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ABSTRACT

This dissertation concerns the development of quantum computing algorithms for solving

electronic structure problems. Three projects are contained: comparison of quantum com-

puting methods for the water molecule, the design and implementation of Fully Controlled

Variational Quantum Eigensolver(FCVQE) method, and quantum computing for atomic and

molecular resonances.

Chapter 1 gives a general introduction to quantum computing and electronic struc-

ture calculations. It includes basic concepts in quantum computing, such as quantum bits

(qubits), quantum gates, and an important quantum algorithm, Phase Estimation Algo-

rithm(PEA). It also shows the procedure of molecular Hamiltonian derivation for quantum

computers.

Chapter 2 discusses several published quantum algorithms and original quantum algo-

rithms to solve molecules’ electronic structures, including the Trotter-PEA method, the first-

and second-order Direct-PEA methods, Direct Measurement method, and pairwise Varia-

tional Quantum Eigensolver(VQE) method. These quantum algorithms are implemented

into quantum circuits simulated by classical computers to solve the ground state energy and

excited state energies of the water molecule. Detailed analysis is also given for each method’s

error and complexity.

Chapter 3 proposes an original design for VQE, which is called Fully Controlled Vari-

ational Quantum Eigensolver(FCVQE). Based on Givens Rotation matrices, this design

constructs ansatz preparation circuits exploring all possible states in the given space. This

method is applied to solving the ground state energy curves for different molecules, includ-

ing NaH, H2O, and N2. The results from simulators turn out to be accurate compared with

exact solutions. Gate complexity is discussed at the end of the chapter.

Chapter 4 attempts to apply quantum simulation to atomic and molecular resonances.

The original design implements the molecule’s resonance Hamiltonian into the quantum

circuit, and the resonance properties can be obtained from the final measurement results.

It is shown that the resonance energy and width of a model system can be calculated by

executing the circuit using Qiskit simulators and IBM real quantum computers as well. A

12



proof of concept is also shown for the resonance properties of a real molecule, H−2 . In the

future, when there are more available qubits, longer coherence time, and less noise in quantum

computers, this method can be used for larger molecular systems with better accuracy.
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1. INTRODUCTION TO QUANTUM COMPUTING AND

ELECTRONIC STRUCTURE CALCULATIONS

1.1 Overview

Electronic structure calculations are at the heart of quantum chemistry. It aims to

figure out the properties of stationary states of many electrons that interact with each other

under external potential and inner Coulomb repulsion. Solving electronic structures will

significantly benefit physics- and chemistry-related fields, such as materials engineering and

pharmaceutical development.

Electronic structure can be obtained by solving the Schrodinger equations for atoms,

molecules, or extended systems. However, the determination of solutions is fundamentally

hard for large systems. When the system size increases, the corresponding Hilbert space’s

dimensionality will increase exponentially, which makes the calculation soon exceed the cur-

rent computers’ computing power. Over the decades, many quantum chemistry methods

have been put forward to solve the Schrodinger equation to chemical accuracy, 1 kcal/mole,

such as ab initio, Density functional, Density Matrix, Algebraic, Quantum Monte Carlo, and

Dimensional Scaling methods [  1 ]–[ 4 ]. However, all of them encounter the computing resource

escalation as the calculation pushes to either higher accuracy or larger systems. The com-

putational complexity analysis [ 5 ]–[ 7 ] suggests this difficulty of quantum system simulation

is inherent.

Quantum computing algorithms for electronic calculations provide a promising route to

advance electronic structure calculations for large systems. Since quantum computers by

nature have quantum mechanic properties such as entanglement and superposition, they

have the potential to solve a system at a much lower cost of time than the simulations

done by classical computers. The development and use of quantum computers for electronic

structure calculations has the potential for revolutionary impact on the way of computation

in the future[ 1 ].

In this thesis, I would like to leverage known or original quantum algorithms to solve

molecular systems’ electronic structure. To begin with, I will give an introduction to basic

concepts of the most popular quantum computing model, the quantum circuit model. Then

14



I will elaborate how to transform an electronic structure calculation problem into a suitable

problem for quantum computers. These two introductions will lay the foundation for my

explorations into quantum computing methods for electronic structure calculations in later

chapters.

1.2 Quantum Circuit

1.2.1 Quantum Bits

In classical computation, a bit is used as a basic unit of information, which is able to

store a single binary value of 0 or 1. Quantum bit, or qubit, is an analogous concept in

quantum computation. Similar to the classical case, qubit also has two basic states |0〉 and

|1〉 corresponding to 0 and 1. The difference is that, a qubit can also store the superposition

of these two states, like:

|ψ〉 = α |0〉 + β |1〉 , (1.1)

or in the vector form:

|ψ〉 =

α
β

 . (1.2)

In the above two representations, α and β are two complex numbers that satisfy the normal-

ization condition: |α|2 + |β|2 = 1. Classical bits are determined to be measured in the state

0 or 1. However, for a qubit like the above |ψ〉, because of quantum mechanic effects, when

doing measurement, it will collapse into either |0〉 or |1〉 with probability |α|2 or |β|2. The

power of superposition and the problem of measurement for qubits makes it behave different

from bits.

15



Multiple bits can be used to represent a binary number of multiple digits. For example,

2 bits are able to store 4 possible states: 00, 01, 10 and 11. Correspondingly, a pair of qubits

will represent a superposition of 4 quantum basis sates, like

|ψ〉 = α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉 , (1.3)

where |αij|2 gives the probability of getting state |ij〉 after measurement and satisfies the nor-

malization condition. If only one qubit is measured, for example the first qubit, the measure-

ment result will be 0 or 1 with probability
√
|α00|2+|α01|2√

|α00|2+|α01|2+|α10|2+|α11|2
or

√
|α10|2+|α11|2√

|α00|2+|α01|2+|α10|2+|α11|2
,

while the qubits’ state after measurement will be respectively

|ψ〉 = α00 |00〉 + α01 |01〉√
|α00|2 + |α01|2

or |ψ〉 = α10 |10〉 + α11 |11〉√
|α10|2 + |α11|2

. (1.4)

Similarly, a n-qubit register can store a superposition of 2n basis states and will collapse

when measured.

1.2.2 Quantum Gates

There are elementary logic gates in classical computation, including AND, OR, XOR,

NOT, etc., that can manipulate bits’ states based on Boolean algebra. In quantum compu-

tation, quantum gates are used for similar purposes. The analogous quantum gate for NOT

gate is called X gate and can be used to flip the qubit state between |0〉 and |1〉, which has

matrix form:

X ≡

0 1

1 0

 . (1.5)

Applying X gate to the single-qubit state |ψ〉leads to

X |ψ〉 =

0 1

1 0


α
β

 =

β
α

 . (1.6)
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This X gate is very much like Pauli matrix σx. There are also Y gate and Z gate similar to

Pauli matrices σy and σz as follows:

Y ≡

0 −i

i 0

 , Z ≡

1 0

0 −1

 . (1.7)

Hadamard gate H is also very useful in algorithm implementations:

H ≡ 1√
2

1 1

1 −1

 . (1.8)

Other useful operators for one-qubit manipulation includes three rotational operators Rx(θ),

Ry(θ) and Rz(θ):

Rx(θ) ≡ e−iθX/2 = cos θ2I − i sin θ2X =

 cos θ
2 −i sin θ

2

−i sin θ
2 cos θ

2

 , (1.9)

Ry(θ) ≡ e−iθY/2 = cos θ2I − i sin θ2Y =

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

 , (1.10)

Rz(θ) ≡ e−iθZ/2 = cos θ2I − i sin θ2Z =

e−iθ/2 0

0 eiθ/2

 . (1.11)

Here I in the formulas is a two-by-two identity matrix. Any unitary operation U can be

decomposed into a phase and two of the above rotational operations[ 8 ]. For instance,

U = eiαRz(β)Ry(γ)Rz(δ)

=

ei(α−β/2−δ/2) cos γ
2 −ei(α−β/2+δ/2) sin γ

2

ei(α+β/2−δ/2) sin γ
2 ei(α+β/2+δ/2) cos γ

2

 (1.12)
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To entangle different qubits’ states together, controlled operations are introduced. The

primary one is controlled-NOT gate, or CNOT gate. In a two-qubit register, using the first

qubit to control the second one has the following matrix representation:

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


, (1.13)

with circuit representation as Figure  1.1 . For an arbitrary gate U , the general control

•

1
Figure 1.1. Quantum circuit representation of CNOT gate.

operation, known as controlled-U , can be expressed as

[hbt!]controlled-U =



1 0

0 1

1 0

0 1

1 0

0 1
U


, (1.14)

with circuit representation as Figure  1.2 . There are also multi-controlled qubit gates, like

Toffoli gate, which has two control qubits and one target qubit. The circuit representation

is shown as in Figure  1.3 . This gate can be implemented by single-qubit gates and CNOT

gates. It can also be a building block for other multi-controlled gates. For example, a 3-

controlled NOT gate is equal to 3 Toffoli gates when an extra ancilla qubit is available,

•

U

1
Figure 1.2. Quantum circuit representation of controlled-U gate.
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•
•

1
Figure 1.3. Quantum circuit representation of Toffoli gate.

as shown in Figure  1.4 . Similarly, a 3-controlled U gate is equal to two Toffoli and one

2-controlled U gate. The 2-controlled U gate can be further decomposed as shown in Figure

 1.5 , where U = V 2.

• • •
• • •
• = •

•

1
Figure 1.4. Decomposition of 3-controlled NOT gate into Toffoli gates.

• • • •
• = • •

U V V † V

1
Figure 1.5. Decomposition of 2-controlled U gate into controlled gates.

1.2.3 Phase Estimated Algorithm

One of the most important algorithms for quantum chemistry is Phase Estimation Al-

gorithm(PEA)[ 9 ], [ 10 ]. PEA can be used to solve the phase of some operator’s eigenvalue.

Suppose a unitary operator U has an eigenvector |u〉 with corresponding eigenvalue e2πiϕ,

i.e. U |u〉 = e2πiϕ |u〉. PEA can estimate the value of ϕ via the process of preparing the state

|u〉, applying the Hadamard gates and the controlled-U operations, performing the inverse

Fourier transformation, and doing the final measurements.
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Assume that the input state |0〉 |u〉 has been prepared, in which |0〉 is an ancillary qubit’s

state. After applying a Hadamard gate to the ancillary qubit, and then a controlled-U2j gate

to the whole system, the output state would be

|0〉 + e2πi(2jϕ) |1〉√
2

|u〉 . (1.15)

If ϕ has a binary estimation of 0.ϕ1ϕ2...ϕt, by introducing t ancillary qubits and applying

controlled-U2t−j−1 operation on each jth qubit, the output state would be

|0〉 + e2πi(2t−1ϕ) |1〉√
2

· · · |0〉 + e2πi(21ϕ) |1〉√
2

|0〉 + e2πi(20ϕ) |1〉√
2

|u〉

= |0〉 + e2πi0.ϕt |1〉√
2

· · · |0〉 + e2πi0.ϕ2...ϕt

√
2

|0〉 + e2πi0.ϕ1ϕ2...ϕt |1〉√
2

|u〉
(1.16)

This form is very much like the outcome of quantum Fourier transformation:

|j1j2...jt〉 → (|0〉 + e2πi0.jt |1〉)(|0〉 + e2πi0.j2···jt) · · · (|0〉 + e2πi0.j1···jt |1〉)
2t/2 (1.17)

In this way, by performing the inverse quantum Fourier transformation, we can get the

output state |ϕ1ϕ2...ϕt〉 and obtain ϕ ≈ 0.ϕ1ϕ2...ϕt by measurements.

1.3 Molecular Hamiltonian Derivation for Quantum Computers

The time-independent Schrödinger Equation for a molecular system is

Hmol |ψ〉 = E |ψ〉 , (1.18)

where Hmol is the molecular Hamiltonian, |ψ〉 is a multi-particle eigenstate of the molec-

ular system, and E is the corresponding eigenenergy. In Born-Oppenheimer approxima-

tion(BOA), nuclei can be treated as stationary point charges. In this way, the molecular

Hamiltonian can be simplified as

H = −
∑

i

1
2∇2

i −
∑
σ

∑
i

Zσ

|~ri − ~Rσ|
+

∑
i

∑
j>i

1
rij
. (1.19)
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Here Zσ is the σth nuclear charge, ~ri is the position of electron i, rij is the distance between

the two points ri and rj, and ~Rσ is the position of σth nucleus. To solve the electronic

structures of this Hamiltonian by quantum computer, we need to transform it into the form

of Pauli matrices

H =
∑

i
hiPi. (1.20)

Here hi is some coefficient and Pi is a tensor product of Pauli matrices X, Y , Z and 2-

by-2 identity matrix I. The detailed steps for transformation are shown in the following

subsections.

1.3.1 Second Quantization

After selecting basis functions for the molecular system, its Hamiltonian can be expressed

in the second quantization form[ 4 ], [ 11 ], [ 12 ]

H =
∑
i,j
hija

†
i aj + 1

2
∑

i,j,k,l
hijkla

†
i a
†
jakal, (1.21)

Here a†i and ai are fermionic creation and annihilation operators, and hi,j and hi,j,k,l are

coefficients for one-body and two-body interactions. These coefficients can be calculated by

the following expressions:

hij =
∫
d~r1χ

∗
i (~r1)(−

1
2∇2

1 −
∑
σ

Zσ

|~r1 − ~Rσ|
)χj(~r1),

hijkl =
∫
d~r1d~r2χ

∗
i (~r1)χ∗j (~r2)

1
r12

χk(~r2)χl(~r1).
(1.22)

Here χi(~r) is the ith spin orbital in the basis function set.

1.3.2 Mapping from Fermionic Systems to Qubit Systems

The fermionic Hamiltonian in the second quantization form is not suitable for quantum

computers yet. We still need to transform this Hamiltonian into the Hamiltonian of the

Pauli matrix form. There are mainly three transformations to build the mapping.
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The first transformation, also the most well-known one, is Jordan-Wigner transforma-

tion[ 13 ]. The fermionic creation and annihilation operators will be replaced respectively by

Pauli matrices[ 11 ]�

a†j = 1
2(Xj − iYj) ⊗ Z→j−1, (1.23)

aj = 1
2(Xj + iYj) ⊗ Z→j−1, (1.24)

where

Z→j−1 ≡ Zj−1 ⊗ Zj−2 ⊗ · · · ⊗ Z1 ⊗ Z0. (1.25)

Note that for simplicity, the identity operator is omitted in tensor products when a qubit is

not operated by any Pauli matrix. In this Hamiltonian transformation, the fermionic state

and the qubit state would be exactly the same:

|fn−1fn−2...f1f0〉 → |qn−1qn−2...q1q0〉 ,

qi = fi ∈ {0, 1}.
(1.26)

Here fi represents the occupation number of the ith spin-orbital, qi represents the state of

the ith qubit, and n is the number of spin orbitals.

