
DATA ACQUISITION AND PROCESSING PIPELINE

FOR E-SCOOTER TRACKING USING 3D LIDAR AND MULTI-CAMERA

SETUP

A Thesis

Submitted to the Faculty

of

Purdue University

by

Siddhant S Betrabet

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Mechanical Engineering

December 2020

Purdue University

Indianapolis, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMITTEE APPROVAL

Dr. Renran Tian, Co-Chair

Department of Computer Information and Graphics Technology

Dr. Likun Zhu, Co-Chair

Department of Mechanical and Energy Engineering

Dr. Sohel Anwar

Department of Mechanical and Energy Engineering

Approved by:

Dr. Jie Chien

Head of the Graduate Program

iii

Dedicated to my family for their support and belief in me.

iv

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor Dr. Renran Tian of the CIGT

department and Dr. Likun Zhu of the Mechanical Department. They were extremely

helpful in guiding me through this thesis and helping me navigate through problems

throughout this experience. I would also like to thank the students and professors

involved in the Toyota project out of which this thesis emerged. I would specially

like to thank Prof. Tian for being patient with my work and trusting me with the

project and the thesis.

Finally, I must express my very profound gratitude to my family for providing me

with unfailing support and continuous encouragement throughout my years of study

and through the process of researching and writing this thesis. This accomplishment

would not have been possible without them. Thank you.

v

PREFACE

As civilization continues to move towards autonomy, the need for data in order to

train AI becomes ever more necessary. This drives furthermore the need for systems

that can collect data to help further this technological advance. I have always been

interested in projects involving integration of sensors and systems and this thesis

is meant to be a representation of such a project involving the coming together of

hardware and software. Thank you to my family, my professors and my colleagues in

providing me the support to help me complete this year and a half long project.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABBREVIATIONS . xii

ABSTRACT . xiii

1 INTRODUCTION . 1

1.1 Motivation . 1

1.1.1 Contribution . 4

1.1.2 Outline . 5

2 LITERATURE REVIEW . 6

2.1 Car Based Data Collection Systems . 6

2.2 Systems Similar to the One Proposed 7

2.3 LIDAR Camera Sensory Data Processing 10

2.4 Sensor Fusion and System Calibration Techniques 11

3 DATA COLLECTION SYSTEM . 16

3.1 Hardware System . 18

3.1.1 Camera Selection . 18

3.1.2 LIDAR Selection . 21

3.1.3 Embedded System Selection . 23

3.1.4 Battery and Supporting Electronics Selection 27

3.2 Software System . 30

3.2.1 Software Recording Process . 30

3.2.2 LIDAR Data Collection . 32

3.2.3 Camera Data Collection System 35

3.2.4 Synchronization . 39

vii

Page

3.2.5 User Interface . 40

4 DATA PRE-PROCESSING AND SYSTEM CALIBRATION 44

4.1 LIDAR and IMU Data Pre-Processing 44

4.2 Camera Data Pre-Processing . 45

4.3 Calibration Process . 45

4.3.1 Calculating the Intrinsic Camera Matrix 46

4.3.2 Calculating the Extrinsic Matrix 47

5 DATA PROCESSING SYSTEM . 54

5.1 LIDAR Data Processing . 54

5.1.1 Decoding UDP Packets . 56

5.2 Camera Data Processing . 58

5.3 Synchronization and Fusion . 59

5.4 Image Processing . 63

5.5 Image to Video Processing . 64

5.5.1 OpenCV Method . 64

5.5.2 Gstreamer . 65

6 RESULTS/EVALUATION . 66

6.1 LIDAR UDP Packet Drop Evaluation 66

6.2 Camera Frame Rate Evaluation . 67

6.3 Extrinsic Matrix Calibration Accuracy 70

6.4 Cartographer SLAM . 74

7 CONCLUSION AND FUTURE WORK . 78

7.0.1 Future Work . 80

REFERENCES . 83

viii

LIST OF TABLES

Table Page

3.1 Average Measured Power Consumption for the Data Acquisition System
(using carrier board) . 28

6.1 Shows the number of possible cameras over a USB 3.0 connection for
specific cameras and their drivers . 69

6.2 Shows comparison of fusion accuracy differences due to the added manual
tuning . 73

6.3 Shows comparison of fusion accuracy based on calculation methods for
extrinsic matrix . 73

6.4 Pixel Reprojection Errors between the Extrinsic Matrix Calculation meth-
ods . 74

ix

LIST OF FIGURES

Figure Page

3.1 Project Execution Stages . 16

3.2 The Data Acquisition System . 17

3.3 Logitech c920 camera Source: Logitech website 19

3.4 Ouster OS-1 64 Beam LIDAR Source: Ouster Website 24

3.5 Sensor Gigabit Interface Source: Ouster Hardware user guide 24

3.6 Nvidia Jetson Tx2 Development Board with SOC 26

3.7 Nvidia Jetson Tx2 System on Chip Source with the Carrier Board 27

3.8 The DC-DC Buck Boost converter displays showing the voltages being
supplied to the LIDAR and the Carrier Board. The system is housed
inside the metallic box on top of which the LIDAR is fitted. 31

3.9 Collection System Architecture . 32

3.10 Data Collection Software Execution Flow 32

3.11 Rosbag LIDAR data visualization using Rviz 33

3.12 Basic Data flow for the system . 34

3.13 Bag file info displayed using the rosbag command line API 35

3.14 G-streamer Non Hardware Accelerated video recording pipeline 38

3.15 G-Streamer Hardware accelerated video recording pipeline 38

3.16 Gstreamer Non Hardware accelerated frame storing pipeline 38

3.17 Gstreamer Hardware accelerated frame storing pipeline 39

3.18 Node-Red UI Dashboard . 42

3.19 Node-Red Command Prompt . 42

3.20 Node-Red Programming Flows for UI . 43

4.1 Intrinsic-Extrinsic Matrix Equation governing LIDAR to camera coordi-
nate transforms . 46

4.2 Intrinsic Matrix calibration using MATLAB Camera Calibrator 49

x

Figure Page

4.3 Ouster Studio Interface replaying data from the OS-1 64 LIDAR 49

4.4 Fusion Overlay on 3 poster boards using collected LIDAR and camera data 50

4.5 Python code snippet to find the Extrinsic Matrix’s Rotation and Transla-
tion Vectors . 50

4.6 Python code snippet to find corresponding pixels for LIDAR points 51

4.7 Overlay showing fusion on data at longer distances 51

4.8 Overlay showing fusion on data with LIDAR points filtered to allow points
only within a distance (LIDAR Horizontal Resolution = 1024) 52

5.1 LIDAR files with filename containing packet count and timestamp for
synchronization collected from the ROS method containing buffer data
after pre-processing the bag data . 55

5.2 2 Degree yaw difference induced in the point cloud due to the difference
in UDP packet decoding methods. Left Image shows the same point cloud
processing method (yellow and blue mixed) and Right image shows dif-
ference due to difference in math library and Trigonometric Table based
processing . 56

5.3 LIDAR Data Packet format Source: Ouster Software Guide 57

5.4 LIDAR spherical to cartesian conversion Source: Ouster Software Guide . 58

5.5 Image file names with framecount and timestamp for synchronization col-
lected from either Gstreamer or ROS method 59

5.6 Template folder containing the required scripts for calibration and pro-
cessing, to be used for every new data set 61

5.7 Mapping table generated at the end of the fusion processing code 62

5.8 Gstreamer Pipeline for converting captured image frames into a single
video. 65

6.1 Visualization of Packet Loss in a frame in the dark area (below) compared
to no packet loss in a frame (above) . 67

6.2 Percentage Packet Loss Comparison for two LIDAR modes 68

6.3 Best frame rates achieved with the experimented camera solutions 68

6.4 Frame rate comparison for 2x Logitech c920 cameras over USB 3.0 utilizing
different recording methods . 70

6.5 Image size vs encoding quality . 71

xi

Figure Page

6.6 Overlay image showing fusion before and after fine tuning manually . . . 72

6.7 Cartographer Architecture. Source: Google 75

6.8 SLAM Cartographer Steps/Execution order 76

6.9 2D Probability grid showing the map of stutz lab(white and grey) and
vehicle trajectory(Yellow line) in the Stutz Lab from collected data 77

6.10 3D mapping (.ply file) of the Stutz lab viewed using ccviewer from collected
data . 77

xii

ABBREVIATIONS

LIDAR Light Detection and Ranging

IMU Inertial Measurement Unit

MJPEG Motion Joint Photographic Experts Group

FPS Frames Per Second

UDP User Datagram Protocol

ARM Advanced RISC Machine

USB Universal Serial Bus

DHCP Dynamic Host Configuration Protocol

ROS Robot Operating System

GPU Graphics Processing Unit

UVC USB Video Class

UI User Interface

CSV Comma Separated Values

L-M Levenberg Marquadt

SVD Single Value Decomposition

RANSAC Random Sample Consensus

SolvePnP Solve Perspective and Point

EPNP Efficient Perspective and Point

SLAM Simultaneous Localization and Mapping

xiii

ABSTRACT

Betrabet, Siddhant S. M.S.M.E., Purdue University, December 2020. Data Acquisi-
tion and Processing Pipeline for E-Scooter Tracking Using 3d Lidar and Multi-Camera
Setup. Major Professors: Dr. Renran Tian and Dr. Likun Zhu.

Analyzing behaviors of objects on the road is a complex task that requires data

from various sensors and their fusion to recreate movement of objects with a high

degree of accuracy. A data collection and processing system are thus needed to

track the objects accurately in order to make an accurate and clear map of the

trajectories of objects relative to various coordinate frame(s) of interest in the map.

Detection and tracking of moving objects (DATMO) and Simultaneous localization

and mapping (SLAM) are the tasks that needs to be achieved in conjunction to

create a clear map of the road comprising of the moving and static objects. These

computational problems are commonly solved and used to aid scenario reconstruction

for the objects of interest. The tracking of objects can be done in various ways,

utilizing sensors such as monocular or stereo cameras, Light Detection and Ranging

(LIDAR) sensors as well as Inertial Navigation systems (INS) systems. One relatively

common method for solving DATMO and SLAM involves utilizing a 3D LIDAR

with multiple monocular cameras in conjunction with an inertial measurement unit

(IMU) allows for redundancies to maintain object classification and tracking with

the help of sensor fusion in cases when sensor specific traditional algorithms prove

to be ineffectual when individual sensor falls short due to their limitations. The

usage of an IMU and sensor fusion methods relatively eliminates the need for having

an expensive INS rig. Fusion of these sensors allows for more effectual tracking to

utilize the maximum potential of each sensor while allowing for methods to increase

perceptional accuracy. The focus of this thesis will be the dock-less e-scooter and the

xiv

primary goal will be to track its movements effectively and accurately with respect

to cars on the road and the world. Since it is relatively more common to observe

a car on the road than e-scooters, we propose a data collection system that can be

built on top of an e-scooter and an offline processing pipeline that can be used to

collect data in order to understand the behaviors of the e-scooters themselves. In this

thesis, we plan to explore a data collection system involving a 3D LIDAR sensor in

conjunction with an IMU and multiple monocular cameras on an e-scooter as well

as an offline method for processing the data to generate data to aid tracking and

scenario reconstruction.

1

1. INTRODUCTION

1.1 Motivation

Understanding the behavior of objects on the road to avoid fatalities is crucial to

driverless systems. Injuries resulting on the road due to e-scooter accidents continue

to mount year after year. Any form of Automated Driver Assistance System (ADAS)

will need to build some form of internal model of the vehicles and the world to predict

the possible movements of objects on the road once it has classified these objects. Each

vehicle behaves differently as the rider tries and tends to use the vehicle depending on

all the multitude of factors that go into dealing with driving scenarios. Many users

in big cities who primarily use the rented version of the e-scooter do not tend to wear

helmets. This fact coupled with their growing popularity in big cities as a cheap and

easy to use means of transportation results in more and more injuries every year.

A breakdown of the various accidents recorded in a study [1] by the Center for

Disease Control (CDC) shows the reasons for the accidents ranging from interactions

with the curb to travelling downhill and a large number also being attributed to

interacting with motor vehicles on the roads. E-scooter companies such as Bird and

Lime operate in over 100 cities around the world. There has been an estimated 4̃500

injuries in 2014 which skyrocketed to 1̃4000 injuries in 2018 according to a study by

the CDC, an increase of 222% in just 4 short years. In 2018 itself, Bird celebrated its

10 Millionth ride which underlines the need for any sort of safety system that deals

with objects on the road to account for e-scooters as a potential cause for accidents.

Behavior of the riders as they make rough turns in order to navigate the curb and

the pavement can often influence driver decisions as the drivers attempt to estimate

possible interaction scenarios with the constantly unpredictable movement of these

e-scooters and their riders. Therefore, to avoid accidents resulting in crashes from the

2

same, having a thorough understanding of the movement of the e-scooter is required.

This requires accurately being able to track an e-scooter in multiple scenarios on the

road as well as vehicles of interest to understand the different temporal and spatial

relationships between these objects.

To achieve complete scenario reconstruction, the data collection and processing

system needs to classify and track the moving objects of interest as well as static

objects for a complete picture. As mentioned earlier, since it is relatively common to

find cars in urban areas than to find e-scooters, a data collection system mounted on

an e-scooter can be driven around urban areas to capture the necessary data. This

involves the utilization of multiple perception sensors such as color monocular cameras

and 3D LIDAR in conjunction with an IMU, a commonly used sensor combination

[2]. The data collection system on such an e-scooter therefore needs an untethered

computing platform and a mechanism for storing data. This involves being able to

efficiently store high volume and high bandwidth data coming in from the cameras

and the LIDAR sensor. The data collection system also needs to be able to compress

the data to store it efficiently in its storage space as well as deal with data coming in

at different frequencies and synchronize them accurately to aid in the processing.

The system also needs a lightweight frame to house all these parts. Once the data

is stored, a data processing system is then required to create a custom pipeline that

can then accurately process the data from these sensors. Since scenario reconstruction

methods are not standardized, an array of diverse programs tuned for these specific

sensors ad this setup is required. This involves being able to format the data and

filter data from the IMU to maintain accuracy. The LIDAR data needs to be filtered

and corrected for motion compensation to avoid mapping errors by fusing it with

data from the IMU. The filtered data from these two sources then needs to be fused

accurately to create a 2D map of the environment using an efficient SLAM procedure.

This will allow us to understand the motion of the e-scooter with respect to a fixed

world coordinate frame. The data from the camera needs to be pre-processed and run

classification algorithms and track the object of interest (the car). The camera data

3

then needs to be separately fused frame by frame and combined with the classification

and tracking algorithms to track the ego motion of the car and its trajectory with

respect to the e-scooter. The trajectories can then be simply inverted to understand

the relative motion of the e-scooter with respect to the car. This data can then be

incorporated into the previously created map of the static environment to achieve a

complete scenario reconstruction that can be used to analyze driving behaviors.

The thesis thus primarily addresses these problems of such a system. We propose a

data collection system implemented like the one used to create the KITTI benchmark

dataset albeit tweaked for the constraints and requirements of being able to fit on an

e-scooter as well as designs and scripts for a companion data processing pipeline. We

utilized three high resolution CMOS Logitech c920 cameras, a high density 64 Beam

3D Ouster LIDAR with an inbuilt IMU. The data collection system consisted of an

NVIDIA Jetson TX2 with the Orbitty carrier board, an external Solid-State Drive to

store the data collected from the sensors. The system was battery powered and all

the necessary hardware was mounted on the e-scooter itself.

We ran ROS and Gstreamer software on an Ubuntu OS running on the Jetson TX2

in order to record data coming from all the sensors. As we dealt with data from the

sensors coming in at different frequencies with different timestamps, synchronization

was key. Hence, the data was stored in .bag file format with image data being stored

as PNG files which was a simple and effective means of storing and had a simple

screen interface to initiate and track the process of the data collection.

The data processing pipeline can mainly be divided into three main areas. The

first area dealt with pre-processing the bag files into suitable formats for further

processing and sensor calibration. This involved finding the intrinsic and extrinsic

calibration matrices to fuse the images and the LIDAR point cloud accurately. This

area involved extracting the images from the bag file while maintaining logs concerning

their timestamps in order to aid for synchronization process. The second area involved

creating fusion maps to detection and tracking of moving objects. The data from the

Camera-LIDAR fusion to aid with the DATMO problem. The third area dealt with

4

implementation SLAM algorithms are used to create static maps of the environment.

We used the Google Cartographer program built on top of ROS to aid us with SLAM

to generate 2D Map data as an additional output of the offline processing system.

