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ABSTRACT

The development of the central dogma of molecular biology in the late 1950’s

unlocked a now booming field of medical innovation centered about the study of

biomolecules. Of these, proteins play perhaps the most active role, acting as molec-

ular devices to carry out dynamic processes of cellular function and life maintenance

including energy metabolism, DNA replication, cellular signaling, and many others.

Historically, proteins have been studied in small subsets; however, there is a recent

paradigm shift toward studying proteins and their interactions within complex, physi-

ologically relevant conditions. This shift is driven by advances in both sequencing and

computing technologies that enable novel approaches in integrative biology. Here, I

present two such techniques that combine computational and experimental methods

to elucidate and quantify protein behavior across multiple biological scales.

The first is a tool to measure protein-protein interaction (PPI) kinetics. Fluores-

cence Rolling Correlation Spectroscopy (FRCS) is a novel algorithm and software that

applies principles of diffusometry to enable facile characterization of kinetics across the

entire dynamic range of typical PPIs [kaε(1e4, 1e6) M−1·s−1, kdε(1e−4, 1e1) s−1]. The

second is a kinetic model of non-canonical amino acid proteome labeling. I present

a system of ordinary differential equations describing Azidohomoalanine (Aha) dis-

tribution and selective labeling of nascent proteins in vivo for either enrichment or

imaging. This model demonstrates accurate predictions of labeling across multiple

tissues and timescales. Each of these tools is presented with open source software

and models to enable future work in the study of protein behavior.
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1. INTRODUCTION

1.1 Significance of Biomolecular Study

The discovery and development of what is now known as the central dogma of

molecular biology in the late 1950’s unlocked what is now a booming field of biolog-

ical and medical innovation centered about the study of biological molecules [1–3].

These molecules, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), proteins and

carbohydrates, compose the molecular machinery of biology and function together in

innumerable patterns of behavior that are required to sustain life. Of these, proteins

play perhaps the most active role in the exertion of biological function. Acting as

molecular devices, proteins carry out the vast majority of dynamic processes of life

maintenance and cellular function including energy metabolism, DNA replication,

transcription/translation of RNA, cellular signalling, transport, and many others [4].

Despite this great diversity of function, and the fact that the human genome

alone contains genetic coding of somewhere around 20,000 unique proteins, proteins

are also remarkable in that they are all composed of some combination of the same

20 canonical amino acids described by the codons of the universal genetic code [4–6].

Each amino acid (AA) is possessed of a carboxylic acid and amine group, linked by a

central carbon, and these two reactive groups covalently bind in complimentary pairs

to form the amide backbone of the protein. In addition to these common groups,

each of the 20 canonical AAs contain a unique side chain, often called the -R group,

that imparts distinct physical properties (including mass, charge, hydrophobicity, and

shape) to the overall composition of the protein. The cumulative influence of these

properties allows each protein to display unique folding, dynamics and interactions

with other biomolecules [5]. To truly understand these molecules therefore requires

contributions from many classical sciences including biology, physics, chemistry and

mathematics as well as from newer fields of computer science and informatics.
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Indeed proteins have historically been studied relatively independently. Early ef-

forts in the field of protein biochemistry generally consisted of identifying a coding

sequence for a protein of interest, cloning it into an expression vector and purify-

ing a quantity sufficient for analysis. These purified proteins were then studied with

a number biochemical assays or structurally imaged with tools such as NMR spec-

troscopy or X-ray crystallography [7]. In the early 90’s however, there was a paradigm

shift toward studying larger sets of proteins and the interactions of proteins within

more complex, physiologically relevant systems. This shift was in large part driven

by advances in sequencing and computing technologies that made the study of entire

genomes possible [8]. These same technologies paved the way for the development of

many powerful tools to further in-depth investigation of protein behavior, including

bioengineering of synthetic proteins, peptides and labels.

With the development of these tools and technologies, came new approaches

and techniques in integrative biology that sought to describe protein behavior at

both micro- and macro-scopic scales. By combining computational and experimental

methodology, proteins can now be studied with resolution previously unattainable,

regardless of the scale of study. In this work, I present two such techniques that uti-

lize an integrative approach with elements of both computational and experimental

biology to elucidate and quantify protein behavior across multiple biological scales.

1.2 Microscale: Protein-protein Interactions (PPIs)

1.2.1 Background and Significance

When considering the dynamic function of proteins, two sub-classes are most

prominent: enzymatic and modulatory proteins. Enzymes are biocatalysts, organic

molecules that act upon the activation energy of biochemical reactions, driving them

forward at a faster rate. While any given biochemical reaction may be capable of

proceeding in the absence of enzymatic activity, enzymes allow these reactions to

proceed in complex, life sustaining environments [9, 10]. While not all enzymes are
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proteinous - notably some RNA molecules called ribozymes demonstrate important

enzmyatic activity during gene expression - proteins compose the vast majority of

enzyme function [11]. As catalysts, enzymes are typically not modified during the

course of a reaction, and are therefore able to exist in low concentrations while main-

taining their key function within the cell. Modulatory proteins, conversely, help to

regulate the function of enzymes, by either promoting or inhibiting their processes

depending on the status of other cellular systems. This regulation is a key component

of cellular function, allowing organisms to perform a variety of tasks effectively and

to respond to their environment.

A typical enzyme catalyzed reaction can be represented as 3 distinct events: a

reversible binding event, an irreversible catalysis event, and a reversible release event.

S + E ⇀↽ ES → EP ⇀↽ E + P (1.1)

Here S denotes some substrate, P the reaction product, E the enzyme, and

ES/EP represent a complex of the enzyme with the substrate and product respec-

tively. Each arrow represents a reaction step with a unique activation energy, and

thus a unique rate at which the step will proceed. Typically, the reaction product has

a significantly reduced binding affinity with the enzyme, such that the EP complex

is transient and unlikely to persist. Biologically speaking, this is an advantageous

reality that optimizes the available concentration of enzyme available for substrate

binding. As such, the catalysis and product release events can usually be represented

as a single irreversible process.

S + E ⇀↽ ES → E + P (1.2)

This model of enzyme kinetics is called the Michaelis-Menten model after the

authors who first published it in 1913 [12–14]. In this model, the velocity of product

output is modulated according to the laws of mass action; velocity can therefore be
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described by the concentrations of each species present in the system, the rates of

binding/release of substrate to the enzyme (ka and kd respectively), and the lumped

catalysis and product release rate (kcat). The rate of change of each species over time

can be classically represented with a mass balance system of ordinary differential

equations (ODEs) that incorporate these rates.

d[S]

dt
= kd[ES]− ka[E][S] (1.3a)

d[E]

dt
= (kd + kcat)[ES]− ka[E][S] (1.3b)

d[ES]

dt
= ka[E][S]− (kd + kcat)[ES] (1.3c)

d[P ]

dt
= kcat[ES] (1.3d)

Characterizing these rates of reaction can yield valuable information about the

roles played by enzymatic processes. For instance, elevated rates may indicate more

rapid processes such as signaling, while slower rates may be more prevalent in basal

processes such as cellular restructuring [15–19]. In most cases however, the true kinet-

ics of a dynamic system are difficult to capture due subsecond time scales. Typically,

these rates are measured as some lumped constants that are easier to characterize

with experimental methods. Protein binding for instance is often represented and

measured as a binding affinity constant (KD) rather than as distinct binding associ-

ation and dissociation parameters. Similarly, the Michaelis-Menten model relies on

a few assumptions to relate the velocity of product production as a function of sub-

strate and enzyme initial concentrations, which can be measured by any number of

activity assays.

d[P ]

dt
= Vmax

[S]

KM + [S]
= kcat[E]0

[S]

KM + [S]
(1.4)
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Here the rate of production is defined by the maximum velocity of reaction

(Vmax = kcat[E]0, where [E]0 is the initial enzyme concentration), some current sub-

strate concentration ([S]), the rate of catalysis (kcat), and a lumped constant called

the Michaelis-Menten constant (KM) which is a parameter that is similar to the

binding affinity of the ES complex (KD), but additionally accounts for catalysis.

KD =
[E]eq[S]eq

[ES]eq
=

1

Keq

=
kd
ka

(1.5a)

KM =
kd + kcat

ka
(1.5b)

However, this model of enzymatic activity is relatively simple in that it assumes

the enzymatic reaction defined in eq. (1.2) exists in isolation. In reality, most in vivo

reactions occur in a more complex system, including some external modulation of the

reaction. These processes are often driven by regulatory proteins, which can either act

as a competitor for the substrate binding domain or act allosterically upon enzymes

to promote or inhibit their activity. The introduction of such a species complicates

the enzymatic reaction. Take for instance, a system with a competitive inhibitor (I)

that binds to enzyme E and disallows it’s interaction with the substrate by creating

a persistent complex obstructing the substrate binding domain.

S + E ⇀↽ ES → E + P (1.2)

I + E ⇀↽ EI (1.6)

In this modified model, we can think of the enzyme in three potential states:

free for substrate binding (E), unavailable due to complex with competitor (EI) or

unavailable due to complex with substrate (ES). This behavior can be relatively

easily modeled by adding a few new equations in our non-linear system of ODEs to

capture these dynamics.
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d[S]

dt
= kd[ES]− ka[E][S] (1.7a)

d[I]

dt
= kd,I [EI]− ka,I [E][I] (1.7b)

d[EI]

dt
= ka,I [E][I]− kd,I [EI] (1.7c)

d[E]

dt
= (kd + kcat)[ES] + kd,I [EI]− ka[E]([S] + [I]) (1.7d)

d[ES]

dt
= ka[E][S]− (kd + kcat)[ES] (1.7e)

d[P ]

dt
= kcat[ES] (1.7f)

Here additional terms have been added to account for binding of I to E with

corresponding association and dissociation rates (ka,I , kd,I). The Michaelis-Menten

model can also be modified to accommodate this behavior by adjusting the Michaelis-

Menten constant to account for competitive inhibition.

d[P ]

dt
= kcat[E]0

[S]

KM,I + [S]
(1.8)

KM,I = KM

(
1 + [I]

kd,I

)
(1.9)

With only a single regulator in the system, it is still reasonable to characterize this

system by an experimental assay, particularly if the original KM has already been

characterized. However, this model tends to become less valuable as more regulatory

species are added to the system, as it becomes harder to distinguish the effects of

unique species on the system by experimental methods.

Indeed, while experimental tools are viable for studying the interactions of small

sets of proteins, it is much more difficult to distinguish the influence of single species in

more complex environments such as in vivo. While certainly it is certainly possible to

focus on a single protein species in vivo, to do so often requires a robust experimental
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design involving engineered controls and a variety of complex measurement tools [20].

One alternative to such methods is to predict the response of a complex system of

proteins via in silico simulations of the system based upon the well characterized

interactions of each protein in isolation [18,19]. Systems of ODEs like the two simple

systems presented above can be used to probe the dynamics of a system with a much

finer temporal resolution than typically possible via experimentation, and can be used

to probe system response to perturbations of individual components.

More complex models, such as spatial stochastic models of diffusion and collision

driven reactions as described in chapter 3, can be further used to introduce spatial

effects to these systems. With fine spatiotemporal resolution these models can account

for the effects of biophysical phenomena, such localization and structural geometry,

upon these protein interaction systems. A well characterized model can be used to

make informed predictions of the response of a system to specific parameters, and

can be used to guide the design of focused experimental studies.

Such models do have a few notable limitations. Firstly, even these models are

limited in complexity by computational and design expenses. Modeling a complex

system of interacting proteins requires modeling assumptions and reasonable bound-

ary conditions for the model, which must therefore inherently fail to perfectly capture

the true conditions of a biophysical system. It becomes critical to accurately describe

protein interactions as closely as possible to allow for physiologically relevant pre-

dictions. To that end these models rely heavily on experimental characterization of

parameters, many of which can only obtained through a robust examination of per-

tinent literature. Unfortunately, most experimental measurements are not designed

with computational parameterization in mind.

Enzyme catalytic rates tend to be relatively easy to measure via enzyme activity

assays and are a commonly discussed talking point when describing enzyme function.

As such these kcat parameters tend to widely available. However when examining

protein binding behavior, most experimental studies seek to qualitatively describe

the relationship between interacting proteins rather than to quantifiably define their
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interaction. For instance, in the study of a protein in the presence and absence of an

inhibitor, an experiment simply needs to demonstrate the reaction is relatively slower

in the presence of inhibitor to characterize that relationship. In some cases these

changes can be quantified and used to inform parameters, but not always. Similarly

there exist innumerable methods of describing the apparent binding affinity KDapp

under given conditions, as this requires only some form of measurement of relative

composition at equilibrium. In comparison, technologies capable of measure true

binding kinetics, binding association and dissociation rates, are much more scarce.

1.2.2 Survey of Current PPI Measurement Techniques

Each of these technologies operates on the principle of measuring different bio-

physical properties to charactize binding.

Surface plasmon resonance (SPR) measures the diffraction angle of light off

of thin metal film. This refraction angle is highly sensitivity to the optical properties

of the medium on either side. In 1983, Liedberg et al. showed that by affixing a

biomolecule, in their case human immunoglobulin, IgG, to this film they could observe

a progressive change in the characteristic diffraction angle as they allowed a solution

containing a binding molecule, anti-IgG, to flow across the surface of the chip [21].

Similarly, the diffraction angle relaxed when the surface of the chip was washed with

a pure buffer solution. They concluded the rate of change of the diffraction angle was

therefore analogous to the binding and release kinetics of the two biomolecules [21].

SPR’s limitations are primarily in the complexity of experimental design due to the

required adsorption of a biomolecule onto the metal film. There has also been some

debate as to whether or not the binding affinities measured by SPR truly reflect the

binding dynamics of the native biomolecule. By immoblizing one binding species to

the metal film, it is possible that (i) the immobilized species is unable to maintain a

native configuration, (ii) the immobilized species may present an orientation limited

binding region (the binding domain may be partially or entirely facing the surface of
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the film rather than outward into the solution), (iii) the immobilized species may not

experience the true concentration of the solution since all binding occurs localized

to the surface (localized concentration may be lower than the experimental solution

due to local binding), and (iv) nonspecific binding and mass transfer may influence

the measured signal [22]. As such, a large portion of SPR kinetic measurements

can be reasonably assumed to be inaccurate in the absence of rigorous controls and

assumption validations [23, 24]. Furthermore, the experimental setup can be quite

expensive and is relatively specialized for this technique, and so is not a tool present

in many biochemical labs.

Isothermal titration calorimetry (ITC) is calorimetry measurement of enzy-

matic activity at varying concentrations of substrate and inhibitors to characterize

protein binding [25]. While this measurement allows a much more native measure-

ment of protein binding than SPR and boasts a wide sensitivity range for protein

affinities, it is notably most sensitive for proteins that exhibit enzymatic activity

for calorimetric measurement and thus does not work well for measuring binding in-

teractions between otherwise inert proteins that act exhibit exclusively modulatory

behavior with relatively low enthalpy changes. Further limitations of the technology

include (i) necessity of high concentrations for sufficient heat generation, and (ii) rel-

atively long measurement times of 3 hrs/titration, both of which limit potential high

throughput applications of this technology [25].

Fluorescence Correlation Spectroscopy (FCS) is a technique that measures

the changes in spatial diffusion of biomolecules. As biomolecules bind together and

create complexes their diffusion is changed in a measurable way [26]. This technique

is the primary focus of chapter 2 and as such will not be discussed in detail here.

Fluorescence Polarization (FP) Assay is similar to FCS, but this technology

measures the rotational diffusion of biomolecules labeled with a fluorescent tag. As

this labeled molecule binds into complexes with targeted partners, the rotational

diffusion slows. This is measurable in the relative change in fluorescence polarization

due the orientation of these molecule as they rotate in space. This technique requires
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the use of only a single fluorophore labeled species which makes it ideal for a high-

throughput screening process, but typically relies on an engineered small peptide

tracer that competes with the ligand of interest to bind the same domain upon a

sufficiently large receptor to note a change in rotation. Therefore, the technique isn’t

ideal for measuring binding kinetics, but rather is typically used to find equilibrium

binding affinity of a target ligand-receptor pair based upon the fractional binding of

tracer in the presence of various concentrations of a competitive substrate [27].

Thermal Shift Assay (TSA) detects the change in thermal stability of a unla-

beled target protein under various conditions. One such condition is the inclusion of a

suspected binding partner. The binding of two high affinity biomolecules can increase

thermal stability, but does so somewhat unpredictably. As such, this methodology is

very useful for detection of qualitative changes in thermal stability in the presence and

absence of a suspected binding target. However, it is less feasible as a measurement

of binding kinetics, and really holds most value as a detector of potential high affinity

binding partners and so is a frequent tool used for high throughput screening [28].

1.2.3 Observed Gap in PPI Measurement Technology

All of the surveyed techniques for measurements of PPIs share a failed capability to

demonstrate an (i) inexpensive (in both experimental time and actual financial cost),

(ii) native, and (iii) high temporal resolution measurement of protein binding kinetics.

This gap presents a desirable target of research, particularly given the great leaps and

bounds of in silico modeling of biodynamic processes in the past decade, due in no

small part to the parallel progression of computation power and bioinformatics [29,30].

The development of such a technology would enable a much more efficient, high-

throughput characterization of parameters necessary for computational models of

PPIs and enable further progress in a rapidly growing field of study.
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1.3 Macroscale: Dynamics of the Proteome and Metabolome

1.3.1 Background and Significance

The study of the proteome, the entire library of proteins that exist within an or-

ganism, is an entirely different mindset of protein investigation than the microscopic

scale of PPIs. Proteomics is a study on the macroscopic scale, focused on the changes

in the composition of proteins present within entire tissues or organisms. Whereas

PPIs present a bottom-up approach to biological study, elucidating mechanisms of

health and disease, proteomics (and it’s cousins genomics and transcriptomics) can

give a top-down view of all possible contributors to any observed state. Since the

advent of genetic sequencing, there has been a powerful push towards these top-down

approaches to biomedical study, searching for potential targets of pharmaceutical

therapies or for potential actors of future study in classically poorly understood dis-

eases [31]. That being said, it’s reasonable to say that proteomics has lagged behind

it’s peers since the advent of Sanger sequencing and the birth of true ‘omic’ study.

Although newer tools have been hot topics of study in more recent years, for the

major part of the past two decades, proteomics has relied solely on the application

of a single technology, Mass Spectrometry, albeit in a number of unique and creative

ways [31].

Mass spectrometry (MS) is an analytical tool that measures the mass to charge

m/z ratio of particles. The core principle of the technology is that the forces exerted

on a charged particles in a vacuum is governed by two laws of physics [32]. The first

of these is the Lorentz force, or the electromagnetic force, a combination of electrical

and magnetical force acting on a point charge due to it’s own charge.

FL = q(E + u(B)) (1.10)

Where q is the charge of a particle and E and B are the magnitude of the electric

and magnetic fields respectively that the particle is passing through with some velocity
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u. The second law is, incidentally, Newton’s second law, which states that the force

is a function of it’s mass m and acceleration u′.

FN = m(u′) (1.11)

Setting these two equations equal to each other yields the governing equation of

motion for the particle.

m/q = u′−1(E + u(B)) (1.12)

This equation can be non-dimensionalized for ions by converting m to an elemental

mass number and q to a charge number z = q/e where e is the characteristic charge

of an electron. Therefore, the motion of an ion is governed by it’s mass ratio, m/z.

In MS, typically a sample is ionized into a gas-phase, then passed through a fixed

magnetic field that diffracts each ion at an angle which is then measured to determine

the m/z ratio of all ions present in the original sample.

For proteomics, samples are typically ionized with a soft ionization, or incom-

plete fragmentation, using a method such as electrospray ionization (ESI) or matrix-

assisted laser desorption (MALDI), that generate mostly whole, multiply charged

macromolecules. This allows for distinct, large mass ion profiles that can be eas-

ily distinguished to identify and sequence proteins and peptides [33–35]. One of four

common types of mass analyzers is then used to quantify these large ions: Quadropole

(Q), ion trap (IT), time of flight (TOF), and Fourier-transform cyclotron resonance

(FTICR) [35]. Various combinations of these two instruments make up the primary

differentiation between MS instruments, and each combination can be used to ana-

lyze over different ranges of sensitivity, with different levels of accuracy and therefore

different ideal applications.

Regardless of the instrument used, the standard strategy for proteomic MS is

to digest all the proteins in a given sample into peptides which are then recorded as
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‘finger prints’ that can be compared to a database to back out the protein composition

of the original sample. This protein composition can then be probed to determine

what is happening to the proteome under various conditions.

Applications of this technology are broad reaching. Any number of experimental

treatments, states of organism development, and states of disease can influence the

output proteome. Qualitative variation in the proteome can implicate potential path-

ways of future study, and thus these tools bear great merit as a top-down model of

experimental investigation. This being said, there are limitations of such a shotgun

approach. Typically, detection is dependent upon a relatively high mass of protein

present in samples, without some way to highlight proteins with lower expression

rates (such as a large portion of enzymes) these can be masked behind more domi-

nant players. Similarly, if there is a selected subset of proteins that are of interest,

a shotgun approach may not be the most desirable method of targeted study. Full

proteome analysis also lacks any sort of temporal specificity, distinct changes in the

proteome due to a time resolved stimuli are easily masked by the constituent pro-

teome. To address these issues, and study specific targets within the proteome, a

common method is to label the proteome in a way that enables either enrichment of

targets or distinct separation of desired peaks.

1.3.2 Survey of Current Metabolic Labeling Techniques

Metabolic labeling refers to any methods by which the endogenous machinery of

cells is utilized to generate labeled proteins for targeted analysis. Such labeling can

be accomplished through a broad variety of techniques, but at the core are all based

on the replacement of a common biomolecule with a labeled analog.

Isotope labeling involves supplementation with a stable isotope of a common

biological molecule, typically with 15N. A common practice is to expose an organ-

ism to an isotope-variant amino acid, enabling resolution of proteins that incorporate

this radio-heavy species. Isotope labeling allows experimental studies to highlight
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responses to stimuli, by looking only at protein generated after the introduction of

the isotope [36–39]. Such labeling has a few notable limitations. While not radioac-

tive, these isotopes exhibit distinct mass values that can influence biological function

and become potentially harmful if present at substantially high concentrations [40].

Furthermore, following their introduction, these isotopes are recycled by naturally

processes and are not removed from the system. There is also no simple methodology

to enrich proteins labeled in this fashion, and as such low expression is still an issue

for experimental detection.

Non-canonical amino acid (ncAA) labeling is a relatively newer technology

that involves the introduction of an amino acid analog that can be incorporated

into native protein [41]. These amino acids can be designed to exhibit inherent

labeling such as photo-reactivity or to include bioorthogonal tags that make them

easily modified with some form of label. While this allows for great versatility in

possible labeling strategies there are some widespread limitations to presently utilized

techniques. Firstly the majority of studies utilizing ncAA labeling have been limited

to dietary dosing in complex organisms, with corresponding slow distribution and

labeling of the proteome. Additionally, even bioorthogonal ncAAs tend to exert

greater influence over biophysical phenomena than radio-heavy isotopes of canonical-

amino acids due to greater distinctions in their structure [42]. Current techniques

in ncAA labeling therefore tend to demonstrate a limited capacity to span multiple

timescales. While there are other considerations, this technique is the primary focus

of chapter 4 and as such will not be discussed in further detail here.