The second transformation is based on the parity basis encoding[ 11 ], [ 14 ]. Rather than

store the occupancy number of the ith spin-orbital, now qubit qi is used to store the parity

of all occupied spin-orbitals up to ith spin-orbital, i.e.

qi =
i∑

k=0
fk mod 2 ∈ {0, 1}. (1.27)

The mapping from fermionic creation and annihilation operators becomes

a†j = X←j+1 ⊗ 1
2(Xj ⊗ Zj−1 − iYj), (1.28)

aj = X←j+1 ⊗ 1
2(Xj ⊗ Zj−1 + iYj), (1.29)
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where

X←j+1 ≡ Xn−1 ⊗Xn−2 ⊗ · · · ⊗Xj+2 ⊗Xj+1. (1.30)

The third one is called Bravyi-Kitaev transformation[ 14 ]. It is kind of a variant of parity

basis transformation, while the difference is that each qubit stores the parity of a specially

designed part of spin-orbitals’ occupancy numbers.

After any of the above transformation, the molecular Hamiltonian can be written in Pauli

matrix form

H =
∑

i
hiPi, (1.31)

which can be used for quantum algorithms. One thing worth to be mentioned is that, if

expanded in 2n × 2n matrix form, the Hamiltonian for molecules will always be real and

symmetric because hij, hijkl are real, and a†j , aj are real matrices.
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2. COMPARISON OF QUANTUM COMPUTING METHODS

FOR THE WATER MOLECULE

2.1 Introduction

In 1982, Feynman proposed to calculate a large quantum system by precisely control

some smaller quantum system[ 15 ]. He claimed that we are able to create an analogy to some

quantum system, if we have enough control over the states of some other quantum system.

In the previous chapter we also created analogies: by Jordan-Wigner/Parity/Bravyi-Kitaev

transformation [ 13 ], [  14 ], we mapped an electronic structure Hamiltonian to a Hamiltonian of

Pauli matrix form, which preserves energy eigenvalues [  16 ]. Then the evolution under original

Hamiltonian, e−iHt, can be approximately simulated on quantum computers. This quantum

simulation process may serve as a potentially efficient method to calculate eigenenergies of

a given molecule. Classically, the computational cost of this problem grows exponentially

with the system size, n, the number of orbital basis functions[  17 ]. However, using phase

estimation algorithm(PEA) [  9 ], [ 18 ], molecule’s ground state energies can be calculated with

gate depth O(poly(n)) [ 19 ]–[ 21 ].

The most general way to approximately implement the propagator, e−iHt, is through a

Trotter-Suzuki decomposition[  22 ]–[ 24 ]. Also, it is shown that the Hamiltonian dynamics

can be simulated through a truncated Taylor series [ 25 ], which is generalized as quantum

signal processing[  26 ]. Recently, a direct circuit implementation of the Hamiltonian combined

with phase estimation algorithm (Direct-PEA) is also proposed [  27 ]–[ 29 ]: the designed circuit

approximates the time evolution operator by using the truncated series such as U = I− iH
κ

and

U = tH+i(I− t2H2

2 ), in which κ and t are parameters to restrict truncation error. Then these

unitary operators can be used to calculate ground state energies of Hamiltonians. Recently

an approach called Variational Quantum Eigensolver (VQE) method has been introduced

by Aspuru-Guzik etal [  30 ], [  31 ], which is a hybrid quantum-classical algorithm and will

significantly reduce the gate complexity at the cost of a large amount of measurements. It

has also been applied on real-world quantum computers to obtain ground state energies of

molecules such as H2, LiH and BeH2 [ 32 ], [ 33 ].
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This chapter explores all the above methods to calculate the ground state energy curve of

the water molecule[  34 ]. In the beginning, the way to reduce the number of qubits required for

simulation is illustrated. Then, it discusses five methods of electronic structure simulation on

quantum computers: a phase estimation method using first order Trotter-Suzuki decomposed

propagator (Trotter-PEA), two direct implementations of the Hamiltonian of Pauli matrix

form (Direct-PEA), a direct measurement method and a specific VQE method(Pairwise

VQE). Each method gives the circuit design, error and complexity analysis and the simulation

results: a ground state energy curve. At the end of this chapter, all the method’s accuracy

and gate complexity are compared.

2.2 Qubit Reduction for Water Molecule

Implementing quantum algorithms either in a quantum computer or in a simulated clas-

sical computer is very time-consuming and space-consuming when qubit number is large.

For molecular systems like water molecule, we can take advantage of symmetry properties

and do qubit reduction in advance [ 33 ], [ 35 ].

Taking STO-3G basis set for water molecule, the 1s orbitals of each hydrogen atom along

with the 1s, 2s, 2px, 2py and 2pz orbitals for oxygen atom need to be considered. Considering

spin, there are a total of 14 molecular orbitals. Assuming that the two molecular orbitals

of the largest energies are vacant, the Hamiltonian after second quantization can then be

expressed as

H =
12∑

i,j=1
hija

†
i aj + 1

2

12∑
i,j,k,l=1

hijkla
†
i a
†
jakal. (2.1)

Here hij and hijkl are calculated by Eq. ( 1.21 ). The molecular orbitals are ordered from 1 to

12 as {1 ↑, 2 ↑ ..., 6 ↑, 1 ↓, 2 ↓, ...6 ↓}, in which spin-up orbitals are ordered from lowest to

highest energy and then spin-down orbitals the same. Group the 4 lowest energy spin-orbital

{1 ↑, 2 ↑, 1 ↓, 2 ↓} into the set F = {1, 2, 7, 8} and assume that for the ground state of water
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molecule, the spin-orbitals in the set F will be filled with electrons. Then some one-body

and two-body electron interaction terms can be simplified in the following ways:

a†1a1 = 1, a†2a2 = 1, a†7a7 = 1, a†8a8 = 1,

a†i aj = 0, if i 6= j , and i ∈ F or j ∈ F, (2.2)

a†i a
†
jakal =



a†jak, i = l, i ∈ F, {j, k} /∈ F,

a†i al, j = k, j ∈ F, {i, l} /∈ F,

−a†jal, i = k, i ∈ F, {j, l} /∈ F,

−a†i ak, j = l, j ∈ F, {i, k} /∈ F.

(2.3)

The above simplification along with the ability to neglect two-body operators that contains

an odd numbers of modes in F restricts spin-orbitals to a new set {3 ↑, 4 ↑, 5 ↑, 6 ↑, 3 ↓, 4 ↓

, 5 ↓, 6 ↓}. After relabelling the orbital set 1 to 8 and doing parity basis transformation, the

fermionic Hamiltonian can be mapped into an 8-local Hamiltonian representated by tensor

products of Pauli matrices: H = ∑
i hiPi. The mapping of states is

|fn−1fn−2...f1f0〉 → |qn−1qn−2...q1q0〉 ,

qi =
i∑

k=0
fk mod 2 ∈ {0, 1}.

(2.4)

Assuming that in the ground state of water molecule, half of the left 6 electrons are spin-up

while the other half are spin-down. The parity value in q4 and q8 are determined to be |1〉 and

|0〉 respectively. This means only Z4, I4, Z8, I8 will act on q4 and q8. Since Z4 |q4〉 = − |q4〉

and Z8 |q8〉 = |q8〉, Z4 and Z8 can be substituted by −I4 and I8 respectively, which reduces

the Hamiltonian to a 6-local one. From now on,

H =
L∑

i=1
αihi (2.5)

will be to represent this reduced 6-local Hamiltonian. Here {αi} are coefficients and {hi} are

tensor products of Pauli matrices {Xi, Yi, Zi} and identity matrix Ii. This Hamiltonian will
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be used for method in the following sections to solve electronic structure problems. As an

example, water molecule’s Hamiltonian at O-H bond length 1.9 a.u. is shown in Appendix

 A.1 .

For other molecules, a similar process can also be applied to obtain a new Hamiltonian

with reduced qubit requirement.

2.3 Trotter-PEA Method

2.3.1 The Procedure of the Method

For each hi in the Hamiltonian H, the operator e−iαihit can be easily implemented into

quantum circuit. Since hi doesn’t commute with each other for most cases, generally the

propagator e−iHt can not be implemented term by term, i.e. e−iHt 6= ∏L
i=1 e−iαihit. However,

it can still be a good approximation for a small t, according to the first-order Trotter-Suzuki

decomposition

U =
L∏

i=1
e−iαihit = e−iHt +O(A2t2). (2.6)

In the above equation, A is defined as the sum of the absolute value of coefficients: A =∑L
i=1 |αi|, and the error of approximate is O(A2t2) for a small time t. Note that Eq. (  2.6 ) is a

bit different from original Trotter-Suzuki decomposition, for here t can be adjust as small as

necessary for error control. The U operator is very easy to implement on the state register

since it only requires a sequence of multi-qubit rotations.

The unitary operator U can be utilized in PEA to extract the energy from the phase.

Using extra ancilla qubits, desired accuracy is able to be achieved by iterative measure-

ments[ 19 ], [  36 ], [  37 ]. This PEA based on the first order Trotter-Suzuki decomposition is

called Trotter-PEA in this work. Although higher order Trotter-Suzuki decompositions are

available, their form are more complicated, especially for order higher than 2. In this way,

only first order case is discussed here for simplicity.

A forward iterative PEA[ 29 ] that estimates the phase from the most significant bit is

used in the simulation to reduce required qubits. It only needs 1 qubit for measurement as
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shown in Figure  2.1 . Assuming the input state |ψ〉s is the ground state of H, the state before

the measurement operation would be

1 + ei2π(0.φk+1φk+2...−0.01)

2 ei π

4 |0〉 |ψ〉s + 1 − ei2π(0.φk+1φk+2...−0.01)

2 ei π

4 |1〉 |ψ〉s . (2.7)

If the measurement qubit has a greater probability of output state |1〉, φk+1 = 1. Otherwise

φk+1 = 0. The ground state energy can be calculated by E = −2π × 0.φ1φ2φ3 · · · . The

energy curve of water molecule is shown in Figure  2.2 .

|0〉 H • Rz(−
π

2
) H

|ψ〉
s U2

k

Figure 2.1. Forward iterative PEA circuit with initial state |0〉 |ψ〉s. Here
|ψ〉s is the ground state of the Hamiltonian, H is the Hadamard gate, U is the
approximate propagator and Rz(−π

2) is a Z rotation gate.
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Figure 2.2. Ground State Energy Curve for H2O, as a function of the bond
length O-H in a.u. for Trotter-PEA. Errors are shown in the window of the
figure.
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2.3.2 Error Analysis

Based on Eq.  2.6 , the state after performing U operator can be represented by

L∏
i=1

e−iαihit |ψ〉s = (e−iHt −O(A2t2) |ψ〉s

= (1 −O(A2t2))e−i(Et+O(A2t2) |ψ〉s +O(A2t2) |ψ⊥〉 . (2.8)

In the above equation |ψ⊥〉 is a state perpendicular to |ψ〉s. Note that, O(A2t2) is an operator

before it’s applied to |ψ〉s, and is a number afterwards. From Eq. ( 2.8 ), it can be seen that

the possibility of measuring the correct ground state energy is 1 −O(A2t2). After 2D gates,

where D is the number of binary digits that will be measured by PEA, the probability of

state |0〉 |ψ〉s should be still large enough. Set the final coefficient to be 1 − 1
8 , then

(1 −O(A2t2))2D = 1 − 1
8 (2.9)

2−D = O(A2t2). (2.10)

The error of the energy from the phase measurement is ε1 = O(A2t2). The error of the

energy from PEA is ε2 = O(2−D/t) = O(A2t). Combining these errors together the total

error becomes ε = O(ε1 + ε2) = O(A2t).

For the second order Trotter-Suzuki decomposition

e−iHt −
L∏

i=0
e−

iαihit

2

0∏
i=L

e−
iαihit

2 = O(A3t3), (2.11)

a similar analysis can be done and the error will be ε = O(A3t2).

2.3.3 Complexity Analysis

n qubits are required for the state and at least 1 extra qubit is required for PEA process.

In this way, the qubit complexity is O(n).

If the precision of the ground state energy needs to be D bit, O(2DLn) standard gates, i.e.

single qubit gates and CNOT gates, are required to implement the PEA. Since L = O(n4) for
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molecular systems and 2D = O( 1
A2t2

) = O(A2

ε2
), the total gate complexity would be O( n5

(ε/A)2 )

for Trotter-PEA method.

2.4 1st order Direct-PEA Method

2.4.1 The Procedure of the Method

Apart from Trotter-Suzuki decomposition, there are still other methods to approximate

propagator, such as Taylor series. It was proposed[  28 ] that for any given H and large κ, an

approximately unitary operator can be constructed by

U = I − iH
κ
, κ �

L∑
i=1

|αi| ≥ ||H||. (2.12)

When |ψ〉s is an eigenstate of H and E the corresponding eigenenergy, we have

U |ψ〉s =
(
I − iH

κ

)
|ψ〉s ≈ e−i H

κ |ψ〉s = e−i E
κ |ψ〉s . (2.13)

The eigenenergy E is encoded directly in the approximate phase and PEA may be used

to extract it out. This is the motivation behind directly implementing the Hamiltonian in

quantum simulation.