1.1.1 Contribution

This thesis will concentrate on the design and development of a human wearable

data collection system and an offline data processing pipeline designed for e-scooter

based data collection. The system is designed to be of comparably low cost than

other car-based designed systems currently developed primarily using integration of

low-cost sensors. The thesis also attempts to fill in the gap existing due to lack of

such data collection systems by designing a relatively cheap system geared towards

development for e-scooter based data collection.

The thesis aims to provide a system that is human wearable and can be replaced

relatively easily if the system breaks and can be up-scaled with less effort and risk due

to the relative low cost. The thesis aims at limiting the use of proprietary software

and aims at the use of number of open source software’s never used in this specific

combination with the aim to allow the quick use and easy replication of the system.

It will focus specifically on data collection to aid scenario reconstruction of the events

and accurate tracking of e-scooters with respect to moving coordinate frames such as

on the cars on the road. The data collection system will aim at a design to fit the

requirements and constraints of an e-scooter.

The design will be geared towards having features such as online synchroniza-

tion(UNIX time-stamping) and compression of data coming from the monocular cam-

eras, the LIDAR and the IMU to aid the processing stages. The thesis will detail the

software and hardware design of the data collection system. The processing pipeline

divided into four parts. The first part of the offline processing pipeline deals with the

unpacking and formatting of the sensory LIDAR data and the synchronization data

for further processing.

5

The second part deals with the calibration methods and programs employed for

the same. This will primarily deal calibration of the intrinsic and extrinsic matrices

will allow for accurate fusion mapping of camera data with the LIDAR point cloud.

The third part will deal with the algorithms and implementation of the fusion process

involving the camera and the LIDAR to generate fusion tables which can be used for

tracking objects. Lastly, we evaluate the implementation of the Google Cartographer

SLAM software with the generated LIDAR data to generate 2D and 3D maps of the

static environment.

1.1.2 Outline

The thesis will be divided into two main subgroups. The first part will deal with

the data collection system, the second area will deal with the data processing pipeline.

In first chapter, we plan to discuss the design methods and considerations and the

construction of the data collection system on the e-scooter. We then discuss the

various computational hardware and software methods considered and implemented

to efficiently collect data from the cameras, the 3D LIDAR and the IMU. It also deals

with the techniques used to synchronize the data coming from each of the sensors as

well as the UI developed for easy data collection.

In the second chapter we explore the methods utilized to pre-process the data

to make it ready for calibration, processing, and analysis. This is followed by the

explanation on the implementation of existing algorithms to perform calibration of

the sensors for fusion. The third chapter will involve the implementation details of

the processing(fusion) algorithms of the camera data with the LIDAR data on the

collected data including details of code optimization. The final chapter will outline

the evaluation of the system and implementation of the Cartographer software system

with the collected ROS based LIDAR data and details regarding the generation of

2D maps and concatenated 3D point clouds.

6

2. LITERATURE REVIEW

2.1 Car Based Data Collection Systems

On road vehicle system equipped with road sensing capabilities have existed for

decades. One of the earliest data collection systems that bears resemblance to modern

benchmark collection systems is the NAVLAB1 system developed at Carnegie Mellon

University [1] consisting of a camera and a laser range finder attached to a Chevrolet

panel van. Fast forward to today, the two main recognizable systems, the Google

StreetCar [2] developed in 2007 and the Bing car [3]. Both systems were developed

to map the streets and structures around the street. These systems usually involve

fish-eye cameras and wide-angle cameras enough to roughly cover a 360-degree view

and usually two LIDARs arranged at right angles, horizontally and vertically to the

surface of the street.

The Bing car similarly involved the use of a GPS integrated IMU along with a

panoramic camera and a 3D LIDAR. These systems however are not intended as open

source hardware and therefore not much data could be gleaned about their designs.

The benchmark dataset collection systems for street and vehicle are well defined

sensor arrays on top of the vehicle. The two prime examples of these are the KITTI

and Waymo vehicle data collection systems. The KITTI dataset[4] also known as

the KITTI vision benchmark suite provides raw benchmark datasets from their array

of sensors arranged on a Volkswagen Passat includes an INS system a GPS/IMU

system, 64 beam 3D LIDAR, multiple grayscale, color and varifocal cameras aimed

at covering a full 360-degree horizontal view of the environment.

The Waymo system [5][6] differs in the aspects of the sensors There is a primary

focus on the LIDAR data. The system consists of five different LIDARs, one mid-

range LIDAR on the top and four short-range LIDAR’s arranged on the sides. The

7

system also contains five cameras all primarily focused on overlapping 180-degree

front view. This system hence utilized the space and size offered by a 4 wheeler and

allowed for addition of multiple sensors to the system.

The downside to using a car-based system is to try to find vehicle e-scooter in-

teractions is particularly difficult due the relative lack of e-scooters on the road. The

e-scooter system presented in this document will have a much higher number of in-

teractions with cars than a car-based system would have with an e-scooter. The

hardware and consequently the software of these car-based systems also directly can-

not be used directly on the e-scooter due to the constrains of size and power that

need to be considered for an e-scooter based setup.

2.2 Systems Similar to the One Proposed

Although these two systems share their collected datasets for other developers and

designers to download, relatively little is known of the actual software of these systems.

Papers have also been published on producing datasets distinctly for autonomous

automotive perception such as the Precise Synthetic Image and LiDAR (PreSIL)

dataset by B. Hurl, K. Czarnecki and S. Waslander[7]. A few systems were found

that were closer to the setup that we were trying to create specifically for the e-

scooter system. One system by David Blankeau et al [8] aimed at development of a

low-cost LIDAR system aimed to be used to collect data from bicycles. The aim was

to use the 2D Garmin LIDAR lite in conjunction with a rotating stepper to generate

360-degree data along with a Raspicam camera for visual data.

The system mentioned by David Blankeau et al [8] was designed with simply

cameras in mind and a high amount of processing with multiple cameras is required to

glean motion information from the same and thus cannot be directly used as an answer

to the problem proposed int his document. It must be noted that system proposed in

this thesis is designed specifically to cater to the needs of data requirements from both

LIDAR and camera sensors has not currently been designed for a system such as the

8

e-scooter that can collect and store data and also fit the constraints and requirements

of an e-scooter based system. When it comes to the hardware software orientation of

the system, the system by Bian He et al[9] uses a combination of FPGA’s and Gigabit

Ethernet hardware to allow for multi channel image collection. The usage of a image

data loop acquisition algorithms to achieve this multi channel image acquisition. The

data from the system is then sent over gigabit Ethernet to the host computer for

storage and is built as a robust system with 0% packet loss for the image data.

Other systems involving FPGA’s as a means of image acquisition exist such as

the system outlined in the paper by Song Gu and Zhou Hulin[10]. The paper outlines

a CCD data acquisition system and a VGA display module with a DMA control

module to act as a low power consumption system. The system uses the Nios II

interface board as the primary embedded system designed by the Intel Corporation.

Since time-stamping is an important procedure for any data collection system, sys-

tems dedicated to the accuracy of the incoming image frame have also been researched

and designed. One such paper by S. Esquembri et. al[11] involves combining FPGA’s

wihth a synchronized time card and is based on the PXIE technology and essentially

uses timing devices and hardware to allow for accurate hardware based time-stamping

for the incoming image frames with the Precision Time Protocol developed by IEEE

thus providing a hardware based solution.

Systems similar to the one employed by this thesis to allow for image acquisition

that involve the use of the Linux Platforms have been implemented such as the system

by Cheng Yao-Yu et. al[12]. The system exploits a S3C2410(ARMv9) embedded

system running Linux to allow for image acquisition from USB cameras. The system

touts the application of self composed drivers for allowing communication with the

camera and the transplanting of a Linux system onto an embedded system.

Another similar system involves the application of the STM32F407 embedded

system to connect directly to a OV2640 CMOS sensor along with the transfer of data

over the Ethernet to a host computer in order to allow for data storage on an SD card

has been explained in the paper by Yu Chai and Jike Xu[13]. The paper details the

9

use of DSP and development of the network to facilitate data acquisition and storage.

This allows to store data over the network lowering memory requirements.

The specific Windows/ Linux run libraries and software are an integral tool in any

data acquisition system. One such software the Gstreamer software has been widely

used as a non-proprietary library/collection of features to enable image transport,

collection and processing. The paper by G. Sundari et. al[14] outlines the application

of the Gstreamer software to achieve h.264 encoding to allow for high quality image

streams and achieve high compression ratios.

Apart from USB interfaces, the application if the MIPI camera setup is also widely

utilized in data collection systems. A paper by Kyusam Lim et. al[15] details imple-

mentation of a MIPI-CSI multi lane configuration system that is meant to collect data

at an astonishing 4Gb/s as an implementation for High Definition video applications.

Protocols that attempting to combine the applications of ARM system with the

flexibility of the MIPI cameras have been designed such as in the paper by Utsav

Kumar[16]. The paper details the usage of a novel i2c protocol to facilitate commu-

nication between the embedded system and the MIPI camera.

For battery powered systems, low power is often a given requirement, this devel-

oping camera systems that focus on low power consumption are also extremely useful.

One such system is an architecture outlined in the paper by Yueh-Chuan et. al[17].

It is a multi-lane MIPI CSI-2 based camera system meant for low power consumption

while being able to channel high bandwidth data of up to 4Gb/s while allowing for

reductions in clock rates in the system.

A slightly more complex system meant for autonomous driving for Mobility scoot-

ers was designed by Liu et al [18]. The perception portion of the three wheeled mo-

bility scooters involved a short range LIDAR couple with a mid-range Laser range

finder connected to a 2-DOF servo system in conjunction with a ZED Stereo camera.

The processing was done using a Jetson TX2 with the help of a custom built IOT

communications module for relaying sensor and processing data. These systems have

given the research an ample understanding of the techniques used to design a similar

10

wearable system for the e-scooter. The research mentioned in this thesis thus draws a

lot from such similar projects in areas such as sensor selection and device integration.

A system that comes close to the kind of system that this thesis proposes is the

Google Street View Trekker[19]. This system is designed to capture 3D Velodyne

Lidar data and 360-degree camera data. The system is meant to be a wearable that

records sensory data as the person navigates about collecting street view type data for

Google Maps. This system however is also not meant for collecting specifically vehicle

interactions and is rather designed for collecting static data such as land topography

especially given the height at which the LIDAR and camera records the data with

respect to the person wearing the system.

2.3 LIDAR Camera Sensory Data Processing

The use of LIDAR camera systems as means of spatial data collection is well

documented. X. Liang et al. shows the application of a LIDAR camera system for

Forest Data Collection [20] as well as for coastal mapping by B. Madore[21]. Quite a

bit of research has gone into the processing of LIDAR and camera data with papers

such as the use of Gstreamer for recording and processing camera data by L.Wang et

al. [22] which primarily discusses the use of the PyGI and the Python language and

G. Sundari et al. [14] which discusses the use of Gstreamer to compress large amounts

of video data using H.264 compression while papers by L. Zheng and Y. Fan[23] focus

on data packet decoding for LIDAR data. Processing of LIDAR data has also been

a subject of interest with a lot of focus at often times being on feature extraction on

LIDAR data. S. Gargoum and K. El-Basyouny’s[24] paper, Y. Zhang et al. [25], X.

Wang et al.[26] and R. Sahba et al.[27] on feature extraction from LIDAR data using

Euclidian clustering, intensity clustering and other methods.

11

2.4 Sensor Fusion and System Calibration Techniques

Certain methods applied for calibration of stereo camera are also useful for finding

the intrinsic matrices of the individual cameras, a paper by Chun Xie et. al[28] which

utilizes a spatially coded structured light and a mobile camera in a handheld cali-

bration setup in order to calibrate the cameras. These methods utilize a projector to

project this spatially coded light in order to aid calibration. The paper claims results

similar to the checkerboard based methods. Designed as a means for calibration to al-

low scenario reconstruction, it claims a deviation from the temporal coded structured

light method more conventionally used. This applies similar to our method for using

re-projection methods to fuse the LIDAR and the camera data, as the intrinsic and

extrinsic matrices are involved in both methods. Once the initial projection matrix is

calculated, it is then refined by decomposing the matrix into the individual intrinsic

matrix and transformation parameters and then using non linear optimization.

Other methods for calculating the Projection matrix also involve deviations from

the usual re-projection error minimization to instead steer towards a method using

Linear Matrix inequality and converting the problem to that of a trace minimization

problem such as in the paper by Yoshimichi Ito et. al[29].

When it comes to the task of finding the orientation of the camera with respect

to a given co-ordinate frame, the paper by Yankun Lang et. al[30] describes an

iterative method utilizing Kernel Density estimation and probability theory to find

the alignment of the camera with respect to the ground. This paper can also be

then used to find the complete extrinsic matrix between camera and LIDAR if the

LIDAR’s orientation to the ground is known before hand. Other calibration methods

for cameras with wide angle(or close to wide angle lenses) and fish-eye lenses such as

by J. Kannala and S.S Brandt[31] that use the similar method of finding the patterns

of planar calibration and focus heavily on the geometry of the lenses for achieving

results claimed to be comparable to the state of the art methods utilized.

12

An effort to turn towards more automated methods of calibration owing to the

time and effort required for a setup where the calibration shifts due to for example, a

changing of the lens or movement of the camera LIDAR or camera-camera setup. One

such methods to automate the camera attempts to change the calibration method by

utilizing a different template than the standard checkerboard and uses calibration

points similar to the use of ARuCo markers now frequently used for calibration such

as the paper by Weidong Song et. al[32] changing the traditional calibration with its

automated aspect.

The utilization of the camera calibration toolbox in MATLAB has also been re-

searched in detail as a means of calculating the extrinsic and intrinsic matrix has

also been detailed such as in the paper by Azra Fetic et al. [33]. Research into the

multi-modal camera calibration in order to transfer the projection matrix from one

camera to a second camera in a multi camera setup has been published in a paper by

Andrey Bushnevskiy et al. [34]

Since the widely used methods for camera calibration involve error L2 minimiza-

tion problems, other methods involving the use of genetic algorithms as an add on to

the widely used methods has been detailed in a paper by Yuanyuan Dong [35] and by

Peng Liu [36] where the latter claims better calibration results than Tsai’s Calibration

algorithm/method with the genetic algorithm consisting of the fitness function and

also allowing for crossover in order to achieve better precision. Methods for applying

measurement adjustment theory as an add on to camera calibrations have been shown

in a paper by Liyan Liu [37]

There have also been papers outlining methods for sensor fusion of camera and

LIDAR data as well as calibration of the camera. The camera position estimation has

also been outlined in the paper by D. H. Lee [38] utilizes SolvePnP and Kalman filter.

The methods involving the camera calibration and the use of Levenberg-Marquadt

algorithm (solvepnp) have been significantly used as a basis for calibration and sensor

fusion between the cameras and the LIDAR in the methods described in this thesis.

13

Papers such as those by Y. Yenıaydin and K. W. Schmidt [39] and J. Li et. al [40]

outline Camera and 2D LIDAR for lane detection purposes. Similar papers expanding

the details and methods of fusion to 3D LIDAR and cameras exist such as those by

Ankit Dhall et al. [41] and Velas, Martin et al. [42] utilizes the cost function method

as well as the Levenberg Marquadt algorithm for finding the transformation between

the camera and 3D LIDAR as well as between two 3D Lidars using ArUco markers.

Papers on further processing of camera and LIDAR data for further processing of

LIDAR and camera data using Markov chains is then outlined in the paper by A.

Rangesh and M. M. Trivedi [43].

Methods involving calibration of camera and a 2D Laser Range Finder using

a checkerboard target have been achieved and documented in the paper by PDF

Fumio Itami[44]. This paper outlines attempting to reduce the error in the rotation

matrix often observed in calibration by rotating the LIDAR slightly to improve the

calibration along with a calibration method to measure the rotation of the LIDAR

to improve the overall calibration. A paper showing how the camera and 3D LIDAR

calibration can be achieved with the application of multiple V-shaped planes and

using point correspondences instead of plane mapping has also been shown in a paper

by Zhaozheng Hu [45] and involves calculating the rotation and translation matrices

separately and involves calibration and testing in both simulation and real world.

Improvement of the method of calibration of 3D LIDAR and a monocular camera

by means of pose estimation has been shown in the paper by Jiunn-Kai Huang and J.

W. Grizzle[46]. His method involves the use of targets of known geometry to minimize

errors in the LIDAR data as well as a cross-validation study to compare the edges

of the target in the point cloud space with the camera images and estimates a 70%

reduction in error from a baseline has also been documented in his paper.

