018) and therefore implies that there is no sacrifice in statistical
rate with variational inference. Note that (3.11) also implies that the VB posterior mass of
{d(Py, Py) = C'n~*/tP) ]og’ (n)} converges to zero in probability, hence almost all of the
VB posterior mass contracts towards a small Hellinger ball with (near-) minimax radius
centered at .

The choices of N and s in (3.9), although lead to rate-minimaxity, relies on the smoothness
parameter o which is usually unknown in practice. Therefore, the adaptive variational
modeling discussed in Section 3.5 can be implemented here to select a reasonable N and s

adaptively, such that the rate (near-)minimax convergence still holds.

Corollary 3.6.2 Assume fo € Hy for some unknown o > 0, where p = O(1). Choose L as
in (3.9) and let N and s follow the prior (3.5). Then result (3.11) still holds for the adaptive

variational approach.

3.6.2 Teacher-student framework

Under the Holder smooth assumption, the rate of convergence n~®/(*+P) suffers from
the curse of dimensionality. Note that this rate merely represents the worse-case analysis
among all Hélder smooth functions, which may not be suitable for real structured dataset.
Hence, in this section, we are interested in the teacher-student framework, i.e., the underlying

fo is exactly an unknown fixed sparse ReLLU network (so-called teacher network), that is,
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fo € F(Lo, py, So) for some Ly, py = (po1,---,PorL,) and sp, and its network parameter is
denoted by 6.

Our variational Bayes modeling with spike and slab prior can be used to train the so-called
student network, based on data generated by the teacher network. Adopting this teacher-
student framework can better facilitate the understanding of how deep neural networks work
in high-dimensional data as it provides an explicit target function with bounded complexity.

When certain information of teacher network structure is available, we have the following

result.

Corollary 3.6.3 Under the teacher-student framework, if we choose L = Lo, s = sg and N >
maxi<i<r, Po.i/(12p), Bo = ||0o]e (under uniform prior) and max{(L+1)slog(pN), slog(n(L+
1)/s)} = o(n) holds, then our variational Bayes approach satisfies

(3.12)

fd2(P9,Pg)(}\(9)d6’ < <slog(n(L +1)/s) + (L + 1)slog(pN) log%(n)) |

n
with dominating probability, for some constant C' > 0 and any § > 1.

The choice of (N, s) means that we delibrately choose a wider and denser network structure,
which ensures that the approximation error &, = 0.
When the information of sy and p, is not available, by adopting the adaptive variational

modeling we also have the following result:

Corollary 3.6.4 If the teacher network structure satisfies that max{(Lo+1)s log(p max po;),
solog(n(Lo + 1)/s0)} = o(n®) for some a € (0,1), and we choose L = Ly, and let N and
s follow the prior (3.5), By = ||0] (under uniform prior), then our adaptive variational

Bayes approach satisfies

solog(n(Lo + 1)/s0) + (Lo + 1)s log(p max po ;)
n

J d2(Py, P))q(0)do < C’ ( log”(n)) ,

(3.13)

with dominating probability, for any 6 > 1 and some constant C' > 0.

The above two corollaries show that, under the teacher-student framework, the input

dimension p (i.e., input layer width) and hidden layer width po have at most logarithmic
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effect on the VB posterior convergence rate. Therefore, it doesn’t suffer from the curse of

dimensionality.

3.7 Convergence under L, Norm

Our main theorems 3.4.1 and 3.5.1 concern the posterior convergence with respect to
the Hellinger metric. Although commonly used in the Bayesian literature (Ghosal and
Van Der Vaart 2007; Pati et al. 2018; Zhang and Gao 2019), Hellinger distance is of less
practical interest than Ly norm, i.e., Ex|fo(X) — fo(X)|?, for regression problems. However,
a result directly addressing the Lo convergence may not be reasonable due to the extreme
flexibility of DNN models. For instance, given p = 1, two ReLU DNN networks fy(z) =0
and fy(x) = Mo(z — 1 + €) can have arbitrarily large Ly distance when M is sufficiently
huge, but are impossible to be discriminated when ¢ is so tiny that no sampled X; visits the
interval [1 — ¢, 1].

Accordingly, our Lo convergence result will exclude the “irregular” DNN model fy’s whose
L, distances from fy are mostly contributed by the integral of [fs(x) — fo(x)]? over some
tiny-measure subset of [—1,1]?. To be more precise, we define the Ly distance between fy
and fo as L3(fy, fo) = Ex|fo(X) — fo(X)|?, and let G = F(L,p, s) be the subset class of all
“regular” DNNs that satisfy

Ex{|fo(X) = fo(X)*L(X € )} = £L3(fo, fo).

for some constant 0 < k < 1, where

S = (X [£o(X) = fo(X)|2 < WL2(fo, fo)},

for some 7, — . G represents the DNNs that possesses a large enough expected square
Ly distance between fy and fy on a set S where |fy(X) — fo(X)|? is upper bounded, and
the integral of [fo(x) — fo(x)]? over 8¢ doesn’t make dominating contribution to L3(fo, fo).
Naturally, G excludes the cases when L3(fp, fo) is mainly determined by the data from only
a small set of the support of X.
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Let £2 denote the Hellinger convergence rate in Theorem 3.4.1 or 3.5.1, i.e., £2 is of the
same order as the RHS of equation (3.4) or (3.8). We have the following convergence result
regarding L, metric, which states that the variational posterior mass over the irregular DNNs,

which have Ly error greater than M2, is negligible.

Theorem 3.7.1 Given any pre-specified network family as Theorem 8.4.1 or under the
adaptive variational Bayes modeling as Theorem 38.5.1, if 7,2 = o(1), then we have that

w.h.p.

)
>
~—
U
>
I
)
—~
—_
~—

Lm{L%(f()vfG)?Mng%}

for any sequence M, — 0.

Remark In the literature, there do exist some direct results regarding L, convergence
rate of DNN learning and these results usually rely on some regularity condition such as
the Ly boundedness of DNNs in the model space (Schmidt-Hieber 2017; Polson et al. 2018).
However, in practice, it is usually infeasible to ensure that the trained DNN models meet the
pre-specified bound, since the relationship between the magnitude of 6 and |fy|s is rather

complicated.

3.8 Gumbel-softmax Approximation

To conduct optimization of negative ELBO via stochastic gradient optimization, we need
to find certain reparameterization for any distribution in Q. One solution is to use the inverse
CDF sampling technique. Specifically, if § ~ ¢ € Q, its marginal 6;’s are independent mixture

. d
of (3.3). Let Fiy 0,4, be the CDF of 6;, then ¢; = F(M370i7¢i)(ui) holds where u; ~ U(0,1).
This inverse CDF reparameterization, although valid, can not be conveniently implemented

within the state-of-art python packages like PyTorch. Rather, a more popular way in VB is

to utilize the Gumbel-softmax approximation.

27



In particular, since it is impossible to reparameterize the discrete variable « by a continuous

system, we apply the continuous relaxation - Gumbel-softmax approximation (Jang et al.

2017; Maddison et al. 2017) for the binary variable +; ~ Bern(¢;), that is

1

1 + exp(—(log 1fi¢i + log ﬁ)/ﬂ,

’71 = gT(qbl; ui) Ui ~ Z/{(Oa 1)7

where 7 is called the temperature, and as it approaches 0, 4; converges to v; in distribution

(refer to Figure 3.1). In addition, one can show that
PG> 0.5) = &,

which implies

%L 1(% > 0.5).

Thus, 7; is viewed as a soft version of 7;, and will be used in the backward pass to enable the
calculation for gradients, while the hard version +; will be used in the forward pass to obtain
a sparse network structure. In practice, 7 is usually chosen no smaller than 0.5 for numerical
stability.

The Gumbel-softmax approximation introduces an additional error that may jeopardize
the validity of our theorems. Our exploratory studies (refer to Appendix B) demonstrates little
differences between the results of using inverse-CDF reparameterization and using Gumbel-
softmax approximation in some simple model. Therefore, we conjecture that Gumbel-softmax
approximation doesn’t hurt the VB convergence, and thus will be implemented in our

numerical studies.

3.8.1 Comparison between Bernoulli variable and the Gumbel softmax approx-
imation

Denote v; ~ Bern(¢;) and 5; = ¢,(¢:; u;), rewrite 7; as

Y= g(di;ui) = 1(u; < ¢5)  where u; ~U(0,1).
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Fig 3.1 demonstrates the functional convergence of g, towards g as 7 goes to zero. In
Fig 3.1(a), by fixing ¢;(= 0.9), we show g, converges to g as a function of u;. Fig 3.1 (b)
demonstrates that g, converges to g as a function of o; = log(¢;/(1 — ¢;)) when w;(= 0.2)
is fixed. These two figures show that as 7 — 0, g, — ¢g. Formally, Maddison et al. 2017

rigorously proved that 4; converges to 7; in distribution as 7 approaches 0.

1.04 104

— grwitht=1

gr with T=0.5
—— g with 7=0.1
— g with T=0.01
0.6 4 064 ———— g

0.8 4 0.8 4

value
value

0.4 — g witht=1 0.4
gr with T=0.5
021 — g Witht=0.1 02
— g-with T=0.01
0.0 -9 0.0
0.0 0:2 0:4 0:6 O.‘E 10 -10.0 77“5 75‘0 72“5 0.‘0 2:5 5.‘0 7.‘5 10.0
uj Q;j
(a) Fix ¢; = 0.9. (b) Fix u; = 0.2.

Figure 3.1. The convergence of g, towards g as 7 approaches 0.

3.9 Implementation

In this section, the implementation details of Adaptive Sparse Variational Inference (ASVI)

are provided.

3.9.1 Approximated negative ELBO

The exact AVSI algorithm requires one to figure out (N, s) and compare (N, s) across
different choices of N and s. Our approximation integrates out the sparsity variable s in the

hierarchical modeling, i.e., we consider the prior

AN
T(N) = @ )N for some N € Z7,
T T
n(y|N) = C1e—AsF/<F>, with ' = 2%, for ¢; > 0, (3.14)
i=1

T(6i]y1) = 1 Mo(6:) + (1 — )do,

29



where T is the total number of possible connections given width multiplier N. The corre-

sponding VB family is

q(N) =45, q(n|N) = Bern(¢),
q(0i|v) = nM(0;) + (1 —7)do,
for some N € Z*.

Under Gaussian slab distribution, the negative ELBO (up to a constant) corresponding

to the above VB modeling is a function of N, u;, 07 and ¢;’s,

—Q = — | logp(DI0,~, N)ddy

—

+

VR

H
Il
—_

q(vi = 1)KL (6;; i, 07) N (6;; 0, 07))

+ KL(g(7|N)|r(~|N)) — log n(N).
Let

Jlogp DI6,~, N)dfd~
T

+Zq = D)KL(N(65; i, 07) [N (650, 55))
i=1

+ KL(q(v|N)|n(~|N))
=Ly + Lo + Ls,

and

—Q(N) = argminL. (3.15)
{ui,00,61}
Thus the optimal N value N maximizes the penalized ELBO: Q,(N) = Q(N) + logn(N).
To approximate and optimize £, we study each of the three terms:
i) £, = —{logp(D|0,7)q(0]7)q(y|N)dfdy requires Monte Carlo estimation. We use
reparameterization trick (Kingma and Welling 2014; Rezende ¢t al. 2014) for the normal
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slab distribution M(6), i.e., M(6};) is equivalent in distribution to u; + o€ for ¢ ~ N(0,1).
In other words, let n(i, 03, ¢5; €, u;) = 1(gr(di;u) > 0.5)(s + oi€;) and i, 03, O3 €, u;) =
9+ (bs; ui) (i + oi€;), then the stochastic estimator (Kingma and Welling 2014) for £; (used

for forward pass) is

nl&E
%EZ log p(D;|0%) (3.16)
j=1k=1
k) — (g®) N S (5 N (5 N
where 6 (0 9T ), 6 n(wi, o1, ¢5; 6, w; ). Dy’s are randomly drawn from D,

s and u/*’s are randomly drawn from A/ (0,1) and U(0, 1) respectively, n is the sample

size, m is the minibatch size and K is the Monte Carlo sample size. The stochastic estimator

for VL (used for backward pass) is

K
D, 2. Viulogp(Di[6"),

k=

Z V., log p(D;|0™), (3.17)

3=
= =
NgE

.
Il
—_

Vuli=—

—_

|

3=
==
NgE

.
I
—

Vo Ly =

I
—_

log p(D;|0™*)).

3=

==
VI
M=

-
Il
_
e
Il
—

%@‘Cl == V(b'

1

Where 9 (ggk), 9 ) H(k (M170—17¢17 € 7 1(k))
ii) Ly is straightforward that

q( = DKL(N (6;; i, 07) |IN(65;0, 07))

—0.5). (3.18)

D= 1D

2 2
¢i(log — + 5
o 20§

i=1
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iii) To compute L3, certain approximation is needed. Denote I'" as the set of all possible

v =(7,...,7r), then

KL(g(7|N)|m(v|N))

q\, -5 0T
=) log L0022 9T) )
2218 )

4 q(v,- )
==212210g4————————*q0h,~-,7T)

e ()

For the sake of fast computation, we approximate the VB distribution ¢(y) by iid Bernoulli
distribution ¢(v) ~ [J¢" (1 — ¢)' ™, where ¢ = T LS ¢;. Under this approximation:

717"'77T
Zlo )q(vl,...,vT)
et ")/1,...,"}/T

~ X og ¢’t OO oy gyre

|F—t)
T ¢(1_¢) - ’“t NT—t
:<t>1°g wr—g) 00

(A -
L8 My = ) (t

=log Pr(I' =t)Pr(I' =t) + A\tPr(I' =1t) + Cy

)5%1 — gy

where () is some constant. Therefore, KL(q(7)||®(7))) is approximated by
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> log %"”’W) q(v1s -5 7)

~el'T 717 s 7’7T)
S a5 r)
:Z IOg 9(717---7’7T)
t=0T= (71)'~'77T)
T T
22 log Pr(I" P(th)—l—AsZtPr(F:t)—i—C’g
t=0 t=0

= —H(T) + MET) + Cy
T

~ = 05logy(2me > (T — Y. ¢0)/T) + A, Y. 65 + C
i=1

~

=L (3.19)
where H(T") is the entropy of I" and C is some constant.

