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ABSTRACT

Hajny, Kristian D. Ph.D., Purdue University, December 2020. Quantification of
Greenhouse Gas Emission Rates for Point Sources and Cities via Airborne Measure-
ments. Major Professors: Paul B. Shepson, Gregory Michalski.

Urban greenhouse gas emissions and urbanization are both expected to continue

to increase in coming years. Accordingly, many cities have passed legislation or set

goals for specific greenhouse gas reductions. However, high precision monitoring

techniques are necessary to act on this legislation and to quantify the impact of

effective mitigation strategies. Here we use the airborne mass balance technique to

address this need.

Chapter 3 focuses on 23 flights at 14 natural gas-fired power plants (NGPPs) using

an aircraft-based mass balance technique and methane/carbon dioxide enhancement

ratios (∆CH4/∆CO2) measured from stack plumes to quantify the unburned fuel.

Current research efforts on the atmospheric impacts of natural gas (NG) have focused

heavily on the production, storage/transmission, and processing sectors, with less at-

tention paid to the distribution and end use sectors. By comparing the ∆CH4/∆CO2

ratio measured in stack plumes to that measured downwind, we determined that,

within uncertainty of the measurement, all observed CH4 emissions were stack-based,

that is, uncombusted NG from the stack rather than fugitive sources. Measured CH4

emission rates (ER) ranged from 8 (± 5) to 135 (± 27) kg CH4/h (± 1σ), with

the fractional CH4 throughput lost (loss rate) ranging from -0.039% (±0.076%) to

0.204% (±0.054%). We attribute negative values to partial combustion of ambient

CH4 in the power plant. The average calculated emission factor (EF) of 5.4 (+10/-

5.4) g CH4/million British thermal units (MMBTU) is within uncertainty of the En-
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vironmental Protection Agency (EPA) EFs. However, one facility measured during

startup exhibited substantially larger stack emissions with an EF of 440 (+660/-440)

g CH4/MMBTU and a loss rate of 2.5% (+3.8/-2.5%).

Chapter 4 uses a slightly larger set of power plant flights, including most of those

in Chapter 3, to assess the airborne mass balance technique. GHG quantification

techniques must be highly precise to effectively monitor changes in GHG emissions to

inform effective mitigation strategies and act on already existing goals and legislation

towards reductions. Power plants are required to measure their CO2 emissions using

continuous emissions monitoring systems (CEMS), providing an effective “known”

emission rate to compare against those measured downwind using the airborne mass

balance approach. The mean absolute error between measured and CEMS emission

rates was calculated as 20% ± 13 and the slope of measured emission rates against

CEMS emission rates was 0.871 ± 0.033. Additionally, power plants generally have

consistent production/emission profiles through the typical midday hours of the ex-

periments. This allows us to consider back to back experiments at the same facility

as replicate experiments to assess the precision of the mass balance technique too.

Across the campaign, the average relative standard deviation (1σ/mean) was 25% ±

16.

Chapter 5 focuses on measurements of greenhouse gases around New York City

with 7 non-growing season research aircraft flights in 2018-2020 and used dispersion

modelling to estimate CO2 emissions from New York City with a simple scaling factor

approach. Cities are leading efforts to reduce greenhouse gas emissions. New York

City has passed a suite of legislation outlining aggressive reduction targets, which

has been supplemented by similar legislation covering New York State. However,

appropriate techniques to quantify emission reductions over time are necessary to

monitor the progress of such legislation and effectively inform continuing mitigation

efforts. The average calculated CO2 emission rate for New York City, representative

of afternoons in the non-growing season, was 67 kmol/s. By using a variety of priors,

calculation methods, and meteorology products we also investigate the variability of
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the estimation introduced by each of these sources. Variability across flight days

proved to be larger than the combined variability of all other sources, as seen in

previous works. This work uses a pre-COVID dataset to introduce a scaling factor

approach that can account for and isolate multiple sources of variability and that can

be used for long term emission trend analyses, including analyses of emissions during

and after shut-down conditions.
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1. INTRODUCTION

1.1 Atmosphere Structure

The atmosphere is divided into the troposphere, stratosphere, mesosphere, ther-

mosphere, and ionosphere in ascending altitude order. The troposphere is the ∼10

km layer in direct contact with the surface making it the most heavily-impacted by

surface emissions and accordingly, the focus of this work. As it is heavily influenced

by incoming solar radiation (“insolation”), at the surface, the troposphere’s structure

also shows a strong diurnal cycle as shown in Figure 1.1. This also shows that the

troposphere can be subdivided into the surface layer, a convective boundary layer

(CBL) that is topped with an entrainment layer, and the free troposphere. During

the day the sun heats the surface warming the air in direct contact with the surface,

which causes it to expand, become less dense, and thus rise. As this warm air rises it

displaces denser air parcels downward to replace it in circular motions called eddies.

This buoyant circulation of air keeps the CBL generally well mixed. This diurnal

cycle in mixing has a significant impact on the diurnal cycle of the concentration of

gases emitted at the surface. The CBL grows during the early morning after sunrise

as warm air climbs above the entrainment layer and mixes free tropospheric air into

the CBL in a process called entrainment [1]. At night mechanical turbulence typically

dominates over convective mixing. Mechanical turbulence creates eddies via wind flow

over surface features and from wind-shear from air flow in different wind directions

between vertically neighboring air parcels. With less vertical motion, the boundary

layer settles into a stable residual layer, where air from the previous day’s boundary

layer remains with little turbulence, since it is disconnected from mechanical mixing
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near the surface, and a nocturnal boundary layer that is typically much shallower.

Because the solid surface cools faster than the air above it, the surface layer often

exhibits a temperature inversion, with the coolest air at the surface, greatly inhibiting

mixing. Such inversion layers have created notorious pollution events, e.g. the event

in Donora, PA, in 1948 [2]. With rougher surfaces, relatively high winds, and/or

lower insolation (e.g. heavy cloud cover) mechanical turbulence can be an important

driver of mixing during the day as well [1].

The top of the CBL is capped by an entrainment zone where water vapor condenses

into water droplets releasing heat into the surrounding air and causing a temperature

inversion. This release of heat due to a phase change (i.e., without a change in

temperature for the material itself, in this case H2O) is defined as latent heat [1].

Having warm air (less dense) above cold air (more dense) is stable, so it will not

readily mix. Figure 1.2 is an airborne photo that shows the CBL height in a real-

world scenario. Lastly the surface layer is defined as the lowest 10% of the CBL which

is most heavily influenced by surface roughness.

Figure 1.1. Idealized depiction of layering in the troposphere, figure from
Stull [1].
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Figure 1.2. An airborne photo of a small brush fire releasing black smoke
that provides a visualization of the CBL. The hot, buoyant smoke rises
quickly, seeming to penetrate slightly above the CBL, before slowly mix-
ing within the CBL, providing a clear visual of the BLH (marked) and
becoming ∼well-mixed in the vertical further downwind.

The CBL can vary between a few hundred meters to a few kilometers depending on

the conditions. Generally, warm weather and high winds lead to significant buoyant

turbulence that help create a larger boundary layer. Given the depth of the CBL

defines the volume that surface emissions are able to mix into, it is important to

know the boundary layer height (BLH), or the altitude of the top of the CBL. Given

the CBL is capped by a temperature inversion, one of the clearest ways to identify it is

by identifying the altitude of this inversion. Potential temperature, the temperature

corrected for the impact of adiabatic expansion as the pressure decreases with altitude,

is typically used for this purpose. It is calculated as shown in Equation 1.1.

θ = T ×
(

1000

P

) R
Cp

(1.1)

Here θ represents potential temperature (K), T is temperature (K), P is pressure

(mbar), 1000 is a reference pressure (mbar), R is the gas constant (287.04 J K−1kg−1)

and Cp is the specific heat capacity of air at constant pressure (1004.67 J K−1kg−1).

Concentrations of species emitted from the surface (particles, CO2, CH4, etc.) also
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change sharply at the BLH as the CBL is much more heavily influenced by surface

emissions. Figure 1.3 shows idealized vertical profiles in the CBL.
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Figure 1.3. Idealized vertical profiles in the CBL for selected variables.
Figure adapted from Stull [1]

1.2 Climate Change

The atmosphere provides a very important cleaning function, contributing to a

habitable Earth. It does so by oxidizing water-insoluble, often toxic, gases to water

soluble products that can then be removed via rain. This happens largely involving

oxidation by the hydroxyl radical, OH. OH is produced as shown below [3]. It oxidizes

species such as SO2 and NO to H2SO4 and HNO3, as shown in reactions 1-7 below.

However, some gases, such as N2O, CF2CL2, CH4, and CO2 react only very slowly, if

at all, with OH, and also not at all with the other important oxidants, O3 and NO3.

Since the concentration of a gas in the atmosphere is proportional to its emission rate

divided by its removal rate, the concentration of these gases have been increasing

throughout the atmosphere.

1. O3 + hν → O(1D) + O2

2. O(1D) + H2O→ 2OH

3. OH + SO2→ HSO3
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4. HSO3 + O2 → H2SO4 + HO2

5. O3 + NO→ NO2 + O2

6. OH + NO2 → HNO3

Climate change is defined as a change in the average weather conditions (e.g.

rainfall, temperature, etc.) or their variability for an extended period. The United

Nations Framework Convention on Climate Change (UNFCCC) adds that it is only

changes due to human impact (anthropogenic) rather than natural variability [4, 5].

Anthropogenic climate change is due to the emission of greenhouse gases (GHG) that

contribute to an increased greenhouse effect and warming, which has been partially

offset by emissions of aerosols and their precursors which generally lead to increased

reflectivity and cooling as described in Figure 1.4.

GHGs are gases that absorb infrared (IR) radiation but do not absorb ultraviolet

or visible (UV-vis) radiation, allowing them to absorb the IR emitted from the Earth’s

surface and then re-emit it omnidirectionally. This then causes a net increase in the

radiative flux at the surface, from the component of the re-radiation that is downward,

as summarized quantitatively in Figure 1.4, with the complete radiation budget of

the planet shown in Figure 1.5. The greenhouse effect is the increase in temperature

caused by GHGs absorbing the infrared radiation (IR) emitted by the Earth and

re-radiating it omnidirectionally, resulting in a net increase in radiative flux at the

surface due to the component of re-radiation that is downward. This is summarized

quantitatively in Figure 1.4. Earths equilibrium temperature in the absence of the

greenhouse effect can be estimated by assuming the Earth emits as a black body

according to Equation 1.2.

S = σT 4
e (1.2)

Here S is the amount of absorbed solar radiation, or the irradiance of a black body, σ

is the Stefan-Boltzmann constant, and Te is the equilibrium temperature. The Earth
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absorbs about 240 W/m2 averaged over the surface and all seasons, resulting in a Te

of about 255 K or -18◦C [6]. As the global mean surface temperature is 288 K, the

greenhouse effect is responsible for about 33 K of surface warming.

Global warming due to an increasing greenhouse effect was first suggested by

Arrhenius as summarized in Rodhe et al. [8], based solely on changing CO2 concen-

trations. There is now significant evidence across multiple lines of data, as shown in

Figure 1.6, that the global temperature is rising. However, this warming is occurring

primarily in the oceans, with the land and atmosphere seeing only a small fraction of

the total heating caused by the enhanced greenhouse effect as quantitatively shown in

Figure 1.7 [9]. GHGs are gases that absorb infrared (IR) radiation but do not absorb

ultraviolet or visible (UV-vis) radiation, allowing them to absorb the IR emitted from

the Earth’s surface and then re-emit it resulting in a net increase in the radiative flux

at the surface. If the downward irradiance increases, the surface must re-radiate more

IR radiation upward, to achieve a radiation balance. According to Equation 1.2, it

does so at a higher temperature. The GHGs are all transparent to the downward UV

and visible radiation from the sun, but all effectively absorb the outgoing black body

IR radiation from the Earth, as shown in Figure 1.8. It is important to note that,

based on satellite observations, changes in the incoming solar radiation are known to

be quantitatively insignificant. In fact, the combination of all natural variations in

the Earth’s climate system, including variability in incoming solar radiation, large-

scale climate phenomena such as El-Niño/La Niña, and volcanic eruptions (e.g. the

1991 Mt. Pinatubo eruption, which injected 5 km3 of ash up to 35 km high, into the

stratosphere [10]) to name a few, cannot explain the current trends in temperature

with current models. As shown using an ensemble of model runs using the Coupled

Model Intercomparison Project Phase 5 (CMIP5) inf Figure 1.9, the modeled temper-

ature variations only match modeled results when incorporating the human-induced

changes to GHGs and aerosols [7].

The primary GHGs are H2O, CO2, CH4, O3, N2O and halocarbons (CFCs, HCFCs,

etc.). The concentrations of these “radiatively active” gases are increasing due to hu-
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Figure 1.4. RF bar chart based on emitted gas/process for 1750-2011.
Red (positive) and blue (negative) are used for components which affect
few forcing agents, the inset indicates colors for those impacting several.
Vertical bars indicate the relative uncertainty of each component where
the length is proportional to the thickness of the bar i.e., a length equal to
the bar thickness is equal to a ±50% uncertainty. Net impacts are shown
by diamond symbols with 95% confidence intervals given by the horizontal
bars. ERFaci is ERF from aerosol-cloud interactions. Secondary organic
Aerosol are excluded due to insufficient information. Figure 8.17 from
IPCC Fifth Assessment Report: The Physical Science Basis [7]
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Figure 1.5. Global mean energy budget under present-day climate con-
ditions. Numbers represent individual energy fluxes in Wm−2 adjusted
within their uncertainty ranges to balance the energy budget. Num-
bers in parentheses cover the range of values within observational con-
straints. Sensible heat is any heat transfer that results in direct temper-
ature changes, as opposed to latent heat. Figure 2.11 from IPCC Fifth
Assessment Report: The Physical Science Basis [7].

man activities. Table 1.1 describes the current atmospheric concentrations and global

warming potentials (GWP) of a selection of these gases. The GWP of a gas is de-

fined as the increased RF induced by a pulse emission of the species relative to the

RF of the same mass of CO2. Radiative forcing is externally imposed perturbations

in the radiative energy budget of the Earth’s climate system (due to changes in the

concentrations of radiatively active species, changes in the incoming solar radiation,

etc.). These perturbations introduce an imbalance in the radiation budget, which has

the potential to lead to changes in climate parameters and thus result in a new equi-

librium state of the climate system. Figure 1.10 shows the increasing concentration

over time for the three most important GHGs (based on GWP and abundance), and

Figure 1.11 shows the increasing radiative forcing (RF) of these gases over time.
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Figure 1.6. Various independent indicators of a changing global climate
where each line represents an independently derived estimate of change.
Figure 2 from FAQ 2.1 in the IPCC Fifth Assessment Report: The Phys-
ical Science Basis [7].
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Figure 1.7. Schematic of the Earth heat inventory for the current anthro-
pogenically driven imbalance at the top of the atmosphere. Percentage
values describe the amount of heat partitioned to each component with
values representing 1971-2018 and parenthetical values representing 2010-
2018. The total heat gain is provided in red. The imbalance for both time
periods and the CO2 reductions required to reduce the energy imbalance
to ∼0 (based on the 2010-2018 value of 0.87 W/m2) are listed at the top.
Figure from Shuckmann et al. [9]
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Figure 1.8. A) Emissions from both the sun and the Earth’s surface,
note the significantly different axes between the two. B) The absorp-
tion spectrum across the total atmosphere and that of certain important
greenhouse gases. Figures from The Essentials of Meteorology [11] and
http://www.ces.fau.edu/nasa [12].

http://www.ces.fau.edu/nasa
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Figure 1.9. Time series of global, annually-averaged surface temperature
change. The top panel shows results using only natural forcing while the
bottom shows simulations from the same models, but driven with both
natural forcing and human-induced changes in GHGs and aerosols. Thin
blue and yellow lines represent the large ensemble of climate models run
and the ensemble averages are shown as thick blue and red lines. Adapted
from FAQ 10.1 from IPCC Fifth Assessment Report: The Physical Science
Basis [7].

Although H2O is the most significant GHG given its atmospheric concentration

and absorption spectrum, it is typically not considered when discussing anthropogenic

climate change as its atmospheric concentration is governed primarily by positive feed-
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backs related to warming of the land and ocean surfaces (evaporation, condensation,

and rain) [6, 7]. Stratospheric H2O, however, is heavily influenced by anthropogenic

emissions through increased atmospheric concentrations of CH4, which has a long

enough atmospheric lifetime to mix to the stratosphere, and which produces H2O as

it oxidizes to CO2 [7]. Positive climate feedbacks are natural processes that reinforce

a change (e.g. increased atmospheric H2O due to increasing temperature and evapo-

ration leads to further warming) and negative climate feedbacks are natural processes

that return a system to an equilibrium (e.g. increased cloud cover due to increased

temperature and atmospheric H2O results in greater surface albedo, and thus more

solar radiation being reflected away from the surface, leading to cooling).

Table 1.1.
2011 atmospheric concentrations and GWPs of select GHGs. Adapted
from Tables 8.A.1 and 8.2 from IPCC Fifth Assessment Report: The
Physical Science Basis [7]

Acronym/Name Chemical

Formula

Lifetime

(Years)

Concentration

(%)

GWP

(20-year)

GWP

(100-year)

Carbon dioxide CO2 seea 3.91E-2 1 1

Methane CH4 12.4 1.803E-4 84 28

Nitrous oxide N2O 121 3.24E-5 264 265

Carbon

tetrachloride
CHCl4 0.4 8.58E-9 60 16

CFC-113 CCl2FCClF2 85 7.43E-9 6,490 5,820

HCFC-22 CHClF2 11.9 2.13E-8 5,280 1,760

HFC-125 CHF2CF3 28.2 9.58E-10 6,090 3,170

Sulphur

hexafluoride
SF6 3,200 7.28E-10 17,500 23,500

asee Joos et al. [13].
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Figure 1.10. The graphs show atmospheric concentrations of CO2, CH4,
and N2O over time based on measurements. CO2 is based on measure-
ments from the Mauna Loa observatory while CH4 and N2O are globally
averaged, monthly means determined from marine surface sites. Red lines
represent monthly mean values and black lines represent the same after
correction for the average seasonal cycle, i.e. the long-term trend. Figures
from [14].
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Figure 1.11. Radiative forcing relative to 1750 of major long-lived GHGs.
The NOAA Annual Greenhouse Gas Index (AGGI) is shown on the right.
It is set to 0 for 1750 and 1 for 1990 as that was the baseline year for the
Kyoto Protocol. Figure from https://www.esrl.noaa.gov/gmd/aggi/

aggi.html [15]

https://www.esrl.noaa.gov/gmd/aggi/aggi.html
https://www.esrl.noaa.gov/gmd/aggi/aggi.html
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1.2.1 Sources & Sinks of CO2 & CH4

Since the industrial revolution (∼1750) the atmospheric concentration of CO2 has

increased from 278 ppm to ∼410 ppm [7,16]. Figure 1.12 shows the annual emissions

and sinks of CO2 in Pg/yr while Figure 1.13 shows the level of CO2 in the atmosphere

over the past 800,000 years. Although atmospheric concentrations have increased,

anthropogenic CO2 emissions far outweigh this atmospheric increase as emissions

partition between the ocean, atmosphere, and land sinks. Indeed, only about 44% of

the emissions of CO2 have stayed in the atmosphere. Total emissions from concrete

production and fossil fuel combustion between 1750 and 2011 are estimated at 375

± 30 PgC (90% confidence interval) with land use change, primarily deforestation,

contributing an additional 180 ± 80 PgC for a total of 555 ± 85 PgC. Approximately

28% (155 ± 30) has partitioned to the ocean (dissolution), another 28% (160 ± 90)

to the land (carbon uptake by plants), and the remainder (240 ± 10) has resulted

in an atmospheric increase in CO2. 14CO2 measurements show that the increased

atmospheric concentration derives from fossil fuels [17, 18]. The increasing land sink

is likely caused by enhanced photosynthesis, related to increased atmospheric CO2

and nitrogen deposition along with increased growing seasons in higher latitudes [7].

CH4 emissions have also caused an increase in its global atmospheric concentra-

tion, from 715 ± 4 ppb in 1750 [19] to 1803 ± 2 ppb in 2011 [7]. There are three

general types of sources and only one primary sink for CH4, which is reaction with

the hydroxyl radical. Emissions can be either biogenic, resulting from organic mat-

ter decaying in anaerobic conditions (stomachs of ruminants and termites, landfills,

sewage, fresh waters, wetlands, rice paddies), thermogenic, i.e. fossil fuels, or pyro-

genic, being formed from incomplete combustion of organic matter (biomass or biofuel

burning) [7].

Total CH4 emissions for 2000-2009 are estimated at between 553 (526-569) Tg(CH4)yr−1

based on top down (atmospheric observations) approaches and 678 (542-852) Tg(CH4)yr−1

based on bottom-up (emission accounting inventories) approaches, with values in
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Figure 1.12. Annual anthropogenic emissions and sinks in PgCyr−1 from
1750 to 2011. Emissions are estimated based on UN energy statistics for
fossil fuel combustion and U.S. Geological Survey estimates for cement
production. Sinks are estimated based on a combination of modeling, ice
core data, and atmospheric measurements. Magnitudes are based solely on
changes since 1750 and natural movement of CO2 through these sinks (lake
outgassing, atmospheric uptake through weathering) are not included.
The residual land sink is calculated as the residual of all other terms.
Figure 6.8 from IPCC Fifth Assessment Report: The Physical Science
Basis [7]
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Figure 1.13. Long-term concentrations of CO2 using measurements and
ice-core data. For context, current measurements are ∼410 ppm, 1960
measurements were ∼320 ppm, and 1750 concentrations were measured
via ice-core data to be ∼280 ppm. Concentrations did not surpass 300
ppm during this timeframe until recent years. Figure from the Scripps
Institution of Oceanography [16].

parentheses representing the range across studies used [7]. Total sinks, primarily

the reaction with the hydroxyl radical, are estimated at 550 (514-560) Tg(CH4)yr−1

for top down approaches and 632 (592-785) Tg(CH4)yr−1 for bottom-up approaches,

leaving atmospheric growth rates (the imbalance of sources and sinks) of 3 (-4-19)

Tg(CH4)yr−1 for top down and about 45 Tg(CH4)yr−1 for bottom-up as compared to

the actual current (clearly variable through time, see Figure 1.10) measured growth

rate of 6 Tg(CH4)yr−1 [7]. These emissions are detailed in Table 1.2. Bottom-up

approaches involve modeling or scaling factor approximations (e.g. average emis-

sions/ruminant based on case studies x cattle count estimates from the United States

Department of Agriculture) for individual source sectors that are combined to es-

timate total emissions. Top down approaches begin with direct measurements of

emissions from atmospheric measurements (e.g. ambient concentration measurements
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made from rooftops and radio/cell towers, or via mobile platforms like cars or aircraft),

and use them to estimate regional emissions. As such, top down approaches intrinsi-

cally provide a net emissions estimate based on all sources and sinks while bottom-up

approaches can only account for those processes assessed. Uncertainties are also more

difficult to determine with bottom-up approaches, but top down approaches cannot

easily distinguish between the relative contribution of different sources like bottom-up

approaches do [7, 20].

