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ABSTRACT

This dissertation concerns the development of quantum computing algorithms for solving
electronic structure problems. Three projects are contained: comparison of quantum com-
puting methods for the water molecule, the design and implementation of Fully Controlled
Variational Quantum Eigensolver(FCVQE) method, and quantum computing for atomic and
molecular resonances.

Chapter 1 gives a general introduction to quantum computing and electronic struc-
ture calculations. It includes basic concepts in quantum computing, such as quantum bits
(qubits), quantum gates, and an important quantum algorithm, Phase Estimation Algo-
rithm(PEA). It also shows the procedure of molecular Hamiltonian derivation for quantum
computers.

Chapter 2 discusses several published quantum algorithms and original quantum algo-
rithms to solve molecules’ electronic structures, including the Trotter-PEA method, the first-
and second-order Direct-PEA methods, Direct Measurement method, and pairwise Varia-
tional Quantum Eigensolver(VQE) method. These quantum algorithms are implemented
into quantum circuits simulated by classical computers to solve the ground state energy and
excited state energies of the water molecule. Detailed analysis is also given for each method’s
error and complexity.

Chapter 3 proposes an original design for VQE, which is called Fully Controlled Vari-
ational Quantum FEigensolver(FCVQE). Based on Givens Rotation matrices, this design
constructs ansatz preparation circuits exploring all possible states in the given space. This
method is applied to solving the ground state energy curves for different molecules, includ-
ing NaH, HyO, and N5. The results from simulators turn out to be accurate compared with
exact solutions. Gate complexity is discussed at the end of the chapter.

Chapter 4 attempts to apply quantum simulation to atomic and molecular resonances.
The original design implements the molecule’s resonance Hamiltonian into the quantum
circuit, and the resonance properties can be obtained from the final measurement results.
It is shown that the resonance energy and width of a model system can be calculated by

executing the circuit using Qiskit simulators and IBM real quantum computers as well. A

12



proof of concept is also shown for the resonance properties of a real molecule, H;. In the
future, when there are more available qubits, longer coherence time, and less noise in quantum

computers, this method can be used for larger molecular systems with better accuracy.
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1. INTRODUCTION TO QUANTUM COMPUTING AND
ELECTRONIC STRUCTURE CALCULATIONS

1.1 Overview

Electronic structure calculations are at the heart of quantum chemistry. It aims to
figure out the properties of stationary states of many electrons that interact with each other
under external potential and inner Coulomb repulsion. Solving electronic structures will
significantly benefit physics- and chemistry-related fields, such as materials engineering and
pharmaceutical development.

Electronic structure can be obtained by solving the Schrodinger equations for atoms,
molecules, or extended systems. However, the determination of solutions is fundamentally
hard for large systems. When the system size increases, the corresponding Hilbert space’s
dimensionality will increase exponentially, which makes the calculation soon exceed the cur-
rent computers’ computing power. Over the decades, many quantum chemistry methods
have been put forward to solve the Schrodinger equation to chemical accuracy, 1 kcal/mole,
such as ab initio, Density functional, Density Matrix, Algebraic, Quantum Monte Carlo, and
Dimensional Scaling methods [1]-[4]. However, all of them encounter the computing resource
escalation as the calculation pushes to either higher accuracy or larger systems. The com-
putational complexity analysis [5]-[7] suggests this difficulty of quantum system simulation
is inherent.

Quantum computing algorithms for electronic calculations provide a promising route to
advance electronic structure calculations for large systems. Since quantum computers by
nature have quantum mechanic properties such as entanglement and superposition, they
have the potential to solve a system at a much lower cost of time than the simulations
done by classical computers. The development and use of quantum computers for electronic
structure calculations has the potential for revolutionary impact on the way of computation
in the future[1].

In this thesis, I would like to leverage known or original quantum algorithms to solve
molecular systems’ electronic structure. To begin with, I will give an introduction to basic

concepts of the most popular quantum computing model, the quantum circuit model. Then

14



I will elaborate how to transform an electronic structure calculation problem into a suitable
problem for quantum computers. These two introductions will lay the foundation for my
explorations into quantum computing methods for electronic structure calculations in later

chapters.

1.2 Quantum Circuit

1.2.1 Quantum Bits

In classical computation, a bit is used as a basic unit of information, which is able to
store a single binary value of 0 or 1. Quantum bit, or qubit, is an analogous concept in
quantum computation. Similar to the classical case, qubit also has two basic states |0) and
|1) corresponding to 0 and 1. The difference is that, a qubit can also store the superposition

of these two states, like:

|v) = al0) + F|1), (1.1)
or in the vector form:
wy=1"]. (1.2)
B

In the above two representations, o and 5 are two complex numbers that satisfy the normal-
ization condition: |a|? + |f]? = 1. Classical bits are determined to be measured in the state
0 or 1. However, for a qubit like the above |¢), because of quantum mechanic effects, when
doing measurement, it will collapse into either |0) or |1) with probability |a|?* or |3]2. The
power of superposition and the problem of measurement for qubits makes it behave different

from bits.

15



Multiple bits can be used to represent a binary number of multiple digits. For example,
2 bits are able to store 4 possible states: 00, 01, 10 and 11. Correspondingly, a pair of qubits

will represent a superposition of 4 quantum basis sates, like
|77/J> = (o |00> + Qo1 |01> + 10 |10> + 11 |11> s (13)

where |ay;]? gives the probability of getting state |ij) after measurement and satisfies the nor-

malization condition. If only one qubit is measured, for example the first qubit, the measure-
v/ leoo |2 +|eor |2 or v/ letol 2+ a1]?
a0 |2 +|ao1|?+|a1o|?+H a1 ]? \/\a00\2+|a01|2+|a10|2+|a11|2 ’

while the qubits’ state after measurement will be respectively

ment result will be 0 or 1 with probability 7

_ [6700) ’00) + ap1 |01> _ 10 ’10) -+ 11 |11>

1) .
v oo|? + o [? V0ol + g [?

Similarly, a n-qubit register can store a superposition of 2" basis states and will collapse

(1.4)

[¥)

when measured.

1.2.2 Quantum Gates

There are elementary logic gates in classical computation, including AND, OR, XOR,
NOT, etc., that can manipulate bits’ states based on Boolean algebra. In quantum compu-
tation, quantum gates are used for similar purposes. The analogous quantum gate for NOT
gate is called X gate and can be used to flip the qubit state between |0) and |1), which has

matrix form:

X = (1.5)
10
Applying X gate to the single-qubit state |i))leads to
0 1) [« 15}
X |¢) = = : (1.6)

1 0/ \p Q@

16



This X gate is very much like Pauli matrix o,. There are also Y gate and Z gate similar to

Pauli matrices o, and o, as follows:
Y = L= : (1.7)

Hadamard gate H is also very useful in algorithm implementations:

1 (1 1

HEW L (1.8)

Other useful operators for one-qubit manipulation includes three rotational operators R, (6),

R,(0) and R.(0):

0 0

) COS 3 —isin 2
R,(0) = e 9%/ = cos QI —isin QX = 2 2|, (1.9)
2 2 ') 0
—1S1n 9 COS 5
) 0 0 cos? —sin?
R,(6) = e /2 — cos—[ —isin=Y = 2 2. (1.10)
v 2 2 . 9 0
S1n 5 COS 9
) 9 0 e—iQ/Q O
R.(0) = e 9%/? = cos =T —isin -7 = : (1.11)
2 2 0 olf/2

Here [ in the formulas is a two-by-two identity matrix. Any unitary operation U can be

decomposed into a phase and two of the above rotational operations[8]. For instance,

U = e*R.(8) R, (7)R-(9)

ei(a_lg/2_5/2) CcOS % _ei(a_ﬁ/2+5/2) Sin % (1 12)

ei(a+5/2_6/2) Sin % ei(a+6/2+6/2) CcOS %

17



To entangle different qubits’ states together, controlled operations are introduced. The
primary one is controlled-NOT gate, or CNOT gate. In a two-qubit register, using the first

qubit to control the second one has the following matrix representation:

CNOT = : (1.13)

o o o =
o o = O

o o O
o = O O

with circuit representation as Figure 1.1. For an arbitrary gate U, the general control

——
—b—
Figure 1.1. Quantum circuit representation of CNOT gate.

operation, known as controlled-U, can be expressed as

10 10
01 01
[hbt!|controlled-U = ) (1.14)
10
U
01

with circuit representation as Figure 1.2. There are also multi-controlled qubit gates, like
Toffoli gate, which has two control qubits and one target qubit. The circuit representation
is shown as in Figure 1.3. This gate can be implemented by single-qubit gates and CNOT
gates. It can also be a building block for other multi-controlled gates. For example, a 3-

controlled NOT gate is equal to 3 Toffoli gates when an extra ancilla qubit is available,

Figure 1.2. Quantum circuit representation of controlled-U gate.

18
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L

Figure 1.3. Quantum circuit representation of Toffoli gate.

as shown in Figure 1.4. Similarly, a 3-controlled U gate is equal to two Toffoli and one

2-controlled U gate. The 2-controlled U gate can be further decomposed as shown in Figure

1.5, where U = V2.

o1l
TITT

Vb
N

fan)
>
fan)
>

Figure 1.4. Decomposition of 3-controlled NOT' gate into Toffoli gates.

'

.
R A
—{u 4jﬂ vi—{v

Figure 1.5. Decomposition of 2-controlled U gate into controlled gates.

1.2.3 Phase Estimated Algorithm

One of the most important algorithms for quantum chemistry is Phase Estimation Al-
gorithm(PEA)[9], [10]. PEA can be used to solve the phase of some operator’s eigenvalue.
Suppose a unitary operator U has an eigenvector |u) with corresponding eigenvalue e?™%
i.e. Ulu) =e*™? |u). PEA can estimate the value of ¢ via the process of preparing the state
|u), applying the Hadamard gates and the controlled-U operations, performing the inverse

Fourier transformation, and doing the final measurements.

19



Assume that the input state |0) |u) has been prepared, in which |0) is an ancillary qubit’s
state. After applying a Hadamard gate to the ancillary qubit, and then a controlled-U? gate
to the whole system, the output state would be

|0> + e?ni(ngo) |1>

(1.15)

If ¢ has a binary estimation of 0.¢1ps...¢0;, by introducing ¢ ancillary qubits and applying

controlled-U2 ™" operation on each j* qubit, the output state would be

0) + 1) [0) + & (1) [0) + O 1)

V2 V2 V2 . (1.16)

|0> + e2ni0.<pt ’1> |0> + eQniO.th...gﬂt ‘0) + eQniO.galcpg...gat |1>

i vz

This form is very much like the outcome of quantum Fourier transformation:

L (|0) + e [1))(]0) 4 MOzt - - (|0) + 2093 1))
litj2--je) — 572 (1.17)

In this way, by performing the inverse quantum Fourier transformation, we can get the

output state |p1¢s...¢0;) and obtain ¢ ~ 0.¢1ps...¢0; by measurements.

1.3 Molecular Hamiltonian Derivation for Quantum Computers

The time-independent Schrodinger Equation for a molecular system is

Hmol |¢> =F |77Z}> ’ (118)

where H,,, is the molecular Hamiltonian, |¢)) is a multi-particle eigenstate of the molec-
ular system, and FE is the corresponding eigenenergy. In Born-Oppenheimer approxima-
tion(BOA), nuclei can be treated as stationary point charges. In this way, the molecular

Hamiltonian can be simplified as

_Z;;vz ZZ +ZZ*. (1.19)

1J>11
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Here Z, is the o' nuclear charge, 7 is the position of electron i, ryj is the distance between
the two points 7; and rj, and ]%U is the position of o' nucleus. To solve the electronic
structures of this Hamiltonian by quantum computer, we need to transform it into the form

of Pauli matrices
H=> hP. (1.20)

Here h; is some coefficient and P; is a tensor product of Pauli matrices X, Y, Z and 2-
by-2 identity matrix I. The detailed steps for transformation are shown in the following

subsections.

1.3.1 Second Quantization

After selecting basis functions for the molecular system, its Hamiltonian can be expressed

in the second quantization form[4], [11], [12]

1
0= Zhija;raj + 2 > hijkl@;ra}akah (1.21)
i7j i7j7k7l
Here a] and a; are fermionic creation and annihilation operators, and hij and hijp, are
coefficients for one-body and two-body interactions. These coefficients can be calculated by

the following expressions:

D | Zs .
= [ G (1) (—5 V3 = 30— (),
7 |1 — Bl (1.22)
P * (= 1 - —
hijr = /d7”1d7”2X1 (rl)Xj (TQ)THXIC( 2)x1(71)

—\

Here x;(7) is the i'" spin orbital in the basis function set.