Packaging the task of calibration of a Velodyne LIDAR and a Point grey camera

into a MATLAB toolbox has been done with the documentation written in a paper by

Yecheng Lyu[47]. The calibration is designed as an interactive toolbox which utilizes

scanning the LIDAR data to find the vertices of a board to calculate the extrinsic

14

matrix and supports a pin-hole as well as a fish-eye camera model. This multiple

model method helps for cameras with fish-eye lenses as the normal model does not

work for these ultra-wide lenses due to the high distortions in these lenses.

More complex methods for arbitrary camera LIDAR optimization not involving

specific targets and attempting to calibrate based on whatever the camera LIDAR

setups views. This method, outlined in the paper by Bo Fu et. al[48]. This method in-

volves moving the camera LIDAR setup and simply capturing camera images in order

to attempt to reconstruct a 3D environment alone, and then using graph optimiza-

tion to fit said reconstructed 3D environment with the LIDAR’s 3D point cloud. The

method is also outlined as a means to improve upon general methods of optimization

such as methods involving checkerboards.

Other simpler methods attempt to calibrate the LIDAR and camera data online,

by means of using image processing methods. The paper by Chih-Ming Hsu [49]

outlines such a a method involving the application of edge filters to the image and

utilizing inverse distance transforms to understand edge alignments and then compare

the data with the edges in the LIDAR point cloud in order to calibrate the system.

Although a checkerboard is a common seen object when it comes to calibration,

other methods involving using a colored sphere for calibration of multiple RGB cam-

eras and a VLP-16 LIDAR have been outlined in the paper by Geun-Mo Lee et.

al[50]. The implication involve being able to locate the center of the sphere only if

a few data points are available as well and claims to have a re-projection error of

3 pixels in addition to the benefit given by quick and easy calibration with only a

minute of processing required to perform the calibration and obtain the results.

Methods involving the use of PSO or Particle Swarm optimization to aid calibra-

tion of a Stereo camera and a LIDAR has been shown in the paper by Vijay John

et. al[51]. This paper also aims at usage of arbitrary objects similar to the paper by

Bo Fu[48]. However the applications are limited to the usage of a stereo camera or a

multi-camera setup where the calibration between the two cameras is known.

15

The paper utilizes a novel cost function and the Viterbi based stereo disparity es-

timation as a means to eventually calculate the extrinsic matrix. The paper estimates

an improved calibration due to the integration of the LIDAR range image with the

Viterbi based disparity estimation to yield better calibration.

An interesting paper written by M.A. Zaiter [52] involves focus on finding the

extrinsic matrix between the LIDAR and the ground. It attempts to do the same

by combining all LIDAR frames into a single frame in order to find the position of

the sensor and therefore the extrinsic matrix of the sensor w.r.t ground. Although

the paper is not designed as a means to perform camera LIDAR calibration, it is

nonetheless an important method that can be couple with other camera-ground based

methods to achieve overall calibration of the sensors.

There have also been research involving calibrations for setups involving multiple

LIDARs and camera mounts. This paper written by Radhika Ravi et. al[53] involves

using feature matching between multiple cameras and 3D point clouds in order to

calibrate all the sensors simultaneously. The proposed calibration feature extraction

heavily and is meant to be a solution for terrestrial or aerial systems involving multiple

sensors in an outdoor environment. The paper also aims at systems containing an

INS component and aims to find the transformations between all the sensors and the

INS system as well.

Fusion methods involving calibration similar to the one outlined in this paper

are of interesting note such as the paper by Zoltan Pusztai and Levente Hajder[54]

attempts to use ordinary boxes to calibrate a LIDAR and camera setup. The system

primarily uses a combination of the RANSAC algorithm in conjunction with the

Single Value Decomposition(SVD) algorithm and the Levenberg Marquadt algorithm

to generate the extrinsic matrix for fusion. The system is the calibrated using the

simulation of the entire calibration setup including a model of the VLP-16 LIDAR

using the Blender simulation software.

16

3. DATA COLLECTION SYSTEM

In order to design a data collection system, we looked at some existing systems

designed for benchmark data collection of this nature. We specifically looked at

vehicles such as the vehicle used to create the KITTI dataset. These cars were

equipped with 3D-LIDAR, grayscale and colored cameras, GPS systems and Inertial

measurement units. We also looked at certain aerial (UAV) based data collection

systems as well. Notably we tried to look at the sensors used in such systems. Since

the requirements of the data collection was related to geo-spatial awareness like the

ones used in autonomous cars, we also looked at certain self-driving car configurations

and the sensors and on board data processing systems employed by the same.

Fig. 3.1. Project Execution Stages

The system requirements stated the need for a system that could collect data for

periods of times usually associated with e-scooter rides (2 hours maximum). Since the

requirement was that of a wearable system, low weight and relatively ease of handling

were important factors. A large unwieldy system would affect the rider and thus affect

a naturalistic data collection compared to an easy to use, light system. The system

17

needed to be battery powered with the battery or any part of the system not being

wired to the e-scooter for purposes of safety for the rider in the event of crashes.

Being battery powered demanded a system based around relatively low power usage.

A simple user interface although not absolutely essential was deemed as a requirement

to make it easier to control the data recording process and troubleshoot the system

if deemed necessary.

Fig. 3.2. The Data Acquisition System

18

3.1 Hardware System

There were a considerable number of constraints as well as requirements in devel-

oping a data collection system on an e-scooter. Primary considerations were weight

and duration of operation of the system. Secondary considerations were ease of use of

the system and a modular approach to allow for design changes. Since the e-scooter

is meant to collect data about surrounding objects. The final system consisted of 2

USB cameras, a 3D LIDAR with integrated IMU as sensors with a Jetson TX2.

3.1.1 Camera Selection

There were several primary considerations for camera selection to be mounted

on top of the e-scooter. Some of these were resolution, frames per second, shutter

type, connector type, bandwidth requirements and color or grayscale. Since it was

important that the presence of the data collection system should not affect the driver,

the weight and volume of each individual part including the camera be taken into

consideration and attempted to be minimized.

The three primary cameras selected were the FLIR Grasshoper 3, the Generic USB

webcam with the Sony IMX291 sensor and the Logitech c920. It was also vital that the

camera selection be compatible with the hardware and software of the data collection

system onboard. Since we were planning on using an embedded system running

Ubuntu ARM, we chose a camera that was compatible with this type of embedded

device. With all these considerations in mind we decided to select the Logitech

c920 webcam capable of delivering 1080p @30fps with h.264 or MJPEG format over

USB3.0. The camera consumes about 150mA of current at 5V and is equipped with a

1/3” sensor. The camera is quite small and measure approximately 90 grams including

the lens. The volumetric dimensions of the camera measure 38cmx38cmx30cm making

it a small and portable camera fit for our application.

Resolution was an important factor in camera selection as resolution is one of the

factors which determines the number of pixels that will record a given object at a

19

Fig. 3.3. Logitech c920 camera Source: Logitech website

given distance. We ultimately decided to go with a camera capable of delivering 1080p

with a resolution of 1920x1080 pixels which was the active working area of the camera

sensor as well. Here the FLIR grasshopper was better and could provide 2048x2048

resolution, and the Generic USB webcam camera could provide 1080p resolution.

The frame rate of the camera was also an important factor in the camera selection.

The Ouster LIDAR had a low frame rate of 10 Hz and captures data by constantly

rotating a sensor base that captures a radial section of the surroundings and does not

capture the entire surroundings data at once. This is similar to the rolling shutter

feature in the camera in which the camera does not record the entire image at once

and instead takes out pixel rows one by one causing distortion effects.

It is important to note that although the other two cameras could also provide

same or better frame rate, only the Grasshopper 3 and the Logitech c920 could

provide and adjustable frame rate, where frame rate could be changed depending on

the number of cameras. This allowed us to add more cameras on the Tx2 which

was a significant hindrance in utilizing multiple cameras. Another reasoning for non-

20

selection of the Sony sensor based generic webcam was the bandwidth allocation.

Generic UVC drivers for the camera allocated a bandwidth that was much higher

than the actual observed bandwidth of the camera which was monitored using a

Linux utility called USBtop. This meant the Tx2 would throttle the bandwidth for

other devices notably the SDD and a second camera which prevented us from using

multiple cameras i.e. the Generic USB Webcam’s.

Since the LIDAR records an entire 360-degree surroundings in 64 chunks instead

of a single image. Thus, if an image could be taken for every single chunk of LIDAR

data, perfect synchronization of the two data streams could be achieved. The required

frame rate of the camera would thus shoot up to 640 fps. Therefore, a camera with a

higher frame rate would allow us to choose an image which was taken closest to the

timestamps of the frame.

This would allow one to choose a LIDAR frame and camera frame closest to

each other chronologically. Since an ideal frame rate of 640 fps is quite difficult to

achieve with cameras that are both relatively inexpensive and not bulky, we decided

to go with the highest possible frame rate which we could achieve with USB webcams

i.e. 30 fps at 1080p, yet allow for multiple cameras to be attached. The selection

of this frame rate would give us roughly 3 frames to select from for every individual

LIDAR point cloud frame. The camera also provides 8-bit color data and although the

processes of object detection and tracking don’t need color and can work with gray-

scale images, the presence of color on the camera does allow for a system equipped

with the feature which can be exploited later for other applications such as color

based tracking methods. One of the drawbacks of the camera is the rolling shutter.

As explained previously, the presence of a rolling shutter may result in the dis-

tortion of objects moving at high speeds depending on the direction of their travel.

However, since the maximum relative speeds of the e-scooter w.r.t the surrounding

and the relative distortion as a result of the same is quite low and does not seem

to affect either the segmentation process or the LIDAR camera fusion to a degree

that affects the scenario reconstruction. The lens selection discussion was primarily

21

centered around the field of view of the lens. The Generic USB webcam also included

a rolling shutter but the FLIR Grasshopper 3 did provide a global shutter.

The camera came inbuilt with an cs-mount lens and a horizontal field of view of

78 degrees and a diagonal f.o.v of 90 degree. Since the aim was to cover at least 90

degrees at the front of the camera, with the angle centered around the longitudinal

axis of the e-scooter and facing in the same direction as the rider. The compatibility

on the software side was also a consideration in camera selection. The two primary

methods to collect data on a Linux platform were the IEEE standard 1394 driver and

the multimedia platform for Linux known as Gstreamer that utilized the v4l2 library.

Since this camera used the H.264 as well as MJPG format, it was therefore Gstreamer

compatible and we decided to implement software around the same.

It must be noted that while the Generic USB webcam did work with acceler-

ated Gstreamer, but applying the Gstreamer functionality for the FLIR camera was

difficult to achieve due to the drivers for the FLIR camera being not part of the

Gstreamer library at the time of writing. In addition, workarounds using FLIR’s

Spinnaker Python API would have to be utilized to enable Gstreamer which would

cause more CPU overhead defeating the purpose of using the hardware acceleration

aspect of the Gstreamer API.

3.1.2 LIDAR Selection

The selection of the LIDAR had some considerations that were similar to the con-

siderations we made for the camera. The main considerations were size and weight

and hardware compatibility that were similar to the camera. The other parameters

that were kept in mind for LIDAR selection were 2D vs 3D lidar, resolution, frame

rate, sensor speed, number of generated points, hardware connectivity, range, accu-

racy, and cost. However, the lack of options in the market for a LIDAR relative to

that compared to that of the camera meant severely limited options to select for the

same. Certain other methods that incorporate the use of a 2D LIDAR that spins

22

in two planes to create a 3D point cloud was also considered but was rejected due

to the added complexity of such a device both in terms of design, installation and

processing. For this reason, a 3D LIDAR was chosen.

The other LIDAR’s primarily considered were the Velodyne 64E, the Velodyne

HDL 32E and the SICK MRS1000. The Velodyne HDL 64E was discarded as a

selection due to its extremely bulky weight standing at 12.7Kg which would make an

extremely heavy system not suitable for wearing. The Velodyne 32E and the SICK

MRS1000 would however compare better weighing at approximately 1 Kg and 1.3 Kg

still more than two-folds heavier than the OS1- 64 which measured at just about 455

grams favoring the Ouster LIDAR.

The consideration was selection between a 2D and a 3D LIDAR. Since 2D LIDAR’s

only capture data in the plane of the LIDAR sensor, the objects above and below the

LIDAR do not come into view. In addition, on a constantly tilting system such as an

e-scooter, the plane of recording data itself would constantly tilt and rotate. Thus,

without some sort of stabilization mechanism, would have the effect of missing out on

potential objects of interest. This was a primary reason for not selecting the SICK

MRS1000 for our system.

Of the currently existing 3D LIDAR’s the one we selected was the best in terms

of functionality to cost. We therefore went with an Ouster OS-1 64 beam medium

range LIDAR. The LIDAR is capable to generating 1,29,000 points at the rate of

10Hz. It has a horizontal Field of view of 360 degrees and a vertical field of view of

33.2 degrees divided evenly around the mid-plane of the sensor housing.

The LIDAR has a maximum range of 120 meters with an estimated accuracy of

+/- 5cm(advertised) for Lambertian targets.In terms of accuracy however although

the difference between the LIDAR’s is very comparable being between +/- 2 cm for

the Velodyne HDL 32 Beam LIDAR.

Although these two Velodyne LIDAR’s have greater accuracy, there were other

parameters in addition to the cost from the LIDAR’s which are in favour of the

selection of the Ouster OS1-64 3D LIDAR.

23

Vertical Accuracy of the Velodyne 32-E also fared worse than the Ouster solution,

due to its significantly less horizontal rings(32 compared to 64) in a 3D volume at 1.25°

compared to the 0.7° given by Ouster. This value significantly affected the LIDAR

beams falling on the cars. Although the Velodyne 32 E LIDAR would get around

this issue by distributing the beams closer to the center of the field, this would create

issues for a system such as ours that tends to constantly pitch and roll depending on

the orientation of the driver.

Although comparable with other LIDAR setups, the reason for selection of the

Ouster LIDAR for this particular project is the vertical field of view. The Ouster

OS1-64 LIDAR had a 44.5° which edged out over the Velodyne HDL 32E which had

a vertical field of view of 40°. The LIDAR comes with a sensor interface that allows

to transmit the LIDAR data over the Ethernet using the UDP protocol. The Sensor

housing and the gigabit sensor interface operate at 24Volts and consume about 1.8

amps of current.

In terms of hardware functionality and software compatibility, the ability of the

sensor interface to stream the data over the Ethernet over UDP allowed a host of

different recording methods to be implemented. The implementation of the UDP

protocol as a means of sending over the data also made the memory size requirements

on the collection systems on-board computer slightly easier. Most notably the LIDAR

came with a freely available ROS driver to capture, record and convert data and store

with timestamps.

3.1.3 Embedded System Selection

Since volume weight and power consumption of the data processing on-board com-

puter were primary considerations. We decided to go with an embedded system.

24

Fig. 3.4. Ouster OS-1 64 Beam LIDAR Source: Ouster Website

Fig. 3.5. Sensor Gigabit Interface Source: Ouster Hardware user guide

A single board computer, with appropriate storage capabilities to record data from

the cameras and the LIDAR and store them efficiently. With these considerations in

25

mind, we decide to go with the NVIDIA Jetson Tx2 running an ARM based Ubuntu

16.04 as the primary on-board computer. The other development platforms primarily

considered were the Raspberry Pi 4, the Radxa Rock 4 platform and the NVIDIA

Jetson Nano/Tx1 platform.

Although the Jetson Tx2 development kit comes with a relatively big motherboard

of size 170mm x 170mm x 2.5cm, the actual Jetson SOM(System on Module) measures

just 50x 87 mm and can be connected to a Orbitty carrier board of the same size for

a total volume of 87mm x 50mmx 50mm sames as the Jetson Tx1. This volume is

comparable to the that of the Raspberry Pi 4 which along with the casing necessary

for heat removal were about 97mm x 66mm x 41mm with the Rock 4 having similar

dimensions as the Pi.

The CPU contains a Dual core NVIDIA Denver 2 in conjunction with an ARM

cortex A57 and 8GB of LPDDR4 memory. This was a primary reason for selection of

the Jetson Tx2 as the Pi 4 at the time of selection was only available in 1,2 and 4GB

variants with the Rock having 2. Although it must be noted that 8GB variants are

available at the time of writing. The Rock,Jetson Tx1 and the Nano also fell short

in this area with 4GB of memory available. The amount of memory allowed for the

ROS based LIDAR processes to use the RAM to act as a buffer space for incoming

LIDAR data as the UDP packets were processed.

The carrier board among other things, comes equipped with a USB 3.0 port a

Gigabit Ethernet port. Here the Pi 4 came close as it also has Gigabit Ethernet

as the Jetson Tx2, with the Tx1 and Nano not providing this feature which would

cause considerable packet loss as the LIDAR connection expects Gigabit Ethernet for

smooth functioning. The Tx2 and Tx1 platforms also allow for a SATA port that

allows us to access an extra PCI-e lane that allows for smoother storage to the hard

drive. The Rock 4 and Pi 4 does not have this feature but does have the USB 3.0

same as all the other platforms.