Anthropogenic emissions, including increased agriculture and ruminants, account

for between 50 - 65% of these CH4 emissions with top down approaches suggesting

a larger fraction. Globally, this is primarily through agriculture and waste emis-

sions with ruminants and landfills being responsible for 89 Tg(CH4)yr−1 and 75

Tg(CH4)yr−1 respectively. Fossil fuel emissions, primarily through fugitive emis-

sions (leaks, venting, etc.) of natural gas (∼90% CH4), are 96 Tg(CH4)yr−1 and

rice cultivation and biomass burning are both estimated at 35 Tg(CH4)yr−1. Nat-

ural emissions are dominated by wetlands, although uncertainties remain high due

to high variability across models and limited observations. However, these emissions

vary widely by region e.g., 90% of global rice emissions come from Asia. For the

United States (U.S.) total anthropogenic emissions are estimated at 26 Tg(CH4)yr−1

for 2018, broken down as shown by Figure 1.14 [21]. Agricultural emissions, through

both manure management and enteric fermentation (ruminant digestive emissions),

are the largest source responsible for 38% of emissions. The energy industry is the

next largest emitter at 28%, due to losses throughout the life cycle of natural gas and

crude oil. Then landfills and wastewater treatment plants are the third largest source

with 17% of U.S. emissions [21].

However, there have been a large number of studies focusing on natural gas CH4

emissions in recent years, many of which suggest considerable underestimation of

emissions from the EPA bottom-up inventory. The recent works were summarized

and aggregated by Alvarez et al. [22]. They saw general agreement between bottom-

up and top down approaches that suggested supply chain emissions (i.e. production,
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Table 1.2.
2000-2009 global CH4 budget. Reported values correspond to the mean
and ranges [in brackets] represent minimum and maximum values across
studies used. Adapted from Table 6.8 from IPCC Fifth Assessment Re-
port: The Physical Science Basis [7]

Tg(CH4)yr−1 Top down bottom-up

Natural Sources 218 [179-273] 347 [238-484]

Wetlands 175[142-208] 217[177-284]

Other sources 43 [37-65] 130[61-200]

Anthropogenic Sources 335 [273-409] 331 [304-368]

Agriculture and waste 209 [180-241] 200 [187-224]

Rice 36 [33-40]

Ruminants 89 [87-94]

Landfills and waste 75 [67-90]

Biomass burning 30 [24-45] 35 [32-39]

Fossil fuels 96 [77-123] 96 [85-105]

Chemical sinks 518 [510-538] 604 [483-738]

Tropospheric OH 528 [454-617]

Stratospheric OH 51 [16-84]

Tropospheric Cl 25 [13-37]

Emissions 553 [526-569] 678 [542-852]

Sinks 550 [514-560] 632 [592-785]

Imbalance 3 [-4-19] 46

processing, transport) of 13 ± 2 Tg/yr (95% confidence interval) or 2.3% of gross

production in 2015, ∼60% larger than the U.S. EPA inventory estimate. The produc-

tion sector represents the largest difference with ∼ 4 Tg CH4/yr and this difference is

attributed primarily to missed emissions during certain types of operating conditions

(e.g. malfunctions). The recent studies suggest “heavy-tail” distribution functions

that show a small number of facilities producing a large fraction of total emissions,
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Figure 1.14. Breakdown of U.S. anthropogenic CH4 emis-
sions. Figure from https://www.epa.gov/ghgemissions/

overview-greenhouse-gases [7]

attributed to events such as venting, e.g. manual liquid unloadings, which are in-

tentional diversion of gas/fluids from a well to an atmospheric vent rather than a

pressurized tank to increase flow temporarily to remove the much more valuable liq-

uid fuels, and condensate/water [22, 23]. EPA component-based inventories would

likely miss such large emission events due to the challenges associated with access to

representative operating conditions.

1.2.2 Climate Change Impacts

Climate change impacts a large number of environmental and human systems with

varying associated costs and hazards. A brief summary of some of the key hazards

associated with climate change is provided in Table 1.3. Ocean acidification for ex-

ample, results from the dissolution of CO2 to produce carbonic acid, as shown in

Equation 1.3 and has implications for all marine life, but particularly those that form

https://www.epa.gov/ghgemissions/overview-greenhouse-gases
https://www.epa.gov/ghgemissions/overview-greenhouse-gases


22

CaCO3 for shells, such as corals. The partial pressure of dissolved CO2 and pH during

the same timeframe is shown in Figure 1.15. This is, however, not a complete list.

For example, the Environmental Protection Agency (EPA) and Centers for Disease

Control (CDC) discuss how increased temperatures can impact vector-borne diseases

such as Lyme disease [24]. One can see in Figure 1.16 that not only have cases in-

creased, but northern states like Vermont and Maine have seen a more significant

increase. Although the number of cases is governed by multiple factors, there is ev-

idence that climate change has increased the range of ticks and could impact their

activity as winter seasons shrink and/or warm [24]. The World Health Organization

states more generally that climate change affects many determinants of health (clean

air, safe drinking water, food/shelter), likely lengthens vector-borne disease trans-

mission seasons and alters their range, and some contributors to climate change are

also contributors to health hazards (fossil fuel emissions contain health and climate-

relevant compounds, land-use change modifies organism abundance and interactions

leading to new opportunities for transmission, etc.) [25, 26]. The majority of these

climate change impacts have large potential financial, health, and humanitarian costs

that can be avoided. This is a large part of the driving force for climate change

mitigation efforts.

1)CO2 +H2O ⇀↽ H2CO3

2)H2CO3 +H2O ⇀↽ H3O
+ +HCO−3

3)HCO−3 +H2O ⇀↽ 2H3O
+ + CO2−

3

(1.3)

To discuss an example hazard, recent modeling efforts have investigated tropi-

cal cyclone intensity and frequency using CMIP5 with an assumed 2◦ C warming

(consistent with ∼2055 warming based on the largest emissions scenario used by the

IPCC, often considered business as usual) [29]. Overall tropical cyclone occurrence is

expected to decline with a median estimate of -14% across investigated studies with

a range from -28 to 22, with 87% of the 140 estimates suggesting ≤0%, although the

physical basis is still being investigated. However, the proportion of cyclones that
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Table 1.3.
A selection of hazards, risks, and vulnerabilities associated with climate
change. Adapted from Table 19-4 from IPCC Fifth Assessment Report:
Impacts, Adaptation, and Vulnerability. [27]

Hazard Risks Vulnerabilities

Sea level rise, coastal

flooding

Death, injury, and disruption to

economy and food/water supplies

High exposure of people, economic

activity, and infrastructure in

low-lying coastal zones and small

islands

Extreme precipitation and

inland flooding

Death, injury, and disruption of

human security, particularly for

vulnerable populations (elderly,

children, etc.)

People exposed in urban areas to

flooding. Overwhelmed, aging, and

inadequate urban drainage

infrastructure

Increasing frequency and

intensity of extreme heat

Increased mortality and morbidity

during periods of extreme heat,

potential overloading of health and

emergency services

increasing urban population of

vulnerable groups (elderly, very

young, those with chronic health

problems) in areas subject to higher

temperatures

Warming, drought, and

precipitation variability

Risk of harm and loss of life due to

malnutrition, insufficient water

supply for people and industry

resulting in significant health and

economic impacts, loss of

agricultural productivity and/or

income of rural people. Risk of food

insecurity

Poorer populations susceptible to

resulting food insecurity, water

shortages, constraints on increasing

water supplies. Farmers in drylands

or pastoralists with insufficient

access to drinking and/or irrigation

water.

Rising ocean temperature,

ocean acidification, and

loss of Arctic sea ice

Loss of coral cover, Arctic species,

and associated ecosystems.

Interactions of stressors such as

warming and acidification on

shell-forming organisms enhancing

risk

High susceptibility of warm water

coral reefs and the ecosystems they

support, coastal communities

dependent on these ecosystems

(fishing, tourism, mitigation of

storm flooding, etc.), high

susceptibility of polar systems
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Figure 1.15. Partial pressure of dissolved CO2 at the ocean surface (blue)
and in-situ pH (green) measured from three stations (the two darker
shades are from the Atlantic Ocean and the lightest shades are from the
Pacific Ocean). The pH of ocean surface water has decreased by 0.1 since
the beginning of the industrial era, corresponding to a 26% increase in
hydrogen ion concentration. Figure 4 from the IPCC Fifth Assessment
Report: Summary for Policymakers [28].

reach category 4-5 intensity, estimated to account for almost half of normalized eco-

nomic damage from tropical cyclones, is expected to increase by 13% based on the

median result across studies [29]. Sea level rise is also confidently expected to increase

storm surge levels for tropical storms, leading to more significant economic damage.

This is based solely on modeling studies, however, as the current data do not provide

evidence of a statistically significant trend [29].

Given the large GWP and shorter lifetime of CH4 relative to CO2, it can be

considered an important target for climate mitigation. Reductions in CH4 have a more

significant impact on short-term radiative forcing than comparable CO2 emissions

reductions, often making it more financially sensible to target CH4 or similar non-

CO2 GHGs [30]. There are also relatively cheap reduction approaches available for
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Figure 1.16. Reported cases of Lyme disease in 1996 and 2014 where each
dot represents a case in that county. Figure from https://www.epa.gov/

climate-indicators/climate-change-indicators-lyme-disease

non-CO2 GHGs as compared to those available for CO2. For example, landfill CH4

can be captured and utilized as an energy source. Expanding these already existing

technologies for landfills was estimated to reduce associated emissions as much as 70%

at costs estimated at 10$/ton CO2 equivalent or less [30]. Alternatively, organic waste

can be diverted from landfills and utilized through incineration in so-called waste to

energy power plants, or through composting programs which can avoid emissions

through aerobic treatment of the waste [30].

There are a number of agreements and policies in place to address climate change

on scales ranging from individual cities to global agreements. The development of

the United Nations Framework Convention on Climate Change in 1992 was followed

shortly by the first of these global agreements, the Kyoto Protocol, in 1997 [5]. This

document sets legal requirements for countries to monitor and report certain GHGs,

adopt policies toward mitigation of GHG emissions, and worked to develop individu-

alized targets for emission reductions. 37 industrialized countries and the European

Community committed to reduce GHG emissions to an average of 5% less than 1990

https://www.epa.gov/climate-indicators/climate-change-indicators-lyme-disease
https://www.epa.gov/climate-indicators/climate-change-indicators-lyme-disease
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levels by 2012 [5]. More recently the Paris Agreement effectively replaced the Kyoto

Protocol in 2015 with the goal of keeping temperature rises this century well be-

low 2◦C with efforts to limit warming to 1.5◦C. The agreement required members to

prepare and maintain national commitments (Intended Nationally Determined Con-

tributions; https://unfccc.int/process-and-meetings/the-paris-agreement/

the-paris-agreement/nationally-determined-contributions-ndcs) and pursue

measures towards them with stocktaking meetings planned every 5 years to commu-

nicate and reassess plans [5]. For the United States, at the time, the Intended Nation-

ally Determined Contributions were an economy-wide reduction of GHG emissions by

26%-28% below its 2005 level by 2025 and to make best efforts to reduce its emissions

by 28%.

1.3 Research Objectives

The research described in this thesis will focus on the development and applica-

tion of methods for quantifying GHG emissions, determination of the uncertainties in

these quantifications, and the performance of the methods used. An aircraft platform

was used to investigate GHG emissions from the New York City (NYC) urban center

and for an extensive sampling of U.S. power plants, which act as large, often isolated

point sources of GHGs. The airborne platform enabled easy access to otherwise re-

mote point sources that would be difficult to access from the ground and provided

measurements representative of large spatial areas, which is difficult for ground/tower

based instruments as they are more heavily influenced by nearby emissions [31]. The

first study discussed here (Chapter 3) involved the sampling of natural gas-fired power

plants (NGPP) primarily through sampling stack-based emissions near the source, to

investigate the potential emissions of the fuel gas as uncombusted CH4 or as site-

wide emissions from leaks across the facility. This was part of a larger project by

the Environmental Defense Fund (EDF) to improve confidence in emissions estimates

from the end uses of natural gas. Building a large dataset of such flights enabled a

https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement/nationally-determined-contributions-ndcs
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement/nationally-determined-contributions-ndcs
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study (Chapter 4) investigating the accuracy of the quantification method since CO2

emissions must be measured and reported to the EPA by power plant operators. Tak-

ing these reported emissions as near-true-values, with some estimated uncertainties,

allowed us to thoroughly investigate the accuracy and precision of the quantification

technique. Finally, emissions from the 5 boroughs of NYC were quantified (Chap-

ter 5) using a combination of modeling and airborne measurements. Although beyond

the scope of this work, this is part of a larger project focused on directly comparing

results across methods for NYC. Additionally, although unintended, this dataset was

collected shortly before the COVID-19 outbreak and will serve as a valuable baseline

for airborne campaigns in the area looking to investigate changes to emissions during

shutdown conditions. Potential improvements in data analysis and quantification will

be discussed in the conclusions, Chapter 6.
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2. EXPERIMENTAL

2.1 Instrumentation

Purdue’s Airborne Laboratory for Atmospheric Research (ALAR) is a modified

twin-engine Beechcraft Duchess designed to study air quality and greenhouse gas emis-

sions. A Garmin global positioning system/inertial navigation system (GPS/INS)

is used for 50 Hz geopositional coordinates (latitude, longitude, altitude). A Best

Air Turbulence (BAT) probe [32, 33] is attached to the nose of the plane for 50 Hz

3-dimensional wind measurements. Two independent 50 Hz ambient temperature

probes are used, 1) a Fast Ultra-Sensitive Temperature (FUST) probe (thermocou-

ple) attached underneath the BAT probe [34] and 2) a microbead thermistor installed

in the center port of the BAT probe. The 2 rear seats have also been removed to

make a ∼1 m3 volume for chemical instruments. In this space there is a Picarro model

G2301-m cavity ring down spectrometer [35] for 0.5 Hz measurements of CO2, CH4,

and H2Ov concentrations, a 2B model 202 ozone monitor for 0.1 Hz O3 measurements,

a Grimm aerosol spectrometer model 1.109 for measurements of particle concentra-

tions at 6 second intervals and 3 compressed gas calibration standards prepared by

the National Oceanic and Atmospheric Administration (NOAA) according to World

Meteorological Organization (WMO) standards. When necessary, 2 of the calibra-

tion standards can be removed to allow space for larger/heavier instruments as well.

In several flights discussed in Chapter 3 this space was used for a direct absorption

ethane (C2H6) spectrometer designed by Aerodyne Research and modified at Harvard

University. The instruments focused on in this work are shown in Figure 2.1.
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Figure 2.1. Purdue’s Airborne Laboratory for Atmospheric Research
(ALAR) with specific instruments labelled. The roof inlets are used rather
than the large front-facing inlets as there was some evidence of leaking air
in the large manifold.

2.1.1 Ethane Analyzer

The ratio of ∆C2H6/∆CH4 is useful to identify NG-derived CH4 signals in com-

plex regions where there are other CH4 sources, since natural gas contains a small

percent C2H6 while most other CH4 sources (e.g. landfills and waste-water treatment

facilities) will not emit C2H6 [36]. The C2H6 spectrometer is a tunable diode laser

spectrometer, operated by passing a mid-infrared light source through a multi-pass

Harriot cell [37] with an effective path length of 76 m, the schematic of which is shown

in Figure 2.2. Recent advances in inter-band laser technology have led to lasers that

can now be used to investigate the ro-vibrational infrared absorption of C2H6 at the

2997 cm−1 q-branch shown in Figure 2.3. Spectra are fit based on experimentally

determined absorption parameters [38]. In flight, the precision of the C2H6 signal is

approximately 30 ppt when the spectra are averaged to 1 Hz while the atmospheric

background C2H6 concentration in the Northern Hemisphere typically ranges from

500 to 2,200 ppt [39]. The C2H6 mixing ratio is calibrated using periodic injections
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of ultra-zero air to account for possible drift in the background as well as periodic

injections of a known concentration standard traceable to WMO and NOAA standard

scales [40].

Figure 2.2. Schematic diagram of the C2H6 analyzer. The only signifi-
cant change is that the quantum cascade laser (QCL) was replaced with
an interband cascade laser to measure at the low wavenumber peak. 15x
is the 15 power reflecting objective; Adjuster is the 3-axis position ad-
juster for the objective; PH is the 200 micrometer pinhole; BS is the
BaF2 beamsplitter; Ref is the 5 cm low-pressure reference cell and the
thermoelectrically cooled detector is above the indicated beam lines. [37].
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Figure 2.3. Transmittance spectrum of C2H6 in wavenumbers from the
NIST chemistry WebBook [41]. The 2997 wavenumber peak is used by
the ethane spectrometer.

2.1.2 Cavity Ring Down Spectrometer

Cavity Ring-down Spectroscopy (CRDS) helped to revolutionize the field of GHG

quantification as these systems are able to detect ppb levels of CO2 and CH4 with

high sensitivity and precision, are linear over typical atmospherically relevant con-

centrations, and do not require frequent calibrations. Picarro introduced commer-

cially available instruments capable of 0.5 Hz measurements of CO2 CH4 and H2Ov

in 2010 [35, 42]. The most well-established technique used for GHG measurements

of CO2 before the development of CRDS was non-dispersive infra-red spectroscopy

(NDIRS). These instruments required frequent zeroes and calibrations, making use

of the instruments, particularly in remote measurement sites, more difficult and ex-

pensive. Additionally, the instruments were not precise enough for atmospherically

relevant CH4 measurements.

Figure 2.4 shows a block diagram of the Picarro G2301-m model used throughout

this thesis. This model uses two telecom-grade distributed feedback (DFB) lasers with
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a wavelength monitor. One laser is tuned to measure a single CO2 absorption feature

at 1603 nm and the other is tuned to measure H2Ov and CH4 spectral features at 1651

nm. Laser light is injected into a high-finesse optical cavity consisting of three mirrors

(99.999% reflective) through one partially reflecting mirror. The light intensity inside

the cavity builds up over time and is monitored through a second partially reflecting

mirror via a photo-detector outside the cavity. Once the light intensity reaches a set

threshold, the laser is turned off and the exponential decay of the light is measured

as shown in Figure 2.5. The light decays as the cavity is not 100% reflective and

some of the laser light leaks out of the cavity. The light remains trapped in the

cavity for a long enough period of time to create an effective path length of tens of

kilometers, giving the CRDS a high sensitivity. The patented Picarro wavelength

monitor is solid-state without moving parts and provides wavelength measurements

over a range of >100 nm with a 1σ precision of 1 MHz [35].

The measured ring-down time is directly proportional to the concentration of the

absorbing species within the cavity. The concentration of the absorbing gas (N) can

be calculated using Equations 2.1 and 2.2.

I(t)

I(t = 0)
= exp

(
−t
τ

)
(2.1)

τ(λ) =

(
lcav
c

)
(Lopt + σ(λ)Nlsample)

−1 (2.2)

Here I(t=0) is the threshold light intensity exiting the cavity when the laser is turned

off, I(t) is the light intensity exiting the cavity at time t, and (τ(λ)) is the ring-down

decay constant for a given wavelength, λ. Then lcav is the optical length of the cavity,

c is the speed of light, Lopt is the optical loss of the empty cavity, σ is the absorption

cross section of the species at a specific wavelength, N is the species concentration, and

lsample is the physical length of the of the cavity. This relies entirely on the timing of

the light decay rather than direct absorption measurements, so measurements are not

impacted by fluctuations in laser voltage or shot noise [35]. The slope and intercept



33

Figure 2.4. A block diagram of the Picarro CRDS instrument. One laser
(λ1) is tuned to a single spectral feature of CO2 at 1603 nm while the
other (λ2) is tuned to measure H2Ov and CH4 spectral features at 1651
nm. Figure is from Crosson [35]

of all in-air calibrations is shown in Figure 2.6, demonstrating the long term stability.

An example in-flight 3-point calibration is shown in Figure 2.7.
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Figure 2.5. Conceptual diagram of the exponential decay (ring-down)
approach of the Picarro. The ring-down rate is proportional to the
concentration of the absorbing species in the sample cell. Figure from
https://www.picarro.com/company/technology/crds [43]

https://www.picarro.com/company/technology/crds
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Figure 2.6. Long-term stability of the Picarro CRDS G2301-m CO2 and
CH4 calibrations. Error bars represent 1σ. Calibration coefficients did
change after maintenance events in the Springs of 2015 and 2018. Note
the narrow ranges of the y-axes.
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Figure 2.7. Example in-flight calibration curve for CO2 on 11/19/2016.
Each point represents the average of 2 minutes of sampling from the
NOAA standard. Each tank was sampled twice and all 6 data points
are shown.
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2.2 The Airborne Mass Balance Method

The primary technique used in Chapters 3 and 4 of this thesis is the airborne mass

balance experiment (MBE). This approach has been used to quantify emissions at

scales ranging from point sources [44,45] to large shale oil/gas fields and cities [45–51].

The basic premise of the method involves measuring the upwind and downwind sides

of a theoretical cube as illustrated in Figure 2.8. The mass of interest is an analyte

emitted from a source within the cube (e.g. a power plant) and the intent is to quantify

emissions through the downwind vertical plane while accounting for the signal flowing

into the cube (background). Emissions adjacent to the pollutant plume (dashed lines

in Figure 2.9) can be used to define this background, assuming it equivalent to the

relevant upwind emissions, i.e. no significant change in signal between upwind and

downwind. The flux or flow in units of mols/m2s, of the tracer through the downwind

side of the cube can then be calculated as the signal above background (enhancement)

of the tracer multiplied by the wind speed. This can be converted to an emission rate

(ER) in units of mols/s, by integrating the flux across the x, y, and z dimensions [50].

All MBEs are conducted during midday (∼12 pm - 4 pm local time) when the

CBL is well developed and the BLH relatively constant [1]. Flights include either

a circle around the emitter/collection of emitters or an upwind horizontal transect

to determine if other sources could significantly influence downwind measurements.

MBEs are conducted by flying multiple horizontal transects, typically in 250 ft inter-

vals, at a fixed distance downwind of the site from as low to the ground as is safe to

the highest altitude where emissions can be seen, often with a vertical spiral through

the downwind plume (see Figure 2.10) to estimate the BLH. In a small number of

cases, the cloud base must be used as BLH due to heavy cloud cover. As discussed in

Chapter 1 and shown in Figure 2.11, the BLH can be identified using the inflection

point of potential temperature and significant changes in surface emitted compounds,

particularly H2Ov. The transects extend sufficiently beyond the edges of the plume

so that GHG concentrations return to background concentrations. A standard linear
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Figure 2.8. 3D plot of an example MBE with upwind and downwind areas,
average wind direction, and the source labeled. Data points are colored
by measured concentration and have been averaged down to 0.25 Hz for
plotting.

regression is fit through this background data, with concentration as the dependent

variable and distance along the downwind transect as the independent variable, to

estimate the transect’s background [45, 50, 52, 53]. This is done separately for each

transect as there can be gradients in the background with altitude [46]. Point-wise

enhancements are then calculated as the measured concentrations minus the back-

ground values.