1.3.2 Mapping from Fermionic Systems to Qubit Systems

The fermionic Hamiltonian in the second quantization form is not suitable for quantum
computers yet. We still need to transform this Hamiltonian into the Hamiltonian of the

Pauli matrix form. There are mainly three transformations to build the mapping.
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The first transformation, also the most well-known one, is Jordan-Wigner transforma-
tion[13]. The fermionic creation and annihilation operators will be replaced respectively by

Pauli matrices[11]

1 )
al = 5(Xj —iY)) ® Z;2, (1.23)
1
a; = §(Xj +1iYj) ® Z7, (1.24)
where
IN=20Z 5,0 - Q21 ® Z. (1.25)

Note that for simplicity, the identity operator is omitted in tensor products when a qubit is
not operated by any Pauli matrix. In this Hamiltonian transformation, the fermionic state

and the qubit state would be exactly the same:

| foo1fn—2---f1fo) = |@n-1Gn—2---100) ,
¢ = fi€{0,1}.

(1.26)

Here f; represents the occupation number of the i** spin-orbital, ¢; represents the state of
the i qubit, and n is the number of spin orbitals.

The second transformation is based on the parity basis encoding[11], [14]. Rather than
store the occupancy number of the it" spin-orbital, now qubit ¢; is used to store the parity

of all occupied spin-orbitals up to it spin-orbital, i.e.
i
¢ =Y fr mod2e€ {0,1}. (1.27)
k=0
The mapping from fermionic creation and annihilation operators becomes

1 .
ozjT = X;L ® §(Xj ® Zi_1 — 1Y), (1.28)

1
aj = Xj:1 ® i(XJ ® Zj_l —+ IYE), (129)
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where
inl =X, 10X, 0 - ® Xj+2 & Xj+1. (1.30)

The third one is called Bravyi-Kitaev transformation[14]. It is kind of a variant of parity
basis transformation, while the difference is that each qubit stores the parity of a specially
designed part of spin-orbitals’ occupancy numbers.

After any of the above transformation, the molecular Hamiltonian can be written in Pauli

matrix form

which can be used for quantum algorithms. One thing worth to be mentioned is that, if
expanded in 2" x 2™ matrix form, the Hamiltonian for molecules will always be real and

symmetric because hjj, hij are real, and aJ-T, a; are real matrices.
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2. COMPARISON OF QUANTUM COMPUTING METHODS
FOR THE WATER MOLECULE

2.1 Introduction

In 1982, Feynman proposed to calculate a large quantum system by precisely control
some smaller quantum system[15]. He claimed that we are able to create an analogy to some
quantum system, if we have enough control over the states of some other quantum system.
In the previous chapter we also created analogies: by Jordan-Wigner/Parity /Bravyi-Kitaev
transformation [13], [14], we mapped an electronic structure Hamiltonian to a Hamiltonian of
Pauli matrix form, which preserves energy eigenvalues [16]. Then the evolution under original

~t can be approximately simulated on quantum computers. This quantum

Hamiltonian, e
simulation process may serve as a potentially efficient method to calculate eigenenergies of
a given molecule. Classically, the computational cost of this problem grows exponentially
with the system size, n, the number of orbital basis functions[17]. However, using phase
estimation algorithm(PEA) [9], [18], molecule’s ground state energies can be calculated with
gate depth O(poly(n)) [19]-[21].

The most general way to approximately implement the propagator, e *#  is through a
Trotter-Suzuki decomposition[22]-[24]. Also, it is shown that the Hamiltonian dynamics
can be simulated through a truncated Taylor series [25], which is generalized as quantum
signal processing[26]. Recently, a direct circuit implementation of the Hamiltonian combined
with phase estimation algorithm (Direct-PEA) is also proposed [27]-[29]: the designed circuit
approximates the time evolution operator by using the truncated series such as U = I— % and
U=tH+i(I— %), in which k and ¢ are parameters to restrict truncation error. Then these
unitary operators can be used to calculate ground state energies of Hamiltonians. Recently
an approach called Variational Quantum Eigensolver (VQE) method has been introduced
by Aspuru-Guzik etal [30], [31], which is a hybrid quantum-classical algorithm and will
significantly reduce the gate complexity at the cost of a large amount of measurements. It

has also been applied on real-world quantum computers to obtain ground state energies of

molecules such as Hy, LiH and BeH; [32], [33].
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This chapter explores all the above methods to calculate the ground state energy curve of
the water molecule[34]. In the beginning, the way to reduce the number of qubits required for
simulation is illustrated. Then, it discusses five methods of electronic structure simulation on
quantum computers: a phase estimation method using first order Trotter-Suzuki decomposed
propagator (Trotter-PEA), two direct implementations of the Hamiltonian of Pauli matrix
form (Direct-PEA), a direct measurement method and a specific VQE method(Pairwise
VQE). Each method gives the circuit design, error and complexity analysis and the simulation
results: a ground state energy curve. At the end of this chapter, all the method’s accuracy

and gate complexity are compared.

2.2 Qubit Reduction for Water Molecule

Implementing quantum algorithms either in a quantum computer or in a simulated clas-
sical computer is very time-consuming and space-consuming when qubit number is large.
For molecular systems like water molecule, we can take advantage of symmetry properties
and do qubit reduction in advance [33], [35].

Taking STO-3G basis set for water molecule, the 1s orbitals of each hydrogen atom along
with the 1s, 2s, 2p,, 2p, and 2p, orbitals for oxygen atom need to be considered. Considering
spin, there are a total of 14 molecular orbitals. Assuming that the two molecular orbitals
of the largest energies are vacant, the Hamiltonian after second quantization can then be
expressed as

12 12
1
H = Z hijagaj + 5 Z hijklafa}akal. (21)

ij=1 i,j,k, =1
Here hy; and hyy, are calculated by Eq. (1.21). The molecular orbitals are ordered from 1 to
12as {11,271 ..,61,14,2],..6 }}, in which spin-up orbitals are ordered from lowest to
highest energy and then spin-down orbitals the same. Group the 4 lowest energy spin-orbital

{11,21,1],2 ]} into the set F = {1,2,7,8} and assume that for the ground state of water
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molecule, the spin-orbitals in the set F' will be filled with electrons. Then some one-body

and two-body electron interaction terms can be simplified in the following ways:

aJ{al =1, agag =1, a$a7 =1, a;ag =1,

ala; =0, ifi#j,andi€ For j€F, (2.2)

ala, i=1i€F {jk}¢F,

i ala;, j=k.jeF{il} ¢F, 23)
—dla;, i=k,ieF{jl}¢F,

—dlay, j=1je F{i,k} ¢ F.

The above simplification along with the ability to neglect two-body operators that contains
an odd numbers of modes in F restricts spin-orbitals to a new set {3 1,4 1,5 1,6 1,3 |,4 |
,5 1,6 ]} After relabelling the orbital set 1 to 8 and doing parity basis transformation, the
fermionic Hamiltonian can be mapped into an 8-local Hamiltonian representated by tensor

products of Pauli matrices: H = Y; h; ;. The mapping of states is

| foo1fo—2---f1fo) = |@n-1Gn—2.--100) ,
i (2.4)

¢ =Y _ fr mod2e€ {0,1}.
k=0

Assuming that in the ground state of water molecule, half of the left 6 electrons are spin-up
while the other half are spin-down. The parity value in ¢4 and gs are determined to be |1) and
|0) respectively. This means only Zy4, Iy, Zs, Is will act on ¢4 and gg. Since Z4|q4) = — |q4)
and Zg |gs) = |gs), Z4 and Zg can be substituted by —I; and Ig respectively, which reduces

the Hamiltonian to a 6-local one. From now on,
H = Z Oéihi (25)

will be to represent this reduced 6-local Hamiltonian. Here {«;} are coefficients and {h;} are

tensor products of Pauli matrices {Xj, Y}, Z;} and identity matrix [;. This Hamiltonian will
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be used for method in the following sections to solve electronic structure problems. As an
example, water molecule’s Hamiltonian at O-H bond length 1.9 a.u. is shown in Appendix
Al

For other molecules, a similar process can also be applied to obtain a new Hamiltonian

with reduced qubit requirement.

2.3 Trotter-PEA Method

2.3.1 The Procedure of the Method

For each h; in the Hamiltonian H, the operator e ®" can be easily implemented into

quantum circuit. Since h; doesn’t commute with each other for most cases, generally the
—iHt

propagator e can not be implemented term by term, i.e. e #? £ [TL | e it However,
it can still be a good approximation for a small t, according to the first-order Trotter-Suzuki

decomposition

L
U=][e ™" =e ™+ 0O(A?). (2.6)

i=1

In the above equation, A is defined as the sum of the absolute value of coefficients: A =
S°E | Jai|, and the error of approximate is O(A2t?) for a small time ¢. Note that Eq. (2.6) is a
bit different from original Trotter-Suzuki decomposition, for here t can be adjust as small as
necessary for error control. The U operator is very easy to implement on the state register
since it only requires a sequence of multi-qubit rotations.

The unitary operator U can be utilized in PEA to extract the energy from the phase.
Using extra ancilla qubits, desired accuracy is able to be achieved by iterative measure-
ments[19], [36], [37]. This PEA based on the first order Trotter-Suzuki decomposition is
called Trotter-PEA in this work. Although higher order Trotter-Suzuki decompositions are
available, their form are more complicated, especially for order higher than 2. In this way,
only first order case is discussed here for simplicity.

A forward iterative PEA[29] that estimates the phase from the most significant bit is

used in the simulation to reduce required qubits. It only needs 1 qubit for measurement as
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shown in Figure 2.1. Assuming the input state |1)), is the ground state of H, the state before

the measurement operation would be

1 — 2700k 410k 42..—0.01)

2

1 + ei2n(0.¢k+1¢>k+2 —001)
2

et |0) [v), + i) ), . (2.7)

If the measurement qubit has a greater probability of output state |1), ¢p1 = 1. Otherwise
orr1 = 0. The ground state energy can be calculated by £ = —21n X 0.¢1¢2¢3---. The

energy curve of water molecule is shown in Figure 2.2.

0) — H T R.(-%)HHHA—

V) U2

Figure 2.1. Forward iterative PEA circuit with initial state |0) |¢),. Here
|¥), is the ground state of the Hamiltonian, H is the Hadamard gate, U is the

approximate propagator and RZ(—g) is a Z rotation gate.

—— Diagonalization
Trotter PEA(1st order
~74.4- > { )
9
—74.5 g 0.001
$ § 0000 Mdpp B e n by
— o
| 7461 § -0.001
c “ T T T
;\ 1.5 2.0 2.5
9 —74.7 R (O-H length)/a.u.
Q
c
(NN]
—74.8 A
—74.9 A
—75.0

1j2 1j4 1j6 1j8 2j0 2i2 2j4 2j6 2j8
R (O-H length)/a.u.

Figure 2.2. Ground State Energy Curve for HyO, as a function of the bond

length O-H in a.u. for Trotter-PEA. Errors are shown in the window of the
figure.
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2.3.2 Error Analysis

Based on Eq. 2.6, the state after performing U operator can be represented by

)y = (71 = O(A%) [y),

= (1= O(A22)e BHOUD 1) O(4%2) ) (23)

In the above equation |¢)*) is a state perpendicular to [) . Note that, O(A%?) is an operator
before it’s applied to |¢),, and is a number afterwards. From Eq. (2.8), it can be seen that
the possibility of measuring the correct ground state energy is 1 — O(A?t?). After 2P gates,
where D is the number of binary digits that will be measured by PEA, the probability of
state |0) [¢), should be still large enough. Set the final coefficient to be 1 — £, then

(1—0(A%)*" =1 - é (2.9)

270 = O(A%). (2.10)

The error of the energy from the phase measurement is ¢, = O(A%*t?). The error of the
energy from PEA is ¢ = O(277/t) = O(A?t). Combining these errors together the total
error becomes € = O(e; + €3) = O(A%).

For the second order Trotter-Suzuki decomposition

mzht iajhit

H e 2 =0(A%), (2.11)

71Ht H e~

a similar analysis can be done and the error will be e = O(A%¢?).

2.3.3 Complexity Analysis

n qubits are required for the state and at least 1 extra qubit is required for PEA process.
In this way, the qubit complexity is O(n).