To implement the non-unitary matrix U , one way is to enlarge the state space and

construct a unitary operator Ur[ 25 ] with similar properties. Rewrite U as

U = I − i
κ

L∑
j=1

αjhj =
L∑

j=0
βjVj, (2.14)

in which βj ≥ 0 and Vj is equal to ihj or −ihj based on βj. By introducing a m-qubit ancilla

register where m = dlog2 Le, a multi-control gate, V, can be constructed to satisfy

V |j〉a |ψ〉s = |j〉a Vj |ψ〉s . (2.15)
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Construct a unitary operator B that acts on ancilla qubits and has the property

B |0〉a = 1√
s

2m−1∑
j=0

√
βj |j〉a , s =

2m−1∑
j=0

βj, (2.16)

in which βj are defined as 0 when L < j < 2m. Then Ur can be defined as

Ur = (B† ⊗ I⊗n)V (B ⊗ I⊗n). (2.17)

Applying Ur on the input state |0〉a |ψ〉s we obtain

Ur |0〉a |ψ〉s = (B† ⊗ I⊗n)V (B ⊗ I⊗n) |0〉a |ψ〉s

= (B† ⊗ I⊗n)V 1√
s

2m∑
j=0

√
βj |j〉a |ψ〉s

= (B† ⊗ I⊗n) 1√
s

2m∑
j=0

√
βj |j〉a Vj |ψ〉s

= Π(B† ⊗ I⊗n) 1√
s

2m∑
j=0

√
βj |j〉a Vj |ψ〉s

+ (I⊗m+n − Π)(B† ⊗ I⊗n) 1√
s

2m∑
j=0

√
βj |j〉a Vj |ψ〉s

= (B |0〉a)
† 1√

s

2m∑
j=0

√
βj |j〉a Vj |ψ〉s +

j=2m∑
j=1

|j〉a |uj〉s

= 1
s

|0〉a U |ψ〉s + |Φ⊥1 〉 . (2.18)

Here Π = |0〉a 〈0|a ⊗ I⊗n and |Φ⊥1 〉 is defined as a state orthogonal to |0〉a |ψ〉s. Then the

non-unitary operator U can be implemented by applying the unitary operator Ur as seen in

Figure  2.3 

|0〉
a

/ B
V

B†

|ψ〉
s

/

Figure 2.3. Gate Ur in Direct PEA circuit, gates V and B are shown in Eq.
( 2.15 ) and Eq. (  2.16 )
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Figure 2.4. The quantum circuit for the Direct PEA method considering
oblivious amplitude amplification.

Since κ � ||H|| ≥ E, the eigenenergy for the state |ψ〉s is successfully implemented in the

phase:

Ur |0〉a |ψ〉s =
1 − iE

κ

s
|0〉a |ψ〉s + |Φ⊥1 〉

=

√
1 + E2

κ2

s
e−i tan−1 E

κ |0〉a |ψ〉s + |Φ⊥1 〉

= pe−i tan−1 E
κ |0〉a |ψ〉s +

√
1 − p2 |Φ⊥〉 , (2.19)

in which p is defined by

√
1+ E2

κ2

s
, and |Φ⊥〉 is normalized. This Ur gate can then be used for

PEA or iterative PEA to solve the eigenenergy.

To make sure the output is accurate after PEA process, p is demanded to be as close to 1

as possible. Oblivious amplitude amplification[  38 ] helps to amplify the probability without

affecting phase in this case. Define the helper operator U0 and the rotational operator Q as

U0 = 2 |0〉a 〈0|a − I⊗m (2.20)

Q = Ur(U0 ⊗ I⊗n)U †r (U0 ⊗ I⊗n). (2.21)

The probability of |0〉a |ψ〉s can be increased by performing Q multiple times after Ur op-

erator. The details are in the next Error Analysis section. The quantum circuit for the

Direct-PEA that considers oblivious amplitude amplification is plotted in  2.4 . The con-

trolled U2k gate in the Figure  2.1 is replaced by the repeated dashed boxes in  2.4 .
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By using the same circuit and procedure as the Trotter-PEA, except replacing U by

Uq = QNUr, the ground state energy of water molecule can be obtained, as shown in Figure

 2.5 .
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Figure 2.5. Ground State Energy Curve for H2O, as a function of the bond
length O-H in a.u. for 1st order Direct-PEA. Errors are shown in the window
of th figure.

2.4.2 Error Analysis

Eq.  2.19 can be rewritten as

Ur |0〉a |ψ〉s = cos θe−i tan−1 E
κ |0〉a |ψ〉s + sin θ |Φ⊥〉 , (2.22)

in which A = ∑2m−1
i=1 βi = ∑L

i=1 |αi| ≥ |E|, θ = arccos

√
1+ E2

κ2

1+ A
κ

. By applying the operator Q N

times after Ur, the resulting state becomes

QNUr |0〉a |ψ〉s = (−1)N cos((2N + 1)θ)e−i tan−1 E
κ |0〉a |ψ〉s + sin((2N + 1)θ) |Φ⊥〉

= pf |0〉a |ψ〉s +
√

1 − p2
f |Φ⊥〉 . (2.23)

33



The idea is, when κ is large, we have

√
1 + E2

κ2

1 + A
κ

≈ 1
1 + A

κ

, (2.24)

θ = cos−1 1
1 + A

κ

≈ θ, (2.25)

In this way, by choosing largeN and κ to satisfy (2N+1)θ = π, which means A
κ

= 1
cos( π

2N+1 )−1,

we are able to get cos((2N + 1)θ) ≈ −1. Since

θ − θ = cos−1(

√
1 + E2

κ2

1 + A
κ

) − cos−1( 1
1 + A

κ

)

=
√

2
4 η2(A

κ
) 3

2 +O((A
κ

) 5
2 ), (2.26)

where η = |E
A

| ≤ 1, after N rotations we have

|pf | = | cos((2N + 1)θ)|

= cos((2N + 1)(θ − θ))

= 1 − (2N + 1)2

16 η4(A
κ

)3 +O((A
κ

)4)

= 1 − π6

211η
4 1
N4 +O( 1

N5 ). (2.27)

This means if N is large enough and we set

κ =
A cos( π

2N+1)
1 − cos( π

2N+1) , (2.28)

we are able to amplify the probability of |0〉a |ψ〉s to be extremely close to 1.
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If D-digit accuracy are needed after the PEA step, we have to make sure that after 2D

gates of Uq = QNUr, the probability of state |0〉a |ψ〉s is still large. Assuming the threshold

is 1 − 1
23 , then the following formulas needs to be satisfied:

|pf |2
D = 1 − 1

23 (2.29)

2−D = π6η4

211 ln(8
7)

1
N4 +O( 1

N5 ) (2.30)

D = min{log2(
211 ln(8

7)
π6η4 ) + 4 log2 N} ≈ −1.81 + 4 log2 N (2.31)

Because the phase ϕ got from D-digit output are used used approximate 1
2π

tan−1 −E
κ

, and

the error for the phase is 2−D, the error of the energy is

ε = tan(2π ∗ 2−D) × κ = π5η4

27 ln(8
7)

1
N2 +O( 1

N3 )

≈ 17.90η4A

N2 ≤ 17.90
N2 A (2.32)

2.4.3 Complexity Analysis

n qubits are required for a molecular system’s state and at least m = dlog2(L)e qubits are

needed to represent the ancilla state. We also need at least 1 qubit for multi-control Toffoli

gates in B gate construction[  39 ], and at least 1 qubit for PEA process. Since L = O(n4),

the qubit complexity is O(n).

The construction of B operator can be done through Householder transformation

B = I − 2
〈u|u〉a

|u〉 〈u|a , (2.33)

where |u〉a = B |0〉a − |0〉a. The complexity of this gate has been analyzed before[  28 ], [  40 ]–

[ 42 ]. Since Givens rotation GL−2,L−1(θL−1) can nullify B0,L−1, it can also nullify all Bj,L−1 for

j 6= L − 1 and update BL−1,L−1 to 1 due to B’s special form. GT
L−2,L−1(θL−1) would nullify

all BL−1,j except BL−1,L−1. For all indexes smaller than L− 1 but larger than 1, we will do
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the same thing. At the end we can choose G1,1(θ1) to update the last 4 elements of B and

finally obtain an identity matrix. Thus we have:

G1,1(θ1)
L−1∏
i=2

Gi−1,i(θi)B
2∏

i=L−1
GT

i−1,i(θi) = I, (2.34)

B =
2∏

i=L−1
GT

i−1,i(θi)GT
1,1(θ1)

L−1∏
i=2

Gi−1,i(θi). (2.35)

Under this construction, B operator can be represented as a product of 2L − 3 Givens

rotation matrices. Since each Givens rotational matrix can be expressed by at most m m-

control Toffoli gates, each of which costs O(m2) standard gates[ 8 ], [ 39 ], a total of O(Lm3) =

O(L log3 n) gates are needed for B construction.

For select(V ) gate, we need O((n + m)L) standard gates. In this case, Ur requires

O(L log3 n + (n + m)L) = O(n5) gates. Since U0 only needs O(m) standard gates, Q also

requires O(n5) standard gates, which leads the gate complexity of Uq to be O(Nn5). Since

from Eq.  2.32 , N = O( 1
(ε/A)

1
2
), PEA for D digit accuracy would result in a total complexity

of O(2DNn5) = O( n5

(ε/A)2.5 ) standard gates.

2.5 2nd order Direct-PEA Method

2.5.1 The Procedure of the Method

The propagator e−iHt can also be expanded up to the second order Taylor series[ 29 ]:

U = I − iHt− H2t2

2 = e−iHt +O((At)3), (2.36)

which would be a good approximation when O(At) is very small. Since U is non-unitary, we

have to construct a unitary operator Ur2 to implement it into the quantum circuit. Define

operators B2 and P as

B2 |00〉 =
√
t |00〉 + |01〉 + t√

2 |10〉√
1 + t+ t2

2

, (2.37)
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P =



I⊗n 0 0 0

0 0 I⊗m 0

0 I⊗m 0 0

0 0 0 I⊗n


. (2.38)

With the help of Ur defined in 1st order Direct-PEA, we can construct Ur2 as shown in Figure

 2.6 .

|0〉
B2

• • •
B

†
2

|0〉
P

•

|0〉
a
|ψ〉

s
Ur Ur e−i

π

2

Figure 2.6. Gate Ur2 in 2nd order Direct-PEA circuit, with B2 and P defined
in Eq. (  2.37 ) and Eq. (  2.38 )

Applying Ur2 to the initial state, we will get

Ur2 |00〉 |0〉a |ψ〉s =
1 − iEt

A
− E2t2

2A2

1 + t+ t2

2
|00〉 |0〉a |ψ〉s +

2m+2∑
j=1

|j〉 |vj〉s

=

√
1 + E4t4

4A2

1 + t+ t2

2
e
−i tan−1

Et
A

1+ E2t2
2A |00〉 |0〉a |ψ〉s + |Ψ⊥1 〉 , (2.39)

in which A = ∑2m−1
i=1 βi = ∑L

i=1 |αi| ≥ |E| and |Ψ⊥1 〉 is perpendicular to |00〉 |0〉a |ψ〉s. The

coefficient of state |00〉 |0〉a |ψ〉s can be increased using oblivious amplitude amplification just

as in the previous section. Then we can perform PEA or iterative PEA to get the phase,

− tan−1
Et
A

1+ E2t2
2A

, which gives the ground state energy corresponding to the ground state |ψ〉s,

as shown in Figure  2.7 .
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Figure 2.7. Ground State Energy Curve for H2O, as a function of the bond
length O-H in a.u. for 2st order Direct-PEA. Errors are shown in the window
of each figure.

2.5.2 Error Analysis

The output state in Eq. (  2.39 ) can be rewritten as

Ur2 |00〉 |0〉a |ψ〉s =

√
1 + E4t4

4A2

1 + t+ t2

2
e
−i tan−1

Et
A

1+ E2t2
2A |00〉 |0〉a |ψ〉s + |Ψ⊥1 〉

= pe
−i tan−1

Et
A

1+ E2t2
2A |00〉 |0〉a |ψ〉s +

√
1 − p2 |Ψ⊥〉

= cos θe
−i tan−1

Et
A

1+ E2t2
2A |00〉 |0〉a |ψ〉s + sin θ |Ψ⊥〉 , (2.40)
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in which A = ∑2m−1
i=1 βi = ∑L

i=1 |αi| ≥ |E|, θ = cos−1

√
1+ E4t4

4A2

1+t+ t2
2

. Applying Q2 = U2r(U+
0 ⊗

I⊗n)U †2r(U+
0 ⊗ I⊗n), where U+

0 = 2 |00〉 |0〉a 〈0|a 〈00| − I⊗m+2, to do oblivious amplitude

amplification, we can get

QN
2 U2r |00〉 |0〉a |ψ〉s = (−1)N cos((2N + 1)θ)e

−i tan−1
Et
A

1+ E2t2
2A |0〉a |ψ〉s

+ sin((2N + 1)θ) |Ψ⊥〉a+s+2

= pf |00〉 |0〉a |ψ〉s +
√

1 − p2
f |Ψ⊥〉a+s+2 (2.41)

Let θ = cos−1 1
1+t+ t2

2
and choose large N and small t to satisfy (2N + 1)θ = π, then

t = −1 +
√√√√ 2

cos π

2N+1
− 1 = π2

8N2 +O( 1
N3 ), (2.42)

and we can get the difference between θ and θ

θ − θ = cos−1

√
1 + E4t4

4A2

1 + t+ t2

2
− cos−1 1

1 + t+ t2

2
=

√
2

16 η
4t

7
2 +O(t 9

2 ), (2.43)

in wihch η = |E
A

| ≤ 1. After N rotations, we have

|pf | = | cos((2N + 1)θ)|

= cos((2N + 1)(θ − θ))

= 1 − (2N + 1)2

162 η8t7 +O(t8)

= 1 − π14

227 η
8 1
N12 +O( 1

N13 ) (2.44)

This means if we set N large enough, and set t = −1 +
√

2
cos π

2N+1
− 1, we can amplify the

probability of |00〉 |0〉a |ψ〉s to be as close to 1 as we want.

Now we are taking Uq2 = QN
2 Ur2 to encode the energy into the phase. If we would like

D-digit accuracy, we have to make sure that after 2D gates of Uq2, the probability of state
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|0〉a |ψ〉s is still large. By setting the final coefficient as 1 − 1
23 , the following formula should

be satisfied:

|pf |2
D = 1 − 1

23 (2.45)

2−D = π14η8

227 ln(8
7)

1
N12 +O( 1

N13 ) (2.46)

D = min{log2(
227 ln(8

7)
π14η8 ) + 12 log2 N} ≈ 0.974 + 12 log2 N (2.47)

Since D-digit output from PEA gives us the phase ϕ to approximate − 1
2π

tan−1
Et
A

1+ E2t2
2A

and

the error of phase is 2−D, we get the error of the energy E to be:

ε = π13η8

223 ln 8
7

A

N10 +O( A

N11 ) ≈ 2.59η8A

N10 ≤ 2.59
N10A (2.48)

We can see that by taking large N and set corresponding small t, we are able to control the

accuracy of PEA process.