These point-wise enhancements are converted to point-wise fluxes according to

Equation 2.3.

Fluxi =
([C]i − [C]bg,i)× U⊥,i × Pi × A

Ti ×R
(2.3)

Here the molar density of air (molair/m3) is calculated using the ideal gas law with

measured pressure (Pi in atm), measured temperature (Ti in Kelvin), and the ideal

gas constant (R in atm m3/mol K). This is multiplied by the perpendicular component

of the measured winds (U⊥,i in m/s) and the enhancement in concentration ([C]i -
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Figure 2.9. Example MBE dataset downwind of a power plant. A) mea-
sured concentration and background for the transect at 600 m. B) All
measured transect data size and color scaled by CO2 concentration. Ver-
tical lines represent the edges of the plume.

[C]bg,i) (molc/molair) to get a flux (mol/m2s) at each point. A is a constant to convert

concentrations from ppm to mol fraction (10−6).

These point-wise fluxes are then interpolated into a complete 2-dimensional plane

through kriging using the Matlab EasyKrig package [46, 50, 54]. Pixels are defined

as 100 m x 10 m (width x height) and drawn from 0 m to the BLH (zi) or the

highest transect flown if transects went above the plume. The ER (mols/s) is finally

calculated by integrating these pixels across the horizontal and vertical bounds of the

plume from the surface to the BLH according to Equation 2.4.

MBE ER =

∫ Zi

0

∫ x

−x
Fluxi dx dz (2.4)
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Figure 2.10. Typical MBE flight design for power plants with key features
labeled. Stack sampling of power plants is discussed further in Chapter 3.
Map data from Google.

Figure 2.11. Example vertical profile (VP) flown downwind of Indianapolis
in November of 2012. The BLH on this flight is clear at ∼1050 m by sharp
changes in all trace gases, H2Ov, and potential temperature.
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2.3 MBE uncertainty calculation

Calculating the uncertainty for MBEs involves propagating the uncertainty of

multiple terms and estimating the impact of flight conditions and interpolation. ERs

for CO2 and CH4 are calculated according to Equation 2.4 for all MBE’s. Power plant

plumes are relatively narrow and transects always extend well beyond the plume to

ensure there is good background data. As such, these MBEs have a significant amount

of background data that can impact results if incorporated into the ER. Given a linear

regression is used to define the background, small positive or negative enhancements

exist in background data. Incorporating these small signals into the ER can have

a sizable impact because of the significant amount of background data relative to

the amount of plume data (e.g. in Figure 2.9 ∼2 km along the transect are plume

data compared to a total of 4 km along the transect that is background data). To

avoid this impact, we used only data within the horizontal bounds of the plume

in all ER calculations including uncertainties. The uncertainty in these ERs is a

combination of 1) uncertainty in the point-by-point flux measurements (relatively easy

to calculate) 2) uncertainty due to incomplete capture of the plume (quite challenging

to estimate), and 3) uncertainty introduced by the kriging interpolation, as described

in Equation 2.5.

δER
ER

=

√(
δFlux
Flux

)2

+

(
δPlume Capture

Plume Capture

)2

+

(
δKrig
Krig

)2

(2.5)

Plume Capture Uncertainty

Our estimate of plume capture uncertainty is directly inferred from interpolating

the flight data. Emissions typically exist below the lowest altitude transect that can

be flown given general flight restrictions and safety concerns and there are multiple

means to estimate them [47,55,56]. In Chapter 3 we reported the ER as the average

ER between kriging only measured data (transect-only) and kriging to the ground.

The uncertainty introduced by the plume capture
(
δPlume Capture

Plume Capture

)
is calculated as the
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relative difference between this average and kriging only measured data. In three

cases a synthetic transect, defined as identical to the lowest measured transect, was

added to the surface to improve the kriging performance (synthetic krig). Kriging is

primarily designed for interpolation, not extrapolation, and thus it can have difficulty

reasonably extrapolating to the surface, particularly with a large range of altitudes

without data as is sometimes the case below our lowest transect. In these three cases

we report the average of the transect-only ER and the synthetic krig ER. All other

uncertainty terms for these cases were calculated in the same manner as other flights.

In Chapter 4 this was refined further as the transect-only ER is definitively biased

low, unless the bottom of the plume has been captured and kriging with a synthetic

transect should be a relatively reasonable approximation. As such, averaging the two

will result in an ER that is biased low. Instead, all results in Chapter 4, including

those used in Chapter 3, are reanalyzed using three different approaches with the

average being used as the calculated best-estimate ER, and the standard deviation

as the plume capture uncertainty.

If the plume is approximately well mixed in the vertical then the average plume

would represent average emissions at any height and can be used to estimate emissions

near the surface (plume average approach) [45,48]. This is done by taking the average

of all 10 m vertical altitude bins with plume signal in the kriged matrix (plume being

defined here as any 10 m bin with data ≥5% of the single pixel maximum). If the

plume is not well mixed then the lowest altitude transects are the best representation

that we have of near surface data. We use these data in two different approaches,

the synthetic krig approach already discussed and an approach in which we use the

average of the lowest 3 transects to fill the gap between our lowest pass and the

surface (three-pass average approach). Reported ERs represent the average across

these three approaches (three-pass average, plume average, synthetic krig) and the

variability across them is used as an estimate of plume capture uncertainty.

As the average plume and three-pass average approaches would greatly overesti-

mate emissions if the plume was completely captured within the altitudes flown, we
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use the transect-only approach in these cases and consider uncertainty due to plume

capture 0%. An example where the plume was completely captured is shown in Fig-

ure 2.12. In a small number of MBEs where the top of the plume was not observed

and emissions between the BLH (estimated with vertical profiles or as cloud base

in the case of overcast conditions) and the top transect flown needed to be approxi-

mated, these same approaches were used with the exception that a synthetic transect

= 0 flux was placed at the BLH, rather than a copy of the highest transect flown.

Figure 2.13 provides a visual example of all four approaches.

Figure 2.12. The kriged map of a power plant MBE on 11-15-2016 with
transects shown in black dashed lines. This shows a case where emissions
were completely captured within the transects flown.
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Figure 2.13. The kriged map of a power plant MBE on 11-14-2016 with
transects shown in black dashed lines. This is one of the few cases that
did not capture the top of the plume. A) The synthetic krig approach.
B) The transect only approach. C) The three-pass average approach. D)
The plume average approach.

Kriging Uncertainty

The kriging uncertainty has been estimated in the past by Cambaliza et al. [50]

who reported average relative interpolation uncertainties of 12% and 8% for CO2 and

CH4 respectively and relative extrapolation uncertainties of 13% and 10% for CO2

and CH4 respectively. We directly calculate each flight’s extrapolation uncertainty

with our plume capture uncertainty term and use a new approach to calculate the

relative interpolation uncertainty. We recalculated ERs using an approach based on

the Lattice Krig package in R [57–59] developed through a collaborative effort with

NIST. This method is not finalized and thus could not be used as a replacement

for EasyKrig [54], but we were able to directly compare the ER results from this

method to the EasyKriging approach for a subset of flights. To avoid incorporat-
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ing extrapolation uncertainties, only transect data was kriged for this comparison.

Additionally, many flights showed small CH4 ERs which can cause large relative un-

certainties from small absolute ER changes. As such, we have chosen to use only CO2

data to determine
(
δKrig
Krig

)
as all CO2 ERs are large enough in magnitude for relative

uncertainties to be independent of ER magnitude. First, we calculate the relative

difference between the ER calculated using the 2 different kriging schemes, shown in

Table 2.1. Then, since
(
δKrig
Krig

)
is meant to represent the interpolation uncertainty of

the method, we average these relative differences across all flights.
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Table 2.1.
Relative Difference Between Kriging Transect Data with EasyKrig [54]
and Kriging with a Lattice Krig [57–59] Based Approacha

aThe average is a 15% relative difference, within the variability of the 12% ± 14%

calculated in Cambaliza et al. [50]

Flux Uncertainty

The last term,
(
δF lux
F lux

)
, is the most involved as it must incorporate uncertainties

from each parameter used to calculate fluxes shown in Equation 2.3. Each of the mea-

sured values has a relative uncertainty that can be propagated, but the uncertainty in

the background must be estimated. Most of these terms have straightforward uncer-
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tainty calculations, although some may be biased high. The relative uncertainty in

pressure is calculated as the relative difference between the measured pressure and the

barometric pressure calculated using the most recent surface pressure measurements

from a nearby airport
(
Pi−Pbar,i

Pi

)
and the barometric law, i.e. Pz = Psurfacee

−z/H

where H=RT/Mg, M being the molar mass of air (0.02896 kg/mol), R the gas con-

stant, T the temperature, and g the acceleration due to gravity. This uncertainty

is biased high as the barometric law does not have to precisely agree with the mea-

sured pressure at altitude. The relative uncertainty in temperature is calculated as

the relative difference between the two separate measurement systems on ALAR, the

thermistor microbead and the FUST probe
(
Tbead,i−TFUST,i

Tbead,i

)
. The relative uncertainty

in the perpendicular component of the wind is based on the reported horizontal wind

uncertainty of 0.4 m/s
(

0.4
U⊥,i

)
from Garman et al. [34]. Lastly, the relative uncertainty

in the enhancement is based on a combination of the uncertainty in the calibration

and that of the background

( √
δ2cal+δ

2
BG

Enhancement

)
.

The combination of these terms is the square root of the sum of squares of relative

errors as shown in Equation 2.6 given the individual terms are multiplied together

to get the flux as described in Equation 2.3. All terms other than the enhancement

term are based on the average of the relative uncertainty throughout the flight.

δFlux
Flux

=

√√√√( δU,i
U⊥,i

)2

+

(
δP,i
Pi

)2

+

(
δT,i
Ti

)2

+

( √
δ2
cal + δ2

BG

Enhancement

)2

(2.6)

The uncertainty in the calibration for the enhancement term is the propagated un-

certainty of the slope and intercept of the calibration curve. The background used

for all flights is a linear regression through the background concentrations on the

transect edges, done for each transect separately. The uncertainty in the background

is therefore calculated as the standard error of this linear fit:

δ =

√ ∑
r2

N − P
(2.7)

where r is the residual (measured – fit) for background data, N is the number of points

used, and P is 2 since the fit used 2 parameters (slope and y-intercept). This does
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not accurately capture the uncertainty due to the choice of background or method of

defining the background, but solely describes the agreement between the fit used and

measured background data. This value is made relative by dividing by the calculated

background point-wise. Finally, this is converted from a relative uncertainty in the

background to the absolute background component of the uncertainty by multiplying

by the point-wise enhancement.

Finally, the calibration and background uncertainty terms can be combined to get

an enhancement uncertainty term to use in Equation 2.6. The absolute error in the

enhancement is calculated by combining the point-wise absolute uncertainty in the

background and the point-wise calibration uncertainty as the square root of the sum

of squares
(√

δ2
cal + δ2

BG

)
. To calculate the average relative error in the enhancement

for the entire flight we first combine the point-wise absolute uncertainties as the

square root of the sum of squares for each transect separately. This is the uncertainty

in each transect’s total enhancement and is made relative to that transect’s summed

enhancement. Finally, this is converted to a flight average by squaring the relative

uncertainty for each transect, averaging these relative variances together, then taking

the square root of this average variance to get a flight-averaged relative uncertainty in

the enhancement

( √
δ2cal+δ

2
BG

Enhancement

)
. As mentioned previously, all calculations including

uncertainty terms exclude background data. However, there are also often transects

without any significant enhancement. To address this, we only consider transects

that contribute at least 5% to the total enhancement of the MBE in the calculation

of an MBEs enhancement uncertainty. Relative uncertainties for transects with total

enhancements near 0 would otherwise approach infinity and dramatically skew the

MBE uncertainty. Typical uncertainties and ERs are shown in Table 3.4 in Chapter 3.
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3. OBSERVATIONS OF METHANE EMISSIONS FROM NATURAL GAS-FIRED

POWER PLANTS

3.1 Motivation for Research

Natural gas (NG) usage has been growing since the large-scale implementation of

hydraulic fracturing and horizontal drilling technologies to take advantage of shale

resources [60, 61]. Along with market factors and stricter environmental regulations,

this has led to a near doubling of the U.S. electricity generation from NG since 2008,

with electricity generation matching or surpassing that of coal since 2016 [62] as shown

in Figure 3.1. NG offers improved efficiency and availability and only produces 56%

the amount of carbon dioxide (CO2) per unit energy as coal, making it a potential

“bridge fuel” in the transition toward renewable energy [63]. However, NG is primarily

composed of methane (CH4), the second most important anthropogenic greenhouse

gas (GHG) accounting for 9% of all U.S. GHG emissions in 2017 [64, 65] based on

its 100-year Global Warming Potential (GWP) (calculations are detailed in the SI).

CH4 is also a short-lived gas (12.4 years [7]) with a GWP of 84 over a 20-year period

compared to a GWP of 28 over a 100-year period [66]. These GWPs can also be used

to converted CH4 (or any other GHG) to an equivalent amount of CO2 that would

result in the same warming potential, or CO2eq . When using the 20-year GWP, CH4

emissions are equivalent to 22% of annual U.S. GHG emissions. The short-term

impact of reducing CH4 emissions makes it an important focus of climate change

mitigation efforts.

Over 50% of global CH4 emissions are related to human activity, and losses from

the energy sector are the largest anthropogenic source in the U.S. [21]. On the basis of
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Figure 3.1. Net power generation in the U.S. across the primary sources.
NG production begins surpassing coal in 2015-2016. Figure from the EIA
electricity data browser. [62]

a recent synthesis of CH4 emissions from well to end user, Alvarez et al. [22] estimated

that 2.3% of U.S. gross production of NG is emitted to the atmosphere. At this loss

rate, supply chain CH4 emissions nearly double the short-term climate impact of the

combustion of NG for energy. Therefore, quantifying losses along the NG supply

chain from production to end use is essential. To realize the climate benefit of NG,

it must be efficiently handled and combusted.

There have been multiple studies focused on the production, storage, and pro-

cessing of NG, but there has been little work on end users, such as natural gas-fired

power plants (NGPP) [22, 44, 48, 67–77]. Lavoie et al. [73] studied three NGPPs and

saw emissions of unburned CH4 from the stacks and relatively large CH4 leaks at-

tributed to non-stack sources on-site. The Lavoie et al. study was based on a small

sample size of 3 combined cycle power plants (CC). CC facilities use the combustion

gases to turn a turbine and then use the excess heat in these gases to generate steam
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to turn a second turbine as shown in Figure 3.2. CC plants are the most efficient

NGPPs, producing 46% more energy per energy content of fuel consumed than a

simple combustion turbine [78]. Because of this higher efficiency, CC facilities are the

most common type of NGPP, providing 89% of the electricity produced by NG [79].

As such, we focus largely on CC NGPP emissions in this study.

Figure 3.2. Simple diagram of how a CC power plant works. The red
region highlights the gas turbine, or combustion turbine, portion of the
diagram while the blue region highlights the steam turbine, or simple
thermal, portion.

We expand on the work of Lavoie et al. by sampling a larger set of NGPPs to

thoroughly investigate the prevalence of on-site CH4 leaks and to gather more robust

emissions data to compare to the Environmental Protection Agency (EPA) estimates.

We studied 14 NGPPs, but only 5 showed downwind ∆CH4, while all showed ∆CO2

downwind. This suggests CH4 emissions were too low to be detected above atmo-

spheric variability at most NGPPs. This work focuses on the 5 NGPPs that showed

downwind ∆CH4. We calculate ∆CH4/∆CO2 (ppm/ppm) ratios when flying through

the stack emission plumes with/against the mean wind direction or circling near the

stacks. We quantify the facility (non-stack) CH4 leaks by comparing this to the same
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ratio from downwind aircraft-based mass balance experiments (MBE), which would

capture all plant emissions.

Although the EPA calculates CH4 emissions from NGPPs, it does so using emission

factors (EF) that have not been well-tested and may underestimate emissions based on

previous work in the NG sector [61,67,68,73]. The EPA requires that facilities report

hourly averaged CO2 emissions through the Air Markets Program Data (AMPD)

using Continuous Emissions Monitoring Systems (CEMS) as described in Title 42

of the U.S. Code of Federal Regulations [79, 80]. As for CH4, the Greenhouse Gas

Reporting Program (GHGRP), a reporting program for GHG point sources, uses an

EF of 1 g CH4 per million British thermal units (MMBTU) for all NGPPs based

on the Intergovernmental Panel on Climate Change (IPCC) recommendations [80–

82]. The Greenhouse Gas Inventory (GHGI), a comprehensive bottom-up inventory

used to estimate national emissions by source category, instead uses an EF of 3.9

g CH4/MMBTU for CC and combustion turbine NGPPs based on both the IPCC

and the EPA’s Compilation of Air Pollutant Emission Factors (AP-42) [83–85]. In

this work, we present statistically meaningful results from 5 NGPPs and discuss the

magnitude and variability of stack emissions. Chapter 4 investigates the measured

CO2 emission rates (ERs) as compared to AMPD reported CO2 ERs.

3.2 Materials and Methods

3.2.1 Instrumentation

Flights were conducted using Purdue’s Airborne Laboratory for Atmospheric Re-

search (ALAR) [44, 49–51, 86], which is a modified twin-engine Beechcraft Duchess

aircraft. ALAR is outfitted with a global positioning and inertial navigation system, a

Best Air Turbulence probe for high precision 3-dimensional wind measurements [87],

and a model G2301-m Picarro Cavity Ring Down Spectrometer designed for 0.5 Hz

airborne measurements of CO2, CH4, and H2O [88]. We conducted multiple three-

point calibrations each flight using NOAA-certified standard cylinders containing CO2
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and CH4, with concentrations that bracket the range of typical observations. A direct

absorption ethane (C2H6) spectrometer designed by Aerodyne Research and modified

at Harvard University was added to ALAR for a subset of flights.

3.2.2 Flight Design and Site Selection

We conducted a total of 23 flights at 14 NGPPs to quantify NGPP CH4 emissions.

Combined, these plants represent 3.4% and 1.5% of NG and total U.S. nameplate ca-

pacity, respectively [89]. A principal goal of this study was to produce a representative

data set; thus, NGPPs were chosen to include a variety of regions, firing methods,

maximum capacities, ages, and operation types, as shown in Table 3.1 [73]. These

NGPPs are relatively new, but this is to be expected as ∼70% of NGPP capacity

comes from units ≤20 years old [78]. Operation type refers to a unit’s typical gener-

ation and is defined here as baseload units operating >70% of the year, intermediate

units operating 30 - 70%, and peaking units operating <30% of the year based on

AMPD data [79].

We performed MBEs during each flight to quantify ERs and stack measurements

of ∆CH4/∆CO2 ratios. Flights also included either a circle around the NGPP or an

upwind horizontal transect to determine if other sources could influence downwind

measurements. MBEs were conducted by flying multiple horizontal transects, typi-

cally in 250 ft intervals, at a fixed distance (∼3 km) downwind of the site from as low

to the ground as is safe to the highest altitude where emissions could be seen, often

with a vertical spiral through the downwind plume (see Figure 2.10 in Chapter 2).

The transects extend sufficiently beyond the edges of the plume so that GHG con-

centrations return to background concentrations. A standard linear regression is fit

through this background concentration to estimate the transect’s background [52].

Low wind conditions increase the ER uncertainty as transects are less likely to

capture all emissions with meandering winds, so several flights use the stacked closed-

path method discussed by Conley et al. [55] to obtain an ER, as it is more likely to



54

Table 3.1.
Key Parameters Describing the NGPPs Studieda

ID state firing method

max

capacity

(MW)

operation

type

commercial

operating

date

P1 UT combined cycle 560 intermediate 2005

P2 UT combined cycle 1180 intermediate 2007, 2014

P3 IL combined cycle 1310 baseload 2002

P4 IL combined cycle 680 peaking 2002

P5 IN combined cycle 730 baseload 2002

P6 FL combined cycle 3530 baseload 2009, 2011

P7 FL simple thermal 1070 baseload 2013

P8 FL combined cycle 1190 baseload 2014

P9 FL combustion turbine 790 intermediate 2002

P10 FL
50% combined cycle,

50% combustion turbine
2100 intermediate 2003, 2009

P11 OH combined cycle 760 baseload 2012

P12 OH combined cycle 590 baseload 2012

P13 OH combined cycle 940 baseload 2003

P14 MI
50% combined cycle,

50% combustion turbine
1000 baseload 2001, 2002

aOperation types are based on the most active units (e.g., a plant with 1 baseload and

3 intermediate units is labeled baseload). Maximum capacities are calculated from the

maximum hourly heat input from AMPD [79], and the heat rate from the U.S. Energy

Information Administration [78]. Commercial operating dates are from AMPD data and

news articles for the plants. Multiple years are listed when additional units were added,

and conversion dates are used if plants were converted to gas.
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capture all emissions in such conditions. The uncertainty estimates for this method

are described in detail by Conley et al. [55] and include uncertainties associated with

wind speed and direction, precision of the chemical species monitor, and the circle-

to-circle variability in calculated horizontal fluxes, caused by stochastic turbulence.

3.2.3 Calculation of Stack ERs

To quantify the impact of non-stack emissions, stack ∆CH4/∆CO2 ratios are

multiplied by the measured CO2 ER to calculate a theoretical CH4 ER (stack ER, in

kg/hr) according to Equation 3.1. Stack ratios were calculated in a similar manner

to previous studies [73,90,91]. Any MBE ERs that are substantially greater than the

stack ER would indicate potential facility-scale CH4 leaks. Briefly, Lavoie et al. [73]

manually defined the bounds of stack plumes using CO2 measurements, used a 2-point

linear regression about these bounds to calculate a background, then subtracted the

background to retrieve ∆CO2 and ∆CH4. Lastly a standard linear regression forced

through zero was applied for ∆CH4 vs. ∆CO2 and the slope was considered the stack

ratio. Although the method is similar, some aspects of the calculation have changed

in this work.

average stack ratio×MBE CO2 ER×mol wt. ratio

(
16

44

)
= stack CH4 ER (3.1)

One of the more significant changes is that we no longer manually define the

bounds of stack plumes, but instead have automated the process. For CO2, a 2-minute

rolling average and standard deviation of the data during stack measurements is cal-

culated with at least 1 minute of background data for initialization. This is calculated

point-wise and any datum which is 5σ larger than the rolling average of the previous

point is considered a stack plume and not incorporated into the rolling average. Only

these points, which are 5σ larger than the rolling average, are considered stack signals

and used in stack analyses. To avoid incorporating minor nearby CO2 signals (e.g.

brush fires or small emitters in an urban environment) into the rolling average, any
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data 3σ larger than the rolling average is considered a non-stack signal and excluded

from the rolling average, but not used in stack analyses. CO2 plume bounds are then

defined as the nearest point at which there are 5 consecutive concentrations within 2σ

of the point-wise rolling average. CO2 backgrounds are then calculated as a standard

linear regression of these 5 points on either end of the plume. The same points in

CH4 are used to calculate a background for the CH4 data. The result of this process

can be seen in Figure 3.3A. The location of each plume is also plotted using an online

tool [92] to ensure only samples downwind/over the stacks are included, as shown in

Figure 3.3B. In a small number of cases where large CH4 plumes were seen, the CH4

bounds were manually adjusted due to a slight mismatch between the bounds of CO2

plumes and CH4 plumes.