3.9.2 Algorithm

An additional re-parametrization transformation for o and ¢ is used,

— ¢

¢1 )7

= log(exp(o;) — 1), ¢; = log(

such that o/ and ¢/ € R. Let £ and VL denote the working approximations of £ and VL,
then £ = L + Ly + L3 using (3.16), (3.18) and (3.19). Furthermore, there exist explicit
gradients of Lo and Z; with respect to ¢!, u; and of, which facilitates the calculation of the
approximate gradient \J along with (3.17).

The complete adaptive sparse variational inference is described in Algorithm 2, where we

use Q(N) and (NZP(N ) to denote the working approximations of Q(N) and §,(N) respectively.

3.10 Experiments

In this section, we investigate the performance of the proposed Adaptive Sparse Variational
Inference (ASVI) with Gaussian slab prior through empirical studies. To implement ASVT,

after pre-specifying the depth L, one needs to assign prior distributions for N and s according

63



Algorithm 2 Adaptive sparse variational inference with normal slab distribution.

1: Hyperparameters: A, Ay, o

2: Parameters: u,o’, ¢/

3. Candidate set of N: N4

4: for all N € N4 do in parallel

5 repeat

6 {D;}i2, < Sample a minibatch of size m

7: {Gi(k)}1<k<K,1<i<T — i.i.d. samples from N(0,1)

8 {Ui(k)}lgkgK,lgisT «— 4.1.d. samples from (0, 1)

9: L < (3.16), (3.18) and (3.19)

10: %ML', %Giﬁ, %@E « Gradients of £, and L3 together with (3.17)
11: %gfﬁ “«— %UVC : Voi’O'i

12: %d):,c «— %%‘C : V¢§<bi

13: i, ol, @) «— Update with %Mﬁ, %J;E, %qg;[, using gradient descent algorithms
14: (e.g. RMSprop or Adam)

15: until convergence of L

16:  —Q(N) < L

17 =, (N)— —Q(N) —logn(N) with (N, A)

18: end for

19: N = argminNeNA(—ﬁp(]\_f))
20: return N and (i, o', ¢'|N)
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Table 3.1. Results for teacher network experiment. The average test RMSE
with standard error and average posterior number of edges with standard error

are exhibited.

Test RMSE # of edges

Width ASVI SVI HS-BNN Dense-BNN ASVI SVI HS-BNN Dense-BNN
2 - 2.193 + 0.195 2.193 + 0.163 2.131 + 0.097 48.28 + 2.099 51.00 + 0.000 51.00 + 0.000
4 - 1.636 + 0.069 1.715 + 0.160 1.591 + 0.087 94.43 + 4.499 109.0 + 0.000 109.0 + 0.000
6 - 1.210 + 0.049 1.322 + 0.179 1.190 + 0.033 125.7 + 8.805 175.0 + 0.000 175.0 + 0.000
8 - 1.065 + 0.038 1.108 + 0.048 1.046 + 0.021 135.5 + 10.87 249.0 + 0.000 249.0 + 0.000
10 - 1.014 + 0.023 1.058 + 0.029 1.014 + 0.010 151.1 + 13.25 331.0 + 0.000 331.0 £ 0.000
12 - 1.019 + 0.085 1.035 + 0.016 1.010 + 0.007 166.1 + 14.41 421.0 + 0.000 421.0 £ 0.000
14 - 1.018 + 0.093 1.034 + 0.010 1.011 + 0.009 177.3 + 15.62 519.0 + 0.000 519.0 + 0.000
16 - 1.011 £+ 0.037 1.032 + 0.010 1.009 + 0.005 186.1 + 16.48 625.0 £ 0.000 625.0 £ 0.000
18 - 1.005 + 0.008 1.030 + 0.010 1.010 4+ 0.005 190.3 + 15.87 739.0 + 0.000 739.0 + 0.000
20 - 1.003 £+ 0.006 1.029 + 0.008 1.010 + 0.007 192.5 + 13.78 861.0 + 0.000 861.0 + 0.000
Adaptive 1.003 £+ 0.010 - - - 155.9 + 15.58

to (3.5), and assign uniform prior (3.2) over the network structure v given s. However, as
emphasized in the introduction, it is not computationally feasible to solve ASVI, since the
exact minimization of negative ELBO requires exhaustively search over all possible sparse
network structures. As a consequence, in this numerical studies section, an approximated
solution of ¢ is used instead. The details of the approximation and implementation of ASVI
are presented in Section 2 of the Appendix. In short words, we integrate out the sparsity
variable s in the hierarchical prior (3.5), and only consider the marginal modelling of N and 6.
Given the width multiplier NV, the maximized ELBO €(N) is obtained by back propagation
with the help of some approximation and binary relaxation. The optimal structure is then
selected by the penalized ELBO criterion similar to (3.7). In this simulation, we typically
specify 5-10 levels of width choices and compute 2(N) for different N in parallel.

For all the numerical studies, we use the VB posterior mean estimator f = 2?201 fo,/30 to
assess the prediction accuracy, where 6;’s are randomly drawn from the VB posterior q(f).
We use § = Zil ¢;/H to measure the posterior network sparsity. We compare our method to

Horseshoe BNN (HS-BNN) (Ghosh, Yao, et al. 2018) and dense BNN (Blundell et al. 2015).

3.10.1 Simulation study

We consider a simulated experiment under the teacher-student framework. As shown in
Fig 3.2 (a), we use a 2-hidden-layer teacher network with ReLLU activation, where the specific
structure is 20-10-10-1. The edges of the teacher network are first randomly generated from

U(0.5,1.5) and then randomly set to 0 by a rate of 50% to ensure a sparse structure. We
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Figure 3.2. (a) Teacher network with structure 20-10-10-1, where 50% of
the edges are set to 0 randomly. (b) Frequency of the selected width in 50
replications.

Table 3.2. Average test RMSE with standard error for UCI regression datasets.

Dataset n (p) SVI HS-BNN PBP

Kin8nm 8192 (8) 0.08+0.00 0.0840.00 0.1040.00
Naval 11934 (16)  0.00+0.00 0.00+0.00 0.0140.00
Power Plant 9568 (4) 4.02+0.18 4.03+£0.15 4.12+0.03
Protein 45730 (9) 4.36+£0.04 4.39+0.04 4.73+0.01
Wine 1599 (11)  0.62+0.03 0.63+0.04 0.6440.01
Year 515345 (90) 8.85+NA  9.26+NA  8.88+NA

fix the depth L of student net to 2 in the experiment, and consider the width of student
net to range from 2 to 20 with a increment of 2. We randomly generate 50 datasets of
size 10000 from the teacher network with random noise variance o. = 1 for training, and
the adaptive variational inference is performed on each of these datasets to select the best
network structure. The remaining implementation details can be found in the Appendix.
Fig 3.2 (b) plots the frequency of the selected width among the 50 replications. It shows
that in most time the ASVI selects width 10 or 12, which is close to the true width. We
compare the test Root Mean Squared Error (RMSE) of ASVI against non-adaptive SVI (i.e.,
ASVI without width selection), HS-BNN and Dense-BNN with all the choices of width. The
result is displayed in Table 3.1. It shows that ASVI achieves best test Root Mean Squared
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Error (RMSE), which is quite close to the random noise (0. = 1). In addition, the number of

edges selected by ASVT is also close to the ground truth (around 165.5).

3.10.2 Real data

We compare the performance of our method to others on UCI regression tasks and MNIST
data. For UCI datasets, following the same experimental protocol as Hernandez-Lobato
et al. 2015, a single layer neural network of 50 units with ReLLU activation is used for all the
datasets, except for the larger ones "Protein” and ”Year”, where 100 units are used. For
the smaller datasets, we randomly select 90% and 10% for training and testing respectively,
and the process is repeated for 20 times. For "Protein”, only 5 replication is performed. For
"Year”, where the training and testing datasets are predefined, the process is only done once.
We compare our method to HS-BNN and probabilistic backpropagation (PBP) of ibid. For
MNIST, we use a two hidden layer ReLLU network with width of {400, 500, 600, 700, 800}.
Other Implementation details can be found in the Appendix.

Table 3.2 shows our method (SVI) performs as well as or better than the other methods
on UCI datasets with pre-determined architecture. Figure 3.3 shows our method achieves
best test accuracy for MNIST data, with a selected width of 700 and posterior sparsity of
6.01% (62855 edges) at epoch 300.

0.990
— ASVI
HS-BNN, width=400
0.985 - HS-BNN, width=500
- ___,,__.r—~—f—‘*'”'“'#‘* HS-BNN, width=600
R b HS-BNN, width=700
5 0980 o i T T T T T R e HS-BNN, width=800
e T S ~ Dense-BNN, width=400
< b= Dense-BNN, width=500
0.975 - Dense-BNN, width=600
Dense-BNN, width=700
- Dense-BNN, width=800
0.970 -

T T T T T
100 125 150 175 200 225

Epochs

T
250

Figure 3.3. Test accuracy for MNIST data
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3.10.3 Remaining implementation details

Teacher network The batch size is set as m = 1024, and Monte Carlo size K = 1 during
training. Adam is used for optimization with a learning rate of 5 x 1072, and the number of
epochs is 7000. Ay is chosen as 3 (a = 0.1) and A is chosen as 10, oy is fixed at 0.8.

UCI datasets For all the datasets, the batch size is set as m = 256, Monte Carlo size K
is set as 1 during training, and Adam is used for optimization with a learning rate of 1 x 1073,
The number of epochs is 1000 for "Naval”, "Power Plant” and ”"Protein”, 2000 for "Kin8nm”
and 100 for "Year”. oy and o, are determined by a grid search that yields the best prediction
accuracy.

MNIST The batch size is set as m = 512, and Monte Carlo size K = 1 during training.
RMSprop is used for optimization with a learning rate of 5 x 1073, and the number of epochs
is 300. A is chosen as 50 (a = 1.5) and A is chosen as 600, oy is fixed at 2. MNIST data is
standardized by mean of 0.1307 and standard deviation of 0.3081.

3.11 Conclusion and Discussion

In this chapter, we investigate the theoretical aspects of variational inference for sparse
DNN models. Although theoretically sound, the spike and slab modeling with Dirac spike is
difficult to implement in practice, and some continuous relaxation is required that deserves
further theoretical investigation. In addition, despite the fact that the proposed uniform
prior distribution for s guarantees good theoretical properties, it is also not practical and
some approximation is involved in our implementation. Therefore, some alternative choice of

prior distribution could be investigated in the future.

3.12 Main Proofs

The detailed proofs for our lemmas and theorems are included in this section.
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3.12.1 Proof of Lemma 3.4.1

Lemma 3.12.1 restates the Donsker and Varadhan’s representation for the KL divergence,

its proof can be found in Boucheron et al. 2013.

Lemma 3.12.1 For any probability measure X and any measurable function h with e € Li()\),

og [ O7(d) = sup | [ ntnotan) ~ K251

The next lemma proves the existence of a testing function which can exponentially separate
Py and {Py : d(Py, Pp) = €y, Py € F(L,p, s)}. The existence of such testing function is crucial

for Lemma 3.4.1.

Lemma 3.12.2 Let ¢, = M\/Slog("L/s)zLSbg(pm log’(n) for any § = 1 and some large
constant M. Then there ezists some testing function ¢ € [0,1] and C; > 0, Cy > 1/3, such
that

Er,(¢) < exp{—Cine>},

sup  Ep,(1—¢) < exp{—Cynd*(Py, Fp)}.
PgE.F(L,p,S)
d(Pg,P0)>€n

Proof 6 Due to the well-known result (e.g., Le Cam 1986, page 491 or Ghosal and Van
Der Vaart 2007, Lemma 2), there always exists a function ¢ € [0, 1], such that

Ep, (¢) < exp{—nd*(Py,, F)/2},
Ep, (1~ ) < exp{—nd*(Py,, Fy)/2},

for all Py € F(L,p, s) satisfying that d(Pp, Pp,) < d(Fy, Py,)/18.

Let K = N(eg,/19,F(L,p,s),d(-,-)) denote the covering number of set F(L,p,s), i.e.,
there exists K Hellinger-balls with radius ,/19, that completely cover F(L,p, s). For any
0 e F(L,p,s) (W.O.L.G, we assume Py belongs to the kth Hellinger ball centered at Py, ),
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if d(Py, Py) > €,, then we must have that d(Fy, P, ) > (18/19)e,, and there exists a testing
function 1)y, such that

Ep, (Vx) < exp{—nd®(Py, , Py)/2}
< exp{—(18%/19%/2)ne2},
Ep, (1 — 1) < exp{—nd*(Py,, P)/2}
< exp{—n(d(Py, Py) — £,/19)?/2}

< exp{—(18%/19%/2)nd?*(Py, Py)}.

Now we define ¢ = maxy_; g ¥r. Thus we must have

.....

Epy(¢) < D Ep (1) < K exp{—(18/19°/2)ne}}
< exp{—((182/19?/2)ne? — log K)}.

Note that

logK = log N(Z‘:n/lg,F(Lapa S)vd('7 ))
< log N(v/80.6,/19, F(L,p, s), | - | )

< (s+ )log(\fa (L + 1)(12pN + 1)2E+1)

1
< slog - + slog(n(L +1)/s) + s(L + 1) log(pN)

n

< ne2/4, for sufficiently large n, (3.20)
where the first inequality is due to the fact

d*(Pp, Py) < — foll}

and &, = o(1), the second inequality is due to Lemma 10 of Schmidt-Hieber 2017. Therefore,

Ep, (¢ ZPO Vi) < exp{—Cine2},
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for some C; = 18%2/19%/2 — 1/4. On the other hand, for any 6, such that d(Pp, Py) = &,, say
Py belongs to the kth Hellinger ball, then we have

]EP0<1 - (b) Epe)(l - wk> exp{ and <P07 P9>}
where Cy = 18%/192/2. Hence we conclude the proof. |

Now, we are ready to prove Lemma 3.4.1.
Proof 7 It suffices to construct some ¢*(0) € Q, such that w.h.p,
KL(¢*(0)|r(0)) + Jln(Po, Py)q*(0)do

3nr,
5 -
20

3n .
<nTn+@1%f er—fo”go+ (3.21)

Let 0* = argmingeo, (L pys) |fo — fo|3 and we choose the same ¢*() that has been used
in the proof of Theorem 2 of Chérief-Abdellatif 2020. Specifically, for all h = 1,...,T,
v =16 # 0), and

i) For uniform slab distribution,

On ~ U([0F — an, 05 + an]) + (1 —75)do, (3.22)
L2 2 _
where a, = = (12BpN)L{(p + 1 + 12BpN 1)2(1QBPN)2 + (1QBP§V)2 T + ) 1

ii) For Gaussian slab distribution,

where 02 = 73-10g(36pN) "' (24BpN) " *{(p + 1 + 12Bp1N—1)2 + (24315\,)2_1 + 24BpN 7t L

Accordmg to the proof of Theorem 2 in ibid.,
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(0)|=(8)) < nry, (3.24)

f|f9 — fox|24%(0)d6 < 1, (3.25)

and the first term on L.H.S of (3.21) is bounded.
To upper bound the second term on L.H.S of (3.21), note that

(P, F2) =55 (1Y = fo( B~ IV = o))

=LY = A0 + 5~ KD - 1Y — X))

=L A = X + 20 = o). H(X) — H(X)).