If the precision of the ground state energy needs to be D bit, O(2P Ln) standard gates, i.e.
single qubit gates and CNOT gates, are required to implement the PEA. Since L = O(n*) for
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molecular systems and 2P = O(3) = O(?—;), the total gate complexity would be O(%)

for Trotter-PEA method.

2.4 1% order Direct-PEA Method

2.4.1 The Procedure of the Method

Apart from Trotter-Suzuki decomposition, there are still other methods to approximate
propagator, such as Taylor series. It was proposed[28] that for any given H and large x, an

approximately unitary operator can be constructed by

H L
U=1I-i-, k> Jas| > ||H||. (2.12)
i=1

When |1)), is an eigenstate of H and E the corresponding eigenenergy, we have

H
_17
K

U), = (1 =1 ) [), % ), =% o), (213

The eigenenergy FE is encoded directly in the approximate phase and PEA may be used
to extract it out. This is the motivation behind directly implementing the Hamiltonian in
quantum simulation.

To implement the non-unitary matrix U, one way is to enlarge the state space and

construct a unitary operator U,[25] with similar properties. Rewrite U as

i L L
U=1-=-> ah=3 5Y; (2.14)
=1 =0

in which 8; > 0 and V] is equal to ih; or —ih; based on ;. By introducing a m-qubit ancilla

register where m = [log, L], a multi-control gate, V, can be constructed to satisfy

Viidal)e = 11)a Vilth)s- (2.15)
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Construct a unitary operator B that acts on ancilla qubits and has the property

2m—1 2m—1

B10), Z VBiliYe, s = =2 8 (2.16)
=
in which f3; are defined as 0 when L < j < 2™. Then U, can be defined as
U, = (B"® IV (B®I®). (2.17)
Applying U, on the input state |0), 1)), we obtain

Uy [0}, [4), = (B' & f®">V<B @ 1°")[0), |¢),
= (B'@ I*")V Zf B 1) 10,
= (Bt @ 1*")— Z\fu
=T(B f®”>72 VBl Vi)
(T (BT @ 1) Zf Bl

j=2m

= (B0),) Zﬂ] ¥t 3 liha ),
= 210), U 1), + |91 (218)
Here II = |0), (0], ® I®™ and |®7) is defined as a state orthogonal to |0), [¢)),. Then the

non-unitary operator U can be implemented by applying the unitary operator U, as seen in

Figure 2.3

0), —+— B Bt —
V
|w>s //

Figure 2.3. Gate U, in Direct PEA circuit, gates V and B are shown in Eq.
(2.15) and Eq. (2.16)
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...........................................................................

repeat 2¥ times

Figure 2.4. The quantum circuit for the Direct PEA method considering
oblivious amplitude amplification.

Since k > ||H|| > E, the eigenenergy for the state |¢), is successfully implemented in the
phase:

1_i% 1
Url0)o 1)y = ——=10), ¥}, +®1)

V 1 + %22 —itan~! £
= e MR 0), (9, + |9)

—itan=1 E
— pe T R0, [0), 4+ /1 2[00 (2.19)

in which p is defined by \/1:?, and |®1) is normalized. This U, gate can then be used for
PEA or iterative PEA to solve the eigenenergy.

To make sure the output is accurate after PEA process, p is demanded to be as close to 1
as possible. Oblivious amplitude amplification[38] helps to amplify the probability without

affecting phase in this case. Define the helper operator Uy and the rotational operator () as

Uy =210y, (0], — I®™ (2.20)

Q = Up(Up @ I*MUN(Up © I5). (2.21)

The probability of |0), |¢), can be increased by performing ) multiple times after U, op-
erator. The details are in the next Error Analysis section. The quantum circuit for the
Direct-PEA that considers oblivious amplitude amplification is plotted in 2.4. The con-
trolled U2" gate in the Figure 2.1 is replaced by the repeated dashed boxes in 2.4.

32



By using the same circuit and procedure as the Trotter-PEA, except replacing U by
U, = QNU,, the ground state energy of water molecule can be obtained, as shown in Figure

2.5.

- Diagonalization
Direct PEA(1st order
~74.4- » Di ( )
g 0.0025
—74.5 A ) >>>> . > »P
% % 0.0000 | ——= { 3 —
o "E > 'S > >
4‘_05 —74.6 1 2 -0.0025 A
c “ T T T
; 1.5 2.0 2.5
9 —74.7 R (O-H length)/a.u.
]
c
L
—74.8 A
—74.9 A
—75.0

12 14 16 18 20 22 24 26 28
R (O-H length)/a.u.

Figure 2.5. Ground State Energy Curve for H,O, as a function of the bond
length O-H in a.u. for 1% order Direct-PEA. Errors are shown in the window
of th figure.

2.4.2 Error Analysis

Eq. 2.19 can be rewritten as

U, [0),, [10), = cos B [0), [4h), + sin 8 |*), (2.22)

” \/1+E—2
in which A = Y2771 5, = 2L | |au| > |E|, 6 = arccos . By applying the operator Q N

times after U,., the resulting state becomes

QYU [0), 1), = (=1)" cos((2N + 1)8)e ™" & [0}, [}, + sin((2N + 1)8) )

— pr [0, 1), + /1 — p2 &) (2.23)
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The idea is, when & is large, we have

1+4

A
K

+ |-

1
;1
1+

0 = cos™

~ 0,

= [

A

In this way, by choosing large IV and & to satisfy (2N +1)0 = w, which means £ =

we are able to get cos((2N 4 1)6) ~ —1. Since

/1
0—0= cos_l(;) — cos™( i )

1+
4
K

z\:>I

V2 ,
:TTM

where 1 = |£| < 1, after N rotations we have

ps| = [ cos((2N +1)8)]
=cos((2N +1)(6 —9))

(2N +1)* , A, A,
—1 = s 10
S ER O
n° 1
=1- I 7+O( 5)
This means if N is large enough and we set
_ Acos(2N+1)

1 —cos(5x57)

we are able to amplify the probability of |0), 1), to be extremely close to 1.
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cos(3x77)
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If D-digit accuracy are needed after the PEA step, we have to make sure that after 2P

gates of U, = Q"U,, the probability of state |0), [¢), is still large. Assuming the threshold

is1— 2%, then the following formulas needs to be satisfied:

1
D
e =1-55 (2.29)
6,4
-D __ mn 1 1
. 2 In(8)
D= mln{logQ(Tnél) +4log, N} ~ —1.81 + 4log, N (2.31)

1
21

1 -F

Because the phase ¢ got from D-digit output are used used approximate 5-tan™" ==, and

the error for the phase is 277, the error of the energy is

ot 1 1
- 4 O(—
FmE N2 O

e =tan(2r x277) x &

_ 17.909'A _ 17.90

< A (2.32)

2.4.3 Complexity Analysis

n qubits are required for a molecular system’s state and at least m = [log,(L)]| qubits are
needed to represent the ancilla state. We also need at least 1 qubit for multi-control Toffoli
gates in B gate construction[39], and at least 1 qubit for PEA process. Since L = O(n%),
the qubit complexity is O(n).

The construction of B operator can be done through Householder transformation

ju) ulg, (2.33)

where |u), = B|0), — |0),. The complexity of this gate has been analyzed before[28], [40]-
[42]. Since Givens rotation G,_s ,—1(6—1) can nullify By 1, it can also nullify all B; ;_; for
j# L —1and update By_y,;—1 to 1 due to B’s special form. GF_, ;_;(0,-1) would nullify

all Br_1; except Br_q 1. For all indexes smaller than L — 1 but larger than 1, we will do
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the same thing. At the end we can choose Gy 1(0;) to update the last 4 elements of B and

finally obtain an identity matrix. Thus we have:

L—1 2
Gi1(0h) [[ Gi-1i(0)B I GL1.(6) =1, (2.34)
i=2 i=L—1
2 L—1
B = H GiT—l,i(ei)Gil(el) H Gi_1,:(60:). (2.35)
i=L—1 i=2

Under this construction, B operator can be represented as a product of 2L — 3 Givens
rotation matrices. Since each Givens rotational matrix can be expressed by at most m m-
control Toffoli gates, each of which costs O(m?) standard gates[8], [39], a total of O(Lm?) =
O(Llog®n) gates are needed for B construction.

For select(V') gate, we need O((n + m)L) standard gates. In this case, U, requires
O(Llog’n + (n +m)L) = O(n®) gates. Since Uy only needs O(m) standard gates, Q also
requires O(n°) standard gates, which leads the gate complexity of U, to be O(Nn®). Since

from Eq. 2.32, N = O(——), PEA for D digit accuracy would result in a total complexity

(e/A)2

of O(2PNn®) = O(#) standard gates.

2.5 2" grder Direct-PEA Method

2.5.1 The Procedure of the Method

The propagator e I can also be expanded up to the second order Taylor series[29)]:

H?¢t?

U=1-iHt— = e L O((A)?), (2.36)

which would be a good approximation when O(At) is very small. Since U is non-unitary, we
have to construct a unitary operator U,, to implement it into the quantum circuit. Define

operators By and P as

VE[00) + |01) + 75 ]10)

Ji+t+oo

B, |00) = (2.37)
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P = . (2.38)

With the help of U, defined in 1% order Direct-PEA, we can construct U,, as shown in Figure
2.6.

P
|0>a ‘¢>S — U,,, — — Ur L 6_1%

Figure 2.6. Gate U,, in 2" order Direct-PEA circuit, with B, and P defined
in Eq. (2.37) and Eq. (2.38)

Applying U,s to the initial state, we will get

1 — 8t _ E2t22 2m+2
U2 100) |0}, [¥), = ———3400) [0), [¥), + >_ [i) [vy),
1+t+5 part
Et
1 —+ Ejlt; —itan~! ?%2
=g A 100) [0, W), + 19T (2.39)
1+t+%

in which A = 2771 8 = Sk | |au| > |E| and |W¥1) is perpendicular to [00) |0), [¢),. The
coefficient of state |00) |0), |¢), can be increased using oblivious amplitude amplification just

as in the previous section. Then we can perform PEA or iterative PEA to get the phase,

Bt
—tan~! —4, which gives the ground state energy corresponding to the ground state |¢),,
2A

as shown in Figure 2.7.
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Figure 2.7. Ground State Energy Curve for Hy,O, as a function of the bond
length O-H in a.u. for 25 order Direct-PEA. Errors are shown in the window
of each figure.

2.5.2 Error Analysis

The output state in Eq. (2.39) can be rewritten as

+E4t4 : —1 Et
BT _ e
Ura |00) ) [0, = 3= Fe - 00} 0), [0), + 197)
—itan’lE;
= pe + 5% +4/1 |\IfL
Et
—itan—! —4,
— cos fe P 00 |0), |¢), + sin @ |[t) (2.40)
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E4td
. . m
in which A = Y2771 3 =

1+
Sty fasl > |EJ6 = cos™ . Applying Qs = Un (U ©
2
IEMUS (U ® 1®n), where U™ = 2100) |0), (0] (00|

®m+2 " to do oblivious amplitude
amplification, we can get
itan~1! thz
Q3'Usr |00) [0),, [¢0), = (=1)" cos((2N +1)f)e "

10)a [¥),

+sin((2N +1)0) [¥4),, 1y

Let # = cos™!

+2

and choose large N and small ¢ to satisfy (2N + 1)0 = &, then
Bl

2 w2 1
b1 1= o= 2.42
+ cos 2N+1 8N2+ N3)’ ( )

and we can get the difference between 6 and 6

E4t4

1
e s \/_4t2+0
2

1+t+% T (t

9
2

), (2.43)

in wihch n = |£] < 1. After N rotations, we have

Pyl = [cos((2N +1)0)]

=cos((2N +1)(6 —9))

2N +1)2
g 1 1

This means if we set N large enough, and set t = —1 + | / — 2 — 1, we can amplify the
2N+1
probability of |00) |0), |¢), to be as close to 1 as we want

Now we are taking Uy, = QYU

2 to encode the energy into the phase. If we would like
D-digit accuracy, we have to make sure that after 2 gates of Uy, the probability of state

39



10), |), is still large. By setting the final coefficient as 1 — 53, the following formula should

237
be satisfied:
1
D
e =1-5 (2.45)
14,8
-D _ nn 1 1
= 22 (5] ® iz + O(W) (2.46)
227 In(®)
D = m1n{10g2(77) + 12logy N} ~ 0.974 4+ 121og, N (2.47)
Et
Since D-digit output from PEA gives us the phase ¢ to approximate —% tan™! —4, and
2A
the error of phase is 27, we get the error of the energy F to be:
nn® A A 2.59n% A 2.59
2231 8 N10 + O(Nll) ~ Nlo S NlOA (248)

We can see that by taking large N and set corresponding small ¢, we are able to control the

accuracy of PEA process.

