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ABSTRACT

Buildings are one of the fundamental sources of geospatial information for urban

planning, population estimation, and infrastructure management. Although building extraction

research has gained considerable progress through neural network methods, the labeling of

training data still requires manual operations which are time-consuming and labor-intensive.

Aiming to improve this process, this thesis developed an automated building extraction method

based on the boundary following technique and the Mask Regional Convolutional Neural

Network (Mask R-CNN) model. First, assisted by known building footprints, a boundary

following method was used to automatically best label the training image datasets. In the next

step, the Mask R-CNN model was trained with the labeling results and then applied to building

extraction. Experiments with datasets of urban areas of Bloomington and Indianapolis with 2016

high resolution aerial images verified the effectiveness of the proposed approach. With the help

of existing building footprints, the automatic labeling process took only five seconds for a

�冐冐 � �冐冐 pixel image without human interaction. A 0.951 intersection over union (IoU)

between the labeled mask and the ground truth was achieved due to the high quality of the

automatic labeling step. In the training process, the Resnet50 network and the feature pyramid

network (FPN) were adopted for feature extraction. The region proposal network (RPN) then

was trained end-to-end to create region proposals. The performance of the proposed approach

was evaluated in terms of building detection and mask segmentation in the two datasets. The

building detection results of 40 test tiles respectively in Bloomington and Indianapolis showed

that the Mask R-CNN model achieved 0.951 and 0.968 F1-scores. In addition, 84.2% of the

newly built buildings in the Indianapolis dataset were successfully detected. According to the

segmentation results on these two datasets, the Mask R-CNN model achieved the mean pixel

accuracy (MPA) of 92% and 88%, respectively for Bloomington and Indianapolis. It was found

that the performance of the mask segmentation and contour extraction became less satisfactory

as the building shapes and roofs became more complex. It is expected that the method developed

in this thesis can be adapted for large-scale use under varying urban setups.
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INTRODUCTION

1.1 Background

Nowadays, building detection is one of the most important tasks for interpreting satellite

remote sensing data. It plays a significant role in city planning, population estimation, and many

other applications (Yang et al. 2019). To achieve satisfactory results, manually labeling

buildings still is required, which is very time consuming, especially in high resolution imagery.

Therefore, developing an automatic and effective building extraction method would be a

tremendous achievement.

Research related to automatic building detection began in the late 1980s. Since the

resolution of the images of that period was low, the developed algorithms were limited to

low-level features such as edges, lines, and corners. These primitives were grouped to generate

higher level features, such as rectangles and parallelograms (Lin and Nevatia 1998), which then

were used in a verification process to determine the final building polygons. Until now, a set of

building detection studies have continued to follow this simple approach: first detect the

building with respect to its edges or contours, and then decide whether the object is a building

based on user-defined geometric rules. Saeedi and Zwick (2008) and Guducu and Halici (2010)

detected lines from an image, and then eliminated some of the lines according to geometric

constraints dominated by user-defined parameters. In the verification process, the candidate

buildings were verified by their rectangle and corner evidence.

The building height and the illumination angle of the sun make the shadow areas

important clues about the building’s location in optical remote sensing images. Liow and

Pavlidis (1990) used shadows to determine the edges and corners of a building and then

completed their boundary grouping process with shadow information. Peng et al. (2005) adopted

a snake algorithm to detect the contours of candidate buildings and then refined the building

candidates with their shapes and shadows. Izadi and Saeedi (2010) applied mean-shift

segmentation and a set of shape-based rules to obtain candidate rooftops and then verified these

candidates from shadow evidence.

Due to on-going advances in line feature extraction over time, a variety of methods based

on Hough transform have been proposed to extract building from aerial images. Cha et al. (2006)
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developed a probabilistic Hough transform algorithm to detect the lines in the image, and a

rectangle was detected when the four peaks of the Hough image satisfied certain geometric

conditions. Candidate rectangles then were able to be verified by shadow evidence (Jung and

Schramm 2004). Hough transform was used to verify candidate buildings detected by

mathematical morphology (Pakizeh and Palhang 2010). Differential morphological profiles

(DMPs) are widely used in building detection since they can determine the morphological

characteristics of connected components in an image through morphological reconstruction.

DMPs are usually applied to detect initial building candidates, then Hough transform or shadow

information are used for building verification (Jin and Davis 2005, Aytekin et al. 2009,

Sportouche et al. 2009).

Although the above methods seem reasonable, some issues still exist. First, many building

edges and lines cannot be correctly detected even in high spatial resolution images. Moreover,

many false edges and lines can be extracted, generating incorrect hypotheses. The second issue

is that the user-defined rules mentioned above are mostly threshold-dependent, which means

they are not applicable for all types of situations. Therefore, building detection methods based

on only low-level features are inadequate for detecting buildings with arbitrary shapes (Yuksel

2012).

Instead of using low-level features, the following studies applied supervised or

unsupervised pattern recognition methods with spectral features. Lee et al. (2003) first

segmented an image with ISODATA (Ball and Hall 1965) and then extracted a set of spectral

features from the segments, followed by an multi-class process of classification using ECHO

(Kettig and Landgrebe 1976). Sirmacek and Unsalan (2008) first used invariant color features to

detect buildings with red rooftops in an image, from which they then detected missing buildings

by using shadow information. In order to accurately determine building shapes, they also applied

box fitting to refine the building edges.

In recent years, deep learning methods, such as the Convolutional Neural Network (CNN)

and the Recurrent Neural Network (RNN), are gradually dominating the field of pattern

recognition. Deep learning has enabled significant progress in image classification, image

semantic segmentation, and object detection. Inspired by these recent achievements, increasingly

more researchers in the remote sensing field are applying deep learning techniques to building

extraction. Vakalopoulou et al. (2015) proposed an automated building detection method based



15

on deep convolutional neural networks. They employed a support vector machine (SVM)

classifier with a large training dataset and then used a Markov random field (MRF) model to

refine the pixel-level classification results. Makantasis et al. (2015) proposed a building

detection framework from hyperspectral data based on deep learning classification. The spectral

and spatial information of the pixels were effectively exploited by a CNN and then the

classification task was conducted by a multi-layer perceptron (MLP). Xu et al. (2018) designed a

neural network based on a deep residual network for image segmentation. They trained the

network to extract the building at the pixel level and then employed a guide filter to optimize the

classification results.

1.2 Related works

In an object extraction problem, a feature of an object is called an invariant of the object

(Arica and Vural 2003) if it does not change among different images. For a robust object

detection algorithm, it is essential to obtain an invariant of the object.

Before deep neural networks were widely used for object detection and segmentation

tasks, classical object detection methods were mainly based on extracting feature descriptors,

such as the histogram of orientated gradients (HOG) (Dalal and Triggs, 2005) or scale-invariant

feature transform (SIFT) (Lowe 1999) with subsequent classification by a linear classifier, such

as SVM. The basic idea of HOG is characterization of the shape of the structure by the

distribution of local intensity gradient or edge detection. HOG first divides an image into a set of

spatially-overlapped blocks. Then, each block is further divided into smaller n*n cells, where

each cell contains a fixed number of gradient bins. Each pixel in the cell yields a score for the

gradient orientation bin, which is proportional to the magnitude of the gradient at that pixel. The

gradient orientations are quantized into several bins once the intensity gradients of each pixel are

computed. In practice, HOG uses a “sliding window” (Sermanet et al. 2013) approach to extract

and classify the regions at multiple scales and aspect ratios. Finally, the feature vector is

processed by a linear classifier, such as SVM, to generate the final output. Although HOG

characterizes the relationship between the pixels of the image well, it lacks robustness with

respect to occlusion and deformation. HOG’s low detection speed and accuracy also preclude its

use in many applications (Zafar 2018).
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SIFT is an image descriptor that has proven to be very useful for image matching and

object recognition under real-world conditions due to its invariance to rotations, translations, and

scaling transformations during image processing (Lowe 1999). SIFT first extracts the key points

from labeled grayscale images by creating a scale space that is obtained by constructing a set of

Gaussian-blurred images. Then, a feature vector is computed by finding the histogram of the

gradient directions in a local neighborhood around each key point, whereby the poor key points

(e.g., low contrast regions) are eliminated; and calculations are carried out for the remaining key

points to remove the effect of orientation. Finally, Hough transform is applied to identify the

clusters that form a specific object and the probability of a feature representing an object is

computed. A set of building detection methods based on SIFT also has been proposed. For

example, Sirmacek and Unsalan (2009) proposed an approach that combined SIFT and graph

theoretical tools for urban area building detection. Tao et al. (2011) detected airports from high

resolution images using an improved SIFT matching method.

However, it is difficult to find an invariant since buildings vary in terms of shape, size,

color and texture. Therefore, applying a deep learning method to extract the deep learning

features is a more practical and effective approach. This will be the focus of this section.