Denote

Ry - f 1£o(3X) — fol3X) |24° (6)d6,
Ry — f O — olX), o) — fo(X)>q" (9)dB

Since | fo(X) = fo(X)[3 < nllfo — folZ < nllfo — fox[% + nll fox — fol%,
Ry < nr, + n||f9* - fOHgo
Noting that Y — fo(X) = € ~ N(0,021), then

Ry = f T (fo(X) — fo(X))q* (6)d6
T J (folX) — fo(X))q* (6)d6
~ N(O’ CerQ)a

where ¢ = | {(fo(X) — fo(X))g*(0)dd]3 < Ry due to Cauchy-Schwarz inequality. Then by

Gaussian tail bound
R?
1

Py(R2 = Ry) < eXP(_202R1

),
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which implies Ry < Ry w.h.p.. Therefore,
Jln<P07 Py)q*(0)d0 = R1/20% + Ry/0? < 3n(r, + | for — fol%)/202, w.h.p.,

which concludes this lemma together with (3.24).

|
3.12.2 Proof of Lemma 3.4.1
The proof is adapted from the proof of Theorem 3.1 in Pati et al. 2018.
Proof 8 We claim that with high probability (w.h.p),
M = L n(Py, Py)m(0)df < 7" (3.26)

for some C' > 0, where logn(FPy, Py) = 1.(FPy, Py) + %d2(P9,PO). Thus by Lemma 3.12.1,
w.h.p.,

n

3
<C"%fFKLQW)RWD-—JLAR%Rﬂﬁ@dQ

Jd2(Pe,Po)a(9)d9

<CMi+KMd®WWD—J%G@%MWM9

holds for any distribution gy. The last inequality holds since that KL(q(0)|n(0))— 1.(Ps, Po)q(6)do
is the negative ELBO function up to a constant, which is minimized at ¢(6). This concludes
Lemma 4.3.

To prove (3.26), we define

and will bound both M; and M,.
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For M, by Fubini’s theorem,

EPOMl :J Jpe(D)eng(PQ:PO)
d(Pp,Po)<en po(‘D)

dPy(D)m(0)do

_ J o3 (PP () 46
d(Pg,Po)Ssn

n 2
<es™m,

It follows from Markov inequality that M; < e“"n w.h.p..

For M,, we further decompose it as My = Ma; + Moo,

Myt — f on( Py, Po)m(6)do,
d(Pg,P())>€n

My, — f (1— @)n(Py, Py)(0)d0,
d(Pg,P0)>€n

where the testing function ¢ is defined in Lemma 3.12.2.
For My, since Ep[¢p] < e e ¢ < e Ci"n for some €] > 0 w.h.p., thus My <
e~ Cinen M, w.h.p.

For Ms,, by Fubini’s theorem and Lemma 3.12.2,

Ep, M = f Ep, (1 — ¢)ei (- Mn(0)dp

d(Py,Po)>en

< e—(C’g—l/?))nafL = e—Cénaﬁ'

Thus, M, < e~ Cinen M, + e~ Canen w.h.p., which implies that M < e~ Canen w.h.p. for some
C, > 0.
Combine the boundedness results for both M; and Ms, we conclude (3.26).

3.12.3 Proof of Theorem 3.5.1

The following Lemmas 3.12.3 and 3.12.4 consider the situation that the network width N

and s are not specified. These two lemmas prepares our proof for Theorem 3.5.1.
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Lemma 3.12.3 Let N, = cy[(L + 1)s*log N* + s*log((L + 1)n/s*)]log?(n) = ne*? and
SpAs =
cs[(L + 1)s*log N* + s*log((L + 1)n/s*)]log® (n) = ne*? for some constant ¢y and ¢, (N*,
s* and ¥ are defined in Section 5). If the neural network width N and sparsity s follow some
truncated priors with support {1,..., N,} and {0, ..., s,} respectively, and this prior satisfies
—logn(N = N*, s = s*) = O(ne?). Then similar results of Lemma 3.4.1 and Lemma 5.4.1
holds, that is for some C' > 0 and C' > 0, we have

JdQ(Pg, P0)d0 < 0=t + > int L KL(g(0)|m(0)) + Jln(Po, P)q(0)d0}, and

n q(9)eQ <3 27)

it {KLO)(6) + [ 1.(Po P)a(0)d8} < C'nef? + 1%+ €)

q(9)eQ

hold with dominating probability.

Proof 9 To prove the first result of (3.27), similarly to the proof of Lemma 3.4.1, it is essential
to show that there exists some testing function that achieves exponentially small error probabil-
ity. This further requires a bounded covering number of N (e* /19, [ ", U2, F(L, pk, 5), d(-, ).
Similar to (3.20), we have that

Nn sn
N(éf:;/lg, U U-F<L7p%78)7d(7))
N=1s=0
Nn  Sn
<log N (v/80.c* /19, UU]:LPNa A fleo)
=1s=

<log(sy,) +1og(N,) + (sn + 1) log(———— (L + 1)(12pN,, + 1)2E+D)

\/70-6 n

<ne*?/4,  given a large n,

where the last inequality holds due to the fact that log(N,) = logn, s,log(1/c}) =
splogn and Ay = a(L + 1)logn for some a > 0. Therefore, by the argument of Lemma
3.12.2, there still exists a testing function that separate Py and {Fp : d(Py, Pp) = €, Py €
U%”:l oo F(L*, p%’, s)} with exponentially small error probability. By the argument used
in the proof of Lemma 3.4.1, implies that first result of (3.27) holds.
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The proof of the second result of (3.27) follows the same argument used in Lemma 3.4.1.
We can choose the ¢*(6, N, s) € Qn s as ¢*(N) = dn+, ¢*(s) = s, and ¢* (0| N*, s*) = ¢*(0) as
defined in (3.22). Trivially, (3.25) still holds, and KL(¢*(0, N, s)|n(0, N, s)) < nr}—logn(N =

N* s =s*) = O(ne*? + nr¥). It hence concludes the result. [
The next Lemma is an improved result of Corollary 6.1 in Polson et al. 2018.
Lemma 3.12.4 Under prior specification (13),
(N = N, or s = s,|D) < exp{—cone*?},
where constant ¢ increases to infinity as cs (defined in Lemma 8.12.3) increases.
Proof 10 Due to Lemma A.4 in Song and Liang 2017, it suffice to show that
(N = N, or s = s,) < exp{—cine’?} (3.28)
logzzggi > exp{—cyne*?},  w.h.p. (3.29)

where ¢; increases to infinity as ¢, increases, ¢ > 0 is an absolute constant, m(D) =
§po(D)dm(0) is the marginal density.

Inequality (3.28) is true, since

—logn(N > N,,) = N, log N,, > ne** and

—log (s > 5,) = CAy8p, = ne*?,

hold for some constant C'.
To prove (3.29), it is suffice to find a subset F, = F, such that n(F,) > exp{—czne*?}

and w.h.p. py(D)/po(D) = exp{—cyne*?} for any py € F,. Such F, can be defined as
{foe F(L,p* = (12pN*, ..., 12pN*),s*) : [ fo — folo < &7},
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First, we show that pa(D)/po(D) = exp{—cynei?} for any ps € F,. Note that

—log pe(D)/po(D)

LS (X)) — (V- S0

2
20 =

<5 linlfo = Jolls + 2KV = fo(X), o(X) = Sl XD

Note that Y — fo(X) is a vector of i.i.d. normal N(0,0?), then by concentration inequality,

w.h.p,
(X = fo(X), fo(X) = fo(X))| < eney?

for some ¢ > 0, and we can conclude that w.h.p.,

> exp{—cinei?)

Second, we prove that m(F,) > exp{—czne’?} in the following. By Condition 3.5.2,
& =r* = 0(e*?), hence there must exists a NN fg e F(L,p*s*,7), where 4 denotes a specific

pattern of nonzero links among @7 s.t.

15— follo < €5/2-
By triangle inequality,

{f9 G'F(Lap*75*) : ||f9 - fOHOO < 8:}

2

S{fo e F(Lp"s"3) : 1 fo = fillo < 3}

Furthermore, from the proof of Lemma 10 of Schmidt-Hieber 2017, we have

* % D r 6:
{f9 Gf(L7p ;S 7,}/>Hf9_fé‘|00<5}
~ c*
S 101 < Land |00l < o)

where V' = (L + 1)(12pN* + 1).
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Therefore,

m{fo € F(L,p*5") : | fo = folln < €7}
_m{foe F(Lp* 5" ) < [fo — ol < 5}
()

>e~(EHDs 1os(20N ) g - 16]| . < 1 and [0 — 0], <

*

2V(Ln+ 1) b

where T denotes the total number of edge in network F (L, p*, s*). Note that

~ c*
w0 16l < Land [0 B < o)

2V (L + 1))}

~ exp{—s* log(

Therefore, it is sufficient to show that

2(L + 1)?(12pN* + 1)

*
gn

(L + 1)s*log(12pN™) + s* log( )

2
<csnel”,

which hold trivially due to the definition of €.

We are ready to prove Theorem 3.5.1.

Proof 11 Denote dg and d; be the degenerate VB posterior of N and s. We claim that with

dominating probability,

N < N, and 5 < s,,.

Therefore, it will be equivalent to consider the truncated prior T N)ocn(N)1(N < N,,) and

T(s)ocm(s)1(s < s,).
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Note that

—logn(N = N*) < —logt(N = N*¥)
<A+ log N*! — N*log A = N*log N*

<s*log N* = O(ne*?),
and
—logm(s = s*) = O(\ss*) = O(ne?).

Therefore, the conditions of Lemma 3.12.3 hold and we conclude the proof.
Recall ¢*(6, N, s) € Qu s which is defined in the proof of Lemma 3.12.3, and we prove
(3.30) by showing that w.h.p.,

KL(q*(0, N, s)|r(0, N,s|D)) < KL(q(0, N, s)||n(8, N, s| D)), (3.31)

for any ¢ € Qn s whose marginal degenerate distribution of N is large than V,, or marginal

degenerate distribution of s is greater than s,. Note that

LKL(¢*(0, N, 5)|m(0, N, 5| D))
n

1 1 po(D)
=—KL(qg*(0. N N —E, «1
n (q (07 ) S)HTC(Q, ) S)) + n q Og pg(D)
1. m(D)
+—1lo .
n gpo(D)

The sum of the first two terms in above equation, as shown in the proof of Lemma 3.12.3, is
O(e*? 4+ r*) = O(&*?). For the third term, by LLN, it converges to constant —KL(Py|lm) < 0.
Due to Lemma 3.12.4, KL(q(0, N, s)|®(0, N, s| D)) = cone*?, and the constant ¢ increases

to infinity as ¢s increases. Therefore, providing a sufficiently large c,, (3.31) holds.
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3.12.4 Remarks for proofs of Corollaries 3.6.1-3.6.4.

The proofs for Corollaries 3.6.1 and 3.6.3 are straightforward, and they are directly implied
by Theorem 3.4.1.

For the proofs of Corollaries 3.6.2 and 3.6.4, we comment that Theorem 3.5.1 actually
holds for any (N*,s*) which satisfies Conditions 3.5.1, 3.5.3 and £ = O(r}), but is not
necessarily the exact minimization of 7} 4 ¢*. Therefore, in this case we can still use Theorem

3.5.1 to prove Corollaries 3.6.2 and 3.6.4.

3.12.5 Proof of Theorem 3.7.1

Proof 12 For any M, — oo, there always exists some Mn satistfying that 1 < ]\7” = 0(M,)
and 7, M, 22 = o(1).
Then, for any 0 € G n {0 : L3(fo, fo) = ]\7”??2},

n

d*(Pp, Py) > L(l —exp{—(fo(z) — fo(x))*/80¢})dP(x)

(1 = expl— L3, )/502)) ;
> B SO | () = fufe)PaPla)

- exp{=ynL3(fo, fo)/302})

Tn
1 — exp{—~, M,22 /802 ~
Tn

for some constant cj; > 0, where the second inequality holds since |fp(X) — fo(X)|? is upper

~

bounded by 7, L2(fo, f¢) on S, and the last inequality is due to the fact that v, M,&2 = o(1).
(3.32) implies
G A A{L3(fo. fy) = MoZ2} < {d(Py, o) = exML22). (3.33)

By Theorem 3.4.1, w.h.p.,
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which implies that

Combined with (3.33)

f a00) < f _q)
gﬁ{Lg(f07f6)>Mn§%} gm{Lg(fO’f6)>Mné‘%}

<| 3(0) = O(1/7L,) = o(1), whp.
d2(Pp,Po)=cp Mn2
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4. COMPUTATIONALLY EFFICIENT SPIKE AND SLAB
PRIOR

4.1 Introduction

In this chapter, we improve the variational inference dicussed in Chapter 3 by placing
a computationally efficient prior while remaining theoretically soundness. Specifically, the
prior distribution for the inclusion variable 7; follows independent Bernoulli distribution. In
addition, we will only consider Gaussian slab distribution, since VI with uniform slab lacks
of practical implementation and only possesses theoretical significance.

More importantly, with carefully chosen hyperparameter values, especially the prior
probability that each edge is active, we establish the variational posterior consistency, and the
corresponding convergence rate strikes the balance of statistical estimation error, variational
error and the approximation error.