1.3.3 Observed Gap in Proteome Labeling Techniques

Amongst the surveyed labeling techniques to enhance proteomic study there is a

noted absence of a technique to transiently label newly synthesized proteins in vivo

for imaging and enrichment. Such a technology would enable study of not only a

status post proteome, but additionally would allow a measure of temporal resolution
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into the dynamics of the proteome. It could enable study of not just the proteins

synthesized under given conditions, but also the relative turnover of those proteins

and general metabolome response to stimuli.
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2. FLUORESCENCE ROLLING CORRELATION

SPECTROSCOPY (FRCS)

Contents of this chapter and the subsequent chapter of preliminary experimental

findings will be submitted for publication. This chapter discusses the theory and

applications of standard Fluorescence Correlation Spectroscopy (FCS) and the ex-

tended applications of single-photon correlation to analyze biomolecular dynamics.

Here I discuss the current state of FCS including basic principles, limitations, and

methods of data analysis. I then present a new analysis technique and fitting models

to measure biomolecule binding behavior with higher temporal sensitivity.

2.1 Introduction

2.1.1 Background and Significance

Fluorescence Correlation Spectroscopy is a powerful tool originally developed by

Magde, Elson and Webb in 1972 as a tool to analyze DNA-drug intercalation [43]. At

its most basic, the objective of FCS is to take advantage of measurable spontaneous

changes in native fluorescent behavior of biomolecules to deduce minute fluctuations

in the physical phenomena that modulate fluorescence. When measuring the emitted

fluorescence of a sample, many physical properties hold influence over the recorded

signal (concentration, position and conformation of particles, chemical and photo

reactivity, etc.) [26]. Under most standard conditions many of these properties are

constantly fluctuating, generating a typically undesirable noise in the response signal.

However, assuming some of these fluctuations are driven by predictable behavior,

it stands to reason that this ’noise’ would hold information describing the same.

Correlating the signal against itself across an interval of time yields frequencies and

timescales of significance within the fluctuating signal that can help describe the

governing physical processes [43].
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At the conception of FCS, this presented a somewhat unique conundrum among

fluorescent imaging methods; in most cases, fluorescent studies are designed to ob-

serve broad trends in fluorescence over a fluctuating baseline, however for FCS the

ideal conditions are reversed, these fluctuations are the signal of interest. Just as it is

difficult to understand a single voice among a crowd, so too is it difficult to observe

dynamic shifts in fluctuations if many biomolecules are contributing to an averaged

signal. With standard fluorescence microscopy, optimizing the signal-to-noise ratio

(SNR) for FCS was quite difficult and limited measurable concentrations to far below

physiological ranges (< 1nM). The integration of confocal microscopy with FCS al-

lowed an elegant reduction in measurement volume to 1 µm3 or smaller, and enables

concentrations more aligned with physiological ranges [44,45].

It’s worth noting here that while many equilibrium processes can theoretically be

measured with FCS, the tool has primarily been used to measure stable Brownian

diffusion in aqueous solutions, and subsequently to measure differences in diffusion

under distinct, but stable conditions. An common example of such is to detect re-

duced diffusion of biological molecules as they aggregate due to intramolecular inter-

actions. Traditionally, this phenomenon has often been used to characterize binding

affinity between biological molecules. That being said, there have been studies that

captured more elusive kinetic parameters, although these often required either (i) rel-

atively slow binding that occurred over the course of minutes (longer than a typical

FCS experimental timecourse) or (ii) the application of an advanced FCS technique

such as two-photon Fluorescence Cross-Correlation Spectroscopy (FCCS) or applied

FRET analysis (FRET-FCS) both of which have unique limitations detailed further

below [46, 47]. However, Schwille et al. and others since have shown that at charac-

teristic concentrations for FCS (5-50nM), it is possible to capture rapid kinetics on

the order of those observed in PPIs (ka = 1e4− 1e6 M−1·s−1) by monitoring a single

labeled ligand as it associates with a target, particularly for binding interactions that

demonstrate near irreversible binding such as DNA annealing [48,49]. Notably, FCS
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experimental timescales traditionally have limited the ability to observe more rapid

and transient binding kinetics, although binding affinity is still very much resolvable.

Here we present an simple data processing algorithm that utilize this singly-labeled

technique to improve FCS measurement resolution and capture dynamics of rapid and

transient binding kinetics as might be observed in a broad subset of PPIs. We intro-

duce a rolling window correlation algorithm into the standard one-photon FCS work-

flow. Fluorescence Rolling Correlation Spectroscopy (FRCS) is a novel application

of this technology that allows time resolved measurements of biophysical behavior in

sub-second time domains, much shorter than the time-course of an FCS experimental

measurement. In contrast, traditional FCS and FCCS are capable of generating only

information pertaining to the overall average characteristics of a solution in this time

domain [50, 51]. The comparison of relative diffusion across various FCS time scales

enables a more in depth investigation of reaction progress allowing characterization

of not only binding affinity, but of binding kinetics for a much wider range of PPIs.

2.1.2 Principles of Diffusometry

Any form of FCS technique utilized for measurements of binding affinity relies

on tenants of microfluidic behavior. As a whole microfluidics is a field which has

demonstrated exponential growth as a field in biomedical technology by enabling

small sample volumes and high throughput experimental design [52]. Diffusometry,

the applied measurement of diffusion, is a subset of microfluidic study that applies

the principles of Brownian motion to resolve other biophysical phenomena.

Brownian motion is defined as the random thermal motion of particles suspended

in a fluid. This motion was first discovered by and named after botanist Robert

Brown, but was mathematically characterized independently by William Sutherland,

Albert Einstein, and Marian Smoluchoski in the early 1900’s [53–55]. Perhaps the

most widely known of these is Einstein’s application of Stokes’ law to describe diffusion
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in a low Reynold’s number solution, a solution dominated by viscosity rather than

inertia. [54].

Dc =
kb ∗ T
6πηRH

(2.1)

Here the diffusion coefficient Dc of a particle is a value with units of m2·s−1 and

describes the average rate at which that particle will traverse an area. Einstein defined

this value as a function of Boltzmann’s constant (kb, m3·Pa·K−1), the temperature

(T , K), the solution viscosity (η, Pa·s), and the hydrodynamic radius of the particle

(RH , m). Therefore, in a solution with fixed viscosity and temperature, diffusion is

modulated solely by the size of a particle within that solution.

Fig. 2.1. A cartoon showing the reaction of two proteins A and B into
complex AB. Each species has a unique size and therefore a unique diffu-
sion.

This principle can be exploited to resolve dynamics of a system. One example of

such would be a particle changing in effective size as it aggregates with other particles

as might occur in a simple bi-molecular binding interaction between two proteins of

differing sizes. As a given, each of these proteins will have a unique hydrodynamic
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radius and as such a unique diffusion. As they interact and begin to bind a third

species is produced, a complex with a hydrodynamic radius that is larger than either

independently (in most cases). As such, in a mixture of these two proteins there

would exist three distinct species of diffusing particles, each with a unique Dc, as

depicted in figure 2.1. This principle can be exploited to resolve the composition

of a solution from diffusion, and is core component of the analysis and algorithms

discussed further below in greater detail.

2.1.3 Principles of FCS

FCS Theory

Standard FCS, also known as Fluorescence Auto-Correlation Spectroscopy, re-

quires the use of only single-photon excitation. A laser of appropriate wavelength to

excite the chosen fluorophore is focused to a point within a sample solution. This

creates a soft-edged volume space known as the confocal volume (CV) within which

fluorophores are exposed to excitation (figure 2.2). While the true geometry of the CV

is dependent upon the optical system structure, for a small confocal pinhole around 1

Airy Unit (AU) the CV is most often depicted as a Gaussian ellipsoid. The intensity

of the excitation signal at a point with radial and axial distance (r, z) from the center

of the CV can be modeled as a point spread function (PSF) of laser intensity [44].

PSF (r, z) = I0e
−2r2/ω2

xye−2z
2/ω2

z (2.2)

Here, I0 is the peak intensity of the laser, ωxy and ωz are the radial and axial

radii of the CV. fluorophores exposed to this field are excited with a probability pro-

portional to the laser intensity at the spatial coordinates for any given point in time.

Excited fluorophores then begin to emit photons which are captured by the objective.

Captured photons are filtered to remove wavelengths beyond the emission range of

the target fluorophore and the arrival time of each filtered photon is recorded by a
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single-photon detector (typically in arbitrary clock units (ACU) that are converted to

meaningful units by detection software) [56]. These captured photons hold pseudo-

positional data about particles within the CV. The timing and quantity of photons

holds information about the number of fluorescent particles present in the space, as

well as their location relative to the center of the Intensity PSF.

Fig. 2.2. Left: Experimental setup for FCS. Laser (yellow) is passed up
through the objective focused to a point within a desired protein sample.
Excited fluorophores emit photons captured by the same objective (red),
filtered and passed through a confocal pinhole before being captured by
the photon counter. Right: freely diffusing fluorescent particles enter the
CV and become excited, emitting photons for counting.

By comparing the photon counts at different time points, it is possible to monitor

trends as particles diffuse into and out of the CV. To make perform this comparison
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over time, the photon count data is auto correlated and normalized by the total

photon count.

G(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉〈I(t+ τ)〉

(2.3a)

=
〈I(t)I(t+ τ)〉
〈I(t)〉2

(2.3b)

Here, angled brackets denote an average over the entire measurement window and

τ , the residence time, is the length of time between two points in the intensity func-

tion I(t) whose average similarity over the entire measurement window is indicated

by G(τ), the unitless correlation magnitude. The numerator in eqs. (2.3) is more

commonly known as the time-lagged dot-product function, and the denominator is a

normalization factor for either a symmetrical (2.3a) or asymmetrical (2.3b) normaliza-

tion. This correlation function is typically preformed by a real-time hardware photon

correlation module, also known as a time tagged multiple coincidence detector [57].

It is perhaps most intuitive to think of this function as a frequency distribution

of particle residency times. Consider the ideal, simple case where I(t) is a function

only of the number of particles within the CV at time t, and all particles have an

identical diffusion coefficient through the medium, Dc (m2s−1). A particle might enter

the CV at time t0 and remain within the CV for a very short period (a period of τ

seconds). Due to this particle, there is a measurable relationship between the counted

photons emitted at time t0, I(t0), and those emitted at time t0 + τ , I(t0 + τ). Similar

relationships exist over all possible combinations of I(t) and I(t+τ). The average

magnitude of their similarity is analogous to the relative occurrence of particles with

a similar residency time over the duration of the entire measurement interval.

It would be expected that low residency times (τa in fig. 2.3) would be most likely

to occur as particles ‘flicker’ in and out of the CV at the soft boundary. Conversely,

it would be very unlikely for a particle to have a long residency within the CV (τb),

as this would entail a statistically improbable possibility that the particle ‘bounced

around’ within the CV for an extended period of time. However, somewhere between
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Fig. 2.3. Top: Cartoon showing possible paths of fluorescent particles
through an XY cross-section of the CV. For stable diffusion, the particle
path determines residency time within the CV. Bottom: example photon
count intensity trace, I(t) and autocorrelation, G(τ). Shown also are
possible observed lag times for the color coordinated particles in the top
panel (not to scale).
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these two extremes exists a residency time (τD) that is characteristic of the average

time (s) it takes for a particle to diffuse across the cross-section (m2) of the CV.

This characteristic residency time, τD, is the target measurement of a diffusion

study, as it is inversely proportional to the Dc of the fluorescent particle. If the

dimensions of the CV are known the diffusion coefficient can be calculated from τD.

Dc =
ω2
xy

4τD
(2.4)

Here ωxy is radius of the confocal volume perpendicular to the laser and measuring

axis, and τD is scaled to account for three dimensional geometry of the experimental

measurement [44].

Fitting Models

In order to resolve τD, the most common approach is to fit the correlation function

G(τ) with a fitting model that accounts for experimental dynamics and the optical

geometry of the system. The simplest case of such a model depicts a single particle

system dominated by Brownian diffusion.

G(τ) = G(0)M(τ) +G(∞) (2.5a)

M(τ) =
1

(1 + (τ/τD))(1 + α−2(τ/τD))1/2
(2.5b)

Here G(0) is a normalizing factor inversely proportional to the average number

of fluorophores present in the CV during measurement, G(∞) is the fitting offset

(typically 0 or 1 depending on the correlation algorithm), and M(τ) is a measurement

function that describes unique dynamics depending on the experimental design. For a

system with only one species of diffusing particle, M(τ) includes only two parameters,

the diffusion time and α, the structural parameter of the CV describing the ratio of
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ωz/ωxy. The inclusion of this α parameter adjusts for the three-dimensional geometry

of the CV such that it can be used to generate a diffusion time describing two-

dimensional motion. The normalizing factor G(0) can also be easily used to describe

the geometry of the CV.

G(0) =
1

〈P 〉
=

1

C(Veff )
(2.6)

Veff = π3/2ω2
xyωz (2.7)

Here P is the number of particles in the CV, C is the concentration of particles in

the sample solution and Veff is the effective volume of the CV. This standard fitting

model can also be easily adapted for a poly-disperse solution with distinct species of

particles (each with identical fluorescence profiles but unique Dc,i) by adjusting the

M(τ) function accordingly.

M(τ) =
∑
i

Fi
(1 + (τ/τD,i))(1 + α−2(τ/τD,i))1/2

(2.8)

Here Fi is the fractional composition of particles in the sample with Dc,i and thus

τD,i. A similar model can be used to accommodate variation in the relative intensities

of fluorescence between species.

M(τ) =
1

(
∑

i Fiεi)
2

∑
i

Fiε
2
i

(1 + (τ/τD,i))(1 + α−2(τ/τD,i))1/2
(2.9)

Here εi is the relative molecular brightness of each species, typically as compared

to the molecular brightness of the species of most interest, q0 (ε0 = q0/q0, ε1 = q1/q0,

etc.). One final adjustment typical for fitting models is descriptor for the system

response, sometimes called the triplet state correction. This modification accounts
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for biophysical changes that have influence over observed fluctuations. For the ma-

jority of organic fluorophores, some fraction of excited particles, T , tend to become

further excited into a non-radiating state until they relax back to ground state at a

characteristic rate τR. There are also a number of other phenomenon, such as rota-

tional diffusion and after-pulsing, that share a similar time domain [43]. Typically on

the order of microseconds, these biophysical events usually occur at a much smaller

timescale than the desired sensitivity region for measurement, however accommo-

dating this behavior tends to allow much more precise fitting within the range of

interest. The triplet correction is often represented independently, but because there

are a number of phenomena that occur in this time domain it is could also be bulked

into a system correction factor, S, with a characteristic time τS.

G(τ) = G(0)

(
1 +

T

1− T
e−τ/τR

)
M(τ) +G(∞) (2.10a)

= G(0)
(
1 + Se−τ/τS

)
M(τ) +G(∞) (2.10b)

Note that 2.10 demonstrates a triplet/system correction factor adjustment usable

with any of the above functions for M(τ). Further adjustments to the fitting model

for single-photon FCS can be utilized to capture a number of other known behav-

iors depending on the experimental conditions such as defined convective flow and

chemical relaxation (as with a FRET system for instance), but further detail on such

models can be found elsewhere [43,58].

FCCS Theory

Two-photon fluorescence microscopy, enables a more complex application of FCS

technology. FCCS involves two species of fluorescent particles each with a unique

fluorophore and a distinct wavelength of excitation/emission that are present within

the same system. Both fluorophores are excited by lasers focused to produce a single
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CV, and the resulting emissions are measured independently via separate channels. As

differentially labeled particles bind together and interact, the two channels become

more similar as they observe the same diffusive behavior in each channel. Unlike

in FCS, which utilizes an auto-correlation function, these channels are then cross-

correlated against each other to reveal these relationships between the fluctuations

present in each channel.

GX(τ) =
〈I1(t)I2(t+ τ)〉
〈I1(t)I2(t)〉

(2.11)

This function can be modeled with an only slightly more complex form of the

fitting models used for FCS that accounts for some inherent differences in the mea-

surement. Namely, the effective volume is different for each species as each excitation

laser will create a slightly different PSF and CV. The effective superimposed obser-

vation volume of the two channels can be defined to account for the unique geometry

of each channel.

Veff,12 =
π3/2

23/2

(
ω2
xy,1 + ω2

xy,2

) (
ω2
z,1 + ω2

z,2

)1/2
(2.12)

Here Veff,12 is the effective superimposed volume, and ωxy,1/2 and ωz,1/2 are the ra-

dial and axial radius of a confocal ellipsoid for channels 1/2 respectively. This effective

volume can be used to inform the concentration of the doubly-labeled species created

by binding interactions. In the absence of confounding artefacts, the maximum value

of GX(τ) is proportional to the concentration of the doubly labeled complex species

and the characteristic residency time describes the diffusion of that complex [46].

FCCS is a powerful tool for measurement of binding affinity and enables quick mea-

surements of equilibrium KD without requiring a concentration titration of reagents,

but it has some notable drawbacks. Firstly, both species must be fluorescently la-

beled and imaged via FCS. This requires engineering and modification of both binding

species, which in the case of protein-protein interactions doubles the possibilities for
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potential variation from wild type behavior. Similarly, the limitations of FCS de-

mand low concentrations of any fluorescent species, in the range of 5-50 nM. For

interactions with KD of 1 µM or greater it is very difficult to observe binding at

these concentrations, so the tool is limited to interactions of high affinity. Like FCS,

FCCS also requires a reasonable experimental measurement length (∼ 30 s) to ob-

tain sufficient data for averaging into a reasonable SNR. This characteristic mea-

surement time makes it difficult to observe dynamics faster than the measurement

time such as the binding kinetics of proteins with sub second timescales. So while

FCCS can characterize binding affinity with ease, binding kinetics such as those used

in the Michalis-Menten model of interactions are less obtainable. Lastly, FCCS has

known experimental limitations: it requires more expensive setups, contains invasive

cross-talk artefacts between channels that skew binding affinity measurements, and

increases the rate of photo-deconstruction of fluorophores [46].

FRET-FCS Theory

A slightly newer technique, FRET-FCS is a distinct application of FCS technology

to measure binding affinity with differences that address some of the issues presented

by FCS. This technology applies FRET technology detailed by Stryer et al. [59]. The

general principle relies on the transfer of excitation energy of a donor fluorophore to

a nearby acceptor when they are proximal to each other (within a few nanometers).

These paired fluorophores then are only able to become excited to a radiative state

when localized to a complimentary fluorophore. This localization can be accomplished

a variety of ways, but a convenient way is to attach complimentary labels to two

particles that when bound together will localize the fluorophores allowing them to

excite and emit photons.

FRET-FCS capitalizes on this technology to measure the chemical relaxation of

a species fixed within the CV as a diffusive species binds and releases [47].
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G(τ) = G(0)e−τ/τB (2.13)

‘

G(0) =
1

〈N〉
ka
kD

=
1

〈N〉KD

(2.14)

τB =
1

ka + kd
(2.15)

‘

While this technology allows direct measurement of binding kinetics. It has it’s

own limitations, with a notably more complex experimental design requiring the en-

gineering of two labeled species and typically requiring fixation of one of these species

in place within the CV to prevent diffusion from affecting the observed measurements

of binding. This technique, similar to surface plasmon resonance, therefore is most

viable for the study of a 3D freely diffusive species to a 2D surface bound species.

Any observed binding affinities under these conditions may be geometrically limited

or enhanced by surface interactions.

Correlation

Regardless of the experimental design and fitting model, the actual measurement

analyzed remains the same. The raw photon count, as recorded by the counting

module is passed into a discrete, time-domain correlation to generate a curve that is

then parameterized with non-linear regression. This is typically accomplished with

a hardware correlation module, as they are capable of performing a large number of

computations in real-time, to rapidly generate a signal output.

Hardware Correlation: Recall as above in eq. (2.3) that the general form of

the correlation function is a symmetrically normalized time-lagged dot product.

G(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉〈I(t+ τ)〉

(2.3)
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This form of the equation assumes a continuous function I(t) which is not truly

an accurate representation of the experimental measurement. Rather the intensity

function is recorded as a stream of discrete photon arrival events typically binned for

correlation. The discrete formula for what is known as the bin and multiply (BM)

correlation function is very similar to the general form and simply requires redefinition

in the discrete domain [60].

Ĝ[k] =
〈Î[j]Î[j + k]〉
〈Î[j]〉〈Î[j + k]〉

(2.16)

In this instance, j represents the bin or sample index recorded with sampling time

∆t (t = j∆t), Î[j] is the discrete number of photons received within that sample,

and k is a time-lag displacement (τ = k∆t). In the discrete form the time-lagged dot

product is well named and is defined as the dot product of the data vector with a

time shifted copy of itself, with the small addition of a normalization to accommodate

fewer data points in each trimmed vector as k increases.

〈Î[j]Î[j + k]〉 =
1

J − k

J−k∑
j=0

Î[j]Î[j + k] (2.17)

Here J is the length of the original data vector and J − k is thus the length of the

two comparable vectors for time shift k. Similarly, the normalization factors for g(k)

must account for the difference in vector length associated with k.

〈Î[j]〉 =
1

J − k

J−k∑
j=0

Î[j] (2.18)

〈Î[j + k]〉 =
1

J − k

J∑
j=k

ÎI[j] (2.19)

It is notable that FCS has a very high temporal resolution, but also that the

timescales for fluctuations of note in biophysical studies tend to span a wide dynamic
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range of several decades which must be captured by the analysis (typical setups mea-

sure over a range of approximately (1e−8,1e+0) seconds) [26, 43]. To compute g(k)

for every possible value of k at the highest measuring resolution using a linear-tau

application of eqs. (2.16)-(2.19) would therefore require
∑J

k=0(J − k) computations,

an O(n2) problem. Even with conservative estimates for experimental conditions this

is an untenable number of computations (a 10ns temporal resolution and 10 second

measurement gives J=1e+9 or total 1e+18 total computations). Typically, these de-

vices employ a multiple-tau correlation algorithm to reduce the number of comparison

events to a tenable number. One way to accomplish this is to use overlapping, cas-

cading blocks of linear-tau correlators, with each successive block spanning a wider

range of possible τ values [61].

In such a module, the block cascade takes as it’s primary input the most recent

photon count received during some period ∆t as a raw value. This datum is then fed

into the first linear-tau correlation block. Within this block there are a given number

of linear-shift registers. Each register holds the value of a previous measurement

such that the value of a given register of index m = (0,1,2,...,M) represents the

photon count over the interval ∆tm at some point in the past given by the lag time

τm = m∆t. When a new datum is recorded each value in the block shifts to the

right by a single register, the value in register M is discarded and the new datum

is stored in the now vacant first register. To determine the correlation function of

this block, the new datum is then multiplied by every value in the block, producing

an array of products of length M representing the relationship of the new datum to

the data τm time prior. This array is then added to a cumulative array tracking the

sum-products of this block during the entire course of an experimental measurement.