2.5.3 Complexity Analysis

We need n qubits to represent the system state, m = dlog2(L)e + 2 qubits to represent

the ancilla state. So the qubit complexity is still O(n) for the 2nd order Direct-PEA.

When constructing Ur2, gate Ur takes O(n5) standard gates, gate P takes O(L) = O(n4)

standard gates, B2, B†2 and phase gate e−i π

2 only takes a small constant of standard gates. So

the gate complexity of Ur2 is still O(n5). Then Q2 also requires O(n5) standard gates because

U+
0 just needs O(m) standard gates. Since N = O( 1

(ε/A)0.1 ), PEA for D digit accuracy would

result in a total of O(2DNn5) = O( n5

(ε/A)1.3 ) standard gates.

2.6 Direct Measurement Method

2.6.1 The Procedure of the Method

Another way to calculate the ground state energy is by direct measurement after imple-

menting a given Hamiltonian in quantum circuit. Since Direct-PEA (1st order) method has

40



already introduced a way to implement non-unitary matrix U into circuit, Hamiltonian im-

plementation is straightforward. We can just replace U in method B by U = H = ∑L
j=1 αjhj,

and obtain Ur such that:

Ur |0〉a |ψ〉s = 1
s

|0〉a Ur |ψ〉s + |Φ⊥1 〉

= E

A
|0〉a |ψ〉s + |Φ⊥1 〉 . (2.49)

By measuring ancilla qubits multiple times, we can get the energy of the ground state |ψ〉s
through multiplying A by the square root of probability that the ancillary register state is

|0〉a. The ground state energy of water molecule calculated by this method is in Figure  2.8 .
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Figure 2.8. Ground State Energy Curve for H2O, as a function of the bond
length O-H in a.u. for 2st order Direct-PEA. Errors are shown in the window
of the figure.
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This method can also be used for non-Hermitian Hamiltonians. If now the eigenvalue

for |ψ〉s is a complex number E = |E|eiθ, by replacing U by U = H in method B, we would

have:

Ur |0〉a |ψ〉s = |E|eiθ

A
|0〉a |ψ〉s + |Φ⊥1 〉 , (2.50)

and can obtain |E| through measurements. Then by replacing U by for example U = I +H

in method B, we would be able to determine the phase of the complex eigenenergy.

2.6.2 Error Analysis

After applying the gate Ur:

Ur |0〉a |ψ〉s = E

A
|0〉0 |ψ〉s + |Φ⊥1 〉 (2.51)

We obtain the eigenenergy of state |ψ〉s by calculating probability of the wanted state:

|0〉a |ψ〉s. The standard error of E by X measurements is:

σ = |E|√
X

√
1 − E2

A2 (2.52)

2.6.3 Complexity Analysis

The number of required qubits for Direct Measurement Method is the sum of system and

ancilla qubits: O(n). Since only one Ur gate is enough, the complexity of the standard gates

is O(n5). Since now the result of measurements is a binomial distribution, to measure the

Energy E to accuracy(standard deviation) ε, we have to make X = O(E2

ε2
) measurements.

2.7 Variational Quantum Eigensolver(VQE) Method

2.7.1 The Procedure of the Method

The variational quantum eigensolver method has been put forward by Aspuru-Guzik

and coworkers to calculate the ground state energies[  30 ]–[ 33 ], which is a hybrid method
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of classical and quantum computation. According to this method, an adjustable quantum

circuit is constructed at first to generate a state of the system. This state is then used to

calculate the corresponding energy under the system’s Hamiltonian. Then by a classical

optimization algorithm, like Nelder-Mead method, parameters in circuit can be adjusted

and the generated state will be updated. Finally, the minimal energy will be obtained. The

detailed circuit for the quantum part of our algorithm is shown in Figure  2.9 . To make the

expression more clear, we represent parameters in vector form, as follows: θ = (θ1,θ2...,θD),

θi = (θi,0,θi,1...,θi,11), θi,j = (θi,j,1, θi,j,2, θi,j,3, ), ϕ = (ϕ1,ϕ2...,ϕn), ϕk = (ϕk,1, ϕk,2, ϕk,3).

G(θ1) G(θ2)

. . .

G(θD)

U(ϕ
1
) I/Rx1

(π
2
)/Ry1

(−π
2
)

. . . U(ϕ
2
) I/Rx2

(π
2
)/Ry2

(−π
2
)

|0〉s . . . U(ϕ
3
) I/Rx3

(π
2
)/Ry3

(−π
2
) ⇒ E(θ,ϕ)

..
. U1,0(θ1,0) ..
. U1,0(θ1,0) . . . U1,0(θ1,0) ..
.

..
.

..
.

. . . U(ϕn) I/Rxn
(π
2
)/Ryn

(−π
2
)

Figure 2.9. Circuit for state preparation and corresponding energy eval-
uation. G(θi) is entangling gate, here we are taking the gate like Fig-
ure  2.10 . U(ϕk) is an arbitrary single-qubit rotation and is equal to
Rz(ϕk,1)Rx(ϕk,2)Rz(θk,3) with parameters ϕk,1,ϕk,2 and ϕk,3 that can be ma-
nipulated. By increasing the number of layers, d, of our circuit, we are able to
produce more complex states.

U0 • U2 • U4 •

U1 • U6 • U8 •

U3 • U7 • U10 •

U5 • U9 • U11 •

Figure 2.10. Example entangling circuit G(θi) for 4-qubit system. There are
12 arbitrary single-qubit gates Uj, a simplified written way for U(θi,j), which
is Rz(θi,j,1)Rx(θi,j,2)Rz(θi,j,3) with parameters θi,j,1,θi,j,2 and θi,j,3 that can be
manipulated. Each 2 qubits are entangled sequentially. Entangling gate G(θi)
for n-qubit system is similar to this gate, but then it has n(n − 1) arbitrary
single-qubit gates and θi has 3n(n− 1) parameters.

We are using d layers of gate G(θi) in Figure  2.9 to entangle all qubits together. Here we

introduce a hardware-efficient G(θi), and we call this method Pairwise VQE. The example
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gate of G(θi) for 4 qubits is shown in Figure  2.10 . The entangling gate for 6-qubit system

H2O is similar: every 2 qubits are modified by single-qubit gates and entangled by CNOT

gates. By selecting initial value of all θi and ϕk, system state can be prepared by d layers

G(θi) gates and arbitrary single gates U(ϕj). Then average value of each term in Hamiltonian

H, 〈hj〉 , can be evaluated by measuring qubits many times after going through gates like I

or Rxj(π

2) or Ryj(−π

2). For example, if hj = I0X1Y2Z3, then

〈hj〉 = 〈I0X1Y2Z3〉ψ = 〈ψ| I0X1Y2Z3 |ψ〉

= (〈ψ|Ry1(π

2)Rx2(−π

2))I0(Ry1(−π

2)X1Ry1(π

2))

(Rx2(π

2)Y2Rx2(−π

2))Z3(Ry1(−π

2)Rx2(π

2) |ψ〉)

= 〈I0Z1Z2Z3〉ψ , where |ψ〉 = Ry1(−π

2)Rx2(π

2) |ψ〉 , (2.53)

So we can let the quantum state |ψ〉 go through gates Ry1(−π

2) and Rx2(π

2) and then measure

the result state multiple times to get 〈hj〉. The energy corresponding to the state can be

obtained by 〈H〉(θ,ϕ) = ∑L
j=1 αj〈hj〉(θ,ϕ). Then θ and ϕ can be updated by classical

optimization method and 〈H〉(θ,ϕ) can reach the minimal step by step. An example of

convergence process for H2O’s ground state energy is shown in Figure  2.11 . The ground

state energy curve calculated by this method is shown in Figure  2.12 . One thing needs to

mention is that the error peak in the middle can not be reduced after we tried different

classical optimizers. A possible reason is that there is a local minimal around the ground

state of H2O at that configuration and traps our optimizers.
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Figure 2.11. Convergence of ground state energy of H2O for fixed O-H bond
length = 1.9 a.u., as number of iterations increases. The lines for exact ground
state energy and for the limit almost overlap.
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Figure 2.12. Ground state energy curve for H2O, as a function of O-H bond
length in a.u. for Pairwise VQE. Errors are shown in the window of the figure.
We take |0〉s as initial input, d = 1 layer and use Nelder-Mead algorithm for
optimization.
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2.7.2 Error and Complexity Analysis

The number of qubits required for Pairwise VQE is n, and the gate complexity is O(n2d),

where d is the number of entangling gate layers. Assume we made Xi measurements for

calculating 〈hi〉, its accuracy(standard deviation) would be εi = 1
Xi

. With X = ∑L
i=1 Xi

measurements, the accuracy of Hamiltonian would be

ε =
L∑

i=1

ai√
Xi

≤

√√√√ L∑
i=1

a2
i

√√√√ L∑
i=1

1
Xi

≤ A

√√√√ L∑
i=1

1
Xi

(2.54)

If Xi = X
L

, we have ε ≤ AL√
X

, then we need X = A2L2

ε2
= A2n8

ε2
measurements to achieve

accuracy ε. Considering the number of iterations for optimization, Niter, the total number

of measurements is A2n8

ε2
Niter.

2.8 Comparison of Methods

The Hamiltonian of the water molecule is calculated for O-H bond lengths ranging from

0.5 a.u. to 2.9 a.u., using the above introduced methods. This Hamiltonian is used in all

five of the methods discussed within this chapter. For the first four methods, the input

state of system is the ground state of the H2O molecule. For each of the four methods, the

resulting ground state energy curve can be calculated to arbitrary accuracy. The results

from each method is compared with result from a direct diagonalization of the Hamiltonian,

as shown in each graph. From Figure  2.2 - 2.8 , it can be seen that all of these methods

are effective in obtaining the ground state energy curve of the water molecule. Pairwise

VQE is also used to obtain the ground state energy curve. The energy convergence process

when O-H bond length equals 1.9 a.u. is shown in Figure  2.11 . The ground state energy

curve calculated by this method is shown in Figure  2.12 . In this simulation, d is selected

to be 1, and G(θi) is constructed as described above, and it can already give a pretty good

result. This shows Pairwise VQE a very promising method for solving electronic structure

problems. Furthermore, Pairwise VQE has only O(n2d) gate complexity and doesn’t require

initial input of the ground state, which makes it more practical for near-term applications

on a quantum computer.
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Qubit requirement, gate complexity and number of measurements of different methods

are shown in TABLE  2.1 . When counting gate complexities, we decompose all gates into

single qubit gates and CNOT gates. While Pairwise VQE needs exactly n qubits, the other

methods require extra number of qubits. In terms of gate scaling, Pairwise VQE also needs

the least gates, which enables it to better suit the applications on near and intermediate term

quantum computers. Among the remaining four methods, Direct Measurement requires less

number of gates than the others. PEA-type methods have an advantage that they can give an

accurate result under only O(1) measurements. However, they need more qubits compared

with the previous two methods and demands many more gates if smaller error is required.

Due to huge gate complexity, these PEA-type algorithms would be put into practice only

when the decoherence problem has been better solved. Among these three PEA based meth-

ods, in terms of the gate complexity, Direct-PEA(2nd order) requires less number of gates

than the traditional Trotter-PEA and Direct-PEA(1st order). One more thing to mention is

that here the second quantization form Hamiltonian is based on STO-3G, so there are O(n4)

terms. If a more recent dual form of plane wave basis [ 43 ] is used, the number of terms can

be reduced to O(n2), and the asymptotic scaling in TABLE  2.1 would also be reduced. To

be specific, for PEA-type methods, upper bounds of gate complexities would be proportional

to n3 rather than n5, and Number of Measurements for Pairwise VQE would be proportional

to n4 rather than n8. As can be seen, these reductions wouldn’t influence the comparison

made above.
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Table 2.1. Complexity of different methods. n is the number of qubits for
molecular system, 6 for water. A = ∑L

i=1 |αi| can serve as the scale of energy.
E is the exact value of ground energy. ε is the accuracy of energy we want to
reach. d is the number of layers we used in Pairwise VQE. Niter is the number
of iterations for optimization in Pairwise VQE.
Method #Qubits Gate Complexity #Measurements

Trotter-PEA O(n) O( n5

(ε/A)2 ) O(1)

Direct-PEA(1st order) O(n) O( n5

(ε/A)2.5 ) O(1)

Direct-PEA(2nd order) O(n) O( n5

(ε/A)1.3 ) O(1)

Direct Measurement O(n) O(n5) O(E2

ε2 )

Pairwise VQE O(n) O(n2d) O(A2n8

ε2 Niter)

2.9 Excited States

All the mentioned 5 methods can also be used for the excited state energy calculation.

PEA-type methods and Direct Measurement method can be directly used by replacing the

input ground state by an excited state. The complexity for the calculation would stay the

same. The energy accuracy for excited states are similar to that for the ground state. For

VQE, a publication [  44 ], [ 45 ] recently presents a quantum subspace expansion algorithm

(QSE) that calculates excited state energies. They approximate a “subspace” of low-energy

excited states from linear combinations of states of the form Oi |ψ〉s, where |ψ〉s is the ground

state determined by VQE and Oi are chosen physically motivated quantum operators. By

diagonalizing the matrix with elements 〈ψ|sO
†
iHOj |ψ〉s calculated by VQE, one is able to

find the energies of excited states.

Figure  2.13 shows the simulation of the first six excited states’ energy curves of the wa-

ter molecule from our 6-qubit Hamiltonian, calculated by PEA-type methods and Direct

Measurement method. It can be seen that the 5th excited energy curve indicates a shape

resonance phenomenon, which can be described by a non-Hermitian Hamiltonian with com-

plex eigenvalues. The life time of the resonance state is associated with the imaginary part

of the eigenvalues. In this way, to solve the resonance problem, we can seek to solve the

eigenvalues of non-Hermitian Hamiltonians.
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Some work has been done on this track to solve the resonance problem by quantum

computers. By designing a general quantum circuit for non-unitary matrices, Daskin et

al.[ 46 ] explored the resonance states of a model non-Hermitian Hamiltonian. To be specific,

he introduced a systematic way to estimate the complex eigenvalues of a general matrix

using the standard iterative phase estimation algorithm with a programmable circuit design.