The theoretical results are validated by various simulations and real applications. Empiri-
cally we also demonstrate that the proposed method possesses good performance of variable
selection and uncertainty quantification. While (Feng et al. 2017; Liang et al. 2018; Ye et al.
2018) only considered the neural network with single hidden layer for variable selection, we

observe correct support recovery for neural networks with multi-layer networks.

4.2 Alternative Spike-and-slab Prior

As in Chapter 3, we aim to approximate fy in the generative model (3.1) by a sparse
neural network. Specifically, given a network structure, i.e. the depth L and the width p,
fo is approximated by DNN models fy with sparse parameter vector # € © = RT. From
a Bayesian perspective, we impose the following spike-and-slab prior (George et al. 1993;

Ishwaran et al. 2005) on 6:

Oily ~ WN(0,03) + (1 —%)dy, v ~ Bern()), (4.1)

for i = 1,...,T, where X\ and o2 are hyperparameters representing the prior inclusion

probability and the prior Gaussian variance, respectively. The choice of o2 and A play an
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important role in sparse Bayesian learning, and in Section 4.3, we will establish theoretical
guarantees for the variational inference procedure under proper deterministic choices of o2 and
A. Alternatively, hyperparameters may be chosen via an Empirical Bayesian (EB) procedure,
but it is beyond the scope of this work. We assume Q is in the same family of spike-and-slab

laws:

91|’Yi ~ ’YiN(Mia 012) + (1 —%)00, N~ Bern(¢i) (4-2)

fori=1,...,T, where 0 < ¢; < 1.

Comparing to pruning approaches e.g. Molchanov et al. 2017; Frankle et al. 2018; Zhu
et al. 2018 that don’t pursue sparsity among bias parameter b;’s, the Bayesian modeling
induces posterior sparsity for both weight and bias parameters.

Polson et al. 2018; Chérief-Abdellatif 2020 as well as Chapter 3 imposed sparsity spec-
ification as follows O(L, p, s) = {0 as in model (1.5) : ||f]|o < s} that not only posts great
computational challenges, but also requires tuning for optimal sparsity level s. For example,
it has been showed in Chapter 3 that given s, two error terms occur in the variation DNN
inference: 1) the variational error r,(L, p, s) caused by the variational Bayes approximation
to the true posterior distribution and 2) the approximation error &, (L, p, s) between f, and
the best bounded-weight s-sparsity DNN approximation of f,. Both error terms r,, and &,
depend on s (and their specific forms are given in next section). Generally speaking, as the
model capacity (i.e., s) increases, r,, will increase and &,, will decrease. Hence the optimal

choice s* that strikes the balance between these two is

s* = argmin {T’n(L,p, S) + Sn(Lapv S)}

Therefore, one needs to develop a selection criteria for s such that s ~ s*. In contrast, our
modeling in this chapter directly works on the whole sparsity regime without pre-specifying
s, and is shown later to be capable of automatically attaining the same rate of convergence

as if the optimal s* were known.
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4.3 Theoretical Results

In this section, we will establish the contraction rate of the variational sparse DNN
procedure, without knowing s*. For simplicity, we only consider equal-width neural network
similar as in Chapter 3.

The following assumptions are imposed:

Condition 4.3.1 p; = N € Z* that can depend on n, and im T = 0.
Condition 4.3.2 o(z) is 1-Lipschitz continuous.

Condition 4.3.3 The hyperparameter o is set to be some constant, and X satisfies log(1/\) =
O{(L+1)log N +log(pr/n/s*)} andlog(1/(1—=X)) = O((s*/T){(L+1)log N +log(pr/n/s%)}).

Condition 4.3.2 is very mild, and includes RelLU, sigmoid and tanh. Note that Condition
4.3.3 gives a wide range choice of A, even including the choice of A independent of s* (See
Theorem 4.3.1 below).

We first state a lemma on an upper bound for the negative ELBO. Denote the log-likelihood
ratio between py and py as I, (P, Py) = log(po(D)/pe(D)) = >, 1og(po(Ds)/pe(D;)). Given

some constant B > 0, we define

re = ra(L,N,s%) = (L +1)s*/n)log N + (s*/n) log(py/n/s*),

f:: = gn(LaNﬂS*) inf er_fOHgo

969(L7p78*)7||9‘|00<3

Recall that r,(L, N,s) and &,(L, N, s) denote the variational error and the approximation

error.

Lemma 4.3.1 Under Condition 4.3.1-4.5.3, then with dominating probability,

int (KL R01) + j 1 (Po. P)a(0)d0} < On(r + ) (43)

where C' is either some positive constant if imn(rk + £*) = o, or any diverging sequence

if imsup n(rk + &) # oo.
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Noting that KL(g(6)||m(8|\))+ g In(Fo, Py)q(0)(dh) is the negative ELBO up to a constant,
we therefore show the optimal loss function of the proposed variational inference is bounded.
The next lemma investigates the convergence of the variational distribution under the

Hellinger distance, which is defined as

(Fp, o) = Ex (1= exp{=[fo(X) — fo(X)12/(807)}).

In addition, let s, = s*log® '(n) for any § > 1. An assumption on s* is required to strike

the balance between r} and £*:
Condition 4.3.4 max{s*log(p\/n/s*, (L + 1)s*log N} = o(n) and % = &*.

Lemma 4.3.2 Under Conditions 4.5.1-4.5.4, if o2 is set to be constant and X < T~ exp{—Mnr}/s,}

for any positive diverging sequence M — oo, then with dominating probability, we have

L E(Py, Po)a(0)d0 < Ct2 4> = it LKL(q(0)||m(0]0)) + L (o, Po)a(0)do},  (4.4)

where C' is some constant, and

e = e, (L, N, s*) = A/rn(L, N, s*)log’(n), for anyé > 1.

Remark The result (4.4) is of exactly the same form as in the existing literature (Pati
et al. 2018), but it is not trivial in the following sense. The existing literature require
the existence of a global testing function that separates Py and {Py : d(Py, Py) = €} with
exponentially decay rate of Type I and Type II errors. If such a testing function exists only
over a subset ©, — © (which is the case for our DNN modeling), then the existing result
(Yang, Pati, et al. 2020) can only characterize the VB posterior contraction behavior within
©,,, but not over the whole parameter space ©. Therefore our result, which characterizes
the convergence behavior for the overall VB posterior, represents a significant improvement
beyond those works.

The above two lemmas together imply the following guarantee for VB posterior:
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Theorem 4.3.1 Let 02 be a constant and —log A = log(T) + 6[(L + 1) log N + log v/np] for
any constant 6 > 0. Under Conditions 4.3.1-4.3.2, 4.5.4, we have with high probability

f P(Py, P)§(0)d0 < C=2 + C'(r% + €7),
(€]

where C' is some positive constant and C”" is any diverging sequence.

The £*? denotes the estimation error from the statistical estimator for Py. The variational
Bayes convergence rate consists of estimating error, i.e., £*?, variational error, i.e., 7*, and
approximation error, i.e., £¥. Given that the former two errors have only logarithmic difference,
our convergence rate actually strikes the balance among all three error terms. The derived
convergence rate has an explicit expression in terms of the network structure based on the
forms of €}, 7} and £, in contrast with general convergence results in Pati et al. 2018; Zhang
and Gao 2019; Yang, Pati, ct al. 2020.

Remark Theorem 4.3.1 provides a specific choice for A, which can be relaxed to the general
conditions on A in Lemma 4.3.2. In contrast to the heuristic choices such as A = exp(—2logn)
BIC; Hubin et al. 2019, this theoretically justified choice incorporates knowledge of input
dimension, network structure and sample size. Such an A will be used in our numerical
experiments in Section 4.5, but readers shall be aware of that its theoretical validity is only
justified in an asymptotic sense.

Remark The convergence rate is derived under Hellinger metric, which is of less practical
relevance than Ly norm representing the common prediction error. One may obtain a
convergence result under Ly norm via a VB truncation (refer to Section 4.7.3, Theorem 4.7.1).

Remark If f; is an a-Holder-smooth function with fixed input dimension p, then by
choosing some L = logn, N = n/logn, combining with the approximation result Schmidt-
Hieber 2017, Theorem 3, our theorem ensures rate-minimax convergence up to a logarithmic

term.
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4.4 Implementation

As in Chapter 3, to conduct optimization of negative ELBO via stochastic gradient
optimization, we need to utilize the Gumbel-softmax approximation. Rewrite the loss

function €2 as

T T

~Eqoatllog po(D)] + D KL(g(0)lIm(3)) + Y al N (s, 07)[|N(0, 05)). (4.5)

i=1 i=1

Apply Gumbel-softmax approximation (Jang et al. 2017; Maddison et al. 2017) to 7 ~
Bern(¢;), that is

Yi = gr(di;ui) = 1+ exp(—(log 2 5 )/7_) u; ~U(0,1),

where 7 is called the temperature and is chosen as 0.5 in the experiment. Besides, the normal
variable N (u;, 02) is reparameterized by u; + o€ for ¢ ~ N(0,1).

Recall that Q is reparameterized as q,, 4 g(w, v) for some differentiable function g and
random variable v, then the stochastic estimator of the negative ELBO Q(w) and its gradient

are

D1 2108 Py (1) + KL(q.(6)][(6)).
o (4.6)

Z w108 Py(w ) (Di) + V,KL(q.,(0)]|7(0)),

2
3
€
I

|
3=
= =
NgE

H
Il
it

V., (0" (w) =

3\3
==
NgE

_
I
—_

where D;’s are randomly sampled data points and v;’s are iid copies of v. Here, m and K
are minibatch size and Monte Carlo sample size, respectively.
The complete variational inference procedure with Gumbel-softmax approximation is

stated below.
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Algorithm 3 Variational inference for sparse BNN with normal slab distribution.

1: parameters: w = (u,0’,¢') ,

2: where o; = log(1 + exp(0c?)), ¢ = (1 + exp(¢}))~*, fori=1,...,T

3: repeat

4: D™ «— Randomly draw a minibatch of size m from D

5: €, u; < Randomly draw K samples from A(0,1) and ¢(0,1)

6: ("™(w) « Use (4.6) with (D™, w, €, u): Use v in the forward pass

7 V" (w) « Use (4.6) with (D™, w, ¢, u); Use ¥ in the backward pass

8: w <« Update with walm(w) using gradient descent algorithms (e.g. SGD or Adam)
9: until convergence of {™(w)

10: return w

4.5 Experiments

We evaluate the empirical performance of the proposed variational inference through
simulation study and MNIST data application. For the simulation study, we consider a
teacher-student framework and a nonlinear regression function, by which we justify the
consistency of the proposed method and validate the proposed choice of hyperparameters. As
a byproduct, the performance of uncertainty quantification and the effectiveness of variable
selection will be examined as well.

For all the numerical studies, we let o2 = 2, the choice of \ follows Theorem 4.3.1
(denoted by Aopt): log(A,y) = log(T) +0.1[(L + 1) log N +log /np]. The remaining details of
implementation (such as initialization, choices of K, m and learning rate) are provided in the
Section. We will use VB posterior mean estimator fH = Zthl fo,/H to assess the prediction
accuracy, where 0, ~ q(f) are samples drawn from the VB posterior and H = 30. The
posterior network sparsity is measured by § = Zszl ¢;/T. Input nodes who have connection
with ¢; > 0.5 to the second layer is selected as relevant input variables, and we report the
corresponding false positive rate (FPR) and false negative rate (FNR) to evaluate the variable

selection performance of our method.
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Our method will be compared with the dense variational BNN (VBNN) (Blundell et al.
2015) with independent centered normal prior and independent normal variational distribution,
the AGP pruner (Zhu et al. 2018), the Lottery Ticket Hypothesis (LOT) (Frankle et al. 2018),
the variational dropout (VD) (Molchanov et al. 2017) and the Horseshoe BNN (HS-BNN)
(Ghosh, Yao, et al. 2018). In particular, VBNN can be regarded as a baseline method without
any sparsification or compression. All reported simulation results are based on 30 replications
(except that we use 60 replications for interval estimation coverages). Note that the sparsity
level in methods AGP and LOT are user-specified. Hence, in simulation studies, we try a
grid search for AGP and LOT, and only report the ones that yield highest testing accuracy.
Furthermore, note that FPR and FNR are not calculated for HS-BNN since it only sparsifies

the hidden layers nodewisely.

4.5.1 Simulation I: Teacher-student networks setup

We consider two teacher network settings for fo: (A) densely connected with a structure
of 20-6-6-1, p = 20, n = 3000, o(z) = sigmoid(z), X ~ U([-1,1]*), e ~ N(0,1) and network
parameter 6; is randomly sampled from (0, 1); (B) sparsely connected as shown in Figure
4.1 (c), p = 100, n = 500, o(x) = tanh(z), X ~U([—1,1]'%) and € ~ N(0, 1), the network

parameter 6;’s are fixed (refer to Section 4.8 for details).

Table 4.1. Simulation results for Simulation I. SVBNN represents our sparse
variational BNN method. The sparsity levels specified for AGP are 30% and
5%, and for LOT are 10% and 5%, respectively for the two cases.

RMSE Input variable selection
Method Train Test FPR(%) FNR(%) 95% Coverage (%) Sparsity(%)
SVBNN 1.01 £ 0.02 1.01 £+ 0.00 - - 97.5 £ 1.71 6.45 + 0.83
VBNN 1.00 + 0.02 1.00 £ 0.00 - - 91.4 £+ 3.89 100 £ 0.00
qé VD 0.99 £ 0.02 1.01 £ 0.00 - - 76.4 £ 4.75 28.6 + 2.81
8 HS-BNN  0.98 + 0.02 1.02 + 0.01 - - 83.5 £ 0.78 64.9 £ 24.9
AGP 0.99 £ 0.02 1.01 £ 0.00 - - - 30.0 + 0.00
LOT 1.04 +£ 0.01 1.02 £+ 0.00 - - - 10.0 £+ 0.00
SVBNN 0.99 £ 0.03 1.00 £ 0.01 0.00 + 0.00 0.00 £+ 0.00 96.4 £+ 4.73 2.15 + 0.25
© VBNN 0.92 + 0.05 1.53 £ 0.17 100 £ 0.00 0.00 + 0.00 90.7 £+ 8.15 100 £+ 0.00
£ VD 0.86 + 0.04 1.07 £0.03 729 %+ 6.99 0.00 + 0.00 75.5 + 7.81 20.8 + 3.08
;5;.( HS-BNN 0.90 £ 0.04 1.29 £ 0.04 - - 67.0 + 8.54 32.1 + 20.1
AGP 1.01 £ 0.03 1.02 £ 0.00 16.9 + 1.81 0.00 £+ 0.00 - 5.00 + 0.00
LOT 0.96 £ 0.01 1.04 £ 0.01 19.5 £ 2.57 0.00 £ 0.00 - 5.00 + 0.00
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(a) A < Aopt- (b) A= Aopt. (c) Sparse teacher network.