In addition to automating the calculation of stack enhancements, we have made

some changes to the calculation methodology, and to how the stack ratios are used.

We account for the dilution effects of CO2 on the measured CH4 concentrations given

such large stack CO2 signals (>1,000 ppm), although we note that the effect is small

at only 0.1 ppb for a 1,500 ppm ∆CO2 and 70 ppb ∆CH4. We are also not using

a simple linear regression for the ∆CH4 vs. ∆CO2 regression of each sample, but

instead an orthogonal distance regression (ODR) forced through 0. This type of

regression accounts for errors in both the x and y data, but requires that both species

have equal measurement error standard deviations [94]. This is not the case for these

2 species, but Igor Pro [95], used for most analyses in this work, allows for a variation

of ODR with user-defined measurement error standard deviations, i.e. not true ODR

fitting [96]. Lastly, Lavoie et al. [73] aggregated stack data to calculate a daily stack

ratio for each NGPP, whereas we are treating each plume as a separate sample and

averaging the ratios to get a daily stack ratio, due to the large variability across short

timescales, the study of which is one objective of this work.
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Figure 3.3. A) Stack measurements at P3 on 5/18/2017 with key features
for calculating the stack enhancements shown. B) Location of the plumes
in Google Earth [93] color scaled by CH4 and size scaled by CO2 with the
power plant labeled. These plots were used to visually verify the power
plant as the likely source before using any stack data. Map Data from
Google.
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3.2.4 Calculation of EFs

A recent life cycle analysis of the NG supply chain estimated the current supply

chain loss rate at 2.3% of U.S. gross production, ∼60% larger than EPA estimates [22].

However, the study authors were unable to update local distribution and end user

emissions due to insufficient information. To help address this lack of information,

we have also calculated loss rates for our end user data using Equations 3.2 and 3.3.

Equation 3.2 shows the calculation of the CH4 throughput using the AMPD reported

heat input, the density of NG, the heat content of NG [97, 98], and the assumption

that NG is 95% CH4 [99]. Equation 3.3 shows the calculation of loss rates, and

Equation 3.4 shows the calculation of the throughput-based EF. Both calculations

rely on a theoretical CH4 ER (AMPD stack ER) calculated according to Equation 3.1

using the AMPD CO2 ER instead of the MBE CO2 ER to avoid incorporating any

potential biases of the MBE ERs.

throughput

(
kg

CH4

hr

)
= heat input

(
MMBTU

hr

)
×

1 MCF

1.033 MMBTU
× 18.9 kg CH4

1 MCF
× 0.95

(3.2)

loss rate (%) =
AMPD stack ER

(
kgCH4

hr

)
throughput

(
kgCH4

hr

) × 100 (3.3)

EF
( g

MMBTU

)
=

AMPD stack ER
(
gCH4

hr

)
heat input

(
MMBTU

hr

) (3.4)

3.3 Results and Discussion

3.3.1 Analysis of Stack Emissions

Although all flights showed ∆CO2, only 5 of the 14 NGPPs examined showed

∆CH4 above atmospheric variability in the downwind transects, consisting of 10 flights

and 15 MBEs. Each flight’s meteorological conditions are described in Table 3.2. P6

was successfully sampled on 11/12/2016, 11/13/2016, and 11/19/2016. P3, previously
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sampled by Lavoie et al., [73] was sampled on three separate occasions, but the third

(7/24/17) showed evidence of an intermittent source upwind of the plant and has thus

not been used for MBE ER quantification. P2, also sampled by Lavoie et al., [73] was

sampled on 10/12/2017 and 10/13/2017, but the 10/12 flight has been considered

unusable as poor plume capture would make uncertainties in the MBE ERs large.

P8 was sampled on 11/14/2016 and 11/17/2016, and P4 was sampled on 6/14/2017,

6/21/2017, and 7/24/2017, although we were unable to measure stack plumes on

6/21/2017. However, the flight at P6 on 11/12/2016, one of the MBEs at P3 on

5/18/2017, and the flight at P4 on 6/14/2017 all showed no downwind ∆CH4.

We used Equation 3.1 to compare stack ERs to downwind MBE ERs and found no

statistically significant difference. MBE ERs calculated according to Equation 2.4,

stack ratios, and stack ERs calculated according to Equation 3.1 are provided in

Table 3.3. In all cases, there is agreement within uncertainty between stack ERs and

MBE ERs, although many flights exhibit large variability in stack ratios leading to

large uncertainties in stack ERs. This suggests that all CH4 emissions measured were

uncombusted fuel CH4. The component and final uncertainties for all MBE data is

shown in Table 3.4.

Our flights have shown highly variable ∆CH4/∆CO2 stack ratios for individual

power plants even over the short time scale from one pass over the stack to the next.

The flight at P3 on 5/18/2017 included significant stack measurements to investigate

the extent to which CH4 emissions were from the stack as compared to equipment

on-site, and to more thoroughly investigate the high variability in ∆CH4/∆CO2 stack

ratios. Figure 3.4 highlights the temporal variability in unburned CH4 observed in

the stack emissions for P3, covering just one 13 min window. In that 13 min period,

the slopes spanned a range of ∼25, not including the one case with a negative slope

(discussed below). The data plotted in Figure 3.4 represents ∆CH4/∆CO2 for short-

term simultaneous spikes in CH4 and CO2, which are background-subtracted using

a linear regression through the data immediately pre- and post-plume as shown in

Figure 3.3. Thus, we believe the observed variability is not influenced by variability
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Table 3.2.
Conditions and Date of Each Mass Balance Flighta

ID
date

(MM/DD/YY)
time (local)

wind direction

(deg)

wind speed

(m/s)
flight method

P6 11/12/16 13:50 – 15:40 145 ± 70 2 ± 1 DTd

P6 11/13/16 14:35 – 15:33 130 ± 10 4.1 ± 0.9 DT

P6 11/19/16 13:14 – 15:14 335 ± 30 4 ± 2 DT

P8 11/14/16 14:05 – 14:50 250 ± 10 3.2 ± 0.7 DT

P8 11/17/16 13:12 – 14:19 38 ± 8 8 ± 2 DT

P4 6/14/17 12:40 – 13:11 220 ± 13 7 ± 1 spirald

P4 6/21/17 14:50 – 15:40 250 ± 20 4 ± 1 spiral

P4 7/24/17 16:05 – 17:26 50 ± 10 4.2 ± 0.9 DT

P3 5/18/17 13:46 – 15:44 260 ± 10 13 ± 3 DT

P3 7/7/17 14:40 – 15:16 340 ± 10 11 ± 1 DT

P3 7/24/17 12:01 – 13:38 30 ± 20 5.5 ± 2 DTe

P2 10/12/17c 13:26 – 13:53 290 ± 50 2 ± 1 DTf

P2 10/13/17c 12:23 – 12:51 NAb 3b spiral
aUncertainties are 1σ. DT = downwind transects.

bComplex wind conditions with some evidence of winds being driven by a lake-breeze effect

[100].

cAMPD data shows the facility to be in startup, having begun producing within the past 4

hr.

dCH4 emission were too low to be quantified.

eEmissions cannot be quantified because of contamination from an upwind source.

f Emissions could not be quantified due to incomplete plume capture downwind.
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Table 3.3.
MBE ERs, Stack Ratios, and Stack ERsa

ID date
average stack ratio

(CH4/CO2, mol/mol)

CH4 MBE ER

(kg/hr)(eq 2.4)

CH4 stack ER

(kg/hr)(eq 3.1)

P6 11/12/16 -3 (±7) × 10−4
NAb -70 ± 150

NAb -60 ± 120

P6 11/13/16 2 (±1) × 10−4
74 ± 15 53 ± 36

71 ± 18 46 ± 32

P6 11/19/16 1 (±3) × 10−4
89 ± 20 30 ± 96

135 ± 27 40 ± 140

P8 11/14/16 2 (±1) × 10−4 56 ± 22 21 ± 16

P8 11/17/16 3 (±3) × 10−4
8 ± 5 21 ± 13

13 ± 5 16 ± 14

P4 6/14/17 -0.7 (±6) × 10−5 NAb -0.5 ± 4

P4 6/21/17 NA 80 ± 30 NA

P4 7/24/17 1.8 (±0.4) × 10−3
113 ± 22 99 ± 29

42 ± 12 91 ± 28

P3 5/18/17 3 (±2) × 10−4
NAb 22 ± 17

15.6 ± 8.6 24 ± 18

P3 7/7/17 3 (±3) × 10−4 36.6 ± 7.5 70 ± 78

P2 10/13/17 2 (+3/-2) × 10−2 22 ± 47 350 + 660/-350
aAll uncertainties are 1σ. Uncertainty lower limits are set to 0 for P2 as stack data were

highly variable but consistently positive.

bCH4 emissions were too low to quantify.
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Table 3.4.
Summary of Each Component of the Uncertainty in the ER for Transect
MBEs
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in background values. Each stack plume measured is regressed in a similar manner

as in Figure 3.4, and the slope represents the ∆CH4/∆CO2 ratio for that individual

plume, hereafter referred to as a stack sample. Figure 3.5 shows a histogram of stack

samples for P3 across three different flight days. For comparison, a histogram of all

stack samples across all CC facilities is shown in Figure 3.6. The median corresponds

to an unburned CH4 fraction of 0.01% in Figure 3.6 compared to 0.024% in Figure 3.5.

These highlight the high combustion efficiency of these plants, high enough that in

some cases there is less CH4 in the exhaust than in the intake air.

Figure 3.4. Stack samples from P3 measured from 3:46 to 3:59 local time
on 5/18/2017. Each stack sample was measured by flying directly over
the stacks with/against the mean winds. As such, some plumes were
followed further downwind, up to a maximum distance of 5 km. The large
variability in the slope, equivalent to the ∆CH4/∆CO2 stack ratio, over
short time scales can be seen. This leads to large uncertainties in the
flight averaged stack ratios in many cases. That should not be confused
with uncertainty in the individual slopes.

Unexpectedly, at a small number of facilities, we measured CH4 depletions during

stack sampling. Figure 3.7 shows an extreme case that we observed, and Figure 3.8

shows the regressions for multiple stack samples with statistically significant negative
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Figure 3.5. Histogram of all stack samples from P3 across all 3 flight days,
excluding data with evidence of an upwind source on 7/24/17. N= 44,
mean = 2.9 × 10−4, and median = 2.4 × 10−4.

slopes. Because such signals are then diluted and dispersed downwind, we have

not observed any statistically significant depletions of CH4 during downwind MBEs.

We hypothesize that the most likely cause for this phenomenon is a highly efficient

combustion process that consumes all fuel CH4 and a small fraction of ambient CH4

from the combustion turbine’s intake air. A similar hypothesis was provided by

Fischer et al. [76] when similar depletions were observed while studying household

appliances. Although we collected C2H6 data for a small number of stack samples

that showed CH4 depletions, none show a clear ∆C2H6. One of the largest CH4

depletions was 3.7% depleted relative to background. This would correspond to a

0.037 ppb theoretical C2H6 depletion from the 1 ppb background, assuming equal

percent background depletion. This is within atmospheric variability and just above

instrumental precision.

One NGPP (P2) exhibited large CH4 emissions on two separate flights, both of

which included C2H6 measurements. On 10/12/2017, there were no stack measure-
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Figure 3.6. Histogram of all CC stack samples from all flights exclud-
ing P2 (discussed separately in Figure 3.9), including those without CH4

enhancements and those with CH4 depletions. N= 149, mean = 2 ×
10−4, and median = 1 × 10−4. The majority of samples show a near 0
∆CH4/∆CO2 stack ratio highlighting the high combustion efficiency of
these plants.

ments, and the vertical extent of the plume was not well captured; therefore, the

flight could not be confidently used to calculate an MBE ER. However, the flight

shows clear downwind ∆CH4 and ∆C2H6 of up to 470 and 15 ppb, respectively,

with ∆CO2 of ≤2 ppm, which is much smaller than typically seen. The flight on

10/13/2017 showed stack ∆CH4/∆CO2 ratios that were up to 3 orders of magnitude

(to 13% indicated CH4) larger than those observed at all other NGPPs, with concur-

rent emissions of CH4, CO2, and C2H6 throughout the flight, as shown in Figure 3.9A.

Some stack samples even showed CH4 and C2H6 concentrations above the dynamic

range of the ethane analyzer but with CO2 signals comparable to those observed at

other facilities as shown in Figure 3.10. AMPD data for both P2 flights show that

the facility was within 4 hr of starting up, suggesting these may be emissions asso-

ciated with the startup condition. To ensure that all measured CH4 was from NG
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Figure 3.7. Example negative ∆CH4 stack measurements from the
7/11/2017 flight at P12. We suggest that this represents partial con-
sumption of intake air’s background CH4.

Figure 3.8. Stack samples on 7/11/2017 for P12 that show consistent
anti-correlated ∆CH4. This shows that the anti-correlation is consistent
throughout the dips.
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in this city environment we compared the ∆C2H6/∆CH4 ratio to pipeline reports

in Figure 3.11. Both flights show a ratio ∼25% lower than pipeline data but also

show a highly linear ∆C2H6 versus ∆CH4 relationship as shown in Figures 3.9B and

Figure 3.11, which suggests all emissions are from a thermogenic source. This dis-

crepancy in ∆C2H6/∆CH4 may be caused by a combustion skew as the rate constant

for CH4 oxidation by OH radicals is ∼20% as large as that for the C2H6–OH reaction

at 1600◦C [99,101].

Figure 3.9. (A) Log scale showing the ratio of ∆CH4/∆CO2 in each plume
(both stack and MBE) from P2 on 10/13/2017. Samples 1–11 are from the
MBE. These ratios are at least an order of magnitude larger than those
seen at other facilities, although they are also much more variable. (B)
Regression of ∆C2H6 versus ∆CH4 for all plumes with usable C2H6 data
for 10/13/2017. The linearity of the data suggests a single thermogenic
source of CH4.
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Figure 3.10. Large CH4 and C2H6 signals observed when sampling the
stacks of P2 on 10/13/2017. These show the largest magnitude emissions
seen during the campaign. C2H6 data is not quantitative, as some peaks
are above the dynamic range of the C2H6 analyzer.
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Figure 3.11. A) and B) show the ∆CH4/∆C2H6 ratio for each plume mea-
sured from P2 with pipeline ratios shown as black and green traces. The
different axes/colors separate the plumes measured while flying directly
in the stack plume from those measured while flying downwind transects.
C) and D) show the regression of ∆C2H6 vs. ∆CH4 across all plumes.
Both flights show a strong linearity, suggesting a thermogenic source of
CH4 without a biogenic influence.
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3.3.2 Natural Gas Power Plants as CH4 Emitters

We used Equations 3.2–3.4 to convert the stack ∆CH4/∆CO2 ratio into useful

metrics in understanding NG leaks. The AMPD stack ERs, throughputs, loss rates,

EFs, and reported AMPD CO2 ERs are presented in Table 3.5. The EFs are directly

compared to the EPA EFs of 1 g/MMBTU (GHGRP) and 3.9 g/MMBTU (GHGI)

in Figure 3.12.

Figure 3.12. Log plot of EFs calculated from stack data from each flight.
1σ uncertainties are based on the variability across all stack samples that
flight. The GHGRP and GHGI EFs of 1 g/MMBTU and 3.9 g/MMBTU
respectively are shown for comparison. The average EF includes all CC
stack data except for P2, regardless of downwind CH4 emissions. Uncer-
tainty bounds that are near or <0 are not shown. The measured EFs and
the EPA EFs for most flights are statistically indistinguishable, with most
EFs lying closer to the GHGI value, compared to the GHGRP value.

Although the average EF is consistent with EPA EFs, two plants show noticeably

higher EFs (Table 3.5). P4, the only peaking facility studied, shows a slightly negative

stack ratio for one flight and high stack ratios relative to the EPA EFs for the other

two. The only other noteworthy aspect of P4 is the slightly lower load relative to
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the maximum capacity which was ∼60% across all flights as compared to 70–80%

at all other CH4 emitting facilities, excluding P2. AMPD reported CO2 ERs were

similar across the three flights with 170 Mg/hr on 6/14 and 180 Mg/hr both other

flight days. Including CC plants that did not show downwind ∆CH4, but excluding

P4 and P2, the average loss rate is 0.014 (+0.021/–0.014)% which is consistent with

Lavoie et al. [73] who reported stack loss rates of 0.05 (±0.06)%. The average stack

EF calculated using all CC stack data other than P2 is 5.4 (+10/–5.4) g/MMBTU.

Because of the significant variability in stack samples (Figures 3.4 and 3.9) and to

some degree cases with depleted CH4 (Figures 3.7 and 3.8), propagated uncertainties

are large, but we are representing them with a 0 lower limit given our data does not

indicate negative emissions at the scales a symmetric uncertainty would suggest.

Even though several flights did not show significant CH4 emissions downwind,

they were still incorporated into the average loss rate and the average EF. For 4

flights, however, the stack samples showed no detectable CH4 signal above background

noise. These data are incorporated into the average stack EF but averaging in zero

values would bias this estimate low as there is potentially CH4 below our limit of

detection (LOD). Instead, we have used an LOD-based method to calculate the stack

∆CH4/∆CO2 ratio for these 4 flights. We calculate the CH4 LOD as three times

the 1σ variability of data during calibration tank runs, since we are interested in

detecting enhancements. We use half this LOD to represent values below the LOD

when calculating the average stack EF, as is common practice when averaging data

near the LOD. To convert this CH4 LOD to a stack ∆CH4/∆CO2 ratio we divide by

the average ∆CO2 from all stack samples collected that day. As this ratio approaches

infinity if the ∆CO2 is small, a minimum stack plume signal of 20 ppm ∆CO2 was

defined. Any individual stack sample with a maximum ∆CO2<20 ppm was excluded

from this averaging while all data, regardless of magnitude, were included if the

maximum ∆CO2 during the stack sample was >20 ppm. Only a handful of samples

were excluded using this criterion, however it did result in the exclusion of all stack

data from P1 as the maximum ∆CO2 across all stack samples was only 8 ppm. The
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average stack EF excluding P2 is 5.4 (+10/-5.4) g CH4/MMBTU. If we were to

average in zeros in place of all 4 flights that were below the LOD the average EF

excluding P2 is instead 4.9 (+9.9/-4.9) g CH4/MMBTU.

P2 is the only facility measured during startup and it showed a substantially

higher EF than other facilities, as shown in Figure 3.9A. As P2 is the only facility

that was sampled during startup, we do not know if our observations are broadly

representative of startup emissions. EPA’s AP-42 [85] explains that EFs are based

on efficient combustion under high operating conditions (≥80% of max capacity)

and that emissions during lower operating conditions or frequently changing loads

such as startup are likely larger. If the large loss rate measured for P2 is common

during startup it could have important implications for the climate benefits of NGPPs.

Peaking facilities that are designed for faster startups and more flexible loads may

show different startup emissions.

Our EFs were used to estimate annual national CH4 emissions from CC NGPPs

with and without accounting for the large startup emissions. To account for startup

emissions, we calculated the average duration of startup across the CC plants studied

(4 hr) and use this to calculate the heat input consumed during startup for all CC

facilities in 2017 (3.519%). P2’s EF was then applied to 3.519% of 2017 CC heat

input [79] and the average stack EF of 5.4 (+10/–5.4) g/MMBTU was applied to

the remainder. When incorporating startup emissions like this, we calculate 170

(+200/–170) Gg CH4 emitted as uncombusted CH4 compared to 44 (+81/–44) Gg

without accounting for startup. On the basis of $3.52/thousand ft3 of NG [102], these

emissions are equivalent to 9 (+16/–9) million dollars of CH4 lost or 33 (+40/–33)

million dollars if including startup losses. For comparison, CC NGPPs purchased

29.0 billion dollars’ worth of NG CH4 in 2017. The U.S. GHGI estimates 2016 CH4

emissions from NG systems as 6.54 Tg. Therefore, emissions from NGPPs contribute

in the range of 0.7–2.6% to the total CH4 emissions from NG systems, depending

strongly on the impact of startup conditions.
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End users of NG, such as NGPPs, have been poorly studied and our work suggests

that they could play a meaningful role in supply chain CH4 emissions, particularly

if the measured startup emissions are common. Although highly variable, startup

emissions were up to several orders of magnitude larger than continuous operation

emissions and warrant further study. Future work should also further investigate

peaking NGPPs as they have more variable loads and startup more often but also

more quickly. Additionally, shutdown emissions were not observed in this work but

may show high emissions similar to startup given shutdown also involves quickly

changing, low loads. Airborne measurements provided a useful snapshot of emissions

in this work but continuous measurement systems like CEMS, given the variability

seen, would likely prove more informative in the future. As such, cooperation with

facilities is vital. Further improving our understanding of NGPP emissions will help

fill a gap in the understanding of supply chain losses and could lead to changes in

utility operations to minimize startup emissions.
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Table 3.5.
Calculated Emissions Data Based on the Average Stack ∆CH4/∆CO2

Ratio and AMPD Dataa

ID date

AMPD

CO2 ER

(Mg/hr)

AMPD stack

ER (kg

CH4/hr)

stack EF

(g/MMBTU)

throughput

(kg

CH4/hr)

loss rate (%)

P6 11/12/16 710 ± 100 -90 ± 180 -7 ± 13 230 000 -0.04 ± 0.08

P6 11/13/16 850 ± 120 51 ± 32 3.2 ± 2.0 275 000 0.018 ± 0.012

P6 11/19/16 970 ± 140 30 ± 110 1.9 ± 6.2 311 000 0.011 ± 0.035

P8 11/14/16 200 ± 30 17 ± 10 4.6 ± 2.8 64 000 0.026 ± 0.016

P8 11/17/16 240 ± 30 30 ± 26 6.6 ± 5.7 78 000 0.038 ± 0.033

P4 6/14/17 170 ± 20 -0.5 ± 4 -0.2 ± 1.2 54 000 -0.0009 ± 0.0067

P4 6/21/17 180 ± 20 NA 23.6 ± 8.4b 57 000 0.136 ± 0.048b

P4 7/24/17 180 ± 20 117 ± 31 35.5 ± 9.3 57 000 0.204 ± 0.054

P3 5/18/17 420 ± 60 43 ± 30 5.5 ± 3.9 136 000 0.031 ± 0.022

P3 7/7/17 440 ± 60 41 ± 43 5.0 ± 5.2 143 000 0.029 ± 0.030

P3 7/24/17 430 ± 60 63 ± 63 7.8 ± 7.9 138 000 0.045 ± 0.045

P2 10/13/17 62 ± 9 510 +760/–510 440 +660/–440 20 000 2.5 +3.8/–2.5
aUncertainties represent 1σ based largely on the propagated uncertainty of the stack ratios. AMPD

uncertainties are 14% based on the calculation discussed by Peischl et al. [75] All data shown other

than for 6/21 is unrelated to the MBE ER data and as such unaffected by any potential biases in

the MBE method.

bNo stack data was collected for this flight, so the MBE ER was used as the numerator in Equa-

tions 3.3 and 3.4 instead. Propagated uncertainties include the MBE uncertainty instead of the

variability of stack samples throughout the day for this flight.
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4. ASSESSING THE ACCURACY AND PRECISION OF THE AIRBORNE

MASS BALANCE TECHNIQUE FOR POINT-SOURCE EMISSIONS

QUANTIFICATION

4.1 Motivation for Research

Urban GHG emissions and urbanization are both expected to continue to increase

in coming years [103,104]. Accordingly, many cities have passed legislation or set goals

for specific GHG reductions [105]. However, high precision monitoring techniques are

necessary to act on this legislation or to quantify the impact of effective mitigation

strategies. We have flown a large series of flights to assess the airborne MBE as a

means to address this need. This technique has been used in point source [45, 55,

73, 106], regional [44, 48], and urban studies [45, 49–53, 56, 107] by multiple groups.