The bit values of the phase qubit determines the phase of eigenvalue, and the statistics

of outcomes of the measurements on the phase qubit determines the absolute value of the

eigenvalue. Other approaches for solving complex eigenvalues can also be applied for this

resonance problem. For example, Wang et al. [  47 ] proposed a measurement-based quantum

algorithms for finding eigenvalues of non-unitary matrices. Terashima et al.[ 48 ] introduced a

universal nonunitary quantum circuit by using a specific type of one-qubit non-unitary gates,

the controlled-NOT gate, and all one-qubit unitary gates, which is also useful for finding the

eigenvalues of a non-hermitian Hamiltonian matrix. More about resonances will be included

in the next chapter.
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Figure 2.13. Excited states’ energy curves for H2O, as a function of the
bond length O-H in a.u.. Markers with different colors represent data points
calculated from different methods. Only a few points for each method are
drawn for illustration. Energy curves in different line styles are calculated
from exact diagonalization of Hamiltonian matrix.

49



2.10 Conclusion

In this chapter, several recently proposed quantum algorithms are compared when they

are used to compute the electronic state energies of the water molecule. These methods

include Trotter-PEA method based on the first order Trotter-Suzuki decomposition, 1st and

2rd order Direct-PEA methods based on direct implementation of the truncated propaga-

tor, Direct Measurement method based on direct implementation of the Hamiltonian and

Pairwise PEA method, a VQE algorithm with a designed ansatz.

After deriving the Hamiltonian of the water molecule using the STO-3G basis set, the

research explains in detail how each method works and gives their qubit requirements, gate

complexities and measurement scaling. It also calculates the ground state energy curves for

the water molecule using all five methods. All methods are able to provide an accurate result.

By comparing these methods, it is concluded that the 2nd order Direct-PEA provides the

most efficient circuit implementations in terms of gate complexity. With large scale quantum

computation, the 2nd order direct method seems to better suit large molecule systems. In

addition, since Pairwise VQE requires the least qubit number, it is the most practical method

for near-term applications on the current available quantum computers.

Moreover, the PEA-type methods and Direct Measurement method are used to solve

excited state energy curves for the water molecule. The fifth excited state energy curve

implies shape resonance.

50



3. THE DESIGN AND IMPLEMENTATION OF THE FULLY

CONTROLLED VQE

3.1 Introduction

As introduced in the last chapter, VQE is the most practical way to search for the ground

state and the ground state energy of a molecular system in near-term quantum computers.

The most important question for VQE is how to design an efficient quantum circuit to

produce an ansatz state that approximates the ground state well. Recently researchers

are trying to construct different parameterized quantum circuits[ 33 ], [  49 ], [  50 ] for VQE for

systems like LiH or H2O. Generally, by applying designed circuit Gate(~θ) to the input state

|ψinput〉, we have output state

|ψoutput〉 = Gate(~θ) |ψinput〉 . (3.1)

The parameters ~θ are set to some initial values at first. They will be updated by classical

optimization methods, such as Nelder-Mead, to find an output state with minimal energy.

It is hard to directly search the ground state of Hamiltonian in the whole space. Say our

system needs n qubits, then we need to search all states in the n-qubit space to obtain the

ground state finally. That would take us at least 2n − 1 parameters to control Gate(~θ) and

thus the 2n-d output state |ψoutput〉, which makes the algorithm intractable. A common way

is to use fewer parameters than needed to approximate the ground state. By taking many

layers of basic parameterized entangling gates, we can assume the circuit is complicated

enough to approach the ground state. Although this design is practical and has even been

applied in real quantum computers[  33 ], it is hard to tell the real representability of the

circuit. Most of the time, people have to try different entangling circuit designs and find the

one that works best for the problem. Worse still, the best circuit design for one system may

not be good for another system.

Here we propose a quantum circuit design, which we call Fully Controlled VQE (FCVQE),

that can reduce gate complexity for ansatz state preparation and also has clear representabil-

ity. For a system with n orbitals and m electrons, the design is able to explore all possible
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state configurations with a cost of O(
(
n
m

)
) gates. The gate complexity can be further reduced

to O(poly(n)) if we only consider limited electron number excitation, such as single, double,

triple, and quadruple excitation.

3.2 General Design of the Fully Controlled VQE

Assume that a system with n orbitals and m electrons is in interest, and we would like

to find the system’s ground state energy. After the standard procedure of Jordan-Wigner

transformation, each orbital would be mapped to a qubit, while qubit state |1〉 means the

orbital is occupied and |0〉 means unoccupied. Since only
(
n
m

)
basis states represent m-

electron states, the space of possible ground state can be reduced from a 2n-d real sphere to

a
(
n
m

)
-d one. In the following part, we will use a sequence of Givens Rotation matrices to

create an ansatz state that can fully explore m-electron states.

Take |k1〉 as Hartree-Fock state |ψHF 〉, where k1 represents the decimal number for the

binary form qubit state. We mark the indices of
(
n
m

)
m-electron states out of 2n electron

states to be a set: {k1, k2, k3..., k(
n
m

)}, and assign a set of parameters {θ2, θ3..., θ(
n
m

)} to each

index except k1. Every parameter θi would be used to construct a Givens Rotation matrix

as follows:

Gi(θi) =



0 ... k1 ... ki ... k(n
m

) ...

0 1
... . . .

k1 cos θi − sin θi
... . . .

ki sin θi cos θi
... . . .

k(n
m

) 1
... . . .



, (3.2)
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where the diagonal and off-diagonal elements not shown in Eq.  3.2 are 1 and 0 respectively.

Each Givens Rotation matrix can be constructed by O(n) (n − 1)-control quantum gates.

The details of construction and complexity analysis will be illustrated in next section.

By applying a sequence of Givens Rotation matrix, Gate(~θ) = ∏(
n
m

)
i=2 Gi(θi), to the input

Hartree-Fock state, |ψHF 〉 = |k1〉, the output state would be

|ψoutput〉 = Gate(~θ) |ψHF 〉 =

(
n
m

)∏
j=2

cos θj |k1〉 +

(
n
m

)∑
i=2

sin θi

(
n
m

)∏
j=i+1

cos θj |ki〉 (3.3)

=



... ...

k1
∏(

n
m

)
j=2 cos θj

... ...

k2 sin θ2
∏(

n
m

)
j=3 cos θj

... ...

k3 sin θ3
∏(

n
m

)
j=4 cos θj

... ...

ki sin θi
∏(

n
m

)
j=i+1 cos θj

... ...

k(n
m

) sin θ(
n
m

)
... ...



(3.4)

All elements in the right state of Eq.  3.4 are 0 except those indexed {k1, k2, ...k(
n
m

)}. This

state formula can represent any m-electron state that can be represented by real numbers,

which means the ground state of Hamiltonian H can be represented by this state with

properly selected parameters ~θ.

Using this Gate(~θ) to produce ansatz state, we can then follow the standard procedure

of VQE in the previous chapter and update ~θ to find the ground state and the ground state

energy of molecular systems. One thing worth to note is that, although it’s guaranteed that

some ~θ can represent the ground state, the state may be trapped in a local minimum position

during the optimization process.
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• • •
•

• G̃ •

1
Figure 3.1. Quantum circuit for Gi(θi) in a 4-qubit system, while k1 = 12 and ki = 9.

3.3 Circuit Design for Givens Rotation Matrix

To construct the circuit for Givens Rotation matrix, Gi(θi), we can use multi-controlled

NOT gates and multi-controlled rotation gates. The intuition is to swap the basis states

such that the rotation can be done in one qubit, then swap the basis states back. Say

Gi(θi) is applied on two basis states |k1〉 and |ki〉, we can first pick up these two states with

multi-controlled states. By flipping digits in |k1〉 to make it only one qubit state different

from |ki〉, we can rotate this qubit instead. Finally, after flipping states back, we successfully

implement Gi(θi) on the circuit.

Take a 4-qubit system for example and assume that we want to construct Gi(θi) with

|k1〉 = |12〉 = |1100〉 and |9〉 = |1001〉. FIG.  3.1 gives one of the ways to construct Givens

Rotation Operator. Here in the figure the single qubit rotational gate G̃ is

G̃ =

cos θi − sin θi

sin θi cos θi

 . (3.5)

Before multi-controlled G̃, this circuit converts |1001〉 to |1101〉. Then the multi-control G̃

gate does rotation on |1100〉 and |1101〉. After that the circuit converts |1101〉 back to |1001〉.

For general cases, since each multi-control gate requires O(n) standard gates[  8 ], [  39 ] and

the whole circuit takes O(n) multi-control gates, the total gate complexity for each Givens

rotation matrix is O(n2).

For there are in total O(
(
n
m

)
) Givens Rotation matrices, the gate complexity of ansatz

preparation circuit is O(n2
(
n
m

)
). When m is small compared with orbital number n, or m is

close to n, this circuit will take approximately O(poly(n)) gates for construction. However,

if m is close to half of n, gate complexity can be exponential. To overcome this issue, we can
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consider only the main components of the system’s ground state, like the Hartree-Fock state,

single excited state and double excited state. This step will reduce the gate complexity to

polynomial.

3.4 Ground State Energy Curve of H2 by IBM Qiskit Simulator

Here we apply the fully controlled VQE to solve the ground state energy of H2. The

Hamiltonian can be transformed into 4-qubit Pauli matrix form if we use STO-3G basis

functions. Since there are only 6 possible 2-electron states, we need to apply 5 Givens

Rotation matrix to the input Hatree-Fock state for ansatz state preparation. The state

preparation circuit is as shown in Fig.  3.2 .

|1〉 • • • • • • • • •

|1〉 • • • • • • • • • • • • •

|0〉 • G̃1 • • G̃3 • • •

|0〉 • G̃2 • • G̃4 • • • • G̃5 • • •

1Figure 3.2. The fully controlled quantum circuit design for state preparation
for H2. G̃i is a gate which has a matrix format like Eq. 3.5 .

The circuit can be further simplified if we take system’s symmetry into account: half

spins are up and half are down. The updated circuit is as shown in Fig.  3.3 .

|1〉 • • • • •

|1〉 • • • • • • • • •

|0〉 • G̃3 • • •

|0〉 • G̃2 • • • • G̃5 • • •

1Figure 3.3. The simplified circuit for state preparation for H2.

IBM has developed a platform called Qiskit[  51 ], by which people can run quantum al-

gorithms on both the simulators and the real quantum computers. Since the real quantum

computer is still very noisy, we will use the simulator to verify our design. Multi-control
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gates with more than three control qubits are not included in the Qiskit built-in gate li-

brary; thus, we need to decompose them into built-in gates. One of the easiest ways is to

introduce ancilla qubits in the middle and decompose the circuit into Toffoli gates, two-qubit

control gates, and single-qubit gates. After some classical optimization process, the ground

state energy curve of H2 is shown in Fig.  3.4 . It can be seen that the error is negligible.

0.6 0.8 1.0 1.2 1.4 1.6 1.8
 R (H-H) length)/A

1.15

1.10

1.05

1.00

0.95

0.90

0.85

En
er

gy
/h

at
re

e

Diagonalization
FCVQE
Hatree-Fock

0.50 0.75 1.00 1.25 1.50 1.75
 R (H-H length)/A

0.001

0.000

0.001

Er
ro

r o
f E

ne
rg

y 
(%

)

Figure 3.4. Ground state energy curve for H2 under fully controlled
VQE(FCVQE), as a function of bond length H-H in angstrom, calculated by
IBM’s simulator. Errors are shown in the window of the figure.

3.5 Ground State Energy Curves of Molecules by Self-designed Simulator

For larger systems, we can also get pretty accurate ground state energy curves using

FCVQE. In terms of computational cost, fully controlled VQE in this section is carried out

by a self-designed simulator using matrix manipulation.

One example is NaH. We use the STO-3G basis set and assume the 10 innermost orbitals

are occupied. Then there are 2 electrons left in the outer 10 orbitals. Considering all

possible 2-electron states, we have the ground state energy curve as Fig.  3.5 using FCVQE.

It can be seen that almost all data points are perfect except for the divergent point in the
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diagonalized curve. The reason may be that the state in the divergent points is complicated,

and the classical optimization process falls into a local minimum.
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Figure 3.5. Ground state energy curve for NaH under fully controlled VQE,
as a function of bond length Na-H in Å. Errors are shown in the window of
the figure.

For H2O, we also use the STO-3G basis set to do second quantization. Assuming that

the 2 innermost orbitals are always occupied, we can transform the Hamiltonian to 12-qubit

Pauli matrix form. To simplify the problem, we also assume the number of spin-up electrons

is the same as spin-down electrons. Results corresponding to different excitation types are

shown in Fig.  3.6 . It can be seen that as more excited states are taken into account, the

FCVQE gives a more accurate ground state energy curve.
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Figure 3.6. Ground State Energy Curve for H2O as a function of the bond
length O-H in Å. The red triangles are obtained by FCVQE that (a) considers
only single excitation, (b) considers both single and double excitation, (c) con-
siders single, double and triple excitation (d) considers single, double, triple,
and quadruple excitation, and are compared with the Hartree-Fock ground
state energy and the exact diagonalization. Errors are shown in the window
of each figure.

The same procedure can be applied on N2, except that we now assume the 8 innermost

orbitals are always occupied. The ground state energy curves for N2 are shown in Fig.  3.7 .

The ground state energy curve obtained by FCVQE gets closer to the diagonalized exact

curve when more excitation are considered.
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Figure 3.7. Ground State Energy Curve for N2 as a function of the bond
length N-N in Å. The red triangles are obtained by FCVQE that (a) considers
only single excitation, (b) considers both single and double excitation, (c) con-
siders single, double and triple excitation (d) considers single, double, triple,
and quadruple excitation, and are compared with the Hartree-Fock ground
state energy and the exact diagonalization. Errors are shown in the window
of each figure.

If we consider all 6-electron states for N2, the curve would be more accurate, as shown

in Fig.  3.8 .
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Figure 3.8. Ground State Energy Curve for N2 as a function of the bond
length N-N in Å using FCVQE. All 6-electron states are considered. Errors
are shown in the window of each figure.

3.6 Complexity Analysis

For a system with n orbitals and m electrons, the qubit requirement for FCVQE is O(n),

including qubits to represent system state and ancilla qubits to decompose multi-controlled

gates. Gate complexity for FCVQE depends on the number of Givens Rotation Operators,

which is O(
(
n
m

)
), and the number of basic gates (one-qubit and two-qubit gates) for each

Givens Rotation operator. In general, we need O(n) n-controlled gates to do rotations

between two basis states and need O(n) basic gates for each n-controlled gate, so the gate

complexity is O(n2). However, since we know the number of electrons is restricted to m

during state preparation, only a constant number of n-controlled gates are required for

Givens Rotation operators’ construction. Thus the total complexity would be O(n
(
n
m

)
).