Figure 4.1. (a) A = {10729, 10-1%0, 10190, 10=%, 1020, 103, A,pe}. (b) A =
{Aopt:0.1,0.3,0.5, 0.7,0.9,0.99}. (c) The structure of the target sparse teacher
network. Please note that the = axes of figures (a) and (b) are in different
scales.

First, we examine the impact of different choices of A on our VB sparse DNN modeling.
A set of different \ values are used, and for each A\, we compute the training square root MSE
(RMSE) and testing RMSE based on fH Results for the simulation setting (B) are plotted
in Figure 4.1 along with error bars (Refer to Section 4.8 for the plot under the simulation
setting (A)). The figure shows that as \ increases, the resultant network becomes denser and
the training RMSE monotonically decreases, while testing RMSE curve is roughly U-shaped.
In other words, an overly small A leads to over-sparsified DNNs with insufficient expressive
power, and an overly large A leads to overfitting DNNs. The suggested A, successfully
locates in the valley of U-shaped testing curve, which empirically justifies our theoretical
choice of A\yp;.

We next compare the performance of our method (with A,,) to the benchmark methods,
and present results in Table 4.1. For the dense teacher network (A), our method leads to
the most sparse structure with comparable prediction error; For the sparse teacher network
(B), our method not only achieves the best prediction accuracy, but also always selects the
correct set of relevant input variables. Besides, we also explore uncertainty quantification of

our methods, by studying the coverage of 95% Bayesian predictive intervals (refer to Section
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4.8 for details). Table 4.1 shows that our method obtains coverage rates slightly higher than

the nominal levels while other (Bayesian) methods suffer from undercoverage problems.

4.5.2 Simulation II: Sparse nonlinear function

Consider the following sparse function fy:

7
f()([l?l, . ,xgoo) = ﬁxiz + 5Sin($31’4) + 21’5, €~ N(O, 1), (47)
1

all covariates are iid A(0,1) and data set contains n = 3000 observations. A ReLU network
with L = 3 and N = 7 is used. Similar to the simulation I, we study the impact of A,
and results in Figure 4.2 justify that A,y is a reasonable choice. Table 4.2 compares the
performances of our method (under \,,) to the competitive methods. Our method exhibits
the best prediction power with minimal connectivity, among all the methods. In addition,
our method achieves smallest FPR and acceptable FNR for input variable selection. In
comparison, other methods select huge number of false input variables. Figure 4.2 (¢) shows
the selected network (edges with ¢; > 0.5) in one replication that correctly identifies the

input variables.

L | 4 -+~ training
N —}— testing
w 3 w 3 —— sparsity
w 1]
= \ =
o \\ 4
2 \ 2
14 j s i i ] l—‘-"__l__'_-l__h-l__h-]"""' Output Layer
0 0
—4 4 —4 4 Hidden Layer 3
= =
= _g 2 g
n ] Hidden Layer 2
2 -12 1 T -12
n vy
hga' —16 4 “g}f —16 4 Hidden Layer 1
— 201 — 20+
—24 . ‘ . : 24 : : . : mptLayer
—400 —-300 —200 —100 00 02 04 06 08 10 X1ox2 X3 x4 X5 x200
Log(aA) A
(a) A < Aope- (b) A = Aopt. (c) Selected network structure.
Figure 4.2. (a A= {10_200, 107159107100 10759, 10720, 107, Aopt}- (b) A=
{Aopt;0.1,0.3,0.5, 0.7,0.9,0.99}. (c) A selected network structure for (4.7).
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Table 4.2. Results for Simulation I1. The sparsity levels selected for AGP and
LOT are both 30%.

Method Train RMSE Test RMSE FPR(%) FNR(%) Sparsity(%)
SVBNN 1.19 £ 0.05 1.21 £ 0.05 0.00 £ 0.21 16.0 +£ 814 297 £ 0.48
VBNN 0.96 £+ 0.06 1.99 + 0.49 100 + 0.00 0.00 £ 0.00 100 + 0.00
VD 1.02 £ 0.05 143 £0.19 98.6 £ 1.22 0.67 £ 3.65 469 + 4.72
HS-BNN 1.17 + 0.52 1.66 £+ 0.43 - - 41.1 £+ 36.5
AGP 1.06 + 0.08 1.58 £ 0.11  82.7 £3.09 1.33 £5.07 30.0 =+ 0.00
LOT 1.08 + 0.09 1.44 £0.14 83.6 £2.94 0.00 £ 0.00 30.0 &£ 0.00
g
0.90 SVBNN
AGP
— VD
0 50 100 150 Ep;l::ohs 250 300 350 400

Figure 4.3. Testing accuracy for MNIST

MNIST application.

We evaluate the performance of our method on MNIST data for classification tasks, by
comparing with benchmark methods. A 2-hidden layer DNN with 512 neurons in each layer is
used. We compare the testing accuracy of our method (with A,,;) to the benchmark methods
at different epochs using the same batch size (refer to Section 4.8 for details). Figure 4.3
shows our method achieves best accuracy as epoch increases, and the final sparsity level for
SVBNN, AGP and VD are 5.06%, 5.00% and 2.28%.

In addition, an illustration of our method’s capability for uncertainty quantification on
MNIST can be found in Section 4.8, where additional experimental results on UCI regression

datasets can also be found.
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4.6 Conclusion and Discussion

We proposed a variational inference method for deep neural networks under spike-and-slab
priors with theoretical guarantees. Future direction could be investigating the theory behind
choosing hyperparamters via the EB estimation instead of deterministic choices.

Furthermore, extending the current results to more complicated networks (convolutional
neural network, residual network, etc.) is not trivial. Conceptually, it requires the design
of structured sparsity (e.g., group sparsity in Neklyudov et al. 2017) to fulfill the goal of
faster prediction. Theoretically, it requires deeper understanding of the expressive ability
(i.e. approximation error) and capacity (i.e., packing or covering number) of the network
model space. For illustration purpose, we include an example of Fashion-MNIST task using
convolutional neural network in Section 4.8.5, and it demonstrates the usage of our method

on more complex networks in practice.

4.7 Main Proofs

In this section, the detailed proofs for the theoretical results are provided.

4.7.1 Proof of Lemma 4.1

As a technical tool for the proof, we first restate the Lemma 6.1 in Chérict-Abdecllatif and
Alquier 2018 as follows.

Lemma 4.7.1 For any K > 0, the KL divergence between any two mixture densities

Zszl Wrgr and Zszl WG 1S bounded as

Z Wi || Z Wrgr) < KL(wl||lw) + Z wi K L(grl| ),

k=1
where KL(w||w) = Y& wy, log ok

We begin the proof of Lemma 4.1
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Proof 13 It suffices to construct some ¢*(0) € Q, such that w.h.p,
KL(¢* (0)||m(6]))) + J In(Fo, Py)q* (0)(d0)
o
<Cinry + C{nilelf [l fo — foll2, + Cinrl,

where C1, C are some positive constants if lim n(r’ + £*) = oo, or any diverging sequences if
limsupn(r} + &) # .

Recall 0* = arg mingee (s, p,s+,5) || fo — fol|%, then ¢*(0) € Q can be constructed as

KL(¢" O)[%(01) < Cyrr, (45)
. 1o =t o @) 1a0) < (1.9)

We define ¢*(0) as follows, fori=1,...,T:

Ol ~ AN (67, 07) + (1 =)o,
7~ Bern(¢f), (4.10)

¢r = 10 #0),

To prove (4.8), denote I'"" as the set of all possible binary inclusion vectors with length T,

then ¢*(0) and ®(0|\) could be written as mixtures
T
¢*(0) = > 1y =] [ w65, 00) + (1 =)o,

and
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where () is the probability for vector v under prior distribution . Then,

KL(g"(6)[|m(6]A))

{H% <1—%50H1_[% 0‘70))+(1—%)5O}

VEFT
1 T
_ * Ak * 2 Ak
=log e A)M@K{ VN7, 02) + (1= 2)8l N0, 09)) + (1= 7) |
L1 1 o2\ o+ 62 1
=5 log(x)—i—(T—s)log( — +271{ log<ag)+2—2}

s* ) g* 0.2
<Oonr,°; + E(Tn + E(B — 1) + ?10g<0_2>

)2

* * 8
<(Co + Dnry + Spry 10g<£ log(3pN)(QBN)2L+2{(p +1+

2 2 BN —1

1 2
T @BNE -1 2BN 17 }
% 32 * * s* s* L
<(Co +2)nr): + s T (L +1)s*log(2BN) + 5 loglog(3BN) + 5 log<—*p )
s

<(Co+3)nry + (L + 1)s*log N + s* log <p4 /%)
s
<Cynry, for sufficiently large n,

where Cj and (] are some fixed constants. The first inequality is due to Lemma 4.7.1 and
the second inequality is due to Condition 4.4.

Furthermore, by Appendix G of Chérief-Abdellatif 2020, it can be shown

f@ 1o — forll2a* (6)(d6)

<8a? 1og(3BN)(23N)2L+2{(p 14

L gy, 1 . 2 }
BN—1" " (2BN)2—1 ' (2BN — 1)

S *
<— <71,
n
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Noting that

(Po P2) = 5 (1Y = BB~ 1Y — Ao(X)[B)

= LY = R0+ A0 = BB 1Y = HIR)

= A0 = REOIE + 20 = fo(X). fo(X) — (XD,

Denote

R = | I1A(X) = () Ba* (9)@0),
- L<y — fo(X), fo(X) — fo(X))g*(8)(dF).

Since || fo(X) — fo(X)|12 < nllfs — foll% < nllfo — fox| % + 2|l fox — fol|%,
Ry < nré +nl|for — fol|%-

Noting that Y — fo(X) = € ~ N(0,02I), then

&zLJ%(>h(»(XM L%()E(D(MM ~ N (0, ¢p0?),

where ¢ = || §5 (fo(X) — fo(X))q*(6)(d)|]3 < R1 due to Cauchy-Schwarz inequality. There-
fore, Ry = Oy(v/R1), and w.h.p., Ry < C{Ry, where Cj is some positive constant if

limn(r¥ 4+ £*) = w0 or C} is any diverging sequence if lim sup n(r} + &%) # co. Therefore,

f (P, Py)q*(0)(df) = R1/207 + Ry/o? <(2Ch + D)n(rE + || fox — fol|%)/202
S
<Ci(nry + [ for = foll%), whop.,

which concludes this lemma together with (4.8). u
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4.7.2 Proof of Lemma 4.2

Under Condition 4.1 - 4.2, we have the following lemma that shows the existence of testing
functions over ©,, = O(L, p, s,), where O(L, p, s,,) denotes the set of parameter whose Lg

norm is bounded by s,,.

Lemma 4.7.2 Let ef = Mnfl/Q\/(L + 1)s*log N + s*log(pr/n/s*)log’(n) for any § > 1
and some large constant M. Let s, = s*log® 'n. Then there exists some testing function

¢ €[0,1] and Cy >0, Cy > 1/3, such that

Ep,(¢) < exp{—Cine}?},

sup  Ep, (1 —¢) < exp{—Cond*(Py, Py)}.
PgGF(L,p,Sn)
d(P97P0)>8:‘:

Proof 14 Due to the well-known result (e.g., Le Cam 1986, page 491 or Ghosal and Van
Der Vaart 2007, Lemma 2), there always exists a function ¢ € [0, 1], such that

]EPO (Q/J) < eXp{*ndz(Pﬁa PO)/Q}a
Ep, (1 — ) < exp{—nd*(Py,, F)/2},

for all Py e F(L,p,s,) satisfying that d(Fy, Py,) < d(Py, Ps,)/18.

Let K = N(g%/19, F(L,p, sn),d(+,-)) denote the covering number of set F(L,p, s,), i.e.,
there exists K Hellinger-balls with radius £ /19, that completely cover F(L, p, s,). For any
0 e F(L,p,s,) (W.O.L.G, we assume Py belongs to the kth Hellinger ball centered at Py, ),
if d(Py, Py) > €, then we must have that d(Fp, Pp,) > (18/19)c} and there exists a testing

function ¢, such that

Ep, (¢1) < exp{—nd*(Py,, F)/2}
< exp{—(18%/19%/2)ne*?},
Ep,(1 — 1) < exp{—nd*(Ps,, P)/2}
< exp{—n(d(Py, Pp) — £%/19)?/2}

< exp{—(18%/19?/2)nd?*(Py, Py)}.
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Now we define ¢ = maxg—;.__x ¥. Thus we must have

.....

Epy(¢) < ), Ep,(¢) < K exp{—(18°/19?/2)ne}?}
k
< exp{—(18%/19%/2)ne*? —log K}.
Note that

10gK = 10g N(5:/197~F(L7pa Sn)7d<" ))
< IOgN(fO-E */19 ‘F(Lapv Sn)J ” ' ”OO)

< (s, + 1) log( (L +1)(N + 1)2(”1))

\fas
1
éC’(snlogE + splog(L 4+ 1) + s,(L + 1)log N)

< sp(L 4 1)lognlog N < s*(L + 1)log N log® n

< ne*? /4, for sufficiently large n, (4.11)

where Cj is some positive constant, the first inequality is due to the fact
d*(Pp, Py) < 1— eXP{_*Hfo foll%}

and € = o(1), the second inequality is due to Lemma 10 of Schmidt-Hieber 2017", and the
last inequality is due to s, log(1/¢*) = s, logn. Therefore,
Ep, (¢ ZPO i) < exp{—Cine;?},

for some C} = 18%2/192/2 — 1/4. On the other hand, for any 6, such that d(Py, Py) = ¥, say
Py belongs to the kth Hellinger ball, then we have

Ep9<1 — ¢) Ep6<1 — 77Z)k) exp{ and <P07 Pg)}

! Although Schmidt-Hieber 2017 only focuses on ReLU network, its Lemma 10 could apply to any 1-Lipchitz
continuous activation function.
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where Cy = 18%2/19?/2. Hence we conclude the proof. [ |

Lemma 4.7.3 restates the Donsker and Varadhan’s representation for the KL divergence,

whose proof can be found in Boucheron et al. 2013.