Over the course of 5 years we performed >20 flights at >19 different power plants.

Although many of these flights have been used in previous publications [73,106], this

work aims to use the large dataset to assess the airborne MBE technique as power

plants are required to report CO2 emissions to the EPA using CEMS. We quantify the

accuracy using both a regression against CEMS measurements (slope=0.87) and the

Mean Absolute Percent Error (MAPE) compared to CEMS (20%) and quantify the

precision as the campaign averaged relative standard deviation from replicate MBEs

(25%).

Airborne MBE techniques vary slightly across research groups, but few have di-

rectly assessed the capabilities of their technique against known emissions [45,48,55,

56]. To the authors’ knowledge, only Conley et al. [55] and Ahn et al. [45] have di-

rectly assessed the method precision and/or accuracy against known emissions. Both
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of these studies used a similar approach to calculate the accuracy of the quantifica-

tion method, relying on power plant CEMS data as the “known” emission rate. We

combine the uncertainty in the concentration and flow rate estimates in quadrature to

estimate CEMS uncertainties at ±14% [75]. Conley et al. [55] estimated an MAPE

of 10% based on 5 power plant flights and Ahn et al. [45] estimated an MAPE of

24% for 16 power plant MBEs and a precision of 19% based on 7 flights downwind of

DC-Baltimore. The Conley et al. [55] approach is not suitable for regional or urban

studies, however, as it requires flying many (20-25) stacked circles around the source

of interest. The Ahn et al. [45] method is generally comparable to that used in this

thesis, but the CBL is assumed well mixed. As such, there is no need to interpolate

the downwind plume to a 2D grid. Instead, the authors can represent the entire CBL

based on the flux from a single pass. However, they did not provide evidence that in

fact, the CBL was always well-mixed.

4.2 Materials and Methods

4.2.1 Instrumentation

All flights were conducted using Purdue’s Airborne Laboratory for Atmospheric Re-

search (ALAR) [46, 49–51, 106] which is a modified twin-engine Beechcraft Duchess.

ALAR is equipped with a Best Air Turbulence Probe for high precision 3-D wind

field measurements [32, 33], a GPS/INS system, and a Picarro Cavity Ring Down

Spectrometer designed for 0.5 Hz measurements of CO2, CH4, and H2O [35]. Flights

typically included two in-air three-point calibrations with World Meteorological Or-

ganization certified standard cylinders (WMO-CO2-X2007) ranging from 360 to 450

ppm CO2, as described above.
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4.2.2 Flight Design and MBE Method

Flights include between 1 and 4 MBEs at progressively further downwind distances

to quantify the emission rate (ER). Multiple MBEs that were performed back to back

are then used to assess the precision. MBEs were typically conducted by flying at

multiple altitudes, typically in ∼250 ft intervals, at a fixed distance downwind of

the site from as low to the ground as is safe to the highest altitude where emissions

could be seen, often with a vertical spiral through the center of the plume. Transects

extend sufficiently beyond the plume so that CO2 concentrations return to background

values. An ordinary least squares regression is fit through the background values on

either end of the plume to estimate each transect’s background [45, 46, 53, 73, 106].

The MBEs were typically within 5 km of the power plant, but those with more than 2

MBEs would go farther downwind, up to 13 km. This approach is broadly consistent

with Chapter 3, except that all reported ERs are based on the average of a synthetic

krig, three-pass average, and plume average approach to estimate emissions below the

lowest flown transect as discussed in detail in Chapter 2 and shown in Figure 2.13.

The uncertainty associated with the plume capture is also calculated as the variability

across these three approaches. MBEs where the plumes were completely captured

within the transect altitudes are instead reported as the transect only result and have

a plume capture uncertainty of 0%. Figure 4.1 shows the impact that emissions below

the lowest flown transect have by comparing the reported ER to that of the transect

only approach.
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Figure 4.1. Percent difference between ERs calculated using only transect
data and the reported ERs plotted against the plant index. The average
is 28%, but excluding the cases of complete plume capture which have
values of 0 the average is 34%. This represents the average impact that
the emissions below the lowest transect flown have on the ER.
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4.3 Results & Discussion

4.3.1 Accuracy

We calculate the accuracy of the MBE method using the CEMS data in two

different approaches. In the first approach, we draw an ODR fit [96, 106], a type

2 regression that accounts for uncertainties in both axes, through the calculated 3-

method average ERs plotted against the CEMS ERs, as shown in Figure 4.2. The

calculated slope is slightly less than 1 at 0.923 ± 0.033, indicating that the measured

ERs may slightly underestimate emissions. However we note that this slope is within

our assumed uncertainty of the CEMS data. Although the four largest emission

rates are significantly farther on the x-axis than any other facility and thus could be

weighted more heavily by the fit, removing them has negligible impact on the slope.

The reduced χ2 statistic, a measure of the goodness of fit, for this regression is 1.702.

A value >1 suggests that the error variances used in this fit are underestimated (i.e.

either ER or CEMS uncertainties are not well defined).

Our second approach is to calculate the mean percent error (MPE) and mean

absolute percent error (MAPE) from the individual MBEs as shown in Figure 4.3.

The MAPE is 29% ± 32, but the median is only 17%, given that a small number of

MBEs disagreed by a large margin. To address this we defined outliers as MBEs with

a percent error that is more than 1.5 x the interquartile range (IQR, equal to the third

quartile minus the first quartile) greater than the third quartile or less than the first

quartile, known as Tukey Fences. This results in threshold values of ∼±66 percent

error. We removed the five MBEs that were beyond these bounds and repeated

the above analyses. The slope of the regression between measured and CEMS ERs

decreased to 0.871 (see Figure 4.4) and the reduced χ2 statistic reduced to near 1.

This suggests that the larger reduced χ2 was driven primarily by the outliers and that

these outliers offset a small amount of the MBE methods’ low bias. The MAPE also

decreases to 20% ± 13 while the median decreases slightly to 15%, suggesting there

is still some skew in the distribution. Without outliers the data is also approximately
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Figure 4.2. Measured ERs plotted against CEMS ERs, both in 1,000
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see the large number of plants in this region.
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normal, as expected if errors are random, with a Shapiro-Wilk test p-value of 0.13 as

compared to a p-value of 2x10−6 when using all data. These distributions are shown

in Figure 4.5.
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Figure 4.3. Percent error of the measured ERs as compared to CEMS
plotted against the plant index. Negative values represent a larger mea-
sured ER while positive values represent a larger CEMS value. Tukey
Fences used to identify outliers are also shown. Error bars represent the
propagated errors.

Most of these outliers can be seen in Figure 4.6 as those with the shortest time

from emission to measurement (transit time). Of the 5 outliers, 4 of them had transit

times of 4 minutes or less. This parameter was chosen because of the relatively

poor expected vertical and horizontal mixing of the plume with short transit times,

making it more likely that the aircraft transect did not intersect the plume. This

must be balanced with the higher signal to noise ratio measured when nearer to

the source, even with large point sources like power plants. However, this does not

explain the reason that all outliers overestimate the ERs, as “puff” type plumes (see

Figure 1.2 from Chapter 1) that may occur close to a source, before emissions are

relatively well-mixed vertically, would result in areas of high emissions as well as areas
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Figure 4.4. Figure 4.2 with the 5 outliers highlighted with black circles
and the fit line recalculated without these outliers.

with low emissions [1]. The exact cause for this is a focus for future work. The 1

remaining flight is one of the few flights that did not fly above the emission plume,

but otherwise does not seem to have any clear explanation for why it may be an

outlier in performance. Other parameters, including the wind speed, the variability

of the wind speed, the variability of the wind direction, and altitude of the lowest pass

(Figure 4.7) were all briefly investigated for possible relationships that could explain

the bias in the method, but no trends were observed.
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Figure 4.5. Probability Distribution Functions for the percent difference,
and the percent difference without outliers. For reference, a normal distri-
bution is also plotted. It is based on 100,000 random pulls from a normal
distribution with the mean and standard deviation of the dataset without
outliers.
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Figure 4.6. Absolute percent difference plotted against the transit time,
calculated as the distance from the power plant to the location of the
plume in the transect divided by the mean wind speed across the flight.
This appears to have an exponential decay relationship, but it is driven
primarily by a small number of outliers. Many facilities with similar tran-
sit times as the outliers do not have abnormally large percent differences.
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Figure 4.7. Absolute percent difference plotted against the altitude of the
lowest transect, i.e. the gap between measurements and ground. There is
no clear relationship between these variables, suggesting the impact of the
emissions below the lowest altitude transect are not a dominant source of
error.
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4.3.2 Precision

These power plant MBEs can also be used to investigate the precision of the

MBE technique by looking at back to back experiments. We note that these will

yield an estimate of precision, except that they are not exact replicates, as there

is a distance variable. Many of the flights included between 2 and 4 back to back

MBEs at the power plant. With verification from CEMS that the ER remained

approximately constant, these can be seen as replicate experiments. Although the

increasing distance across replicate MBEs may have some impact, Figure 4.6 suggests

this should generally be a small effect. The precision for each set of replicate MBEs

is calculated as the standard deviation divided by the average MBE ER across the

replicate MBEs and is shown in Figure 4.8. The average precision is calculated as

25% ± 16, comparable to the estimated 20% accuracy of the approach.

Although there is some uncertainty to these estimates, this work adds to the

existing literature [50,52] assessing the accuracy and precision of the airborne MBE.

The calculated precision is in general agreement of both previous studies. Cambaliza

et al. [50] calculated a precision of 30% with a range from 12 - 52% across 4 point

source flights and the same general method. More recently, Heimburger et al. [52]

calculated a precision of 22% based on 9 Indianapolis MBEs, each on a different flight

day, assuming city emissions constant across the 1 month timeframe. Interestingly,

the precision of the approach seems consistent between the regional/urban and point

source scales, even though, in general, the S/N ratio is much larger for the point source

emitters. This may result from compensating factors - for power plants, the S/N ratio

is large, but the plumes are not well-mixed, leading to sampling statistics errors, while

for urban regions, the S/N of the enhancement is relatively small, but the plume is

relatively well-mixed, and sampling errors are minimized. If the average accuracy is

assumed consistent as well, the MBE approach has a single experiment accuracy of

20%, which can be further reduced by averaging [52]. This has implications for the

MBE approach as a means to detect policy-relevant changes in emissions over time.
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Using NY’s 6%/yr reduction goal (85% reduction by 2050) as an example, single

MBE campaigns could detect changes at a 95% confidence after 6.5 years (calculated

as 20% * 1.96 / 6). However, flights are typically done in campaigns with multiple

MBEs performed over a short timeframe. If the accuracy scales with 1/
√
N as would

be expected, then the average of a 10 flight campaign would have a 1 σ accuracy of

6.3%, making it capable of detecting 6%/yr changes with 95% confidence after only

2 years.
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5. ESTIMATING ANTHROPOGENIC CO2 EMISSIONS FROM NEW YORK

CITY USING AIRCRAFT MEASUREMENTS AND DISPERSION MODELLING

5.1 Motivation for Research

Carbon Dioxide (CO2) emissions from fossil fuel combustion are the largest source

of anthropogenic climate change [7]. The majority of these emissions occur in urban

areas and the fraction of emissions from urban centers is expected to increase as

populations continue to urbanize [103,104]. As such, cities have been at the forefront

of greenhouse gas (GHG) reduction efforts as evidenced by groups like the global

covenant of mayors and C40 cities [108,109]. Many U.S. cities have already set goals

for significant GHG reductions and several states have passed legislation aimed at

switching to renewable energy sources [105]. In particular, the state of New York

(NY) has recently passed a suite of laws explicitly outlining actions to significantly

reduce GHG emissions with set targets across sectors. The Climate Leadership and

Community Protection Act sets a goal of net zero emissions from electricity, including

purchased electricity, by 2040 and an 85% decrease across all sectors by 2050 [110].

On top of this legislation New York City (NYC) has passed the Climate Mobilization

Act which includes a series of bills targeting building emissions, the largest emitting

sector for the city when including indirect emissions [111], with large fines for non-

compliance [112].

As cities work toward their reduction goals and enact laws with explicit reduc-

tion requirements that are monitored against self-reported bottom-up inventories,

it becomes necessary to have high precision top-down emissions monitoring tech-

niques to inform progress and details about the accuracy of these self-reported in-
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ventories [31, 47, 50, 113, 114]. In addition to the self-reported inventories, there are

published bottom-up inventories that utilize a combination of emission factors (e.g.

kmol CO2/m2s for residential housing) and activity data (e.g. total area of residen-

tial homes, m2), modeling, monitoring station data, fuel statistics, and other datasets

from agencies like the Energy Information Agency (EIA) and Environmental Pro-

tection Agency (EPA) to allocate emissions in a gridded field [115–117]. There are

also published disaggregated inventories that rely instead on proxies to disaggregate

reported national total emissions to a gridded product. These can be generated more

regularly at a global scale given they are less labor intensive, but have additional un-

certainty due to the use of a proxy rather than the relevant activity data [118–120].

These high resolution inventories can inform policy about emissions, including rela-

tive emissions across sectors, and are often used in atmospheric transport modeling

efforts [118,121].

In this work we use the Stochastic Time-Inverted Lagrangian Transport (STILT)

[122,123] dispersion model, with minor source code modifications, to combine airborne

measurements downwind of the dense, heterogeneous domain of NYC with prior emis-

sions during the non-growing season in a scaling factor (SF) approach. We convolve a

“prior”, or modified inventory used as an initial estimate of emissions for the period

of our flights (described in detail in Section 5.2), with footprints calculated using

the STILT dispersion model to calculate modeled enhancements. We then calculate

posterior results by combining SFs, which represent a ratio between the measured

and modeled enhancements, with the prior data [47,124–126]. Finally, we investigate

multiple methods of calculating the SF and discuss the variability in the resulting

posterior emission rates across SF calculation method, flight day, background defini-

tion, choice of meteorology product (MET) used to drive STILT, and choice of prior.

This approach allows us to calculate a campaign averaged emission rate that, with

additional flights in coming years, could also be used to monitor changes in emissions

over time, such as the impact of the COVID-19 “shutdowns” on CO2 emissions.
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Previous studies have also derived top-down estimates of urban emissions using

the mass balance method [45, 46, 50, 53, 127] and more complex inversion techniques

[31,107,128,129]. Mass balance experiments provide a domain-total emission rate that

can be calculated relatively quickly based on a simple conceptual model. However,

for cities that are surrounded by other emission sources it is difficult to define both

an appropriate background concentration and the area over which the prior emissions

should be aggregated when comparing to the measured flux.

Inverse modelling techniques use a dispersion model to simulate concentration

enhancements at the measurement locations based on prescribed emissions. This

emission map is then optimized to reduce mismatch between the simulation and the

measurements [31, 107, 126]. These approaches require information on the error co-

variances of the transport model, prior, and measurements to constrain the solution.

They then typically involve weighting these data based on the prescribed error covari-

ances to reach an optimized posterior that combines the information from the prior

and the measurements [31,130–132].

The SF approaches employed in this study follow the same basic premise as an in-

verse model approach, but constrain the solution to have the same spatial distribution

as a prescribed prior [47]. Conceptually, this can be thought of as an inverse modeling

solution where the state vector has been condensed to a limited set of scaling factors.

This induces aggregation errors and limits the spatial patterns that can be inferred,

however, it allows for a simpler approach to calculate posterior emissions and their

sensitivity to model parameters without having to deal with the complexities of the

error covariances for both the transport and the prior emissions [133, 134]. While

most of the SF approaches are unable to directly account for uncertainties in the

modeled data, we derive information about the transport error in this work through

the use of multiple MET. Similar SF approaches have recently been demonstrated

using towers in Boston [124, 125] and aircraft in an oil and natural gas field [126].

In cases where the spatial distribution of prior emissions is sufficiently accurate to
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reproduce the measured plume structure, the different assumptions inherent in this

method makes it a good complement to more complex inverse approaches.

5.2 Methods & Materials

5.2.1 Flight Design and Equipment

All flights were conducted using Purdue University’s Airborne Laboratory for At-

mospheric Research (ALAR), a modified twin-engine Beechcraft Duchess [46, 50].

ALAR is equipped with a GPS/INS system, a Best Air Turbulence probe for high

precision 3-dimensional winds [32, 33], and a Picarro Cavity Ring Down Spectrome-

ter designed for measurements of CO2, methane (CH4), and water vapor (H2O) [35],

although this work focuses exclusively on CO2 emissions. Measurements are reported

as dry air mole fractions, in units of micromoles per mole of dry air, or parts per

million (ppm). Each flight included multiple in-situ three-point calibrations using

NOAA-certified standard cylinders of CO2 and CH4 (WMO-CO2-X2007, WMO-CH4-

X2004A).

As biosphere emissions/uptake could complicate this analysis, we used a TRO-

POspheric Monitoring Instrument (TROPOMI)-derived Gross Primary Production

(GPP) product described in Turner et al. [135] to confirm that the biosphere was less

active. Briefly, during photosynthesis chlorophyll α molecules are excited by absorbed

sunlight, then de-excitation occurs either through dissipation of heat or re-emission

via fluorescence. The small fraction of light that is re-emitted at longer wavelengths

(≤2% in a two-peak spectrum from ∼650–850 nm) is called solar-induced chlorophyll

fluorescence (SIF) and has been measured using a variety of satellite platforms al-

ready [135, 136]. Some work suggests that SIF is a better proxy for photosynthetic

activity than other vegetation indices as it is directly related to the radiation absorp-

tion, whereas indices like the normalized difference vegetation index are more akin

to the photosynthetic capacity. Turner et al. [135] have recently used TROPOMI

satellite data to derive high resolution SIF estimates and, using comparisons to tower
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measurements, directly related this to GPP based on a strong linear relationship

that was consistent across ecosystems. The TROPOMI spectrometer measures in the

UV/vis, and near IR, including the far-red part of SIF emissions at 725-775 nm, using

four different detectors while aboard the Sentinel-5 Precursor satellite (launched in

2017), as shown in Figure 5.1. It covers ∼2600 km with a given swath with 7 km

resolution along the track and 3.5 - 15 km resolution across it (worsening resolution

as it approaches the edge of the swath) as illustrated in Figure 5.2 [137].

The flight campaign involved a total of 7 flights around NYC in March 2019 and

2020, and November of 2018 and 2019. Airborne measurements allow us to capture

vertical variability in CO2 concentrations and give us a large footprint, such that

our measured CO2 enhancements are sensitive to emissions distributed over a wide

area. All flights were conducted by flying transects perpendicular to the mean wind

direction at a set distance downwind of NYC, with multiple passes through the NYC

plume at multiple altitudes within the boundary layer. An upwind pass was also flown

just before/after the downwind passes to verify the absence of inflowing plumes of

elevated GHG concentrations. Flight tracks for the downwind passes for all 7 flights

are shown in Figure 5.3A.
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Figure 5.1. Spectral range of TROPOMI and several previous satellites
with similar goals along with the absorption features of relevant pollutants
and GHGs. Figure 2 from Veefkind et al. [137]

Figure 5.2. Example depiction of the track and resolution of TROPOMI.
The entire 2,600 km swath is measured simultaneously and the dark grey
surface area is measured as a spectrum in the detector, as shown with the
dark grey pixels. Figure 1 from Veefkind et al. [137]
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Figure 5.3. (A) All flight tracks overlaid on a county map. 2018-11-09,
2019-03-01, and 2019-03-27 had similar downwind passes over the Hudson
River and thus cannot be distinguished in Figure 5.3A. Winds were from
the east on 2018-11-09, 2019-03-01, and 2019-03-27, west on 2019-11-15
and 2020-03-04, and north on 2019-03-26 and 2020-03-07. (B-E) Each
CO2 prior overlaid on a county map, with the 5 NYC boroughs [138]
highlighted in black. All priors are in log10(kg C/km2hr) for 12:00 pm on
2019-03-27 truncated at 1 kg C/km2hr .
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One of the flights, 2018-11-09, showed poorly modeled boundary layer heights

(as compared to in-flight observations) across the higher resolution MET (HRRR,

NAMS, NAM12) as shown in Figure 5.4 and thus these MET were excluded from this

flight in all analyses. On two flights, 2019-03-01 and 2020-03-04, ERA5 had similar

difficulty representing the boundary layer heights as shown in Figure 5.5 and was also

excluded [139]. Not only are the higher altitude passes during these flights showing

modeled enhancements that are too small, but the lower altitude passes also show

modeled enhancement that are too large, consistent with what would be expected

when the emissions are mixed into a CBL that is smaller than that measured. These

modeled boundary layer heights are calculated using a modified Richardson number

(the ratio between buoyant and shear forces) calculated from the MET, as is the

default approach to estimating the boundary layer height in STILT. Finally, the flight

on 2019-03-27 showed evidence of free tropospheric influence on the southern half of

the two highest passes as shown in Figure 5.6, suggesting a low marine boundary

layer. As such, we have excluded these top two transects from all analyses.
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Figure 5.4. Measured and modeled enhancements across (A, C, E) the
higher resolution MET and (B, D, F, G) the lower resolution MET. These
enhancements are based on the percentile background and Vulcan prior for
2018-11-09. Dashed vertical lines represent the individual passes down-
wind of NYC. Chronologically, the median altitudes for each pass were
about 450m, 590m, 590m, 520m, 350m, 300m, and 230m.
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Figure 5.5. Measured and modeled enhancements for (A, B) 2019-03-01
and (C, D) 2020-03-04. These enhancements are based on the percentile
background and Vulcan prior. Dashed vertical lines represent the individ-
ual passes downwind of NYC. Chronologically, the median altitudes for
each pass on 2019-03-01 were about 280m, 330m, 400m, and 190m and
on 2020-03-04 they were about 350m, 1010m, 590m, 810m, 1190m, and
360m. Gaps are vertical profiles that have been removed from all analysis.
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Figure 5.6. (A) shows a vertical profile with potential temperature, H2O,
and wind direction performed on 2019-03-27 at the northern end of the
transect, near Croton Bay. There is a clear change in the airmass at 1500
m with considerable change in the winds. (B) shows the downwind curtain
colored by wind direction in degrees with 0 and 360 equal to winds coming
from due N and 90 representing winds from due E. It is clear that during
the top two transects the aircraft was not sampling within the marine
CBL on the southern end even if the altitude was lower than 1500 m, as
such we have excluded these transects from our analysis.
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5.2.2 Transport Modeling

The basic principle of a Lagrangian particle model such as STILT is to track a

theoretical cloud of particles over time using a modeled MET field. This first involves

defining a set of locations, or receptors, from which to release the particles. Particles

are moved, in our case backwards in time, based on the average MET wind field with

a random 3D velocity added to simulate turbulence. We can quantify the surface

influence impacting the air mass measured at the receptor by tracking these particles

in 3 dimensions as they flow out of the domain [123].