The multiple-tau component comes in as data is passed from the first linear block to

the second block. The second block, and indeed each successive block in the cascade

receives it’s new datum by taking the sum of some number, γ, of elements at the end

of the previous block. The photon count stored in each register of any block of index

n = (0,1,2,...,N) therefore represents the count over a span ∆tn = γn∆t. For each
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block after the first, the correlation is calculated similarly, with a small additional

adjustment of normalizing the products by γn to account for the variation in the

relative photon count per register in each block with increasing values of ∆tn.

Software Correlation: Software correlation can also be used to generate real-

time, simultaneous processing of photon count data into correlation traces, however

the possible resolution for real-time processing declines significantly as the analysis

slows in the step from dedicated hardware computation structure to a software based

data manipulation and calculation [62–64]. That being said, software correlation

can be utilized for post-processing of experimental measurements, can often generate

better resolution of the experimental data and enables the user to manipulate and

trim the raw photon count signal before processing the data into correlated output.

Software correlation is discussed in greater detail in section 2.3.2.

2.2 Methods

2.2.1 FRCS Algorithm and GUI Design

FRCS correlation algorithm and custom fitting was evaluated using scripts writ-

ten in Python and C++ (merged using Ctypes foreign function prebuilt library for

python) [65]. All scripts were evaluated on a Linux emulating virtual OS with a Intel

i7-6700 CPU @ 3.4 GHz and 8 GB of RAM. For correlation raw data was exported

either from custom simulation scripts as detailed in chapter 3 from a Zeiss LSM880

Confocal microscope and converted into PAT lists. Each PAT list was held in tem-

porary memory and experimental time frames were extracted, binned, correlated to

generate a rolling correlation over the time-course of the experimental measurement

as described in greater detail in section 2.3.2. Fitting was performed using a variety of

fitting models and all models were resolved using a combination of Lagrangian Least

Square Error and Differential Evolution minimization algorithms using the Lmfit li-

brary for Python [66]. A graphical user interface was created using the widget based

Tkinter library for Python and the Matplotlib graphical display kit [67].
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2.3 Results

2.3.1 FRCS Theory

Given the limitations associated with FCS, FRET-FCS and FCCS as discussed

in section 2.1.3 regarding biomolecular binding interactions, there seems to exist a

gap in these technologies. FCS is known to capture data with a time scale resolution

on the order of nanoseconds or faster [26]. It should therefore be possible to observe

binding kinetics and dynamics of an interaction on a similar scale. Indeed this capa-

bility has been verified by the ability to directly measure chemical relaxation through

FRET-FCS and by studies that utilize single ligand labeling to demonstrate binding

dynamics of biomolecules [46, 47, 49]. However, for both FCCS and traditional FCS

that primarily measure diffusion, capturing these fine time resolution dynamics is

limited by the need to average measurements over a period of seconds to resolve a

valid SNR.

Take a binding reaction of two protein species, one fluorescently labeled and one

fluorescently inert. With FCS, the diffusion of the fluorescently labeled species can

be measured as it interacts with the larger binding target, increasing in characteristic

size and therefore reducing in diffusion.

That being said, the depiction shown in figure 2.4 is a bit of an oversimplification.

FCS will not truly measure the average diffusion of particles in the solution. Rather a

poly-disperse fitting model such as described in equation 2.8 and visualized in figure

2.5 can be used to determine the composition of the solution. In this case there are

two possible diffusing species representing the free and bound ligand, each with a

unique τD,i. The diffusion of the free ligand can be calibrated with a relatively simple

measurement of the ligand in isolation, therefore requiring parameter fitting only of

the fraction of ligand that is bound up, and the diffusion of this bound species.

If the binding interaction proceeds at a sufficiently slow rate, say over the course

of a few minutes, subsequent FCS measurements of 15-30 seconds can reasonably

detect changes in diffusion for distinct time points in the reaction. Schuler et al.
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(a) Cartoon of a two particle binding reaction with one fluorescently

labeled ligand binding a larger inert protein.

(b) Cartoon of binding reaction progress, with a corresponding reduc-

tion in average diffusivity

Fig. 2.4. Single labeled binding measurable with one-photon FCS
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Fig. 2.5. Expected correlation geometry of a two particle fitting model
over the timecourse of a binding reaction between a fluorescently labeled
ligand and a larger inert protein. Characteristic residency times are τFAST
and τSLOW for the free and bound ligand respectively, and similarly the
fraction of each species present is indicated by FFAST and FSLOW . Note
that for a reversible binding interaction full saturation is unlikely to occur
with equivalent concentrations of ligand and receptor.

indeed demonstrated this was possible, resolving the binding of a fluorescently labeled

protein, transferrin, to a target human transferrin receptor over a 20 minute period
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with binding kinetics of ka = (1.1± .1)e4 M−1·s−1 and affinities of kd = (6.0± 4.0)e−4

s−1 (KD = 15-100 nM) [49].

Having validated this methodology, it is notable that for many PPIs the binding

interaction does not necessarily fall into this time domain. Firstly, many high affinity

binding interactions occur with faster kinetics on the order of ka = 1e6 M−1·s−1,

and secondly even binding rates below this may result in sub-minute or even sub-

second time scale interactions if concentrations are high enough as might be necessary

to exhibit binding for lower affinity interactions. In these instances, even with the

smallest reasonable FCS measurement length, we may be unable to observe multiple

data points within the association phase of binding.

Fig. 2.6. Simulated binding interactions of a fluorescent ligand fA, to a
inert receptor B over a time course of minutes. Right panels show the
same time course in log scale, grid lines indicate a 30 second period (as
subsequent FCS measurements might capture). Plotted is the fraction of
complex fAB using kinetics and concentrations as observed by Schuler et
al. [49].

We can simulate this type of binding interaction with a simple system of non-linear

differential equations to investigate this hypothesis. For a system such as described
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above in figures 2.4/2.5 this requires a system of ODES with only 3 mathematical

equations as described in chapter 1.

fA+B ⇀↽ fAB (2.20)

d[fA]

dt
= kd[fAB]− ka[fA][B] (2.21)

d[B]

dt
= kd[fAB]− ka[fA][B] (2.22)

d[fAB]

dt
= ka[fA][B]− kd[fAB] (2.23)

This system can be solved with any numerical integration algorithm, such as

MATLAB ode45, and the resulting traces used to predict PPI behavior observable

with FCS. If we want to convert the results of this ODE simulation to fractional

binding as we would observe in FCS this is an even more trivial task.

FA(t) =
[fA](t)

[fA]0
(2.24)

FAB(t) = 1− FA (2.25)

Shown in figure 2.6, a reaction as observed by Schuler et al. with slow kinetics

and high affinity is easy to characterize with subsequent FCS measurements of 30

seconds. However, when we begin to explore the possible parameter space of PPIs

ranging over reasonable association rates and binding affinities, it’s evident that many

PPI kinetics would not be well characterized by FCS measurements in this fashion

(figure 2.7). Notably, if we aim for concentrations of binding actors that will attain

50% saturation of the fluorescent ligand (figure 2.7b), such that we can readily observe

FCS parameter fitting error both above and below the curve, we note that that under

many conditions, the binding curves proceed to equilibrium within the span of only

around 2 minutes or so, or the span of ∼ 4 FCS measurements.

Of these more rapidly equilibrating interactions there are some that occur entirely

within the first 30 second FCS measurement, and even those that do not will likely
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be poorly described by subsequent measurements due to noisiness in the fractional

composition measurement as an inherent product of the experimental process and

data fitting required to produce these values. That being said, as aforementioned

FCS measurement records data with nanosecond resolution, the problems stem from

the need to average this data across a much longer timeframe.

Thus far, we have only considered using FCS data as it’s traditionally been applied,

with each distinct photon count event being utilized only once and contributing only

to the correlation curve of a single measurement. However, there is no reason that the

same data points cannot be used to generate more than one correlation. If we take

our measured photon count and perform a correlation of overlapping segments we

should be able to resolve dynamics on a much finer timescale without compromising

the SNR.

By introducing a ‘sliding windowed’ correlation algorithm we enable a new capa-

bility for rapid dynamic characterization to FCS technology. By correlating a small

region, a frame, of the raw photon count trace we can characterize the diffusion of

particles within that frame of a single experimental measurement. This frame can

then be shifted slightly (by a single sample if desired) and a new correlation performed

to characterize the change in diffusion between those two frames, and therefore the

change in composition of the sample. While computationally expensive, this enables

time resolution of a traditionally single measurement. From one experimental mea-

surement of time tM as many as (tM − tf )/∆t time resolved points may be generated

where tf is the width of a correlation frame and ∆t is the experimental sample rate.

In the next sections of this chapter I detail the software algorithm and graphical

user interface that I designed to process data according to this theory which we coin

as Fluorescence Rolling Correlation Spectroscopy (FRCS) and present this software

as an open source tool for any lab enabled with single-photon FCS.
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(a) Fraction of complex fAB over time. Initial concentrations fixed to fA0 = 10 nM, B0 =

100 nM.

(b) Fraction of complex fAB over time. Initial concentrations of species B are varied to obtain

half saturation as ideal for FCS, and fA0 = 10 nM.

Fig. 2.7. Simulated binding interactions of a fluorescent ligand fA, to a
inert receptor B over a time course of minutes. Right panels show the
same time course in log scale, grid lines indicate a 30 second period (as
subsequent FCS measurements might capture). Plotted is the fraction of
complex species fAB using various kinetics and concentrations reasonable
for PPIs
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2.3.2 Software Correlation

As discussed with hardware correlation it is unfeasible to compute G(τ) for every

possible value of τ using a software correlation algorithm. The same limitations

in number of computational steps still apply. Indeed, as aforementioned software

correlators are inherently slower (per computation) than a hardware analog. That

said, if real-time acquisition is not demanded, post-processing analysis using software

correlation has no limitation beyond user preference as to the computation time

for the correlation algorithm. Without the constraints of real-time processing and

hardware register storage space, a software correlator is capable of attaining a much

finer tau resolution. That being said, a multiple-tau approach is still typically utilized

to optimize the ratio of computation time to correlation resolution. Here I utilize a

BM algorithm similar to hardware correlation that integrates a discrete time-lagged

dot product function developed by Gamari et al. [57].

The photon count raw data is first formatted into a vector of photon arrival times

(PAT) with a distinct entry for each photon measured. This vector is then binned

into B equivalent bins of width ∆tn0 equal to the desired lowest tau value in the

correlation sample (typically near to the smallest value in the discrete derivative of

PAT). Notably, when binned the vector is shifted to arbitrary integer time units bin

width ∆tn, to improve memory efficiency. The binned PAT vector, bPATx, is stored

as a paired list of bin left-edges (tx) containing a non-zero count of photons in the

original PAT vector and the associated photon count for each bin (px) in the form

bPATx = [tx, px]. The length of this list is Bx, for a dense data set tx is likely a

nearly sequential list and Bx ≈ B, but for sparse data there may be large jumps

between time entries and Bx << B. In the latter case, this non-sparse storage may

significantly reduce computational expense. For an auto-correlation this list is then

duplicated, or in the case of a cross-correlation a second list is produced using an

equivalent bin width from the second data channel. This second list is identical in

format if not value and can be defined as bPATy=[ty, py] of length By and the two
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can be compared against each other using a cross-correlation (equivalent to an auto-

correlation if bPATx=bPATy) with a discrete approximation of equation (2.11) as

described by Gamari et al. [57].

Ĝ[τ ] =
B
∑Bx

i

∑By

j px[i]py[j]δ[τ − (tx[i]− ty[j])]
PxPy

(2.26)

Here, as above, B is the total number of equal width bins (∆tn) possible given the

length of the experimental measurement (tM = B∆tn), Px and Py are the total photon

counts represented in bPATx and bPATy respectively, and δ is the Kronecker delta

function (δ = 1 only if passed a zero, otherwise δ = 0). Equation (2.26) is essentially

equivalent to equation (2.16), although notably is more efficient for a sparse dataset

due to comparison only of non-zero bins (accommodated by the inclusion of the

Kronecker delta term). As with a hardware correlation however, reduced computation

time is accomplished primarily by applying an overlapping, cascading multiple-tau

correlation algorithm.

Equation (2.26) is used to compute Ĝ[τm] with (τm = m∆tn, for n = 0: ∆tn =

∆tn0) for m = (0, 1, 2,..., M). The two bPAT lists are then re-binned to a bin

width of ∆tn = γn∆t and Ĝ[τm] are determined using the newly binned lists for m

= (M/γ + 1,M/γ + 2,..., M). This process is repeated for blocks n = (0,1,2,...,N) or

until a desirable maximum value of τm has been achieved. A block diagram of this

multiple-tau correlation scheme can be seen in figure 2.8 below.
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Fig. 2.8. Block Diagram of a multiple-tau scheme that applies the BM
Correlation approach.

2.3.3 Python 3.6 Implementation of FRCS

An implementation of this algorithm with reasonable benchmarking times for the

generation of many correlation frames, was achieved using custom python scripts

that utilize both (i) high order data handling tools from pre-built python packages

including Numpy ( [68]) and Scipy ( [69]) and (ii) integrated functions written and

compiled in C++ using the Ctypes library ( [65]) to allow more rapid computations

than achievable with interpreted Python 3.6. This software and more complete docu-

mentation is available open source via the GitHub repository (see appendix A.1). This

chapter will discuss these algorithms only at a high level, further detail is available

in the documentation.

The base process of this software is a function that takes four inputs describing

the intended correlation. These inputs are (i) srcFiles: a list of file names for files

containing the of raw output of identical FCS measurements (photon arrival times

recorded with arbitrary units), (ii) srcDir: the hard drive location of the direc-

tory containing these files, (iii) destDir: the hard drive location of a directory to

output correlated traces and (iv) corrParams: the correlation parameters. The cor-

rParams input is a data structure containing values for the length of experimental

measurement (tM), desired τ resolution (N , M , and γ), and the desired width (tf )
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and number of overlapping correlation frames to generate for each sample. Each file

in srcFiles is handled separately due to the size of the data vector from a single

measurement, which are characteristically around 2 megabytes per million photons

counted.

Algorithm 1 funcFRCSAnalysis(srcF iles, srcDir, destDir, corrParams)

Ensure: All passed variables are of expected format.

1: corr ← corrClass(corrParams)

2: for file in srcF iles do

3: if file.channels > 1 then

4: PATx ← parseRaw(file, channel1)

5: PATy ← parseRaw(file, channel2)

6: else

7: PATx ← parseRaw(file, channel1)

8: PATy ← PATx

9: end if

10: Ĝ← corr.CCF(PATx, PATy)

11: destDir/file.frcs← write(Ĝ)

12: end for

Within this base process two simple helper functions are used. A function parseRaw

detects the format of the input data file (currently supports formats only for Zeiss

‘*.raw’ files and ‘*.PAT’ files from my own simulated FCS data as discussed in chapter

3) and converts the file to a standardized PAT vector with units of seconds. A second

function write exports correlation traces as comma separated lists to the destDir

with a custom file identifier of ‘.frcs’. However, the meat of the computation occurs

within an instantiated correlator class (corrClass) that takes as input the correla-

tion parameters and contains a sub-method (CCF) to perform identical rolling cross

correlations of PAT1 and PAT2 for each file in srcFiles.
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Algorithm 2 corrClass.CCF(PATx, PATy)

Ensure: corrClass is instantiated with appropriate variables including:

1: corrClass.tM - The length of experimental measurement

2: corrClass.frameEdges - Measurement time left edges of desired corr frames

3: corrClass.tf - Width of a corr frame (10-30 seconds)

4: corrClass.tauResolution - Parameters describing the desired τ resolution

5: corrClass.τ - Vector of all tau values based on corrClass.tauResolution

6: fIndex← 0

7: for f in frameEdges do

8: fIndex← fIndex+ 1

9: bM ← 0

10: for n in [0, 1, 2, ... corrClass.tauResolution.N ] do

11: ∆tn ← corrClass.τ [0] ∗ γn

12: B ← corrClass.tf/∆tn

13: fL← f

14: fR← f+corrClass.tf

15: bPATx, bPATy ← corrClass.binPAT(PATx, PATy,∆tn, (fL, fR))

16: Bx ← length(bPATx)

17: By ← length(bPATy)

Aside from a few aptly named helper functions this correlation is driven primarily

by iterative application of two subfunctions. For each frame, corrClass.CCF works

through subsequent blocks n in the BM algorithm, rebinning the PAT vector as it

proceeds from block to block. Within each block, each tau register m is evaluated

to compute a normalized time lagged dot product according to equation 2.26. Due

to the number of computations involved, performing this function within interpreted

Python 3.6 is not ideal. Faster benchmarking is achieved by evaluating this function

(cppFCSLib.tLDP) from a custom written C++ library that is integrated via the
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18: Px ← sum(bPATx)

19: Py ← sum(bPATy)

20: for m in [0+bM, 1+bM, 2+bM, ... corrClass.tauResolution.M ] do

21: tauIndex← m+ n ∗ (M − bM)

22: τm ← corrClass.τ [tauIndex]

23: Ĝ[tauIndex, fIndex]← cppFCSLib.tLDP(τM , Bx, By, bPATx, bPATy)

24: Ĝ[tauIndex, fIndex]← Ĝ[tauIndex, fIndex] ∗B/(Px ∗ Py)

25: end for

26: bM ← ceil(M/γ)

27: end for

28: end for

29: Return: Ĝ

Ctypes Python package. This implementation is based upon the algorithm presented

in the same publication that details equation 2.26 [57].

Python 3.6 does however present a convenient set of tools for manipulating large

data sets which can be used to efficiently rebin the PAT lists into shorter, frame

specific lists in the style of bPATx/y between each correlation block. This is per-

formed by a relatively straightforward helper function built into the correlator class

corrClass.binPAT which takes as inputs (i) the PAT vectors, (ii) desired bin width,

and (iii) left/right edges of the current correlation frame in experimental time (fL,fR)

and exports a binned list in the format of bPATx/y as described above.

Shown in figure 2.9, this algorithm is capable of rapidly computing many corre-

lation frames for a single measurement, with execution times ranging from 0.4-0.6

s·kHz−1 per frame for correlation frames of a length reasonable to generate an ap-

propriate SNR. For a characteristic experiment with correlation frames of 30 seconds

and photon count rate in the range of 50kHz, this would indicate an execution time

of ∼ 20 s/frame.
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Algorithm 3 cppFCSLib.tLDP(τm, Bx, By, bPATx, bPATy)

Ensure: All passed variables are of C++ long long type and that bPATx and bPATy

are contiguous 2D arrays of dimension 2xBx and 2xBy respectively.

1: productSum← 0

2: i← 0

3: j ← 0

4: while i < Bx and j < By do

5: lag ← bPATx[1][i]− bPATy[1][j]− τm
6: if lag == 0 then

7: productSum← productSum+ bPATx[2][i] ∗ bPATy[2][j]

8: i← i+ 1

9: j ← j + 1

10: else if lag < 0 then

11: i← i+ 1

12: else

13: j ← j + 1

14: end if

15: end while

16: Return: productSum
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Algorithm 4 corrClass.binPAT(PATx, PATy,∆tn, (fL, fR))

Ensure: PATx and PATy are both photon arrival time lists with arbitrary units

(AU , seconds equivalent most easily estimated from the last photon arrival time

and experimental measurement length, corrClass.tM).

1: firstBool ← True

2: for PAT in [PATx, PATy] do

3: unitConversion← PAT [end]/corrClass.tM

4: Bframe ← (fR− fL)/∆tn

5: fLbin ← fL/∆tn

6: ∆tn,AU ← unitConversion ∗∆tn

7: binRange← np.arange(1, Bframe, 1) + fLbin

8: tbin, pbin ← np.unique(np.digitize(PAT, binRange), return counts=True)

{Note this function returns two lists, but the first and last values in each list

contain data for every photon counted on either side of the correlation frame and

must be removed!}

9: if firstBool then

10: bPATx ← np.stack(tbin[1 : −1], pbin[1 : −1])

11: firstBool ← False

12: else

13: bPATy ← np.stack(tbin[1 : −1], pbin[1 : −1])

14: end if

15: end for

16: Return: bPATx, bPATy
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Fig. 2.9. Benchmarking of FRCS algorithm implemenation in Python 3.6.
On the x-axis is the width in seconds of the correlation frame, on the y-axis
is the average evaluation time for a frame of each width selected randomly
from within several seeds of simulated experimental measurements and
normalized by average photon count rate for each simulation (n = 10: 2
frames/seed x 5 seeds/photon count rate; 3 simulated photon count rates).
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2.3.4 FRCS Data Fitting Algorithm and Workflow

Evaluation of FRCS binding data requires two levels of parameter fitting. The

first level is a series of non-linear regression steps that apply an FCS fitting model

as described in section 2.1.3 to resolve the fractional composition of free ligand and

complexed ligand-receptor in each correlation frame. The second level is a single non-

linear regression step that attempts to resolve binding kinetics from this fractional

composition, the initial concentrations in the system, and experimental parameters

such as fluorescent bleaching which can also be extracted from the fitting models

used in the first level. A multilevel fitting approach such as this does introduce a

significant potential for fitting error, however we minimize this potential by using a

robust fitting workflow that seeks to minimize sources of fitting error.

As described in section 2.3.1 this technique applies a fitting model that assumes a

two-species system with a rapidly diffusing free ligand and a slower diffusing complex

species. For the purposes of this work, I assume that the complex doesn’t introduce

a significant amount of fluorescent quenching, under the assumption that the fluo-

rophore label is designed such that it exists a sufficient distance from the binding

domain so as not to interfere with binding behavior. In this case, q0 = q1 or ε0 = ε1.

For experimental measurements, I do include a system correction factor, although for

evaluation of simulated FCS data as discussed in greater detail in chapter 3 the cor-

rection factor S is railed to 0 (along with a few other parameters as discussed further

below) during fitting because this behavior is not enabled in preliminary simulations.

The full form of the fitting model used for all measurements is given below.

G(τ) = G(0)(1 + Se−τ/τS)

(
2∑
i=1

Fi
(1 + (τ/τD,i))(1 + α−2(τ/τD,i))1/2

)
+G(∞) (2.27)

For the first level of fitting, each generated FRCS frame is assigned a distinct

Parameters structure from the Lmfit non-linear regression Python package which

is generated and stored into a nested dictionary frameParams keyed by first the
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file name of the experimental measurement and then by the experimental-time, left-

edge of the correlation frame. These Parameters structures essentially contain a set

of information describing each parameter in equation 2.27 including initial values,

upper/lower bounds, and a boolean to determine whether each parameter is varied

during fitting. For all fitting on this level, the same general workflow is used with

differing variable parameters of interest: first a rough least squares fitting step is used

to appropriately fit the asymptotes (G(0)andG(∞)), then a differential evolution step

is used to break any local minima, and a final least squares fitting step is used to

tune the less sensitive (but most important) parameters. Precise details on the fitting

algorithms can be found in the Lmfit documentation [66].