1.3 Deep learning methods

In deep learning (LeCun et al. 2015), one of the deep neural networks is CNN, which is

designed to solve difficult pattern recognition tasks (LeCun et al. 1998). As shown below in

Figure 1.1, a typical CNN is consisting of three basic types of layers: 1) convolutional layers, 2)

pooling layers, and 3) fully connected layers. The convolutional layer is the fundamental

component of CNNs that relate to feature extraction of the input imagery. A convolutional layer

is comprised of a set of convolution kernels of different sizes. These kernels are convolved with

the input image to generate a 2D feature map. The pooling layers are applied to reduce the

number of parameters and the model’s computation time. During the pooling process, the feature

of a certain location is replaced with a summary statistic of the neighbor features. There are

many common pooling functions, such as the max pooling (Ranzato et al. 2007) and the average

pooling (LeCun et al. 1998). In practice, it is recommended to use the max-pooling (Scherer et

al. 2010). The max-pooling function takes a square region as its input and outputs the maximum

value of the pixels in the region. The fully connected layer is the final layer of a CNN that
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contains a number of neurons that are connected to each other between two adjacent layers. The

fully connected layers are usually added to the end of CNNs to perform classification based on

the features generated by the previous layers (Gu et al. 2018).

Figure 1.1. Illustration of a simple CNN for image classification (adapted from LeCun et al.
1998)

The increasing complexity of image classification problems necessarily requires higher

performance CNNs. The most straightforward way to improve the performance of CNNs is by

increasing their depth and width. Many well-known deep CNNs such as VGGNet (Simonyan

and Zisserman, 2015) and AlexNet (Krizhevsky et al. 2017), are formed by simply stacking up

many convolutional layers, pooling layers, and fully-connected layers. In those deep CNNs,

back-propagation of the gradients is needed since the information flowing through the network

passes through many stages of multiplication. This typically causes the gradients to either

explode or vanish. The gradient exploding problem can be solved easily by applying gradient

clipping. However, gradient varnishing is quite difficult to overcome due to problems such as

the use of saturated activation functions such as the hyperbolic tangent or the logistic sigmoid

(Xu et al., 2016). Therefore, using non-saturated activation functions, such as ReLU (Glorot et

al., 2011) and Leaky ReLU (Goodfellow et al. 2016) as alternativesn is recommended. In

practice, other layers, such as dropout (Srivastava et al. 2014), batch normalization (Ioffe and

Szegedy, 2015), and group normalization (Wu and He, 2018) are often added to CNNs to

improve performance and to avoid overfitting. Graphs of four different activation functions are

shown in Figure 1.2. For the sigmoid function and hyperbolic tangent function, if the input value

is very high or very low, the gradient is close to 0, which results in a gradient varnishing

problem (Nwankpa et al. 2018). However, the gradient of ReLU (the gradient varnishing
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problem of negative input can be removed by low learning rate) and Leaky ReLU is 1 when the

input is positive, which can avoid the gradient varnishing problem (Xu et al. 2015).

Figure 1.2. Comparison between four activation functions (adapted from Zafar 2018).

To further improve the performance of CNNs in training at very deep networks, residual

network (ResNet) has been proposed (He et al., 2016). ResNet adds “shortcut” connections to

standard CNN layers to enable the gradient signal to travel back from later layers to earlier

layers. With the help of the “shortcut” connections, ResNet can successfully train very deep

CNNs with 50, 101, and even 152 layers. Inspired by the success of “shortcut” connections in

CNNs, Huang et al. (2017) proposed a novel network called dense convolutional network

(DenseNet). The core idea of DenseNet is the use of multiple densely connected blocks in which

all the layers are directly connected with each other. In that way, a layer in a dense block can use

the feature maps of all the preceding layers in the block as inputs. Therefore, DenseNet achieves

state-of-the-art performance with fewer parameters and less computation compared to other

networks.

1.3.1 One-stage detector based method

Inspired by the success of CNNs in image classification, an increasing number of

researchers have applied CNNs to solve the more challenging task of object extraction. The

main purpose of object extraction is to localize and classify existing objects in images. In the

past few years, many CNNs based on object extraction methods have been proposed, which can
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be divided into two general categories: 1) models based on regression with one-stage detectors,

such as You Only Look Once (YOLO) (Redmon et al. 2016), and 2) models based on region

proposal with two-stage detectors like Mask R-CNN (He et al. 2017).

One-stage detectors take an image as the input and learn the class probabilities and

coordinates of a bounding box by treating the above tasks as a simple regression problem.

YOLO is a real-time object detection model that predicts class probabilities and bounding boxes

in a single evaluation. The architecture of YOLO is shown in Figure 1.3. YOLO is extremely

fast since it unifies region proposal and region classification into one single neural network.

However, there are two major drawbacks that reduce the accuracy of YOLO. First, there is a

considerable number of localization errors and low recall compared to the region proposal-based

methods. To address the above drawbacks of YOLO, YOLOv2 (Redmon and Farhadi 2017) and

YOLOv3 (Redmon and Farhadi 2018) were proposed. In order to regularize the model and

improve its convergence, YOLOv2 adopted batch normalization on all the convolution layers.

Instead of directly predicting the coordinates of the bounding boxes with the fully-connected

layers, YOLOv2 predicts the location of the anchor boxes with the convolutional layers. In

addition, YOLOv2 employs a higher resolution classifier to generate fine-grained features. With

the above enhancements, YOLOv2 achieved 4% improvement in the mean average precision

(mAP). YOLOv3 employs a new base model called Darknet-53 which has residual blocks. To

improve the performance in small object detection, YOLOv3 applies a shortcut connect which

allows the model to obtain finer grained information from the earlier feature map. Some

methods based on YOLO have been employed in building detection. Xie et al. (2020) proposed

a Locally Constrained (LOCO) YOLO model to detect small densely distributed building

footprints. By employing LOCO as an invariant of YOLO, the model is able to improve the

robustness of building size predictions. Ma et al. (2020) used an improved YOLOv3 model to

detect collapsed buildings in post-earthquake remote sensing images and achieved a target

precision of 90.89%.
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Figure 1.3. Illustration of YOLO architecture. (adapted from Redmon et al. 2016)

Single shot multibox detector (SDD) is another typical one-stage object detector (Liu et

al., 2016). It solves the drawbacks of YOLO by a series of modifications: 1) prediction is

performed at multiple feature maps from the later stage of a network to allow detection at

multiple scales; 2) small convolutional filters are employed for predicting the object class and

offsets in the bounding box locations; and 3) separate filters are utilized to predict objects at

different aspect ratios. A VGG-16 model pre-trained on the ImageNet dataset is employed as the

base network for feature extraction. Unlike YOLO, which operates on a single scale feature

map, SDD adds an extra feature layer to the end of the base network to enable detection at

multiple scales. Instead of employing a fully-connected layer for producing predictions like

YOLO, SDD attaches a set of small convolutional filters to each added feature layer and uses

them to predict object classes and offsets in bounding box locations. Default boxes with

different scales and aspect ratios are also applied to several feature maps of different resolution.

An example of building detection at multiple scales and aspect ratios based on SDD is shown in

Figure 1.4. These modifications allow SSD to effectively detect objects at multiple scales and

aspect ratios and make SSD both faster and more accurate than YOLO.
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Figure 1.4. Illustration of SDD. SDD employs feature maps with different scales (8*8 in (b)
and 4*4 in (c)) and default boxes of different aspect ratios to enable detection of buildings (a) at
multiple scales and aspect ratios. (adapted from Liu et al. 2016)

1.3.2 Two-stage detector based method

Two-stage detectors such as Mask R-CNN use region proposal networks (RPNs) to

generate regions of interest (RoI) at the first stage, which are then sent to the second stage for

object classification and bounding box regression. In fact, Mask R-CNN was developed from a

series of CNN models, such as R-CNN (Girshick et al. 2014), Fast R-CNN (Girshick 2015), and

Faster R-CNN (Ren et al. 2015). Girshick et al. proposed a Region-based convolution neural

network (R-CNN), which combines region proposals with CNNs to detect objects in an image

via bounding boxes. R-CNN model consists of three steps. First, the selective search is used to

generate region proposals by scanning the input image for possible object. The selective search

algorithm is the most commonly used region proposal generation method that generates nearly 2,

000 region proposals per image. These region proposals are then warped into a CNN to extract a

fixed-length feature vector from each region in an image. Finally, feature vectors obtained from

the CNN are classified by a set of class specific linear SVMs. In addition, a linear regression

model is employed for refining the bounding boxes. The three steps of an R-CNN are shown in

Figure 1.5, Although, the R-CNN is intuitive, it still has many notable drawbacks. One of the

major drawbacks is long training time and large storing space of 2,000 region proposals.