2.5.3 Complexity Analysis

We need n qubits to represent the system state, m = [log,(L)| + 2 qubits to represent
the ancilla state. So the qubit complexity is still O(n) for the 2" order Direct-PEA.

When constructing U,, gate U, takes O(n®) standard gates, gate P takes O(L) = O(n?)
standard gates, B, B; and phase gate e7'2 only takes a small constant of standard gates. So
the gate complexity of U, is still O(n®). Then Q; also requires O(n®) standard gates because
Uy just needs O(m) standard gates. Since N = O( A A —o1), PEA for D digit accuracy would
result in a total of O(2P Nn®) = O(W) standard gates.

2.6 Direct Measurement Method

2.6.1 The Procedure of the Method

Another way to calculate the ground state energy is by direct measurement after imple-

menting a given Hamiltonian in quantum circuit. Since Direct-PEA (1% order) method has
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already introduced a way to implement non-unitary matrix U into circuit, Hamiltonian im-
plementation is straightforward. We can just replace U in method B by U = H = ZjLzl a;hy,
and obtain U, such that:

U |0), 1), = - 10), Uy [¥), + |@7)

0), [, +127) . (2.49)
By measuring ancilla qubits multiple times, we can get the energy of the ground state [¢),

through multiplying A by the square root of probability that the ancillary register state is

|0),. The ground state energy of water molecule calculated by this method is in Figure 2.8.
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Figure 2.8. Ground State Energy Curve for HyO, as a function of the bond

length O-H in a.u. for 25 order Direct-PEA. Errors are shown in the window
of the figure.
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This method can also be used for non-Hermitian Hamiltonians. If now the eigenvalue
for [¢), is a complex number E = |E|e'’, by replacing U by U = H in method B, we would

have:

B |E|e19

U 10), [0}, = == [0), [¥), + |®1) , (2.50)

and can obtain | F| through measurements. Then by replacing U by for example U = I + H

in method B, we would be able to determine the phase of the complex eigenenergy.

2.6.2 Error Analysis

After applying the gate U,

Ur 004 1), = 5 00 ), + 1) (251)

We obtain the eigenenergy of state |¢)), by calculating probability of the wanted state:
|0), |¢),. The standard error of E by X measurements is:

_ BB
= -

o (2.52)

2.6.3 Complexity Analysis

The number of required qubits for Direct Measurement Method is the sum of system and
ancilla qubits: O(n). Since only one U, gate is enough, the complexity of the standard gates
is O(n®). Since now the result of measurements is a binomial distribution, to measure the

Energy E to accuracy(standard deviation) €, we have to make X = O(f—;) measurements.

2.7 Variational Quantum Eigensolver(VQE) Method

2.7.1 The Procedure of the Method

The variational quantum eigensolver method has been put forward by Aspuru-Guzik

and coworkers to calculate the ground state energies[30]-[33], which is a hybrid method
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of classical and quantum computation. According to this method, an adjustable quantum
circuit is constructed at first to generate a state of the system. This state is then used to
calculate the corresponding energy under the system’s Hamiltonian. Then by a classical
optimization algorithm, like Nelder-Mead method, parameters in circuit can be adjusted
and the generated state will be updated. Finally, the minimal energy will be obtained. The
detailed circuit for the quantum part of our algorithm is shown in Figure 2.9. To make the

expression more clear, we represent parameters in vector form, as follows: 8 = (61, 05...,0p),

0, = (01,0791,1---, 01,11), ei,j = (Qi,j,1,<91,j,2,91,j,3, ), p = (801, <P2---7<Pn), Pr = (Spk,la SOk,2,SOk,3)~

_ o HU(ed) H1/Re, (5)/ Ry (—5) HAS
_ N —{U(ps) 1/ Ras (5)/ Ry (- 5) HAF

0), — G(61) G(6) F—---— G(8p) #U(sog)HI/Rzg(%)/Ryg(—%) = E(6,¢)
O o UG IR )/ R D HEAT

Figure 2.9. Circuit for state preparation and corresponding energy eval-
uation. G(6;) is entangling gate, here we are taking the gate like Fig-
ure 2.10. U(yp,) is an arbitrary single-qubit rotation and is equal to
R.(pr1)Re(pr2)R.(0r3) with parameters ¢y 1,952 and ¢y 3 that can be ma-
nipulated. By increasing the number of layers, d, of our circuit, we are able to
produce more complex states.

an)
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> Us & Ur | Usg
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Figure 2.10. Example entangling circuit G(6;) for 4-qubit system. There are
12 arbitrary single-qubit gates Uj, a simplified written way for U(6;;), which
is R,(0:j1)R:(0i52)R.(0;;3) with parameters 6;;1,0;;2 and 6;;5 that can be
manipulated. Each 2 qubits are entangled sequentially. Entangling gate G(6;)
for n-qubit system is similar to this gate, but then it has n(n — 1) arbitrary
single-qubit gates and 6; has 3n(n — 1) parameters.
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We are using d layers of gate G(8;) in Figure 2.9 to entangle all qubits together. Here we
introduce a hardware-efficient G(6;), and we call this method Pairwise VQE. The example
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gate of G(6;) for 4 qubits is shown in Figure 2.10. The entangling gate for 6-qubit system
H50 is similar: every 2 qubits are modified by single-qubit gates and entangled by CNOT
gates. By selecting initial value of all 8; and ¢, system state can be prepared by d layers
G(0;) gates and arbitrary single gates U(¢;). Then average value of each term in Hamiltonian
H, (h;) , can be evaluated by measuring qubits many times after going through gates like I
or Ry (5) or Ry, (—5). For example, if hy = [y X;Y573, then

(hy) = (Lo X1YaZ3)y = (Y| [0 X1Y2Z3 |¢))

T T T T
= (W] By () Ron (=)Mo By (—5) X1 Ry (5)
T T T T
(Rm(§)Y2R$2(_§))Z3(Ry1(_§)R$2(§) W>)
— (71 %25, where|0) = Ry, (= 2)Rua(5) 1) (2.53)

So we can let the quantum state 1) go through gates R, (—7) and R,,(}) and then measure
the result state multiple times to get (h;). The energy corresponding to the state can be
obtained by (H)(8,¢) = Y, a;(h;)(0,%). Then 6 and ¢ can be updated by classical
optimization method and (H)(0, ) can reach the minimal step by step. An example of
convergence process for HoO’s ground state energy is shown in Figure 2.11. The ground
state energy curve calculated by this method is shown in Figure 2.12. One thing needs to
mention is that the error peak in the middle can not be reduced after we tried different
classical optimizers. A possible reason is that there is a local minimal around the ground

state of HyO at that configuration and traps our optimizers.

44



—72.0
—— lteration
———————— Limit

—72.5 — Exact
>
(@)]
—
L -73.0 1
c
L
b
© —73.5
)
wn
2
S —74.0 A
o
—
O]

—74.5 A

—75.0 A

0 5000 10000 15000 20000 25000

Iterations

Figure 2.11. Convergence of ground state energy of HyO for fixed O-H bond
length = 1.9 a.u., as number of iterations increases. The lines for exact ground
state energy and for the limit almost overlap.
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Figure 2.12. Ground state energy curve for H,O, as a function of O-H bond
length in a.u. for Pairwise VQE. Errors are shown in the window of the figure.
We take |0), as initial input, d = 1 layer and use Nelder-Mead algorithm for
optimization.
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2.7.2 Error and Complexity Analysis

The number of qubits required for Pairwise VQE is n, and the gate complexity is O(n?d),
where d is the number of entangling gate layers. Assume we made X; measurements for
calculating (h;), its accuracy(standard deviation) would be ¢ = Xi With X = Y& X;

measurements, the accuracy of Hamiltonian would be

e—Z¢— JZ@JifQSAJZ; (2.54)

ji=1 <M

272 2,8 .
If X; = 7, we have ¢ < \’jﬂ, then we need X = AﬁQL = AEQ” measurements to achieve
accuracy €. Considering the number of iterations for optimization, Ny, the total number

. 2,8
of measurements is 42 Ny,
€

2.8 Comparison of Methods

The Hamiltonian of the water molecule is calculated for O-H bond lengths ranging from
0.5 a.u. to 2.9 a.u., using the above introduced methods. This Hamiltonian is used in all
five of the methods discussed within this chapter. For the first four methods, the input
state of system is the ground state of the H,O molecule. For each of the four methods, the
resulting ground state energy curve can be calculated to arbitrary accuracy. The results
from each method is compared with result from a direct diagonalization of the Hamiltonian,
as shown in each graph. From Figure 2.2-2.8, it can be seen that all of these methods
are effective in obtaining the ground state energy curve of the water molecule. Pairwise
VQE is also used to obtain the ground state energy curve. The energy convergence process
when O-H bond length equals 1.9 a.u. is shown in Figure 2.11. The ground state energy
curve calculated by this method is shown in Figure 2.12. In this simulation, d is selected
to be 1, and G(6;) is constructed as described above, and it can already give a pretty good
result. This shows Pairwise VQE a very promising method for solving electronic structure
problems. Furthermore, Pairwise VQE has only O(n?d) gate complexity and doesn’t require
initial input of the ground state, which makes it more practical for near-term applications

on a quantum computer.
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Qubit requirement, gate complexity and number of measurements of different methods
are shown in TABLE 2.1. When counting gate complexities, we decompose all gates into
single qubit gates and CNOT gates. While Pairwise VQE needs exactly n qubits, the other
methods require extra number of qubits. In terms of gate scaling, Pairwise VQE also needs
the least gates, which enables it to better suit the applications on near and intermediate term
quantum computers. Among the remaining four methods, Direct Measurement requires less
number of gates than the others. PEA-type methods have an advantage that they can give an
accurate result under only O(1) measurements. However, they need more qubits compared
with the previous two methods and demands many more gates if smaller error is required.
Due to huge gate complexity, these PEA-type algorithms would be put into practice only
when the decoherence problem has been better solved. Among these three PEA based meth-
ods, in terms of the gate complexity, Direct-PEA (2" order) requires less number of gates
than the traditional Trotter-PEA and Direct-PEA (1% order). One more thing to mention is
that here the second quantization form Hamiltonian is based on STO-3G, so there are O(n*)
terms. If a more recent dual form of plane wave basis [43] is used, the number of terms can
be reduced to O(n?), and the asymptotic scaling in TABLE 2.1 would also be reduced. To
be specific, for PEA-type methods, upper bounds of gate complexities would be proportional
to n? rather than n°, and Number of Measurements for Pairwise VQE would be proportional
to n* rather than n® As can be seen, these reductions wouldn’t influence the comparison

made above.
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Table 2.1. Complexity of different methods. n is the number of qubits for
molecular system, 6 for water. A = % | |os| can serve as the scale of energy.
E is the exact value of ground energy. € is the accuracy of energy we want to
reach. d is the number of layers we used in Pairwise VQE. Ny, is the number
of iterations for optimization in Pairwise VQE.

Method #Qubits | Gate Complexity | #Measurements
Trotter-PEA O(n) O( ) O(1)
Direct-PEA(1% order) O(n) O ors) O(1)
Direct-PEA (2" order) O(n) O( (E/’X;l 3) O(1)

Direct Measurement O(n) O(n®) O(f—2

Pairwise VQE O(n) O(n2d) O(222° Niger)

2.9 Excited States

All the mentioned 5 methods can also be used for the excited state energy calculation.
PEA-type methods and Direct Measurement method can be directly used by replacing the
input ground state by an excited state. The complexity for the calculation would stay the
same. The energy accuracy for excited states are similar to that for the ground state. For
VQE, a publication [44], [45] recently presents a quantum subspace expansion algorithm
(QSE) that calculates excited state energies. They approximate a “subspace” of low-energy
excited states from linear combinations of states of the form O; |1)),, where |1)) is the ground
state determined by VQE and O; are chosen physically motivated quantum operators. By
diagonalizing the matrix with elements (¢|, OlH O; [¢), calculated by VQE, one is able to
find the energies of excited states.