The model in equation 2.27 is first used to fit calibration measurements of two

single particle systems to resolve the (i) structural geometry of the CV and (ii) diffu-

sion coefficient of the free ligand in isolation. For these calibration measurements, F1

can be railed to 1, F2 can be railed to 0, τD,2 can be railed to any non-zero number,

and the same FRCS experimental correlation paradigm (tau resolution parameters,

experimental measurement length, correlation frame length, and initial concentration

of ligand) can be used as for the planned experimental measurements of binding.

In the first calibration, a freely diffusive fluorophore of similar excitation wave-

length and with a known concentration and diffusion coefficient in the binding medium

is monitored. Applying FRCS allows for more robust fitting of even a simple system

like this by allowing a single experimental measurement to generate numerous repli-

cate correlation traces. For this calibration, G(0) and G(∞) are allowed to vary

between frames, but the values of α, τD, S, τS are fit globally for each measurement

file. Depending on the fluorophore and laser intensity, fluorescent bleaching may oc-

cur causing G(0) to decrease with successive correlation frames. In this case, the true

value for the number of particles in the CV (P = 1/G(0)) should be approximated

from the output of only the first few frames. From the known initial concentration

(Ccal), diffusion coefficient (Dc,cal), and the output values of characteristic residency

(τD,cal) and number of particles in the CV (Pcal) the geometry of the CV can be
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defined, referring back to definitions in section 2.1.3. Recall that α is the structural

parameter describing the confocal arrangement. As a figure of merit, this value should

typically be between 1-10 depending on the microscope setup and tends to wildly vary

if allowed to fit unbounded. It is recommended to repeat this fitting step until values

of α, ωxy, ωz, and Pcal all adhere relatively closely to the expected relationships be-

tween them given the known concentration and diffusion coefficient of the calibration

fluorophore.

ω2
xy = 4Dc,calτD,cal (2.28)

Veff =
Pcal
Ccal

(2.29)

= π3/2ω2
xyωz (2.30)

= π3/2ω3
xyα (2.31)

α =
Pcal

Ccalπ3/2ω3
xy

(2.32)

=
Pcal

Ccalπ3/2(4Dc,calτD,cal)3/2
(2.33)

With determined values for the perpendicular radius (ωxy) and structural param-

eter (α), the second calibration can then be used to determine the characteristic

diffusion coefficient (and concentration) of the free ligand. For this calibration and

all following experimental measurements the structural parameter can now be fixed

to the value determined in the first calibration, to reduce the flexibility and generate

the most accurate residency time for the free ligand species (τD,1). As before, G(0)

and G(∞) are allowed to vary between frames, but the values of τD,1, S, τS are fit

globally for each measurement. From this global fitting, values for τD,1, S, and τS can

be determined to use for all of the subsequent experimental fits of actual two-particle

binding. In this case also, the fluorescent bleaching, if observed to be significant as

in figure 2.10, is a parameter of interest for the second level of fitting for binding

kinetics. Assuming such, the declining values of G(0) should be fit separately against

an exponential decay model with a horizontal asymptote that represents an equilib-
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rium where fluorescent bleaching within the CV is matched by the introduction of

new fluorophores from the surrounding solution (which can be considered undepleted

over a short time scale).

Fig. 2.10. Example of fluorescent bleaching from a preliminary experi-
mental measurement of freely diffusive Alkyne-Alexafluor 647nm. Shown
is the photon count rate, declining between linearly spaced correlation
frames (n=20) during a 10 minute measurement. Note that Alexafluors
are engineered to exhibit robust bleaching resistance but this timescale
may be significantly shorter for other fluorophores.

This bleaching fit will be discussed in greater detail as a component of the non-

linear regression for binding kinetic determination further below. However, the gen-
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eral equation for fitting of this bleaching behavior is an exponential decay with a

horizontal asymptote.

[A] = [fA] + [bA] (2.34)

[fA](t) = ([fA]0 − bMA)e−t(bRA) + bMA (2.35)

[bA](t) = ([fA]0 − bMA)(1− e−t(bRA)) (2.36)

Here bA is the concentration of bleached free ligand, and bR is the characteristic

rate of bleaching, and bM the stable concentration of [fA] at which bleaching is

matched by influx of new fluorophores.

With the two calibration fits performed, there are now calibrated parameter val-

ues for α, S, τS, and τD,1. If characterizing an interaction between a ligand/receptor

pair with a known strong binding affinity that will approach saturation at attainable

concentrations of the receptor protein, a third calibration similar to the second can

be performed with labeled ligand in the presence of excess receptor to further char-

acterize the diffusion of the complex τD,2, otherwise this parameter will need to be

fit simultaneously with the composition fractions, which may result in skewing of the

fraction determinations. In this case, to limit this risk, τD,2, should be estimated from

hydrodynamic radius of the larger protein and bound to a reasonable range according

to published findings. Regardless of how τD,2 is parameterized, the final phase of

the first level of parameter fitting is a fit of the fractional composition of free ligand

FA and complex FAB for each frame of an experimental measurement where ligand

and protein are mixed either just before, or during the timecourse of the experiment.

A representative example of this fitting step is depicted in figure 2.11 below from a

simulated binding reaction between two particles.

With all correlation frames parameterized, these parameters can be passed to

the second level of fitting to determine the dynamics of the system across the time

course represented by the series of distinct correlation frames each representing a

time point in the binding interaction. This is accomplished with a non-linear re-
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Fig. 2.11. FRCS Evaluation of a simulated binding interaction between
two proteins. In this figure reaction time is defined as the left edge of each
correlation frame of width 20 s. Free ligand introduced to system at reac-
tion time t = 0, receptor introduced at t = 30 s. Top: All FRCS generated
correlation frames. Middle: Fit correlation traces for each frame using
fitting model described in equation 2.27. Bottom: Resulting fractional
composition of complex as a function of reaction time. Simulated binding
data generated as discussed in chapter 3 for a binding interaction with
ka = 2e6 M−1·s−1, kd = 5e−2 s−1, [A]0 = [B]0 = 10 nM, Dc,A = 1.5e−10
m2·s−1, and Dc,B = Dc,AB = 0.75e−10 m2·s−1
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gression according to numerically integrated system of ordinary differential equations

describing the binding interaction of ligand to receptor as discussed in section 2.3.1

(equations 2.20-2.25). In the case of observed bleaching this model of binding can

be further supplemented with a bleached population of fA and fAB by introducing

two more equations to this system. Given that the rate of fluorescent bleaching is

assumed to be relatively proportional to the number of absorbed photons per unit

time, and occurs at a timescale longer the the typical residency times of any of these

particles, it is biophysically realistic to assume that as the complex species becomes

more populous, with characteristically longer residency times within the CV, the lo-

cal fluorophore concentration will bleach at a proportionally faster rate than the free

ligand and stabilize at an proportionally lower unbleached concentration (as distal

fluorophore enters the local region of the CV). Therefore, if bleaching is observed and

parameterized for the free ligand calibration, the parameters for the complex species

can be approximated from the determined diffusion of each species.

bRAB = bRA
τD,AB
τD,A

(2.37)

bMAB = bMA
τD,A
τD,AB

(2.38)

A final system of ODEs that incorporates this bleaching behavior can be described,

and numerically integrated with known initial concentrations of the ligand [A] and

receptor [B] over the time scale of the FRCS measurement.
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[fA](t) = [A](t)− [bA](t) (2.39)

[fAB](t) = [AB](t)− [bAB](t) (2.40)

FA(t) = [fA](t)/([fA](t) + [fAB](t)) (2.41)

FAB(t) = [fAB](t)/([fA](t) + [fAB](t)) (2.42)

d[A](t)

dt
= kd[AB](t)− ka[A](t)[B](t) (2.43)

d[B](t)

dt
= kd[AB](t)− ka[A](t)[B](t) (2.44)

d[AB](t)

dt
= ka[A][B](t)− kd[AB](t) (2.45)

d[bA](t)

dt
= ([fA](t)− bMAFA(t))bRA (2.46)

d[bAB](t)

dt
= ([fAB](t)− bMABFAB(t))bRAB (2.47)

From this integration, time points can be extracted to fit against the fractional

composition of the fluorescent species determined for each correlation frame. The

integration can then be iterated in order to determine best fit values for the two

unknown binding kinetic parameters ka and kd for the system. I note that for a system

that starts unbound and drives to equilibrium, ka tends to be well characterized and

kd tends to be more flexible. If desired, a stable equilibrium measurement can be used

to evaluate KD from determined species concentrations. This value can then be used

with the dynamically determined ka to select a more rigid kd value (kd = KDka).

An algorithmic representation of this fitting workflow can be found in algorithm

5 below.
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Algorithm 5 Fitting Workflow

1: 1st Level of Fitting (FRCS Model Fitting eq. 2.27):

2: ωxy, ωz, α← 1st Cal.: Fluorophore with known Dc,cal & Ccal (eqs. 2.29-2.33).

3: if G(0)start << G(0)end then {Bleaching Likely:}

4: τD,A, S, τS, bRA, bMA ← 2nd Cal.: Labeled ligand (fA) in isolation using the

determined ωxy & α.

5: else{Bleaching Insignificant:}

6: τD,A, S, τS ← 2nd Cal.: Labeled ligand (fA) in isolation using the determined

ωxy & α.

7: end if

8: if Expected KD << [B] then

9: τD,AB ← 3rd Cal.: fA mixed with excess of receptor (B) measured after a long

incubation ([fA] ≈ 0, [fAB] ≈ [fA]0).

10: FA(t), FAB(t)← Experimental FRCS: fA mixed with a few different concentra-

tions of B just before or during measurement, frames exhibit fraction of complex

fAB formed during time course.

11: else

12: FA(t), FAB(t), τD,AB ← Experimental FRCS: fA mixed with a few different

concentrations of B just before or during measurement, frames exhibit fraction of

complex fAB formed during time course.

13: end if
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14: 2nd Level of Fitting (FRCS Model Fitting eq. 2.27):

15: if G(0)start << G(0)end then {Bleaching Likely:}

16: ka, kd, KD ← Numerical integration of eqs. 2.40-2.47. Use

FA(t), FAB(t), τD,A, τD,AB, bRA, bRAB, bMA, bMAB as determined from 1st

Level of Fitting.

17: else{Bleaching Insignificant:}

18: ka, kd, KD ← Numerical integration of eqs. 2.40-2.47. Use FA(t), FAB(t) as

determined from 1st Level of Fitting.

19: end if
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2.3.5 Graphical User Interface for FRCS Experiments

Due to the relative complexity of the underlying principles, a graphical user inter-

face (GUI) software implementation was created to accelerate data processing from

raw measurement files, to correlated FRCS traces, and through both levels of fitting

as described in sections 2.3.2-2.3.4. This software is developed to be intuitive and

enable FRCS experiments without needing to modify the code or algorithm, mak-

ing this technique available for use in any lab enabled with single-photon confocal

microscopy and reasonable computing resources. This GUI was developed using the

Tkinter package in Python 3.6. Full documentation of the tools available in this GUI

is available in the the GitHub repository (see appendix A.1), however here we will

mention briefly the overall functions available.

The FRCS GUI has two tabs, one for generation of correlation traces, and one

for fitting of these traces using the multilevel fitting approach as described in the

previous section.

Shown in figure 2.12 the correlation tab allows the user to select a directory con-

taining all calibration and experimental measurements from a single FRCS study. The

user can then organize these files as desired, and determine the correlation paradigm,

including tau resolution and number of frames per measurement to generate. These

correlations can then be performed in place via the GUI, or the GUI can export .bash

script files to perform the computations via a job scheduled computational cluster.

The second tab of the GUI as seen in figure 2.13 allows the user to select a

directory containing the output correlation files (saved as ‘.frcs’ files) and perform

fitting as desired. This tab contains fields for all possible fitting parameters in the

model described above, and allows the user to customize the fitting ranges and fixed

variables for each correlation being evaluated. The GUI displays both the raw traces

and best fit traces, along with a graphical display of the fractional composition over

the timecourse of the FRCS measurement, and tabular best fit parameters for each

frame.
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Fig. 2.12. GUI Correlation Tab, contains fields for the source/destination
directories and desired correlation parameters as well as organizing func-
tionality for experimental measurement files.

2.4 Conclusions

In this Chapter, we report for the first time the application of a rolling correlation

window for characterization of binding reaction progress of biomolecules using FCS.

FRCS presents an entirely new tool for the characterization of protein-protein inter-

actions that bears advantages in cost, conditions, and time over previously available

gold standard methods. We explain in detail the algorithms for processing of FRCS
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(a)

(b)

Fig. 2.13. GUI Fitting Tab, (a) contains fields for correlation file directory
as well as all fitting parameters including initial values, fitting constraints
and variance boolean check boxes. Also shows (b) graphical and tabular
representation of best fit parameters.

data, and present a graphical user interface to make this tool accessible for appropri-



62

ately enabled biomolecular lab groups. In the next chapter, we demonstrate applied

FRCS using spatial stochastic simulations of binding interactions and preliminary

experimental measurements of protein binding.
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3. PRELIMINARY SIMULATIONS AND

EXPERIMENTAL FINDINGS OF FCS/FRCS

This chapter discusses preliminary findings accomplished using the developed tech-

niques and algorithms in the previous chapter. Here I discuss results of both spatial

stochastic simulations of bimolecular interactions and preliminary experimental mea-

surements to justify possible future work with this tool.

3.1 Introduction

3.1.1 Background and Significance

Using FRCS, I seek to elucidate the binding affinity and kinetics of subsets of PPIs

that our group has previously studied in detail. However, prior to it’s application for

kinetic determination, the technique first needed to be validated both in theoretical

application and biophysical feasibility. To accomplish these validations, FRCS was

first applied to simulated reactions of biomolecular behavior using methods similar

to work our lab has done in the past [18,19]. By applying in silico simulations of this

behavior, we are able to rapidly characterize the dynamic range of FRCS, without

requiring extensive experimental design with well characterized binding interactions.

Furthermore, I explore here preliminary wetlab experiments to character the be-

havior of a protein of great interest to our lab: calcium modulated inhibitory protein,

calmodulin (CaM). CaM is a highly conserved and ubiquitously expressed protein,

particularly dominant in systems of cellular signaling that utilize Ca−2 ions as sec-

ondary messengers [70]. For studies of binding kinetics, CaM is particularly interest-

ing due it’s Ca2+ modulated behavior. CaM is known to have 4 Ca2+ binding sites,

2 proximal to each terminus, and exhibits unique geometry and binding depending

on the saturation of these sites [70, 71]. Furthermore, CaM is well known to have

promiscuous modulatory interactions with over 100 binding partners [72–74]. While

many of these actors exhibit maximal affinity to fully saturated CaM with 4 bound
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Ca2+ (CaM4), it has been proven that unsaturated CaM, apo-CaM (CaM0) demon-

strates higher affinity with some proteins, and that partially saturated CaM species

such as CaM with 2 Ca2+ bound at the C-terminus (CaM2C) or Ca2+ bound at the

N-terminus (CaM2N) also exhibited modified modulatory behavior [71, 75]. Indeed,

while these subspecies of partially saturated CaM are more transient due to high

Ca2+ affinity, it is likely that each of the 9 total possible configurations of Ca2+ satu-

ration demonstrate unique binding that may play a role in the sub-second dynamics

of cellular signaling.

Our group has previously noted that CaM promiscuity makes it an ideal target of

in silico computational studies seeking to elucidate the potential roles of competition

in complex biochemical environments, that are difficult to probe with traditional

experimental techniques [18, 19]. Conveniently, as a result of it’s highly conserved

nature, dominant concentrations and high stability, CaM’s binding relationships have

been extensively characterized and even parameterized to some extent as needed for

computational models in the style of Michaelis-Menten [18]. However, parameter

spaces for partially saturated CaM states have not been nearly as thoroughly flushed

out, as have those for binding of CaM4 or even CaM0.

In this chapter, we apply our newly developed FRCS technique to both in silico

and in vitro models of protein binding to provide preliminary characterization of both

the technique, and of CaM behavior with a few well characterized binding partners,

such as calcineurin (CaN) and CaM-dependent kinase II (CaMKII). This character-

ization serves as a validation for the efficacy of the novel FRCS technique, but also

enables further study of the influence of Ca2+ saturation state on CaM binding.

3.1.2 Fluorescent Labeling of Proteins

A notably important component of FCS experimental design is the fluorescent la-

beling that makes particles observable. Fluorescent labels come with a broad variety

of physical properties that should be considered as a component of the experimental
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design. For instance, GFP derived labels are all proteins in their own right, relatively

large beta barrels around 240AAs (∼30kDa) in length whose fluorescent properties are

distinguished by relatively small, site-directed mutagenesis of the original sequence

derived from A. victoria [76, 77]. Therefore while GFP derived fluorophores are a

powerful tool, they are not ideal for a study of diffusion, as simply attaching a GFP

label may significantly increase a labeled biomolecule’s RH . Instead, smaller fluores-

cent dyes such as those in the Cyanine or Tryarylmethane families, which tend to

be closer in size to a short peptide (∼1-2kDa) are generally preferable due to their

proportionally reduced influence on the diffusion of a labeled particle.

Size is not the only factor of consideration however, fluorophores also differ in

wavelength (color), quantum yield (brightness) and extinction rate (bleaching). All

of these components can be relevant to experimental design. Wavelength must be

tuned to match the available equipment, but also needs to be considered if studying

multiple fluorescent labels (as in FCCS) to avoid potential cross-talk. Quantum yield

limits the excitation probability of fluorophores and must be accommodated by tuning

the laser intensity and concentrations of fluorophore (and therefore the measurement

volume) to achieve a desirable SNR. Similarly, given the small sample volume and

concentrations of a typical FCS experiment, fluorescent bleaching can quickly reduce

the number of visualized fluorophore and require tuning of the laser intensity to

reduce this artefact. With all of these additional conditions in mind, new generation

fluorophores such as the Alexa Flour family, with the characteristic low molecular

weight of biomolecular dyes, but with a broad selection of wavelengths each boasting

improved quantum yield and reduced extinction are particularly ideal for FCS.

Attaching these fluorophores to molecules of desired study has been accomplished

with a variety of bioengineering methodology. With GFP, proteins can be expressed

with a GFP peptide connected to their sequence via a short linker [78]. For linkage

of smaller fluorophores, a biomolecule of interest can be generated with some reactive

chemical groups such as azides and alkynes, which can be covalently modified to

attach a fluorescent tag via a post-translational covalent reaction such as the copper
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catalyzed azide-alkyne cycloaddition reaction (a ”click chemistry” reaction) proposed

by Sharpless et al. [79].

Our group has previously worked extensively with this reaction system, and had

success labeling protein in both in vitro and in vivo systems [80–82]

3.2 Methods

3.2.1 Spatial Stochastic Simulations of FRCS Data

Spatial stochastic simulations of Brownian motion were performed on a superclus-

ter, each simulation was run on a single compute node with dual 12-core Intel Xeon

Gold ”Sky Lake” CPUs @ 2.60 GHz and 96 GB of memory. MCell 3.5 software, was

used to generate positional data. All data were generated using a time step signifi-

cantly smaller the timescale of diffusion and reaction study (∆t = 1e−6 s). Unless oth-

erwise specified, all simulations were run within a fixed volume sphere of 1 µm radius

about the origin, with a smaller 250 nm radius spherical CV. Similarly, unless noted

all used identical initial conditions: ka = 5e6 M−1s−1, kd = 5e−3 s−1, [fA]0 = 10

nM, [B]0 = 10 nM, [fAB]0 = 0 nM, Dc,fA = 2e−10 m2s−1, Dc,fAB = Dc,B = 1e−10

m2s−1.

3.2.2 FCS Measurement of Protein Binding Interaction

CaM Expression, Fluorescent Labeling, and Purification

CaM and CaN cloning, expression, tagging and purification was performed based

upon our previously published methods [80].

For CaM expression, CaM was engineered to contain a N-myristol transferase

(NMT) recognition peptide (hCaNb) allowing it to be myristoylated when coexpressed

with NMT. Plasmids containing NMT with kanamycin (KAN) resistance and hCaNb-

CaM with ampicillin (AMP) resistance were co-transformed into chemically compe-

tent BL21(DE3) E. coli. Expression starter cultures were grown overnight at 37◦C in
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5 mL LB media supplemented with 50 µg·mL−1 KAN and 100 µg·mL−1 AMP. Pri-

mary expression cultures were started using a 1:100 dilution of the starter culture in

equivalent media, and were grown at 37◦C for 3.5 hr (OD600 = 0.6). Expression was

induced with 0.1 mM IPTG and simultaneously supplemented with either 0.5 mM

12-azidodecanoic acid (12-ADA, a ”click chemistry” enabled myristic acid analog) to

generate azide-labeled CaM (N3-CaM) or with 0.5 mM myristic acid to generate an

myristoylated wild type (Myr-CaM). The secondary expression cultures were grown

4 hr at 37◦C, then were centrifuged to harvest cells (12,500 x g, 10 min, 4◦C). Super-

natent was removed and the pellet was resuspended in 5 mL·g−1 lysis buffer (50 mM

Tris-HCl pH 7.5, 100 mM NaCl, 1mM DTT, 1 mg/mL lysozyme, 0.1mM PMSF).

Xells were lysed by submersion in a hot water bath at 60◦C for 30 minutes then

clarified by centrifugation (12,500 x g, 20 min, 4◦C).

For N3-CaM fluorescent labeling in lysate, the clarified lysate (CL) was

decanted into a new test tube and the semi-pure CaM was flourescently labeled

via the copper catalyzed click-chemistry reaction. The CL was reacted for 1 hr at

RT supplemented with the following click reagents: 20 mM sodium ascorbate, 50

mM Iodoacetamed, 30 µM alkyne-labeled Alexa Fluor 647 nm Dye (AF647), 2 mM

CuSO4, 10 mM tris(3-hydroxypropyltriazolylmethyl)amine (THPTA), and 20 mM

aminoguanide.

For CaM purification, CL was supplemented with 3 mM EGTA and 3 mM

EDTA then loaded onto a 2 mL column of phenyl-sepharose resin (CL-4B; Sigma-

Aldritch) equilibrated with lysis buffer also supplemented with 3 mM EGTA/EDTA.