Lemma 4.7.3 For any probability measure u and any measurable function h with e € Ly(u),

log J " (dn) = sup U h(n)p(dn) — KL(p|p) | -

We are now ready to prove Lemma 4.2

Proof 15 Denote O, as the truncated parameter space {6 : 317 1(6; # 0) < s,,}, where s,
is defined in Lemma 4.7.2. Noting that

Le@ d*(Pp, Py)q(0)d0 = f

PP PO+ [ PP ROB,  (1412)
0e®,,

0cO¢,
it suffices to find upper bounds of the two components in RHS of (4.12).

We start with the first component. Denote T(#) to be the truncated prior T(f) on set
O,, i.e., T(0) = n(0)1(0 € ©,,)/n(0,,), then by Lemma 4.7.2 and the same argument used in
Theorem 3.1 of Pati ¢t al. 2018, it could be shown

J 1(Py, Py)R(0)d6 < "% w.hp. (4.13)

n

for some Cy > 0, where logn(Fy, Po) = 1.(Fy, Po) + %dQ(Pg, Py). We further denote the ¢(0)
restricted on ©,, as ¢(0), i.e., ¢(0) = q(0)1(0 € ©,,)/q(0,,), then by Lemma 4.7.3 and (4.13),
w.h.p.,

n
3¢(6,)

| e rgaos =5 | e ryao)s

(4.14)

<Cne?? + KL(I(0)|[7(6)) f L(Fy, Po)if(6)d6.
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Furthermore,

KLGOIFO) = =g [ 1o Lat0)0 + 105 710"
B 1 B 1 o @'\ 0
- g KL@OIn0) ~ 5 | om0+ log

™(O,)
7(On)

and similarly,

N
()

1

J@ (P POI(0)d0 — =5 j LBy, R)AO)D.

f Ln(Po, Fo)q(0)do =

Combining the above two equations together, we have

3§(Z>n) J n d*(Py, Py)q(0)d0 < Cne*? + KL((0)]|7(0)) — f n 1(Py, Po)3(0)d0
*2 1 ~ -
~Cnei? + = (KL@O)IRO) - [ t(r Pog0)0) s

n(©,)
7(0n)

- o) R O
70,) (L; 8 ) 100 - | ﬁln<Pe,Po>q<0>de) +log

The second component of (4.12) trivially satisfies that §,_o. d*(Py, Py)q(0)d6 < §, . q(6)d0
= q(©¢). Thus, together with (4.15), we have that w.h.p.,

| e roae)as < sae,)cer? + (KL@(@)Hn(e)) - [ wnroaeras)
(4.16)

+ 2 f c l.(Py, Py)q(0)dd + 2 f ) log ggzsfj\(@)dﬁ + (n ) log @g@ )) +q(0y).

The second term in the RHS of (4.16) is bounded by C’(r* +£*) w.h.p., due to Lemma 4.1,
where C' is either positive constant or diverging sequence depending on whether n(r + £¥)

diverges.
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The third term in the RHS of (4.16) is bounded by

2 f Py, Po)a(0)d0
:25031% _263_2(61+f0()(i)_fG(Xi))2] q(6)do

: 503 ) __2;@ < (folX) — fol(X0)) - Z< S — fol Xi))fz] (06
_2503 {—2ielf%(fo( ) — fo(X0))3(0)do - jz; (%) — fol30) (e)de}

Conditional on Xi’s, =237, & §g. (fo(Xi) — fo(X:))q(#)df follows a normal distribution
N(0,V2), where V2 = 402 33 (o, (fo(X0) = fo(X0))q(0)d0)* < 4o §o. D% (fo(Xi)—fo(Xi))?
q(0)dh. Thus conditional on X;j’s, the third term in the RHS of (4.16) is bounded by

3

2no?

2
402

{/\/ (0,V?) — v ] : (4.17)

Noting that N'(0,V?) = O,(M, V) for any diverging sequence M, (4.17) is further bounded,

w.h.p., by
3 & 3
—(M,V — <

2n02( nV 4062)

€

2712
2no? oM

Therefore, the third term in the RHS of (4.16) can be bounded by €** w.h.p. (by choosing
M? = ne*?).
The fourth term in the RHS of (4.16) is bounded by

ES; < f’lngg)[m log(1/2)] = O(1/n).

3J‘%log EZ; q(0)dh < i(@c)log

Similarly, the fifth term in the RHS of (4.16) is bounded by O(1/n).

For the last term in the RHS of (4.16), by Lemma 4.7.5 in below, w.h.p., §(©¢) < &*2.

Combine all the above result together, w.h.p.,

j P(Py, P)G(O)0 < O=i? + (KL@(@)IIn(@)) - f (P, Po>a<e>de) +O(1/n),
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where C' is some constant. [ |

Lemma 4.7.4 (Chernoff bound for Poisson tail) Let X ~ poi(\) be a Poisson random

variable. For any x > A,
(eX)%e™?

x{l]

P(X > 1) <

Lemma 4.7.5 If\ < T lexp{—Mnr?/s,} for any positive diverging sequence M — oo, then
whop., q(05) = OE).

Proof 16 By Lemma 4.1, we have that w.h.p.,

KL@O)m(O0) + | 1,(Fo P)a(6)d0 = nf {KLGa@)]im(0]) + |

1Py, Py)a(0)(a9) |
(C]

<Cnr; (Note that r} = &)

where C'is either a constant or any diverging sequence, depending on whether nr} diverges.

By the similar argument used in the proof of Lemma 4.1,

[t s < oo ([ 1600 - fiCvlEa6)@0) + 2)

where Z is a normal distributed N(0, 02co), where ¢y < ¢o = { [|fo(X) — fo(X)|3(0)(d8).
Therefore, — { 1,(Po, Py)q(0)dd = (1/2072)[—co + Op(y/c0)], and KL(G(6)||m(0|
(1/202)[—co + Op(\/c0)]. Since Cnri — o0, we must have w.h.p., KL((0)||m(|\
On the other hand,

) < Cnr} +

)
)) < Cnrl/2.

KL(q(0)[[m(0]A)) = > KL(G(6:)][m(6:]A)) = > KL(G()|[m(7: 7))
T 7 , - (4.18)
=; [q(% =1)log qm; )+ 47 = 0) log 2 1%_—;))]

Let us choose A\g = 1/T, and A = {i : q( = 1) = Ao}, then the above inequality (4.18)
implies that >._, q(7 = 1)log(Ao/A) < Cnr/2. Noting that A < T 'exp{—Mnr¥/s,}, it
further implies Y., ¢(mi = 1) < s,/M < s,,.
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Under distribution ¢, by Bernstein inequality,

Pr(z i = 28,/3) < Z’Yl Sn/2 + ZE 7)) < exp <_Z AEE;£]8+ Sn/6)

i€A i€A i€cA
s2/8 )
=exp | — S < exp (—cs,) = O(e3?)
( 2icad(vi =1) + 5,/6

for some constant ¢ > 0, where the last inequality holds since log(1/e*?) = O(logn) < s,,.

Under distribution g, >, , % is stochastically smaller than Bin(T, \). Since T' — <o,
then by Lemma 4.7.4,

Pr() i = s2/3) < Pr(Bin(T, Ao) > 5,/3) — Pr(poi(1) > s,/3)
i¢A

=0(exp{—C"sn}) = O(e}’)

for some C” > 0. Trivially, it implies that w.h.p, Pr(>» = s,) = O(g*?) for VB posterior g.
|

4.7.3 Main theorem

Theorem 4.7.1 Under Conditions 4.1-4.2, 4.4 and set —log A = log(T) + 6[(L + 1) log N +
log \/np] for any constant § > 0, we then have that w.h.p.,

j PPy, P)G(0)d0 < C22 + C'(r% + €7),
C)

where C' is some positive constant and C' is any diverging sequence. If | folle < F, and we

truncated the VB posterior on Op = {0 : | follw < F}, i.e., Grcql(0 € OF), then, w.h.p.,

Ce*2 + C'(r¥ + &)
Crq(OF)

| Exlfo0) ~ f(X)Par(0)as <
OF
where Cp = [1 — exp(—4F?/802)|/AF?, and q(OF) is the VB posterior mass of Op.

Proof 17 The convergence under squared Hellinger distance is directly result of Lemma 4.1

and 4.2, by simply checking the choice of A satisfies required conditions. The convergence
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under L, distance relies on inequality d*(Pp, Py) = CrEx|fo(X) — fo(X)|* for Cp = [1 —
exp(—4F?/802)]/4F? when both fp and fy are bounded by F. Then, w.h.p,

L Ex|fo(X) — fo(X)3r(6)d8 < O3 f@ (Py, Py)r (0)d6

Cer? + C'(rk + &)
Crq(OF)

1
<—— | @, Pg0)do <
e f (Py, P0)3(6)

4.8 Additional experimental results

4.8.1 Algorithm implementation details for the numerical experiments

Initialization As mentioned by Senderby et al. 2016 and Molchanov et al. 2017, training
sparse BNN with random initialization may lead to bad performance, since many of the
weights could be pruned too early. In our case, we assign each of the weights and biases a
inclusion variable, which could reduce to zero quickly in the early optimization stage if we
randomly initialize them. As a consequence, we deliberately initialize ¢; to be close to 1 in our
experiments. This initialization strategy ensures the training starts from a fully connected
neural network, which is similar to start training from a pre-trained fully connected network
as mentioned in ibid. The other two parameters p; and o; are initialized randomly.

Other implementation details in simulation studies We set X' = 1 and learning rate
=5 x 107 during training. For Simulation I, we choose batch size m = 1024 and m = 128
for (A) and (B) respectively, and run 10000 epochs for both cases. For simulation II, we
use m = 512 and run 7000 epochs. Although it is common to set up an annealing schedule
for temperature parameter 7, we don’t observe any significant performance improvement
compared to setting 7 as a constant, therefore we choose 7 = 0.5 in all of our experiments.
The optimization method used is Adam.

The implementation details for UCI datasets and MNIST can be found in Section 4.8.3

and 4.8.4 respectively.
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4.8.2 Teacher student networks

The network parameter 6 for the sparse teacher network setting (B) is set as following:
W= {Win=Wia=Won =Woip=25Wio =Wio =Wog = Wan =15 Wz =
Jand Wso1 =2} b={by1 =by1 =b31 =1and bjy = byy = —1}.

Figure 4.4 displays the simulation result for simulation I under dense teacher network
(A) setting. Unlike the result under sparse teacher network (B), the testing accuracy seems
monotonically increases as A increases (i.e., posterior network gets denser). However, as
shown, the increasing of testing performance is rather slow, which indicates that introducing

sparsity has few negative impact to the testing accuracy.

12 12
-+~ training
—}— testing
1.1 1.1+ :
w w —}— sparsity
)] (73]
O St SRS SEEE R z
1.0 ! 1.0 { =]
0.9 T T T T 0.9 T T T T Output Layer
0 0
S -1 A E -1 1 Hidden Layer 2 B
o -2 1 2 -2
2 2 2
n -3 4 W -3 Hidden Layer 1
(=] (=]
2 4 2 4
_5 T T T T _5 T T T T Inpur Layer
-400 —300 —200 -100 00 02 04 06 08 10 A e W x1s x20
Log(A) A
(a) A < Aopt- (b) A = Aopt- (c) Dense teacher network.
Figure 4.4. (a) A = {10720,107°, 10719 10750,1072°107°, Ayt }. (b) A =
{Aopt:0.1,0.3,0.5, 0.7,0.9,0.99}. (c) The structure of the target dense teacher

network.

Coverage rate In this paragraph, we explain the details of how we compute the coverage
rate values of Bayesian intervals reported in the main text. A fixed point (;c§*), . ,a:z(g*))
is prespecified, and let 1) ... 2199 he 1000 equidistant points from —1 to 1. In each
run, we compute the Bayesian credible intervals of response means (estimated by 600 Monte
Carlo samples) for 1000 different input 2’s: (1), 2 ,mé*)), oy (2(1000) M ,xz()*)). It
is repeated by 60 times and the average coverage rate (over all different z’s and 60 runs)

is reported. Similarly, we replace xg*) (or xg*)) by @ (i =1,...,1000), and compute their
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average coverage rate. The complete coverage rate results are shown in Table 4.3. Note that

Table 1 in the main text shows 95% coverage of x5 for (A) and 95% coverage of z; for (B).

Table 4.3. Coverage rates for teacher networks.

90 % coverage (%)

95% coverage (%)

Method €1 o T3 1 o T3
SVBNN 93.8 +2.84 93.1 +493 93.1+296 979+ 101 979+ 169 97.5+ 1.71
% VBNN 85.8 + 251 824+ 2.62 863+ 1.8 92.7+ 283 91.3 +2.61 91.4 + 2.43
8 VD 61.3 +2.40 60.0+2.79 649 +£6.17 749+ 179 71.8+ 233 764+ 4.75
HS-BNN 83.1 £ 1.67 80.0 £1.21 76.9 £ 1.70 88.1 +£1.13 84.1 +1.48 83.5+ 0.78
. SVBNN 923 +8.61 94.6 + 5.37 983 +0.00 964 + 4.73 97.7 +3.71 100 + 0.00
% VBNN 86.7 £ 10.9 87.0 £ 11.3 93.3 +£ 0.00 90.7 + 815 91.9 + 9.21 96.7 £+ 0.00
=) VD 65.2 + 0.08 63.7 + 6.58 659+ 083 755+ 781 74.6+7.79 76.6 + 0.40
HS-BNN 59.0 + 8.52 59.4 + 4.38 56.6 £ 2.06 67.0 £+ 8.54 68.2+ 3.62 66.5+ 1.86

4.8.3 Real data regression experiment: UCI datasets

We follow the experimental protocols of Hernandez-Lobato et al. 2015, and choose five
datasets for the experiment. For the small datasets "Kin8nm”, "Naval”, "Power Plant” and
"wine”, we choose a single-hidden-layer ReLLU network with 50 hidden units. We randomly
select 90% and 10% for training and testing respectively, and this random split process is
repeated for 20 times (to obtain standard deviations for our results). We choose minibatch
size m = 128, learning rate = 1073 and run 500 epochs for "Naval”, "Power Plant” and
"Wine”, 800 epochs for "Kin8nm”. For the large dataset "Year”, we use a single-hidden-layer
ReLU network with 100 hidden units, and the evaluation is conducted on a single split. We
choose m = 256, learning rate = 1072 and run 100 epochs. For all the five datasets, \ is
chosen as Aoy log(A,,;) = log(T) + 0.1[(L + 1) log N + log y/np], which is the same as other
numerical studies. We let 02 = 2 and use grid search to find o, that yields the best prediction
accuracy. Adam is used for all the datasets in the experiment.