The number of Givens Rotation Operators in the above sequence can be intractable when

m ≈ n
2 . However, it can be reduced if we consider some restrictions on the ground state

wavefunction. For example, if the total number of electrons is even and half of them are

assumed to be spin up, then only
(
n/2
m/2

)2
rather than

(
n
m

)
states needs to be considered
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in ansatz state preparation. Assuming that the ground state wavefunction contains only

Hartree-Fock state and small-number electron excitation states from the Hartree-Fock state,

the required number of Givens Rotation operators can be even lower. If up to k-electron

excitation from |ψHF 〉 are considered, the total complexity is O(n
(
n−k
k

)(
mk
k

)
). When k = 2,

the total complexity becomes O(n
(
n−m

2

)(
m
2

)
) ≈ O(m2n3).

3.7 Summary and discussion

This chapter presents a new quantum circuit design for ansatz state preparation in VQE

algorithm called FCVQE. A sequence of parameterized Givens Rotation matrices, which can

be implemented with a polynomial number of standard single-qubit and two-qubit gates,

will be applied to the input state to get the output state. Unlike other circuit designs that

assume the output state has the representability to approximate the ground state of a given

system, this design gives an explicit mathematical form for the output state with parameters

and shows that this form will explore all possible states with proper parameter values.

The output state with initial parameters will then be used to evaluate the corresponding

energy under the molecule’s Hamiltonian of Pauli matrix form. Following standard VQE

procedure, parameters will be updated to find the state with minimum energy. The energy

would be approximate ground state energy, and as a byproduct, the final output state will

be the ground state of this molecule system.

One thing needed to notify is that the VQE algorithm is essentially an optimization

method. It can not avoid the local minimum problem, especially when the molecular sys-

tem’s size is large, and the Hamiltonian is complicated. This answers why some converged

data points are still away from the exact result in the previous curves. One method for

improvement is to use a better optimization method to jump out of the local minimum.

An easier way is to try different initial values and take the minimum of those different

experiments.
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4. QUANTUM COMPUTING FOR ATOMIC AND

MOLECULAR RESONANCES

4.1 Introduction

Resonance phenomena is common in nature since they exist in a wide range of fields,

such as atomic and molecular physics, chemistry, molecular biology and technology. It is

associated with intermediate or quasi-stationary states when a system breaks into multiple

subsystems. For example, the phenomena appears when an excited atom autoionizes, an

excited molecule disassociates unimolecularly, or a molecule attracts an electron and then

the ion disassociates into stable ionic and neutral subsystems[ 52 ], [ 53 ].

We are not able to directly solve resonances from the Hamiltonians discussed in the last

chapters. The reason is all those conventional Hamiltonians are Hermitian. By directly solv-

ing Hermitian Hamiltonians, we will get real eigenvalues and corresponding eigenfunctions

in the L2 Hilbert space that vanish at infinity. However, the decaying resonance states don’t

hold the boundary condition of vanishing at infinity, which means they can not be fully

described by the scope of functions in L2. Actually, they are associated with the Hamiltoni-

ans’ complex eigenvalues. If we imposes outgoing boundary conditions on a Hamiltonians’

eigenfunction, the corresponding complex eigenvalue, Eres = E − iΓ
2 , will reveal to us its

resonance energy E and resonance width Γ. The reason why a Hermitian Hamiltonian has

complex eigenvalues is that the non-Hermitian properties of an operator depends on both

the operator itself and the functions it applies to. [  52 ]

Then how can we obtain the complex eigenvalues of the Hamiltonian? One method

proposed decades ago is called the complex rotation method, developed by [ 54 ]–[ 59 ]. We

refer the readers to the book on non-Hermitian quantum mechanics by Moiseyev for more

details and applications of the method [ 52 ]. Given a system Hamiltonian H(r), where r

represents electrons’ coordinates, this method rotates r into the complex plane by θ, r −→ reiθ,

and thus the Hamiltonian becomes a non-Hermitian H(reiθ). The system’s resonance state’s
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energy E and width Γ = 1
τ
, where τ is life time, can then be obtained by directly solving

the corresponding complex eigenvalue of H(reiθ) operator,

Eθ = E − i
2Γ. (4.1)

The best resonance estimate is when the θ pauses or slows down in its trajectory [ 60 ].

This complex rotation method became prevalent at that time because it looks simple, and

it can take use of conventional programs for eigenvalue calculation in molecular problems.

Moreover, dimensional scaling and large order dimensional perturbation theory has been

applied for complex eigenvalues using the complex rotation method [ 61 ], [ 62 ].

However, usually, a large basis set is necessary to predict resonances with good accuracy.

For example, the Helium 1S resonance uses 32 Hylleraas type functions for basis construction

[ 63 ], the H−2 2Σ+
u (σ2

gσu) resonance takes a total of 38 constructed Gaussian atomic basis [ 64 ].

They only pick a small set of electronic configurations for classical variational methods to

calculate complex eigenvalues. The computational overhead will become overwhelming if

more configurations, or more basis functions need to be considered, like when we want

to have better accuracy, or when we simulate larger molecule systems. A promising way

to overcome the escalation in computational resources is solving the problem by quantum

computing methods in quantum computers.

As seen above, the resonance problem can be reduced to a problem of solving complex

eigenvalues of a non-Hermitian Hamiltonian. Unfortunately, most quantum algorithms for

the Hermitian Hamiltonian problem in our previous chapters can not be directly adapted to

resonance calculation, because the complex-rotated, or complex-scaled Hamiltonian’s non-

Hermitian property. For example, for the conventional phase estimation algorithm (PEA),

the propagator e−iH(reiθ)t with trotterization [ 18 ] will be non-unitary and it can not be im-

plemented in quantum circuit directly. In this way, a quantum algorithm for resonance

calculation that can deal with non-Hermitian Hamiltonian is in need. Daskin et. al [ 46 ] pro-

posed a circuit design that can solve complex eigenvalues of a general non-unitary matrix.

The method applies the matrix rows to an input state one by one and estimate complex

eigenvalues via a novel iterative PEA process. However, for molecular Hamiltonians, the
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gate complexity of this general design is exponential in system size. In our previous publica-

tion[ 34 ], we briefly mentioned that our Direct Measurement method could be used to solve

complex eigenvalues of non-Hermitian Hamiltonians with polynomial gates. This study, will

extend the Direct Measurement method and apply it to simple molecular systems to ob-

tain resonance properties. In particular, we will use IBM’s Qiskit simulators and their real

quantum computers to calculate these resonances.

4.2 Complex Scaled Hamiltonian

In this section, we present the steps needed to convert the complex-rotated Hamiltonian

to a suitable form that can be simulated on a quantum computer. In the Born-Oppenheimer

approximation, the electronic Hamiltonian of a molecular system can be written as a sum of

electronic kinetic energy and potential energy of the form,

H = T (r) + V (r),

T (r) =
∑

i
−1

2∇2
i ,

V (r) =
∑

i

∑
j>i

1
|ri − rj|

+
∑
i,σ

Zσ
|ri − Rσ|

,

(4.2)

where Zσ is the σth nucleus’ charge, Rσ is the σth nucleus’ position, and ri, rj represents

the ith, jth electron’s position. Now, the complex scaling method is applied to the study of

molecular resonances within the framework of Born-Oppenheimer approximation. Follow-

ing Moiseyev and coworkers[ 52 ] the electronic coordinates are dilated independently of the

nuclear coordinates. After a complex rotation by θ, each electron’s position r becomes r/η,

where η = e−iθ and thus the new Hamiltonian becomes

Hθ = T (r/η) + V (r/η), (4.3)

T (r/η) = η2 ∑
i

−1
2∇2

i , (4.4)

V (r/η) = η
∑

i

∑
j>i

1
|ri − rj|

+ η
∑
i,σ

Zσ
|ri − ηRσ|

. (4.5)
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The eigenstates of Hθ include resonance states, whose corresponding complex eigenvalues

reveal resonance states’ energies and lifetimes [  55 ], [ 65 ], as stated in Eq.(  4.1 ). A scaling

parameter α is commonly used in the complex rotation process to better locate resonances,

which makes η = αe−iθ.

After choosing a proper orthogonal basis set {ψi(r)}, the Hamiltonian can be converted

into a second quantization form,

Hθ =
∑
i,j
hija

†
i aj + 1

2
∑

i,j,k,l
hijkla

†
i a
†
jakal, (4.6)

where a†i and ai are fermionic creation and annihilation operators, and coefficients hij, hijkl

can be calculated by

hij =
∫
ψ∗i (r)(−η2 1

2∇2
i + η

∑
σ

Zσ
|r − ηRσ|

)ψj(r),

hijkl =
∫
ψ∗i (r1)ψ∗j (r2) η

|r1 − r2|
ψk(r2)ψl(r1).

(4.7)

With Jordan-Wigner transformation[ 11 ],

a†j = 1
2(Xj − iYj) ⊗ Z→j−1,

aj = 1
2(Xj + iYj) ⊗ Z→j−1,

(4.8)

in which X,Y and Z are the Pauli X,Y and Z operators, and

Z→j−1 = Zj−1 ⊗ Zj−2 ⊗ Z0, (4.9)

the Hamiltonian will be further transformed into Pauli operators as

Hθ =
L−1∑
i=0

ciPi. (4.10)

In the summation, ci represents a complex coefficient, and Pi represents an up to n-local

tensor product of Pauli operators, where n is the size of the basis set. Alternatively, Bravyi-
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Kitaev transformation or parity transformation can also be used in the final step to obtain

the Hamiltonian in the qubit space[ 11 ].

The above process is the same as the conventional Hamiltonian derivation in quantum

computing for electronic structure calculations of bound states. Here for resonance calcu-

lations, to make the Hamiltonian convenient to use in the Direct Measurement method, we

rewrite Eq.( 4.10 ) as

Hθ =
2na−1∑

i=0
βiVi, (4.11)

where na = dlog2 Le. The coefficient βi and the operator Vi are determined in the following

ways,

βi = |ci|, Vi = ci

|ci|
Pi, when i < L,

βi = 0, Vi = I, when i ≥ L.

(4.12)

4.3 Direct Measurement Method

The Direct Measurement method is inspired by the direct application of the Phase Es-

timation Algorithm [ 28 ] as briefly discussed in our previous publication[  34 ]. Here the basic

idea is to apply the complex-rotated Hamiltonian on the state of the molecule system and ob-

tain the complex energy information from the output state. Since the original non-hermitian

Hamiltonian can not be directly implemented in a quantum circuit, this Direct Measurement

method embeds it into a larger dimensional unitary operator.

Assuming n spin orbitals needs to be considered for the system, the Direct Measurement

method requires ns = n qubits to prepare the state of the model system |φr〉s and an extra

na ancila qubits to enlarge the non-Hermitian Hamiltonian to be a unitary operator. The

quantum circuit is shown in FIG.  4.1 . The B and V gates in the circuit are designed to have
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1
Figure 4.1. The quantum circuit for Direct Measurement method. B and
V gates are constructed based on the coefficients and operators in Eq.(  4.11 ).
The system qubits’ state and ancila qubits’ state are initialized as |0〉a and
|φr〉s respectively.

the following properties

B |0〉a =
2na−1∑

i=0

√
βi

A
|i〉a , A =

2na−1∑
i=0

βi (4.13)

V |i〉a |φr〉s = |i〉a Vi |φr〉s , (4.14)

which means B transforms initial ancilla qubits’ state to a vector of coefficients and V applies

all Vi on system qubits based on ancilla qubits’ states. One actual construction choice for B

could be implementing the unitary operator

B = 2(
2na−1∑

i=0

√
βi

A
|i〉a)(

2na−1∑
i=0

√
βi

A
〈i|a) − I. (4.15)

As for V , a series of multi-controlled Vi gates will do the work. If |φr〉s is chosen as an

eigenstate and we apply the whole circuit of B, V and B†

Ur = (B† ⊗ I⊗ns)V (B ⊗ I⊗ns), (4.16)

on it, the output state will be

Ur |0〉a |φ〉s = Eeiϕ

A
|0〉a |φ〉s + |Φ⊥〉 , (4.17)
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where Eeiϕ (E ≥ 0) is the corresponding eigenvalue and |Φ⊥〉 is a state whose ancilla qubits’

state is perpendicular to |0〉a. By measuring the output state many times, we can get |E|

from its relation with the possibility of the |0〉a state, p,

p = E2

A2 . (4.18)

To obtain the phase, one way is that we apply a similar circuit for Hθ = xI⊗n + Hθ, where

x is a selected real number. Then the updated Ur leads us to

p = |x+ Eeiϕ|2

A2 (4.19)

Combining with Eq. (  4.18 ) and Eq. (  4.19 ), we can solve the complex eigenvalue as

Eeiϕ = √
pAei cos−1 pA2−x2−pA2

2xA
√

p or
√
pAe−i cos−1 pA2−x2−pA2

2xA
√

p . (4.20)

There are also other choices to obtain the phase. For example, instead of adding the I⊗n

part, we can try building the Ur based on Hθ + H2
θ or Hθ + H3

θ to get an equation like

Eq.( 4.19 ) containing phase information. That equation together with Eq.(  4.18 ) will reveal

the complex eigenvalue for the input eigenstate with another expression.

4.4 Quantum simulation of resonances in a simple model system

In this section, we will calculate the resonance properties of a model system using the

Direct measurement method. This system is the following one-dimensional potential[ 65 ]

V (x) = (1
2x

2 − J)e−λx2 + J, (4.21)

and parameters are chosen as λ = 0.1, J = 0.8. The potential is plotted in FIG.  4.2 .

This potential is used to model some resonance phenomena in diatomic molecules. Only
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Figure 4.2. The one-dimensional potential V (x) = (1
2x

2 −J)e−λx2 +J , where
λ = 0.1, J = 0.8.

one electron is considered moving under this potential. The original Hamiltonian and the

complex-rotated Hamiltonian can be written as

H = −∇2

2 + V (x), (4.22)

Hθ = −η2 ∇2
x

2 + V (ηx) (4.23)

To make the setting consistent with the original literature, η is chosen to be e−iθ and the

scaling parameter α is embed in n Gaussian basis functions

χk(α) = exp(−αkx2), (4.24)

αk = α(0.45)k, k = 0, 1, .., n− 1. (4.25)

The {χk(α)} basis set is not orthogonal, so we apply Gram-Schmidt process and iteratively

construct an orthogonal basis set {ψi} as follows:

γk = χk −
k−1∑
i=0

〈χk|ψi〉ψi, (4.26)

ψi = γk
||γk||

= γk√
〈γk|γk〉

. (4.27)
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Since there is only one electron, spins are not considered. This {ψi} basis set is used in the

second quantization step to get the final Hamiltonian in Pauli matrix form.