The Jetson Tx2 also allowed for the installation of Ubuntu 16.04 which is widely

used as the Operating system to install ROS system. Here the Tx1 and Nano compare

26

as they can also have Ubuntu installations. The ROS installation on the Raspberry

Pi 4 is trickier than other due to the usual operating system on the Raspberry Pi4

being the Debian OS. Another reason for the not selecting the Pi 4 and Rock 4 here

is also the relative lack of online community support for the Ubuntu Mate system on

the Pi4 and Rock 4 compared to its Debian Linux variant.

Fig. 3.6. Nvidia Jetson Tx2 Development Board with SOC

Most notably the NVIDIA board comes equipped with methods for hardware

accelerated JPEG conversion and video encoding methods. Both of which can be

utilized to store the data coming in from the cameras. The presence of a USB3.0

also allows for higher bandwidth and allows for the addition of more cameras. The

presence of an ARM based system also allows for less power consumption compared

to that of a traditional 32 or 64 bit system. The system operates at an advertised 19

volts at maximum consumption of 4.74 amps. Although the system only comes with

27

Fig. 3.7. Nvidia Jetson Tx2 System on Chip Source with the Carrier Board

one USB 3.0 port, this was expanded with the use of USB hubs. This advantage of

the NVIDIA platform was also considered compared to the Raspberry Pi 4 platform.

3.1.4 Battery and Supporting Electronics Selection

In order to run the data collection system wirelessly on-board, we decided to use

batteries to power the whole system. Since the major components that required power

were the Jetson Tx2 board and the Ouster LIDAR.

The total consumption is about 34.6 watts. The value for the Jetson Tx2 is the

maximum consumption as provided by the manufacturer’s datasheet. The current

consumption for the OS-1-64 sensor is relatively fixed and does not waiver depend

on conditions. The current consumption for the cameras is about 200mA for each

camera and about 400mA for two cameras at 5V. The current consumption for the

SSD is about 1.6 A at maximum. That coupled with the requirements for the USB

hubs internal circuitry as well is thus adds up to about 2A of consumption. For a

standard external laptop battery, which is 185 W-h, the time of discharge is calculated

28

Table 3.1.
Average Measured Power Consumption for the Data Acquisition Sys-
tem (using carrier board)

Sr. No Component Voltage (V) Current (A) Power (W)

1. Jetson TX2(carrier Board) 11.92 0.148 1.764

2. OS1- 64 w sensor interface 23.62 0.749 17.691

3. USB hub 4.986 1.3 6.482

3. Logitech c920 4.986 0.35 1.745

4. Logitech c920 4.986 0.35 1.745

5. SSD 4.986 0.942 4.697

6. Buck Boost Converter(Tx2) 20.1 0.004 0.08

7. Buck Boost Converter(LIDAR) 20.1 0.04 0.804

Total consumption 35.008

by dividing the total watt-hours possible divided by the max wattage required by the

sum of the individual components giving us a rough idea of the working hours for

this battery-based setup.

The battery was chosen with these requirements in mind and a standard Laptop

external charger was deemed as a good option due to its pre-existing multiple voltage

level selections and the higher than required energy capacity. The battery was capa-

ble of delivering 185W-h or 50,000mAh, with the ability to give out a maximum of

130Watts. The battery, consisting of 3.7V Li-Ion cells in parallel, had internal current

limiting circuitry allowing for over-current and under-current protection. The Power

bank could supply voltage of 20V (or12 V) and 5V with the latter being provided as

a USB socket. Weighing at 2.7lb, the system could go from 0 percent charge to full

charge in under 6 hours.

Time of discharge = 185 W-h / 35 W = 5.285 hours (3.1)

29

In order to provide the required currents and voltages to each of the individual

components, a DC-DC converter, was used to provide the appropriate amount of volt-

age to each component. Since the Jetson Tx2 needs about 1.5 amps of current(carrier

board version), a buck-boost converter with a maximum current draw of 3 Amps was

chosen. Two similar buck-boost converters were used to power 20V and 5V to the

Ouster Sensor and the USB hub respectively.

Both versions of the board could be used for the system, if the carrier board was

utilized the only difference would be that the SSD would be connected to the USB

port via a SATA to USB cable. If the Development board was utilized then a SATA

SSD could be connected directly to the SATA port on the Development Board as

shown in the circuit diagram. Although the TX2 required a higher voltage of 19V

compared to the carrier board, the power requirement actually drawn was similar in

terms of wattage with the total power draw being roughly 20.5 watts with 1.07 Amps

being measure on a multi-meter. The only change to the system required the Jetson

Tx2 development board being placed inside a shoulder carry bag due to its greater

volume than the Carrier Board. The antenna that sits outside the housing on the

outside of the housing of the Tx2 helps the signal connection between the smartphone

and the TX2 to be a strong connection.

The usage of a DHCP server allowed for the elimination of a separate router or

Ethernet switch and allowed the Sensor Interface box to be directly connected to the

Ethernet Port of the Tx2. The process to set up the DHCP server was usually done

at the start of each reboot cycle with the help of bash script and by including the

command to run the script in the bashrc file in Ubuntu Linux which ran a few seconds

at the start after every reboot.

The DHCP server setup primarily involved flushing the IP addresses on the Eth-

ernet interface, followed by the assigning of a static IP address to the interface.

This would be followed by the switching on said interface, running the dnsmasq

program(which actually started a DHCP server) and allowing devices physically con-

nected to the Ethernet jack to get assigned IP addresses and establish connection in

30

order to allow the transfer of the LIDAR data. This procedure however required the

sensor interface box to remain switched off till the Ethernet interface is switched on.

In order to achieve this, the GPIO on the Tx2 was allowed to toggle the connection

to the Sensor Interface/ Ethernet Adapter via an SPDT relay and a NPN transistor.

The GPIO pin 38 on the J21 header of the Tx2 was connected to the base of the

2N3904 transistor with a 10K current limiting resistor. The emitter of the NPN

transistor was connected to the ground of the USB hub’s power supply while the

collector was connected to one of the coil pins of the SPDT relay.

The other coil pin of the SPDT relay was connected to the positive rail of the Hub’s

power supply. A freewheeling diode 1N4001 was connected in reverse bias parallel

to the SPDT relay. The positive rail of the incoming power supply was spliced and

connected to the NO and COM pins of the SPDT relay. Using the sysfs interface on

the Tx2, the GPIO could be toggled, allowing to switch the LIDAR on and off. The

command line command for the switch on of the LIDAR was baked into the DHCP

server startup script and could be re-initiated via the UI if necessary.

3.2 Software System

3.2.1 Software Recording Process

The software recording process is initiated by pressing buttons on the UI. The

recording process involves the UI server initiating a simple DHCP server to start

the connection of the LIDAR to the Tx2. This allows for bypassing the router and

enabling direct connection between these two devices. The UI also initiates the ROS

Lidar driver in order to make the LIDAR to start sending data to the Tx2. The UI

can be used to also initiate the Gstreamer recording as the synchronization software.

31

Fig. 3.8. The DC-DC Buck Boost converter displays showing the
voltages being supplied to the LIDAR and the Carrier Board. The
system is housed inside the metallic box on top of which the LIDAR
is fitted.

32

Fig. 3.9. Collection System Architecture

Fig. 3.10. Data Collection Software Execution Flow

3.2.2 LIDAR Data Collection

ROS for Ouster LIDAR

For the Ouster LIDAR there are a couple of ways to record the data. Since the

data is available over UDP many different library implementations can be used to

initiate data transfer and the record the incoming UDP packets. One efficient way of

33

recording the data is via the use of ROS. Ouster provides a maintained package for

ROS variants, Kinetic and upwards. The ROS driver requires the sensor be connected

over the Ethernet with security setting on the host Ubuntu computer and the network

router to allow for UDP data transfer over the local network.

Fig. 3.11. Rosbag LIDAR data visualization using Rviz

The driver was downloaded from its Git repository and cloned into a local folder

using the git clone command. The workspace was then built using the ’catkin make’

command. The driver was then simply launched using the “roslaunch ouster ros

os1.launch rviz:=false lidar mode:=2048x10” command.

The launch file would then start the driver which would publish the available

topics. One of the primary reasons for selecting the ROS driver for recording the

data is the abstraction ROS allows in terms of writing code to record data. Since all

matters of initiating connection, recording the data and synchronization of recording

34

Fig. 3.12. Basic Data flow for the system

is handles by ROS, the complexity is greatly reduced and requires one to only write

a launch file to initiate the driver. The driver also efficiently packages the UDP data

from the LIDAR as well as the IMU data into the ROS bag to be opened as required.

The same driver also allows for conversion between the UDP data to range values.

This range values data can then be stored inside another bag file that can then be

used for SLAM in post processing. Once the driver is initiated, the rosbag record

command line API is used to initiate the actual recording of data from the LIDAR.

This new bag file(s) containing the range values can directly used with the Google

Cartographer software with some additional filtering. The recording can be initiated

on the Ubuntu command line itself or initiated via a bash script or the Python3

using the OS library.The command looking something like “rosbag record - -udp -b

0 - -split - -size=1024 /os1 node/lidar packets”. The - -udp flag helps in optimizing

35

data storage for UDP type data, the -b 0 flag signifies a buffer/RAM memory of how

much ever is available from the system for the purposes of recording. The - -split -

-size=1024 flag divides the recording of the bag file into individual chunks of roughly

1024MB to avoid the formation of large files that would make processing difficult.

Fig. 3.13. Bag file info displayed using the rosbag command line API

This thus allows for efficient transport and storage of recording and storage due to

the data being in the nature of UDP packets and allows for the computational over-

head being pushed further into the post processing phase while reducing the memory

overhead for both the on-board computer in case of the car and the NVIDIA Jetson

TX2 in case of the e-scooter. The ROS based method also uses UNIX timestamps

which allows use to synchronize the data with the camera data even if the camera

data is recorded using a different method such as the Gstreamer pipeline as it also

uses the UNIX timestamp to synchronize the stored images.

3.2.3 Camera Data Collection System

Gstreamer pipeline for e-scooter Web camera

This Gstreamer based method for the web camera was developed for a system

consisting of a single web camera that could run USB 3.0 at around 30 FPS. Gstreamer

36

is a multimedia library designed with drivers and video and audio signal processing

features. It also features a command line API as well as plugins for OpenCV and

Python. Gstreamer was primarily considered as a means of software for the data

collection system due to some of the hardware acceleration-based methods available

on the Jetson TX2.

The software allows for the construction of “graphs” of video and audio processing

elements. Each of these elements make up a graph that is also referred to as a pipeline.

The logic of “sinks” and “sources” is used in Gstreamer where a source is considered

as a source of incoming data or signals typically video or audio. A sink is usually

referred to as a form of output of the pipeline.

The method was developed for storing either a video of the incoming camera

stream or to store frame by frame compressed JPEG images. The method of usage

of Gstreamer for our system was to source the data from the UVC web camera

using a driver such as the “v4l2src” element in conjunction with a “videoconvert” to

convert the data between required formats and then finally to a filesink element. The

hardware accelerated features of the TX2, namely the “nvvidconv” and “nvjpegenc”

allowed for reducing CPU and memory load.

In all the methods described below the driver always used is the v4l2src Linux

driver for Ubuntu 16.04 capabilities for the. The v4l2src element is thus supplied

with its main argument i.e the device path. This refers to the path of the webcam

in the /dev directory in the root filesystem and for the Jetson TX2 connected on the

Orbitty carrier board always refers to the /dev/video0 file.

Unless accessed on the NVIDIA Jetson TX2 development kit, the /dev/video0

file always refers to the default MIPI webcam. A simple Python script could also be

used in conjunction with the a Linux library such as evdev to match the details of

the camera. A similar Gstreamer pipeline with /dev/video1 argument in the v4l2src

element was used for the second camera.

The software-based video recording pipeline utilizes the x264enc to enable conver-

sion of raw video into h.264 compressed data. The major upside of this method as

37

compared to raw video saving is substantial as the raw video has a bit-rate close to

10 times larger than the compressed image. The downside to the method however is

the latency generated is often observed at higher frame rates and higher resolutions.

To mitigate this effect the Jetson TX2 offers a hardware accelerated video encoding

block. This block allows for x264 encoding. This element was used together with

“nvvidconv”, a proprietary NVIDIA plugin for Gstreamer that allows for conversion

to other NV12 formats. The method is thus used the nvvidconv element in place

of the default videoconvert element in the Gstreamer and similarly the x264enc is

replaced by NVIDIA’s omxh264enc element.

The software-based image recording pipeline still uses the default v4l2 driver for

UVC webcams. In this method the element primarily is composed of the v4l2src

source. This is followed by “videoconvert” element that allows the conversion of the

video data into the required video formats as requested by the next element. This

element is the “jpegenc” element that sources JPEG images.

The quality property of the ”jpegenc” element can be set from a value of 0 to 100.

This property greatly alters the size of the final saved image(25KB - 1.3MB). The

difference between the size of a default saved image thus affects the total number of

hours for which data can be saved by the data collection system which is stored using

the multifilesink element which stores the formatted JPEG’s in the required directory

in the External SSD or in the memory.

The hardware accelerated image recording pipeline simply replaces the videocon-

vert and jpegenc elements with the proprietary Gstreamer plugins on nvvidconv and

nvjpegenc. The important hardware acceleration being provided by the nvjpegenc

block. The quality property can also be set for the nvjpegenc block as well and

generates the same sizes of images as shown in the figure 3.15.

38

Fig. 3.14. G-streamer Non Hardware Accelerated video recording pipeline

Fig. 3.15. G-Streamer Hardware accelerated video recording pipeline

Fig. 3.16. Gstreamer Non Hardware accelerated frame storing pipeline

ROS for Webcam camera

At the time of writing, there exists an available ROS driver for cameras compatible

with the Gstreamer interface. The driver basically attaches itself to the end of the

39

Gstreamer pipeline and takes in raw RGB-x images. The driver then publishes out

topics such as camera/image raw and camera/image raw/compressed consisting of

the standard ROS standard messages for compressed and uncompressed messages.

The messages then can be simply recorded using the “rosbag record” command. This

method although easy to implement with a working driver was initially investigated

as but dropped for several reasons.

The chief reasons among this being that the frame rate on the rosbag based

recording depends upon available CPU power. Since the NVIDIA Jetson TX2 still

uses a smaller CPU than most standard desktops, the frame rate dropped considerably

as a result compared to the Gstreamer method. For a single camera connected on the

saving raw images the frame rate dropped to about 11.3 fps from a possible 30fps.

This is primarily due to the ROS driver having to handle, transport and compress

images on the CPU. This method thus eliminated the benefits hardware acceleration

provided by the NVIDIA Gstreamer proprietary compression techniques and the pure

Gstreamer method was implemented.

Fig. 3.17. Gstreamer Hardware accelerated frame storing pipeline

3.2.4 Synchronization

In order to achieve synchronization, i.e a timestamping of the camera data in a

manner similar to that of the LIDAR data, a Linux program by the name of inotify-

40

wait was used. The inotifywait can accurately create a flag when a certain file enters

a folder and retrieve the name of the said file as output. The logic of the program was

to use the inotifywait to monitor the folder which would be continuously filled with

images each with a distinct name as the gstreamer program generated the compressed

images. This method was implemented via a bash file that would trigger the inotify-

wait to monitor the folder for changes and then as inotifywait returned the filename,

the bash script would then record the current Unix timestamp and then append the

name of the inotifywait file with the Unix timestamp value into an empty text file.

Once the collection process was done this file could then be used as reference to find

out the timestamp of a given image name.

3.2.5 User Interface

A simple but robust User Interface was also developed to aid the process of data

collection. The primary aim of the interface was to allow the e-scooter rider control

over the data collection process. The UI system was developed to be accessible via

a mobile device in the vicinity of the Tx2 system. This allowed the user to open a

browser-based interface on his smartphone to allow him to start and stop the data

collection process. The implementation of the data collection system was done via

the use of two softwares running on the Tx2.

The first one is the Node-Red programming tool that provides the UI, the sec-

ond is a Python script that uses certain ROS and os libraries to begin the required

ROS/Linux processes. The two programs are connected via a simple local websocket

implementation. The Node Red server runs uses the Node-JS, a Javascript runtime

system. Node-Red was primarily selected over other languages due to it primarily

being a browser-based UI that allowed for the creation of a quick and easy dashboard

that can be quickly viewed on a browser window on the local network.