We report the testing squared root MSE (RMSE) based on Fu (defined in the main text)
with H = 30, and also report the posterior network sparsity 5 = Zszl ¢;/T. For the purpose
of comparison, we list the results by Horseshoe BNN (HS-BNN) (Ghosh and Doshi-Velez
2017) and probalistic backpropagation (PBP) (Hernandez-Lobato et al. 2015). Table 4.4
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demonstrates that our method achieves best prediction accuracy for all the datasets with a

sparse structure.

Table 4.4. Results on UCI regression datasets.

Test RMSE Posterior sparsity(%)
Dataset n(p) SVBNN HS-BNN PBP SVBNN
Kin8nm 8192 (8) 0.08 £ 0.00 0.08 £ 0.00 0.10 £ 0.00 64.5 + 1.85
Naval 11934 (16)  0.00 £+ 0.00 0.00 + 0.00 0.01 + 0.00 82.9 &£ 1.31
Power Plant 9568 (4) 4.01 +£0.18 4.03 £0.15 4.12 £ 0.03 56.6 £ 3.13
Wine 1599 (11) 0.62 + 0.04 0.63 £ 0.04 0.64 £ 0.01 59.9 £+ 4.92
Year 515345 (90) 8.87 £ NA  9.26 £+ NA 8.88 + NA 20.8 £ NA

4.8.4 Real data classification experiment: MINIST dataset

The MNIST data is normalized by mean equaling 0.1306 and standard deviation equaling
0.3081. For all methods, we choose the same minibatch size m = 256, learning rate = 5 x 1073
for our method and 3 x 1073 for the others, total number of epochs is 400 and the optimization
algorithm is RMSprop. AGP is pre-specified at 5% sparsity level.

Besides the testing accuracy reported in the main text, we also examine our method’s
ability of uncertainty quantification for MNIST classification task. We first create ambiguous
images by overlaying two examples from the testing set as shown in Figure 4.5 (a). To
perform uncertainty quantification using our method, for each of the overlaid images, we
generate 0, from the VB posterior q(6) for h = 1,...,100, and calculate the associated
predictive probability vector fy, () € R where z is the overlaid image input, and then use
the estimated posterior mean f(x) =31 f5,(2)/100 as the Bayesian predictive probability
vector. As a comparison, we also calculate the predictive probability vector for each overlaid
image using AGP as a frequentist benchmark. Figure 4.5 (b) shows frequentist method gives
almost a deterministic answer (i.e., predictive probability is almost 1 for certain digit) that is
obviously unsatisfactory for this task, while our VB method is capable of providing knowledge
of certainty on these out-of-domain inputs, which demonstrates the advantage of Bayesian

method in uncertainty quantification on the classification task.
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(a) Overlaid images (on the last column) (b) Predictive distribution for overlaid images

Figure 4.5. Top row of (b) exhibits the predictive distribution for the top
overlaid image, which is made by 5 and 6; Middle row of (b) exhibits the
predictive distribution for the middle overlaid image, which is made by 2 and 3;
Bottom row of (b) exhibits the predictive distribution for the bottom overlaid
image, which is made by 2 and 7.

4.8.5 Tllustration of CNN: Fashion-MNIST dataset

In this section, we perform an experiment on a more complex task, the Fashion-MNIST
dataset. To illustrate the usage of our method beyond feedforward networks, we consider
using a 2-Conv-2-FC network: The feature maps for the convolutional layers are set to be
32 and 64, and the filter size are 5 x 5 and 3 x 3 respectively. The paddings are 2 for both
layers and the it has a 2 x 2 max pooling for each of the layers; The fully-connected layers
have 64 x 8 x 8 neurons. The activation functions are all ReLLUs. The dataset is prepocessed
by random horizontal flip. The batchsize is 1024, learning rate is 0.001, and Adam is used
for optimization. We run the experiment for 150 epochs.

We use both SVBNN and VBNN for this task. In particular, the VBNN, which uses
normal prior and variational distributions, is the full Bayesian method without compressing,

and can be regarded as the baseline for our method. Figure 4.6 exhibits our method attains
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Figure 4.6. Fashion-MNIST experiment.

higher accuracy as epoch increases and then decreases as the sparisty goes down. Meanwhile,

the baseline method - full BNN suffers from overfitting after 80 epochs.
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5. SUMMARY

We apply variance inference as a computational efficient alternative to high dimensional linear
regression and sparse deep learning, respectively. For both problems, we are able to provide
the theoretical guarantees as well as efficient algorithms.

Possible future directions are (1) to explore efficient implementation other than black-
box variational inference for other heavy tail shrinkage priors besides the Student-t under
the high dimensional regression setting, and attempt to provide theoretical guarantee for
variable selection; (2) to extend the current results on Bayesian sparse deep learning to
more complicated networks (convolutional neural network, residual network, etc.) both
theoretically and computationally as mentioned in Section 4.6. Furthermore, proposing a
theoretical framework regarding uncertainty quantification for sparse Bayesian neural network

is also a challenging but promising topic.

110



REFERENCES

Alquier, P. and Ridgway, J. (2017). “Concentration of tempered posteriors and of their
variational approximations”. In: arXiv:1706.09295.

Armagan, A., Dunson, D. B., Lee, J., Bajwa, W. U., and Strawn, N. (2013). “Posterior
consistency in linear models under shrinkage priors”™ In: Biometrika 100, pp. 1011-1018.

Bai, J., Song, Q., and Cheng, G. (2019). “Adaptive Variational Bayesian Inference for Sparse
Deep Neural Network”. In: arXiv preprint arXiv:1910.04355.

Bai, J., Song, Q., and Cheng, G. (2020a). “Efficient variational inference for sparse deep
learning with theoretical guarantee” In: 34th Conference on Neural Information Processing
Systems (NeurIPS 2020). Vancouver, Canada.

Bai, J., Song, Q., and Cheng, G. (2020b). “Nearly optimal variational inference for high
dimensional regression with shrinkage priors”™ In: arXiv preprint arXiv:2010.12887.

Bauler, B. and Kohler, M. (2019). “On deep learning as a remedy for the curse of dimensionality
in nonparametric regression”. In: The Annals of Statistics 47.4, pp. 2261-2285.

Bhadra, A., Datta, J., Polson, N. G., and Willard, B. T. (2019). “The horseshoe-like regular-

ization for feature subset selection”. In: Sankhya B.

Bickel, P., Choi, D., Chang, X., and Zhang, H. (2013). “Asymptotic normality of maximum
likelihood and its variational approximation for stochastic blockmodels”. In: The Annals
of Statistics 41.4, pp. 1922-1943.

Bishop, C. (2006). Pattern Recognition and Machine Learning. New York: Springer.

Blei, D., Kucukelbir, A., and McAuliffe, J. (2017). “Variational inference: A review for
statisticians”. In: Journal of the American Statistical Association 112 (518), pp. 859-877.

Blei, D. M., Jordan, M. I., and Paisley, J. (2012). “Variational Bayesian inference with
stochastic search”. In: Proceedings of the 29th International Conference on Machine
Learning (ICML 2012), pp. 1367-1374.

Blundell, C., Cornebise, J., and Kavukcuoglu, K. (2015). “Weight uncertainty in neural net-
works”. In: Proceedings of the 32nd International Conference on International Conference

on Machine Learning (ICML 15). Lille, France, pp. 1613-1622.

Boleskei, H., Grohs, P., Kutyniok, G., and Petersen, P. (2019). “Optimal approximation with
sparsely connected deep neural networks”. In: CoRR abs/1705.01714.

111



Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration inequalities: A nonasymptotic
theory of independence. Oxford University press.

Carbonetto, P. and Stephens, M. (2012). “Scalable variational inference for Bayesian variable
selection in regression, and its accuracy in genetic association studies”. In: Bayesian
Analysis 7 (1), pp. 73-107.

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010). “The horseshoe estimator for sparse
signals”. In: Biometrika 97, pp. 465-480.

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2009). “Handling sparsity via the horseshoe”.
In: Artificial Intelligence and Statistics, pp. 73-80.

Castillo, 1., Schmidt-Hieber, J., and Van der Vaart, A. W. (2015). “Bayesian linear regression
with sparse priors”. In: The Annals of Statistics, pp. 1986-2018.

Celisse, A., Daudin, J.-J., and Pierre, L. (2012). “Consistency of maximum-likelihood and
variational estimators in the stochastic block model”. In: Electronic Journal of Statistics
6, pp. 1847-1899.

Cheang, G. H. (2010). “Approximation with neural networks activated by ramp sigmoids”.
In: Journal of Approzimation Theory 162.8, pp. 1450-1465.

Cheang, G. H. and Barron, A. R. (2000). “A better approximation for balls”. In: Journal of
Approximation Theory 104.2, pp. 183-203.

Cheng, Y., Wang, D., Zhou, P., et al. (2018). “Model compression and acceleration for deep
neural networks: The principles, progress, and challenges”. In: IEEE Signal Processing
Magazine 35.1, pp. 126-136.

Chérief-Abdellatif, B.-E. (2020). “Convergence rates of variational inference in sparse deep
learning”. In: Proceedings of the 37th International Conference on Machine Learning
(ICML 2020). Vienna, Austria.

Chérief-Abdellatif, B.-E. and Alquier, P. (2018). “Consistency of variational Bayes inference
for estimation and model selection in mixtures”. In: Electronic Journal of Statistics 12.2,
pp. 2995-3035.

Cybenko, G. (1989). “Approximation by superpositions of a sigmoidal function”. In: Mathe-
matics of Control, Signals and Systems.

Deng, W., Zhang, X., Liang, F., and Lin, G. (2019). “An adaptive empirical Bayesian method

for sparse deep learning”. In: 33rd Conference on Neural Information Processing Systems
(NeurIPS 2019). Vancouver, Canada.

112



Dieng, A. B., Tran, D., Ranganath, R., Paisley, J., and Blei, D. M. (2017). “Variational
Inference via y2-Upper Bound Minimization”. In: 31st Conference on Neural Information
Processing Systems (NIPS 2017). Long Beach, CA.

Feng, J. and Simon, N. (2017). “Sparse input neural networks for high-dimensional nonpara-
metric regression and classification”. In: arXiv preprint arXiv:1711.07592.

Frankle, J. and Carbin, M. (2018). “The lottery ticket hypothesis: finding sparse, trainable
neural networks”. In: arXiv preprint arXiv:1803.03635.

Gale, T., Elsen, E., and Hooker, S. (2019). “The state of sparsity in deep neural networks”.
In: arXiv preprint arXiv:1902.0957).

Gao, C., Vaart, A. W. van der, and Zhou, H. H. (2020). “A general framework for Bayes
structured linear models”™. In: Annals of Statistics 48, pp. 2848-2878.

George, E. and McCulloch, R. (1993). “Variable selection via Gibbs sampling”. In: Journal of
the American Statistical Association 88, pp. 881-889.

Ghosal, S. (1999). “Asymptotic normality of posterior distributions in high- dimensional
linear models”. In: Bernoulli 5, pp. 315-331.

Ghosal, S. and Van Der Vaart, A. (2007). “Convergence rates of posterior distributions for
noniid observations”. In: The Annals of Statistics 35.1, pp. 192-223.

Ghosh, P. and Chakrabarti, A. (2015). “Posterior concentration properties of a general class
of shrinkage estimators around nearly black vectors”. In: arXiv preprint arXiv:1412.8161.

Ghosh, S. and Doshi-Velez, F. (2017). “Model selection in Bayesian neural networks via
horseshoe priors”. In: arXiv preprint arXiv:1705.10388.

Ghosh, S., Yao, J., and Doshi-Velez, F. (2018). “structured variational learning of Bayesian
neural networks with horseshoe priors”. In: Proceedings of the 35th International Conference
on Machine Learning (ICML 2018). Stockholm, Sweden.

Giordano, R., Broderick, T., and Jordan, M. (2018). “Covariances, robustness, and variational
Bayes”. In: Journal of Machine Learning Research 19, pp. 1-49.

Giordano, R., Broderick, T., and Jordan, M. (2015). “Linear response methods for accu-
rate covariance estimates from mean field variational Bayes”. In: Advances in Neural
Information Processing Systems, pp. 1441-1449.

Glorot, X., Bordes, A., and Bengio, Y. (2011). “Deep sparse rectifier neural networks”. In:
Proceedings of the 14th International Conference on Artificial Intelligence and Statistics
(AISTATS) 2011. Fort Lauderdale, FL.

113



Goldt, S., Advani, M. S., Saxe, A. M., Krzakala, F., and ZdeborovAj, L. (2019). “Dynamics of
stochastic gradient descent for two-layer neural networks in the teacher-student setup”. In:
33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Vancouver,
Canada.

Goodfellow, 1., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

Graves, A. (2011). “Practical variational inference for neural networks”. In: Advances in
Neural Information Processing Systems 24 (NIPS 2011), pp. 2348-2356.

Griffin, J. E. and Brown, P. J. (2012). “Structuring shrinkage: some correlated priors for
regression”. In: Biometrika 99, pp. 481-487.

Guo, Y., Zhang, C., Zhang, C., and Chen, Y. (2018). “Sparse DNNs with improved adversarial
robustness”. In: 32nd Conference on Neural Information Processing Systems (NeurIPS
2018). Montréal, Canada., pp. 240-249.

Hall, P., Ormerod, J., and Wand, M. (2011). “Theory of Gaussian variational approximation
for a Poisson mixed model”. In: Statistica Sinica 21, pp. 369-389.

Hall, P., Pham, T., Wand, M., and Wang, S. (2011). “Asymptotic normality and valid inference
for Gaussian variational approximation” In: The Annals of Statistic 39.5, pp. 2502-2532.

Han, S., Mao, H., and Dally, W. (2016). “Deep compression: compressing deep neural networks
with pruning, trained quantization and huffman coding”. In: International Conference on
Learning Representations (ICLR).