Another major drawback is the fixed input size of region proposals that could lead to the

generation of bad candidate region proposals.
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Figure 1.5. An overview of R-CNN (adapted from Girshick et al. 2014).

To solve the drawbacks of R-CNN, Spatial Pyramid Pooling networks (SPP-nets) (He et al.

2015) were proposed. The structure of SPP-net is shown in Figure 1.6. SPP-nets first compute the

convolutional feature for the entire input image only once. Then, spatial pyramid pooling is

employed to generate a fixed-length representation on the shared feature maps. Finally, after a set

of linear SVMs are applied for proposal classification, a bounding box regressor is utilized for

bounding box refinement. By employing computation-sharing via shared feature maps, SPP-nets

can run faster than R-CNN; however, it has unresolved drawbacks, such as lengthy training time

and large feature storage space requirements.
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Figure 1.6. Structure of SPP-net (adapted from He et al. 2015).

To address the disadvantages of R-CNN and SPP-nets, Girshick et al. (2015) developed a

faster object detection algorithm, Fast R-CNN. Instead of feeding 2,000 region proposals to the

CNN every time, the Fast R-CNN executes the convolution operation only once per image, from

which a feature map is generated. Also, an RoI Pooling layer is employed for extracting a fixed

length feature vector for each proposal candidate. Their results indicated that the fast R-CNN was

10 times faster than R-CNN in training and 20 times faster in testing. Both R-CNN and Fast

R-CNN use selective search to find region proposals. However, its selective search was still a

slow and time-consuming process, which affected the performance of the network. Thereafter,

Ren et al. (2015) proposed a new object detection algorithm that eliminated the selective search

step and let the network itself detect the region proposals. The new algorithm is called Faster

R-CNN and its structure is shown in Figure 1.7. They built a separate network to predict the

region proposals and reshaped them with an RoI pooling layer, which was used to classify the

region proposals and predict the offset values of the bounding boxes. Development of the above

algorithms improved the speed and accuracy of object detection; but due to the drawbacks of RoI

pooling and the lack of pixel level segmentation, accurately extracting the location and boundary

of the object was still a problem.
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Figure 1.7. Structure of Faster R-CNN (adapted from Ren et al. 2015).

Mask R-CNN (He et al., 2017) extends Faster R-CNN to simultaneously detect objects in

an image and generates a high-quality segmentation mask for each object. Mask R-CNN adds a

mask branch to the detection network of Faster R-CNN to generate a binary mask for each RoI.

In order to fix the misalignment between the network input and output of Faster R-CNN, RoI

Align was proposed and utilized by the authors to preserve exact spatial location. To train the

network from end-to-end, a multi-task loss was proposed, which is a combination of a

classification loss, a bounding box loss, and a mask loss. The classification loss and the bounding

box loss are identical to those employed in Faster R-CNN, while the mask loss is an average

binary cross-entropy loss applied on a binary mask, each of which corresponding to a class.

In most of the deep learning tasks, a large amount of labeled data is needed to train the

model to learn the features as fully as possible. Although researchers have developed many

manual labeling tools, such as VGG image annotator (VIA) (Dutta and Zisserman 2019) and

LabelMe (Torralba et al. 2010), it is still a time consuming and laborious task. For example, it

takes five minutes to label an image with 30 objects. To address this problem, some annotation

tools have been developed to achieve auto-labeling. They allow one load of pre-annotated data

and apply artificial intelligence (AI) to annotate or label the dataset. In one image annotation

experiment, auto-labeling combined with human-powered review and improvements was 10%

faster than the 100% manual labeling process; however, the results also showed that it had
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more than a 5-pixel margin of error for objects and missed objects far from the camera

(Heffelfinger 2020). Auto-labeling tools can save a lot of time in the labeling process, but they

also can result in unsatisfactory quality of annotation. Therefore, quick and accurate data

labeling is still a common problem.

This thesis proposes a new automatic building detection method to effectively label a

dataset and to generate accurate building bounding boxes and masks. A Mask R-CNN model is

utilized for extracting building and evaluating the performance in terms of building detection

and mask segmentation.

1.4 Structure of the thesis

The remainder of this thesis proceeds as follows. Chapter 2 introduces the proposed new

automatic image labeling method and building extraction model. Chapter 3 describes the

orthoimages and building footprint data used in this thesis. Chapter 4 presents the experiments

and the corresponding results and analyses. Finally, Chapter 5 discusses the conclusions,

limitations, and recommendations for future research.
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METHODOLOGIES

As demonstrated in Figure 2.1, the proposed approach consists of two main parts: 1)

automatic image labeling based on boundary following and 2) building detection based on the

Mask R-CNN model. First, the building footprint is used to extract the candidate building area.

Then, the Sobel operator and a boundary following method are applied to extract building

contours and complete image labeling. Moreover, several data augmentation methods are

employed to increase the size of the training data. Finally, the Mask R-CNN model is used to

extract the buildings from the input images.

Figure 2.1. Flowchart of the proposed approach for automated building extraction.

2.1 Building boundary detection

This section introduces the proposed techniques for automatic image labeling in this thesis.

In deep learning tasks, the quality of the training dataset labeling is directly related to the

performance of the training model. However, many misalignments between building footprints

and ground truth can occur, as shown in Figure 2.2.

Figure 2.2. Examples of misalignments (yellow polygon) between footprint (red polygon)
and the ortho image.
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These misalignments are often due to the fact that the image used to digitize the footprint

does not correspond to the image being used for analysis (Vargas-Muñoz et al. 2018) (e.g., they

are from independent sources or the images are not perfectly orthorectified). Therefore, before

labeling the dataset begins, more accurate building contours must be determined. First, the

building footprint is applied to extract the candidate buildings from the input image. Then, a

Sobel operator is employed to locate the candidate edges of buildings. Next, the image of the

edge detection results is transferred to gray and binarized by a threshold. Finally, the boundary

following method is used to extract the building contours and to complete the image labeling.

2.1.1 Edge detection

Edge detection aims to detect and locate the edges of an image by the intensity changes.

Therefore, the key to accurate edge detection is to find the approximate absolute gradient

magnitude at each point of an input grayscale image (Vincent and Folorunso 2009). There are

many useful methods of edge detection, such as the Roberts operator, Prewitt operator, Sobel

operator, and Canny operator. The Sobel operator is simple and feasible and has a good

performance in edge detection on images with a gradual change of grayscale. Although the

Canny operator can produce a better result than the Sobel operator, it is time-consuming and

difficult to reach a real-time response. Therefore, the Sobel operator was chosen to detect the

edges in this thesis.

The Sobel operator is a discrete differential operator that combines Gaussian smoothing and

differential derivation. It introduces the concept of weight, which assumes that the distance

between adjacent pixels has different effects on the current pixel. The closer a pixel corresponds

to the current pixel, the greater the impact, thus achieving image sharpening and highlighting the

edge contour. The Sobel operator uses a 3 3 convolution mask in the horizontal and vertical

directions. After convolution with the image, the approximate values of the brightness

differences in the horizontal and vertical directions are obtained. The two-direction convolution

is shown in Figure 2.3.
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Figure 2.3. Horizontal filter Gx and vertical filter Gy in the Sobel operator.

The gradient and the direction of the gradient for every pixel is calculated by Equation 2.1 and

Equation 2.2.

� . ��� � ��� (2.1)

� . 쳌䁐�耀쳌䁗 ��
��

(2.2)

An example of a Sobel operation is shown in Figure 2.4. It can be seen that one direction

filter is not enough to detect all candidate edges. After combining two direction filters, more

accurate contours of buildings are successfully extracted.

Figure 2.4. Sample results after applying Sobel operator. (a) input image; (b) result after
horizontal convolution; (c) result after vertical convolution and (c) final result combined the two
direction convolutions.

2.1.2 RGB to gray conversion

Before the binarized image boundary following method is used to extract the building

contours, the input color image is transferred to a grayscale image. In image processing, most of

the processing methods need to convert the color image to grayscale in advance to perform

related calculations and recognition. In an RGB color image, color is formed by mixing the three
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primary colors of red (R), green (G), and blue (B) in proportion. The basic unit of an image is a

pixel, and a pixel needs three blocks to represent R, G, B. If 8 bits are used to represent a color,

then 0-255 can distinguish a certain primary color with different brightness. Grayscale images

use black with different saturation to represent each image point, such as 8-bit 0-255 numbers, to

indicate the degree of "gray," and each pixel only needs one grayscale value.