This eliminates the need to write server-side programs on the TX2 which would

be required to serve the necessary UI webpages and allowed for faster testing and

41

implementation. The additional benefit of using Node-Red is the use of websockets

allows for the connection of node-red over a virtualized TCP to the Python programs

that can be used to launch and handle the ROS elements. As mentioned earlier, any

changes to the Python code or the adding of any features to the system can be quickly

reflected in the UI due to its Simulink like approach to designing code and simplicity

in designing UI interfaces.

Node-Red was also selected over Python due to its simplicity when it comes to

designing quick UI’s and also to provide a Simulink like structure to the code of the

UI as Node-Red uses Flows similar to the of Simulink wiring and block diagram that

allows for quick changes to be made to the system.

Node-Red Server

The software that primarily served as the back-end for the UI was the Node-Red

server / programming tool. This programming tool enables IOT type applications

and was able to run JavaScript functions(built on NodeJS) along with many other

features. One such feature was the Node-Red dashboard library. This library allowed

for the creation of UI that could be accessed within the local network. The system

would act as a server that allowed one to open the UI page through a browser on a

device on the local network.

The pressing of a button on the UI page creates an event that is sent back to

the node-red server. The system simultaneously also runs a web-socket server. This

server allows the Python client on the other end of the connection to wait for data

signals to be sent over to initiate the ROS/Windows processes. Here the flows are

wired to either trigger the processes directly, via the exec node provided natively

by Node-Red. The software is designed to send over a distinct character over the

websocket to the Python client waiting on the other end.

The exec node upon triggering, allows to start certain Linux processes, such as

killing the recording processes of ROS and Gstreamer as well as inotifywait using

42

the “killall” Linux command. The reason for using the exec node to kill the linux

process instead of doing it via the web-socket allows for redundancy in the event the

Python program stops responding. Node-Red Dashboard. The UI can be accessed

via a smartphone browser on the same network. For ease of use, the Tx2 connects to

a hotspot running on the users phone.

Fig. 3.18. Node-Red UI Dashboard

Fig. 3.19. Node-Red Command Prompt

43

Fig. 3.20. Node-Red Programming Flows for UI

Python Websocket Client

On startup the script connects to the websocket server hosted by Node-Red and

starts listening for data. The Python script web-socket client, upon receiving strings

from the Node-Red web-socket server, parses the required data and then runs a given

function that either starts the ROS lidar driver, the ROS based lidar data collec-

tion, the Gstreamer based camera data recording or the synchronization code i.e

inotifywait. The script then uses the roslaunch library and a threading system to ac-

cordingly initiate and launch the ROS drivers and start the bash file which contains

the recording processes.

44

4. DATA PRE-PROCESSING AND SYSTEM

CALIBRATION

4.1 LIDAR and IMU Data Pre-Processing

The data collected by the e-scooter collection system primarily consisted of LI-

DAR, IMU and camera data. The LIDAR data was usually generated into split bag

files each containing a section of the overall duration of LIDAR data. Bag files are the

general methods of recording ROS data. A Python API exists to deal with ROS bag

data. The Python library “rosbag” was primarily used to extract data from the bag

files. The LIDAR sensor interface would send UDP packet data over the Ethernet,

the ROS driver for the LIDAR would receive the data on the application layer and

then compress the data if instructed and transport each UDP packet as a separate

ROS message.

The bag files, if compressed during recording, were first decompressed using the

rosbag command line tools. A Python script would then use the OS library to iterate

over the bag files in the bag file folder. The decompressed bag files would then be

read one by one and then each ”message” containing the UDP binary data be saved

into a string and saved as a text file. Since the LIDAR generated 1280 UDP messages

per second, the output folder for the Python script would very quickly fill up a folder

with large number of files.

Since the OS such as Ubuntu would find it difficult to add more files into the

folder once the number of files exceeded upwards of 5,00,000. The process would

get incrementally slower. To save time, the Python script would dynamically create

new folder and start dumping the data into a new folder once a certain threshold

was reached in a given folder. The LIDAR and the IMU data could be unloaded

into the text files by simply passing the LIDAR topic or the IMU topic into the

45

bag.read messages(), a function which is part of the rosbag Python Library. The

naming convention for each LIDAR or IMU text file would also be to store the count

of the packet and the timestamp of the same packet. This enabled quick sorting of

the data during processing/fusion phase and reduced execution time.

4.2 Camera Data Pre-Processing

When Gstreamer was employed as a means of camera data collection, the only pre-

processing of the data required was to rename the images in a similar convention as

the LIDAR data as mentioned before to enable quick sorting and aid synchronization.

The text file generated by the inotifywait method-based bash script would contain

the names of the files and there corresponding UNIX timestamps. A simple Python

script was developed to rename the filenames of the camera data with the same

naming convention as that of the LIDAR data. The Python os library was utilized

for this purpose and could efficiently rename files at the rate of 50,000 files per second

on an Ubuntu system.

Distortion Correction Equations:

x corrected = x(1 + k1 ∗ r2 + k2 ∗ r4 + k3 ∗ r6)

y corrected = y(1 + k1 ∗ r2 + k2 ∗ r4 + k3 ∗ r6)

4.3 Calibration Process

The process of calibration involves primarily finding three matrices of importance

to achieve fusion. These three matrices are namely the intrinsic matrix or the cam-

era matrix, the distortion parameters, and the extrinsic transformation matrix. The

46

camera matrix contains data that represent camera parameters such as focus, shear

and image width and height. The distortion parameters primarily represent the cor-

rections due to lens distortion such as for the fish-eye lens. These parameters are

assumed zero for low f.o.v lenses. These are added on to the final attained pixel

values as shown in the distortion correction equations where k1, k2 and k3 are the

distortion correction equations.

Fig. 4.1. Intrinsic-Extrinsic Matrix Equation governing LIDAR to
camera coordinate transforms

4.3.1 Calculating the Intrinsic Camera Matrix

The Intrinsic Camera Matrix and the distortion parameters were calculated using

either of two methods. In order to calibrate the intrinsic matrix, for either method

involve the need for pictures of a checkerboard. We used a 9x6 checkerboard with

each square having a 25mm side. For collecting the images, the checkerboard was

simply placed in front of the camera at various angles. For the webcam, Gstreamer

was used to capture the images using the Gstreamer command line shown below.

The file name at the end of the line was changed for every image taken to make

sure that the new image would not be overwritten on top of the old image. Once about

15-20 images of the checkerboard at different angles were collected, the first method

to find the intrinsic matrix was simply to use the MATLAB Camera Calibrator App.

As shown in the image below, images were loaded into the App. The app then

cycles through the different images and then outputs the intrinsic matrix as well

47

as the distortion parameters. These parameters would then be utilized to calculate

the extrinsic matrix using OpenCV. The distortion parameters would have 3-6 values

depending on the lens distortion, however, the camera matrix would have a 3x3 shape.

Alternatively, the OpenCV function calibrateCamera() was be used to find the

intrinsic matrix and the distortion parameters. This is done by first finding the

findchessboardCorners() function, this function returns the edges of the checkerboard

square. These corner pixel values and square intersections’ values are then given to the

calibrateCamera() function to find the camera matrix and the distortion parameters.

Gstreamer command for checkerboard image capture:

gst-launch-1.0 v4l2src device=/dev/video0 ! nvvidconv ! nvjpenenc !

filesink location= /home/tasi/intrinsic/image.jpg

4.3.2 Calculating the Extrinsic Matrix

The process of finding the extrinsic matrix involved finding an initial extrinsic

matrix using a well established algorithm known as the Levenberg-Marquadt algo-

rithm also known as the damped least squares method for solving A(X) =B matrix

equations solving for the extrinsic matrix X. The algorithm was implemented using

the OpenCV solvepnp function. This initial matrix was then manually fine-tuned

with the aid of a Python script.

Initial Calibration

The inputs for the OpenCV solvePnP function involved the intrinsic matrix, the

distortion parameters, and at least six correspondences of pixel values and their corre-

sponding coordinate values which in our case were, LIDAR coordinates. The process

of finding the initial calibration extrinsic matrix involved a setup in which three poster

boards were kept at relatively same distance from the camera LIDAR setup as shown

below in fig 4.4. The data collection system was then used to record calibration data

48

of this poster boards. This process was repeated as the setup was kept roughly 3,5

and 7 meters away from the LIDAR for each iteration. The aim here was to obtain

the point and pixel pairs of the LIDAR and camera data respectively. The poster

board was chosen primarily for their sharp vertices which could be detected both in

the LIDAR point cloud as well as the camera image.

The poster boards were intentionally evenly spread out over the width of the image

as it was observed that selecting point pixels only from a specific region of the image

resulted in bad fusion on the other areas of the image notably in terms of width.

These point and pixel values of these vertices were used as inputs to the solvePnP

function. The pixel values were simply attained by opening the image file collected

using an image app such as MS-Paint or Linux ImageMagick and finding out the pixel

values of the corners.

To find out the equivalent point in the LIDAR data, there were either of three

methods used. The first one involved the use of Ousterstudio. The Ousterstudio

software could easily be downloaded and run on Windows/Linux allowed the user to

collect and playback LIDAR data. As shown below in fig 4.3, the poster edge could

simply be manually selected via the UI and the XYZ coordinates of the poster. This

method however required that the LIDAR be captured via Ousterstudio and thus

required the user to separately record first the LIDAR data using Ousterstudio, and

then the image data using Gstreamer or ROS. This meant that a display needed to

be connected to the NVIDIA Tx2 along with input devices.

The second method involved using the ROS LIDAR driver which came with the

visualization playback functionality using the Rviz ROS software. The LIDAR driver

could be set in the replay mode in a terminal. The Rviz software could then be also

started via a second terminal. As shown in the image below, by playing and then

pausing the recorded bag file in a different terminal with the LIDAR data, the Rviz

software also had the ability to allow the user to select a point on the point cloud.

The third method to select the points from the point cloud involved first recording

LIDAR data through the UI via ROS. The bag file was then extracted using the

49

Fig. 4.2. Intrinsic Matrix calibration using MATLAB Camera Calibrator

Fig. 4.3. Ouster Studio Interface replaying data from the OS-1 64 LIDAR

preprocessing steps outlined previously. Once this was achieved a simple Python

script was used to convert the text files generated by the bag extraction script into

a dataframe containing X,Y and Z values of the LIDAR point cloud data. This

dataframe was then plotted as a scatter plot using the Python Plotly library. The

scatter plot then allowed for selection of a point (the poster edges) by simply hovering

50

the cursor on top of the point cloud as shown in the image below and a label would

display the XYZ value of that point. The details regarding the conversion of the

binary data in the text file into XYZ values in described in detail in chapter C.

Fig. 4.4. Fusion Overlay on 3 poster boards using collected LIDAR
and camera data

Three poster boards kept at different distances generated a total of 36 pixel-point

pairs that were then supplied to the SolvePnP function along with the camera matrix

and the distortion coefficients. The function would then return two vectors each of

them of a size 3x1. These vectors called the rotation vector and the translation vector

that would represent the extrinsic matrix. This rotation vector and translation vector

represented the initial extrinsic matrix which would then be later refined.

Fig. 4.5. Python code snippet to find the Extrinsic Matrix’s Rotation
and Translation Vectors

51

Fig. 4.6. Python code snippet to find corresponding pixels for LIDAR points

Fig. 4.7. Overlay showing fusion on data at longer distances

The accuracy of the initial extrinsic matrix was checked by using the OpenCV

projectPoints() function. This function allowed to give a visual understanding of

the accuracy of both matrices. The inputs to the function were the LIDAR point,

the Camera matrix, the distortion parameters as well as the transformation matrix

or vectors. The important output of the function was the resulting 2d point which

contained the u,v value. The fusion was generally tested on the data collected for

calibration and on some collected data. Each generated 2D pixel value that fell inside

the bounds of the image was displayed using a green dot on the image to represent

52

Fig. 4.8. Overlay showing fusion on data with LIDAR points filtered
to allow points only within a distance (LIDAR Horizontal Resolution
= 1024)

the fusion overlay. Sometimes the colored dot was given a hue mapping from green

to black proportional on the distance corresponding point from the LIDAR frame.

Fine tuning the extrinsic matrix

Once an extrinsic matrix was obtained, it was then manually refined with the

aid of a Python script. The setup for the fine tuning involved placing four poster

boards at various distances as shown in the image below, the LIDAR and camera

data collected for the same. The data was prepocessed as outlined earlier. The

script then loaded a given dataframe and the corresponding image with poster board

data. The camera matrix, the distortion parameters, the rotation and the translation

vectors were supplied to the script. The script then performed a simple fusion using

the project points function as outlined earlier and then display the fused image.

The script would make small increments or decrements to the rotation vector or

53

the translation vector depending on which key was pressed. The script would then

recalculate the point projection and update the fusion image the keyboard library

was used to monitor key changes while the script was running.

Pressing of the keys ‘q’,’w’,’e’ would result in a small addition of 0.01 radians

was made to the first, second and third value of the rotation vector. Pressing of the

keys ‘a’,’s’,’d’ would result in a small subtraction of 0.01radians was made to the

first, second and third value of the rotation vector. Similarly, ‘r’,’t’,’y’ and ‘f’,’g’,’h’

keys were used to make adjustments of 0.01 meters to the translation vector. As

the keys were changed to fit the fusion better, the recent most values of the rotation

and translation vectors were updated and saved. Once the user was content on the

fusion, the program could be ended by hitting the escape key and the program would

print out the last updated rotation and translation vectors before exiting. These

vectors would then represent the fine-tuned extrinsic matrix. The evaluation of this

fine tuning is shown in the evaluations section of this document.

54

5. DATA PROCESSING SYSTEM

5.1 LIDAR Data Processing

ROS was used as a means to collect road data instead of the Ousterstudio software

due to its 10 minute limit between records. The Ouster OS1-64 LIDAR’s data sheet

along with the os1 Python library were parallelly used for processing the LIDAR data.

Primary processing of the LIDAR data involved converting the text files generated by

the pre-processing step of the pipeline. According the datasheet, the LIDAR would

forward the UDP data to the port 7502 of the designated destination computer.If the

OusterStudio software were used for recording the data for calibration purposes. The

LIDAR data can be easily extracted through the software via export data feature.

Each data packet consisted of 16 azimuth blocks; the packet always has a length

of 12609 bytes. However, when the packet was stored as a text file, the packet would

show a total length of the packet as 12609 bytes. The extra byte was attributed to a

newline ”\n” character that the preprocessing script would append to the end of the

text file. The LIDAR could be set in either a 1024x10 or a 2048x10 resolution mode.

The LIDAR would output either 64 packets of data or 128 packets of data depending

on the mode in which the LIDAR was set.

A higher resolution of 2048x10 would generate twice as many points than the

1024x10, however the increased resolution did have the effect on the bandwidth of the

Ethernet and packet dropping would be relatively more frequent as the data collection

went on. Either way, each packet would always consist of 16 azimuth blocks arranged

as shown below. Each azimuth block would contain the values of timestamp, Frame

ID, measurement ID, Encoder count, Data block and the Packet status. The encoder

referred to the hall encoder inside the LIDAR which would indicate the yaw rotation

55

Fig. 5.1. LIDAR files with filename containing packet count and
timestamp for synchronization collected from the ROS method con-
taining buffer data after pre-processing the bag data

angle of the LIDAR scan for any given packet with the direction of the LIDAR

connector wire representing the positive x-axis of the 3D Ouster LIDAR.

Each data block contained 64 values of range, reflectivity, ambient noise, and the

number of signal photons received. Each range inside the data block represented the

64 beams vertically in the 3D LIDAR. Each of the ranges inside the LIDAR packet

had a corresponding azimuth and altitude angle that could be used in conjunction

with the encoder value of the block to covert the range values into XYZ coordinates.

The first task was to convert the binary UDP data into words this was performed

by using the formatting key of the binary data which explained the repeating data

format of each word. This was implemented simply using the struct library. Once the

main values of range and encoder value were discovered, the XYZ coordinate could

be converted into 2 ways to implement the equations mentioned below for conversion.

56

5.1.1 Decoding UDP Packets

The first way to implement the equations were using the Python math library

to compute the coordinate values. This was required due to the presence of sines

and cosines in the equations. The second method involved using the logic of lookup

trigonometric tables to calculate the pre-calculated sign and cosine values while im-

plementing the equations to save computation time. Although the data processing

step is an offline process, nevertheless, the scale of converting millions of LIDAR data

blocks into coordinate values required a certain level of optimization to meet project

requirements. The second downside of using the math library was an induced 2-

degree yaw difference compared to using trigonometric tables, which yielded in faster

data processing.