Figure 2.13 shows the simulation of the first six excited states’ energy curves of the wa-
ter molecule from our 6-qubit Hamiltonian, calculated by PEA-type methods and Direct
Measurement method. It can be seen that the 5 excited energy curve indicates a shape
resonance phenomenon, which can be described by a non-Hermitian Hamiltonian with com-
plex eigenvalues. The life time of the resonance state is associated with the imaginary part
of the eigenvalues. In this way, to solve the resonance problem, we can seek to solve the

eigenvalues of non-Hermitian Hamiltonians.
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Some work has been done on this track to solve the resonance problem by quantum
computers. By designing a general quantum circuit for non-unitary matrices, Daskin et
al.[46] explored the resonance states of a model non-Hermitian Hamiltonian. To be specific,
he introduced a systematic way to estimate the complex eigenvalues of a general matrix
using the standard iterative phase estimation algorithm with a programmable circuit design.
The bit values of the phase qubit determines the phase of eigenvalue, and the statistics
of outcomes of the measurements on the phase qubit determines the absolute value of the
eigenvalue. Other approaches for solving complex eigenvalues can also be applied for this
resonance problem. For example, Wang et al. [47] proposed a measurement-based quantum
algorithms for finding eigenvalues of non-unitary matrices. Terashima et al.[48] introduced a
universal nonunitary quantum circuit by using a specific type of one-qubit non-unitary gates,
the controlled-NOT gate, and all one-qubit unitary gates, which is also useful for finding the
eigenvalues of a non-hermitian Hamiltonian matrix. More about resonances will be included

in the next chapter.
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Figure 2.13. Excited states’ energy curves for HyO, as a function of the
bond length O-H in a.u.. Markers with different colors represent data points
calculated from different methods. Only a few points for each method are
drawn for illustration. Energy curves in different line styles are calculated
from exact diagonalization of Hamiltonian matrix.
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2.10 Conclusion

In this chapter, several recently proposed quantum algorithms are compared when they
are used to compute the electronic state energies of the water molecule. These methods
include Trotter-PEA method based on the first order Trotter-Suzuki decomposition, 1%* and
27 order Direct-PEA methods based on direct implementation of the truncated propaga-
tor, Direct Measurement method based on direct implementation of the Hamiltonian and
Pairwise PEA method, a VQE algorithm with a designed ansatz.

After deriving the Hamiltonian of the water molecule using the STO-3G basis set, the
research explains in detail how each method works and gives their qubit requirements, gate
complexities and measurement scaling. It also calculates the ground state energy curves for
the water molecule using all five methods. All methods are able to provide an accurate result.
By comparing these methods, it is concluded that the 2"¢ order Direct-PEA provides the
most efficient circuit implementations in terms of gate complexity. With large scale quantum
computation, the 2" order direct method seems to better suit large molecule systems. In
addition, since Pairwise VQE requires the least qubit number, it is the most practical method
for near-term applications on the current available quantum computers.

Moreover, the PEA-type methods and Direct Measurement method are used to solve
excited state energy curves for the water molecule. The fifth excited state energy curve

implies shape resonance.
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3. THE DESIGN AND IMPLEMENTATION OF THE FULLY
CONTROLLED VQE

3.1 Introduction

As introduced in the last chapter, VQE is the most practical way to search for the ground
state and the ground state energy of a molecular system in near-term quantum computers.
The most important question for VQE is how to design an efficient quantum circuit to
produce an ansatz state that approximates the ground state well. Recently researchers
are trying to construct different parameterized quantum circuits[33], [49], [50] for VQE for

systems like LiH or HyO. Generally, by applying designed circuit Gate() to the input state

[Vinput), We have output state

—

|77Z}output> - Gate( ) |¢input> . (31)

The parameters 0 are set to some initial values at first. They will be updated by classical
optimization methods, such as Nelder-Mead, to find an output state with minimal energy.

It is hard to directly search the ground state of Hamiltonian in the whole space. Say our
system needs n qubits, then we need to search all states in the n-qubit space to obtain the
ground state finally. That would take us at least 2™ — 1 parameters to control Gate(g) and
thus the 2"-d output state |[touepue), which makes the algorithm intractable. A common way
is to use fewer parameters than needed to approximate the ground state. By taking many
layers of basic parameterized entangling gates, we can assume the circuit is complicated
enough to approach the ground state. Although this design is practical and has even been
applied in real quantum computers[33], it is hard to tell the real representability of the
circuit. Most of the time, people have to try different entangling circuit designs and find the
one that works best for the problem. Worse still, the best circuit design for one system may
not be good for another system.

Here we propose a quantum circuit design, which we call Fully Controlled VQE (FCVQE),
that can reduce gate complexity for ansatz state preparation and also has clear representabil-

ity. For a system with n orbitals and m electrons, the design is able to explore all possible
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state configurations with a cost of O( (:1)) gates. The gate complexity can be further reduced
to O(poly(n)) if we only consider limited electron number excitation, such as single, double,

triple, and quadruple excitation.

3.2 General Design of the Fully Controlled VQE

Assume that a system with n orbitals and m electrons is in interest, and we would like
to find the system’s ground state energy. After the standard procedure of Jordan-Wigner
transformation, each orbital would be mapped to a qubit, while qubit state |1) means the
orbital is occupied and |0) means unoccupied. Since only (::L) basis states represent m-
electron states, the space of possible ground state can be reduced from a 2"-d real sphere to
a (TZ)—d one. In the following part, we will use a sequence of Givens Rotation matrices to
create an ansatz state that can fully explore m-electron states.

Take |k;) as Hartree-Fock state |)gr), where k; represents the decimal number for the
binary form qubit state. We mark the indices of (TZ) m-electron states out of 2" electron
states to be a set: {kq, ko, k3..., k(fé)}’ and assign a set of parameters {6, 0s..., 6’(:1)} to each
index except k. Every parameter ; would be used to construct a Givens Rotation matrix

as follows:

0 h & ()
0 1
ks cos b; —sin 6;
Gi(6) = . ’ (3:2)
ki sin 6; cos b;
k.o 1
()
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where the diagonal and off-diagonal elements not shown in Eq. 3.2 are 1 and 0 respectively.
Each Givens Rotation matrix can be constructed by O(n) (n — 1)-control quantum gates.
The details of construction and complexity analysis will be illustrated in next section.

By applying a sequence of Givens Rotation matrix, Gate(é) = Hi(;”z) Gi(6;), to the input
Hartree-Fock state, [¢yr) = |k1), the output state would be

(=) () ()

Voutput) = Gate(0) |y r) = H cosby ki) + > sinb; [] cosb;|k:) (3.3)
i=2 j=i+1
k1 Hj(f‘g) cos 0;
ko sin 6 Hj(fg) cos 0;
= ks sin 03 Hj(i) cos 6} (3.4)
ki sin 6; H(:’) cos 0;
1 11lj=i+1 J

All elements in the right state of Eq. 3.4 are 0 except those indexed {ky, k2, k(fﬁ)} This
state formula can represent any m-electron state that can be represented by real numbers,
which means the ground state of Hamiltonian H can be represented by this state with
properly selected parameters g,

Using this Gate(g) to produce ansatz state, we can then follow the standard procedure
of VQE in the previous chapter and update 0 to find the ground state and the ground state
energy of molecular systems. One thing worth to note is that, although it’s guaranteed that
some 6 can represent the ground state, the state may be trapped in a local minimum position

during the optimization process.
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Figure 3.1. Quantum circuit for G;(6;) in a 4-qubit system, while k; = 12 and k; = 9.

3.3 Circuit Design for Givens Rotation Matrix

To construct the circuit for Givens Rotation matrix, G;(6;), we can use multi-controlled
NOT gates and multi-controlled rotation gates. The intuition is to swap the basis states
such that the rotation can be done in one qubit, then swap the basis states back. Say
Gi(6;) is applied on two basis states |k;) and |k;), we can first pick up these two states with
multi-controlled states. By flipping digits in |k;) to make it only one qubit state different
from |k;), we can rotate this qubit instead. Finally, after flipping states back, we successfully
implement Gj(6;) on the circuit.

Take a 4-qubit system for example and assume that we want to construct G;(6;) with
|k1) = |[12) = |1100) and |9) = |1001). FIG. 3.1 gives one of the ways to construct Givens
Rotation Operator. Here in the figure the single qubit rotational gate G is

- cos; —sinéb;
G = . (3.5)
sin; cosb;

Before multi-controlled G, this circuit converts [1001) to [1101). Then the multi-control G
gate does rotation on [1100) and |1101). After that the circuit converts [1101) back to |[1001).
For general cases, since each multi-control gate requires O(n) standard gates[8], [39] and
the whole circuit takes O(n) multi-control gates, the total gate complexity for each Givens
rotation matrix is O(n?).
For there are in total O((::L)) Givens Rotation matrices, the gate complexity of ansatz
preparation circuit is O(n? (:1)) When m is small compared with orbital number n, or m is

close to n, this circuit will take approximately O(poly(n)) gates for construction. However,

if m is close to half of n, gate complexity can be exponential. To overcome this issue, we can
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consider only the main components of the system’s ground state, like the Hartree-Fock state,
single excited state and double excited state. This step will reduce the gate complexity to

polynomial.

3.4 Ground State Energy Curve of H, by IBM Qiskit Simulator

Here we apply the fully controlled VQE to solve the ground state energy of Hy. The
Hamiltonian can be transformed into 4-qubit Pauli matrix form if we use STO-3G basis
functions. Since there are only 6 possible 2-electron states, we need to apply 5 Givens
Rotation matrix to the input Hatree-Fock state for ansatz state preparation. The state

preparation circuit is as shown in Fig. 3.2.

1) o0—0 o—o—
1)

|0) — Gy - S Gs S L‘

0 & G G|

Figure 3.2. The fully controlled quantum circuit design for state preparation
for Hy. Gj is a gate which has a matrix format like Eq.3.5.

The circuit can be further simplified if we take system’s symmetry into account: half

spins are up and half are down. The updated circuit is as shown in Fig. 3.3.

) ® B—o—o0—& B—o—o—
) j L & &
0) Gs @ O

0) —o— Gy |2 G |

Figure 3.3. The simplified circuit for state preparation for H,.

IBM has developed a platform called Qiskit[51], by which people can run quantum al-
gorithms on both the simulators and the real quantum computers. Since the real quantum

computer is still very noisy, we will use the simulator to verify our design. Multi-control

95



gates with more than three control qubits are not included in the Qiskit built-in gate li-
brary; thus, we need to decompose them into built-in gates. One of the easiest ways is to
introduce ancilla qubits in the middle and decompose the circuit into Toffoli gates, two-qubit
control gates, and single-qubit gates. After some classical optimization process, the ground

state energy curve of Hy is shown in Fig. 3.4. It can be seen that the error is negligible.
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Figure 3.4. Ground state energy curve for Hy under fully controlled
VQE(FCVQE), as a function of bond length H-H in angstrom, calculated by
IBM’s simulator. Errors are shown in the window of the figure.

3.5 Ground State Energy Curves of Molecules by Self-designed Simulator

For larger systems, we can also get pretty accurate ground state energy curves using
FCVQE. In terms of computational cost, fully controlled VQE in this section is carried out
by a self-designed simulator using matrix manipulation.

One example is NaH. We use the STO-3G basis set and assume the 10 innermost orbitals
are occupied. Then there are 2 electrons left in the outer 10 orbitals. Considering all
possible 2-electron states, we have the ground state energy curve as Fig. 3.5 using FCVQE.

It can be seen that almost all data points are perfect except for the divergent point in the
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diagonalized curve. The reason may be that the state in the divergent points is complicated,

and the classical optimization process falls into a local minimum.
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Figure 3.5. Ground state energy curve for NaH under fully controlled VQE,
as a function of bond length Na-H in A. Errors are shown in the window of
the figure.

For H50O, we also use the STO-3G basis set to do second quantization. Assuming that
the 2 innermost orbitals are always occupied, we can transform the Hamiltonian to 12-qubit
Pauli matrix form. To simplify the problem, we also assume the number of spin-up electrons
is the same as spin-down electrons. Results corresponding to different excitation types are
shown in Fig. 3.6. It can be seen that as more excited states are taken into account, the

FCVQE gives a more accurate ground state energy curve.
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Figure 3.6. Ground State Energy Curve for HyO as a function of the bond
length O-H in A. The red triangles are obtained by FCVQE that (a) considers
only single excitation, (b) considers both single and double excitation, (c) con-
siders single, double and triple excitation (d) considers single, double, triple,
and quadruple excitation, and are compared with the Hartree-Fock ground
state energy and the exact diagonalization. Errors are shown in the window
of each figure.