The conversion between the RGB values and grayscale is actually the conversion of the

human eye's perception of color to brightness. This is a psychological problem which can be

represented by the following formula

�䁐쳌� . 冐���� � � � 冐��ʹ� � � � 冐���� � � (2.3)

According to this formula, read the R, G, and B values of each pixel in turn, calculate the

gray value (converted to an integer), assign the gray value to the corresponding position of the

new image, and all the pixels are transformed once the conversion is complete. Its computational

performance is optimized by converting floating-point operations into integer operations and

integer operations into bit operations.

2.1.3 Binary image boundary following

After edge detection, the building boundary is extracted by implementing the binary image

boundary following method. Suzuki (1985) presented a boundary following algorithm to convert

a binary picture into the boundary representation. Below are some basic concepts and definitions

related to the algorithm.

1. The 4- (8-) connected case. For two pixels p and q, if q is in the 4- (8-) neighborhood,

then these two pixels are 4- (8-) connected.

2. Boundary point. In the 4- (8-) connected case, if a 1-pixel ),( ji has a 0-pixel ),( qp in

its 8- (4-) neighborhood, it is called the boundary point.

3. Outer boundary and hole boundary. As shown in Figure 2.5, there are 0-component �� ,

�� and 1-component ��. �� directly surrounds ��. Then, the border between �� and

�� is called the outer border. �� directly surrounds �� , and the boundary between ��
and �� is called the hole border.

4. Parent boundary. As shown in Figure 2.5, the boundary between �� and �� is ��, the

boundary between �� and �� is ��, then �� is the parent boundary of ��.
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5. NBD and LNBD. In boundary following processing, a unique number is assigned to

each new boundary. NBD represents the number of the current boundary, and LNBD

represents the number of the last boundary.

Figure 2.5. Boundary following algorithm. Surroundness figure (a) and relation among
connected components (b) and among borders (c).

Table 2.1. Decision rule for the parent boundary of the newly found boundary B

Outer boundary Hole boundary

Outer boundary The parent boundary of the
boundary B The boundary B’

Hole boundary The boundary B’ The parent boundary of the
boundary B’

Assuming that the input image is � . h �,h , the initial NBD (number of the current

boundary) is set to 1 (taking the frame of � as the first boundary). Using a raster scan method to

scan an image �: when the gray value at a certain pixel �,h satisfies h�h � 冐, it then performs

the following steps. Every time the beginning of a new line of the picture is scanned, the LNBD

is reset to 1. Below are the steps of the boundary following algorithm:

(1) When h�h . �, if h�,h݆� . 冐, then point (i, j) is the starting point of the outer boundary,

NBD+=1 ��,h� � �,h ݆ � ; if h�h � �, and h�,h�� . 冐，then point �,h is the starting

point of the hole boundary, NBD+=1, ��,h� � �,h � � .

(2) According to the previous boundary B' and the type of boundary B currently

encountered, the parent boundary of the current boundary B from Table 2.1 (the first
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row represents the type of boundary B’ with LNBD and the first column represents the

type of boundary B).

(3) Set point �,h as the center and ��,h� as the starting point, the four neighborhoods of

the point are searched for the first non-zero pixels. If this point has not been checked in

previous steps, the new point is set as the center and �,h as the starting point, and this

step is repeated until the whole boundary has been detected. Then, raster scanning

continues from point �,h � � . This step ends when the scan reaches the bottom right

vertex of the image.

Figure 2.6. An example result of the boundary following algorithm. The left part is the
binarized image and the right part is the boundary following results.

An example of the boundary following is shown in Figure 2.6. The left is a binarized image,

and the right is the contours extracted by the boundary following algorithm. It is obvious that

both the outer boundary and the hole boundary were accurately extracted.

2.2 Data augmentation

In supervised classification, the performance of classification highly depends on the

statistical correlation between the training dataset and the test dataset. If the size of the training

dataset is small, it is difficult to estimate the distribution of the entire dataset, which may cause

overfitting. In order to avoid overfitting due to a small amount of data, data augmentation

methods can be applied to enlarge the size of the dataset. Data augmentation techniques are used

to enhance the size and quality of training datasets. In deep learning, the larger the scale and the
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higher the quality of the data, the better the generalization ability of the model (Shorten and

Khoshgoftaar, 2019).

Geometric transformation and color transformation are two major data augmentation

approaches. Geometric transformation methods are a set of operations, such as flipping, rotation,

and scaling, to perform a geometric transformation of the image. Geometric transformation can

be calculated by applying an affine transform to the image. Suppose the coordinates of the

original image and the augmented image are (x, y) and ��,�� respectively. Then flipping,

rotating, and scaling can be calculated by Equations 2.4 through 2.7, respectively.

��
�� .

݆ � 冐
冐 ݆ � �

�
� � �

� (2.4)

��
�� .

��� � ݆ ��䁗 �
��䁗 � ��� � �

�
� (2.5)

��
�� .

� 冐
冐 � �

�
� � �冐

��
(2.6)

��
�� .

�� 冐
冐 ��

�
�
� (2.7)

where w is the width of the image, h is the height of the image; θ is the rotation angle; b0 and b1
are the shift of two directions; Sx and Sy are the scale parameter of two directions.
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(1) Original image (left), horizontally flipped (middle) and vertically flipped (right).

(2) Original image (left), ��� rotated (middle) and ݆ ��� rotated (right).

(3) Original image (left), horizontally shifted (middle) and vertically shifted (right).

(4) Original image (left), 1.3x scaled (middle) and 1.5 scaled (right).
Figure 2.7. Original image and augmentation results after (1) horizontal and vertical

flipping; (2) rotating; (3) horizontal and vertical shift and (4) scaling.
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The most common approach to color transformation is changing the image’s color pattern.

Images are usually represented in RGB format, but there are many other color spaces and

conversion methods that can be used to transform one color space to another. Each color space

differs from the other in terms of the way they present a color. For instance, color in RGB space

is represented by a percentage of red, green, and blue hues where HSV represents a combination

of hue, saturation, and value. Hue is a general summary of the overall color; saturation is the

brilliance and intensity of the color; and the value is the brightness of a color. The most widely

used color transformations are RGB to Gray, RGB to BGR, and RGB to HSV. RGB to Gray

transform can be computed by Equation 2.3, However, RGB to HSV is slightly more

complicated than RGB to Gray. Three components of HSV can be calculated by Equations 2.8

through 2.10.

� .

�䁗��h�䁗��, �h �쳌� . ��䁗
�冐� � �݆�

�쳌�݆��䁗
� 冐�, �h �쳌� . �, � � �

�冐� � �݆�
�쳌�݆��䁗

� ��冐�, �h �쳌� . �, � t �

�冐� � �݆�
�쳌�݆��䁗

� ��冐�, �h �쳌� . �

�冐� � �݆�
�쳌�݆��䁗

� ��冐�, �h �쳌� . �

(2.8)

h � .
冐, �hmax. 冐
� ݆ ��䁗

�쳌�
, �耀��䁐���� (2.9)

� . �쳌� �,�,� (2.10)

(a) (b) (c) (d)
Figure 2.8. Original image and its color augmentations. Original image (a) and

augmentation results after (b) RGB to Gray; (c) RGB to BGR and (d) RGB to HSV.

By applying the above data augmentation methods, 30 new images were generated from

each labeled image. Samples of the data augmentation results are shown in Figure 2.7 and

Figure 2.8.
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2.3 Mask R-CNN based building extraction

This section introduces the Mask R-CNN model used for building extraction. The Mask

R-CNN framework shown in Fig. 2.9 consists of three parts. First, the backbone network

extracts feature from the input image. Second, the output feature maps are sent to the RPN to

generate RoIs. After the RoIs are aligned, they are mapped to extract the corresponding object

features in the feature maps. Third, the fixed feature maps of the RoIs are sent to the FCN and

the fully connected layers for instance segmentation and object classification, respectively.

Figure 2.9. Workflow of the Mask R-CNN.

2.3.1 Backbone network

The backbone network is a standard deep convolutional neural network for feature

extraction. The early layers extract the low-level features, such as edges and corners; and the

later layers detect the high-level features that describe the target categories. Although deeper

networks can achieve higher accuracy, the speed of training and detection will be reduced. The

residual structure of ResNet does not generate additional parameters in backpropagation.

However, it can effectively solve the problem of gradient disappearance (Targ et al. 2016). To a

large extent, the residual network makes it easier to optimize deeper models. Therefore, ResNet

is used as the backbone network in this thesis. Structure of a residual block is shown in Figure

2.10.
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Figure 2.10. Structure of a residual block (adapted from He et al. 2016).

A residual block can be represented by Equation 2.12 and Equation 2.13.

�� . � �� � � ��,�� (2.11)

���� . h �� (2.12)

Where �� and ���� represent the input and the output of layer l, F is the residual function, h is

direct mapping function, f is ReLU activation function, �� is the weight of layer l. Then we

can obtain Equation 2.14

���� . �� � � ��,�� (2.13)
For a deeper layer L, its relationship with layer l can be expressed as Equation 2.15.