Fig. 5.2. 2 Degree yaw difference induced in the point cloud due to
the difference in UDP packet decoding methods. Left Image shows
the same point cloud processing method (yellow and blue mixed) and
Right image shows difference due to difference in math library and
Trigonometric Table based processing

The Cartesian conversion depended upon the encoder count which pointed to the

rotation angle in which the LIDAR beam was angled at that moment. The beam

altitude angle is a function of the specific ring number of the LIDAR, for a 64 beam

LIDAR, there are 64 ”rings” in total. The values for which can be taken from the

configuration file provided by Ouster. As shown in the picture below, the error was

induced due to the difference in computation of the libraries and the effects of the

57

error being scaled due to the larger range distances by which the sines and cosines of

the azimuth angles that were multiplied. This error in the XYZ coordinate creates

problems with fusion when used alongside calibration data from ROS or OusterStudio

as both programs used the trigonometric tables for faster computation. Thus, the code

required a 2-degree offset be added to the theta or yaw angle if the math library was

utilized. In course of the optimization, however, the trigonometric tables were finally

utilized for both its speed as well as its compatibility with the ROS and OusterStudio

programs. The Pandas library was used primarily to store XYZ values for a given

rotation or “frame” of data. A separate Python script was also written that was used

purely for the generation of LIDAR data points as CSV files.

It must be noted that it became important that the means used to convert the

UDP packet to Cartesian needed to be the same for the extrinsic calibration and usage

on the processed data as the difference in the two methods of calculation induced an

error that could be seen on the final fusion. This difference is due to the relative

lack of resolution in the sin and cosine values in the trigonometric tables that allow

for speed over accuracy which increase linearly with distance from the LIDAR thus

appearing as a yaw shift of 2 degrees.

Fig. 5.3. LIDAR Data Packet format Source: Ouster Software Guide

58

Fig. 5.4. LIDAR spherical to cartesian conversion Source: Ouster Software Guide

5.2 Camera Data Processing

As data is mapped from the LIDAR data to the camera, the processing pipeline

does not need the camera picture data to the fusion data. This section in the pipeline

ideally only needs the LIDAR data, the intrinsic matrix, the extrinsic matrix, the

distortion parameters, and the synchronization data to generate the mapping table

containing the LIDAR-camera coordinate mapping. The one reason however for re-

quiring the camera data is to generate the fusion overlays to check and confirm the

working of the fusion for the collected data.

The script for processing was written in Python and the OpenCV library was used

over other libraries for a couple of reasons. The library was chosen over an imaging

library like PIL primarily due to its lack of direct complexity compare to that of PIL,

the previous use of OpenCV library for the use of solvepnp() and projectPoints() kept

the implementation relatively simpler by using as many functions possible from the

same library. The other advantage of the library is the application OpenCV GPU to

59

use hardware acceleration the generation of fusion images when dealing with image

generation. A similar logic was use for the selection of cupy, a CUDA accelerated

library with a compatible syntax as the widely used numpy.

Fig. 5.5. Image file names with framecount and timestamp for syn-
chronization collected from either Gstreamer or ROS method

5.3 Synchronization and Fusion

The need for synchronization arises from the need to process collected data that

is continuous and also being collected at different rates along with the very nature of

the sensors also meaning that while the camera data is considered to be for practical

purposes, taken instantly (this is not true for the Logitech cameras as they use a

rolling shutter), the LIDAR data is available continuously. To match the camera data

to the LIDAR data, each frame of the camera is timestamped, and the timestamp is

stored inside the filename of the image. Similarly, each packet of the LIDAR data is

timestamped as well.

60

The fusion script first iterates over the camera and LIDAR data directories, storing

the names of the files as a list along with the timestamp values of each frame/packet

alongside in two separate lists, one for each sensor. The script then loops over every

image (or every other image) in the file directory. For every image, the script then

finds the corresponding timestamp and then subtracts the value of the timestamp with

the list containing the LIDAR timestamps. This new list thus contains timestamp

difference values, the lowest value in the array would represent the prime LIDAR

packet closest time difference with the camera frame.

The script then chooses the LIDAR packet as the center point of the LIDAR

data. Since 128 LIDAR packets make up one rotation of LIDAR data(for 2048x10

mode), the script selects 64 sequential packets before the prime LIDAR packets and

63 sequential packets after the prime LIDAR packet. To make a total of 128 LIDAR

packets. The data by this means is synchronized. The process is quick as using

Python Lists for purposes of sorting and scanning in Python is faster than using

Pandas dataframes.

The script then converts these 128 LIDAR text files containing UDP binary data

and converts them into a dataframe of XYZ values using the trigonometric tables

method mentioned earlier in the chapter. The script then performs fusion on the

image frame and the LIDAR. It does this by iterating over the pandas dataframe and

fusing each LIDAR XYZ value, the intrinsic and extrinsic matrix, and the distortion

coefficients through the projectPoints() function, The output of the function are the

corresponding pixel values (u,v) in the image.

Since the LIDAR data contains 360-degree data, many LIDAR point that do not

belong in the image are projected at values that lie outside the bounds of the image.

These data points are eliminated using a simple conditional statement that checks if

the resultant pixel values exceed the bounds of the image. For an image width and

height of 1920 and 1080 respectively, a pixel is permitted only if 0 >u >1920 and 0

>v >1080 is satisfied for the resultant pixel. A mapping table using lists at first is

generated and at the end of the loop is converted and stored into a CSV file.

61

Fig. 5.6. Template folder containing the required scripts for calibra-
tion and processing, to be used for every new data set

This file is referred to as the mapping table that contains the camera and cor-

responding LIDAR coordinates. The mapping table were used for cross-referencing

with the object detection algorithms to find the relative coordinates of the object

such as the car in question. To generate the fusion image, the script loops through

the pixel values in the mapping table and draws green colored points on the image

frame loaded via OpenCV. Since the mapping table contains the LIDAR values as

well, the intensity of the hue is mapped to a given distance.

This causes the points closer to appear a light green, and far away objects to

have a darker green color. This helps in understanding the fusion as it is useful to

understand if the fusion on a car with a distant background is happening correctly

by comparing the color of the pixels in the background to the pixel on the car. Once

62

fusion for a frame is done, the process is then simply iterated over for the remaining

images. In terms of code optimization, here it is noticed that again using Python

Lists for appending related data sped up the loop execution.

Fig. 5.7. Mapping table generated at the end of the fusion processing code

Writing a separate loop to draw the points on the image rather than joining it

with the initial loop also sped up the speed of iteration. The images are also saved

in JPEG as this format is faster compared to other file formats such as RAW and

PNG file formats. The size of the files fused images can also be reduced by reducing

the dimensions of the fused image reducing the size of the overall data generated

during the processing stage. The fusion script also allowed to specifically allow for

the selection of particular subset of images from the entire collected data.

This proved important for analysis as the data could be selectively chosen and

fused to not needing to process all data. Since huge chunks of the collected data

would not involve interactions with cars on the road, the camera data could quickly

scanned manually to find the interested region involving interactions and only a small

portion of the collected data could then be fused as required.

63

As the actual interactions with the cars would be relatively quick portions of

collected data, with the maximum interaction with a car not exceeding upwards of

30 seconds, the actual data that required to be fused could be as short as 30 seconds.

5.4 Image Processing

The later portion of the processing stage was developed by Apurva Kumar. The

process involved using the raw unfused images collected and the performing segmen-

tation as well as tracking of cars in the frames. A Kernelized correlation filter was

used to track the cars between each individual frames. This was done in two stages.

Firstly, a simple YOLO base object detection was utilized that would track the cars

on the road for a given frame. The ouput of this algorithm would be in the form

of simple bounding box outputs. These bounding box values could then be fed into

a KCF type filter which could then be used to subsequently track down the cars in

the subsequent frames. This process was then compounded by performing semantic

segmentation on the same frames. However, the segmentation labels for every given

pixel would be the same irrespective of them belonging to the different car.

Thus, the segmentation data would be first cross reference with the image tracking

bounding box data. This would then produce pixel data specific to each car spanning

over multiple frames. A Python script then cross references the pixels of the detected

car with the corresponding values in the mapping tables. Each car in each frame

therefore produce a cluster of 3D points. The median of the points was then taken

and converted to 2D values by removing the z-axis values from the 3D point. Thus,

combined with the tracking data produced a set of 2D points. These 2D points were

then used to calculate average velocity values for the cars between two frames by

using the change in distance of the median values and the change in time values by

using the differences in the recorded timestamps for the frames in question.

64

5.5 Image to Video Processing

For purposes of demonstration, it was often required to process the collected

images of the data as well as the fused images as a cohesive video. This was primarily

useful as a file input to certain tracking-based script that were video images. To be

noted that a considerable amount of storage space could be saved by converting the

images into compressed video formats such as MJPEG and H.264. The advantages of

having fused image data in a video format also would allow to quickly scan through

the video to check the validity and accuracy of the fusion in the sections of the video.

The implementation for converting image to video was done in two primary ways

using the OpenCV library and the Gstreamer library. For both methods, the images

were stored in a single folder.

5.5.1 OpenCV Method

The OpenCV method involved a Python script that would iterate over the folder

which contained the files via the OS Python library. The script would then sort

the images based on the count values in the filename and then convert them into

OpenCV numpy arrays. The script would then append the numpy arrays into a long

list and then use an OpenCV function to convert the array list into an entire video

of a specified file type and as specified compression. The system would then save

the output in a compressed video in a pre-specified directory. This method has its

limitations the primarily limitation being the number of files that the system could

load in one continuous execution.

For an image resolution of 2048x2048, for a raw file format, the software would

fail at about 500 frames and then would require the script to load 500 frames at a

time and then create a video and continue to create short videos of 500 frames each.

Once all the images were converted into short videos, a separate script would then

string the individual short videos into one long uncut video via another OpenCV

function to allow to view the collected data as an MPEG video. The length of the

65

video was determined by the available allocated space given by the CPU to the Spyder

application and thus the length is limited based on the system’s RAM allocation.

5.5.2 Gstreamer

The Gstreamer method used a simple command line tool interface that could be

deployed by a single command over the command line and thus made easily executable

via a bash script. The Gstreamer pipeline/command line command is shown below.

The Gstreamer implementation involved a pipeline that made the use of a multifilesrc

element. This element then had the folder containing the images passed through it

and functioned as the primary source element for the pipeline. This element would

then be followed up by a jpegdec element that would decode the jpeg compression

from the images.

This was followed by the videoconvert element that aids in converting data from

an image format into video format. A simple filesink sink element is then used to

save the converted images into one video. This method would however limit the use

of the system to Linux systems with Gstreamer being a Linux based software. This

method does not suffer the memory limitations as that of the OpenCV method and

can be used to convert images into a video. The system was tested for upwards of

30,000 frames each frame stored into a 1920x1080 resolution.

Fig. 5.8. Gstreamer Pipeline for converting captured image frames
into a single video.

66

6. RESULTS/EVALUATION

6.1 LIDAR UDP Packet Drop Evaluation

The LIDAR on the system could operate in multiple horizontal resolutions; how-

ever these different resolutions require different levels of Ethernet bandwidth. Al-

though a sensor Gigabit interface is required and was used in the system, occasionally

packet loss was observed. This packet loss could have been due to load on the system

memory of the TX2. ROS recording software rosbag record would be processing the

incoming UDP packets and store them into the bag file and the buffer -b flag was

set to 0(which allowed it use as much system RAM that was available). However,

occasional packet loss was still observed. The figure 6.1 shows the visual depiction of

two adjacent frames of visualized LIDAR data. The top photo shows a normal frame

with no packet loss whereas the image below shows another frame with packet loss

with the dark area showing the absent packet.

It was also observed that depending on the horizontal resolution and scan rate,

that the packet loss was exacerbated by the amount of incoming data. For a resolution

of 2048, the incoming data was roughly 129Mbps, whereas for a resolution of 1024,

the incoming data rate was roughly 64 Mbps. The figure demonstrates the packet

loss by comparing the no of received packets for a period of 20 minutes and then

compared it to the expected number of packets based on the rotation speed of the

LIDAR and the LIDAR resolution.

Percent Packet Loss = (Exp. Packets - Received Packets / ExpectedPackets)*100 (6.1)

67

Fig. 6.1. Visualization of Packet Loss in a frame in the dark area
(below) compared to no packet loss in a frame (above)

6.2 Camera Frame Rate Evaluation

The selected camera was evaluated with some of the other cameras that were

shortlisted and selected. The acquired frame rates were compared to the max possible

frame rates achieved with from any method. On the Logitech camera and the Generic

USB webcam, the Gstreamer software was used and for the FLIR Grasshopper 3, the

Spinview software was utilized. Although the FLIR grasshopper 3 could achieve

higher frame rates, the cost and weight of the cameras was a detriment to selection.

68

Fig. 6.2. Percentage Packet Loss Comparison for two LIDAR modes

Fig. 6.3. Best frame rates achieved with the experimented camera solutions

The Generic USB webcam fares better than the Logitech camera in terms of both

frame rate and cost, but lacks driver support. This tends to create an issue for low

cost USB devices that are not supported well on a software level and causes issues

69

when attempting to connect multiple cameras. On a Jetson Tx2, we used the generic

v4l2 (video4linux) driver which allows for connection to the camera. The camera on

connection, would communicate the required bandwidth to be allocated for the USB

connection. This was a problem with the generic USB webcam as it would set a value

that would stop the Tx2 from receiving data from other cameras. This issue limited

the use of more than one camera per USB 3.0 (assuming the USB 3.0 port’s are

connected to single PCI-E slot) as was the case with the Jetson Tx2. The Logitech

camera allowed for connecting the same number of cameras as the FLIR Grasshopper

3 but at a much lower price, and weight than the FLIR camera.

Camera Name Number of Cameras Possible Driver

FLIR Grasshopper 3 libflycapture2

Generic USB Webcam 1 v4l2

Logitech c920 3 v4l2

Table 6.1.
Shows the number of possible cameras over a USB 3.0 connection for
specific cameras and their drivers

Different software’s were used to find one that allowed us to obtain the maximum

frame rate from the Logitech c920 camera. The primary option attempted were ROS,

Gstreamer, and OpenCV. Among these four, ROS was given priority as the software

was already being utilized for collecting the LIDAR data. This would be helpful to use

a single bag file or sets of bag files in chunks to collect both the LIDAR and camera

data. ROS was also useful as the underlying driver for the same could be either generic

v4l library or Gstreamer library which used v4l2 library but allowed to exploit the

acceleration offered by the TX2. However due to the nature of the ROS bag-based

recording process which involved image transport to ROS images, the observed frame

rate was lower on the ROS system compared to that of the accelerated Gstreamer

method and was attributed to the ARM CPU on the Tx2 and the lack of optimization.

70

It must be noted that the basic cvvideocapture function from the OpenCV library

was used for the OpenCV method, which also utilized the v4l2 library but in our

testing fared worse than the other methods. It was observed that the accelerated

Gstreamer won out with getting the highest frame rate from the two cameras. The

Gstreamer also took out the potential load of image transport and software-based

compression on the CPU that limited the ROS method to a lower frame rate.

Fig. 6.4. Frame rate comparison for 2x Logitech c920 cameras over
USB 3.0 utilizing different recording methods

The accelerated Gstreamer method allowed for hardware-based JPEG compression

for the incoming camera data. The API also allowed for choosing the level of quality

for compression, set by a number between 0 to 100. As it was observed that the

image size could be kept as high as 1.3 MB per image or reduced to as low as 25KB

without any kind of observable surface level impact on image quality.

6.3 Extrinsic Matrix Calibration Accuracy

Since solving the extrinsic matrix was paramount in our fusion process, accuracy

of calibration for the same was also very important. The extrinsic matrix was tuned

71

Fig. 6.5. Image size vs encoding quality

manual once the output was obtained via SolvePnP, i.e the Levenberg Marquadt

algorithm. The extrinsic matrix, as mentioned earlier, was initially calculated using

pixel point pairs along with the pre-calculated intrinsic matrix. It was however noticed

that the fusion was not particularly good with the value obtained via SolvePnP

and varied greatly depending on the number and accuracy of the pixel point pairs

themselves. Thus we further improve the accuracy of the extrinsic matrix by adding

and subtracting values to its rotation and translation vectors. The images below

show the effects of the tuning can be seen visually in the figure below as the intrinsic

matrix with relatively worse fusion can be corrected by using the tuning script.