The resonance eigenvalue found in [ 65 ] with n = 10 basis functions is

Eθ = 2.124 − 0.019i Hartree (4.28)

We will try to get the same resonance by applying the Direct Measurement method using

the Qiskit package. The Qiskit package supports different backends, including a statevector

simulator that executes circuit ideally, a QASM simulator that provides noisy gate simula-

tion, and different IBM real quantum computers. In the following, we show the results based

on the basis function number is n = 5 and n = 2. In particular, the former n = 5 case shows

how θ trajectories locate the best resonance estimate, and the latter n = 2 case shows how

to simplify the quantum circuit for the Direct Measurement method and run it in real IBM

quantum computers.

4.4.1 n = 5

An example of the complex-rotated Hamiltonian when n = 5 is shown in Appendix  B.1 .

5 ancilla qubits and 5 system qubits are needed in this case. By choosing different scaling

parameters α, the statevector simulator shows θ trajectories as FIG.  4.3 . It can be seen that

most trajectories pause around the point,

Eθ = 2.1265 − 0.0203i Hartree, (4.29)

when α = 0.65, θ = 0.160. Based on Eq.( 4.1 ), this indicates the resonance energy and width

are E = 2.1265 Hartree, Γ = 0.0406 Hartree, very close to the resonance energy from [  65 ].

We also run the QASM simulator for 4 ∗ 104 shots and get the system’s resonance energy at

α = 0.65, θ = 0.160,

Eθ = 2.1005 − 0.3862i Hartree. (4.30)
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Figure 4.3. Trajectories of a complex eigenvalue on the rotation angle θ
for fixed n = 5 and various α, calculated by Qiskit statevector simulator. θ
ranges from 0.1 to 0.24 with a step of 0.01. The green point shows the best
estimation of resonance energy, which is E = 2.1265 − 0.0203i Hartree, occurs
at α = 0.65, θ = 0.160. The input state for the Direct Measurement method is
obtained from directly diagonalizing the complex-rotated Hamiltonian matrix.

This result has an error of around 0.3 Hartree but can be augmented by more sample mea-

surements. The real IBM quantum computer is not feasible to run the method in this size,

due to the large number of standard gates in circuit.

4.4.2 n = 2

When taking n = 2 basis function, we are not able to locate the best resonance estimate

like in FIG.  4.3 based on direct diagonalization, so we only use the Direct Measurement
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Figure 4.4. The quantum circuit to run Direct Measurement method when
n = 2. B gate is prepared by the coefficients [1.31556, 0.13333, 0.13333,
0.25212, 1.06378]. V0, V1, V2, V3 and V4 are applying e−0.04180iII and
e2.32888iY Y , e2.32888iXX, e3.05283iZI and e3.11093iIZ respectively.

method to calculate the complex eigenenergy when α = 0.65 and θ = 0.160, the best location

at n = 5. The complex-rotated Hamiltonian of the model system becomes

Hθ =(1.31441 − 0.05497i)II + (−0.09167 + 0.09682i)Y Y + (−0.09167 + 0.09682i)XX+

(−0.25113 + 0.02235i)ZI + (−1.06328 + 0.03261i)IZ

=1.31556 ∗ e−0.04180iII + 0.13333 ∗ e2.32888iY Y + 0.13333 ∗ e2.32888iXX

0.25212 ∗ e3.05283iZI + 1.06378 ∗ e3.11093iIZ.

(4.31)

We run with the Direct Measurement method with simulators first and then try to reduce

the number of ancilla qubits to make the resulting circuit short enough to be executed in

the real IBM quantum computers.

5-qubit circuit

For the Hamiltonian Hθ in Eq.( 4.31 ), totally 5 qubits are required to calculate the Hamil-

tonian with the Direct Measurement method: 2 for the system qubits and 3 for the ancila

qubits. FIG.  4.4 gives the quantum circuit for Hθ. By running the circuit for Hθ and a

similar circuit for Hθ = xII +Hθ, the complex eigenvalue can be derived by

Eeiϕ = √
pAei cos−1 pA2−x2−pA2

2xA
√

p or
√
pAe−i cos−1 pA2−x2−pA2

2xA
√

p , (4.32)
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where A and A can be obtained from the absolute value of coefficients in Hθ and Hθ, p and

p can be obtained from measurement results.

This circuit can be executed in simulators, but it is still too complicated to be successfully

run in the IBM quantum computers. The simulation results are listed in TABLE.  4.1 .

Table 4.1. The complex eigenenergy obtained by direct diagonalizing the
Hamiltonian and by running different simulators. The QASM simulator is
configured to have no noise, and it takes 105 samples to calculate the complex
eigenenergy.

Method Eigenenergy (Hartree) Error (Hartree)

Direct Diagonalization 2.1259-0.1089i -

Statevector Simulator 2.1259-0.1089i 0

QASM Simulator 2.1279-0.1100i 2 × 10−3

4-qubit circuit

We can do simplification by only calculating the eigenvalue of the Hamiltonian in Eq.

( 4.31 ) without the II part, as

Hθ =0.13333 ∗ e2.32888iY Y + 0.13333 ∗ e2.32888iXX + 0.25212 ∗ e3.05283iZI + 1.06378 ∗ e3.11093iIZ.

(4.33)

The II part can be directly added later since it is just an identity operator. Because there

are only 4 terms left, 2 ancilla qubits are enough for the method. The simplified quantum

circuit is then shown in FIG.  4.5 .
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Figure 4.5. The simplified quantum circuit to run Direct Measurement
method when n = 2. B gate is prepared by the coefficients [0.13333, 0.13333,
0.25212, 1.06378]. V0, V1, V2 and V3 are applying e2.32888iY Y , e2.32888iXX,
e3.05283iZI and e3.11093iIZ respectively.

To avoid introducing more ancila qubits, instead of Hθ = Hθ +xII, we can run a similar

4-qubit circuit for Hθ = Hθ + H3
θ , which has the same terms of tensor products as Hθ with

different coefficients. The complex eigenvalue can be represented by

Eeiϕ =(1.31441 − 0.05497i) + √
pAe

i
2 cos−1( pA2

2p2A4−
1

2pA2−
pA2

2 ) or (4.34)

(1.31441 − 0.05497i) + √
pAe

−i
2 cos−1( pA2

2p2A4−
1

2pA2−
pA2

2 )
, (4.35)

where A and A can be obtained from the absolute value of coefficients in Hθ and Hθ, p and

p can be obtained from measurement results.

This circuit can be executed successfully in the simulators and the IBM quantum com-

puters. However, it costs around 200 gates in the IBM quantum computers, leading to pretty

large error. The result resonance eigenenergies and errors can be seen in TABLE.  4.2 .
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Table 4.2. The complex eigenenergy obtained by direct diagonalizing the
Hamiltonian, by running simulators and by running real IBM quantum com-
puters. The QASM simulator is configured to have no noise, and it takes 105

samples to calculate the complex eigenenergy. The IBM quantum computer
takes 213 samples.

Method Eigenenergy (Hartree) Error (Hartree)

Direct Diagonalization 2.1259-0.1089i -

Statevector Simulator 2.1259-0.1089i 0

QASM Simulator 2.1264-0.1099i 1 × 10−3

IBM Quantum Computer 2.0700-0.4890i 0.3841

3-qubit circuit

For the Hamiltonian Eq. (  4.33 ), a more simplified circuit can be constructed if we try to

calculate the complex eigenvalue of its square,

H2
θ =(1.19013 − 0.11608i)II + (0.53453 − 0.02842i)ZZ (4.36)

=1.19577 ∗ e−0.09723iII + 0.53529 ∗ e−0.05311iZZ (4.37)

The quantum circuit for this H2
θ is showed in FIG.  4.6 .

|0〉a B • B†

V0 V1

|φr〉s

1
Figure 4.6. The quantum circuit to run Direct Measurement method when
n = 2. B gate is prepared by the coefficients [1.19577, 0.53529]. V0, V1 are
applying e−0.09723iII and e−0.05311iZZ respectively.
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We can also run a similar 3-qubit circuit for H2
θ + H4

θ , which also has only 2 terms. The

wanted complex eigenvalue for Hθ is

Eeiϕ =(1.31441 − 0.05497i) + p
1
4
√
Ae

i
2 cos−1( pA2

2p
3
2 A3
− 1

2√
pA
−

√
pA

2 )
or (4.38)

(1.31441 − 0.05497i) + p
1
4
√
Ae

−i
2 cos−1( pA2

2p
3
2 A3
− 1

2√
pA
−

√
pA

2 )
(4.39)

where A and A can be obtained from the absolute value of coefficients in H2
θ and H2

θ +H4
θ ,

p and p can be obtained from their measurement results.

The implementation of the circuit will cost 9 gates in the IBM quantum computers after

circuit optimization. The resulting eigenenergies can be seen in TABLE.  4.3 .

Table 4.3. The complex eigenenergy obtained by direct diagonalizing the
Hamiltonian, by running simulators and by running real IBM quantum com-
puters. The QASM simulator is configured to have no noise, and it takes 105

samples to calculate the complex eigenenergy. The IBM quantum computer
takes 213 samples. The error of the IBM quantum computer is from the best
case.

Method Eigenenergy (Hartree) Error (Hartree)

Direct Diagonalization 2.1259-0.1089i -

Statevector Simulator 2.1259-0.1089i 0

QASM Simulator 2.1259-0.1107i 1.7 × 10−3

IBM Quantum Computer 2.1624-0.1188i 0.0378

4.5 Quantum simulation of the resonances in H−2 using the complex scaling
method

In this section, we present a proof of concept that using quantum algorithm, the Direct

Measurement method, one can calculate molecular resonances on a quantum computer. Here,

we focus on the resonances of the simple diatomic molecule, H−2 2Σ+
u (σ2

gσu).

Moiseyev and Corcoran [ 64 ] show how to obtain the resonances of H−2 using the vari-

ational method based on the (5s,3p,1d/3s,2p,1d) contracted Gaussian atomic basis, which
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Figure 4.7. The trajectory of a complex eigenvalue on the rotation angle θ at
α = 1, calculated by a self-defined simulator. θ ranges from 0.00 to 0.24 with
a step of 0.02. At the lowest point when θ = 0.18, the complex eigenvalue is
−0.995102 − 0.046236i Hartree.

contains 76 spin orbitals. The size of this basis set is too large for our method to be executed

by current quantum computers or simulated by classical computers. To perform the simula-

tion, we used the Born-Oppenheimer approximation, followed by complex rotation as shown

in Section II, “COMPLEX SCALED HAMILTONIAN” and mapped to qubit space as shown

in the Appendix  C . We choose a much smaller 6-31g basis set for H−2 and orthogonalize

them using the Hartree-Fock method, which at the end has only a total of 8 spin orbitals.

The θ trajectory for a complex eigenvalue when α = 1.00 is given in FIG.  4.7 . If we

fix η = αe−iθ at the lowest point in the figure, which has α = 1, θ = 0.18, the resonance

energy obtained by the Direct Measurement method using a 16-qubit simulator is Eθ =

−0.995102 − 0.046236i Hartree. This complex energy is close to the one obtained by a larger

basis set of 38 spin orbitals, Eθ = −1.0995 − 0.0432i Hartree [  64 ], especially the imaginary

part. However, we can also see that the lowest point in the trajectory is not a good pause

point. Also, in such a small basis set, we cannot find a consistent pause in different α’s θ

trajectories to locate the best resonance estimation. The reason for the above may be the

small basis set used in the quantum simulations. However, this application gives a proof of

concept and show that one can calculate molecular resonances on a quantum computer.
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4.6 Conclusion

Recently, we have made progress in developing quantum simulation methods in various

fields of atomic and molecular physics[ 1 ], [ 16 ], [ 34 ], [ 50 ], [ 66 ]. In this chapter, we extend the

quantum simulation methods to the field of atomic and molecular resonances.

Since resonances are associated with a Hermitian Hamiltonian’s complex eigenvalues,

they cannot be solved directly. Here we leverage the complex rotation method to derive a

non-Hermitian complex-scaled Hamiltonian. We introduce the Direct Measurement method

to embed the Hamiltonian into quantum circuit. By measuring the output state multiple

times, we are able to calculate complex eigenvalues from the measurement results. The new

Hamiltonian’s complex eigenvalues reveal to us resonances’ energies and widths.

From the mathematical derivations and simulation results, it can be concluded that the

Direct Measurement method can be successfully used to calculate complex eigenvalues of

non-Hermitian Hamiltonians. The application on the simple one-dimensional system exhibits

accurate shape resonances compared with [  65 ] when using simulators. Although the IBM

real quantum computers are not able to run large enough system size to located resonances,

it still shows the effectiveness of complex eigenvalue calculation. Also, when dealing with

real molecule system H−2 , our Direct Measurement method shows a proof of concept that the

systems’ resonances can be calculated.

In terms of gate complexity, the Direct Measurement requires O(n5) standard gates,

where n is the size of the basis set. This performs much better when compared with the

exponential time complexity in traditional matrix-vector multiplication process.

Due to the time consuming simulation process, we only use up to 10 qubits to do simula-

tion on the simple model system, and up to 8 qubits for H−2 . This leads to errors compared

with literature using a much larger basis set. It can be anticipated that once quantum com-

puters have more available qubits and less noise, the Direct Measurement method will do a

better job, more complicated molecular resonances will be revealed with more accuracy.
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A. H2O HAMILTONIAN AT EQUILIBRIUM

Table A.1. Pauli matrix form Hamiltonian for the water molecule at equi-
librium when O-H is 1.9 a.u. There are 95 terms, and listed are each operator
and corresponding coefficient. X,Y, Z, I stand for the spin matrices σx, σy, σz
and the identity operator on a single qubit subspace.