�� . �� � �.�
�݆�� ��,��� (2.14)

According to the chain rule of backpropagation, the gradient of the loss function with

respect to �� can be expressed as Equation 2.15. During the training process,
�
��� �.�

�݆�� ��,���

cannot always be -1. Therefore, there is no gradient disappearance in ResNet.

�����
���

. �����
���

���
���

. �����
���

�� � �
��� �.�

�݆�� ��,��� � (2.15)

In order to better present the building target on multi-scales, especially for small buildings,

an FPN is used to extend the backbone network. The FPN structure includes three pathways: 1)

bottom-up, 2) top-down, and 3) horizontal connection. As shown in Figure 2.11, this structure

can merge the features of each level so that it has both strong semantic information and strong

spatial information.
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Figure 2.11. Structure of FPN. The left part is the output of bottom-up path, the middle part
is the output of top-down path and the right part is the output of horizontal connection path.

The bottom-up pathway is a simple feature extraction process. In general, ResNet is divided

into five stages according to the size of the feature map. The output of the last four stages is

defined as [C1, C2, C3, C4, C5]. The top-down pathway is an up-sampling process that starts from

the highest layer. Instead of using deconvolution, the nearest neighbor up-sampling is used in

this thesis since it is simple and can reduce the number of training parameters. A horizontal

connection is used to fuse the results of the up-sampling with the feature map of the same size

generated from the bottom-up pathway. A 1*1 convolution is applied for each layer in [C1, C2,

C3, C4, C5] and add it with [M5, M4, M3, M2, M1]. In order to eliminate the aliasing effect of

up-sampling, a 3*3 convolution kernel is used to process the fused feature map, and the final

outputted feature map is [P1, P2, P3, P4, P5]. Notably, P1 is not used in our thesis due to the

computational expense to calculate the feature map corresponding to C1. Instead, P6 is obtained

and used to replace P1 by down-sampling P5. The specific correspondence of the feature map is

shown in Equation 2.16 (Qiao et al. 2019).

�� . ��䁗�������ਊ�쳌�ਊ�����,��䁗��������
�� . ��䁗�������ਊ�쳌�ਊ�����,��䁗��������
�� . ��䁗�������ਊ�쳌�ਊ�����,��䁗��������

�� . ��䁗����䁗������
�� . ���䁗�쳌�ਊ������

(2.16)
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By doing so, the FPN can take advantage of both high-resolution feature maps and

high-level semantic information for accurate localization. An example of output feature maps is

shown in Figure 2.12.

Figure 2.12. Sample result of feature maps generated from FPN. Input image (1) and output
feature map of [P2, P3, P4, P5] (2-5).

2.3.2 RPN

The feature maps generated from the backbone network are sent to Regional Proposal

Network (RPN) to generate the region of interests (RoIs). An RPN is a fully convolutional

network that simultaneously predicts object bounding boxes. The RPN scans the feature maps

and generates three kinds of areas {64, 128, 256} × {64, 128, 256} and three kinds of shapes

{1:1, 1:2, 2:1} of rectangular boxes, which are here called anchors or proposals in every pixel

position. Then, the IoU of the anchors with the ground truth objects by Equation 2.17.

��� . 쳌䁐�쳌��ਊ���耀�
쳌䁐�쳌��ਊ���耀�

(2.17)

where pB represents the bounding box of the anchor and gtB represents the bounding box of

the ground truth. Positive anchors are those that have an IoU >= 0.7 with the ground truth object,

and negative anchors are those that do not cover the object by more than 0.3 IoU.

However, a positive anchor might not be centered perfectly over the object. So, the RPN

estimates a delta (% change in x, y, width, height) to refine the anchor box to fit the object

better. This process is called bounding box refinement (BBR) (Pinheiro et al. 2016). After BBR,
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the optimal bounding box of the candidate object is found. In the process of target detection, a

large number of candidate anchors are generated at the same target position. These candidate

anchors may overlap each other. In this case, non-maximum suppression (NMS) (Hosang et al.

2017) is used to find the best target bounding box and to eliminate redundancy. Each object will

only have one RoI after BBR and NMS. The steps of NMS are as follows:

(1) Sort all the anchors according to their confidence score within the target bounding box.

(2) Select the bounding box with the highest confidence score to add to the final output list

and remove it from the bounding box list.

(3) Calculate the IoUs of the highest confidence bounding box with other candidate frames,

and delete the bounding box whose IoU is greater than the threshold.

(4) Repeat the above process until the bounding box list is empty.

After these BRR and NMS, RoIs are obtained. Figure 2.13 illustrates a few sample RoIs

generated from the RPN.

Figure 2.13. Sample results of final RoIs. Bounding box before (dashed polygons) and after
BBR and NMS (solid polygons).

As mentioned above, FPN produces a feature pyramid [P2, P3, P4, P5, P6] instead of one

single feature map. To select the feature map of the most suitable scale to cut the RoIs, Equation

2.18 is applied.

� . �冐 � ����� �� �冐冐 � (2.18)

500 is the size of the input image, k is the feature level of the RoI with the size � � �, and �冐
represents the feature level of RoI with the size �冐冐 � �冐冐. k0 = 4, which means that the feature
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map of an RoI with the size � � � are cut from P4. Suppose the size of RoI is��冐 � ��冐, � .

�冐 ݆ � . � ݆ � . �, which means generating this RoI from a higher resolution feature map P3.

In addition, k will be rounded in case it is not an integer. Therefore, the large RoI should be cut

from the low-resolution feature map, and the small RoI should be cut from the high-resolution

feature map.

2.3.3 RoI Align

RoI Align is a regional feature aggregation method used to solve the problem of

misalignment caused by the RoI pooling operation. In the commonly used RoI pooling operation,

there are two quantification processes, from an image coordinate to a feature map coordinate and

from a feature map coordinate to a fixed RoI feature coordinate. Since the position of the

preselected box is usually obtained by regression of the model, it is generally a floating-point

number, and the pooled feature map requires a fixed size. Therefore, after the above two

quantifications, the candidate frame at this time has a certain deviation from the position that is

initially returned, and this deviation affects the accuracy of detection or segmentation, which is

called misalignment (Jaderberg et al. 2015). In order to solve the above shortcomings of RoI

pooling, He et al. (2017) proposed an improved method of RoI Align. The idea of RoI Align is

shown in Figure 2.14. It cancels the quantization operation and uses a bilinear interpolation

(Mastylo 2004) to obtain the image values at the pixels. The procedure consists of the following

steps:

(1) Traverse each candidate region, keep the floating-point boundaries unquantized.

(2) Divide the candidate region into � � � units, keep the boundaries of each unit

unquantized.

(3) Calculate four fixed coordinate positions in each unit and calculate the values of these

four positions by bilinear interpolation, and then perform the maximum pooling

operation.
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Figure 2.14. Operations in RoI Align.

An example of RoI Align is shown in Figure 2.14. Suppose the size of the input image is

ʹ冐冐 � ʹ冐冐, and there is ��� � ��� RoI on the image. Since the stride of the backbone network

is 32, the side length of the image and RoI are both 1/32 of the input. Instead of quantifying the

side length of RoI as 20 in RoI Pooling, the decimal part is kept. Next, the features are pooled to

a � � � layer, so the above RoI is divided into � � � rectangular areas evenly. Each rectangular

bin is divided it into four equal parts and the bilinear interpolation method is used to calculate

the pixel values at the center point of each part. An example of bilinear interpolation in RoI

Align is shown in Figure 2.15. Finally, the maximum of the four-pixel values is taken as the

pixel value of this small rectangular area; and this step is repeated in the entire layer until the

final feature map of RoI is completed.

Figure 2.15. A feature map with � � � bin is mapped to an RoI of 2 2 bins, the dots
represent the 4 sampling points in each bin (adapted from He et al. 2017).
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The bilinear interpolation shown in Figure 2.16 is computed as follows. Suppose there are

four points ��� . h ��,�� , ��� . h ��,�� , ��� . h ��,�� , ��� . h ��,�� , we want to

obtain the value h��� at the point � . �,� . First, perform linear interpolation on the y-axis to

obtain R1 and R2 by Equation 2.19 and Equation 2.20.

h �� . h �,�� . ��݆�
��݆��

h ��� � �݆��
��݆��

h ��� (2.19)

h �� . h �,�� . ��݆�
��݆��

h ��� � �݆��
��݆��

h ��� (2.20)

Then perform linear interpolation on the x-axis according to R1 and R2 and obtain the value

)(Pf by Equation 2.21.

h � . ��݆�
��݆��

h �,�� � �݆��
��݆��

h �,�� (2.21)

Figure 2.16. Illustration of bilinear interpolation in RoI align.