The same procedure can be applied on Ny, except that we now assume the 8 innermost
orbitals are always occupied. The ground state energy curves for Ny are shown in Fig. 3.7.
The ground state energy curve obtained by FCVQE gets closer to the diagonalized exact

curve when more excitation are considered.
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Figure 3.7. Ground State Energy Curve for Ny as a function of the bond
length N-N in A. The red triangles are obtained by FCVQE that (a) considers
only single excitation, (b) considers both single and double excitation, (c) con-
siders single, double and triple excitation (d) considers single, double, triple,
and quadruple excitation, and are compared with the Hartree-Fock ground
state energy and the exact diagonalization. Errors are shown in the window
of each figure.

If we consider all 6-electron states for Ny, the curve would be more accurate, as shown

in Fig. 3.8.
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Figure 3.8. Ground State Energy Curve for Ny as a function of the bond
length N-N in A using FCVQE. All 6-electron states are considered. Errors
are shown in the window of each figure.

3.6 Complexity Analysis

For a system with n orbitals and m electrons, the qubit requirement for FCVQE is O(n),
including qubits to represent system state and ancilla qubits to decompose multi-controlled
gates. Gate complexity for FCVQE depends on the number of Givens Rotation Operators,
which is O((:L)), and the number of basic gates (one-qubit and two-qubit gates) for each
Givens Rotation operator. In general, we need O(n) n-controlled gates to do rotations
between two basis states and need O(n) basic gates for each n-controlled gate, so the gate
complexity is O(n?). However, since we know the number of electrons is restricted to m
during state preparation, only a constant number of n-controlled gates are required for
Givens Rotation operators’ construction. Thus the total complexity would be O(n(:l))

The number of Givens Rotation Operators in the above sequence can be intractable when

m ~ 2. However, it can be reduced if we consider some restrictions on the ground state

|

wavefunction. For example, if the total number of electrons is even and half of them are

2
assumed to be spin up, then only (://22) rather than (Z) states needs to be considered
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in ansatz state preparation. Assuming that the ground state wavefunction contains only
Hartree-Fock state and small-number electron excitation states from the Hartree-Fock state,
the required number of Givens Rotation operators can be even lower. If up to k-electron
excitation from [y ) are considered, the total complexity is O(n (”;k) ("}f)) When k = 2,

the total complexity becomes O(n("gm) (’;‘)) ~ O(m?n3).

3.7 Summary and discussion

This chapter presents a new quantum circuit design for ansatz state preparation in VQE
algorithm called FCVQE. A sequence of parameterized Givens Rotation matrices, which can
be implemented with a polynomial number of standard single-qubit and two-qubit gates,
will be applied to the input state to get the output state. Unlike other circuit designs that
assume the output state has the representability to approximate the ground state of a given
system, this design gives an explicit mathematical form for the output state with parameters
and shows that this form will explore all possible states with proper parameter values.

The output state with initial parameters will then be used to evaluate the corresponding
energy under the molecule’s Hamiltonian of Pauli matrix form. Following standard VQE
procedure, parameters will be updated to find the state with minimum energy. The energy
would be approximate ground state energy, and as a byproduct, the final output state will
be the ground state of this molecule system.

One thing needed to notify is that the VQE algorithm is essentially an optimization
method. It can not avoid the local minimum problem, especially when the molecular sys-
tem’s size is large, and the Hamiltonian is complicated. This answers why some converged
data points are still away from the exact result in the previous curves. One method for
improvement is to use a better optimization method to jump out of the local minimum.
An easier way is to try different initial values and take the minimum of those different

experiments.
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4. QUANTUM COMPUTING FOR ATOMIC AND
MOLECULAR RESONANCES

4.1 Introduction

Resonance phenomena is common in nature since they exist in a wide range of fields,
such as atomic and molecular physics, chemistry, molecular biology and technology. It is
associated with intermediate or quasi-stationary states when a system breaks into multiple
subsystems. For example, the phenomena appears when an excited atom autoionizes, an
excited molecule disassociates unimolecularly, or a molecule attracts an electron and then
the ion disassociates into stable ionic and neutral subsystems[52], [53].

We are not able to directly solve resonances from the Hamiltonians discussed in the last
chapters. The reason is all those conventional Hamiltonians are Hermitian. By directly solv-
ing Hermitian Hamiltonians, we will get real eigenvalues and corresponding eigenfunctions
in the L? Hilbert space that vanish at infinity. However, the decaying resonance states don’t
hold the boundary condition of vanishing at infinity, which means they can not be fully
described by the scope of functions in L?. Actually, they are associated with the Hamiltoni-
ans’ complex eigenvalues. If we imposes outgoing boundary conditions on a Hamiltonians’
eigenfunction, the corresponding complex eigenvalue, F,.s = E — ig, will reveal to us its
resonance energy E and resonance width I'. The reason why a Hermitian Hamiltonian has
complex eigenvalues is that the non-Hermitian properties of an operator depends on both
the operator itself and the functions it applies to. [52]

Then how can we obtain the complex eigenvalues of the Hamiltonian? One method
proposed decades ago is called the complex rotation method, developed by [54]-[59]. We
refer the readers to the book on non-Hermitian quantum mechanics by Moiseyev for more
details and applications of the method [52]. Given a system Hamiltonian H(r), where r

represents electrons’ coordinates, this method rotates r into the complex plane by @, r — rel?,

and thus the Hamiltonian becomes a non-Hermitian H (re'?). The system’s resonance state’s
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energy F and width I' = %, where 7 is life time, can then be obtained by directly solving

the corresponding complex eigenvalue of H(rel’) operator,
Ey=FE — %r. (4.1)

The best resonance estimate is when the 6 pauses or slows down in its trajectory [60].
This complex rotation method became prevalent at that time because it looks simple, and
it can take use of conventional programs for eigenvalue calculation in molecular problems.
Moreover, dimensional scaling and large order dimensional perturbation theory has been
applied for complex eigenvalues using the complex rotation method [61], [62].

However, usually, a large basis set is necessary to predict resonances with good accuracy.
For example, the Helium 1S resonance uses 32 Hylleraas type functions for basis construction
63], the Hy *X%f (020,) resonance takes a total of 38 constructed Gaussian atomic basis [64].
They only pick a small set of electronic configurations for classical variational methods to
calculate complex eigenvalues. The computational overhead will become overwhelming if
more configurations, or more basis functions need to be considered, like when we want
to have better accuracy, or when we simulate larger molecule systems. A promising way
to overcome the escalation in computational resources is solving the problem by quantum
computing methods in quantum computers.

As seen above, the resonance problem can be reduced to a problem of solving complex
eigenvalues of a non-Hermitian Hamiltonian. Unfortunately, most quantum algorithms for
the Hermitian Hamiltonian problem in our previous chapters can not be directly adapted to
resonance calculation, because the complex-rotated, or complex-scaled Hamiltonian’s non-
Hermitian property. For example, for the conventional phase estimation algorithm (PEA),
the propagator e 1 ()t with trotterization [18] will be non-unitary and it can not be im-
plemented in quantum circuit directly. In this way, a quantum algorithm for resonance
calculation that can deal with non-Hermitian Hamiltonian is in need. Daskin et. al [46] pro-
posed a circuit design that can solve complex eigenvalues of a general non-unitary matrix.
The method applies the matrix rows to an input state one by one and estimate complex

eigenvalues via a novel iterative PEA process. However, for molecular Hamiltonians, the
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gate complexity of this general design is exponential in system size. In our previous publica-
tion[34], we briefly mentioned that our Direct Measurement method could be used to solve
complex eigenvalues of non-Hermitian Hamiltonians with polynomial gates. This study, will
extend the Direct Measurement method and apply it to simple molecular systems to ob-
tain resonance properties. In particular, we will use IBM’s Qiskit simulators and their real

quantum computers to calculate these resonances.

4.2 Complex Scaled Hamiltonian

In this section, we present the steps needed to convert the complex-rotated Hamiltonian
to a suitable form that can be simulated on a quantum computer. In the Born-Oppenheimer
approximation, the electronic Hamiltonian of a molecular system can be written as a sum of

electronic kinetic energy and potential energy of the form,
H=T()+ V(r),
Y =2 _EV?’ (4.2)
=22 Z |r1 R

i j>i

|rl_r.]|

where Z, is the o4, nucleus’ charge, R, is the oy, nucleus’ position, and rj, rj represents
the i1, jin electron’s position. Now, the complex scaling method is applied to the study of
molecular resonances within the framework of Born-Oppenheimer approximation. Follow-
ing Moiseyev and coworkers[52] the electronic coordinates are dilated independently of the
nuclear coordinates. After a complex rotation by 6, each electron’s position r becomes r/n,
—if

where 7 = 7" and thus the new Hamiltonian becomes

Hy = T(x/n) + V(&/1), (4.3)
Tie/n) = 'y —EV?, (4.4)
V(r/n) = 7721: JZ; |rl nZ r— nRal (4.5)
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The eigenstates of Hy include resonance states, whose corresponding complex eigenvalues
reveal resonance states’ energies and lifetimes [55], [65], as stated in Eq.(4.1). A scaling
parameter « is commonly used in the complex rotation process to better locate resonances,
which makes n = ae™?,

After choosing a proper orthogonal basis set {1;(r)}, the Hamiltonian can be converted

into a second quantization form,

1
Hy = Z h;jja/j-a/j + B Z hijkla;fa;akala (4.6)
Lj

i?.j?k?l

where aiT and a; are fermionic creation and annihilation operators, and coefficients hj, hiju

can be calculated by

1 Ly
hij = /W(r)(—ﬁgvf + TIZU: m)%(r);

0 (4.7)
i = [ 6 (00)05 (r2) =t (r2)ta(ra).
vy — 1o
With Jordan-Wigner transformation[11],
P 1 ; -
a; = §(XJ' - 1}/3) ® ijla
1 (4.8)
: —
q; = 5(X; +1iY)) ® Z; 7,
in which X,Y and Z are the Pauli X,Y and Z operators, and
Zj__>1 = Zj—l & Zj—2 ® ZO: (49)
the Hamiltonian will be further transformed into Pauli operators as
L—1
Hy=3 P, (4.10)

i=0

In the summation, ¢; represents a complex coefficient, and P, represents an up to n-local

tensor product of Pauli operators, where n is the size of the basis set. Alternatively, Bravyi-
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Kitaev transformation or parity transformation can also be used in the final step to obtain

the Hamiltonian in the qubit space[l1].

The above process is the same as the conventional Hamiltonian derivation in quantum
computing for electronic structure calculations of bound states. Here for resonance calcu-
lations, to make the Hamiltonian convenient to use in the Direct Measurement method, we
rewrite Eq.(4.10) as

ona_1

Hy=' Y 4% (4.11)
i=0

where n, = [log, L]. The coefficient 5; and the operator V; are determined in the following

ways,

Gi =lal,Vi= —PF, wheni<L,
il (4.12)

Bi=0,Vi=1, wheni> L.

G

4.3 Direct Measurement Method

The Direct Measurement method is inspired by the direct application of the Phase Es-
timation Algorithm [28] as briefly discussed in our previous publication[34]. Here the basic
idea is to apply the complex-rotated Hamiltonian on the state of the molecule system and ob-
tain the complex energy information from the output state. Since the original non-hermitian
Hamiltonian can not be directly implemented in a quantum circuit, this Direct Measurement

method embeds it into a larger dimensional unitary operator.

Assuming n spin orbitals needs to be considered for the system, the Direct Measurement
method requires n, = n qubits to prepare the state of the model system |¢,), and an extra
n, ancila qubits to enlarge the non-Hermitian Hamiltonian to be a unitary operator. The

quantum circuit is shown in FIG. 4.1. The B and V gates in the circuit are designed to have
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T
oEh

Figure 4.1. The quantum circuit for Direct Measurement method. B and
V' gates are constructed based on the coefficients and operators in Eq.(4.11).
The system qubits’ state and ancila qubits’ state are initialized as |0), and
|¢r), Tespectively.

the following properties

ona_1 ona 1

B|0), Z A= DB (4.13)
i=0

Vi, lor), = 1), Viler),, (4.14)

which means B transforms initial ancilla qubits’ state to a vector of coefficients and V" applies
all Vi on system qubits based on ancilla qubits’ states. One actual construction choice for B

could be implementing the unitary operator

PACES 2"‘1 1

= 2( Z | Z ~ I (4.15)

As for V, a series of multi-controlled V; gates will do the work. If |¢,), is chosen as an

eigenstate and we apply the whole circuit of B, V and Bf
U, = (B'® I®")V(B ® I®™), (4.16)

on it, the output state will be

Eel‘P

Ur0),10), = 0} [€), +127) . (4.17)
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where Fel? (E > 0) is the corresponding eigenvalue and |®1) is a state whose ancilla qubits’
state is perpendicular to |0),. By measuring the output state many times, we can get |E|
from its relation with the possibility of the |0), state, p,

E2

To obtain the phase, one way is that we apply a similar circuit for Hy = 2I®™ + Hy, where

x is a selected real number. Then the updated U, leads us to

|z + Eel?|?
p =

e (4.19)
Combining with Eq. (4.18) and Eq. (4.19), we can solve the complex eigenvalue as
. _1 pA2_z2_pAa2 . _ 2.2 42
Be® = JpAe ™ EEA  or fpAe T M EAs (4.20)

There are also other choices to obtain the phase. For example, instead of adding the I®"
part, we can try building the U, based on Hy + H3 or Hy + Hj to get an equation like
Eq.(4.19) containing phase information. That equation together with Eq.(4.18) will reveal

the complex eigenvalue for the input eigenstate with another expression.