We performed some ground truth tests with the system to determine the accuracy

of the fusion before and after the Manual tuning process. We used a laser scanner

to determine ground truth values, then we utilized data from the pixel closest to

the point where the ground truth was determined for which we had mapped LIDAR

values from the mapping tables that were generated. These LIDAR values were then

compared to the ground truth values to generate the table below. It showed that the

adding the Manual Tuning Process bettered accuracy of fusion from 8 cm to 3 cm on

average assuming equivalent 3D Gaussian noise for both the laser range finder and the

72

Fig. 6.6. Overlay image showing fusion before and after fine tuning manually

LIDAR. It must be noted that the same white poster as shown in the images above

was utilized for the experiment. The evaluation was primarily conducted for fusion

accuracy and the error of the distance given by the LIDAR was itself discounted from

the equation on account of the error being less than 1 cm which itself was within the

bounds of our experimentation error. It must be noted that this 1cm value is in the

range of the advertised +/- 5cm error as it depends greatly on the material and color

of the object. A ground truth error closer to the +/- 5cm was observed for darker

objects, hence the white matted checkerboards were used for the calibration of the

sensors and the evaluation.

The values gained by the fusion method used in this thesis was compared to some

earlier work done in camera LIDAR calibration in attempt to compare the fusion

results. The values obtained in the experiment mentioned earlier were compared

to the method by Ankit Dhall et al [22] involving RANSAC along with the EPNP

73

Table 6.2.
Shows comparison of fusion accuracy differences due to the added manual tuning

Absolute Error w.r.t Ground Truth SolvePnP SolvePnP + Manual tuning

Minimum Absolute Error (m) 0.05 0.003

Maximum Absolute Error (m) 0.12 0.06

Average (m) 0.085 0.0315

Table 6.3.
Shows comparison of fusion accuracy based on calculation methods
for extrinsic matrix

Absolute Error w.r.t Ground Truth RANSAC+EPNP RANSAC+SVD+L-M SolvePnP+Manual

Minimum Absolute Error (m) 0.009 0.05 0.003

Maximum Absolute Error (m) 0.05 0.5 0.06

Average Absolute Error (m) 0.0295 0.275 0.0315

software an also with the paper written by Z. Pusztai and L. Hajder[24] which in-

volved RANSAC along with single value decomposition (SVD) finally followed by

Levenberg-Marquadt algorithm to calculate the extrinsic matrix. It must be noted

that 3D - LIDAR utilized by [22] was a Velodyne 32 beam sensor whereas [25] used

a Blender simulation of the Velodyne 32 sensor for their experiments and it must be

noted that the LIDAR sensor used in this thesis was the Ouster OS1-64 has a much

lower accuracy of upto +/-5cm compared to the Velodyne sensor which has a stated

accuracy of +/- 2cm. In addition, the effects of the Pustzai paper using a simulation

might also not account for certain real-world effects such as the effect of texture and

color on reflectivity of the object viewed and hence its accuracy.

The fusion accuracy using the SolvePnP+Manual Correction was comparable with

the result obtained from the other methods. Although it must be noted that the other

methods were attempting for a more automated approach in finding the extrinsic

matrix, whereas the prime purpose for our project was to get higher accuracy at the

74

expense of some manual labor although it must be noted that elements of our method

could be automated with a few changes to the method and the system. The pixel

reprojection errors for the selected pixel point pairs were also compared to that of

results by [22]. Here the results were better with the average pixel reprojection also

being very close to that of the RANSAC + EPNP method. It must be noted that

more point pairs were used than the Method used by RANSAC+EPNP which could

have helped reduce the error by providing more points to the Solvepnp algorithm but

also could have increased the error due to the extra noise introduced by adding extra

point-pixel pairs to the equation.

Table 6.4.
Pixel Reprojection Errors between the Extrinsic Matrix Calculation methods

Absolute Error w.r.t Ground Truth RANSAC + EPNP SolvePnP + Manual Correction

Number of pixel-point pairs used for calibration 20 40

Pixel Reprojection Errors (in pixels) 0.5759 0.43

6.4 Cartographer SLAM

The Cartographer software developed by Google was used as direct tool in order

to generate the 2D maps from the collected LIDAR 3D bag data. The system was

designed to work with ROS and developed by Ouster using various launch files to step

by step use the system to generate the 2D and 3D probability grids of the environment.

The Cartographer system uses a complex set of programs that use various algorithms

as shown in the figure below. We desist going into too much detail into the system

as it is a massive and complex program that is not the primary subject of the thesis.

The Cartographer system essentially down-samples the LIDAR data using Voxel

filter that convert the high amount of LIDAR data into relatively easily processed

chunks. The system then runs a scan matching algorithm that tries to match each

scan to the next one creating local sub-maps. In order to reduce complexity involved

75

in scan matching, the system uses the data from the IMU to aid in the scan matching

and guess where the scan should be inside the sub-map using orientation data. The

system is designed to be configurable for any type of 3D LIDAR/IMU data. The

system requires a bag file containing data from the LIDAR and the IMU. The final

output being a .pbstream file containing the mapping and trajectory data.

Fig. 6.7. Cartographer Architecture. Source: Google

Every bag file created by ROS contains messages information containing the topic

names associated with each message along with other important info including the

message data itself. The Cartographer process begins with a Python script that is

used to filter the bag files. This pre-processing involves parsing the bag file and

removing the leading slashes from every message topic inside the bag file. A Cartog-

rapher ROS launch file is then used to validate the bag file to check for any gaps in

the data that may exist in the bag file that might make it difficult for cartographer

to process the bag file. The system does not make accurate predictions as to the

potential problems faced by the Google Cartographer setup. The system only alerts

the users as to these gaps in the bag files. Once this validation is complete, the bag

76

file is then fed to a ROS launch file cart 2d.launch that performs the majority of the

Cartographer programs and processes including scan matching and map generation.

Fig. 6.8. SLAM Cartographer Steps/Execution order

As the launch file processes the bag file, Cartographer also has a rosservice that

can be run simultaneously with the cart 2d.launch to generate the pbstream file which

contains the map and trajectory information. In addition, Cartographer also provides

with certain other launch files that run a program known as assets writer that can

be used to use the previously generated pbstream files and the filtered bag file to

generate full 3D point cloud maps. These point clouds can be stored in pcd, ply file

types and can be viewed using software’s such as CloudCompare and Ccviewer.

77

Fig. 6.9. 2D Probability grid showing the map of stutz lab(white
and grey) and vehicle trajectory(Yellow line) in the Stutz Lab from
collected data

Fig. 6.10. 3D mapping (.ply file) of the Stutz lab viewed using
ccviewer from collected data

78

7. CONCLUSION AND FUTURE WORK

This thesis demonstrates the design and implementation of a unique wearable data

acquisition system for e-scooter consisting of LIDAR and cameras collection that can

be used as a data collection platform to provide data for autonomous systems of

the future. The data collected consists of high-resolution 3D LIDAR data and FHD

Camera data from multiple cameras. The thesis delves in detail in the properties

of the sensors and why they were selected with both non tangible parameters such

as resolution, feature-set, software support, driver availability as well as tangible

parameters such as size weight and cost taken into account.

The thesis provides details of the sensor selection for the LIDAR, camera as well

as the accompanying embedded system and details of how the system works on a

hardware level. We explain the various changes that required to be made to the

system in order to achieve the continuous data collection that was possible within the

limitations and the constraints placed upon the project due to a myriad of factors.

On a software level we explained the various methods used to collect data from the

LIDAR sensor and the camera to provide methods for keep track of the data for

synchronization purposes utilizing Linux based inotify API. The selection criteria

and reasoning of selection of the Gstreamer library over the standard ROS Library

for camera data collection to exploit the advantages offered by hardware accelerated

Gstreamer NVIDIA’s Tx2 platform were also detailed and evaluated.

We used the ROS ouster driver for the LIDAR instead of the standard out of

the box Ousterstudio interface applications due to its ability to initiate the recording

without the need of a manual user interface as well as allowing us to timestamp the

UDP data and store it in a ROS bag file. We also selected ROS for its ability to break

down the files and store it in compressed chunks using the ROSBAG API. We used

a combination of two programming interfaces, Node-Red (running on Node JS) and

79

Python to implement a wireless User Interface accessible on a smartphone browser

on the same local network. The interface allowed the user to start and stop the data

acquisition process and also to check if the system was properly functioning as well

as details on the current state of the LIDAR and relayed output to the screen from

the ROS terminal.

In the data pre-processing and calibration stage, we used a Python program to

convert the LIDAR bag data into individual binary UDP packets and format the

names with their UNIX timestamps. We calibrated the camera intrinsic matrix and

the distortion parameters using both OpenCV as well as the MATLAB camera cali-

brator toolkit. This was achieved by feeding in numerous images of checkerboards.

The extrinsic matrix was calculated using the OpenCV SolvePnP functions based

on the Levenberg Marqaudt Algorithm. The values of the camera matrix, dis-

tortion parameters and tens of LIDAR camera point-pixel pair values were fed to

the SolvePnP function which calculated the extrinsic matrix using the Levenberg-

Marquadt algorithm. The matrix was then further refined using a script which used

the LIDAR camera fusion overlay image and allowed to manually correct the extrinsic

matrix to fit the fusion better. The fusion overlay was created by using the fusion

equation to find the corresponding pixel values for every LIDAR point in the direction

of the camera lens and then iteratively drawing the pixels on the calibration images.

We also went into detail as to the data processing system and the manner in which

the program went frame by frame and created the point pixel pair tables as well as

the overlay fusion image fusing the collected LIDAR and camera data in the process.

The process utilized the pre-calculated intrinsic parameters and the extrinsic matrix

to then perform fusion. The thesis also delved into the processing of the UDP binary

text data into the Cartesian 3D coordinates as well as methods such as using the using

the Cupy library to exploit NVIDIA’s GPU hardware acceleration as well as the use

of trigonometric tables to speed up the calculation of the millions of sines and cosines

encountered per rotation to calculate the 3D coordinate of the LIDAR point values.

We then discussed the use of the Cartographer system developed by google to help

80

convert the LIDAR bag data into a 3D map using the ROS/RVIZ integration. Lastly,

we evaluated the system and discussed the problems faced and the improvements

made to the system. This involved evaluating the different methods of camera and

LIDAR data collection as well as the calibration improvements for the calculation of

the intrinsic and extrinsic matrix in allowing us to obtain better fusion.

7.0.1 Future Work

For future work, the system and the scope could be improved in several ways.

Utilization of a lighter LIDAR setup could allow for easier use of access and riding

while carrying the setup. An even lighter LIDAR and carrying setup would result in

a more naturalistic data collection. As a system where the rider is unaware of the

setup while riding would lead to more natural riding. The use of cameras that allow

for frame triggering via hardware would allow for better synchronization with the

rotation of the LIDAR.

This could be primarily be achieved by either some form of software or hardware

triggering. In addition, due to the sweeping nature of the LIDAR, frame triggering

for the camera would result in an image where the delays between the points in the

LIDAR point cloud and the image itself would be relatively well known. This could

lead to better fusion on fast moving objects.

A balance from some form of control system to stabilize the camera and LIDAR

would also allow for the image data to constantly capture vehicle in view allowing

for better capture during moments when the e-scooter rider tilts or shifts his weight

in order to maneuver the curb. This addition could greatly enhance the quality of

the collected data and might provide for easier analysis of the fusion over a period

of time as it would be easier to analyze the fusion video for a camera video that

remains smoothly attached. Connection to the stabilizing system would also reduce

the torques experienced by the camera reducing chances of mechanical failure.

81

It would also help reduce weight if the battery setup were moved by some means

to the e-scooter itself. This would remove the extra battery weight that the rider

would have to other wise carry. Although this system would have to be designed to

make sure to allow for easy disconnection between the rider and the device with the

battery system in event of an accident. A wire dangling from the e-scooter connecting

to the rider could be detrimental or dangerous to the rider.

A greater coverage of the surroundings would also be a useful addition for the

future. The LIDAR presently cannot cover all 360°, however, if the LIDAR is somehow

mounted on the head so as to not be blocked by the body of the person, it would get

a greater coverage. The application of an additional LIDAR on the back might also

allow for greater LIDAR coverage. Addition of extra cameras to cover a greater field

of view might also help data analysis and fusion.

The use of MIPI cameras might also allow for adding extra cameras to cover

a greater view of the cameras allowing to capture data to the sides of the riders

direction of travel as well as in the opposite direction. The use of MIPI cameras

also might help cut down slightly on the weight of the USB cables from the cameras.

Additional camera and LIDAR data would help in covering a greater number of

scenarios occurring on either side of the e-scooter as opposed to a single direction.

Incorporation of additional sensors into the setup would also help provide greater

functionality. Additions of sensors such as RADAR and GPS could allow for com-

bining LIDAR trajectories with trajectories from the INS system to allow for better

understanding of where the interactions of interest take place withing the given ge-

ography of an urban area. Although outside the scope of our current project, such

data would be very useful.

Although the LIDAR sensor mounted on the system has an IP rating, the rest of

the system does not. If the system can be sealed shut to disallow the entry of water,

the system could be useful during rainy weather as well. Since e-scooter injuries can

happen on slippery roads as well, this addition would greatly increase the diversity

of scenarios for data collection.

82

Automation of the manual fusion process would also greatly reduce calibration

time. Employment of methods like RANSAC and edge detection if they could be

applied without a decrease in calibration accuracy would be helpful as well. Appli-

cation of other fusion methods such as Singular visual odometry (SVO) might allow

for additional reference trajectories that could be compared/fused with the LIDAR

trajectory for greater accuracy.

REFERENCES

83

REFERENCES

[1] Pomerleau, Dean. “ALVINN: An Autonomous Land Vehicle in a Neural Net-
work.” NIPS (1988).

[2] A. Frome et al., ”Large-scale privacy protection in Google Street View,” 2009
IEEE 12th International Conference on Computer Vision, Kyoto, 2009, pp. 2373-
2380, doi: 10.1109/ICCV.2009.5459413.

[3] “StreetSide: Dynamic Street-Level Imagery - Bing Maps.” StreetSide:
Dynamic Street-Level Imagery - Bing Maps, 12 Feb. 2020,
www.microsoft.com/en-us/maps/streetside. doi: 10.1109/ICTIS.2017.8047822

[4] A. Geiger, P. Lenz and R. Urtasun, ”Are we ready for autonomous driv-
ing? The KITTI vision benchmark suite,” 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, Providence, RI, 2012, pp. 3354-3361. doi:
10.1109/CVPR.2012.6248074

[5] Team, Waymo. “Waymo Open Dataset: Sharing Our Self-Driving Data for
Research.” Medium, Waymo, 21 Aug. 2019, medium.com/waymo/waymo-open-
dataset-6c6ac227ab1a.

[6] D. L. Rosenband, ”Inside Waymo’s self-driving car: My favorite transistors,”
2017 Symposium on VLSI Circuits, Kyoto, 2017, pp. C20-C22.

[7] B. Hurl, K. Czarnecki and S. Waslander, ”Precise Synthetic Image and LI-
DAR (PreSIL) Dataset for Autonomous Vehicle Perception,” 2019 IEEE In-
telligent Vehicles Symposium (IV), Paris, France, 2019, pp. 2522-2529. doi:
10.1109/IVS.2019.8813809

[8] Blankenau, Isaac Zolotor, Daniel Choate, Matthew Jorns, Alec and Homann,
Quailan and Depcik, Christopher. (2018). Development of a Low-Cost LIDAR
System for Bicycles. 10.4271/2018-01-1051.

84

[9] B. He, L. Guangsen, W. Huawei, F. Jia, G. Bo and Y. Hongtao, ”Design of
multichannel data acquisition system based on Ethernet,” 2017 IEEE 17th In-
ternational Conference on Communication Technology (ICCT), Chengdu, 2017,
pp. 692-695, doi: 10.1109/ICCT.2017.8359725.

[10] Song Gu and Zhou Hulin, ”The design of image acquisition and display
system” 2010, 2nd International Conference on Education Technology and Com-
puter,
Shanghai, 2010, pp. V5-23-V5-26, doi: 10.1109/ICETC.2010.5529954.

[11] S. Esquembri et al., ”Hardware timestamping for image acquisition
system based on FlexRIO and IEEE 1588 v2 standard,” 2014 19th IEEE-NPSS
Real Time Conference, Nara, 2014, pp. 1-1, doi: 10.1109/RTC.2014.7097499.

[12] C. Yao-yu, L. Yong-lin, L. Ying and W. Shi-qin, ”Design of image acquisition
and storage system based on ARM and embedded,” 2012 2nd International Con-
ference on Consumer Electronics, Communications and Networks (CECNet),
Yichang, 2012, pp. 981-984, doi: 10.1109/CECNet.2012.6202208.

[13] Y. Chai and J. Xu, ”Design of Image Acquisition and Transmission System
Based on STM32F407,” 2018 2nd IEEE Advanced Information Management,
Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an,
2018, pp. 1085-1089, doi: 10.1109/IMCEC.2018.8469227.

[14] G. Sundari, T. Bernatin and P. Somani, ”H. 264 encoder using Gstreamer,”
2015 International Conference on Circuits, Power and Computing Technologies
[ICCPCT-2015], Nagercoil, 2015, pp. 1-4, doi: 10.1109/ICCPCT.2015.7159511.