2.3.4 FC/FCN and loss function

The fixed size feature map output from RoI Align is sent to the fully connected network

(FCN) and the FC layer. The FC layer contains two branches, one for classification prediction

and the other for bounding box regression. The FCN is used for instance segmentation to

generate the target mask.

During the network training, the loss function indicates the difference between the predicted

values and the ground truth. For the Mask R-CNN-based building detection network in this
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thesis, a multi-task loss function is used to train bounding box regression, classification, and

mask segmentation. The regression loss and the classification loss are identical to those in Faster

R-CNN, and the mask loss is an average binary cross-entropy loss. The loss function used is as

follows:

� . ����� � ���� � ��쳌�� (2.23)

where Lbbox is the bounding box regression loss; Lcls is the classification loss; Lmask is the mask

loss.

The equation for bounding box regression loss Lbbox is computed by:

����� .
�

�䁐�� �ਊ�
�� 耀�,耀�

�� (2.24)

where �䁐�� is the pixel count in the future map, 耀� is the translation scaling parameters from

the positive sample RoIs to the predicted region; 耀�
� is the translation scaling parameter from

positive sample RoIs to the real label; and � � is a smooth function.

The equation for classification loss Lcls is computed by:

���� . �݆ ��� � ਊ�
�ਊ� � ��݆ ਊ�

���� ݆ ਊ���� （2.25)

where ਊ� is the probability that the i-th RoIs are predicted as positive samples. When the RoIs

are positive, ਊ�
� = 1; otherwise, ਊ�

� = 0.

The equation for mask segmentation loss Lmask is computed by:

��쳌�� .
�
�� ���,h�� ���h

� ݆ ��݆ ��h� ��� � � ݆ ��h
���� (2.26)

where ��h is the label value of the coordinate point (i, j) in the ��� region and ��h
� is the

predicted value at that point.

2.3.5 Parameters of the Mask R-CNN

In this chapter, we will introduce the important parameters used in the different modules of

the Mask R-CNN.

A backbone network aims to extract features of the input image. Since FPN takes advantage

of both high-level semantic information and high-resolution feature maps for accurate

localization, an FPN based on a ResNet50 network is applied in this thesis to achieve gains both

in accuracy and speed. In order to generate feature maps with different resolutions, FPN uses
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different strides in each layer, and then those feature maps are fed into an RPN to generate RoIs.

The important parameters in the backbone network are shown in Table 2.2.

Table 2.2. Parameters for backbone network

Parameter Parameter description Value

Backbone Backbone network architecture
Supported resnet50, resnet101 Resnet50

Backbone strides The strides of each layer of the FPN
pyramid [4, 8, 16, 32, 64]

FC layer size Size of the fully-connected layers in
the classification graph 1024

Top-down pyramid size Size of the top-down layers used to
build the feature pyramid 256

Num classes Number of classification classes
(including background) 2

Image channel size Number of color channels per image
RGB=3, Grayscale=1, RGB-D=4 3

Image resize mode Resize mode for training and
predicting square

Image min dim Minimal image size after resizing 800

Image max dim Maximum image size after resizing 1024

The feature maps generated from the backbone network are used as input for the RPN

network. Anchors with three different scales and three different aspect ratios are employed to

generate positive anchors. Then BBR and NMS are applied to refine the bounding boxes of the

anchors and to remove the redundant anchors. These anchors are called RoIs and are sent to the

RoI Align layer. The parameters of the RPN are shown in Table 2.3.
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Table 2.3. Parameters for Region Proposal Network (RPN)

Parameter Parameter description Value

RPN anchor scales Length of square anchor side in
pixels [32, 64, 128, 256, 512]

RPN anchor ratios Ratios of anchors at each cell
(width/height) [0.5, 1, 2]

RPN anchor stride Anchor stride 1

Max GT instances Maximum number of ground truth
instances to use per image 100

RPN box std dev Bounding box refinement standard
deviation for RPN [0.1, 0.1, 0.2, 0.2]

RPN NMS threshold Non-maximum suppression to
filter RPN proposals 0.7

RPN anchors per image Number of anchors to use per
image for RPN 256

RPN NMS limit RoIs kept before non-maximum
suppression 6000

Post NMS RoIs training RoIs kept after non-maximum
suppression (training) 2000

Post NMS RoIs inference RoIs kept after non-maximum
suppression (inference) 1000

Use mini mask Resize instance masks to a smaller
size to reduce memory load. True

Mini mask shape (height, width) of mini mask (56, 56)

After the pooling operation, the RoIs are fed into fully-connected layers for building

classification, box regression, and mask segmentation. Although the generated masks with

28*28 pixels size are low resolution, they are represented by floating numbers, which hold more

details than binary masks. The small size of the mask also helps keep the mask branch light. The

ground truth masks are downsampled to 28*28 to compute the loss in the training process and

the predicted masks are upsampled to the size of the RoI to generate the final masks in the mask
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segmentation process. The parameters for detection and mask segmentation are shown in Table

2.4.

Table 2.4. Parameters for fully connected network

Parameter Parameter description Value

Train RoIs per image Number of RoIs per image to fed to
classifier/mask head 200

RoI positive ratio Percent of positive RoIs used to train
classifier/mask head 0.33

Pool size Size of pooled RoIs 7

Mask pool size Size of pooled RoIs fed to mask head 14

Mask shape Shape of output mask [28, 28]

Bbox std dev Bounding box standard deviation for
final detection [01, 0.1, 0.2, 0.2]

Detection max instances Max number of final detections 100

Detection NMS threshold Minimum probability value to accept a
detected instance 0.7

During the training process, the total training epochs are set to 50 and each epoch contains

100 iterations. The learning rate is 0.00, which is adjusted per 10 epochs with an adjustment

factor of 0.9. During the detection process, detection will be skipped if its confidence is less than

90%.
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Table 2.5. Parameters for model training

Parameter Parameter description Value

GPU count Number of GPUs to use 16

Images per GPU Number of images to train on each
GPU 2

Num epochs Number of training epochs 50

Steps per epoch Number of training steps (iterations)
per epoch 100

Validation steps Number of validation steps to run at
the end of every training epoch 50

Learning rate Learning rate 0.001

Learning momentum Learning momentum 0.9

Weight decay Weight decay regularization 0.0001

Detection min confidence Skip detection with < 90% confidence 0.9

Gradient clip norm Gradient normal clipping 5
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EXPERIMENT DATA

The proposed building extraction method requires high-resolution aerial images and

corresponding building footprints. The Indiana Geographic Information Office provides high-

resolution aerial images of the whole state of Indiana, and OpenStreetMap provides building

footprint data for many cities in the U.S. In this thesis, the study areas are the urban area of

Bloomington and Indianapolis, which are shown in Figure 3.1. The size of each study area is

�冐冐冐� � �冐冐冐�.

(a) (b)

Figure 3.1. Map of the study areas (red polygon) in Bloomington (left) and Indianapolis
(right) with scale 1: 80,000.

3.1 Orthopohoto data

In 2016, the Indiana Geographic Information Office began a three-year (2016-2018) update

project to refresh the orthophotography (RGBI) data for the entire state of Indiana. Two of the

experimental images in this thesis are shown in the left part of Figure 3.2 and Figure 3.3, which

show urban areas of Bloomington and Indianapolis, respectively. The orthophoto was based on

2016 acquisition with a 0.4m resolution. Each dataset contains 9 orthoimages, and the size of

each orthoimage is �冐冐冐� � �冐冐冐�.
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Figure 3.2. One sample orthoimage in Bloomington (left) and Indianapolis (right).

To produce small tiles as experiment data, fishnet is used to divide the original orthoimages

into 144 (each original image is evenly divided into 16 tiles, size of each tile is ��冐� � ��冐�)

tiles of images, which are saved in JPG format. Some tiles that contain zero or few buildings are

removed, the number of rest tiles is 120. These 120 tiles are used as follows: 80 as training data,

20 as validation data, and 20 as test data. The image size of the training tile is �冐冐 � �冐冐. The

study area in Bloomington has more buildings, but the average building size is smaller than

those in Indianapolis. The number of buildings and the average area of the buildings were

calculated for the two datasets based on the building footprints. The number of buildings and

average pixel size per building in the two datasets are shown in Table 3.1.