Column was gently agitated by rotating end-over-end at for 30 min at 4◦C, then

poured into a Bio-Rad gravity column and the flow through (FT1) was collected in

the original tube. FT1 was then supplemented with 10 mM CaCl2, and applied to

a second phenyl-sepharose column equilibrated with binding buffer (50 mM Tris-HCl

pH 7.5, 3 mM CaCl2). Column was again gently agitated by rotating end-over-end

for 30 min at 4◦C. Column was poured into a clean Bio-Rad gravity column and the

flow through (FT2) was discarded. Gravity column was washed once with 4x column
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volumes (4xCV) of wash buffer 1 (50 mM Tris-HCl pH 7.5, 1 mM CaCl2), once with

4xCV wash buffer 2 (50 mM Tris-HCl pH 7.5, 1 mM CaCl2, 500 mM NaCl), and again

with 4xCV wash buffer 1. CaM was eluted with 4xCV elution buffer (50 mM Tris-HCl

pH 7.5, 1.5 mM EGTA) in fractions of 0.5-1 mL. Final concentration was measured

via the Lowry Protein Assay, purification and labeling efficiency were evaluated by

SDS-PAGE. Samples were aliquoted into samples of 100 µL and supplemented with

10% glycerol, then flash frozen and stored at -80◦.

For purified N3-CaM fluorescent labeling, an aliquot of purified N3-CaM

was diluted to a concentration of 10 µM and was reacted for 1 hr at RT supplemented

with the following click reagents: 20 mM sodium ascorbate, 50 mM Iodoacetamed, 30

µM alkyne-labeled Alexa Fluor 647 nm Dye (AF647), 2 mM CuSO4, 10 mM tris(3-

hydroxypropyltriazolylmethyl)amine (THPTA), and 20 mM aminoguanide. Excess

flourophore and reaction reagents were removed by desalting with a 7 kDa MWCO

desalting column. Column was equilibrated with CaM elution buffer, loaded with

120uL of click reaction mixture, and centrifuged 30 seconds at 1500 x g. Flow through

was preserved and flash frozen for future use.

CaN Expression and Purification

For CaN expression, plasmids containing hCaNb-CaN and NMT were trans-

formed into chemically competent BL21(DE3) E. coli. Expression starter cultures

were grown overnight at 37◦C in 5 mL LB media supplemented with 50 µg·mL−1

KAN and 100 µg·mL−1 AMP. Primary expression cultures were started using a 1:100

dilution of the starter culture in equivalent media, and were grown at 37◦C for 4 hr

(OD600 = 0.8). Expression was induced with 0.1 mM IPTG and the cultures were si-

multaneously supplemented with 0.5 mM myristic acid. The secondary cultures were

grown 4 hr at 37◦C, then were centrifuged to harvest cells (12,500 x g, 10 min, 4◦C).

Supernatent was removed and the pellet was resuspended in 5 mL·g−1 lysis buffer (50
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mM Tris-HCl pH 7.5, 100 mM NaCl, 3 mM CaCl2, 1mM DTT, 1 mg/mL lysozyme,

0.1mM PMSF).

For CaN purification, the resuspended pellet was lysed via sonification and

clarified via centrifugation (12,500 x g, 30 min, 4◦C). Clarified supernatent was re-

covered into a fresh tube. CaN was then purified using a CaM-sepharose affinity

binding column. Clarified lysate was loaded onto a 1 mL column of CaM-sepharose

resin (CL-4B; Sigma-Aldritch) equilibrated with lysis buffer. Column was gently agi-

tated by turning end-over-end 1 hr at 4◦C. Column was then pipetted into a Bio-Rad

gravity column. Flow through was discarded and column was washed once with 4x

column volumes (4xCV) of wash buffer 1 (50 mM Tris-HCl pH 7.5, 1 mM CaCl2),

once with 4xCV wash buffer 2 (50 mM Tris-HCl pH 7.5, 1 mM CaCl2, 500 mM NaCl),

and again with 4xCV wash buffer 1. CaN was eluted with 4xCV of elution buffer

(50 mM Tris-HCl pH 7.5, 100 mM NaCl, 5 mM EGTA) collected in 0.5 mL fractions.

Final concentration was measured via the Lowry Protein Assay and purification effi-

ciency was evaluated by SDS-PAGE. Samples were aliquoted into samples of 200 µL

and supplemented with 10%glycerol, then flash frozen and stored at -80◦.

A647-CaM FCS Measurements

All FCS measurements were taken using the FCS acquisition module of the Zeiss

LSM 780 confocal microscope. Experimental design was guided by previously pub-

lished literature and Zeiss user documentation [56,83].

For laser path and focus setup, measurements were performed in an 8-well

NUNC chamber with a #1.5 coverglass bottom using the 40x C-Apochromat objective

and Zeiss Immersol-W as an immersion medium. To focus into the sample the Zeiss

was dropped to it’s lowest position, set to measure the reflected light path, and

brought up until both the bottom and top of the slide had been imaged as described

in their documentation [83]. From the top surface of the slide, the scope was shifted
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upward another 50 µm and this position was saved as the measuring position within

the sample.

For FCS sample preparation, calibration samples were prepared by diluting

free alkyne-labeled Alexa Fluor 647 (fA647) to a concentration of 40nM in CaM-

CaN binding buffer (50 mM Tris-HCl pH 7.5, 100 mM NaCl, 0.2 µM EGTA, 1 µM

MgCl2). Experimental samples for measurement of A647-CaM were prepared by

diluting purified stocks of A647-CaM to a concentration of 80nM in CaM-CaN binding

buffer. This working stock was then diluted 1:1 for measurement with binding buffer

supplemented with either (i) 2 µM EGTA, (ii) 1 µM CaCl2, or (iii) 1 µM CaCl2 and

500 nM CaN. Measurement samples were gently agitated by flipping end-over-end for

1 hr at 4◦C to ensure dynamic binding equilibrium was reached, and gently mixed

with slow pipeting prior to measurement.

For FCS calibration measurements, a 20 µL aliquot of calibration sample

was added to an empty well with the microscope in loading position. The microscope

was then moved to measuring position and a 633 nm Helium Neon laser was turned

on. Confocal aperture was set to 1 AU and the Zeiss ”auto-adjust” function was

used to optimize the pinhole geometry. To ensure appropriate conditions for experi-

mental measurement the photon count rate, correlation, and count-per-molecule were

checked to verify expected ranges (1-500 kHz, 1.0, and 1-15 kHz respectively). Laser

was then turned off to allow calibration sample to recover from fluorescent bleach-

ing. A calibration measurement was recorded by taking 20 consecutive, 30 second

measurements of the calibration sample, and data were exported for analysis.

For FCS experimental measurements, sample measurements were recorded

in duplicate by gently mixing the sample mixture by pipeting up and down, then

extracting 20 µL aliquots of the sample and placing them in an empty well. The

microscope was focused into measuring position and measurements were recorded

by taking 20 consecutive, 30 second measurements for each replicate, and data were

exported for analysis.
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For FCS data analysis, hardware correlation traces exported from the Zeiss

LSM 780 software were imported into Pycorrfit, a free python based 3rd party FCS

analysis software developed by Weidmen et. al [84]. All traces were fit using with

a 1x 3D-diffusing species model and triplet correction (3D+T). CV geometry was

calibrated based upon the measured residency time and average particle count along

with the known aqueous diffusion (3.3E-10 m2·s−1) of the fA647 fluorophore [85].

Diffusion for the two species of A647-CaM (bound/unbound to CaN) were determined

from this CV and the appropriate parameter in the fit model for each system.

3.3 Results

3.3.1 Spatial Stochastic Simulations of Binding Reactions

To validate the feasibility of FRCS, simulations of 3D-interacting proteins under

the influence of Brownian motion were performed using MCell 3.5 spatial stochastic

simulation software [86–88]. In these simulations each molecule exists as a unique

point particle in the simulatory system. These particles are allowed to freely diffuse

via a monte-carlo dictated random walk that projects particles along straight line tra-

jectories based off the diffusion coefficient and time step of integration. The position

of each molecule is tracked across the entire time course of study. Additionally, MCell

utilizes ray tracing to detect if any of these particles will collide during any given time

step, and applies collision theory to determine a reaction probability for each colli-

sion event from input reaction rates for possible bimolecular reactions [86–89]. For

the purposes of this work, these simulations were limited to a very small volume, a

sphere of radius 1 µ only slightly larger than the simulated CV to avoid any border

influence within the region of interest, and with only three species present in the

system. Spatial stochastic simulations of Brownian motion were used to generate

simulated photon count data for a reaction of two binding species, one fluorescent

species (fA) and one non-fluorescent (B), that form a fluorescent complex (fAB).
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fA+B ⇀↽ fAB (2.20)

Fig. 3.1. A spatial stochastic simulation of an FCS experiment. Shown
are three progressive time points from a simulated binding reaction of
a small fluorescent ligand and large inert receptor as in equation 2.20.
Small icospheres (blue, grey, yellow) display particle positions, the large
green icosphere shows a transparent border defining the CV, and the large
wire-mesh show the diffusion boundaries of the simulated solution droplet.

From the simulated positional data of this binding interaction, photon arrival

times, as recorded in traditional FCS, were generated. Positional data of particles

within a simulated spherical (α = 1) CV with radius ωxy = ωz = 250 nm were ex-

ported for all time steps and a custom python script was used to simulate photon

emissions for each simulation time step t, according to a Gaussian excitation proba-

bility profile function developed by Dix et al. [90].
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PSF [t, i] =
−1

2ω2
xy

(
(Xi −X−1)2 + (Yi − Y0)2 +

(Zi − Z0)
2

α2

)
(3.1a)

Pex[t, i] = Pabse
Kpos[t,i]/ω2

xy (3.1b)

Pem[t, i] = Pex[t, i]PgsPconvQfQdet (3.1c)

I[t] =
∑
i

H[Pem[t, i]− rand(0, 1)] (3.1d)

Here i denotes the index of each molecule within the defined CV for a given simu-

lation time step t. For each molecule a photon emission probability Pem is calculated

and compared with a random value from 0-1 for each molecule using the Heaviside

step function (H = 1 if passed a value greater than or equal to 0). The sum of

‘emitted photons’ is then tallied for each time point to generate an photon count

intensity function, I[t]. The emission probability is informed by a PSF similar to eq.

(2.2) using positional data for each molecule (Xi, Yi, Zi) within the CV with center

(X0, Y0, Z0). This location determines the probability of excitation, Pex, given the

relevant laser intensity and some photon absorption probability Pabs that is related to

the molecule orientation, but can be assumed to be an orientation averaged constant

over many observed time points. Furthermore, the probability that each particle is

in the ground state, Pgs, and capable of undergoing photo-conversion, Pconv, are as-

sumed to be constant (Pgs = Pconv = 1) given a simulation time step ∆t significantly

greater than the characteristic relaxation time of a fluorophore and negligible inter-

system crossing (such as into a triplet state). Lastly, the quantum yield of fluorescent

photons Qf and quantum yield of photon detection Qdet were assumed independent

of photon polarization and therefore also represented as constants. The Pabs, Qf , Qdet

were typically adjusted as a lump constant to generate photon count rates within the

range of 5-100 kHz.

This simulated data was then evaluated with FRCS to validate the technique’s

feasibility and potential range of sensitivity for experimental parameters. Since our

simulated data doesn’t incorporate system crossing or photo-bleaching, those param-
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Fig. 3.2. FRCS Evaluation of a simulated binding interaction between
two proteins. Shown are data for all seeds from the same simulation
(and plotted on the same axes) as displayed in figure 2.11. Free ligand
introduced to system at t = 0, receptor introduced at time t = 20 s.
Left: FRCS generated correlation frames with frame width of 20 seconds.
Middle: Fit correlation traces for each frame using fitting model described
in equation 2.27. Right: Resulting fractional composition of complex as a
function of reaction time ([fAB](trxn). Simulated binding data generated
for a binding interaction with ka = 2e6 M−1·s−1, kd = 5e−2 s−1, [A]0 =
[B]0 = 10 nM, Dc,A = 1.5e−10 m2·s−1, and Dc,B = Dc,AB = 0.75e−10
m2·s−1
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eters were appropriately railed for fitting. Figure 3.2 displays an example of data

generated for a binding simulation with multiple seeds (n = 5) using characteristi-

cally rapid kinetic rates as enabled by FRCS.

Frame Time Calibration

One important answer that spatial stochastic simulations can provide is a cal-

ibration for the time point of a reaction that a windowed average best represents.

It would be naive to assume that a windowed average of diffusing species compo-

sition over the course of a 10-30 second measurement frame, such as are generated

by FRCS, indicates the true behavior at the beginning, end or even center of that

frame. Since in a simulated environment we know the true behavior of the system,

this can be used to help characterize the reaction time, trxn that is best represented

by the composition measurement of a frame spanning from tm,f to tm,f + ∆tf , where

tm,f is the experimental measurement time at the beginning of correlation frame with

index f . Notably, this characteristic reaction time is likely not constant throughout

the measurement. If the FRCS correlation outputs a true average of the composition

of diffusing species throughout a frame, then within the linear domain of the initial

binding, the composition of particles of an averaged frame likely best represents a

time point near the center of the reaction (trxn,f = tm,f + 0.5∆tf ). However, as the

reaction progresses towards equilibrium, the relative change over the second half of

the correlation frame will likely be less than the change over the first half of the frame,

and thus the average value would likely represent a time point earlier in that frame

trxn,f > tm,f + 0.5∆tf . Similarly, if data can be captured before the binding reaction

begins, early time frames at the beginning of the reaction are likely are skewed to-

ward trxn,f > tm,f + 0.5∆tf . The true time point best represented by the frame could

therefore be described as a function of some weighting λfε(0, 1) that decreases from

1 to 0 as the reaction progresses..
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trxn,f = tm,f + λf∆tf (3.2)

Fig. 3.3. FRCS simulation with and without an adjustment trxn,f . Top:
[fAB](trxn) generated from the data in figure 3.2 and best fit binding
kinetic curve (ka = 1.61e6 M−1·s−1, kd = 6.99e−2 s−1) of all seeds (n = 5)
without a dynamic trxn,f (trxn,f = tm,f + ∆tf ), Bottom: [fAB](trxn) and
best fit curve (ka = 1.70e6 M−1·s−1, kd = 7.03e−2 s−1) with a dynamic
trxn,f = tm,f + λf∆tf . Error bars show standard deviation of determined
[fAB] across seeds.

If fitting this model with non-linear regression informed by binding kinetics, this

behavior can be loosely characterized from the fitting parameters. First the system

of ODEs describing binding kinetics is numerically integrated to elucidate system
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composition as a function of time using the fitting parameters. From this trace the

predicted average composition FAB,f,sim within each each frame f , by numerically

integrating the curve over (tm,f , tm,f + ∆tf ). This value can then be compared to the

experimentally measured composition for that frame, FAB,f,exp. If desired, the time

point of this average composition can be extracted and used to characterize the value

for λf so that FAB,f,exp can be plotted as a function of the true trxn,f .

Notably, even for relatively rapid kinetics such as simulation shown here with

informed by an on rate ka = 5e6 M−1·s−1, the best fit does not change significantly

between the adjusted and unadjusted model of trxn,f , so inclusion of this modification

may not be necessary to resolve binding kinetics.

Realistic Experimental Modeling

Another potential limitation of this technique is that the kinetics being charac-

terized are done so under the Michaelis-Menton assumptions that all species exist

at relatively abundant concentrations and are well mixed within the measuring vol-

ume [18]. While this is fine for an in silico reaction environment where species can be

instantiated in a well mixed distribution in a distinct release event at a known point

in time, experimental limitations of FCS make this difficult to replicate for in vitro

measurements.

In order to accomplish a similar goal, the FCS measurement would need to be

started on a solution with a known [fA], and somehow supplemented during the

course of measurement with a known [B] without reducing the [fA], and rapidly

mixed without disturbing the CV. Such an experimental workflow may be possible

with a creative and cutting edge microfluidic chip design, however it is much more

realistic to simply mix a solution of fA and B and begin the FRCS measurement

immediately after mixing. In this case, the first frame of the FRCS correlation would

report the dynamics of some midpoint in the binding reaction, rather than capturing

the initial binding behavior. Therefore, it is important to justify that the same
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Fig. 3.4. FRCS simulation with and without experimentally limited
reaction start time. Top: Determined [fAB](trxn) and best fit curve
(ka = 1.70e6 M−1·s−1, kd = 7.0e−2 s−1) of all seeds (n = 5) with a sim-
ulated release event during the experimental time course. Right: Deter-
mined [fAB](trxn) and best fit curve of all seeds (n = 5) with an experimen-
tally mimicked mixing prior to the experimental time course (ka = 1.64e6
M−1·s−1, kd = 4.8e−2 s−1). In both systems, species B was added to
the system at trxn = 0s, and conditions were otherwise identical to the
simulation data displayed in figures 3.2/3.3. Error bars show standard
deviation of determined [fAB] across seeds.

binding kinetics can be observed even given this limitation. Fortunately, at such low

concentrations as needed for FCS, binding reactions that occur at rates characteristic

for PPIs (ka = 1e4−1e7 M−1·s−1) tend to occur over a time course of several seconds

[91].
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Indeed, even our preliminary simulations in figure 2.7 demonstrate association

behavior in the range of 10-20 seconds that might be captured with a delayed mixing.

Therefore, barring rapid association events, we should still be able to capture most

of the protein association curve with a delayed first time point. Shown in fig 3.4, we

demonstrate nearly equivalent rate kinetic determination in presence and absence of

this experimental limitation.

FRCS Parameter Sensitivity Analysis

Another potential value of a spatial stochastic simulation is the opportunity to

examine FRCS output under a variety of different experimental conditions. Shown

in figure 3.5 are the results of four sets of simulations for which all parameters were

held constant with the exception of a single parameter that was swept to explore the

dynamic range of this tool. The four swept parameters were selected to elucidate

predicted limitations of detection and sensitivity for this technology and a promising

capacity for accurate kinetics determinations across a wide range of dynamics. Shown

in figure 3.5, modified parameters included (i) the diffusivity of the complex species

fAB in comparison to a fixed diffusivity of fA (ii) the initial concentration of species

B with a fixed inital concentration of fA, (iii) the binding affinity, KD, of the reaction

by sweeping ka with a fixed kd, and (iv) the rate of reaction by holding a constant

KD and sweeping ka and kd proportionally. Notably only under two conditions does

the fit regression trend differently than the informing experimental reaction.

The first of these is expected, as the diffusivity of the two measured species fA

and fAB become closer to each other, as in the top left panel of fig 3.5, the fitting

model for a two-particle system with FCS tends to break down. In this case, it seems

that at similarly rapid diffusion rates differing by only a factor of 1.3 (proportional to

a inverse change in hydrodynamic radius, and a 1.33 ≈ 2.2 factor change in protein

mass) the bound species is determined (inaccurately) to be slightly more prevalent

than predicted. This aligns with previously characterized findings of FCS which
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suggest that diffusion can only be differentiated between particles that vary by at

least a factor of 1.6 in characteristic diffusion time [26,92]. Despite this fact, the best

fit value of ka = 8.33e6 M−1s−1, is still well within an order of magnitude of the input

value of ka = 5.00e6 M−1s−1 only differing by a factor of 1.67, which is considered a

very tolerable error range for such measurements [18, 19]. Similarly the equilibrium

indicates a KD = 0.588 nM, as compared to the input value of KD = 1 nM, again

well within desired sensitivity limits.

The second condition under which best fit traces tend to fail to capture realistic

kinetics are those with very rapid association rates ka and relatively high concentra-

tions. As seen in figure 3.5, when the informing reaction proceeds with an extremely

rapid association event, the experimentally limited FRCS (first frame recorded after

mixing) fails to capture the dynamics occurring in the first few seconds, and thus to

accurately capture the initial binding rate ka. While this is not ideal, it bears men-

tioning that incredibly rapid binding rates (ka > 1e8 M−1·s−1), are highly uncommon,

and at a certain point reactions become diffusion limited as defined by the Smolu-

chowski limit which yields binding rates around 1e9 − 1e10 for associations relevant

in PPIs [93]. Indeed, most PPIs exhibit binding rates much below this limit, in the

range of 1e4− 1e6 M−1·s−1, which are notably much easier to resolve over the course

of an FCS experiment at relevant concentrations. Furthermore, if we remove the

experimental limitation (such as by utilizing a microfluidic chip for measurements)

this behavior could still be resolved simply by recording a higher density of corre-

lation frames in this region. It’s also notable that binding affinity is still captured

relatively accurately in this model even in these rapid binding instances, although

the approximated KD tends to indicate a higher binding affinity than the informing

model conditions should describe. This is possibly due to an ‘simulation overshoot.’

At high binding rates, near the beginning of binding the simulated reaction probabil-

ity is dominated by ka, which tends to force the reaction past equilibrium, until the kd

becomes equally weighted by a higher complex concentration and drives the binding

back down toward equilibrium. Therefore it seems probable that this observation is
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an artefact not necessarily of the FRCS methodology, but of the informing spatial

stochastic simulations.

Under all other explored conditions, FRCS seems to be very capable of predicting

binding kinetics as well as binding behavior. Increasing binding substrate concentra-

tions drives formation of complex higher, while increasing KD results in lower levels of

complex formation as expected. All determined binding constants and the informing

simulation parameters can be found in the appendix table D.1.
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Fig. 3.5. Points indicate a single frame from a simulated measurement
(n=3), solid trace indicates the non-linear regression best fit, and the
dashed trace indicates the predicted reaction kinetics given input param-
eters. Parameters studied, top to bottom: (i) the diffusivity of the com-
plex species fAB in comparison to a fixed diffusivity of fA (left-to-right:
Dc,AB = 3.0e−10, 2.0e−10, 1.0e−10 m2s−1, Dc,A = 4.0e−10 m2s−1), (ii)
the initial concentration of species B ([B]0 = 5, 10, 20 nM) with a fixed
initial concentration of fA ([fA]0 = 10 nM) (iii) the binding affinity, KD,
of the reaction by sweeping ka (ka = 5e7, 5e6, 5e5 M−1s−1) with a fixed kd
(kd = 5e−3 s−1), and (iv) the binding rate ka (ka = 5e8, 5e7, 5e6 M−1s−1)
with a fixed KD (kd = 5e−1, 5e−2, 5e−3 s−1). Unless otherwise speci-
fied, other parameters were held constant to standard values as defined in
methods.
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3.3.2 FCS Studies of CaM-CaN binding

Preliminary measurements were recorded with purified N3-CaM that was ligated

after purification to an Alkyne-labeled Alexa Flour 647 nm via the click reaction.

Following the click ligation, click reagents and remaining free fluorophore were re-

moved via a desalting column. These preliminary measurements (30 second mea-

surements, n = 20 per sample) showed distinctly observable changes in the diffusion

of the fluorophore when ligated with CaM (figure 3.6). Calibrated against a known

diffusion coefficient for unligated Alexa Flour 647 at RT in aqueous solution (3.3e-10

m2·s−1 [85] the diffusion of A647-CaM was determined to be 1.45e−10 m2·s−1 and

1.46e−10 m2·s−1 in the apo-calmodulin (CaM0) and calcium saturated (CaM4) state

respectively. This slight reduction in diffusion, and corresponding increase in hy-

drodynamic radius correlates to a previously published change in the hydrodynamic

radius of CaM from 2.5 nm to 3.0 nm when saturated with calcium ions [94]. Further-

more, when 500 nM CaN was introduced to a solution containing 40 nM A647-CaM

and 1 µM Ca2+, the diffusion further dropped to 8.42e-11 m2·s−1.