Hans, C. (2009). “Bayesian lasso regression”. In: Biometrika 96, pp. 835-845.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2001). The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. New York: Springer.

Herndndez-Lobato, J. and Adams, R. (2015). “Probabilistic backpropagation for scalable
learning of bayesian neural networks”. In: Proceedings of the 32nd International Conference

on Machine Learning (ICML 2015). Lille, France.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013). “Stochastic variational
inference”. In: The Journal of Machine Learning Research 14.1, pp. 1303—-1347.

Huang, X., Wang, J., and Liang, F. (2016). “A Variational Algorithm for Bayesian Variable
Selection”. In: arXiv preprint arXiv:1602.07640.

Hubin, A. and Storvik, G. (2019). “Combining model and parameter uncertainty in Bayesian
neural networks”. In: arXiv:1903.07594.

114



Ishwaran, H. and Rao, S. (2005). “Spike and slab variable selection: Frequentist and Bayesian
strategies”. In: Annals of Statistics 33.2, pp. 730-773.

[smailov, V. (2017). “Approximation by sums of ridge functions with fixed directions”. In: St.
Petersburg Mathematical Journal 28.6, pp. 741-772.

Jaiswal, P., Rao, V. A., and Honnapppa, H. (2019). “Asymptotic Consistency of a—Rényi-
Approximate Posteriors” In: arXiv preprint arXiv:1902.01902.

Jang, E., Gu, S., and Poole, B. (2017). “Categorical reparameterization with gumbel-softmax”.
In: International Conference on Learning Representations (ICLR 2017).

Johnson, V. E. and Rossel, D. (2012). “Bayesian Model Selection in High-dimensional Settings”.
In: Journal of the American Statistical Association 107, pp. 649-660.

Jordan, M., Ghahramani, Z., Jaakkola, T., et al. (1999). “An introduction to variational
methods for graphical models”. In: Machine Learning.

Kingma, D. and Ba, J. L. (2015). “ADAM: A method for stochastic optimization” In:
International Conference on Learning Representations (ICLR 2015).

Kingma, D. and Welling, M. (2014). “Auto-Encoding Variational Bayes”. In: arXiv:1812.611.

Le Cam, L. (1986). Asymptotic methods in statistical decision theory. New York: Springer
Science & Business Media.

Li, Y. and Turner, R. E. (2016). “Rényi Divergence variational inference”. In: 80th Conference
on Neural Information Processing Systems (NIPS 2016). Barcelona, Spain.

Liang, F., Li, Q., and Zhou, L. (2018). “Bayesian neural networks for selection of drug sensitive
genes”. In: Journal of the American Statistical Association 113 (523), pp. 955-972.

Louizos, C., Welling, M., and Kingma, D. P. (2018). “Learning sparse neural networks through
10 regularization” In: ICLR 2018.

MacKay, D. (1992). “A practical bayesian framework for backpropagation networks”. In:
Nerual Computation.

Maddison, C., Mnih, A., and Teh, Y. W. (2017). “The concrete distribution: a continu-
ous relaxation of discrete random variables”. In: International Conference on Learning
Representations (ICLR 2017).

Mhasker, H., Liao, Q., and Poggio, T. (2017). “When and why are deep networks better

than shallow ones?” In: Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence (AAAI-17), pp. 2343-2349.

115



Minka, T. P. (2001). “Expectation Propagation for Approximate Bayesian Inference”. In: Pro-
ceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI2001).

Mitchell, T. J. and Beauchamp, J. J. (1988). “Bayesian variable selection in linear regression”.
In: Journal of the American Statistical Association 83 (404), pp. 1023-1032.

Mocanu, D., Mocanu, E., Stone, P.; et al. (2018). “Scalable training of artificial neural
networks with adaptive sparse connectivity inspired by network science” In: Nature
Communications 9, p. 2383.

Molchanov, D.; Ashukha, A.; and Vetrov, D. (2017). “Variational dropout sparsifies deep
neural networks”. In: Proceedings of the 34th International Conference on Machine Learning

(ICML 2017), pp. 24982507,

Narisetty, N. N. and He, X. (2014). “Bayesian variable selection with shrinking and diffusing
priors”. In: The Annals of Statistics 42.

Neal, R. (1992). “Bayesian learning via stochastic dynamics”. In: Advances in Neural Infor-
mation Processing Systems 5 (NIPS 1992), pp. 475-482.

Neklyudov, K., Molchanov, D., Ashukha, A., and Vetrov, D. (2017). “Structured Bayesian
pruning via log-normal multiplicative noise”. In: 31st Conference on Neural Information
Processing Systems (NIPS 2017). Long Beach, CA.

Ormerod, J., You, C., and Muller, S. (2017). “A variational Bayes approach to variable
selection”. In: Electronic Journal of Statistics 11.2, pp. 3549-3594.

Park, T. and Casella, G. (2008). “The Bayesian Lasso”. In: Journal of the American Statistical
Association 103, pp. 681-686.

Pati, D., Bhattacharya, A., and Yang, Y. (2018). “On the Statistical optimality of variational
Bayes”. In: Proceedings of the 21st International Conference on Artificial Intelligence and
Statistics (AISTATS) 2018. Lanzarote, Spain.

Polson, N. and Rockova, V. (2018). “Posterior concentration for sparse deep learning”. In:
32nd Conference on Neural Information Processing Systems (NeurIPS 2018). MontrAQal,
Canada, pp. 930-941.

Ranganath, R., Gerrish, S., and Blei, D. M. (2013). “Black box variational inference”. In:
arXiv preprint arXiv:1401.0118.

Ranganath, R., Tran, D., and Blei, D. M. (2016). “Hierarchical variational models”. In:

Proceedings of the 33rd International Conference on Machine Learning (ICML 2016).
New York, NY, USA.

116



Ray, K. and Szabo, B. (2020). “Variational Bayes for high-dimensional linear regression with
sparse priors”. In: arXiv:1904.07150.

Reid, S., TIbshirani, R., and Friedman, J. (2016). “A study of error variance estimation in
lasso regression”. In: Statistica Sinica 26 (1), pp. 35-67.

Rezende, D., Mohamed, S., and Wierstra, D. (2014). “Stochastic backpropagation and
approximate inference in deep generative models”. In: Proceedings of the 31st International
Conference on Machine Learning (ICML 1/). Beijing, China, pp. 1278-1286.

Rockovd, V. and George, E. (2014). “EMVS: the EM approach to Bayesian variable selection”.
In: Journal of the American Statistical Association 109 (506), pp. 828-846.

Rockova, V. and George, E. (2018). “The Spike-and-Slab LASSO”. In: Journal of the American
Statistical Association 113 (521), pp. 431-444.

Rolnick, D. and Tegmark, M. (2018). “The power of deeper networks for expressing natural
functions” In: International Conference on Learning Representations (ICLR).

Schmidt-Hieber, J. (2017). “Nonparametric regression using deep neural networks with ReLLU
activation function”. In: arXiv:1708.06633.

Senderby, C., Raiko, T., Maalge, L., Sgnderby, S., and Ole, W. (2016). “How to Train Deep
Variational Autoencoders and Probabilistic Ladder Networks”. In: Proceedings of the 33rd

International Conference on International Conference on Machine Learning (ICML 16).
New York, NY.

Song, Q. and Liang, F. (2014). “A split-and-merge Bayesian variable selection approach for
ultra-high dimensional regression”. In: Journal of the Royal Statistical Society, Series B

77, pp. 947-972.

Song, Q. (2020). “Bayesian shrinkage towards sharp minimaxity”. In: Electronic Journal of
Statistics 14, pp. 2714-2741.

Song, Q. and Liang, F. (2017). “Nearly optimal Bayesian shrinkage for high dimensional
regression”. In: arXiv:1712.08964.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., and Salakhutdinov, R. (2014).
“Dropout: a simple way to prevent neural networks from overfitting”. In: Journal of

Machine Learning Research 15, pp. 1929-1958.

Tian, Y. (2018). “A theoretical framework for deep locally connected relu network”. In: arXiv
preprint arXiv:1809.10829.

117



Tran, D., Blei, D. M., and Airoldi, E. M. (2015). “Copula variational inference.” In: Advances
in Neural Information Processing Systems 28 (NIPS 2015).

Van Der Pas, S. L., Salomond, J. B., and Schmidt-Hieber, J. (2016). “Conditions for posterior
contraction in the sparse normal means problem”. In: Flectronic journal of statistics 10,
pp- 976-1000.

Van Der Pas, S. L., Szabd, B., and Van Der Vaart, A. (2017). “Uncertainty quantification for
the horseshoe (with discussion)”. In: Bayesian Analysis 12, pp. 1221-1274.

Van Der Pas, S. L., Kleijn, B. J., and Van Der Vaart, A. W. (2014). “The horseshoe estimator:
Posterior concentration around nearly black vectors”. In: Electronic Journal of Statistics
8, pp. 2585-2618.

Vershynin, R. (2012). “Introduction to the non-asymptotic analysis of random matrices”.
In: Compressed Sensing: Theory and Applications. Ed. by Y. Eldar and G. Kutyniok.
Cambridge University Press, pp. 210-268.

Wang, B. and Titterington, M. (2004). “Inadequacy of interval estimates corresponding
to variational Bayesian approximations” In: Workshop on Artificial Intelligence and
Statistics, pp. 373-380.

Wang, Y. and Blei, D. (2019). “Frequentist Consistency of Variational Bayes”. In: Journal of
the American Statistical Association 114, pp. 1147-1161.

Westling, T. and McCormick, T. H. (2019). “Beyond prediction: A framework for inference
with variational approximations in mixture models”. In: Journal of Computational and
Graphical Statistics 28.4, pp. 7T78-789.

Yang, Y., Wainwright, M. J., and Jordan, M. I. (2016). “On the computational complexity of
high-dimensional Bayesian variable selection”. In: The Annals of Statistics 44, pp. 2497—
2532.

Yang, Y., Pati, D., and Bhattacharya, A. (2020). “a-variational inference with statistical
guarantees”. In: Annals of Statistics 48.2, pp. 886-905.

Ye, M. and Sun, Y. (2018). “Variable selection via penalized neural network: a drop-out-one
loss approach” In: Proceedings of the 35th International Conference on International
Conference on Machine Learning (ICML 18). Stockholm, Sweden, pp. 5620-5629.

You, C., Ormerod, J., and Muller, S. (2014). “On variational Bayes estimation and variational
information criteria for linear regression models”. In: Australian and New Zealand Journal
of Statistics 56.1, pp. 73-87.

118



Zhang, C. H. (2010). “Nearly unbiased variable selection under minimax concave penalty”.
In: The Annals of Statistics 38.

Zhang, F. and Gao, C. (2019). “Convergence rates of variational posterior distributions”. In:
arXiv preprint arXiw:1712.02519.

Zhu, M. and Gupta, S. (2018). “To prune, or not to prune: Exploring the efficacy of pruning
for model compression”. In: International Conference on Learning Representations (ICLR).

119



A. APPENDIX TO CHAPTER 2

A.1 Comparison of Minimizing Joint KL and Marginal KL

Our presented theory investigates the asymptotics of the variational Bayes distribution

that minimizes the marginal KL divergence of 8. In such case, the negative ELBO is

0= f log p(Y[8)¢(8)dB + KL(a(8)|n(8)). (A1)

where for j=1,...,pn,

_rotl 1

) = o (1 (1)) et = (e (R))

with sy = +/bn/ag, vy = 2ag, s = 4/bj/a; and v = 2a;. However KL(g(8)|n(8)) has no
analytical expression, and the optimization of (A.1) will then require Monte Carlo estimation
and gradient descent type algorithms.

Therefore, for the simplicity of the computation, the ELBO optimization algorithm
described in Section 2.4 targets to minimize the joint KL divergence of (8, A) rather than
the marginal KL divergence of 8. In other words, there is a gap between our computational
algorithm and our theory.

To justify that our implemented procedure (i.e., minimizing the joint KL divergence of
(B,A)) is a close approximation of the variational procedure studied by our theory (i.e.,
minimizing the marginal KL divergence of (8)), We compare the two procedures via a toy
example. Specifically, we would like to compare variational posterior means g (by minimizing
(2.4)) and fr (by minimizing (A.1)). Consider a linear model with n = 100, p,, = 100 and
BY = (10,10,10,10,10,0,...,0)". Suppose ¢ is known and equals 1. For both two procedures,

2+1/a0 6/a0

- /@], We use Lasso estimator for both the

we choose ag = 2 and b, /ag = log(p,)/[np
initial value of p and g1, and Adam (Kingma and Ba 2015) is used for minimizing (A.1) with
the learning rate being 0.001.

We run the experiment for 100 times, and the means and standard deviations of the

mean squared error (MSE) (Ziil(,uk — Jix)*/K) for both the nonzero entries B, and zero
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entries B o). are reported: For B, the MSE is 0.0108 + 0.0038; For S o)., the MSE is
0.0006 £ 0.0008.

This toy example shows there is little estimation difference in minimizing (2.4) or (A.1),
and thus in practice the Algorithm 1 in the main text is preferred due to its simple form of

coordinate descent update.
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B. APPENDIX TO CHAPTER 3

B.1 Toy Example: Linear Regression

In this section, we aim to demonstrate that there is little difference between the results
using inverse-CDF reparameterization and Gumbel-softmax approximation via a toy example.

Consider a linear regression model:
Vi=X'B+e, e~N(01), i=1,...,n,

We simulate a dataset with 1000 observations and 200 predictors, where (59 = 190 =
Biso = 10, Br5 = Pi2s = —10 and 5; = 0 for all other j.
A spike-and-slab prior is imposed on [ such that

Bilvs ~ %N (0,05) + (1 —7)d0, 5 ~ Bern(}),

for j =1,...,200, where og = 5 and A = 0.03. The variational distribution ¢(3)Q is chosen

as

Bilvs ~ %N (g, 07) + (1 —5)00, 7 ~ Bern(gy).

We use both Gumbel-softmax approximation and inverse-CDF reparameterization for the
stochastic optimization of ELBO, and plot posterior mean Egs)(5;]v;) (blue curve) against the
true value (red curve). Figure B.1 shows that inverse-CDF reparameterization exhibits only
slightly higher error in estimating zero coefficients than the Gumbel-softmax approximation,

which indicates the two methods has little difference on this toy example.
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Figure B.1. Linear regression
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