3.2 Building footprint data

The building footprint GIS data shapefile for Bloomington is downloaded at

http://www.data.gov. The shapefile was last updated on October 31, 2016 and covers the entire

Monroe County area in Indiana. These building footprint data are in Esri shapefile format and

are obtained in a zip file. Similar to how the orthophotograph data are handled, the footprint is

divided into small pieces and every effort is made to assure they are consistent with the size and

location of the orthophotograph on each image. The whole footprint image of Bloomington is

shown on the left side of Figure 3.3. The building footprint of Indianapolis was downloaded

from Microsoft building footprint data that was last updated in March 2017; however, it was

digitized from images captured in 2014 and 2015. Since there was a gap in the production dates
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between the orthoimage and the building footprints, some missing buildings can be detected in

the footprint map by the human eye. The whole footprint image of Bloomington is shown on the

right side of Figure 3.3. The building footprint of one sample image in the two datasets is shown

in Figure 3.4.

Figure 3.3. Building footprint of the study area (yellow polygon) in Bloomington (left) and
Indianapolis (right) with scale 1: 80,000. The image is 250m by 250m on the ground.

Figure 3.4. Building footprint of sample image in Bloomington (left) and Indianapolis
(right). New buildings that are not on the map are shown in the yellow polygon.
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Table 3.1. Number of buildings and average area of the two datasets.

Pixel size # of buildings
Average pixel size

per building

Bloomington 0.4m 4494 1029

Indianapolis 0.4m 1532 3015

3.3 Ground truth data

The ground truth data were obtained by manual labeling through the VGG Image Annotator

(VIA) tool. Since manual labeling results depend on human visual interpretation, the shadows

and occluded areas of the building were excluded. The number of ground truths in Bloomington

and Indianapolis were 4,494 and 1762, respectively. An example of a manually-labeled result in

two datasets is shown in Figure 3.5. These ground truths were subsequently used for the

evaluation of automatic image labeling results and building extraction results.

Figure 3.5. One sample of manually labeled result in Bloomington (left) and Indianapolis
(right).
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RESULTS AND EVALUATION

The labeling results of the proposed automatic image labeling method are presented in this

chapter utilizing the two experiment datasets in Chapter 3. The quality of the

automatically-labeled mask was evaluated by an IoU between the automatically-labeled mask

and the manually labeled ground truth. The building extraction results of the Mask R-CNN

model are presented in this chapter as well. The performance of building detection was

evaluated by precision, recall, and F1 score, while the mean pixel accuracy (MPA) and the

average distance error (ADE) were used to evaluate the performance of mask segmentation.

4.1 Automatic image labeling results

Compared with manual labeling, automatic labeling can be quite complicated and difficult;

but with the help of a building footprint, automatic labeling can be relatively simple and fast.

The key to automatic labeling is to accurately extract the building outlines from imagery. Edge

detection and boundary following can extract the contours of all the objects in the imagery and

is not limited to buildings. Thus, building footprints are utilized for the initial extraction of the

building areas.

Figure 4.1. Original image (left), building footprint (middle) and selected candidate
buildings (right) extracted by building footprint.

Similar to the image progression shown in Figure 4.1, the building footprint is used as the

mask to extract the building area from the original image. After the candidate area of a building

is obtained, the RGB image is transferred to a grayscale image and binarized before the
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boundary following. Due to the different colors and shadow areas in the building roofs, the

brightness of the rooftops also indicates obvious differences between different buildings. As can

be seen in Figure 4.2, most of the buildings are relatively dark and only a few of buildings are

bright. The distribution of the gray values of building pixels shown in Figure 4.3 also indicates

the variety of gray values of the buildings.

Figure 4.2. One sample grayscale image of initial candidate buildings.

Figure 4.3. Histogram of grayscale value of initial building candidate areas.

Since Figure 4.3 does not show an obvious difference in gray values between the buildings

and background, it was impossible to correctly binarize the grayscale image with a threshold.

Therefore, an edge detection method is necessary to locate the building edges. Due to its good
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performance in edge detection on images with a gradual change of grayscale, the Sobel operator

is used to detect the candidate edges of the input image.

Figure 4.4. Edge detection results with Sobel operator.

It can be seen in Figure 4.4 that the candidate edges are successfully detected after

convolution in two directions. The purpose of this process is to remove the shadow area of the

misalignment. Therefore, a high threshold is used to binarize the image. Then, a boundary

following algorithm is applied to determine the contours of the buildings. The extracted contours

are shown in Figure 4.5 (c).

(a) (b) (c)
Figure 4.5. Boundary following results after edge detection. (a) edge detection result of

Sobel operator (b) binary result of edge candidates (c) building contours of boundary following
method.

Figure 4.6 shows that some of the holes within the rooftops also are extracted, which are

redundant for building labeling. According to the relationship between boundaries, we can
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remove holes and achieve the final building contours. During boundary following, both the label

mask of the buildings and the coordinates of the contour points are obtained. The building label

masks are used for data augmentation while the coordinates information of the contours is

transferred to the annotation JSON file for training the Mask R-CNN model.

Figure 4.6. Sample result of boundary following algorithm. Building hole boundaries (left)
and its contours (right) after cleaning.

The speed of manual labeling generally is about four to five minutes per image. The speed

of automatic labeling in this thesis is an amazing five seconds per image.

An IoU between the automatically-labeled mask and the manually-labeled ground truth is

computed to evaluate the quality of the labeled mask. A total of 100 tiles from the Bloomington

dataset were manually labeled by the VIA tool. The Indianapolis dataset was not used in the IoU

because some newly constructed buildings are not shown in its building footprint dataset. The

final IoU of Bloomington dataset is 0.95, which indicates a high quality automatically-labeled

mask. It can be seen that automatic labeling greatly reduces the data preprocessing time and

improved the labeling efficiency, which is particularly important when the experimental data set

is large. Examples of final automatic labeling results are shown in Figure 4.7.
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(a)

(b)

(c)

Figure 4.7. Sample results of automatic image labeling. Original image (left) and final
labeled mask (right) in Bloomington (a)&(b) and Indianapolis (c).
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Some comparison results between the footprint and the labeled mask are shown in Figure

4.8. The three buildings in the figure are shown under different situations: building (a) has a

misalignment with a shadow, building (b) has a misalignment with bright vegetation, and

building (c) is occluded by trees, which cannot be distinguished by the human eye. The

labeled masks indicate that the proposed automatic labeling approach successfully removed

the misalignment with shadow. However, for the misalignment with bright vegetation, the

Sobel operator could not correctly detect the edge between the buildings and bright vegetation

due to the small difference in gradient. It can be seen that the occluded building also shows

little difference with its neighborhood. After extracting the candidate building areas with the

footprint, the background area was removed and replaced by “0” pixels. Therefore, the

gradient between the occluded building and “0” pixels was large enough for the Sobel

operator to detect.

(a)

(b)

(c)

Figure 4.8 Comparison between the footprint and the labeled mask. Left part is the original
image, middle part is the building contours in building footprint and right part is the labeled
mask.
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4.2 Mask R-CNN training results

Experiments were conducted on the two datasets collected in Bloomington and Indianapolis.

After data augmentation, 6,000 tiles were used for training (80% training dataset and 20%

validation dataset). During the experiments, Tensorflow (Abadi et al. 2016) with GPU was used

to construct the building extraction model. In terms of the Mask R-CNN model, ResNet50 and

FPN were used as the backbone. In addition, the pre-trained weights of the COCO (Lin et al.

2014) dataset also were adopted for the training process. Although the COCO dataset did not

contain buildings, as a dataset with 81 classes and more than one million images, part of its

weights was still useful for accelerating the training process. The learning rate was 0.001 and

was adjusted per 10 epochs (each epoch had 100 iterations) with an adjustment factor of 0.9.

Training loss and validation loss are calculated by a combination of classification loss, bounding

box loss and mask loss. It took approximately eight hours for 50 epochs of training, at which

time the loss function reached a convergence state.

Figure 4.9. Loss function of 6000 tiles in two datasets for the Mask R-CNN training.

From Figure 4.9, it can be seen that the loss function showed a downward trend during

training, which indicates that the joint loss decreased gradually by updating the parameters

during the optimization process. The loss function value of both the training set and the

validation set decreased to less than 0.4 and tended to be stable when the number of epochs was

more than 40, which indicates that the training process ran well and the loss function achieved a

state of convergence.
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4.3 Building detection results

In order to verify the reliability and stability of the trained model, 40 test tiles (20

Bloomington and 20 Indianapolis) are selected for the model evaluation. The masks of the test

tiles are manually labeled by the VIA tool. The detection performance of Bloomington and

Indianapolis are shown in Figure 4.10 and Figure 4.11, respectively; and all the detection results

for the two datasets are listed in Table 4.1.

(a) (b)

(c) (d)
Figure 4.10. Some building detection results of the test data in Bloomington. (a) adherent

buildings; (b) occluded buildings; (c) a large building and (d) small buildings.
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(a)

(b)

(c)

Figure 4.11. Building detection results in Indianapolis datasets. New built buildings (yellow
polygon) in footprint (left) are detected in detection results (right).
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6Table 4.1. Building detection results of 40 test tiles

#Predicted
Buildings

#Missing
Detection

#False
Detection

# Detected New
Buildings

# New
Buildings

Bloomington 1124 82 33 0 0

Indianapolis 442 15 11 34 41

It can be seen from Figure 4.10 that the detection model performed well in both datasets.