In a second experiment, CaN was added at various concentrations to a fixed

solution of 40nM A647-CaM and 1 µM Ca2+. Seen in figure 3.7 average steady state

diffusion dropped consistently with [CaN], demonstrating an average KDapp of 43.84

nM which is reasonably close to ranges of previously published literature (.028 - 24

nM [18,95–97]).

Notably, in both experiments the determined diffusion of A647-CaM was faster

than the Dc of CaM as predicted by Stokes-Einstein for particles with an RH of 2.5-3

nm (9.7e−11 and 8.1e−11 m2·s−1 for CaM0 and CaM4 respectively [94]). This could

be due to a smaller experimental hydrodynamic radius than previously characterized,

but more likely is due to incomplete removal of free fluorophore after the click reaction

by desalting. It also could be an artefact of laser-induced heating of the sample,

however this has been shown to generate negligible changes in diffusion [43]. To be

certain, I personally characterized the temperature change over the course of a 2
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Fig. 3.6. Diffusivity of particles characterized via FCS using a single
particle fitting model. Unligated alexafluor was used as a calibration and
fluorescently labeled CaM was measured in the presence and absence of
Ca2+ and CaN

minute measurement at room temperature (n=3, T ≈ 298 → 300 K, see appendix

figure C.1), corresponding to a possible change in diffusivity by a factor of 300/298 =

1.006. Additionally, all measurements are taken under the same conditions, so this

change would be reflected in the actual calibration measurement as well.

As seen in figure 3.8, despite Coomassie labeling of highly purified CaM after

the click reaction, there seems to exist a large amount of fluorescent species with

a smaller mass than the CaM band itself. Without accommodating the presence of

some unknown concentration of free Alexa Flour 647, estimates of A647-CaM diffusion

are likely to be elevated. Similarly, the determined diffusivity of A647-CaM4 in the

presence of excess CaN was higher than the Stokes-Einstein prediction for CaN alone

(RH = 3.47 nm, Dc = 7.2e−11 [99,100]). While this could be indicative of unsaturated

binding of CaM and indeed the [CaN] never appeared to reach a high enough level
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Fig. 3.7. Serial dilution of CaN associating with a fixed 40nM [CaM]
measured via FCS. Notably, as the [CaN] increases, the diffusion of CaM
appears to slow substantially, indicating generation of complex protein

for saturation, overestimation due to free fluorophore would similarly lead to elevated

estimates of diffusion for a complex of A647-CaM and CaN, with a corresponding

increase in the determined KDapp.

Future studies should seek to resolve a higher purity of labeled CaM and to min-

imize free fluorophore to negligible levels. One way to attain this level of purity is to

ligate CaM with Alexa Fluor in lystate, then purify the CaM protein with an affinity

binding column as described in the methods.
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(a) Coomassie Staining (b) Fluorescent Imaging @ 647 nm

Fig. 3.8. Purified CaM ligated to Alexa Flour 647 and isolated via a 7K
MWCO desalting column. Two panels show the same SDS-page gel im-
aged with fluorescence and coomassie staining. As evident, no significant
amounts of protein contaminants are present, however some contaminant
fluorescent species with lower MW than CaM (16.8 kDa [98]) become ev-
ident when imaged at 647 nm. From left to right, lanes contain a MW
ladder, a blank, and 6 lanes with 20 µL dilutions of desalted A647-CaM
(2 lanes each 3:1, 2:2, and 1:3 of A647-CaM desalted reaction mixture into
CaM-CaN Binding Buffer).

3.3.3 Preliminary FRCS of CaM-mCaMKII

Due to time constraints and limited resources as a result of COVID-19, preliminary

attempts to characterize the binding kinetics of CaM and monomeric CaMKII were

unable to be resolved with a sufficient SNR to truly discuss or quantify binding

dynamics. Results of these preliminary studies can however be seen in the appendices

(figure C.2). Future work will be invested in refining the experiment further.

3.4 Conclusions

In this chapter I present an in silico model for the generation of FCS data using

simulated brownian motion and bimolecular interactions. I use this model to char-
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acterize the dynamic range of the FRCS technique and algorithm, and demonstrate

it’s viability for characterization of PPIs. I further demonstrate preliminary experi-

mental evidence of PPIs measured by FCS technology, and pave the way for future

exploration of a broad set of PPI dynamics resolved about CaM, a significant actor

in cellular modulation and signalling.
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4. KINETICS OF AZIDOHOMOALANINE

BIODISTRIBUTION AND IT’S METABOLIC

IMPLICATIONS IN VIVO

The content of this chapter will be submitted for publication. Dr. Aya Saleh con-

tributed to experimental studies and collection of data that informed the compu-

tational model development, parameterization, and validation that I performed and

presented in this chapter.

4.1 Introduction

Inspired by the works of Dieterich et al., our group has previously demonstrated

the ability to selectively label nascent polypeptides within the murine proteome via

a systemic injection of a non-canonical amino acid (ncAA) [81, 101, 102]. In this

technique, a methionine (Met) analog, azidohomolaline (Aha) is introduced into the

biological system of interest via subcutaneous injection, and immediately begins to

become incorporated into newly synthesized polypeptide (NSP) chains using the cell’s

endogenous translational machinery. This selective labeling of nascent peptides al-

lows for experimentally controlled distinction between the constituent proteome and

newly synthesized nascent protein, following Aha injection. To enable this distinc-

tion, Aha is enabled with a reactive azide group that can be covalently modified via

the azide-alkyne cycloaddition reaction (a click chemistry reaction) [81]. As such,

ncAA-labeled NSPs can be selectively conjugated to “clickable” affinity or fluores-

cent tags for identification or visualization, respectively [41, 81, 102]. Compared to

previous studies of ncAA labeling in complex organisms, the Aha injection method

allows stable dosing with predictable patterns of Aha distribution [101,103–105].

Despite the application of ncAA labeling in a number of studies to decipher com-

plex cellular processes in animal models [103–106], understanding the kinetics of the

distribution of ncAAs into tissues, especially as it pertains to the rates of protein
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incorporation and loss by protein degradation, remains lacking. Our own works in

this field have been limited in scope to studies of proteome changes within 24 hours of

injection, and without a robust characterization of the dynamics underlying observed

changes in NSPs. Determination of the timescale of the ncAA uptake by tissues

following its administration and the lag time before maximum protein labeling are

critical information to guide the design of robust temporal experiments to study the

nascent proteome. Such understanding will also enable optimization of the dosing

regimen to attain ideal Aha concentrations that achieves the required degree of pro-

tein labeling over the course of the study, depending on the average rate of protein

synthesis and turn over in tissues of interest.

In the work presented in this chapter, we aimed to characterize the distribution

kinetics of Aha within murine physiology. To study the biodistribution of Aha, we

develop here a compartment based model of small molecule biokinetics that charac-

terizes the movement of freely diffusive Aha (fAha) throughout the mouse circulatory

system and into distinct tissues including the liver, kidney, brain and skeletal muscles.

We further develop a model of incorporation of fAha into proteins within tissues of

interest. This incorporation model was used to characterize both the predicted label-

ing profile for a given experimental treatment of Aha and the relative synthesis and

turnover rates of Aha-incorporated proteins. This objective was accomplished with

a custom biokinetic compartment model system of ordinary differential equations

(ODEs) based, in part, upon a model developed by Kirman et al. describing small

molecule transport in mice [107]. This model was parameterized based upon transfer

and surface exchange rates experimentally determined through a variety of differ-

ent techniques [108–110], and then adjusted for Aha by fitting to experimental Aha

data. The distribution of fAha in tissues was quantified via liquid chromatography-

tandem mass spectrometry (LC-MS/MS) for each relevant tissue over a period of 24

hr following an initial Aha injection. In addition, we used fluorescent western blot-

ting to measure semi-quantitative relative protein labeling in these tissues during the
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same period of time. The biokinetic model was then fit within the roughly defined

parameter bounds to best represent these experimental data.

We demonstrate here that this fully parameterized biokinetic model can be used

to characterize nascent protein synthesis and turnover within distinct tissues. Fur-

thermore, we validate it’s capabilities as a predictor of Aha distribution and there-

fore protein labeling under more complex, multiple injection dosing paradigms. We

present this model as a tool to guide future experimental design utilizing Aha label-

ing, which we have shown to be capable of elucidating metabolome dynamics with

previously unattainable selectivity and temporal resolution.

4.2 Methods

4.2.1 Animal Model

Animals used in these studies were derived from female age-matched wild-type

C57Bl6 mice (Mus musculus) purchased from The Jackson Laboratory. All exper-

imental protocols were performed in compliance with established guidelines and all

methods were approved by Purdue Animal Care and Use Committee (PACUC, proto-

cols 1209000723 and 1801001682). PACUC requires that all animal programs, proce-

dures, and facilities at Purdue University to abide by the policies, recommendations,

guidelines, and regulations of the USDA and the United States Public Health Service

in accordance with the Animal Welfare Act and Purdue’s Animal Welfare Assurance.

4.2.2 Aha Injection, and Plasma and Tissue Collection

The methionine (Met) analog L-azidohomoalanine (Aha; Click Chemistry Tools)

was resuspended in 1 x phosphate buffered saline (PBS) to a 10 mg·mL−1 concentra-

tion, pH adjusted to 7.4 with NaOH, sterile filtered and stored at -20◦C. All injections

were administered to mice subcutaneously at 0.1 mg·g−1 bodyweight. Mice (n = 3

biological replicates) were euthanized 0.5, 1, 2, 4, 6, 12, 24 hr post injection (hpi).
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Blood was collected by cardiac puncture into EDTA-treated tubes and centrifuged

at 1,500 x g for 10 min at 4◦C. The supernatant (plasma) was transferred into a

new tube using a Pasteur pipette, snap frozen in liquid nitrogen and stored at -80◦C.

Liver, brain, kidney and hindlimb skeletal muscle tissues were dissected at each time

point, snap frozen in liquid nitrogen and stored at -80◦C. Plasma and tissues were

collected as described above from non-injected mice (n = 3 biological replicates) to

be used as a control.

4.2.3 Sample Preparation for Aha Analysis

For plasma sample preparation, 50 µL of plasma were mixed with 10 µL of 1

x PBS, pH 7.4 and 5 µL of 100 ng·µL−1 L-α-aminobutyric acid (µL of trichloroacetic

acid (TCA; Sigma) were added to the mixture to precipitate proteins. The mixture

was incubated for 10 min at 4◦C and centrifuged for 10 min at 16,000 x g at RT.

The supernatant was then mixed with 100% acetonitrile (ACN; Fisher Scientific) at

a 1:1 ratio (v/v). The mixture was transferred to an autosampler vial for LC-MS

analysis. For calibration curve generation, Aha standards were prepared by mixing

50 µl of non-injected plasma with 10 µl of a known concentration of Aha and 5 µof

α-ABA. Proteins were then precipitated with TCA and prepared for LC-MS analysis

as described above.

For tissue sample preparation, tissues were rinsed with ice-cold 1 x PBS, pH

7.4 to remove residual blood and homogenized in ice-cold 1 x PBS, pH 7.4 using a

TissueRuptor (Qiagen). The final homogenate weight was measured and converted

to volume by using a homogenate density of 1 g·mL−1. Samples were then prepared

for LC-MS analysis as described for plasma by using 50 µl of the tissue homogenate.

The remaining plasma samples and tissue homogenates were snap frozen and stored at

-80◦C until use for western blot and non-targeted metabolomic analyses as described

below.
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4.2.4 LC-MS Targeted Analysis of Aha

An Agilent 1260 Rapid Resolution liquid chromatography (LC) system coupled

to an Agilent 6470 series QQQ mass spectrometer was used for Aha analysis (Agilent

Technologies). An Intrada Amino Acid 2.0 mm x 150 mm, 3.0 µm column (Imtakt

Corporatio) was used for LC separation. The buffers were (A) ACN, 0.3 % formic

acid (FA; Sigma) and (B) ACN/100 mM ammonium formate (20/80 v/v). The linear

LC gradient was as follows: time 0 minutes, 20 % B; time 5 minutes, 20 % B; time

11 minutes, 35 % B; time 20 minutes, 100 % B; time 22 minutes, 100 % B; time

22.5 minutes, 20 % B; time 30 minutes, 20 % B. The flow rate was 0.3 mL·min−1.

Multiple reaction monitoring was used for MS analysis. Data were acquired in a

positive electrospray ionization (ESI) mode according to Table 1. The jet stream

ESI interface had a gas temperature of 325◦C, gas flow rate of 9 L·min−1, nebulizer

pressure of 35 psi, sheath gas temperature of 250◦C, sheath gas flow rate of 7 L·min−1,

capillary voltage of 3500 V in a positive mode, and nozzle voltage of 1000 V. The delta

electron multiplier voltage was 300 V. Agilent MassHunter Quantitative Analysis

software was used for data analysis (version 8.0).
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Table 4.1.
Multiple reaction monitoring table for data acquisition.

Compound name Precursor ion Product ion Collision Energy

Aha 145.1 101.3 5

Aha 145.1 71.3 10

Aha 145.1 58.3 40

Ala 90 44 15

Arg 175 116 18

Asn 133 87 12

Asp 134 88 14

Cys 122 76 15

Cys-Cys 241.1 152 15

Gln 147 84 22

Glu 148 130 12

Gly 76 30 15

His 156 110 19

Ile 132 86 15

Leu 132 86 15

Lys 147 84 20

Met 150 104 15

Phe 166 120 15

Pro 116 70 15

4.2.5 Western Blot Analysis of Aha-labeled Tissues

Tissue homogenates were thawed and protein concentration was measured using

the Pierce 660 nm Protein Assay (ThermoFisher Scientific). 200 µg of tissue ho-

mogenate were alkylated with 40 mM iodoacetamed for 30 min at RT in the dark
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with end-over-end rotation. Samples were then reacted for 2 hr at RT with the fol-

lowing click reagents: 50 µM biotin-alkyne (ThermoFisher Scientific), 5 mM tris(3-

hydroxypropyltriazolylmethyl)amine (THPTA; Click Chemistry Tools), 2 mM copper

sulfate, 20 mM aminoguanidine and 10 mM sodium ascorbate. Following click reac-

tion, proteins were precipitated by adding ice-cold 100% acetone to the samples at a

4:1 ratio (v/v). Samples were incubated overnight at -20◦C, centrifuged at 21,100 x g

for 20 min at 4◦C, supernatant was discarded and protein pellets were vacuum-dried

for 15 min at RT using CentriVap (Labconco). Dried pellets were resuspended in

(8 M urea in 1 x PBS) and centrifuged at 16,000 x g for 15 min at RT to remove

insoluble particles. The supernatants were transferred into new tubes and protein

concentration was measured using the Pierce 660 nm Protein Assay (ThermoFisher

Scientific). Proteins were resolved on 4 – 20% SDS-PAGE gels (BioRad), transferred

to a PVDF membrane (ThermoFisher Scientific) using the Trans-Blot Turbo Transfer

System (BioRad) and probed overnight at 4◦C with IRDye 680 Streptavidin (LICOR)

(1:3000 dilution). Membranes were imaged using an Azure Biosystems c600. West-

ern blot images were analyzed using ImageJ (NIH) to calculate the mean fluorescence

intensities of each time point. The intensity of the control sample was used to nor-

malize the intensity of each time point (n = 3 biological replicates/blot). Sample

Preparation for Non-targeted Metabolomic Analysis Plasma, and liver and brain ho-

mogenates were thawed. The metabolome of non-injected control samples (n = 3

biological replicates) and samples collected 24 hr post Aha injection (n = 3 biological

replicates) was extracted by adding methanol: chloroform: water (1:1:1, v/v) to 80

µl of each plasma sample and to 60 µl of each liver and brain sample. Samples were

vortexed briefly and centrifuged at 8,000 x g for 5 min at RT. The upper layer was

transferred into a new tube and vacuum-dried overnight at RT.
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4.2.6 Plasma Sample Preparation for Untargeted Metabolomic Analysis

The plasma metabolome of non-injected control samples (n = 3 biological repli-

cates) and samples collected 24 hr post Aha injection (n = 3 biological replicates) was

extracted by adding methanol: chloroform: water (1:1:1 v/v) to 80 µl of each plasma

sample. Samples were vortexed briefly and centrifuged at 8,000 x g for 5 min at RT.

The upper layer was transferred into a new tube and vacuum-dried overnight at RT.

The dried fraction was reconstituted in 75 µl of a diluent composed of 5% ACN and

0.1% FA. Reconstituted samples were sonicated for 5 minutes, centrifuged at 16,000

x g for 8 min at RT, and the supernatants were transferred to HPLC autosampler

vials.

4.2.7 LC-MS Untargeted Metabolomic Analysis

Separations were performed on an Agilent 1290 UPLC system (Agilent Technolo-

gies). The metabolites were analyzed using a Waters Acquity HSS T3 column (1.8

µm, 2.1 x 100 mm), with a mobile phase flow rate of 0.45 ml·min−1, where the mobile

phase A and B were 0.1 FA in double distilled water (ddH2O) and ACN, respectively.

Initial conditions were 100:0 A:B, held for 1 min, followed by a linear gradient to

20:80 at 16 min, then 5:95 at 22.5 min. Column re-equilibration was performed by

returning to 100:0 A:B at 23.5 minutes and holding until 28.5 minutes.

The mass analysis was obtained using an Agilent 6545 Quadruple Time of Flight

(Q-TOF) MS with ESI capillary voltage +3.2 kV, nitrogen gas temperature 325◦C,

drying gas flow rate 8.0 L·min−1, nebulizer gas pressure 30 psi, fragmentor voltage

130 V, skimmer 45 V, and OCT RF 750 V. MS data scans (m/z 70-1000) were

collected using Agilent MassHunter Acquisition software (v.B.06). Mass accuracy

was improved by infusing Agilent Reference Mass Correction Solution (G1969-85001).

MS/MS was performed in a data-dependent acquisition mode on composite samples.
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4.2.8 Metabolomics Data Analysis

Peak deconvolution and integration was performed using Agilent ProFinder (v.10.0).

Bioinformatic analyses were performed using Agilent’s Mass Profile Professional (v.13.1).

Chromatographic peaks were aligned across all samples. Peak areas were normalized

by log2-transformation and applying a 75 percentile shift. Metabolites were filtered

out if present in only one sample. Only metabolites present in all 3 replicates of

at least one group were included in the analysis. Statistical analysis was performed

using unpaired student’s t-test. Metabolites with P < 0.05 and fold change > 2

were considered significant. Peak annotations were performed using the METLIN

metabolite database [111], with a mass error of less than 5 ppm. Identifications were

aided by MS/MS spectra comparisons. Principal component analysis (PCA), hier-

archical clustering analysis (HCA) and metabolic pathway analysis were performed

using MetaboAnalyst v.4.0 [112].

4.2.9 Kinetic Modelling of Aha distribution

Simulations were run on a Lenovo Yoga with an Intel Core i7-8550U CPU @ 1.8

GHz and 8 GB RAM. Simulations were preformed using custom modeling scripts

written in Python 3.6 (See appendix A). System of ordinary differential equations

(See appendix B) were solved using a flexible high order solver (scipy.integrate, [69])

and parameters were fit with a least squares minimization algorithm from ‘Lmfit’ a

prebuilt python library [66]. All best fit values can be found in appendix D tables

D.2-D.4.

4.2.10 Model Validation and Sensitivity Analysis

Standard error of fitted parameters were determined for the 19 fitted pa-

rameters in the biodistribution model and for all 8 fitted parameters in the protein
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incorporation model. Standard error values were determined during the non-linear

regression using the built in functionalities of the ‘Lmfit’ python library [66].

Partial rank correlation coefficients (PRCCs) were determined for all 31 total

parameters in the biodistribution model and for all 8 parameters in the protein incor-

poration model. PRCCs were used to character the influence of each parameter on

the sum of square errors (SSE), the optimization metric for non-linear regression. To

effectively sample the parameter space, latin hypercube sampling (LHS) was utilized

to select unique parameter sets (n = 10000) as detailed by our previous works [18,113].

Simulations used to inform PRCCs were performed on a supercluster, and each was

run on a single compute node with dual 12-core Intel Xeon Gold ”Sky Lake” CPUs

@ 2.60 GHz and 96 GB of memory.

4.3 Results

4.3.1 Kinetic Model of Aha Distribution

Freely diffusive, unbound Aha (fAha) was introduced into the model at the in-

jection site, as in our subcutaneous dosing paradigm. From the injection site it was

able to enter and circulate the rodent’s blood stream, wherein it underwent surface

exchange with distinct tissue compartments. As such the fAha distribution model is

easily broken into two stages: transport and exchange (fig 4.1).

Within each compartment, the time rate of change of the fAha plasma concen-

tration ([fAhap]) available for surface exchange with the tissue can be described as

a mass balance.

(
d[fAhap]x

dt

)
transport

=
Qx

Vx
([fAhap]sysrv − [fAhap]x) (4.1)

Where Qx is the blood flow rate between tissue x and a systemic venous reservoir,

and Vx is the corresponding volume of plasma relevant to each tissue (Q/V repre-

sented as a lumped constant qb in appendix tables D.2-D.4 for parameter details).
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Fig. 4.1. Biodistribution of fAha via transport and exchange. Introduced
at a distinct injection site, fAha is allowed to enter the venous circulation
(blue). From the venous circulation fAha is driven through the arterial
system (red) into distinct tissue compartments where exchange occurs
at tissue specific rates. Arrows indicate directional movement of fAha,
ellipses indicate distinct compartments of plasma available for surface ex-
change, and rectangles indicate cumulative intracellular volume for each
tissue in the model. Three additional terms exist for elimination of fAha
via excretion and metabolization.
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The liver tissue, gut and renal plasma compartments all had additional elimination

terms accounting for excretion and metabolization of fAha. All kinetic parameters for

circulatory transport were normalized by tissue mass to compare relative perfusion

rates between tissue compartments of differing size. Once localized to a tissue, fAha

in the plasma (fAhap) may also be exchanged across the cell membrane with the

trapped intracellular species (fAhat).(
d[fAhap]x

dt

)
exchange

= ke,x[fAhat]x − ki,x[fAhap]x (4.2)

(
d[fAhat]x

dt

)
exchange

= ki,x[fAhap]x − ke,x[fAhat]x (4.3)

Where ki,x and ke,x are the tissue specific import and export rates for fAha across

the cell membrane. This trapped species is the concentration experienced by synthesis

machinery within the cell. The two stages of distribution were then combined into a

single system of ODEs, which was parameterized and bound within reasonable ranges

for a model of small molecule pharmacokinetics (appendix tables D.2-D.4) [107–110].

Parameters were then fit to best match time-resolved fAha data obtained from LC-

MS.