4.4 Quantum simulation of resonances in a simple model system

In this section, we will calculate the resonance properties of a model system using the

Direct measurement method. This system is the following one-dimensional potential[65]

2

V(z) = (z2% = J)e ™ +J, (4.21)

and parameters are chosen as A\ = 0.1, J = 0.8. The potential is plotted in FIG. 4.2.

This potential is used to model some resonance phenomena in diatomic molecules. Only
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Figure 4.2. The one-dimensional potential V(z) = (52% —J )e** 4 J, where
A=0.1,J=038.

one electron is considered moving under this potential. The original Hamiltonian and the

complex-rotated Hamiltonian can be written as

VQ

v2
Hy = —77279” + V(nx) (4.23)

To make the setting consistent with the original literature, 1 is chosen to be e and the

scaling parameter « is embed in n Gaussian basis functions

xr(a) = exp(—azpz?), (4.24)

ap = a(0.45)F k=0,1,..,n — 1. (4.25)

The {xx(a)} basis set is not orthogonal, so we apply Gram-Schmidt process and iteratively

construct an orthogonal basis set {¢;} as follows:

k—1

Te = Xk — Z (Xk|¢i> i, (4'26)

i=0
Tk Tk (4.27)

YTl T o
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Since there is only one electron, spins are not considered. This {¢;} basis set is used in the

second quantization step to get the final Hamiltonian in Pauli matrix form.

The resonance eigenvalue found in [65] with n = 10 basis functions is

Ey =2.124 —0.0191 Hartree (4.28)

We will try to get the same resonance by applying the Direct Measurement method using
the Qiskit package. The Qiskit package supports different backends, including a statevector
simulator that executes circuit ideally, a QASM simulator that provides noisy gate simula-
tion, and different IBM real quantum computers. In the following, we show the results based
on the basis function number is n = 5 and n = 2. In particular, the former n = 5 case shows
how 6 trajectories locate the best resonance estimate, and the latter n = 2 case shows how
to simplify the quantum circuit for the Direct Measurement method and run it in real IBM

quantum computers.

441 n=>5

An example of the complex-rotated Hamiltonian when n = 5 is shown in Appendix B.1.
5 ancilla qubits and 5 system qubits are needed in this case. By choosing different scaling
parameters «, the statevector simulator shows 6 trajectories as FIG. 4.3. It can be seen that

most trajectories pause around the point,

Ey =2.1265 — 0.0203i Hartree, (4.29)

when a = 0.65, # = 0.160. Based on Eq.(4.1), this indicates the resonance energy and width
are £ = 2.1265 Hartree, I' = 0.0406 Hartree, very close to the resonance energy from [65].
We also run the QASM simulator for 4 * 10* shots and get the system’s resonance energy at

a = 0.65, § = 0.160,

Ey = 2.1005 — 0.38621 Hartree. (4.30)
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Figure 4.3. Trajectories of a complex eigenvalue on the rotation angle 6
for fixed n = 5 and various «, calculated by Qiskit statevector simulator. 6
ranges from 0.1 to 0.24 with a step of 0.01. The green point shows the best
estimation of resonance energy, which is £ = 2.1265 — 0.0203i Hartree, occurs
at a = 0.65,0 = 0.160. The input state for the Direct Measurement method is
obtained from directly diagonalizing the complex-rotated Hamiltonian matrix.

This result has an error of around 0.3 Hartree but can be augmented by more sample mea-
surements. The real IBM quantum computer is not feasible to run the method in this size,

due to the large number of standard gates in circuit.

4.4.2 n =2

When taking n = 2 basis function, we are not able to locate the best resonance estimate

like in FIG. 4.3 based on direct diagonalization, so we only use the Direct Measurement
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Figure 4.4. The quantum circuit to run Direct Measurement method when
n = 2. B gate is prepared by the coefficients [1.31556, 0.13333, 0.13333,
0.25212, 1.06378]. Vy, Vi, Vo, Vi and V; are applying e %0480 T and
23WEBIYY | (2328881 X X 03052831 7T and 3110931 ] 7 respectively.

method to calculate the complex eigenenergy when o = 0.65 and € = 0.160, the best location

at n = 5. The complex-rotated Hamiltonian of the model system becomes

Hy =(1.31441 — 0.054971) I T + (—0.09167 + 0.09682i)YY" + (—0.09167 + 0.09682i) X X +
(—0.25113 4 0.022351) Z1 4 (—1.06328 + 0.03261i)1 Z
—=1.31556 % ¢ OO T 1+ 0.13333 * e>3258YY 1 0.13333 % 232 X X
0.25212 % 305231 7T 4 106378 * 310931 7,
(4.31)

We run with the Direct Measurement method with simulators first and then try to reduce
the number of ancilla qubits to make the resulting circuit short enough to be executed in

the real IBM quantum computers.
5-qubit circuit

For the Hamiltonian Hy in Eq.(4.31), totally 5 qubits are required to calculate the Hamil-
tonian with the Direct Measurement method: 2 for the system qubits and 3 for the ancila
qubits. FIG. 4.4 gives the quantum circuit for Hy. By running the circuit for Hy and a

similar circuit for Hy = xI1 + Hy, the complex eigenvalue can be derived by

A2—:r2—pA2 A2—12—pA2

Eel? = \/jr_jAeiCOS_1 “Tﬁor\/ﬁAefims_l “T\/T’, (4.32)
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where A and A can be obtained from the absolute value of coefficients in Hy and Hy, p and

p can be obtained from measurement results.

This circuit can be executed in simulators, but it is still too complicated to be successfully

run in the IBM quantum computers. The simulation results are listed in TABLE. 4.1.

Table 4.1. The complex eigenenergy obtained by direct diagonalizing the
Hamiltonian and by running different simulators. The QASM simulator is
configured to have no noise, and it takes 10° samples to calculate the complex

eigenenergy.
Method Eigenenergy (Hartree) | Error (Hartree)
Direct Diagonalization 2.1259-0.1089i -
Statevector Simulator 2.1259-0.1089i 0
QASM Simulator 2.1279-0.1100i 2 x 1073

4-qubit circuit

We can do simplification by only calculating the eigenvalue of the Hamiltonian in Eq.

(4.31) without the II part, as

Hy =0.13333 % *7*¥YY 4 0.13333 5 e X X +0.25212 % > P2 21 +1.06378 % > 11 Z.
(4.33)

The II part can be directly added later since it is just an identity operator. Because there
are only 4 terms left, 2 ancilla qubits are enough for the method. The simplified quantum

circuit is then shown in FIG. 4.5.
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Figure 4.5. The simplified quantum circuit to run Direct Measurement
method when n = 2. B gate is prepared by the coefficients [0.13333, 0.13333,
0.25212, 1.06378]. Vy, Vi, Vo and V3 are applying e*3%88YY 23288 X X
e3231 7T and 31931 [ 7 respectively.

To avoid introducing more ancila qubits, instead of Hy = Hy + 211, we can run a similar
4-qubit circuit for Hy = Hy + Hj, which has the same terms of tensor products as Hy with

different coefficients. The complex eigenvalue can be represented by

; icos—1l(pAZ _ 1 pA?
Fe' =(1.31441 — 0.05497i) + /pAe? ™ G2 me =2 o (4.34)
—iog—1(pAZ 1 pA?
(1.31441 — 0.05497i) + /pAe®  Grar mo %), (4.35)

where A and A can be obtained from the absolute value of coefficients in Hy and Hy, p and

p can be obtained from measurement results.
This circuit can be executed successfully in the simulators and the IBM quantum com-

puters. However, it costs around 200 gates in the IBM quantum computers, leading to pretty

large error. The result resonance eigenenergies and errors can be seen in TABLE. 4.2.
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Table 4.2. The complex eigenenergy obtained by direct diagonalizing the
Hamiltonian, by running simulators and by running real IBM quantum com-
puters. The QASM simulator is configured to have no noise, and it takes 10°
samples to calculate the complex eigenenergy. The IBM quantum computer
takes 2'3 samples.

Method Eigenenergy (Hartree) | Error (Hartree)
Direct Diagonalization 2.1259-0.1089i -
Statevector Simulator 2.1259-0.1089i 0
QASM Simulator 2.1264-0.1099i 1x1073
IBM Quantum Computer 2.0700-0.4890i 0.3841

3-qubit circuit

For the Hamiltonian Eq. (4.33), a more simplified circuit can be constructed if we try to

calculate the complex eigenvalue of its square,

H2 =(1.19013 — 0.116081) I + (0.53453 — 0.02842i) ZZ (4.36)

=1.19577 % e O3 [T 1 (0.53529 % e 0031l 77 (4.37)

The quantum circuit for this Hj is showed in FIG. 4.6.

0>a

|¢,.>5{ vl v

Figure 4.6. The quantum circuit to run Direct Measurement method when
n = 2. B gate is prepared by the coefficients [1.19577, 0.53529]. Vp, Vi are
applying e 097231 T and e~ 00531 7 7 respectively.
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We can also run a similar 3-qubit circuit for H3 + Hy, which also has only 2 terms. The

wanted complex eigenvalue for Hy is

. ) LCOS—l(A_%_@)
Ee'® =(1.31441 — 0.054971) + piv/Ae’ piaz VP2 L (4.38)
1 %cos_l(%—ﬁ—@)
(1.31441 — 0.05497i) + pi1V/Ae 293 43 (4.39)

where A and A can be obtained from the absolute value of coefficients in H} and Hj + Hy,

p and p can be obtained from their measurement results.

The implementation of the circuit will cost 9 gates in the IBM quantum computers after

circuit optimization. The resulting eigenenergies can be seen in TABLE. 4.3.

Table 4.3. The complex eigenenergy obtained by direct diagonalizing the
Hamiltonian, by running simulators and by running real IBM quantum com-
puters. The QASM simulator is configured to have no noise, and it takes 10°
samples to calculate the complex eigenenergy. The IBM quantum computer
takes 2'% samples. The error of the IBM quantum computer is from the best

case.
Method Eigenenergy (Hartree) | Error (Hartree)
Direct Diagonalization 2.1259-0.1089i -
Statevector Simulator 2.1259-0.1089i 0
QASM Simulator 2.1259-0.1107i 1.7 x 1073
IBM Quantum Computer 2.1624-0.1188i 0.0378

4.5 Quantum simulation of the resonances in H, using the complex scaling
method

In this section, we present a proof of concept that using quantum algorithm, the Direct
Measurement method, one can calculate molecular resonances on a quantum computer. Here,
we focus on the resonances of the simple diatomic molecule, Hy *¥7 (020y,).

Moiseyev and Corcoran [64] show how to obtain the resonances of H; using the vari-

ational method based on the (5s,3p,1d/3s,2p,1d) contracted Gaussian atomic basis, which
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Figure 4.7. The trajectory of a complex eigenvalue on the rotation angle 6 at
a = 1, calculated by a self-defined simulator. 8 ranges from 0.00 to 0.24 with
a step of 0.02. At the lowest point when 6 = 0.18, the complex eigenvalue is
—0.995102 — 0.0462361 Hartree.

contains 76 spin orbitals. The size of this basis set is too large for our method to be executed
by current quantum computers or simulated by classical computers. To perform the simula-
tion, we used the Born-Oppenheimer approximation, followed by complex rotation as shown
in Section II, “COMPLEX SCALED HAMILTONIAN” and mapped to qubit space as shown
in the Appendix C. We choose a much smaller 6-31g basis set for H, and orthogonalize
them using the Hartree-Fock method, which at the end has only a total of 8 spin orbitals.
The 6 trajectory for a complex eigenvalue when o = 1.00 is given in FIG. 4.7. If we
fix n = ae™ at the lowest point in the figure, which has a = 1, § = 0.18, the resonance
energy obtained by the Direct Measurement method using a 16-qubit simulator is Fy =
—0.995102 — 0.046236i Hartree. This complex energy is close to the one obtained by a larger
basis set of 38 spin orbitals, Fy = —1.0995 — 0.0432i Hartree [64], especially the imaginary
part. However, we can also see that the lowest point in the trajectory is not a good pause
point. Also, in such a small basis set, we cannot find a consistent pause in different a’s 6
trajectories to locate the best resonance estimation. The reason for the above may be the

small basis set used in the quantum simulations. However, this application gives a proof of

concept and show that one can calculate molecular resonances on a quantum computer.