Small buildings (Figure 4.10 (d)) and large ones (Figure 4.10 (c)) in different shapes and colors

were successfully detected. Some adherent buildings (Figure 4.10 (a)) and occluded ones

(Figure 4.10 (b)) were also accurately detected. The detection results shown in Figure 4.11

confirm that the detection model can successfully detect a building not in the building footprint.

For quantitative evaluation, we compared the automatic detection results with the

manually-labeled ground truth of buildings. The precision (P), recall (R), and F1 score were

calculated to evaluate the building detection performance by Equation (4.1).
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���
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where TP is the number of cases that are building and detected as building, FP is the number of

cases that are background but detected as building, and FN is the number of cases that are

building but detected as background (Yang et al. 2018). In other words, TP represents the

correct detection, FP represents the false detection and FN represents the missing detection. The

detection results of 40 test tiles showed that the F1 score of Bloomington and Indianapolis were

0.951 and 0.964, respectively. The detailed results for precision and recall are shown in Table

4.2.

Table 4.2. Precision, recall, and F1 score of 40 test tiles.

Precision Recall F1

Bloomington, 20 tiles 0.932 0.971 0.951

Indianapolis, 20 tiles 0.966 0.977 0.968

From Table 4.1 and Table 4.2, it can be seen that the detection results for the Indianapolis

dataset were better than for the Bloomington dataset. The main reason for this performance

difference between the two datasets is that there are more missing detection cases in the
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Bloomington dataset than the Indianapolis dataset. Missing detection usually occurs in the case

of small buildings. For example, in Figure 4.12 (b) there is a small building that is not detected.

This building is only 20% of the size of the other buildings, which is not enough to yield reliable

results (Yu et al. 2019). In some cases, missing detection also happens when a building is

partially occluded by trees. Since the feature map of the occluded building is a mixture of

buildings and trees, this building was more likely to be detected as background. Missing

detection also can happen when a slender-shaped building is located at the edge of an image.

Figure 4.12. False detection (a, c) and missing detection (b, d, e, f) cases.
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False detection also affects the performance of building detection. Some background

objects having similar features with buildings can be detected as buildings. Distinguishing those

objects among buildings is difficult, even for the human eye. For example, part of the parking

lot in Figure 4.12 (a) and the bare ground in Figure 4.12 (c) are detected as buildings.

Fortunately, the number of false detection cases is much less than for the case of missing

detection.

4.4 Mask segmentation results

After classification and bounding box regression in the FC layer, the positive RoIs are sent

to the FCN to generate a target mask. Each segmentation image is transformed into a binary

matrix, where the forehead (buildings) is regarded as “1” and background pixels are regarded as

“0”. Then, the building contour is extracted since the building contour line is the “1” pixels

surrounded by the background pixels. Some of the segmentation results are shown in Figure

4.12, in which (a)&(b) are from the Bloomington dataset and (c)&(d) are from the Indianapolis

dataset.

The Mask R-CNN model performed well on mask segmentation for building roofs of

different sizes and shapes. Most of the buildings in Figure 4.13 are successfully segmented,

especially the buildings with regular shapes and simple textures (Figure 4.13 (a)&(b)). Using

FPN, the spatial relationships between multi-level features are obtained, thus adherent buildings

are successfully segmented into different objects (Figure 4.13 (c)&(d)). In addition, the tilted

buildings are also successfully segmented (e.g., the building D and E in Figure 4.13 (d)).

However, there are some misalignments between the segmentation results and the ground truth.

For example, Building A in Figure 4.13 (c) is over-segmented to several small segments, and

Building C in Figure 4.13 (d) has a smaller segmentation mask than its ground truth. In some

cases, the segmentation mask of a building will exceed the contour of its ground truth if it is

smaller than the ground truth. For example, the segmentation mask of Building B in Figure 4.13

(d) is larger than the size of its ground truth. More detailed mask segmentation examples of the

Mask R-CNN are shown in Figure 4.14. It can be seen that the accuracy of segmentation

declined when the complexity of the shape and texture increase. The main reason is that the

number of small and regular buildings is greater than the number of large and complicated
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buildings, which leads to the feature learning of small and regular buildings is better than large

and complicated ones.

(a) (b)

(c) (d)
Figure 4.13. Sample results of building mask segmentation in two datasets. (a)&(b) are

results in Bloomington and (c)&(d) are results in Indianapolis.
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(a) (b) (c)

(d) (e) (f)
Figure 4.14. Mask segmentation of building in different size and shape.

To quantitatively evaluate the performance of mask segmentation , the MPA and the ADE

(Qiao et al. 2006) are applied, respectively. MPA is an important indicator to evaluate image

segmentation. It is derived from the correctly segmented pixel with Equation (4.2).
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where k is the total number of output classes including the background ( k = 2 in this

experiment), iip represents the number of pixels correctly classified and ijp represents the

number of pixels that belong to class i but misjudged as class j.

For evaluation of the extract contour line, the ADE was computed by Equation (4.3).

䙕th . 䙕�䁗��䁗݆䙕�䁗耀�䁐���耀��䁗
���䁗耀��䁐

(4.3)

where unionA is the union area of the predicted mask and the ground truth, tionerA secint is the

intersection area of the predicted mask and the ground truth, and contoursT is the pixel number of

the ground truth contour line.

Table 4.3. Results of mask segmentation and contour extraction

Study area # Buildings MPA ADE

Bloomington (20 tiles) 1206 0.92 13.17

Indianapolis (20 tiles) 467 0.88 22.64

The results of the MPA and ADE of the two datasets are listed in Table 4.2. It can be seen

that the achieved MPA value for the Bloomington dataset is approximate 4% higher than the

MPA for the Indianapolis dataset, which illustrates that instance segmentation performs better

on buildings that are small in size and have regular shapes. These results also show that the

model achieves 13.17 ADE of the extracted contours in Bloomington datasets, which is better

than the 22.64 ADE for the Indianapolis dataset, indicating again that the mask segmentation of

Mask R-CNN performed better on buildings with regular shapes.
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CONCLUSION

This thesis proposed a novel automated building extraction method for aerial imagery based

on Mask R-CNN. More than 200 tiles of Bloomington and Indianapolis urban areas were

collected from the Indiana Map website for this study. An automatic image labeling method first

was introduced and evaluated. Using known building footprint, the speed of automatic labeling

was reduced to five seconds for a �冐冐 � �冐冐 pixel image without human interaction. A 0.951

IoU between the labeled mask and the ground truth confirmed the high quality of the labeled

mask.

The performance of the proposed approach was discussed in terms of both building

detection and mask segmentation. In general, the detection approach performed better on large

buildings while small buildings and occluded ones were more likely to be undetected or

mislabeled. False detection occurred when the features of the background objects were similar to

the features of the buildings. In addition, 84.2% of the newly built buildings in the Indianapolis

image dataset were successfully detected, which indicated that the proposed method can be used

in building change detection and building footprint updating.

According to the segmentation results on the two datasets, the proposed Mask R-CNN

model achieved an MPA of 0.92 and 0.88 respectively for the Bloomington dataset and the

Indianapolis dataset. Based on the Mask R-CNN segmentation, the achieved ADE of the

extracted building contours on the Bloomington dataset was 13.17 while the achieved ADE for

Indianapolis was 22.64. The performance of the mask segmentation and contour extraction

processes declined as the complexity of the building shapes and rooftops increased. In some

cases, a complex building with inconsistent features was over-segmented into several pieces.

There are several areas where the proposed method could be improved. First, the

computation speed of the model was a little slow due to the long computation time required in

the deep neural network. Future research may consider applying a lightweight neural network

for feature extraction to accelerate the training process. Second, the ratio of rare features did not

change when data augmentation was applied to the whole dataset. Therefore, more augmentation

of rare features could balance the distribution of different features and improve the performance

of building extraction. Third, the threshold of positive region proposals was slightly higher than
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needed. Although a high threshold may have guaranteed high quality RoIs, it also filtered some

small objects. Future research could test a lower threshold, such as 0.6, to generate a higher

capture rate of small objects. Lastly, the IoU of the bounding box in the box regression branch

was computed, but no IoU was computed for the mask in the mask branch, which could have

resulted in high performance on detection but low performance on segmentation. To avoid this,

a mask IoU could be added in the mask branch, such as Mask Score R-CNN. The experimental

results in this thesis for this Mask Score R-CNN demonstrated the improved mask segmentation.
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