4.3.2 Kinetic Model of Protein Labeling

Within each tissue compartment fAhat is expected to become incorporated into a

proteinous form (pAha) via protein synthesis, resulting in an experimentally observ-

able fluorescent signal from Aha-labeled protein. As a Met analog, Aha is able to bind

methionyl tRNA synthase, albeit at a much slower rate (kcat/Km Aha: 1.42e−3, Met:

5.47e−1 s−1·µM−1) [114]. Though to our knowledge there is no reliable experimental

measurements reported for the amount of Met incorporated into protein in murine

tissues (pMet), Met is known to be present at low levels relative to other canonical

amino acids. Free Met (fMet) is typically present at concentrations comparable in
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magnitude to the peak concentrations of Aha in measured tissues ([fMet] ≈ 8, 12

µg·g−1 in liver and kidney respectively []). Given the difference in the rate constant

of association with methionyl tRNA synthase, at similar concentrations, fMet likely

dominates translation over fAha. It would be reasonable to assume that concentra-

tions of pAha are therefore lower than pMet by a similar factor of several orders of

magnitude or that (i) [pAha] << [pMet] within each tissue. To approximate the

[pMet], we can examine total cellular protein synthesis (15 mg·g−1·day−1, [116]), and

average Met content of the proteome (3-5%, [117]), which yields a maximum pMet

synthesis rate of around 750 µg·g−1·day−1. Since fAha is only in excess for around

4 hours in our distribution model, a reasonable upper bound of [pMet] generated

in that time is around 125 µg·g−1. This is reasonably close to the average [fMet]

of our system. Therefore it’s reasonable to assume in this time frame that (ii) the

generated [pMet]≈[fMet]. With these two assumptions (i/ii), it is reasonable to con-

clude that [pAha] << [fAha]. Therefore, [pAha] can be assumed dependent upon

[fAha], while [fAha] can be assumed relatively independent of depletion via protein

synthesis at least in comparison to biotransport on this timescale. To further vali-

date this assumption, we note that despite vast differences in the degree of protein

labeling between tissues (for instance liver and skeletal muscles, fig 4.2E-H), there is

no discernible difference in their fAha concentration profiles 4.2A-D, supporting the

assumption of negligible depletion of fAha by protein synthesis.

[fAhat]x � [pAhat]x (4.4)(
d[fAhat]x

dt

)
synthesis

= −ks,x[fAhat]x ≈ 0 (4.5)(
d[pAhat]x

dt

)
synthesis

= ks,x[fAhat]x − kd,x[pAhat]x (4.6)

Where ks and kd are the tissue-specific kinetic rates of protein synthesis and

degradation with respect to the Aha. Furthermore, if the degree of fluorescent signal

relative to the background (rF ) from pAha labeled protein is linearly proportional to
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the concentration of pAha by some factor, kf , then the generation of rF signal can

be predicted from the synthesis kinetics.

rFx =
(signal − background)

(background)
= kf [pAhat]x (4.7)

d(rFx)

dt
= kf

d[pAhat]x
dt

= kfks[fAhat]x − kd(rFx) (4.8)

A distinct third stage was added to the model to predict rF signal from the fAha

distribution. This model was fit to fluorescence data, acquired for each tissue via

western blot, to (i) estimate relative synthesis and degradation rates of protein in

each tissue and (ii) establish a time resolved predictive model of protein labeling

given a variety of input dosing paradigms.

4.3.3 Estimation of Relative Protein Synthesis and Turnover Rates

The model was constructed and fit to LC-MS quantifications of [fAha] in all stud-

ied tissues over a period of 24 hrs following a single dose subcutaneous injection of

fAha (0.1 mg·g−1 body weight). Distribution of Aha through the systemic circulation

was rapid, with concentration peaking within 1 hr of injection, but the lifetime of Aha

under this dosing paradigm was similarly brief (fig. 4.2, panel A-C). Incorporation

into protein increased the longevity of Aha, allowing labeled protein to persist even af-

ter the fAha concentration was fully depleted (fig. 4.2, panel D-F). Note that despite

vast differences in generation of rF, or by proxy the synthesis of florescent protein

between tissues (for instance the liver and skeletal muscle), there is no discernible

difference in the fAha distribution profiles supporting the assumption of negligible

depletion by protein synthesis.

From the model, the half-life of Aha in each tissue was determined (table 4.2).

Similarly, the kinetics of protein turnover were also investigated to compare protein

synthesis rates and half lives amongst tissues. Notably, protein synthesis rates differed
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Fig. 4.2. Aha distribution and protein labeling given a dosing paradigm
identical to the experimental methods (0.1 mg Aha per g body weight,
injected subcutaneously) Top: [fAha] in each tissue over time. Bottom:
rF signal in each tissue as a function of the [fAHA]. Filled points indicate
mean experimental measurement at each time point, error bars indicate
experimental standard deviation. Traces indicate best fit of model to each
dataset, with darker and lighter shaded regions showing 95% prediction
intervals for residual error based off the mean experimental value and all
experimental values, respectively.

Table 4.2.
Tissue relative protein synthesis rates and protein half-lives. *Relative
synthesis rate = kfks, units include fluoresence response units (RU) and
mass pAha/fAha (µgp/µgf )

Parameter Skmus Liver Brain Renal

Protein turnover rate, hr−1 2.29e−2 4.91e−2 1.81e−2 4.88e−2

Protein half-life, hr 14.1 14.2 38.3 30.2

Relative syn. rate*, RU(µgpµgfhr)
−1 4.53e−5 4.19e−3 6.62e−4 5.41e−3



103

significantly among tissues. In addition, the estimated protein half-lives are consistent

with previous studies that utilized isotope labeling to measure tissue protein half-

lives using MS [118–120]. In these previous studies, measurements based on absolute

quantitation using isotope labeling revealed that liver and kidney have higher turnover

rates compared to brain and skeletal muscle. For example, Price et al. showed that

the average half-life of brain proteins is 3 times higher than liver (9 and 3 days for

brain and liver, respectively) [119]. Notably, our model estimated an average brain

protein half-life that is 2.7 higher than the liver (38.3 and 14.1 hours for brain and

liver, respectively) (table 4.2). The discrepancies between previously reported values

and the half-lives values estimated here can be attributed to the shorter timescale

of our experimental setup and the lower accuracy of western blotting measurements

compared to MS.

4.3.4 Model Validation

Model validity was examined using a few distinct metrics to investigate parameter

stability and goodness of fit.

Firstly, a prediction interval of additional regression values was generated for each

tissue studied, for both the biodistribution and protein incorporation models. A

distinct 95% prediction interval (PI) was calculated using all experimental replicates

as well as a second tighter prediction interval using only the mean for each time point

shown in figure 4.2. This prediction interval gives a reasonable expected range for

future residuals based upon the observed experimental regression and distance from

the informing dataset. For each tissue, the width of a 95% prediction interval (PI)

from the average line of best fit (ŷ) can be approximated using a naively informed

forecast interval that assumes a relatively normal distribution of residual error [121].

PI = ŷ ± 1.96

∑
i(yi − ŷi)2

n

√
1 +

1

n
+

(t− t̄)2∑
i(ti − t̄)2

(4.9)
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Here n is the total number of observations, (ti, yi) are the observation time and

[Aha] values for each tissue, t is the time point of the predicted residual, t̄ is the

average time of all experimental observations.

Secondly, the covariance matrix of least squares regression was used to inform a

standard error estimate for all 19 fitted parameters in the biodistribution model and

for all 8 fitted parameters in the protein incorporation model. This standard error

gives an indication of the variability of each parameter, but also inherently reflects

upon the definition of the model, parameters that are close to the constraints are less

predictable, and so wide error can be indicative of a poorly constrained system. Error

for each parameter also increases with the number of fitted parameters, is inversely

related to the quantity of data points available for fitting, and is heavily influenced

by the metric used for optimization. As such, these errors give a general indication

of which parameters are well characterized, but are not an ideal metric for a complex

non-linear regression. Notably the widest error ranges were for parameters that were

the least well characterized by literature findings specifically the tissue specific import

and export of fAha.

As a reinforcement for the standard error ranges determined by fitting covariance,

partial rank correlation coefficients (PRCCs) were determined using monte-carlo latin

hypercube sampling (LHS) to sweep each parameter over it’s bound range and de-

termine the influence of each parameter on the sum of square error metric used for

optimization as described in our previous works [18, 113]. Here, PRCC values closer

to a value of 1 in magnitude hold more sway over the dynamics of the entire system.

It is clear that the most heavily weighted parameters seemed to be those that influ-

ence the system removal of fAha. Particularly, elimination rates and import rates

into tissues that work actively to remove fAha tend to demonstrate PRCC > 0.1,

although none of these parameters is greater than 0.8 which would indicate a poorly

defined system.

All standard error and PRCC values can be seen in appendix D tables D.2-D.4.
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4.3.5 Predictive Simulations of Dosing Paradigms

Attaining good protein labeling is critical to adequately enrich Aha-labeled pro-

teins with high signal-to-noise ratio for accurate quantitative MS measurements and

identification of newly synthesized proteins. Therefore, it is imperative to optimize

the labeling strategy for the tissue of interest. Using the developed model, fAha

biodistribution and tissue protein labeling could be predicted for alternative dosing

regimens. Such predictions would help inform experimental design and predict la-

beling efficiency depending on the conditions of a study. To that end the model was

adapted to accommodate multiple subcutaneous doses of varying magnitude.

Fig. 4.3. Model accurately and precisely predicts relative labeling in the
brain and liver with multiple injection doses. Left: rF experimental data
and fit model for 12hrrd. Right: rF experimental data and fit model
for 12hrrd. Color indicates liver (red) and brain (blue) tissues, solid line
shows best fit of model from original robust dataset, dashed line shows refit
model to repeated dose paradigm. Dots indicate individual experimental
measurements and crosses represent experimental means for data collected
6, 18, and 32 hpi.

It is notable however, that such an adaptation for extrapolation is naively informed

and required further validation. The parameter set for Aha distribution and labeling

was characterized by a robust study containing fAha and rF data, recorded with LC-

MS and western blot respectively, at 8 distinct time points (n = 3 biological replicates
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at 0, 0.5, 1, 2, 4, 6, 12, and 24 hpi). While this study provided sufficient data to

develop a well informed model of Aha patterning, it was limited to time points within

24 hr of a single subcutaneous injection of Aha. However, the extrapolated precision

and accuracy of an already fully informed model can be reasonably characterized with

a much more sparse data set.

Table 4.3.
Parameter and goodness-of-fit statistics related to alternative dosing
paradigm predictive models

Tissue Parameter Pred. Val. (SE) Refit Val. %∆

Liver kfks, RU(µgpµgfhr)
−1 3.16e−4 (2.49e−5) 3.65e−4 +15.5%

12 hrrd kd, hr
−1 8.29e−4 (1.80e−4) 8.67e−4 +4.6%

SEreg, RU 1.975 1.684 -14.7%

Brain kfks, RU(µgpµgfhr)
−1 4.30e−5 (2.83e−5) 4.84e−5 +12.5%

12 hrrd kd, hr
−1 3.54e−4 (1.11e−3) 1.37e−4 -61.3%

SEreg, RU 1.147 1.082 -5.7%

Liver kfks, RU(µgpµgfhr)
−1 3.16e−4 (2.49e−5) 3.02e−4 -4.4%

24 hrrd kd, hr
−1 8.29e−4 (1.80e−4) 6.72e−4 -18.9%

SEreg, RU 1.558 1.524 -2.2%

Brain kfks, RU(µgpµgfhr)
−1 4.30e−5 (2.83e−5) 4.28e−5 -0.5%

24 hrrd kd, hr
−1 3.54e−4 (1.11e−3) 1.37e−9 -99.9%

SEreg, RU 0.953 0.916 -3.9%

The model was used to predict the rF labeling of brain and liver tissues for two

alternative dosing paradigms with (i) 12 hr repeated doses (hrrd) and (ii) 24 hrrd

over a 48 hr period. As an internal control for western blot variation, these new

experimental values were normalized by a shared time point with the previous study

(6 hours post initial injection) for each tissue. The resulting values were used to refit



107

the relative pAha synthesis rate and degradation for each tissue under each repeated

dose paradigm. When compared to these new data there was only a slight reduction

in the standard error of regression, a goodness-of-fit metric, between the original

and refit parameters in each tissue (12 hrrd: ∆SEreg = [−14.7%,−5.7%]; 24 hrrd:

∆SEreg = [−2.2%,−3.9%]; for [liver, brain] respectively). Additionally, among all

refit parameters, only a single parameter was adjusted beyond a single standard error

of fit from the original best fit value (12 hrrd liver ∆kskf ≈ +1.97SE), and only the

degradation rate in the brain changes by >20%. All changes in parameter values and

goodness-of-fit are detailed in table 4.3.

4.4 Conclusions

In this Chapter, we report for the first time the biodistribution kinetics of Aha,

the most widely used Met analog, in murine tissues, as well as the associated apparent

rates of protein synthesis and turnover. These results show that liver and kidney have

faster synthesis and turnover rates compared to brain and skeletal muscle, which

is consistent with the results of previous studies that utilized isotope labeling for

analyzing protein turnover rates. We also show that the injection technique allows

observing maximum protein labeling in a relatively short time ( 6 h), which enables

studying proteins with shorter half-lives, in contrast to the traditional method of

introducing the ncAA in diet or using isotope labeled amino acids. Additionally, we

report the development of a mathematical framework that describes the distribution

kinetics of Aha in murine tissues and its relation to the degree of protein labeling, and

computes the apparent relative rates of protein synthesis and turnover. We further

validate this framework for predictive modeling of Aha labeling against a distinct

dataset including two alternative repeated injection dosing paradigms to demonstrate

it’s efficacy as a tool for future experimental design.
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5. RECOMMENDATIONS

5.1 Implications of FRCS

5.1.1 Applications and Limitations

In this work we have demonstrated that the FRCS algorithm and data processing

methodology is capable of capturing dynamics of a system at a sub-measurement-time

scale, with a potential temporal resolution equal to the scale at which the experimen-

tal photon count rate is non-sparse (∼10-100 ns). At these time scales this technique

should be capable of characterizing behavior across a broad dynamic range that cov-

ers most of the feasible PPI kinetics that might be captured by any of the presently

available technologies such as SPR [kaε(1e4, 1e7) M−1·s−1, kdε(1e−4, 1e1) s−1] [22].

Along with the dynamic capabilities FRCS is uniquely simple in experimental de-

sign. Due to the singly-labeled nature of the experimental design, FRCS is ideal to

characterize the binding behaviors of a target of interest, such as CaM, which can

be engineered relatively simply to posses a fluorescent label. This labeled target can

then be repeatedly used to characterize binding kinetics of an entire set of other

proteins, each which can be expressed as a wild-type without modifications or even

purchased in small quantities. Furthermore, unlike current gold-standard methods of

binding kinetic determination, FRCS does not require any immobilization or surface

binding of proteins and therefore can be used to characterize binding in a more native

state. However, it is notable that current experimental constraints do present some

additional limitations to this technology that other techniques may not have.

Firstly, it is notable that for single-photon FCS, it has been well characterized to

poorly distinguish between particles which characteristic residency times that differ

by less than a factor of 1.6 [26, 92]. Given that residency and, by proxy, diffusivity

is a function of the hydrophobic radius, and assuming we model proteins as globular

spheres with relative uniform density this would demand that the mass of ligand is a

factor of 1.63 ≈ 4 times less than the mass of ligand-receptor complex. In this case, the
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receptor must be at least a factor of 3 heavier than the labeled ligand, to characterize

using this single-photon FRCS, assuming that the act of complex formation does

not result in a more dense globular protein, which realistically is perhaps a likely.

That being said, the same logic used to characterize binding kinetics using single-

photon FRCS could be applied to a two-photon system with differentially labeled

ligand and receptor. In this case the magnitude of the cross correlation of the two

channels would indicate the concentration of complex species. The same overlapping

correlation algorithm could easily be used to monitor the time resolved changes in

concentration as determined by the cross correlation as could be used to determine

the fractional composition in a singly labeled auto-correlation system.

Further complications are present in the actual experimental design of FRCS

experiments. Foremost among these is the likely possibility that FRCS experimental

measurements will be significantly more noisy than the simulated findings in figure 3.5.

While these simulations predict the random noise of diffusion in an otherwise ideal

theoretical system in which the diffusivity of both the ligand and complex ligand-

receptor species are fixed to a known value. They don’t capture true biophysical

variation in protein mass, globular density, and orientation specific binding. As such,

experimental FRCS will likely require many more replicates than the simulations

would imply in order to characterize the true average behavior. Additionally, for the

low concentrations of proteins characteristic for FCS, ideal buffer conditions become

critically important, slight variations may influence not only the binding kinetics

being characterized, but also could render proteins to completely precipitate, or non-

specifically bind to each other and the surface of the measurement apparatus. These

issues can be minimized by thoughtful design, such as by including inert protein such

Bovine Serum Albumin (BSA) in the buffers and by optimizing other conditions such

as salt concentration, ion concentration and pH through iterative experimentation or

extensive literature searches. Another issue that has been encountered in preliminary

studies is the possibility that the fluorophore may interfere with binding if localized

too closely with the binding domain of the protein of interest. This could perhaps
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be addressed on a case-by-case basis by selectively relocating the fluorophore on the

labeled peptide, possibly using some form of flexible linker to isolate the binding

domain from potential interference as much as possible.

A more difficult to address limitation lies in defining a mixing protocol for actual

experimental FRCS studies. As mentioned previously, the Michaelis-Menten model of

protein binding and enzyme kinetics relies on an assumption that the solution is well

mixed. This means that each species present in the solution is uniformly distributed

at the exact moment that the reaction begins to proceed. As mentioned in 3, this can

be accomplished experimentally by mixing the binding species thoroughly just before

measurement with gentle pipetting, flicking and inversion, but this inherently means

that the earliest binding reaction time point captured by the first FRCS frame will

fail to capture the intial binding activity. For a correlation frame width of around 20

seconds, nearly 10 seconds of binding behavior would be lost by such a measurement

with this mixing protocol. This time loss is further increased by the length of time

that it takes to mix and subsequently begin measuring the solution. As seen in figure

3.5, a loss such as described here is negligible for slower dynamics that occur over

the time span of a few minutes. However, for PPIs with rapid association kinetics,

particularly those with lower binding affinities that produce a complex that exists

only transiently, this loss of time makes it nearly impossible to characterizze the

true kinetics. Even in the slower timescales, the length of time between ”mixing”

and the first correlation frame must be well characterized and consistent. Ideally,

it would best to have a running measurement of the free ligand in isolation and

without pausing in the measurement, somehow introduce and ”instantaneously” mix

in the inert receptor without affecting diffusion or concentration of the labeled ligand.

Barring this possibility it would at least be good practice to automate the mixing

process for consistency between replicates. Proposed methods for mixing protocols

are discussed a bit more in the following section.
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5.1.2 Future Work

With FRCS algorithm and software developed, and the theory of the technique

validated with preliminary simulations and experimental measurements the next steps

for this tool are focused on applying the technique to characterizing a diverse set of

PPIs. In particular, we are interested in characterizing the sub-saturated binding

behavior of CaM with Ca22+ as discussed in chapter 3. To do so, we plan to express

mutants of CaM engineered with both fluorescent labels and excised Ca2+ binding

domains. These mutants will then be used to determine binding affinity with a

subset of CaM partners that our lab has worked with including CaMKII (both in

monomeric and holoenzyme form), CaN, PSD95, and other proteins. The eventual

goal would be to use this technique to begin to developing a shared a database of

binding kinetics usable for kinetic models of protein interactions. We would further

like to apply this tool to more advanced studies of binding including introduction

of competitive inhibitors. In a standard FRCS experiment as described here we

anticipate the reduced apparent binding affinity KD,app and even apparent association

rates should be able to be captured with this tool. Perhaps an excess of competitive

inhibitor could even be added during the time course of FRCS to demonstrate a more

rigorous definition of the dissociation rate for a given binding interaction. Among the

proteins we hope to study a few notable systems are likely explored by our group in

the near future as detailed by table 5.1 below.

In the process of obtaining these measurements, we also would like to begin to

develop a more firm experimental design of the mixing protocol of FRCS. The ideal

target of this work would be a protocol that enables a ‘mid-measurement mixing’

experimental design as discussed above and in chapter 3. One possible approach to

accomplish this might be with a microfluidic chip that enables simultaneous injection

of two solutions into an actively measured reservoir.

In a chip designed for the purpose, such as displayed in the cartoon diagram (figure

5.1), a measurement can be performed that incorporates the desired mixing. For this
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Table 5.1.
Binding reaction systems that are good targets of future study with FRCS.

‘Ligand’ (fA) Alternate fA ‘Receptors’ (B) Pred. KD (nM), Source

CaM CaM0 CaN 0.5-50, [18,95]

CaM4 mCaMKII 50, [18,122]

CaM2N hCaMKII < 50, [18, 122]

CaM2C mCaMKII + PPP1cα > 50 , [19]

hCaMKII + PPP1cα > 50 , [19]

PSD95 (10− 20)e3, [123]

Neurogranin (10− 100)e3, [18,124]

Glucosamine ± PEG6 Linker GGBP 200, [125,126]

Galactoseamine ± PEG6 Linker GGBP 400, [126]

particular design, a central reservoir initially contains a known volume of free ligand

(V0) at a known concentration ([A]0). At some time t = 0 an FCS measurement

of the reservoir could be started and recorded for the duration of at least one full

correlation frame. Then, at some time t = trxn,0 equal volumes of two separate

solutions can be quickly pushed into this reservoir, generating a brief turbulance that

mixes all three solutions. The first of these injected solutions is a solution of free

ligand at twice the concentration already present in the reservoir (2[A]0), such that

the final concentration of ligand in the new solution of volume (3V0) is the same as

the original concentration. The second of these injected solutions contains the inert

receptor at a concentration triple that of the desired FRCS measuring concentration

(3[B]0), such that the final mixed concentration is B0. This mixing step may produce

some artefacts in the photon count stream observed during the injection, but when

averaged over the entire measurement interval of each frame, this noisy behavior will

hopefully be relatively minimal and contribute negligibly to the evaluated binding

measurements.
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Fig. 5.1. A cartoon diagram of a chip enabling FRCS with a ‘mid-
measurement’ mixing of reagents. This chip allows simultaneous injection
and mixing of two solutions at some time t = trxn,0 (injection flow di-
rection described by blue arrows), into a static reservoir during an active
measurement started at t = 0. Note the CV and particles are not drawn
to scale.

Additionally, future efforts will be invested in further advancing the capabilities

of both simulations and the GUI for FRCS, in order to capture a broader range

of realistic experimental conditions. It is our hope that these tools can be used to
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aid experimental design and data processing of even more complex systems than are

described here.

5.2 Implications of Aha Labeling

5.2.1 Applications and Limitations

The simulated model and experimental methodology presented in chapter 4 demon-

strate predictable labeling of the in vivo proteome in a murine model with subcuta-

neous injections of Aha. The model of ODEs is presented primarily as a tool to guide

experimental design of future studies. With rapid distribution to all measured tissues

within 1 hpi, this technique of ncAA labeling can be used to probe the proteome

response to some applied stimuli with a relatively fine time resolution. Furthermore,

with the presented model to predict protein labeling, ideal time points for injections

and sacrifice of mice can be selected for optimal labeling of each tissue. While this

model is presently useful as a guide for experimental design, there are some apparent

limitations that should be considered for a more rigorous application.