The model domain is shown in Figure 5.7 and is defined as -74.8 to -71 degrees

longitude and 39.7 to 42.1 degrees latitude. Receptors were defined as 10 s block

averages of flight data, excluding vertical profiles. Using STILT we released 500

particles per receptor and followed them back in time with run times long enough

to ensure >95% of the particles exit the domain with the exception of the flight

on 2018-11-09, which had changing wind directions throughout the previous evening

and early morning that caused up to 20% of the particles to remain in the domain

for some receptors. To characterize the transport modeling uncertainty we drive the

STILT model with 7 MET models: the Copernicus ERA5 global reanalysis [140] and 6

from the National Oceanic and Atmospheric Administration’s gridded data archives

[141], namely the North American Mesoscale Forecast System with Hybrid Sigma

Pressure levels (NAMS), a temporally coarser variant of NAMS archived on isobaric

vertical levels (NAM12), the High-Resolution Rapid Refresh (HRRR), the Global

Forecast System (GFS), the Global Data Assimilation System (GDAS), and the North

American Regional Reanalysis (NARR) (see Table 5.1). Note that NARR and GDAS

(0.5 deg) were not archived by NOAA after 12/2019 and 6/2019 respectively so we

do not use these MET for flights performed after these dates. As particles are not

restricted to a grid and the MET is interpolated to subgrid-scales, all of these MET

can be used to generate influence functions on a consistent, fine grid. We used a 1.2

x 1.2 km resolution grid when generating the influence functions, or footprints, that
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quantify the observations’ sensitivity to surface emissions. The main model time-step

was set to 1 minute, and the hyper near field correction was used in all cases [122].

The source code edits to STILT in this work were both minor. First, the starting

time of trajectories was not set appropriately. The minutes of the starting time were

being ignored, causing the trajectories to begin at the start of the intended hour,

e.g. 12:55 pm would instead be treated as 12:00 pm. This should have little impact

if meteorological conditions are fairly consistent hour to hour, but can cause sharp

changes in trajectories over time if not and thus was corrected. Second, the MET data

for the hour before and after the trajectory were not utilized in the original STILT

code. This is relevant as the MET is interpolated to higher temporal resolutions when

running trajectories and the hour before/after the run would both be needed to do

so properly.

Table 5.1.
MET Spatiotemporal Resolutions [140,141]

HRRR NAMS NAM12 GFS ERA5 NARR GDAS

Resolution 3 km 12 km 12 km 0.25◦ 0.25◦ 32 km 0.5◦

Frequency 1 h 1 h 3 h 3 h 1 h 3 h 3 h

Vertical Layers 36 40 26 55 37 24 55
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Figure 5.7. Map of the domain highlighted in red, overlaid on top of a
google earth image.

5.2.3 Prior Emissions

We use two bottom-up national inventories, the Anthropogenic Carbon Emissions

System (ACES) version 2.0 [142] and Vulcan version 3.0 [143] as well as two global

disaggregated inventories, the Open-source Data Inventory for Anthropogenic CO2

(ODIAC) version 2019 [144], and the Emission Database for Global Atmospheric

Research (EDGAR) version 5 [145, 146] as our priors. At the time of analysis, none

of the inventories we used covered the timeframe of our flights. We use the most

recent data for all priors, which is 2018 for EDGAR [145] and ODIAC [144], 2017 for

ACES [142], and 2015 for Vulcan [143]. All priors are ∼1 km2 resolution except for

EDGAR, which is 0.1 deg x 0.1 deg (approx. 12 km2 at NYC). Currently, ACES and
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Vulcan are both available at an hourly resolution, ODIAC is monthly and EDGAR

is annual. To take full advantage of the hourly resolution of ACES and Vulcan, we

calculate the footprints hourly and multiply them with the corresponding hour of the

prior.

EDGAR and ODIAC are used unaltered, but for the hourly priors we better

account for the fact that the prior emissions are for a different year by using 5-week

averages of emissions from the same day of the week as the actual flight day. For

example, 3/27/2019 is a Wednesday so we average each hour of the nearest Wednesday

in 2017, 3/29/2017, and the 2 previous and following Wednesdays (3/15, 3/22, 3/29,

4/5, 4/12) to represent 3/27/2019. This is particularly important with regard to

the difference between weekday and weekend emissions [147]. Using the nearest day

alone (3/29/2017) would assume that the emissions magnitude, diurnal pattern, and

spatial structure are exactly the same on the flight day (3/27/2019) as they were

on the nearest day of the prior year (3/29/2017). The 5-week average does still

assume that the monthly averaged prior is a reasonable representation of the spatial

distribution of emissions on the flight day, ignoring potential changes between the

year of the prior emissions and that of the flights.

There are some reprojection errors in the multiplication of prior with footprint as

ACES and Vulcan are provided in a Lambert Conformal Conic (LCC) projection while

EDGAR, ODIAC, and the STILT footprints are provided in a Latitude/Longitude

(Lat/long) projection. Any conversion to a different projection will introduce some

spatial smoothing errors. To convolve the footprints with the priors they must be in

the same projection, so for our analysis we reprojected the LCC priors to a Lat/long

projection. As an estimate of this error we calculated the percent difference in the

domain-sum across these two projections for Vulcan at ∼7%, with the LCC projec-

tion having the larger domain-sum. The difference between modeled emissions when

reprojecting the footprint to LCC to convolve and when reprojecting the prior to

Lat/long to convolve is shown in Figure 5.8. The case where footprints are repro-

jected to the LCC projection leads to campaign averaged posterior results that are
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∼7% larger than for the case of reprojecting the priors to the lat/long projection (the

approach used in all analyses).

Figure 5.8. Modeled enhancements using the Vulcan prior and GFS MET
on 2019-03-27 calculated by reprojecting the prior to the Lat/long grid
(black) and by reprojecting the MET to the LCC grid (red) before con-
volving.

5.2.4 Scaling Factor Approaches

Modeled anthropogenic CO2 enhancements along the flight track were simulated by

multiplying footprints (ppm·( m2s
µmol

) or mole fraction/flux) from the STILT dispersion

model [122, 123] by emissions from one of a selection of priors (converted to µmol
m2s

).

This multiplication was done on an hour-by-hour basis to take full advantage of the

temporal resolution of some of the priors. The model simulates the enhancement in

CO2 relative to a “background” value at the boundary of the domain, and this back-

ground must then be subtracted from observed concentrations in order to compare

the observed enhancements with the model.
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Background Calculations

We calculated the background concentrations using two methods: a percentile

method [107] and a linear method [46, 106] (LR). For the percentile background we

first added the modeled and measured data point-wise so our choice of background is

based on both datasets. Next, we identified the timestamps with concentrations below

the 5th percentile of concentrations from this combined dataset. We calculated the

measured background as the average of all measured data during these timestamps.

As the modeled concentrations for these points were small but non-zero, we also

calculated a modeled background as the average of all modeled data during these

same timestamps as shown in Figure 5.9A, C, and E. As the computed background is

dependent on the modeled data, this process was repeated for every flight to yield a

slightly different background for every unique combination of MET and prior. If we

had defined the background points based solely on the measured dataset, this could

have led to the selection of background points with large modelled concentrations in

cases where the modeled plume was mis-located. Using the combined measurement-

model dataset as described above mitigates this issue.

The LR background calculation method used a 10-point linear regression through

the edges of each transect. It was calculated for every transect with a different fit

for every unique combination of MET and prior. The 5 lowest concentrations during

the first/last 20% of the transect were used to calculate the 10-point regression as

shown in Figure 5.9B, D, and F. Figure 5.10 shows the enhancements above the linear

background for an example flight. There was 1 transect on 2019-03-26 that did not

extend completely into background on one side so the average background data from

the other two transects was used. Because the three transects occurred back to back

and the remaining two transects were consistent (5-point average and 1σ of 416.84

ppm ± 0.07 ppm and 416.87 ppm ± 0.12 ppm for the 2 transects), it is unlikely this

approach adds significant uncertainty. Additionally, on 2019-11-15 HRRR modeled
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plumes did not return to background so the average fit from the other MET was used

to define the background as shown in Figure 5.11.

To relate the measured and modeled enhancements we calculated SFs, which

represent the factor by which the modeled enhancements need to be multiplied to

best match the measurements, using 5 methods described below and summarized in

Table 5.2.
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Figure 5.9. (A) Measured and (C) modeled data from the flight on 2018-
11-09 with the points used to define the percentile background marked
with red circles and the average of them a red line. (E) Measured and mod-
eled enhancements using the percentile background. (B) Measured and
(D) modeled data from the same flight with linear backgrounds marked
with red lines. (F) Measured and modeled enhancements using the linear
background. Dashed vertical lines in all plots represent transect bounds
(aircraft 180◦turns) and all modeled data is based on GFS and the Vul-
can prior. Chronologically, the median altitudes for each pass were about
450m, 590m, 590m, 520m, 350m, 300m, and 230m.
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Figure 5.11. (A, C, E) The fits used as the linear background for all the
various MET for the 3 passes on 2019-11-15 as well as the average across
them, used as the background for HRRR modeled data. (B, D, F) The
modeled data and the linear fit being used as the background for HRRR
for the 3 passes on 2019-11-15. All data shown here is using the Vulcan
prior. Gaps in the first two passes are vertical profiles that have been
excluded from analysis.
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Integral (I) SF Method

The first scaling factor method used was an integral ratio SF (I). We integrated

enhancements over each downwind transect through the plume for both measured

and modeled enhancements. The ratio of these integrated enhancements gives a SF

for that transect (Eq. 5.1).

SF (I) =

∑
(CO2obs −BGobs)∑

(CO2mod −BGmod)
(5.1)

Here CO2obs and CO2mod represent the measured and modeled mole fractions respec-

tively, while BGobs and BGmod represent the measured and modeled background mole

fractions.

Regression (fit, fit-0) SF Methods

The second approach that we used to calculate SFs was a simple ordinary least

squares (OLS) fit of modeled enhancements against measured enhancements across a

transect (fit). The slope of this fit is the reciprocal of the SF for this approach. This

was repeated with the intercept forced to zero (fit-0), as this can mitigate the impact

of poor correlation on the slope.

Bayes (B, 2B) SF Methods

We calculated a SF using two different approaches that rely on Bayes’ Theorem.

In general, the Bayesian approach can be written as

y = H(λ) + er (5.2)

Here y is the observations vector (n x 1, where n is the number of observations),

here the analyte (CO2) mole fraction enhancements measured along the track; λ

is the state vector (m x 1, where m is the total number of unknowns) or vector of

parameters which we aim to optimize; H(λ) is the observation operator (n x 1) which
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converts the model state to observations (i.e. the STILT dispersion model) and er

is the uncertainty in the measurements and in the modeling framework (model-data

mismatch).

Optimum posterior estimates of fluxes are obtained by minimizing the cost func-

tion J [148,149]:

J(λ) =
1

2

[
(λ− λb)TP−1

b (λ− λb) + (H(λ)− y)TR−1(H(λ)− y)
]

(5.3)

Here λb is the first guess or a priori state vector, Pb the a priori error covariance matrix

which represents the uncertainties in our a priori knowledge about the state vector,

and R the model-data error covariance matrix, which represents the uncertainties

in the observation operator H and the observations y, also known as model-data

mismatch.

The observations operator, H(λ) is a function of the unknown parameters and

represents the model used to simulate the observations. This includes the transport,

T(x), of trace gases from the sources, x (s x 1, with s the number of sources), to the

measurements plus additional terms if desired. Assuming H is a linear function of λ,

we can write in matrix form:

H(λ) = Hnxmλmx1 (5.4)

First, we consider a model where only a single scaling factor λ (m = 1) is used to

scale the emissions (method B):

Hnx1 = Tnxsxsx1 (5.5)

In this case, the prior covariance is a 1x1 matrix populated with the a priori variance

of the scaling factor (λ1):

Pb =
[
σ2
λ1

]
(5.6)

Then, we can also consider a model where three parameters λ (m = 3) are used

(method 2B). In this case, the first parameter represents the SF, the second param-

eter represents a constant offset to account for potential background bias and the
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third parameter represents the slope of a linear trend to account for gradients in the

background. Thus, we can write Hnx3 as follows:

Hnx3 =

Tnx1 Inx1

1
...

n

 (5.7)

and the prior covariance as a diagonal 3x3 matrix populated with the a priori variances

of the parameters assuming the parameters are uncorrelated:

Pb =


σ2
λ1 0 0

0 σ2
λ2 0

0 0 σ2
λ3

 (5.8)

In both cases, and assuming the model-data errors are uncorrelated, the R error

covariance can be written as a diagonal n x n matrix populated with the uncertainties

in the transport model and the measurements added in quadrature.

An analytical solution exists to the minimization of Equation 5.3 and can be

written as [150]:

λa = λb −K (Hλb − y) (5.9)

K = PbH
T
(
HPbH

T +R
)−1

(5.10)

where λa is the optimized state vector, which contains the optimized parameters in

our model and K the Kalman gain.

In this work, we chose as prior parameters λb= [ 1 0 0 ]T with prior uncertainties

of [ 1 1 0.1 ]T , i.e. assuming a SF = 1 and no correction to the background necessary.

The transport model uncertainty is computed as the 1σ of the modeled enhance-

ments across the various MET and the measurements uncertainties is computed as

the average 1σ during the calibrations of the specific flight, an estimate of instrument

precision.

Posterior emission totals for NYC were calculated by multiplying these SFs by the

total prior emissions within the 5 borough boundaries (including water areas) [138]
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Table 5.2.
SF and Background Methods

Method
Variables

fit
Description

Linear

Background

(LR)

Linear regression through 5 points on each side of

the plume. Applied separately for each transect

and for each combination of MET and prior.

Percentile

Background

Average of the lowest 5% of data. The same

points are used for both measured and modeled

data. Applied separately for each flight and for

each combination of MET and prior.

Integral (I)
Integrated measured enhancements divided by

integrated modeled enhancements.

Regression

(fit)
2

Reciprocal of the slope of an OLS regression

between modeled enhancements plotted against

measured enhancements.

Regression

forced through

0 (fit-0)

1
Fit, but calculated when forcing the regression

through the origin.

Bayesian (B) 1

Bayesian calculation using measured

enhancements, modeled enhancements, and

uncertainty estimates.

Bayesian with

a background

correction

(2B)

3
B with 2 additional terms to adjust the

background with a linear correction.
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shown in Figure 5.3B-5.3E. This SF approach assumes that the SF obtained for the

modeled enhancements calculated using the footprints within the domain also applies

to the NYC Boroughs, which represent 24% of the total emissions in the domain

(based on annually averaged Vulcan) while representing only ∼1% of the area. Given

ACES and Vulcan are hourly products, we had to address which hours to use in this

calculation. To do so, we combined all footprints for each transect separately and

calculated the fraction of modeled emissions that came from NYC when using Vulcan

and HRRR. All hours where at least 40% of the modeled emissions originated from

NYC were averaged to represent the relevant prior emissions. This typically resulted

in averaging the prior over the first few hours of the footprint. Although the prior,

MET, and threshold used to select these hours are subjective, they only impact the

exact midday hours being averaged and have little impact on the posterior or its

variability.

5.3 Results & Discussion

We used a TROPOMI SIF-derived Gross Primary Productivity (GPP) product

[135] to confirm that the biospheric uptake of CO2 was small and did not complicate

the urban mixing ratios measured in this study. Our analysis shows that during our

flights the GPP of NYC was ≤ 1% of the ACES emissions of NYC [135,151] as shown

in Figure 5.12. However, we do not account for ecosystem respiration and it may

explain some of the differences between prior and posterior results. During the winter,

Sargent et al. [124] estimated that ecosystem respiration contributed 5% of measured

enhancements at a city-center measurement site in Boston, and up to 20% of the

total flux within the wider domain. Similarly, Miller et al. [152] estimated biospheric

emissions as 27% of total emissions for Los Angeles in winter. For context, the 2018-

2019 average winter (November - March) temperature was 3.11 ◦C in Boston, 4.33

◦C in NYC and 14.78 ◦C in Los Angeles based on airport temperature records [153].
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Figure 5.12. (A) Shows the total TROPOMI derived GPP across the
domain for this study across 2018 and 2019. Days where a research flight
was conducted are denoted by vertical red lines on the plot and blue
dots on these lines represent the total ACES CO2 emissions for the same
domain. (B) the same as (A), but for the 5 boroughs of NYC instead of
the larger domain. We believe that this is justification for not including
a biospheric uptake component into the model calculations.

We report posterior emissions based on the range of results across the various

MET, SF methods, flight days, and priors using the standard deviation across pos-

teriors, one parameter at a time. These provide information about the variability

in posterior emissions introduced by each of these aspects of the analysis. Given

NARR and GDAS were discontinued partway through the flight campaign and had

little impact on final results, they have been excluded in the plots and calculations

below. The 2B posterior results are considerably lower than all other methods with

an average ± 1σ posterior of 45 kmol/s ± 24 kmol/s compared to a posterior of 61

kmol/s ± 33 kmol/s for I LR, the minimum across the remaining methods. This

approach also generally results in a lower mean absolute error (MAE) than other

methods. There are even cases where the 2B approach calculates a near 0 SF and
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relies entirely on the linear correction to the background to optimize agreement be-

tween modeled and measured enhancements. This suggests that the 2B method may

be overfitting the data and as such it has been excluded from analyses, although

refining the uncertainties used in the approach may improve its performance in the

future. The fit method has also been excluded from analyses as this approach is

quite sensitive to cases with a low correlation between measured and modeled data,

sometimes resulting in considerably different posteriors with high MAEs. Across all

remaining parameters, the campaign average posterior for the five NYC boroughs is

67 ± 31 kmol/s (mean ± 1σ), with the bounds representing the variability across

flight days (not the propagated method uncertainty, which would include uncertainty

that the SF applies to NYC equally well). We have also repeated the analysis using

ACES and Vulcan annual means rather than the hourly versions. The comparative

results are shown in Figure 5.13.
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Figure 5.13. (A) ACES posterior results across flight days using both
the annual and hourly priors. (B) Vulcan posterior results across flight
days using both the annual and hourly priors. Bars indicate the 25th
to 75th percentile, whiskers are up to 1.5 times the IQR, circles mark
outliers (>1.5 x IQR), black lines represent the medians, and black squares
represent the means.
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Figure 5.14. Boxplots of the ensemble of posterior CO2 emission rates
for NYC, grouped by (A) flight day, (B) prior, and (C) SF/background
calculation method. Bars indicate the 25th to 75th percentile, whiskers are
up to 1.5 times the IQR, circles mark outliers (>1.5 x IQR), black squares
represent the means, and thick black lines the medians. Priors are also
plotted as denoted by legends. Results using the linear background are
labeled as LR and the fit and 2B methods are in gray as they have been
excluded from further analyses.
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Figure 5.15. Boxplot of the posterior CO2 emission rate for NYC grouped
by MET in the same approach as Figure 5.14. N values above each box
indicate how many flights included the MET, as some were excluded for
particular flights and NARR and GDAS stopped being archived by NOAA
midway through the campaign. NARR and GDAS are in grey as they are
not used in any further analyses.
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5.3.1 Emission rate variability

Although the campaign average posterior is nearly double the average across all

priors, we calculated SFs that resulted in posteriors with relatively little variability

with respect to prior. The average across all priors is 37 ± 18 kmol/s which is 49%

variability among priors while the posterior variability with respect to prior choice is

only 14% (Figure 5.14B). If looking only at Vulcan and ACES, the two bottom-up

priors with high temporal and spatial resolution, the average prior emission rate is

49 kmol/s with a 13% difference between them and the percent difference in the pos-

terior with respect to prior choice is 9%. The campaign mean posterior represents

a 29% increase in the Vulcan prior, 47% increase in the ACES prior, 79% increase

in the EDGAR prior, and a 499% increase in the ODIAC prior. These do not ac-

count for biospheric emissions and some error introduced by reprojection from the

ACES/Vulcan projection to the latitude/longitude projection of footprints. As dis-

cussed earlier, that may explain some of this difference. It is also important to stress

that the prior emissions used in this study are not estimates of the actual emissions

at the time of the flights, therefore these factors do not represent a quantification of

error in the prior emissions. Nevertheless, the large upscaling of the ODIAC prior

(relative to the other three priors) is consistent with previous indications that ODIAC

may underestimate emissions in dense cities in the northern U.S. due to nightlight

saturation in urban cores [118, 154] and/or an underestimation of heating emissions

that are not correlated with lighting [155].

The variability across the three SF calculation methods, including both back-

ground methods, is only 6% (Figure 5.14C). Separating the results by background

method gives a campaign average of 68 kmol/s for the percentile method and 66

kmol/s for the linear method, both with 6% variability across SF methods. These

results are within 1 sigma of one another, suggesting that the posterior is insensitive

to the choice of background, at least in regard to these two methods and this set of

flights. Excluding NARR and GDAS the variability across MET is 9% (Figure 5.15),
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but this is driven largely by NAM12. The variability without NAM12 decreases to

only 5%. Although NAM12 represents output from the same model as the NAMS

data, we consider the additional variability it causes (which results from archiving the

met data on a different temporal and vertical grid) to be a real source of transport

model error in STILT. Therefore we consider the value of 9% to be representative of

the variability due to transport model uncertainty.

The daily variability is 46%, making it the largest source of variability across

the tested parameters (Fig 5.14A). These results are generally consistent with those

calculated by Lopez-Coto et al. [107] for the Washington DC-Baltimore metropolitan

area using several flights in an ensemble of inversions. Although the ensemble and

methods used were different, the authors saw 33% daily variability, 7-15% variability

across MET, and 11% variability across priors.

These variabilities are summarized in Table 5.3 and combined to provide overall

uncertainties for the posteriors as in Lopez-Coto et al. [107]. Combining these terms

assumes that they are independent sources of uncertainty, which is unlikely to be true.