[15] K. Lim, G. S. Kim, S. Kim and K. Baek, ”A multi-lane MIPI CSI receiver for
mobile camera applications,” in IEEE Transactions on Consumer Electronics,
vol. 56, no. 3, pp. 1185-1190, Aug. 2010, doi: 10.1109/TCE.2010.5606244.

[16] U. K. Malviya, A. swain and G. Kumar, ”Tiny I2C
Protocol for Camera Command Exchange in CSI-2: A
Review,” 2020 International Conference on Inventive
Computation Technologies (ICICT), Coimbatore, India, 2020, pp. 149-154, doi:
10.1109/ICICT48043.2020.9112536.

[17] Y. Lu, Z. Chen and P. Chang, ”Low power multi-lane MIPI CSI-2
receiver design and hardware implementations,” 2013 IEEE International
Symposium on Consumer Electronics (ISCE), Hsinchu, 2013, pp. 199-200, doi:
10.1109/ISCE.2013.6570183.

[18] Liu, Kaikai, and Rajathswaroop Mulky. “Enabling Autonomous Navigation
for Affordable Scooters.” Sensors (Basel, Switzerland), MDPI, 5 June 2018,
www.ncbi.nlm.nih.gov/pmc/articles/PMC6022038/.

85

[19] Cheung, Danny. “Mapping Stories with a New Street View Trekker.” Google, 18
Dec. 2018, www.blog.google/products/maps/mapping-stories-new-street-view-
trekker/.

[20] X. Liang et al., ”Forest Data Collection Using Terrestrial Image-Based Point
Clouds From a Handheld Camera Compared to Terrestrial and Personal Laser
Scanning,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 53,
no. 9, pp. 5117-5132, Sept. 2015. doi: 10.1109/TGRS.2015.2417316

[21] B. Madore, G. Imahori, J. Kum, S. White and A. Worthem, ”NOAA’s
use of remote sensing technology and the coastal mapping program,”
OCEANS 2018 MTSIEEE Charleston, Charleston, SC, 2018, pp. 1-7. doi:
10.1109/OCEANS.2018.8604932

[22] L. Wang, L. Zhang and Y. Ma, ”Gstreamer accomplish video capture and coding
with PyGI in Python language,” 2017 First International Conference on Elec-
tronics Instrumentation Information Systems (EIIS), Harbin, 2017, pp. 1-4.

[23] L. Zheng and Y. Fan, ”Data packet decoder design for LiDAR system,” 2017
IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW),
Taipei, 2017, pp. 35-36, doi: 10.1109/ICCE-China.2017.7990982.

[24] S. Gargoum and K. El-Basyouny, ”Automated extraction of road features using
LiDAR data: A review of LiDAR applications in transportation,” 2017 4th Inter-
national Conference on Transportation Information and Safety (ICTIS), Banff,
AB, 2017, pp. 563-574.

[25] Y. Zhang, J. Wang, X. Wang and J. M. Dolan, ”Road-Segmentation-Based Curb
Detection Method for Self-Driving via a 3D-LiDAR Sensor,” in IEEE Transac-
tions on Intelligent Transportation Systems, vol. 19, no. 12, pp. 3981-3991, Dec.
2018.

[26] X. Wang, P. Ma, L. Jiang, L. Li and K. Xu, ”A New Method of 3D Point
Cloud Data Processing in Low-speed Self-driving Car,” 2019 IEEE 3rd Advanced
Information Management, Communicates, Electronic and Automation Control
Conference (IMCEC), Chongqing, China, 2019, pp. 69-73.

[27] R. Sahba, A. Sahba, M. Jamshidi and P. Rad, ”3D Object Detection Based
on LiDAR Data,” 2019 IEEE 10th Annual Ubiquitous Computing, Electronics
Mobile Communication Conference (UEMCON), New York City, NY, USA, 2019,
pp. 0511-0514.

[28] C. Xie, H. Shishido, Y. Kameda and I. Kitahara, ”A Projector Calibra-
tion Method Using a Mobile Camera for Projection Mapping System,” 2019
IEEE International Symposium on Mixed and Augmented Reality Adjunct
(ISMAR-Adjunct), Beijing, China, 2019, pp. 261-262, doi: 10.1109/ISMAR-
Adjunct.2019.00-33.

86

[29] Y. Ito and Y. Oda, ”Estimation of Camera Projection Matrix Using Linear
Matrix Inequalities,” 2016 Joint 8th International Conference on Soft Comput-
ing and Intelligent Systems (SCIS) and 17th International Symposium on Ad-
vanced Intelligent Systems (ISIS), Sapporo, 2016, pp. 72-75, doi: 10.1109/SCIS-
ISIS.2016.0028.

[30] Y. Lang, H. Wu, T. Amano and Q. Chen, ”An iterative convergence algorithm for
single/multi ground plane detection and angle estimation with RGB-D camera,”
2015 IEEE International Conference on Image Processing (ICIP), Quebec City,
QC, 2015, pp. 2895-2899, doi: 10.1109/ICIP.2015.7351332.

[31] J. Kannala and S. S. Brandt, ”A generic camera model and calibration method
for conventional, wide-angle, and fish-eye lenses,” in IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 28, no. 8, pp. 1335-1340, Aug. 2006,
doi: 10.1109/TPAMI.2006.153.

[32] W. Song, Z. Miao and H. Wu, ”Automatic calibration method based on improved
camera calibration template,” 5th IET International Conference on Wireless,
Mobile and Multimedia Networks (ICWMMN 2013), Beijing, 2013, pp. 301-305,
doi: 10.1049/cp.2013.2429.

[33] A. Fetić, D. Jurić and D. Osmanković, ”The procedure of a camera calibration
using Camera Calibration Toolbox for MATLAB,” 2012 Proceedings of the 35th
International Convention MIPRO, Opatija, 2012, pp. 1752-1757.

[34] A. Bushnevskiy, L. Sorgi and B. Rosenhahn, ”Multimode camera calibration,”
2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ,
2016, pp. 1165-1169, doi: 10.1109/ICIP.2016.7532541.

[35] Y. Dong, X. Ye and X. He, ”A novel camera calibration method combined with
calibration toolbox and genetic algorithm,” 2016 IEEE 11th Conference on In-
dustrial Electronics and Applications (ICIEA), Hefei, 2016, pp. 1416-1420, doi:
10.1109/ICIEA.2016.7603807.

[36] P. Liu, J. Zhang and K. Guo, ”A Camera Calibration Method Based
on Genetic Algorithm,” 2015 7th International Conference on Intelligent
Human-Machine Systems and Cybernetics, Hangzhou, 2015, pp. 565-568, doi:
10.1109/IHMSC.2015.246.

[37] L. Liu, S. Cao, X. Liu and T. Li, ”Camera Calibration Based on Computer Vi-
sion and Measurement Adjustment Theory,” 2018 Eighth International Confer-
ence on Instrumentation Measurement, Computer, Communication and Control
(IMCCC), Harbin, China, 2018, pp. 671-676, doi: 10.1109/IMCCC.2018.00145.

[38] D. H. Lee, S. S. Lee, H. H. Kang and C. K. Ahn, ”Camera Position Estimation
for UAVs Using SolvePnP with Kalman Filter,” 2018 1st IEEE International
Conference on Hot Information-Centric Networking (HotICN), Shenzhen, 2018,
pp. 250-251.

87

[39] Y. Yenıaydin and K. W. Schmidt, ”Sensor Fusion of a Camera and 2D LIDAR for
Lane Detection,” 2019 27th Signal Processing and Communications Applications
Conference (SIU), Sivas, Turkey, 2019, pp. 1-4.

[40] J. Li, X. He and J. Li, ”2D LiDAR and camera fusion in 3D modeling of indoor
environment,” 2015 National Aerospace and Electronics Conference (NAECON),
Dayton, OH, 2015, pp. 379-383.

[41] LiDAR-Camera Calibration using 3D-3D Point correspondences Ankit Dhall,
Kunal Chelani, Vishnu Radhakrishnan, K.M. Krishna (Submitted on 27 May
2017)

[42] Velas, Martin et al. “Calibration of RGB camera with velodyne LiDAR.” (2014).

[43] A. Rangesh and M. M. Trivedi, ”No Blind Spots: Full-Surround Multi-Object
Tracking for Autonomous Vehicles Using Cameras and LiDARs,” in IEEE Trans-
actions on Intelligent Vehicles, vol. 4, no. 4, pp. 588-599, Dec. 2019, doi:
10.1109/TIV.2019.2938110. https://arxiv.org/abs/1802.08755

[44] F. Itami and T. Yamazaki, ”An Improved Method for the Calibration of a 2-
D LiDAR With Respect to a Camera by Using a Checkerboard Target,” in
IEEE Sensors Journal, vol. 20, no. 14, pp. 7906-7917, 15 July15, 2020, doi:
10.1109/JSEN.2020.2980871.

[45] Z. Hu, Y. Hu, Y. Li and G. Huang, ”Registration of image and 3D LIDAR data
from extrinsic calibration,” 2015 International Conference on Transportation
Information and Safety (ICTIS), Wuhan, 2015, pp. 102-106, doi: 10.1109/IC-
TIS.2015.7232189.

[46] J. -K. Huang and J. W. Grizzle, ”Improvements to Target-Based 3D LiDAR
to Camera Calibration,” in IEEE Access, vol. 8, pp. 134101-134110, 2020, doi:
10.1109/ACCESS.2020.3010734.

[47] Y. Lyu, L. Bai, M. Elhousni and X. Huang, ”An Interactive LiDAR to Cam-
era Calibration,” 2019 IEEE High Performance Extreme Computing Conference
(HPEC), Waltham, MA, USA, 2019, pp. 1-6, doi: 10.1109/HPEC.2019.8916441.

[48] B. Fu, Y. Wang, X. Ding, Y. Jiao, L. Tang and R. Xiong, ”LiDAR-Camera
Calibration Under Arbitrary Configurations: Observability and Methods,” in
IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 6, pp.
3089-3102, June 2020, doi: 10.1109/TIM.2019.2931526.

[49] C. Hsu, H. Wang, A. Tsai and C. Lee, ”Online Recalibration of a Cam-
era and Lidar System,” 2018 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), Miyazaki, Japan, 2018, pp. 4053-4058, doi:
10.1109/SMC.2018.00687.

[50] G. Lee, J. Lee and S. Park, ”Calibration of VLP-16 Lidar and multi-view cameras
using a ball for 360 degree 3D color map acquisition,” 2017 IEEE International

88

Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI),
Daegu, 2017, pp. 64-69, doi: 10.1109/MFI.2017.8170408.

[51] V. John, Q. Long, Z. Liu and S. Mita, ”Automatic calibration and registration
of lidar and stereo camera without calibration objects,” 2015 IEEE International
Conference on Vehicular Electronics and Safety (ICVES), Yokohama, 2015, pp.
231-237, doi: 10.1109/ICVES.2015.7396923.

[52] M. A. Zaiter, R. Lherbier, G. Faour, O. Bazzi and J. C. Noyer, ”3D LiDAR
Extrinsic Calibration Method using Ground Plane Model Estimation,” 2019
IEEE International Conference on Connected Vehicles and Expo (ICCVE),
Graz, Austria, 2019, pp. 1-6, doi: 10.1109/ICCVE45908.2019.8964949.

[53] R. Ravi, Y. Lin, M. Elbahnasawy, T. Shamseldin and A. Habib, ”Simultane-
ous System Calibration of a Multi-LiDAR Multicamera Mobile Mapping Plat-
form,” in IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 11, no. 5, pp. 1694-1714, May 2018, doi: 10.1109/JS-
TARS.2018.2812796.

[54] Z. Pusztai and L. Hajder, ”Accurate Calibration of LiDAR-Camera Systems
Using Ordinary Boxes,” 2017 IEEE International Conference on Computer Vision
Workshops (ICCVW), Venice, 2017, pp. 394-402, doi: 10.1109/ICCVW.2017.53.

[55] S. Kružic, J. Musić, I. Stančić and V. Papić, ”Influence of Data Collection Pa-
rameters on Performance of Neural Network-based Obstacle Avoidance,” 2018
3rd International Conference on Smart and Sustainable Technologies (SpliTech),
Split, 2018, pp. 1-6.

[56] Selby, Wil. “Building Maps Using Google Cartographer and the OS1 Li-
dar Sensor.” Ouster, 9 Oct. 2019, ouster.com/blog/building-maps-using-google-
cartographer-and-the-os1-lidar-sensor

[57] Holger, Ceaser, et al. NuScenes: A Multimodal Dataset for Autonomous Driv-
ing. arxiv.org/pdf/1903.11027.pdf

[58] K. Oishi, S. Mori and H. Saito, ”An Instant See-Through Vision System Using
a Wide Field-of-View Camera and a 3D-Lidar,” 2017 IEEE International Sym-
posium on Mixed and Augmented Reality (ISMAR-Adjunct), Nantes, 2017, pp.
344-347.

[59] S. Gatesichapakorn, J. Takamatsu and M. Ruchanurucks, ”ROS based Au-
tonomous Mobile Robot Navigation using 2D LiDAR and RGB-D Camera,”
2019 First International Symposium on Instrumentation, Control, Artificial In-
telligence, and Robotics (ICA-SYMP), Bangkok, Thailand, 2019, pp. 151-154.

[60] X. Zuo, P. Geneva, W. Lee, Y. Liu and G. Huang, ”LIC-Fusion: LiDAR-Inertial-
Camera Odometry,” 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Macau, China, 2019, pp. 5848-5854.

89

[61] T. Dieterle, F. Particke, L. Patino-Studencki and J. Thielecke, ”Sensor data
fusion of LIDAR with stereo RGB-D camera for object tracking,” 2017 IEEE
SENSORS, Glasgow, 2017, pp. 1-3.

[62] M. Y. Lachachi, M. Ouslim, S. Niar and A. Taleb-Ahmed, ”LIDAR and Stereo-
Camera fusion for reliable Road Extraction,” 2018 30th International Conference
on Microelectronics (ICM), Sousse, Tunisia, 2018, pp. 64-67.

[63] L. Zheng and Y. Fan, ”Data packet decoder design for LiDAR system,” 2017
IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW),
Taipei, 2017, pp. 35-36.

[64] W. Xuan, Z. Huang, X. Chen and Z. Lin, ”A combined sensor system of digital
camera with LiDAR,” 2007 IEEE International Geoscience and Remote Sensing
Symposium, Barcelona, 2007, pp. 589-592.

[65] Y. Wu and C. Tsai, ”Pedestrian, bike, motorcycle, and vehicle classification via
deep learning: Deep belief network and small training set,” 2016 International
Conference on Applied System Innovation (ICASI), Okinawa, 2016, pp. 1-4. doi:
10.1109/ICASI.2016.7539822

[66] B. He, L. Guangsen, W. Huawei, F. Jia, G. Bo and Y. Hongtao, ”Design of
multichannel data acquisition system based on Ethernet,” 2017 IEEE 17th In-
ternational Conference on Communication Technology (ICCT), Chengdu, 2017,
pp. 692-695, doi: 10.1109/ICCT.2017.8359725.

[67] Xu Lijun, Gao Guohong, Li Xueyong and Qu Peixin, ”Video collection system
based on embedded system and USB communication,” 2010 Second International
Conference on Communication Systems, Networks and Applications, Hong Kong,
2010, pp. 112-114, doi: 10.1109/ICCSNA.2010.5588759.

[68] C. Yao-yu, L. Yong-lin, L. Ying and W. Shi-qin, ”Design of image acquisition
and storage system based on ARM and embedded,” 2012 2nd International Con-
ference on Consumer Electronics, Communications and Networks (CECNet),
Yichang, 2012, pp. 981-984, doi: 10.1109/CECNet.2012.6202208.

[69] Jian Yuan and DongSheng Yin, ”Wireless camera based on ARM11,” 2011 Inter-
national Conference on Computer Science and Service System (CSSS), Nanjing,
2011, pp. 1887-1890, doi: 10.1109/CSSS.2011.5974122.

[70] Lu and P. Li, ”A Data Acquisition and 2-D Flow Measuring Technology in Agri-
cultural Spray Field Based on High Speed Image Processing,” 2009 International
Conference on Measuring Technology and Mechatronics Automation, Zhangjia-
jie, Hunan, 2009, pp. 446-449, doi: 10.1109/ICMTMA.2009.122.

[71] Song Gu and Zhou Hulin, ”The design of image acquisition and display sys-
tem,” 2010 2nd International Conference on Education Technology and Com-
puter, Shanghai, 2010, pp. V5-23-V5-26, doi: 10.1109/ICETC.2010.5529954.