Firstly, this model does not have strong quantification of the degree of protein

labeling. We have represented proteinous labeling with Aha only by proxy, using

the relative fluorescence from western blot analysis of biotinylation. Protein from

each tissue labeled with Aha was ligated to biotin, and compared to an uninjected

background biotinylated protein concentration from that same tissue. We have not

utilized here a universal internal control between tissues to demonstrate truly inde-

pendent degrees of protein labeling across all tissues. As such, tissues with higher

levels of basal biotinylation will result in low predicted relative labeling in our study.

Furthermore, because we don’t have a strong control between tissues we don’t have

a good way to characterize the value of kf , the fluorescence constant, describing the

degree of fluorescence expected given some degree of protein incorporated pAha. This

is all to say that while the time scale and overall profile of labeling is well charac-
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terized by this model of ODES, any further conclusions particularly those regarding

predicted pAha synthesis rates between tissues are somewhat naively informed.

Secondly, the timescales of this study are relatively short. Even in our predictive

study of multiple doses, we only record data out to 32 hpi. It is possible that at longer

timescales, a variety of unpredictable behaviors may begin to occur. A persistance

of Aha may for instance result in eventual saturation or breakdown of the biological

machinery responsible for removing Aha from the system. Longer Aha lifetimes may

also result in labeling of longer lived proteins that persist beyond the expected profiles

in figure 4.3. Either of these behaviors would result in correspondingly longer half-

lives, and could even result in increased toxicity of Aha in the system.

A third limitation is that this study only captures the dynamics of distribution

and labeling following subcutaneous injections. While these injections are ideal for

rapid < 1 hr Aha peaks, they do not result in persistence of Aha. All labeling of

protein therefore is most likely occur within the short window that Aha is in excess.

Alternative dosing mechanisms may be capable of demonstrating more consistent Aha

levels that may be favorable for some experimental designs.

5.2.2 Future Work

With the notable limitations described in the previous section, future studies

should likely attempt to address these shortcomings. Ideally, another robust study

would be performed that characterizes the distribution dynamics of alternate dosing

paradigms including injections of variable magnitude (to insure initial absorption from

the injection site is unaffected by dose size) as well as oral dosing through feed (slow

absorption bolus) or water (relatively continuous dosing). It may be feasible that a

combination of these dosing paradigms could be selected that allows for rapid initial

distribution of Aha as well as maintained plasma concentrations of Aha after the

initial dose, perhaps using an initial Aha injection and subsequent supplementation

with dietary Aha. A mechanism of oral dosing is already present in the complete
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model of ODEs as described below in B.1, although best fit parameters were not

characterized due to absence of supporting data.

Further attempts to truly quantify pAha labeling should also be considered. One

possible approach would be to extract protein from labeled tissues via homogeniza-

tion, desalt the sample to remove free amino acids, then fully digest the labeled

protein into independent amino acids with a cocktail of digestive enzymes. The re-

sulting digest could then be measured with LC-MS to quantify total mass of ions

with the characteristic mass of Aha and therefore the concentration of pAha in the

original homogenate.

Lastly, we hope to pursue application of this technique as a tool for characteri-

zation of dynamic response of the proteome not only over the time course of natural

function (such as our lab’s previous work studying proteome changes during devel-

opment, [81, 82]), but also in response to unnatural stimuli such as pharmaceuticals.

With it’s rapid distribution and potential for longer term labeling of the proteome,

this technique could be a powerful tool for purposes such as pre-clinical screening of

potential future drugs.

5.3 Final Thoughts

It is our hope that each of these tools can be utilized by our lab and others

for future experimental studies of protein behavior. FRCS presents an accessibly

elegant method of characterizing kinetic parameters of PPIs that should be simple

to implement in any confocal microscopy enabled labs. Similarly, we hope that the

presented methods and model of Aha biodistribution and labeling will be useful for

future planning of experiments for any biochemists with a need for targeted proteome

analysis.

All of tools discussed in this work, including models and software for both tech-

niques will be made available and open source (can be accessed via the Kinzer-Ursem
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Lab Github repository, appendix A) to any labs interested in their application in the

shared pursuit of further depth of knowledge in protein behavior.
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A. APPENDIX: CODE

A.1 FRCS Scripts and GUI

https://github.itap.purdue.edu/TamaraKinzerursemGroup/FRCS

A.2 Aha Models and Scripts

https://github.itap.purdue.edu/TamaraKinzerursemGroup/ncAABiokinetics
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B. APPENDIX: EQUATIONS

B.1 System of ODEs for Aha Model

The following equations (eqs. B.1-B.30) are separated into functional components

and should be evaluated in order to appropriately determine the rate of change of

Aha in each compartment for each time step.

Dose Forcing Functions:

(fAha)subcu = (fAha)subcu + F (t)subcu (B.1)

(fAha)gasin = (fAha)gasin + F (t)gasin (B.2)

F(t) is typically either a cumulative step function (for injections or dietary bolus) or

a continuous accumulation function (IV or watering). The model tracks the depleted

pool from each dosing site ((fAha)subcu for injections, (fAha)gasin for dietary) and

uses this depletion and the cumulative forcing function to determine the actual Aha

mass present in each site (without changing the nomenclature) for the given time

step.

Blood Flow:

d(fAhap)skmus
dt

= qbskmus

(
(fAhap)sysrv
mbsysrv

− (fAhap)skmus
mbskmus

)
(B.3)

d(fAhap)liver
dt

= qbhepar

(
(fAhap)sysrv
mbsysrv

− (fAhap)liver
mbliver

)
(B.4)

d(fAhap)brain
dt

= qbbrain

(
(fAhap)sysrv
mbsysrv

− (fAhap)brain
mbbrain

)
(B.5)

d(fAhap)renal
dt

= qbrenal

(
(fAhap)sysrv
mbsysrv

− (fAhap)renal
mbrenal

)
(B.6)

d(fAhap)smint
dt

= qbsmint

(
(fAhap)sysrv
mbsysrv

− (fAhap)smint
mbsmint

)
(B.7)

d(fAhap)sysrv
dt

= qbsmint

(
(fAhap)liver
mbliver

− (fAhap)sysrv
mbsysrv

)
−
∑
x

d(fAhap)x
dt

(B.8)

d(fAhap)liver
dt

+= qbsmint

(
(fAhap)smint
mbsmint

− (fAhap)liver
mbliver

)
(B.9)
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Subcutaneous Dose Absorption:

d(fAhap)sysrv
dt

+= kasubcu(fAha)subcu (B.10)

d(fAha)subcu
dt

= −kasubcu(fAha)subcu (B.11)

Oral/Dietary Gastrointestinal Dose Absorption:

d(fAhap)smint
dt

+= kegasin(fAha)gasin − kigasin(fAhap)smint (B.12)

d(fAha)gasin
dt

= kigasin(fAhap)smint − kegasin(fAha)gasin (B.13)

Even if the function F (t)gasin is zero for all time values, this set of equations enables

excretion and is included in the model.

Tissue Exchange:

d(fAhat)skmus
dt

= kiskmus(fAhap)skmus − keskmus(fAhat)skmus (B.14)

d(fAhat)liver
dt

= kiliver(fAhap)liver − keliver(fAhat)liver (B.15)

d(fAhat)brain
dt

= kibrain(fAhap)brain − kebrain(fAhat)brain (B.16)

d(fAhat)renal
dt

= kirenal(fAhap)renal − kerenal(fAhat)renal (B.17)

d(fAhap)skmus
dt

−=
d(fAhat)skmus

dt
(B.18)

d(fAhap)liver
dt

−=
d(fAhat)liver

dt
(B.19)

d(fAhap)brain
dt

−=
d(fAhat)brain

dt
(B.20)

d(fAhap)renal
dt

−=
d(fAhat)renal

dt
(B.21)
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Proteome Incorporation:

d(rF )skmus
dt

= kf ∗ ksskmus
(fAhat)skmus
mtskmus

− kdskmus(rF )skmus (B.22)

d(rF )liver
dt

= kf ∗ ksliver
(fAhat)liver
mtliver

− kdliver(rF )liver (B.23)

d(rF )brain
dt

= kf ∗ ksbrain
(fAhat)brain
mtbrain

− kdbrain(rF )brain (B.24)

d(rF )renal
dt

= kf ∗ ksrenal
(fAhat)renal
mtrenal

− kdrenal(rF )renal (B.25)

(B.26)

Aha Removal:

d(fAhat)liver
dt

−= krliver(fAhat)liver (B.27)

d(fAhap)renal
dt

−= krrenal(fAhap)renal (B.28)

d(fAha)gasin
dt

−= krcolon(fAha)gasin (B.29)

d(fAha)cumrm
dt

= krliver(fAhat)liver + krrenal(fAhap)renal + krcolon(fAha)gasin

(B.30)

B.2 All Listed Equations

List of equations

S + E ⇀↽ ES → EP ⇀↽ E + P (1.1)

S + E ⇀↽ ES → E + P (1.2)
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d[S]

dt
= kd[ES]− ka[E][S] (1.3a)

d[E]

dt
= (kd + kcat)[ES]− ka[E][S] (1.3b)

d[ES]

dt
= ka[E][S]− (kd + kcat)[ES] (1.3c)

d[P ]

dt
= kcat[ES] (1.3d)

d[P ]

dt
= Vmax

[S]

KM + [S]
= kcat[E]0

[S]

KM + [S]
(1.4)

KD =
[E]eq[S]eq

[ES]eq
=

1

Keq

=
kd
ka

(1.5a)

KM =
kd + kcat

ka
(1.5b)

S + E ⇀↽ ES → E + P (1.2)

I + E ⇀↽ EI (1.6)

d[S]

dt
= kd[ES]− ka[E][S] (1.7a)

d[I]

dt
= kd,I [EI]− ka,I [E][I] (1.7b)

d[EI]

dt
= ka,I [E][I]− kd,I [EI] (1.7c)

d[E]

dt
= (kd + kcat)[ES] + kd,I [EI]− ka[E]([S] + [I]) (1.7d)

d[ES]

dt
= ka[E][S]− (kd + kcat)[ES] (1.7e)

d[P ]

dt
= kcat[ES] (1.7f)

d[P ]

dt
= kcat[E]0

[S]

KM,I + [S]
(1.8)

KM,I = KM

(
1 + [I]

kd,I

)
(1.9)
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FL = q(E + u(B)) (1.10)

FN = m(u′) (1.11)

m/q = u′−1(E + u(B)) (1.12)

Dc =
kb ∗ T
6πηRH

(2.1)

PSF (r, z) = I0e
−2r2/ω2

xye−2z
2/ω2

z (2.2)

G(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉〈I(t+ τ)〉

(2.3a)

=
〈I(t)I(t+ τ)〉
〈I(t)〉2

(2.3b)

Dc =
ω2
xy

4τD
(2.4)

G(τ) = G(0)M(τ) +G(∞) (2.5a)

M(τ) =
1

(1 + (τ/τD))(1 + α−2(τ/τD))1/2
(2.5b)

G(0) =
1

〈P 〉
=

1

C(Veff )
(2.6)

Veff = π3/2ω2
xyωz (2.7)

M(τ) =
∑
i

Fi
(1 + (τ/τD,i))(1 + α−2(τ/τD,i))1/2

(2.8)

M(τ) =
1

(
∑

i Fiεi)
2

∑
i

Fiε
2
i

(1 + (τ/τD,i))(1 + α−2(τ/τD,i))1/2
(2.9)

G(τ) = G(0)

(
1 +

T

1− T
e−τ/τR

)
M(τ) +G(∞) (2.10a)

= G(0)
(
1 + Se−τ/τS

)
M(τ) +G(∞) (2.10b)
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GX(τ) =
〈I1(t)I2(t+ τ)〉
〈I1(t)I2(t)〉

(2.11)

Veff,12 =
π3/2

23/2

(
ω2
xy,1 + ω2

xy,2

) (
ω2
z,1 + ω2

z,2

)1/2
(2.12)

G(τ) = G(0)e−τ/τB (2.13)

G(0) =
1

〈N〉
ka
kD

=
1

〈N〉KD

(2.14)

τB =
1

ka + kd
(2.15)

G(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉〈I(t+ τ)〉

(2.3)

Ĝ[k] =
〈Î[j]Î[j + k]〉
〈Î[j]〉〈Î[j + k]〉

(2.16)

〈Î[j]Î[j + k]〉 =
1

J − k

J−k∑
j=0

Î[j]Î[j + k] (2.17)

〈Î[j]〉 =
1

J − k

J−k∑
j=0

Î[j] (2.18)

〈Î[j + k]〉 =
1

J − k

J∑
j=k

ÎI[j] (2.19)

fA+B ⇀↽ fAB (2.20)

d[fA]

dt
= kd[fAB]− ka[fA][B] (2.21)

d[B]

dt
= kd[fAB]− ka[fA][B] (2.22)

d[fAB]

dt
= ka[fA][B]− kd[fAB] (2.23)

FA(t) =
[fA](t)

[fA]0
(2.24)

FAB(t) = 1− FA (2.25)
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Ĝ[τ ] =
B
∑Bx

i

∑By

j px[i]py[j]δ[τ − (tx[i]− ty[j])]
PxPy

(2.26)

G(τ) = G(0)(1 + Se−τ/τS)

(
2∑
i=1

Fi
(1 + (τ/τD,i))(1 + α−2(τ/τD,i))1/2

)
+G(∞) (2.27)

ω2
xy = 4Dc,calτD,cal (2.28)

Veff =
Pcal
Ccal

(2.29)

= π3/2ω2
xyωz (2.30)

= π3/2ω3
xyα (2.31)

α =
Pcal

Ccalπ3/2ω3
xy

(2.32)

=
Pcal

Ccalπ3/2(4Dc,calτD,cal)3/2
(2.33)

[A] = [fA] + [bA] (2.34)

[fA](t) = ([fA]0 − bMA)e−t(bRA) + bMA (2.35)

[bA](t) = ([fA]0 − bMA)(1− e−t(bRA)) (2.36)

bRAB = bRA
τD,AB
τD,A

(2.37)

bMAB = bMA
τD,A
τD,AB

(2.38)
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[fA](t) = [A](t)− [bA](t) (2.39)

[fAB](t) = [AB](t)− [bAB](t) (2.40)

FA(t) = [fA](t)/([fA](t) + [fAB](t)) (2.41)

FAB(t) = [fAB](t)/([fA](t) + [fAB](t)) (2.42)

d[A](t)

dt
= kd[AB](t)− ka[A](t)[B](t) (2.43)

d[B](t)

dt
= kd[AB](t)− ka[A](t)[B](t) (2.44)

d[AB](t)

dt
= ka[A][B](t)− kd[AB](t) (2.45)

d[bA](t)

dt
= ([fA](t)− bMAFA(t))bRA (2.46)

d[bAB](t)

dt
= ([fAB](t)− bMABFAB(t))bRAB (2.47)

fA+B ⇀↽ fAB (2.20)

PSF [t, i] =
−1

2ω2
xy

(
(Xi −X−1)2 + (Yi − Y0)2 +

(Zi − Z0)
2

α2

)
(3.1a)

Pex[t, i] = Pabse
Kpos[t,i]/ω2

xy (3.1b)

Pem[t, i] = Pex[t, i]PgsPconvQfQdet (3.1c)

I[t] =
∑
i

H[Pem[t, i]− rand(0, 1)] (3.1d)

trxn,f = tm,f + λf∆tf (3.2)(
d[fAhap]x

dt

)
transport

=
Qx

Vx
([fAhap]sysrv − [fAhap]x) (4.1)

(
d[fAhap]x

dt

)
exchange

= ke,x[fAhat]x − ki,x[fAhap]x (4.2)

(
d[fAhat]x

dt

)
exchange

= ki,x[fAhap]x − ke,x[fAhat]x (4.3)
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[fAhat]x � [pAhat]x (4.4)(
d[fAhat]x

dt

)
synthesis

= −ks,x[fAhat]x ≈ 0 (4.5)(
d[pAhat]x

dt

)
synthesis

= ks,x[fAhat]x − kd,x[pAhat]x (4.6)

rFx =
(signal − background)

(background)
= kf [pAhat]x (4.7)

d(rFx)

dt
= kf

d[pAhat]x
dt

= kfks[fAhat]x − kd(rFx) (4.8)

PI = ŷ ± 1.96

∑
i(yi − ŷi)2

n

√
1 +

1

n
+

(t− t̄)2∑
i(ti − t̄)2

(4.9)

(fAha)subcu = (fAha)subcu + F (t)subcu (B.1)

(fAha)gasin = (fAha)gasin + F (t)gasin (B.2)

d(fAhap)skmus
dt

= qbskmus

(
(fAhap)sysrv
mbsysrv

− (fAhap)skmus
mbskmus

)
(B.3)

d(fAhap)liver
dt

= qbhepar

(
(fAhap)sysrv
mbsysrv

− (fAhap)liver
mbliver

)
(B.4)

d(fAhap)brain
dt

= qbbrain

(
(fAhap)sysrv
mbsysrv

− (fAhap)brain
mbbrain

)
(B.5)

d(fAhap)renal
dt

= qbrenal

(
(fAhap)sysrv
mbsysrv

− (fAhap)renal
mbrenal

)
(B.6)

d(fAhap)smint
dt

= qbsmint

(
(fAhap)sysrv
mbsysrv

− (fAhap)smint
mbsmint

)
(B.7)

d(fAhap)sysrv
dt

= qbsmint

(
(fAhap)liver
mbliver

− (fAhap)sysrv
mbsysrv

)
−
∑
x

d(fAhap)x
dt

(B.8)

d(fAhap)liver
dt

+= qbsmint

(
(fAhap)smint
mbsmint

− (fAhap)liver
mbliver

)
(B.9)

d(fAhap)sysrv
dt

+= kasubcu(fAha)subcu (B.10)

d(fAha)subcu
dt

= −kasubcu(fAha)subcu (B.11)
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d(fAhap)smint
dt

+= kegasin(fAha)gasin − kigasin(fAhap)smint (B.12)

d(fAha)gasin
dt

= kigasin(fAhap)smint − kegasin(fAha)gasin (B.13)

d(fAhat)skmus
dt

= kiskmus(fAhap)skmus − keskmus(fAhat)skmus (B.14)

d(fAhat)liver
dt

= kiliver(fAhap)liver − keliver(fAhat)liver (B.15)

d(fAhat)brain
dt

= kibrain(fAhap)brain − kebrain(fAhat)brain (B.16)

d(fAhat)renal
dt

= kirenal(fAhap)renal − kerenal(fAhat)renal (B.17)

d(fAhap)skmus
dt

−=
d(fAhat)skmus

dt
(B.18)

d(fAhap)liver
dt

−=
d(fAhat)liver

dt
(B.19)

d(fAhap)brain
dt

−=
d(fAhat)brain

dt
(B.20)

d(fAhap)renal
dt

−=
d(fAhat)renal

dt
(B.21)

d(rF )skmus
dt

= kf ∗ ksskmus
(fAhat)skmus
mtskmus

− kdskmus(rF )skmus (B.22)

d(rF )liver
dt

= kf ∗ ksliver
(fAhat)liver
mtliver

− kdliver(rF )liver (B.23)

d(rF )brain
dt

= kf ∗ ksbrain
(fAhat)brain
mtbrain

− kdbrain(rF )brain (B.24)

d(rF )renal
dt

= kf ∗ ksrenal
(fAhat)renal
mtrenal

− kdrenal(rF )renal (B.25)

(B.26)
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d(fAhat)liver
dt

−= krliver(fAhat)liver (B.27)

d(fAhap)renal
dt

−= krrenal(fAhap)renal (B.28)

d(fAha)gasin
dt

−= krcolon(fAha)gasin (B.29)

d(fAha)cumrm
dt

= krliver(fAhat)liver + krrenal(fAhap)renal + krcolon(fAha)gasin

(B.30)



141

C. APPENDIX FIGURES
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Fig. C.1. Temperature change of a small 15uL sample as it is moved first
from an Ice Bath (4C) to RT, then measured with FCS under a 633 He-
Ne laser at RT for 60 s. Temperature recorded using a thermocouple that
samples at 1Hz.
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Fig. C.2. Binding of N3CaM-647 to various concentrations of mCaMKII
in the presence and absence of Ca2+. Binding reactions were measured
in duplicate for 120 s and correlated into 50 frames of width 25 s, spaced
linearly over the timecourse of measurement. Correlated frames were fit
with according to calibrated measurements of the diffusion time of CaM0/4
(382/437 µs) and CaM-CaMKII (463µs). Notably, these calibrated diffu-
sion times do not differ by a factor of least 1.6 as desired for FCS fitting
analysis [26]. This may explain very noisy measurements that are not alto-
gether firmly aligned with the expected fitting model behavior. All binding
reactions performed in the same buffer (20 mM Hepes (pH 7.5), 100 mM
NaCl, 1 mg/mL BSA, 1mM EGTA, 1mM EDTA, < 2% Glycerol) supple-
mented with either 12 mM Ca2+ or an additional 2 mM EGTA for CaM4
and CaM0 measurements respectively.
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D. APPENDIX: TABLES

Table D.1.
FRCS simulation parameters, determined kinetics from FRCS fitting, and
goodness of fit statistics for all studies discussed in chapter 3. Seeds 1-
39 are represented in the plots shown in figure 3.5 and results from seed
100-110 are displayed in figures 3.2-3.4. SF,x is a standard deviation of the
residuals of complex composition fraction (FAB) from the best fit kinetic
binding curve and is shown because R2 is poor fitting statistic for non-linear
regression.
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Table D.2.
Distribution model fitting parameters including best fit values, fitting
ranges, standard error of fit, PRCC values and informing literature. Param-
eters without published literature values are sourced from this study (TS)
either from an experimental measurement or best estimate initial value that
produced a single time-step ∆[Aha] that was one order of magnitude lower
than the maximum recorded experimental value and swept upward and
downward 1.5 orders of magnitude for fitting.
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Table D.3.
Distribution model static parameters including model value, references uti-
lized for scaling and PRCC values. All mass parameters are sourced from
literature and experimental measurements from this study (TS) and were
held constant to generate an ”average” behavior according to our murine
animal model. Compartment plasma masses are parameterized from aver-
age mass of plasma per unit mass tissue and appropriately scaled to match
tissue mass utilized in this model for measurements of Aha.
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Table D.4.
Incorporation model fitting parameters including best fit values, fitting
ranges, standard error of fit, PRCC values and informing literature. Param-
eters without published literature values are sourced from this study (TS)
either from an experimental measurement or best estimate initial value that
produced a single time-step ∆[Aha] that was one order of magnitude lower
than the maximum recorded experimental value and swept upward and
downward 1.5 orders of magnitude for fitting.