Additionally, the choice of ensemble members (MET, priors, etc.) could impact the

ensemble spread across these parameters. Therefore, the estimated uncertainties may

not represent the true method uncertainty, but they do still provide an estimate of the

likely variability introduced by the various model choices. Combining these sources of

uncertainty without the daily variability provides an estimate of the uncertainty for

any single day’s posterior estimate. If this SF approach is used over larger timescales

to assess trends, then the daily variability becomes a relevant part of the posterior

uncertainty, causing the uncertainty to increase considerably making it comparable to

the uncertainties of mass balance approaches. While daily variability of the emissions

themselves is expected, the posterior daily variability is larger than the one provided

by ACES (20%) or Vulcan (20%) and thus, part of the observed posterior variability

is most likely caused by sampling aliasing [107] and other sources. However, the daily

variability could be reduced by averaging posterior emissions from a larger number

of flights as long as sampling footprints are comparable, particularly if flights are
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Table 5.3.
Sources of Variability

Source of Uncertainty 1σ (%)

Daily Variability 46

Prior Variability 14

SF and BG Variability 6

MET Variability 9

Combined Uncertainty

(excluding daily variability)

18

Combined Uncertainty

(including daily variability)

49

performed within a short timeframe to minimize variability in the source emissions

[46,107].

The SF ensemble approach used here avoids many of the issues faced when apply-

ing a mass balance method to calculate urban emissions, by directly relating emissions

to a source area and prior using transport modeling. On the other hand, it is simpler

to apply than a full inverse modelling approach making it useful for broad applica-

tions. Since the approach relies on different underlying assumptions it provides a

good complement to these alternative methods. However, the SFs are very sensitive

to a number of errors as shown by previous work [126] as well as here and, thus, a

very careful model-data screening must be done in order to avoid large excursions in

the estimations. Examples include: most SF approaches used require a high corre-

lation between simulated and observed enhancements, any SF approach requires an

accurate spatial distribution of prior emissions, and there must not be strong upwind

sources outside the model domain. The ensemble approach used here can partially
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minimize the influence of some of these limitations and thus it is preferred as opposed

to a single SF - prior - MET combination.

Recently, however, a ∼30% bias in this approach was recognized based on evidence

from comparisons to Bayesian inversion and MBE results using the same data. In

addition to this unfavourable comparison, shown in Figure 5.16, the SF for the priors

used was relatively high compared to recent literature that have seen broad agreement

with Vulcan [107,156]. To investigate the source of this bias we ran a simple observing

system simulation experiment (OSSE). Emissions were simulated from a large domain

(see Figure 5.17) using annually averaged Vulcan emissions and the enhancements

calculated were considered the observed dataset. Emissions were then simulated from

a smaller domain (that used in this work) in the same manner and these enhancements

were considered the simulated dataset. By keeping emissions constant in time, relying

on the same transport model between the two datasets, and applying different known

SFs to a small set of test flights we isolated the test to investigate solely the influence

of upwind sources outside the domain. The calculated SFs were biased high by

a comparable degree and work on addressing this is underway. Recalculating SFs

using the larger domain alone did result in some improvement as can be seen in

Figure 5.18, but some days so no change or even slightly higher posterior emissions.

Current thoughts include attempting a nesting in which outside sources are accounted

for before SFs are calculated (e.g. subtracting the simulated influence of outside

sources from the measured concentrations before the analysis, including background

calculation), and defining the area of interest (presently, the 5 NYC boroughs) as a

larger area, likely defined based explicitly on the footprint itself. The OSSE dataset

provides us with an opportunity to investigate the impact of changes like these on

the performance of the SF technique.

We have assessed CO2 emissions from NYC using aircraft observations using an

SF ensemble approach based on 5 MET products, 4 priors, 2 background calcula-

tion methods, and 4 approaches to calculating the SF. Although the daily variability

is too large to make a single posterior estimate from this campaign policy-relevant,
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Figure 5.16. Barchart of the results across the MBE, Bayesian inversion,
and SF approaches. All three approaches are calculated for a comparable
footprint based on a simple accounting approach for the relevant surface
emissions for the MBE results.

with a larger number of flights future campaigns may be able to reduce this variability

to the point that the approach can be valuable in monitoring emission trends over

time. We have explored in detail how the parameters varied in this ensemble impact

the variability of posterior emissions, demonstrating the utility of this method. This

also represents a set of data that can provide a solid pre-COVID anchor that will

be useful in any analysis of shut-down conditions. Additional work directly compar-

ing this approach to inversion and mass balance methods would also be of interest

as these top down approaches continue to be employed and further refined. Lastly,

this model-measurement approach will be particularly powerful when combined with

long-term tower networks. Tower data are more heavily influenced by local emis-

sions than airborne measurements. Flight data has a large footprint that makes it

spatially representative, but it is only a snapshot of emissions representing discrete
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Figure 5.17. Annual Vulcan for the larger domain overlaid onto a sate
map with the domain of this work highlighted in red.

Figure 5.18. Barchart of the posterior results for the 5 boroughs of NYC
using the large domain and using the domain discussed throughout this
work. Some days see significant changes in posterior, but not all do.
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times. Combining the two methods on days with flight observations can anchor tower

networks with comparisons to ensure that tower networks do not suffer a spatial

sampling bias compared to the spatially representative sampling of aircraft. Satellite

data has also been used to estimate urban emissions [157–159] and could be incor-

porated into multi-platform analyses. Future work incorporating information from

multiple sources should improve the coverage of city emissions and representativeness

of results.
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6. CONCLUSION & FUTURE WORKS

This thesis covers a large suite of MBEs downwind of power plants to quantify the

CH4 emissions of natural gas-fired facilities and to compare against CEMS reported

CO2 emissions, which are assumed to act as a semi-true value against which we as-

sessed both the accuracy and precision of the MBE technique. Finally, NYC CO2

emissions were quantified and component uncertainties investigated using a disper-

sion modeling scaling factor approach using flight data. Aircraft sampling enabled

easy access to the often relatively remote power plants and ensured large, spatially

representative sampling of the NYC urban area as shown in Figure 6.1.

The problem with airborne analyses, like most mobile platforms, is the infre-

quency of measurements. Aircraft typically measure in campaigns with only a hand-

ful of flights in close succession for the entire year. Each individual flight provides a

snapshot view of that day’s emissions, but tower and satellite platforms are able to

measure far more frequently year-round. Furthermore, to ensure the assumption of

atmospheric “stationarity” during sampling, most of the data produced by aircraft

cover a period not wider than 11:00 am to 5:00 pm. Tower measurement systems are

expensive to develop and operate so they are rarely developed into dense networks and

they can have a relatively small footprint, i.e. they are more heavily influenced from

nearby sources than airborne measurements. Then there are satellite measurements

that often only provide a once-a-day measurement that are dependent on weather

(cloud cover) and may have limited capabilities in terms of resolution and precision

for complex urban domains [160]. Combining multiple measurement platforms in

modeling approaches can not only add data to constrain results, but also allow some

of these advantages and disadvantages to offset one another [160]. Satellites are also
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Figure 6.1. Example footprint from a single transect downwind of NYC.
The thick black line is the transect path, and thin black lines represent
county boundaries. Footprint units are ppm (m2s/µmol). The average
wind speed was 6.2 ± 1.3 m/s and the median altitude was 572 m.

quickly and continuously progressing to meet new demands. The current suite of

CH4 measuring satellites and those scheduled for launch is provided in Figure 6.2,

although many of these measure a significantly larger suite of gases (e.g. TROPOMI

measures nitrogen and sulfur dioxide, O3, formaldehyde, CO, CH4, etc.). As the

number of satellites grow, there become opportunities for different niches. As shown

in the lower panel of Figure 6.2, some satellites like GHGSat are designed for smaller

areas, but high enough resolution to estimate point source emissions [161–163]. Other

satellites provide a larger swath, but are of poorer resolution making quantification
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limited to only large sources [164]. For example, TEMPO will be able to monitor

daily variations in ozone, nitrogen dioxide, and other key elements of air pollution

from the Atlantic to the Pacific, as a geostationary satellite focused on North America,

as shown in Figure 6.3. The instrument will resolve pollution levels with a horizontal

resolution of several square miles—far better than existing limits of about 100 square

miles [165].

Satellite measurements can provide global data with relatively fast cycles (e.g. ∼1

day for TROPOMI to circle the globe) that can complement the surface measurement

networks, particularly in developing regions with fewer measurement sites. This en-

ables regional to global inversion analyses that can assimilate satellite measurements

over the course of years, in some cases incorporating surface measurements as well to

better constrain emissions across regions or to compare against satellite results [166].

Higher resolution satellite retrievals have even allowed for direct quantification of in-

dividual sources or source regions as summarized in Varon et al. [162]. Identifying

an individual source can be difficult depending on noise and emission strength, as

shown in Figure 6.4. The four methods currently available to calculate ERs are 1) a

gaussian plume inversion approach that fits a gaussian plume model to the column

enhancements, 2) a source pixel approach that uses column enhancements directly

over the source in combination with the wind speed, 3) a cross sectional flux method

that is comparable to the MBE approach used in this thesis, relying on a “transect”

drawn through the plume with the ability to average results across multiple drawn

transects, and 4) an integrated mass enhancement approach that uses the total size

of the plume and wind speed [162]. Recent studies suggest that the latter two are

more appropriate for high resolution column measurements as simulated data anal-

yses showed that instantaneous plumes are too small to follow Gaussian behavior

well and wind variability along with horizontal turbulent diffusion cause errors in the

source pixel approach, although these are less relevant with coarser data as shown in

Figure 6.5 [162]. This will continue to become a more viable approach as data cover-

age improves with both low resolution, large coverage satellites that can identify areas
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of interest and high resolution, low coverage satellites that can quantify emissions, as

summarized in Figure 6.2.

The majority of this thesis focuses on CO2 measurements made in winter, to min-

imize the impact of biospheric uptake. However, respiration during the winter may

also be non-negligible with estimates as large as 20% of for an urban region [124,152].

The biosphere, whether through respiration or uptake, complicates many analysis

techniques as the edges may not provide an appropriate background any longer. Bio-

sphere signal is unlikely to be comparable downwind of a large urban center and out-

side of said urban center, particularly for cities like Indianapolis that is surrounded by

agricultural fields. The most common way to address this complicating effect, other

than modeling the biosphere (which comes with its own additional uncertainties),

is to use isotopic measurements of 14C that can clearly distinguish fossil CO2 [169].

Although seasonal biosphere uptake is not a concern for CH4, distinguishing fossil

sources (natural gas) from biogenic sources (landfills, wastewater treatment plants,

etc.) is. Isotopes can be used for the same effect as with CO2, but certain tracers

(e.g. C2H6) can also be used to distinguish fossil fuel related CH4 [170,171]. Certain

CO2 sources can similarly be distinguished using co-emitted tracers such as CO to

identify combustion from on-road vehicles or particulates/black carbon to identify

combustion from diesel vehicles [172].

The NYC SF analysis is currently being reanalyzed using additional methods.

Two other members of the Shepson lab are analyzing the same set of flights using

the MBE method, as discussed throughout this thesis, and using an inversion as

briefly described in Chapter 5. Although all three methods are commonly used,

comparisons across these approaches are still scarce [126]. Upon completion, the

calculated posterior emissions and their variability can be directly compared across

the inversion and SF approach in a straightforward manner. Comparing the MBE

approach can be done, but is less straightforward. As mentioned in Chapter 5, defining

the region being measured during an MBE is non-trivial. Currently, the intent is to

use the footprints calculated for the SF method and inversion work to identify the
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Figure 6.2. Timeline of current and scheduled satellites capable of
CH4 measurements. Figure from http://acmg.seas.harvard.edu/

presentations/2020/ams_methane.pdf [167]. Below is a description
of the capabilities of several of these satellites. Figure from https:

//www.methanesat.org/fit-with-other-missions/ [168]

http://acmg.seas.harvard.edu/presentations/2020/ams_methane.pdf
http://acmg.seas.harvard.edu/presentations/2020/ams_methane.pdf
https://www.methanesat.org/fit-with-other-missions/
https://www.methanesat.org/fit-with-other-missions/
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Figure 6.3. Image of TEMPO coverage and a visualization of the pixel size
that it measures overlaid on a Google Earth Image (thin red lines) [165]
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Figure 6.4. Column enhancements in a modeled point source of 1 ton/hr
with varying instrumental precision. Figure 1 from Varon et al. [162].

Figure 6.5. CO2 column enhancements relative to a background for a 3.75
kton CO2/hr simulated power plant plume at (A) 300 m resolution, and
(B) averaged down to 3000 m resolution. (C) the R2 and root mean square
error (RMSE) of the ability to fit each plume to a Gaussian form. These
show that the coarser dataset better fits a Gaussian dispersion. Figure 2
from Varon et al. [162].

region of high influence for the measurements. Once defined, the SF and inversion

approaches can be recalculated for a different region rather easily. This process will

likely need to be repeated for each flight day as the footprints are always significantly

influenced by NYC, but different surrounding areas will be relevant depending on the

wind speed and direction.

Similarly, this dataset, albeit unintentionally, represents a pre-COVID-19 baseline

that can be used for recent studies aiming to understand the impact that COVID-
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19 shutdown conditions have on emissions of CH4 and CO2. A collaborative effort

analyzing DC-Baltimore and NYC involving three aircraft (University of Maryland,

NOAA, and ALAR) began in April 2020, shortly after the shutdown began. This data

is currently being analyzed using SF approaches comparable to those of Chapter 5

with possible inversion analyses being discussed.



135

REFERENCES

[1] Roland B. Stull. An Introduction to Boundary Layer Meteorology. Springer,
Dordrecht, softcover reprint of the original 1st ed. 1988 edition, July 1988. viii,
1, 2, 4, 37, 82

[2] Lorraine Boissoneault. The Deadly Donora Smog of 1948 Spurred Environmen-
tal Protection—But Have We Forgotten the Lesson? 2

[3] Anne M. Thompson. The oxidizing capacity of the earths atmosphere: Probable
past and future changes. Science, 256(5060):1157–1165, 1992. 4

[4] IPCC, 2018: Annex I: Glossary. Global Warming of 1.5◦C. An IPCC Special
Report on the impacts of global warming of 1.5◦C above pre-industrial levels and
related global greenhouse gas emission pathways, in the context of strengthening
the global response to the threat of climate change, sustainable development, and
efforts to eradicate poverty, (In Press). 5

[5] UNFCCC. https://unfccc.int/. 5, 25, 26

[6] Andrew A. Lacis, Gavin A. Schmidt, David Rind, and Reto A. Ruedy. Atmo-
spheric CO2: Principal Control Knob Governing Earth’s Temperature. Science,
330(6002):356, October 2010. 6, 13

[7] Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change. Technical report, Cambridge University Press, Cambridge,
United Kingdom and New Yok, NY, USA. vii, viii, ix, x, 6, 7, 8, 9, 12, 13, 16,
17, 18, 19, 20, 21, 49, 89

[8] Henning Rodhe, Robert Charlson, and Elisabeth Crawford. Svante Arrhenius
and the Greenhouse Effect. Ambio, 26(1):2–5, 1997. 6

[9] K. von Schuckmann, L. Cheng, M. D. Palmer, J. Hansen, C. Tassone, V. Aich,
S. Adusumilli, H. Beltrami, T. Boyer, F. J. Cuesta-Valero, D. Desbruyères,
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ABSTRACT: Current research efforts on the atmospheric
impacts of natural gas (NG) have focused heavily on the
production, storage/transmission, and processing sectors, with
less attention paid to the distribution and end use sectors. This
work discusses 23 flights at 14 natural gas-fired power plants
(NGPPs) using an aircraft-based mass balance technique and
methane/carbon dioxide enhancement ratios (ΔCH4/ΔCO2)
measured from stack plumes to quantify the unburned fuel. By
comparing the ΔCH4/ΔCO2 ratio measured in stack plumes
to that measured downwind, we determined that, within
uncertainty of the measurement, all observed CH4 emissions
were stack-based, that is, uncombusted NG from the stack
rather than fugitive sources. Measured CH4 emission rates
(ER) ranged from 8 (±5) to 135 (±27) kg CH4/h (±1σ), with the fractional CH4 throughput lost (loss rate) ranging from
−0.039% (±0.076%) to 0.204% (±0.054%). We attribute negative values to partial combustion of ambient CH4 in the power
plant. The average calculated emission factor (EF) of 5.4 (+10/−5.4) g CH4/million British thermal units (MMBTU) is within
uncertainty of the Environmental Protection Agency (EPA) EFs. However, one facility measured during startup exhibited
substantially larger stack emissions with an EF of 440 (+660/−440) g CH4/MMBTU and a loss rate of 2.5% (+3.8/−2.5%).

■ INTRODUCTION

Natural gas (NG) usage has been growing since the large-scale
implementation of hydraulic fracturing and horizontal drilling
technologies to take advantage of shale resources.1,2 Along with
market factors and stricter environmental regulations, this has
led to a near doubling of the U.S. electricity generation fromNG
since 2008, with electricity generation matching or surpassing
that of coal since 2016.3 NG offers improved efficiency and
availability and only produces 56% the amount of carbon dioxide
(CO2) per unit energy as coal, making it a potential “bridge fuel”
in the transition toward renewable energy.4 However, NG is
primarily composed of methane (CH4), the second most
important anthropogenic greenhouse gas (GHG) accounting
for 9% of all U.S. GHG emissions in 20175 based on its 100-year
Global Warming Potential (GWP) (calculations are detailed in
the SI). CH4 is also a short-lived gas with a GWP of 84 over a 20-
year period compared to a GWP of 28 over a 100-year period.6

When using the 20-year GWP, CH4 emissions are equivalent to

22% of annual U.S. GHG emissions (calculation detailed in SI).
The short-term impact of reducing CH4 emissions makes it an
important focus of climate change mitigation efforts.
Over 50% of global CH4 emissions are related to human

activity, and losses from the energy sector are the largest
anthropogenic source in the U.S.7 On the basis of a recent
synthesis of CH4 emissions from well to end user, Alvarez et al.8

estimated that 2.3% of U.S. gross production of NG is emitted to
the atmosphere. At this loss rate, supply chain CH4 emissions
nearly double the short-term climate impact of the combustion
of NG for energy. Therefore, quantifying losses along the NG
supply chain from production to end use is essential. To realize
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the climate benefit of NG, it must be efficiently handled and
combusted.
There have been multiple studies focused on the production,

storage, and processing of NG, but there has been little work on
end users, such as natural gas-fired power plants (NGPP).8−21

Lavoie et al.17 studied three NGPPs and saw emissions of
unburned CH4 from the stacks and relatively large CH4 leaks
attributed to nonstack sources on-site. The Lavoie et al. study
was based on a small sample size of 3 combined cycle power
plants (CC), which use the combustion gases to turn a turbine.
Excess heat is then used to generate steam to turn a second
turbine. CC plants are themost efficient NGPPs, producing 46%
more energy per energy content of fuel consumed than a simple
combustion turbine.22 Because of this higher efficiency, CC
facilities are the most common type of NGPP, providing 89% of
the electricity produced by NG.23 As such, we focus largely on
CC NGPP emissions in this study.
We expand on the work of Lavoie et al. by sampling a larger set

of NGPPs to thoroughly investigate the prevalence of on-site
CH4 leaks and to gather more robust emissions data to compare
to the Environmental Protection Agency (EPA) estimates. We
studied 14 NGPPs, but only 5 showed downwind ΔCH4, while
all showedΔCO2 downwind. This suggests CH4 emissions were
too low to be detected above atmospheric variability at most
NGPPs. This work focuses on the 5 NGPPs that showed
downwind ΔCH4. We calculate ΔCH4/ΔCO2 (ppm/ppm)
ratios when flying through the stack emission plumes with/
against the mean wind direction or circling near the stacks. We
quantify the facility (nonstack) CH4 leaks by comparing this to
the same ratio from downwind aircraft-based mass balance
experiments (MBE), which would capture all plant emissions.
Although the EPA calculates CH4 emissions from NGPPs, it

does so using emission factors (EF) that have not been well-
tested andmay underestimate emissions based on previous work
in the NG sector.2,9,10,17 The EPA requires that facilities report
hourly averaged CO2 emissions through the Air Markets
Program Data (AMPD) using Continuous Emissions Monitor-
ing Systems (CEMS) as described in Title 42 of the U.S. Code of
Federal Regulations.23,24 As for CH4, the Greenhouse Gas
Reporting Program (GHGRP), a reporting program for GHG
point sources, uses an EF of 1 g CH4 per million British thermal

units (MMBTU) for all NGPPs based on the Intergovernmental
Panel on Climate Change (IPCC) recommendations.24−26 The
Greenhouse Gas Inventory (GHGI), a comprehensive bottom-
up inventory used to estimate national emissions by source
category, instead uses an EF of 3.9 g CH4/MMBTU for CC and
combustion turbine NGPPs based on both the IPCC and the
EPA’s Compilation of Air Pollutant Emission Factors (AP-
42).27−29 In this work, we present statistically meaningful results
from 5NGPPs and discuss themagnitude and variability of stack
emissions. A companion paper is being prepared to investigate
the measured CO2 emission rates (ERs) as compared to AMPD
reported CO2 ERs.

30

■ MATERIALS AND METHODS

Instrumentation. Flights were conducted using Purdue’s
Ai rborne Labora tory for Atmospher ic Research
(ALAR),11,31−34 which is a modified twin-engine Beechcraft
Duchess aircraft. ALAR is outfitted with a global positioning and
inertial navigation system, a Best Air Turbulence probe for high
precision 3-dimensional wind measurements,35 and a model
G2301-m Picarro Cavity Ring Down Spectrometer designed for
0.5 Hz airborne measurements of CO2, CH4, and H2O.

36 We
conducted multiple three-point calibrations each flight using
NOAA-certified standard cylinders containing CO2 and CH4,
with concentrations that bracket the range of typical
observations. A direct absorption ethane (C2H6) spectrometer
designed by Aerodyne Research and modified at Harvard
University was added to ALAR for a subset of flights (see SI for
instrument details).