IIIIII -72.008089 IIIIIZ 0.373979 IIIIXX -0.050755
IIIIYY 0.113535 IIIIZI 0.002526 IIIIZZ 0.779273
IIIZII -0.771553 IIIZIZ 0.043092 IIIZXX 0.113535

IIIZYY -0.050755 IIIZZI 0.785287 IIIZZZ -0.030367
IIXIIX 0.009295 IIXIXI 0.000158 IIXIZX -0.009295
IIXZXZ -0.000158 IIZIII -0.373979 IIZIIZ -0.148141
IIZIYY -0.011744 IIZIZZ -0.146285 IIZZII 0.141059
IIZZXX -0.011744 IIZZZI -0.136887 IXIIIX 0.000158
IXIIXI 0.013400 IXIIZX -0.000158 IXIZXZ -0.013400
IXXIII -0.050755 IYYIII 0.113535 IYYIIZ 0.011744

IYYIYY 0.019371 IYYIZZ 0.031747 IYYZII -0.011216
IYYZXX 0.019371 IYYZZI 0.031561 IZIIII -0.002526
IZXIIX 0.009295 IZXIXI 0.000158 IZXIZX -0.009295
IZXZXZ -0.000158 IZZIII 0.779273 IZZIIZ 0.146285
IZZIYY 0.031747 IZZIZZ 0.220040 IZZZII -0.154863
IZZZXX 0.031747 IZZZZI 0.179396 XIIXII 0.012412
XIIXXX -0.007950 XIIXZI 0.012412 XIIYXY 0.007950
XXXXII -0.007950 XXXXXX 0.018156 XXXXZI -0.007950

XXXYXY -0.018156 XXZXXZ -0.006979 XXZYYI 0.006979
XZIXII -0.012412 XZIXXX 0.007950 XZIXZI -0.012412

XZIYXY -0.007950 YXYXII 0.007950 YXYXXX -0.018156
YXYXZI 0.007950 YXYYXY 0.018156 YYIXXZ -0.006979
YYIYYI 0.006979 ZIIIII 0.771553 ZIIIIZ 0.141059
ZIIIYY 0.011216 ZIIIZZ 0.154863 ZIIZII -0.154860
ZIIZXX 0.011216 ZIIZZI 0.146877 ZIZIII 0.043092
ZXXIII -0.113535 ZXXIIZ -0.011744 ZXXIYY -0.019371
ZXXIZZ -0.031747 ZXXZII 0.011216 ZXXZXX -0.019371
ZXXZZI -0.031561 ZXZIIX -0.000158 ZXZIXI -0.013400
ZXZIZX 0.000158 ZXZZXZ 0.013400 ZYYIII 0.050755
ZZIIII 0.785287 ZZIIIZ 0.136887 ZZIIYY 0.031561
ZZIIZZ 0.179396 ZZIZII -0.146877 ZZIZXX 0.031561
ZZIZZI 0.189343 ZZZIII 0.030367
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B. COMPLEX-ROTATED HAMILTONIAN OF THE MODEL

SYSTEM AT θ = 0.16, α = 0.65 WHEN n = 5

Table B.1. The coefficients and tensor product operators of complex-rotated
Hamiltonian Hθ at θ = 0.16, α = 0.65 when there are n = 5 basis functions.

YYIII -0.091665+0.096819i XXIII -0.091665+0.096819i

IIIII 4.599205-0.533073i ZIIII -0.251131+0.022353i

YZYII 0.0179156-0.030997i XZXII 0.0179156-0.030997i

YZZYI -0.007005+0.015446i XZZXI -0.007005+0.015446i

YZZZY 0.003680-0.009152i XZZZX 0.003680-0.009152i

IZIII -1.063280+0.032614i IYYII -0.089297+0.108259i

IXXII -0.089297+0.108259i IYZYI 0.014213-0.055870i

IXZXI 0.014213-0.055870i IYZZY -0.003869+0.033693i

IXZZX -0.003869+0.033693i IIZII -1.445349+0.113618i

IIYYI -0.209952+0.010748i IIXXI -0.209952+0.010748i

IIYZY 0.060302-0.008776j IIXZX 0.060302-0.008776i

IIIZI -1.127058+0.243702i IIIYY -0.336956+0.051691i

IIIXX -0.336956+0.051691i IIIIZ -0.712385+0.120784i
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C. COMPLEX-ROTATED HAMILTONIAN OF H−
2

AT θ = 0.18, α = 1.00 USING 6-31G BASIS SET

Table C.1. The coefficients and tensor product operators in H−2 ’s complex-
rotated Hamiltonian at θ = 0.18, α = 1.00 when using 6-31g basis set.

IXZXXZXI 0.018705 -0.003404i IIIZIXZX 0.038191 -0.006950i

ZIZIIIII 0.103932 -0.018913i XZXIXZXI 0.027826 -0.005063i

IXXIIIXX -0.002794+0.000508i IIZZIIII 0.106657 -0.019408i

IYIYIIII 0.024307 -0.004423i IIIIXXXX 0.015119 -0.002751i

IZIIIIZI 0.095226 -0.017328i IIIIIIXX 0.047512 -0.039979i

YYIIYZZY -0.019254+0.003504i XZXIYZYI 0.027826 -0.005063i

IZIIYZYI 0.013080 -0.002380i IIYYIIXX 0.034554 -0.006288i

XZXIIIZI 0.032587 -0.005930i YYYYIIII 0.015119 -0.002751i

XXIIIYYI 0.005216 -0.000949i IXIXIIII 0.024307 -0.004423i

IIIIXXYY 0.002918 -0.000531i IIIZXZXI 0.050249 -0.009144i

IIXXXXII 0.020481 -0.003727i YYIIYYII 0.019597 -0.003566i

IXXIIXXI 0.008283 -0.001507i IIIIXIXI 0.016733 -0.003045i

IYZYIIII -0.035671+0.030324i IYZYIIIZ 0.043018 -0.007828i

YYIIIYYI 0.005216 -0.000949i IIIIXZZX -0.028316+0.033738i

XXIIYYII 0.019597 -0.003566i IXXIIIYY -0.002794+0.000508i

ZYZYIIII 0.015436 -0.002809i XXIIYZZY -0.019254+0.003504i

IIIIIZZI 0.084620 -0.015398i YZYIIZII 0.011702 -0.002129i

IIYYXZZX -0.031698+0.005768i IIIIIXXI -0.007550+0.006494i

IXZXIZII 0.012371 -0.002251i IIIIYYYY 0.015119 -0.002751i

IIIZYZYI 0.050249 -0.009144i ZIIIIIII -0.230405+0.108639i

ZIIIIIIZ 0.159054 -0.028943i IXXIYZZY 0.006593 -0.001200i

IIIIIYIY 0.023153 -0.004213i IIYYIXXI -0.000541+0.000098i

YZZYIIII -0.027204+0.031862i IIIZIIZI 0.139579 -0.025399i

YZZYXXII -0.016647+0.003029i IIXXIIII 0.047746 -0.040370i

XIXIIIII 0.017118 -0.003115i YYIIXXII 0.019597 -0.003566i

YZYIIYZY 0.017127 -0.003117i IIIIZZII 0.084496 -0.015376i

YZZYXZZX 0.031161 -0.005670i IIZIIYZY 0.024717 -0.004498i

XZZXIXXI 0.004990 -0.000908i IYYIIYYI 0.008283 -0.001507i

IYZYIXZX 0.015728 -0.002862i XZZXXZZX 0.031161 -0.005670i
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Table C.1. (Continued) The coefficients and tensor product operators in H−2 ’s
complex-rotated Hamiltonian at θ = 0.18, α = 1.00 when using 6-31g basis
set.

IYZYIIZI 0.026040 -0.004739i IIZIIZII 0.093507 -0.017015i

IZIIZIII 0.106161 -0.019318i XXIIIXXI 0.005216 -0.000949i

IXZXIYZY 0.015728 -0.002862i ZIIIIXZX 0.030922 -0.005627i

IIIIIIYY 0.047512 -0.039979i XXIIIIYY 0.021209 -0.003859i

XXIIIIXX 0.021209 -0.003859i YYIIIIII 0.001646 -0.022572i

ZIIIIIZI 0.130169 -0.023687i IIYYIIYY 0.034554 -0.006288i

YZYIIIIZ 0.052229 -0.009504i YZYIIIII -0.021561+0.077956i

IIXXXZZX -0.031698+0.005768i IIIIZYZY 0.013729 -0.002498i

IYYIXXII 0.003919 -0.000713i IIZIZIII 0.133407 -0.024276i

YZZYYZZY 0.031161 -0.005670i XZXIZIII 0.040337 -0.007340i

ZIIIZIII 0.151365 -0.027544i YZYIIXZX 0.017127 -0.003117i

IIIIYIYI 0.016733 -0.003045i IIXXIYYI -0.000541+0.000098i

IIYYYZZY -0.031698+0.005768i IYYIIIII -0.009705+0.008779i

YZZYYYII -0.016647+0.003029i XZXIIXZX 0.017127 -0.003117i

IIIIIXIX 0.023153 -0.004213i IIZIYZYI 0.033580 -0.006110i

ZXZXIIII 0.015436 -0.002809i YZYZIIII 0.020644 -0.003757i

IIIIYZZY -0.028316+0.033738i IXZXZIII 0.034152 -0.006215i

YZZYIYYI 0.004990 -0.000908i ZIIZIIII 0.126456 -0.023011i

YZZYIIXX -0.029557+0.005379i XZZXYZZY 0.031161 -0.005670i

IYYIIIYY -0.002794+0.000508i IXZXIIII -0.035671+0.030324i

IXZXIIIZ 0.043018 -0.007828i ZIIIYZYI 0.038659 -0.007035i

IIXXIIXX 0.034554 -0.006288i ZZIIIIII 0.085046 -0.015476i

IIIZZIII 0.158431 -0.028830i YXXYIIII 0.012162 -0.002213i

IZIIIYZY 0.013159 -0.002395i IYZYXZXI 0.018705 -0.003404i

XXIIXXII 0.019597 -0.003566i IIIIYXXY 0.012201 -0.002220i

IIIIZIII -0.231557+0.112195i IIIIZIIZ 0.128680 -0.023416i

YZYIXZXI 0.027826 -0.005063i IIYYYYII 0.020481 -0.003727i

IIIIXZXZ 0.020604 -0.003749i IIIIXZXI -0.030067+0.081498i

IIYYIYYI -0.000541+0.000098i IYYIYZZY 0.006593 -0.001200i
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Table C.1. (Continued) The coefficients and tensor product operators in H−2 ’s
complex-rotated Hamiltonian at θ = 0.18, α = 1.00 when using 6-31g basis
set.

YZYIYZYI 0.027826 -0.005063i IIZIXZXI 0.033580 -0.006110i

IIXXYZZY -0.031698+0.005768i IIIIIIZI -0.611815+0.267480i

IIIIIIZZ 0.107859 -0.019627i YZZYIXXI 0.004990 -0.000908i

IIIIIXZX -0.012982+0.018373i IXXIXXII 0.003919 -0.000713i

IIZIIIII -0.612966+0.271036i XZXIIYZY 0.017127 -0.003117i

IIXXIXXI -0.000541+0.000098i IIIIYYII 0.000598 -0.021276i

YYIIIIXX 0.021209 -0.003859i XZZXYYII -0.016647+0.003029i

XZXZIIII 0.020644 -0.003757i YZZYIIYY -0.029557+0.005379i

YYXXIIII 0.002957 -0.000538i YZYIIIZI 0.032587 -0.005930i

IIXXYYII 0.020481 -0.003727i IXZXIXZX 0.015728 -0.002862i

IXZXIIZI 0.026040 -0.004739i XYYXIIII 0.012162 -0.002213i

ZIIIXZXI 0.038659 -0.007035i IIXXIIYY 0.034554 -0.006288i

YYIIIIYY 0.021209 -0.003859i IZZIIIII 0.087497 -0.015922i

IZIIIZII 0.094105 -0.017124i IIYYXXII 0.020481 -0.003727i

IIIZIYZY 0.038191 -0.006950i IYYIIIXX -0.002794+0.000508i

IXXIXZZX 0.006593 -0.001200i IIIIZXZX 0.013729 -0.002498i

IIIIIYYI -0.007550+0.006494i IIIIZIZI 0.103932 -0.018913i

YYIIXZZX -0.019254+0.003504i IXXIIIII -0.009705+0.008779i

IIIIXXII 0.000598 -0.021276i XZZXIYYI 0.004990 -0.000908i

IZIIIIIZ 0.110454 -0.020099i IZIIIIII -0.388873+0.102313i

IYZYIZII 0.012371 -0.002251i IXXIIYYI 0.008283 -0.001507i

IYYIYYII 0.003919 -0.000713i YYIIIXXI 0.005216 -0.000949i

XXYYIIII 0.002957 -0.000538i IXXIYYII 0.003919 -0.000713i

IIIIYZYZ 0.020604 -0.003749i IIIIYZYI -0.030067+0.081498i

IYZYIYZY 0.015728 -0.002862i IZIIXZXI 0.013080 -0.002380i

IIIIIIII 1.734311 -1.110499i IIIIIIIZ -0.896247+0.369556i

IIZIIXZX 0.024717 -0.004498i IZIIIXZX 0.013159 -0.002395i

IIZIIIZI 0.120598 -0.021945i XZZXIIYY -0.029557+0.005379i

IIIIXYYX 0.012201 -0.002220i IYZYZIII 0.034152 -0.006215i
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Table C.1. (Continued) The coefficients and tensor product operators in H−2 ’s
complex-rotated Hamiltonian at θ = 0.18, α = 1.00 when using 6-31g basis
set.

IIYYIIII 0.047746 -0.040370i IXZXYZYI 0.018705 -0.003404i

XZXIIIIZ 0.052229 -0.009504i XZXIIIII -0.021561+0.077956i

XZZXXXII -0.016647+0.003029i ZIIIIYZY 0.030922 -0.005627i

YIYIIIII 0.017118 -0.003115i IYYIXZZX 0.006593 -0.001200i

XZZXIIII -0.027204+0.031862i IIIIIYZY -0.012982+0.018373i

XXIIXZZX -0.019254+0.003504i XZXIIZII 0.011702 -0.002129i

ZIIIIZII 0.102700 -0.018688i IIIIIZIZ 0.092214 -0.016780i

IIIIIZII -0.386698+0.100135i IYYIIXXI 0.008283 -0.001507i

IIIZIZII 0.105681 -0.019231i XXIIIIII 0.001646 -0.022572i

IIIIYYXX 0.002918 -0.000531i IZIZIIII 0.092214 -0.016780i

YZYIZIII 0.040337 -0.007340i XXXXIIII 0.015119 -0.002751i

XZZXIIXX -0.029557+0.005379i IIIZIIIZ 0.184425 -0.033560i

IIIZIIII -0.894071+0.367379i IIZIIIIZ 0.144136 -0.026228i

IYZYYZYI 0.018705 -0.003404i
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