Flight Design and Site Selection.We conducted a total of
23 flights at 14 NGPPs to quantify NGPP CH4 emissions.
Combined, these plants represent 3.4% and 1.5% of NG and
total U.S. nameplate capacity, respectively.37 A principal goal of
this study was to produce a representative data set; thus, NGPPs
were chosen to include a variety of regions, firing methods,
maximum capacities, ages, and operation types, as shown in
Table 1.17 These NGPPs are relatively new, but this is to be
expected as ∼70% of NGPP capacity comes from units ≤20
years old.37 Operation type refers to a unit’s typical generation
and is defined here as baseload units operating >70% of the year,

Table 1. Key Parameters Describing the NGPPs Studieda

ID state firing method max capacity (MW) operation type commercial operating date

P1 UT combined cycle 560 intermediate 2005
P2 UT combined cycle 1180 intermediate 2007, 2014
P3 IL combined cycle 1310 baseload 2002
P4 IL combined cycle 680 peaking 2002
P5 IN combined cycle 730 baseload 2002
P6 FL combined cycle 3530 baseload 2009, 2011
P7 FL simple thermal 1070 baseload 2013
P8 FL combined cycle 1190 baseload 2014
P9 FL combustion turbine 790 intermediate 2002
P10 FL 50% combined cycle, 50% combustion turbine 2100 intermediate 2003, 2009
P11 OH combined cycle 760 baseload 2012
P12 OH combined cycle 590 baseload 2012
P13 OH combined cycle 940 baseload 2003
P14 MI 50% combined cycle, 50% combustion turbine 1000 baseload 2001, 2002

aOperation types are based on the most active units (e.g., a plant with 1 baseload and 3 intermediate units is labeled baseload). Maximum
capacities are calculated from the maximum hourly heat input from AMPD,23 and the heat rate from the U.S. Energy Information Administration.22

Commercial operating dates are from AMPD data and news articles for the plants. Multiple years are listed when additional units were added, and
conversion dates are used if plants were converted to gas.
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intermediate units operating 30−70%, and peaking units
operating <30% of the year based on AMPD data.23

We performed MBEs during each flight to quantify ERs and
stack measurements of ΔCH4/ΔCO2 ratios. Flights also
included either a circle around the NGPP or an upwind
horizontal transect to determine if other sources could influence
downwind measurements. MBEs were conducted by flying
multiple horizontal transects, typically in 250 ft intervals, at a
fixed distance (∼3 km) downwind of the site from as low to the
ground as is safe to the highest altitude where emissions could be
seen, often with a vertical spiral through the downwind plume
(see Figure S3). The transects extend sufficiently beyond the
edges of the plume so that GHG concentrations return to
background concentrations. A standard linear regression is fit
through this background concentration to estimate the trans-
ect’s background.38 MBE ERs of CH4 are then calculated
according to eq 1.

U x zMBE ER ( C C ) d d
Z

x

x

0
b

i∫ ∫= [ ] − [ ] ×
− ⊥ (1)

In eq 1, the CH4 enhancement ([C] − [C]b) is calculated as
the difference between the instantaneous measurement and the
background. This enhancement (mol/m3) is multiplied by the
10 s rolling-averaged perpendicular component of the wind
speed, U⊥ (m/s). These pointwise fluxes (mol/m2s) are then
interpolated to a two-dimensional gridded surface by kriging39

and integrated horizontally across the length of the plume (−x to
x) and vertically from the surface to the top of the boundary
layer (0 to Zi) to provide ERs (mol/s) that are converted to
kilograms per hour for consistency with AMPD values
(uncertainty calculation is detailed in the SI). Low wind
conditions increase the ER uncertainty as transects are less likely
to capture all emissions withmeandering winds, so several flights
use the stacked closed-path method discussed by Conley et al.40

to obtain an ER, as it is more likely to capture all emissions in
such conditions. The uncertainty estimates for this method are
described in detail by Conley et al.40 and include uncertainties
associated with wind speed and direction, precision of the
chemical species monitor, and the circle-to-circle variability in
calculated horizontal fluxes, caused by stochastic turbulence.
Calculation of EFs and Stack ERs. To quantify the impact

of nonstack emissions, stack ΔCH4/ΔCO2 ratios are multiplied
by the measured CO2 ER to calculate a theoretical CH4 ER

(stack ER) according to eq 2. Stack ratios were calculated in a
similar manner to previous studies17,41,42 with details provided
in the SI. Any MBE ERs that are substantially greater than the
stack ER would indicate potential facility-scale CH4 leaks.

average stack ratio MBE CO ER mol wt. ratio
16
44

stack CH ER

2

4

× ×
=

i
k
jjj

y
{
zzz

(2)

A recent life cycle analysis of the NG supply chain estimated
the current supply chain loss rate at 2.3% of U.S. gross
production, ∼60% larger than EPA estimates.8 However, the
study authors were unable to update local distribution and end
user emissions due to insufficient information. To help address
this lack of information, we have also calculated loss rates for our
end user data using eqs 3 and 4. Equation 3 shows the calculation
of the CH4 throughput using the AMPD reported heat input, the
density of NG, the heat content of NG,43,44 and the assumption
that NG is 95% CH4. Equation 4 shows the calculation of loss
rates, and eq 5 shows the calculation of the throughput-based
EF. Both calculations rely on a theoretical CH4 ER (AMPD
stack ER) calculated according to eq 2 using the AMPDCO2 ER
instead of theMBECO2 ER to avoid incorporating any potential
biases of the MBE ERs.
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Table 2. Conditions and Date of Each Mass Balance Flighta

ID date (MM/DD/YY) time (local) wind direction (deg) wind speed (m/s) flight method

P6 11/12/16 13:50−15:40 145 ± 70 2 ± 1 DTd

P6 11/13/16 14:35−15:33 130 ± 10 4.1 ± 0.9 DT
P6 11/19/16 13:14−15:14 335 ± 30 4 ± 2 DT
P8 11/14/16 14:05−14:50 250 ± 10 3.2 ± 0.7 DT
P8 11/17/16 13:12−14:19 38 ± 8 8 ± 2 DT
P4 6/14/17 12:40−13:11 220 ± 13 7 ± 1 spirald

P4 6/21/17 14:50−15:40 250 ± 20 4 ± 1 spiral
P4 7/24/17 16:05−17:26 50 ± 10 4.2 ± 0.9 DT
P3 5/18/17 13:46−15:44 260 ± 10 13 ± 3 DT
P3 7/7/17 14:40−15:16 340 ± 10 11 ± 1 DT
P3 7/24/17 12:01−13:38 30 ± 20 5.5 ± 2 DTe

P2 10/12/17c 13:26−13:53 290 ± 50 2 ± 1 DTf

P2 10/13/17c 12:23−12:51 NAb 3b spiral
aUncertainties are 1σ. DT = downwind transects. bComplex wind conditions, see SI for details. cAMPD data shows the facility to be in startup,
having begun producing within the past 4 h. dCH4 emissions were too low to be quantified. eEmissions cannot be quantified because of
contamination from an upwind source. fEmissions could not be quantified due to incomplete plume capture downwind.
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■ RESULTS AND DISCUSSION
Analysis of Stack Emissions. Although all flights showed

ΔCO2, only 5 of the 14 NGPPs examined showed ΔCH4 above
atmospheric variability in the downwind transects, consisting of
10 flights and 15 MBEs. Each flight’s meteorological conditions
are described in Table 2. P6 was successfully sampled on 11/12/
2016, 11/13/2016, and 11/19/2016. P3, previously sampled by
Lavoie et al.,17 was sampled on three separate occasions, but the
third (7/24/17) showed evidence of an intermittent source
upwind of the plant and has thus not been used for MBE ER
quantification. P2, also sampled by Lavoie et al.,17 was sampled
on 10/12/2017 and 10/13/2017, but the 10/12 flight has been
considered unusable as incomplete plume capture would make

uncertainties in the MBE ERs large. P8 was sampled on 11/14/
2016 and 11/17/2016, and P4 was sampled on 6/14/2017, 6/
21/2017, and 7/24/2017, although we were unable to measure
stack plumes on 6/21/2017. However, the flight at P6 on 11/
12/2016, one of the MBEs at P3 on 5/18/2017, and the flight at
P4 on 6/14/2017 all showed no downwind ΔCH4.
We used eq 2 to compare stack ERs to downwind MBE ERs

and found no statistically significant difference. MBE ERs
calculated according to eq 1, stack ratios, and stack ERs
calculated according to eq 2 are provided in Table 3. In all cases,
there is agreement within uncertainty between stack ERs and
MBE ERs, although many flights exhibit large variability in stack

Table 3. MBE ERs, Stack Ratios, and Stack ERsa

ID date average stack ratio (CH4/CO2, mol/mol) CH4 MBE ER (kg/h) (eq 1) CH4 stack ER (kg/h) (eq 2)

P6 11/12/16 −3 (±7) × 10−4
NAb −70 ± 150
NAb −60 ± 120

P6 11/13/16 2 (±1) × 10−4
74 ± 15 53 ± 36
71 ± 18 46 ± 32

P6 11/19/16 1 (±3) × 10−4
89 ± 20 30 ± 96
135 ± 27 40 ± 140

P8 11/14/16 2 (±1) × 10−4 56 ± 22 21 ± 16

P8 11/17/16 3 (±3) × 10−4
8 ± 5 21 ± 13
13 ± 5 16 ± 14

P4 6/14/17 −0.7 (±6) × 10−5 NAb −0.5 ± 4
P4 6/21/17 NA 80 ± 30 NA

P4 7/24/17 1.8 (±0.4) × 10−3
113 ± 22 99 ± 29
42 ± 12 91 ± 28

P3 5/18/17 3 (±2) × 10−4
NAb 22 ± 17

15.6 ± 8.6 24 ± 18

P3 7/7/17 3 (±3) × 10−4 36.6 ± 7.5 70 ± 78
P2 10/13/17 2 (+3/−2) × 10−2 22 ± 47 350 + 660/−350

aAll uncertainties are 1σ. Uncertainty lower limits are set to 0 for P2 as stack data were highly variable but consistently positive. bCH4 emissions
were too low to quantify.

Figure 1. Stack samples from P3 measured from 3:46 to 3:59 local time on 5/18/2017. Each stack sample was measured by flying directly over the
stacks with/against the mean winds. As such, some plumes were followed further downwind, up to a maximum distance of 5 km. The large variability in
the slope, equivalent to the ΔCH4/ΔCO2 stack ratio, over short time scales can be seen. This leads to large uncertainties in the flight averaged stack
ratios in many cases. That should not be confused with uncertainty in the individual slopes.
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ratios leading to large uncertainties in stack ERs. This suggests
that all CH4 emissions measured were uncombusted fuel CH4.
Our flights have shown highly variable ΔCH4/ΔCO2 stack

ratios for individual power plants even over the short time scale
from one pass over the stack to the next. The flight at P3 on 5/
18/2017 included significant stack measurements to investigate
the extent to which CH4 emissions were from the stack as
compared to equipment on-site, and to more thoroughly
investigate the high variability in ΔCH4/ΔCO2 stack ratios.
Figure 1 highlights the temporal variability in unburned CH4
observed in the stack emissions for P3, covering just one 13 min
window. In that 13 min period, the slopes spanned a range of
∼25, not including the one case with a negative slope (discussed
below). The data plotted in Figure 1 represents ΔCH4/ΔCO2
for short-term simultaneous spikes in CH4 and CO2, which are
background-subtracted using a linear regression through the
data immediately pre- and post-plume as shown in Figure S5.
Thus, we believe the observed variability is not influenced by
variability in background values. Each stack plume measured is
regressed in a similar manner as in Figure 1, and the slope
represents the ΔCH4/ΔCO2 ratio for that individual plume,
hereafter referred to as a stack sample. Figure 2 shows a

histogram of stack samples for P3 across three different flight
days. For comparison, a histogram of all stack samples across all
CC facilities is shown in Figure 3. Themedian corresponds to an
unburned CH4 fraction of 0.01% in Figure 3 compared to
0.024% in Figure 2. These highlight the high combustion

efficiency of these plants, high enough that in some cases there is
less CH4 in the exhaust than in the intake air.
Unexpectedly, at a small number of facilities, we measured

CH4 depletions during stack sampling. Figure 4 shows an

extreme case that we observed, and Figure 5 shows the
regressions for multiple stack samples with statistically
significant negative slopes. Because such signals are then diluted
and dispersed downwind, we have not observed any statistically
significant depletions of CH4 during downwind MBEs. We
hypothesize that the most likely cause for this phenomenon is a
highly efficient combustion process that consumes all fuel CH4
and a small fraction of ambient CH4 from the combustion
turbine’s intake air. A similar hypothesis was provided by Fischer
et al.20 when similar depletions were observed while studying
household appliances. Although we collected C2H6 data for a
small number of stack samples that showed CH4 depletions,
none show a clear ΔC2H6. One of the largest CH4 depletions
was 3.7% depleted relative to background. This would
correspond to a 0.037 ppb theoretical C2H6 depletion from
the 1 ppb background, assuming equal percent background
depletion. This is within atmospheric variability and just above
instrumental precision. The Picarro measures H2O concen-
trations and reports real-time dry CO2 and CH4 concentrations
which have been used in all analyses. All stack CH4 data was also
corrected for the dilution impacts of CO2 given the large CO2
concentrations measured, but this is a minor impact at only 0.1
ppb for a 1500 ppm ΔCO2 and 70 ppb ΔCH4.
One NGPP (P2) exhibited large CH4 emissions on two

separate flights, both of which includedC2H6measurements. On
10/12/2017, there were no stack measurements, and the vertical
extent of the plume was not well captured; therefore, the flight
could not be confidently used to calculate anMBEER.However,
the flight shows clear downwindΔCH4 andΔC2H6 of up to 470
and 15 ppb, respectively, withΔCO2 of ≤2 ppm, which is much
smaller than typically seen. The flight on 10/13/2017 showed
stackΔCH4/ΔCO2 ratios that were up to 3 orders of magnitude
(to 13% indicated CH4) larger than those observed at all other
NGPPs, with concurrent emissions of CH4, CO2, and C2H6
throughout the flight, as shown in Figure 6A. Some stack
samples even showed CH4 and C2H6 concentrations above the
dynamic range of the ethane analyzer but with CO2 signals
comparable to those observed at other facilities (Figure S1).
AMPD data for both P2 flights show that the facility was within 4
h of starting up, suggesting these may be emissions associated
with the startup condition. To ensure that all measured CH4 was
from NG in this city environment we compared the ΔC2H6/
ΔCH4 ratio to pipeline reports (Figure S2). Both flights show a
ratio∼25% lower than pipeline data but also show a highly linear

Figure 2.Histogram of all stack samples from P3 across all 3 flight days,
excluding data with evidence of an upwind source on 7/24/17.N = 44,
mean = 2.9 × 10−4, and median = 2.4 × 10−4.

Figure 3. Histogram of all CC stack samples from all flights excluding
P2 (discussed separately in Figure 6), including those without CH4
enhancements and those with CH4 depletions. N = 149, mean = 2 ×
10−4, and median = 1 × 10−4. The majority of samples show a near 0
ΔCH4/ΔCO2 stack ratio highlighting the high combustion efficiency of
these plants.

Figure 4. Example negativeΔCH4 stack measurements from the 7/11/
2017 flight at P12. We suggest that this represents partial consumption
of intake air’s background CH4.
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ΔC2H6 versus ΔCH4 relationship as shown in Figures 6B and
S2, which suggests all emissions are from a thermogenic source.
This discrepancy in ΔC2H6/ΔCH4 may be caused by a
combustion skew as the rate constant for CH4 oxidation by
OH radicals is ∼20% as large as that for the C2H6−OH reaction
at 1600 °C.45,46

Natural Gas Power Plants as CH4 Emitters.We used eqs
3−5 to convert the stackΔCH4/ΔCO2 ratio into useful metrics
in understanding NG leaks. The AMPD stack ERs, throughputs,
loss rates, EFs, and reported AMPD CO2 ERs are presented in
Table 4. The EFs are directly compared to the EPA EFs of 1 g/
MMBTU (GHGRP) and 3.9 g/MMBTU (GHGI) in Figure 7.
Although the average EF is consistent with EPA EFs, two

plants show noticeably higher EFs (Table 4). P4, the only
peaking facility studied, shows a slightly negative stack ratio for
one flight and high stack ratios relative to the EPA EFs for the
other two. The only other noteworthy aspect of P4 is the slightly
lower load relative to the maximum capacity which was ∼60%
across all flights as compared to 70−80% at all other CH4
emitting facilities, excluding P2. AMPD reported CO2 ERs were
similar across the three flights with 170 Mg/h on 6/14 and 180
Mg/h both other flight days. Including CC plants that did not
show downwind ΔCH4, but excluding P4 and P2, the average
loss rate is 0.014 (+0.021/−0.014)% (see Table S1) which is
consistent with Lavoie et al.17 who reported stack loss rates of

0.05 (±0.06)%. The average stack EF calculated using all CC
stack data other than P2 is 5.4 (+10/-5.4) g/MMBTU (see
Table S1). Because of the significant variability in stack samples
(Figures 1 and 6) and to some degree cases with depleted CH4
(Figures 4 and 5), propagated uncertainties are large, but we are
representing them with a 0 lower limit given our data does not
indicate negative emissions at the scales a symmetric uncertainty
would suggest.
P2 is the only facility measured during startup and it showed a

substantially higher EF than other facilities, as shown in Figure
6A. As P2 is the only facility that was sampled during startup, we
do not know if our observations are broadly representative of
startup emissions. EPA’s AP-4229 explains that EFs are based on
efficient combustion under high operating conditions (≥80% of
max capacity) and that emissions during lower operating
conditions or frequently changing loads such as startup are
likely larger. If the large loss rate measured for P2 is common
during startup it could have important implications for the
climate benefits of NGPPs. Peaking facilities that are designed
for faster startups and more flexible loads may show different
startup emissions.
Our EFs were used to estimate annual national CH4 emissions

from CC NGPPs with and without accounting for the large
startup emissions. To account for startup emissions, we
calculated the average duration of startup across the CC plants

Figure 5. Stack samples on 7/11/2017 for P12 that show consistent anticorrelatedΔCH4. This shows that the anticorrelation is consistent throughout
the dips.

Figure 6. (A) Log scale showing the ratio ofΔCH4/ΔCO2 in each plume (both stack andMBE) from P2 on 10/13/2017. Samples 1−11 are from the
MBE. These ratios are at least an order of magnitude larger than those seen at other facilities, although they are also much more variable. (B)
Regression ofΔC2H6 versusΔCH4 for all plumes with usable C2H6 data for 10/13/2017. The linearity of the data suggests a single thermogenic source
of CH4.
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studied (4 h) and use this to calculate the heat input consumed
during startup for all CC facilities in 2017 (3.519%, calculations
detailed in the SI). P2’s EF was then applied to 3.519% of 2017
CC heat input23 and the average stack EF of 5.4 (+10/−5.4) g/
MMBTU was applied to the remainder. When incorporating
startup emissions like this, we calculate 170 (+200/−170) Gg
CH4 emitted as uncombusted CH4 compared to 44 (+81/−44)
Gg without accounting for startup (calculations detailed in SI).
On the basis of $3.52/thousand ft3 of NG,47 these emissions are
equivalent to 9 (+16/−9) million dollars of CH4 lost or 33
(+40/−33) million dollars if including startup losses (calcu-
lations detailed in SI). For comparison, CC NGPPs purchased
29.0 billion dollars’ worth of NG CH4 in 2017 (calculation
provided in the SI). The U.S. GHGI estimates 2016 CH4
emissions from NG systems as 6.54 Tg. Therefore, emissions
from NGPPs contribute in the range of 0.7−2.6% to the total
CH4 emissions from NG systems, depending strongly on the
impact of startup conditions.
End users of NG, such as NGPPs, have been poorly studied

and our work suggests that they could play a meaningful role in
supply chain CH4 emissions, particularly if the measured startup
emissions are common. Although highly variable, startup
emissions were up to several orders of magnitude larger than

continuous operation emissions and warrant further study.
Future work should also further investigate peaking NGPPs as
they have more variable loads and startup more often but also
more quickly. Additionally, shutdown emissions were not
observed in this work but may show high emissions similar to
startup given shutdown also involves quickly changing, low
loads. Airborne measurements provided a useful snapshot of
emissions in this work but continuous measurement systems like
CEMS, given the variability seen, would likely prove more
informative in the future. As such, cooperation with facilities is
vital. Further improving our understanding of NGPP emissions
will help fill a gap in the understanding of supply chain losses and
could lead to changes in utility operations to minimize startup
emissions.
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Qualitative plot of large CH4 and C2H6 observed from P2,
a comparison of P2 stack data to pipeline data, a detailed
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Table 4. Calculated Emissions Data Based on the Average Stack ΔCH4/ΔCO2 Ratio and AMPD Dataa

ID date AMPD CO2 ER (Mg/h) AMPD stack ER (kg CH4/h) stack EF (g/MMBTU) throughput (kg CH4/h) loss rate (%)

P6 11/12/16 710 ± 100 −90 ± 180 −7 ± 13 230 000 −0.04 ± 0.08
P6 11/13/16 850 ± 120 51 ± 32 3.2 ± 2.0 275 000 0.018 ± 0.012
P6 11/19/16 970 ± 140 30 ± 110 1.9 ± 6.2 311 000 0.011 ± 0.035
P8 11/14/16 200 ± 30 17 ± 10 4.6 ± 2.8 64 000 0.026 ± 0.016
P8 11/17/16 240 ± 30 30 ± 26 6.6 ± 5.7 78 000 0.038 ± 0.033
P4 6/14/17 170 ± 20 −0.5 ± 4 −0.2 ± 1.2 54 000 −0.0009 ± 0.0067
P4 6/21/17 180 ± 20 NA 23.6 ± 8.4b 57 000 0.136 ± 0.048b

P4 7/24/17 180 ± 20 117 ± 31 35.5 ± 9.3 57 000 0.204 ± 0.054
P3 5/18/17 420 ± 60 43 ± 30 5.5 ± 3.9 136 000 0.031 ± 0.022
P3 7/7/17 440 ± 60 41 ± 43 5.0 ± 5.2 143 000 0.029 ± 0.030
P3 7/24/17 430 ± 60 63 ± 63 7.8 ± 7.9 138 000 0.045 ± 0.045
P2 10/13/17 62 ± 9 510 + 760/−510 440 + 660/−440 20 000 2.5 + 3.8/−2.5

aUncertainties represent 1σ based largely on the propagated uncertainty of the stack ratios. AMPD uncertainties are 14% based on the calculation
discussed by Peischl et al.19 All data shown other than for 6/21 is unrelated to the MBE ER data and as such unaffected by any potential bias in the
MBE method. bNo stack data was collected for this flight, so the MBE ER was used as the numerator in eqs 4 and 5 instead. Propagated
uncertainties include the MBE uncertainty instead of the variability of stack samples throughout the day for this flight.

Figure 7. Log plot of EFs calculated from stack data from each flight. 1σ uncertainties are based on the variability across all stack samples that flight. The
GHGRP andGHGI EFs of 1 g/MMBTU and 3.9 g/MMBTU respectively are shown for comparison. The average EF includes all CC stack data except
for P2, regardless of downwind CH4 emissions. Uncertainty bounds that are near or <0 are not shown. The measured EFs and the EPA EFs for most
flights are statistically indistinguishable, with most EFs lying closer to the GHGI value, compared to the GHGRP value.
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path, a description of an off-lake breeze seen on the 10/
13/17 flight at P2, a discussion of the LOD approach used
to calculate stack ratios for flights without CH4 in the
stacks, a detailed discussion of the uncertainty calculation
for MBE results, and detailed discussions of the
calculations for stack emission ratios, national annual
emissions with different GWPs, national annual emissions
based on measurements, and the cost of national annual
emissions (PDF)
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