7



4.6 Conclusion

Recently, we have made progress in developing quantum simulation methods in various
fields of atomic and molecular physics[1], [16], [34], [50], [66]. In this chapter, we extend the
quantum simulation methods to the field of atomic and molecular resonances.

Since resonances are associated with a Hermitian Hamiltonian’s complex eigenvalues,
they cannot be solved directly. Here we leverage the complex rotation method to derive a
non-Hermitian complex-scaled Hamiltonian. We introduce the Direct Measurement method
to embed the Hamiltonian into quantum circuit. By measuring the output state multiple
times, we are able to calculate complex eigenvalues from the measurement results. The new
Hamiltonian’s complex eigenvalues reveal to us resonances’ energies and widths.

From the mathematical derivations and simulation results, it can be concluded that the
Direct Measurement method can be successfully used to calculate complex eigenvalues of
non-Hermitian Hamiltonians. The application on the simple one-dimensional system exhibits
accurate shape resonances compared with [65] when using simulators. Although the IBM
real quantum computers are not able to run large enough system size to located resonances,
it still shows the effectiveness of complex eigenvalue calculation. Also, when dealing with
real molecule system H; , our Direct Measurement method shows a proof of concept that the
systems’ resonances can be calculated.

In terms of gate complexity, the Direct Measurement requires O(n°) standard gates,
where n is the size of the basis set. This performs much better when compared with the
exponential time complexity in traditional matrix-vector multiplication process.

Due to the time consuming simulation process, we only use up to 10 qubits to do simula-
tion on the simple model system, and up to 8 qubits for H, . This leads to errors compared
with literature using a much larger basis set. It can be anticipated that once quantum com-
puters have more available qubits and less noise, the Direct Measurement method will do a

better job, more complicated molecular resonances will be revealed with more accuracy.
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A. H,O HAMILTONIAN AT EQUILIBRIUM

Table A.1. Pauli matrix form Hamiltonian for the water molecule at equi-
librium when O-H is 1.9 a.u. There are 95 terms, and listed are each operator
and corresponding coefficient. X,Y, Z, I stand for the spin matrices %, oY, o*
and the identity operator on a single qubit subspace.

IIIIII -72.008089 IITITZ 0.373979 IIIIXX -0.050755
IIIIYY 0.113535 III1Z1 0.002526 1177 0.779273
ITIZI1 -0.771553 111717 0.043092 IMIzZXX 0.113535
HIzZYY -0.050755 1117271 0.785287 11277 -0.030367
IIXIIX 0.009295 TIXIXI 0.000158 IIXIZX | -0.009295
1IXZXZ -0.000158 TIZI11 -0.373979 11Z117Z -0.148141
IzZIyy -0.011744 117177 -0.146285 1172711 0.141059
11Z7XX -0.011744 1172771 -0.136887 IXTIIIX 0.000158
IXIIXI 0.013400 IXIIZX | -0.000158 IXTZXZ | -0.013400
IXXIII -0.050755 IYYIII 0.113535 IYYIIZ 0.011744
IYYIYY 0.019371 IYYIZZ 0.031747 IYYZIT | -0.011216
IYYZXX 0.019371 IYYZZ1 0.031561 IZIII1 -0.002526
IZXIIX 0.009295 1ZXIXI 0.000158 IZXIZX | -0.009295
172X7ZX7Z -0.000158 177111 0.779273 127117 0.146285
1221YY 0.031747 127177 0.220040 127711 -0.154863
1777XX 0.031747 177771 0.179396 XIIXTII 0.012412
XIIXXX | -0.007950 XIIXZI 0.012412 XITYXY | 0.007950
XXXXIT | -0.007950 | XXXXXX | 0.018156 XXXXZI | -0.007950
XXXYXY | -0.018156 | XXZXXZ | -0.006979 || XXZYYI | 0.006979
XZIXII -0.012412 XZIXXX | 0.007950 XZIXZI | -0.012412
XZIYXY | -0.007950 YXYXIT | 0.007950 || YXYXXX | -0.018156
YXYXZI 0.007950 || YXYYXY | 0.018156 || YYIXXZ | -0.006979
YYIYYI 0.006979 ZIIIII 0.771553 ZIIITZ 0.141059
ZIIIYY 0.011216 211177 0.154863 ZI1Z11 -0.154860
ZI17ZXX 0.011216 211771 0.146877 ZI7111 0.043092
ZXXIII -0.113535 ZXXITZ | -0.011744 || ZXXIYY | -0.019371
7ZXXI77Z -0.031747 ZXXZI1 0.011216 || ZXXZXX | -0.019371
ZXXZZ1 | -0.031561 ZXZIIX | -0.000158 ZXZIX1 | -0.013400
7X717ZX 0.000158 ZX77X7Z | 0.013400 ZYYIII 0.050755
ZZI111 0.785287 ZZI11Z 0.136887 ZZ1IYY 0.031561
271177 0.179396 771711 -0.146877 || ZZ1ZXX | 0.031561
771771 0.189343 277111 0.030367
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B. COMPLEX-ROTATED HAMILTONIAN OF THE MODEL
SYSTEM AT 60 =0.16, a = 0.65 WHEN n =5

Table B.1. The coefficients and tensor product operators of complex-rotated
Hamiltonian Hy at # = 0.16, o = 0.65 when there are n = 5 basis functions.

YYIIT | -0.091665+0.0968191 XXIIT | -0.091665+0.096819i
ITIII 4.599205-0.533073i ZII11 -0.2511314-0.022353i
YZYII | 0.0179156-0.030997i XZXII | 0.0179156-0.030997i
YZZYT | -0.0070054-0.015446i || XZZXI | -0.0070054-0.015446i
YZZZY | 0.003680-0.009152i XZ7ZZX | 0.003680-0.009152i
IZ111 -1.0632804-0.032614i IYYII | -0.089297+0.108259i
IXXII | -0.089297+0.108259i || IYZYI 0.014213-0.055870i
IXZXI 0.014213-0.055870i IYZZY | -0.003869+0.0336931
IXZZX | -0.003869+0.033693i IIZ11 -1.4453494-0.113618i
IIYYI | -0.209952+0.010748i IIXXI | -0.209952+0.010748i
IIYZY 0.060302-0.008776j IIXZX 0.060302-0.0087761
II1Z1 -1.1270584-0.243702i IIIYY | -0.336956+0.051691i
IIIXX | -0.336956+0.051691i II11Z -0.7123854-0.120784i
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C. COMPLEX-ROTATED HAMILTONIAN OF H,
AT 0 =0.18, a = 1.00 USING 6-31G BASIS SET

Table C.1. The coefficients and tensor product operators in H;’s complex-

rotated Hamiltonian at § = 0.18, « = 1.00 when using 6-31g basis set.

IXZXXZXI | 0.018705 -0.0034041 IIIZIXZX 0.038191 -0.006950i
ZIZIIIIT 0.103932 -0.018913i XZXIXZXI | 0.027826 -0.005063i
IXXIIIXX | -0.002794+0.000508i 11Z7Z1111 0.106657 -0.019408i1
IYTYTIII 0.024307 -0.004423i IIIXXXX 0.015119 -0.002751i
IZII11Z1 0.095226 -0.017328i ITIIIIXX 0.047512 -0.039979i
YYIIYZZY | -0.0192544-0.003504i || XZXIYZYI | 0.027826 -0.005063i
IZIIYZY1 0.013080 -0.002380i IIYYIIXX 0.034554 -0.006288i
XZXIIIZI 0.032587 -0.005930i YYYYIIII 0.015119 -0.002751i
XXIITY'YI 0.005216 -0.000949i IXIXIIIT 0.024307 -0.004423i
IIIXXYY 0.002918 -0.000531i II1ZX7ZX1 0.050249 -0.009144i
IIXXXXII 0.020481 -0.003727i YYIIYYII 0.019597 -0.0035661
IXXIIXXI 0.008283 -0.001507i ITIIXIXI 0.016733 -0.003045i
IYZYTIII -0.0356714-0.030324i IYZYIIIZ 0.043018 -0.007828i
YYIIIYYI 0.005216 -0.000949i IIIIXZ7ZX -0.028316+0.033738i
XXIIYYII 0.019597 -0.0035661 IXXIIIYY | -0.002794+0.000508i
ZYZYIIII 0.015436 -0.002809i XXIIYZZY | -0.019254+0.003504i
IITITZZ1 0.084620 -0.015398i YZYTIZIT 0.011702 -0.002129i
IIYYXZZX | -0.031698+0.0057681 ITIITX XTI -0.0075504-0.006494i
IXZXIZII 0.012371 -0.002251i HIIYYYY 0.015119 -0.002751i
IMIZYZY1 0.050249 -0.009144i ZIIIIIIT -0.230405+0.108639i
ZITIITIZ 0.159054 -0.028943i IXXIYZZY | 0.006593 -0.001200i
IIIITYTY 0.023153 -0.004213i IIYYIXXI | -0.000541+0.000098i
YZZYIIII -0.027204+-0.031862i ITIZI1Z1 0.139579 -0.025399i
YZZYXXII | -0.01664740.003029i IIXXIIIT 0.047746 -0.0403701
XIXIIIII 0.017118 -0.003115i YYIIXXIT 0.019597 -0.0035661
YZYIIYZY | 0.017127 -0.003117i III1Z7Z11 0.084496 -0.015376i
YZZYXZZX | 0.031161 -0.005670i IZIIYZY 0.024717 -0.004498i
XZZXIXXI | 0.004990 -0.000908i IYYIIYYI 0.008283 -0.0015071
IYZYIXZX | 0.015728 -0.002862i || XZZXXZZX | 0.031161 -0.005670i




Table C.1. (Continued) The coefficients and tensor product operators in Hy ’s
complex-rotated Hamiltonian at 6 = 0.18, o = 1.00 when using 6-31g basis
set.

IYZYIIZI
17117111
IXZXIYZY
IIIITYY
XXIIIXX
ZIIITIZ1
YZYIIIIZ
IIXXXZZX
IYYIXXII
YZZYYZZY
ZIITZ111
ITITYTYT
IIYYYZZY
YZZYYYII
TIIIIXTX
ZXZXIIII
IIIIYZZY
YZZYIYYI
YZZYIIXX
IYYIITYY
IXZXIIIZ
IIXXIIXX
IIIZZ111
IZIIIYZY
XXIIXXII
ITITZIIT
YZYIXZXI
IIIIXZX7Z
IIYYIYYI

0.026040 -0.004739i
0.106161 -0.019318i
0.015728 -0.002862i
0.047512 -0.039979i
0.021209 -0.003859i
0.130169 -0.023687i
0.052229 -0.009504i
-0.031698+-0.005768i
0.003919 -0.000713i
0.031161 -0.0056701
0.151365 -0.027544i
0.016733 -0.003045i
-0.031698+-0.0057684i
-0.0166474-0.003029i
0.023153 -0.004213i
0.015436 -0.002809i
-0.028316+-0.033738i
0.004990 -0.000908i
-0.029557+-0.005379i
-0.002794+-0.0005084i
0.043018 -0.007828i
0.034554 -0.006288i
0.158431 -0.028830i
0.013159 -0.002395i1
0.019597 -0.003566i
-0.231557+0.112195i
0.027826 -0.0050631
0.020604 -0.003749i
-0.000541+-0.000098i

ITZI1ZI11
XXIIIXXI
ZINIIXZX
XXIIIYY
YYIITIIT
IIYYIIYY
YZYIIIIL
IIZYZY
ITZ1ZI11
XZXTZIIT
YZYIIXZX
IIXXIYYI
IYYIIIIT
XZXIIXZX
IIZIYZYI
YZYZIIII
IXZXZIIT
Z1IZ1111
XZZXYZZY
IXZXIIII
ZIIIYZYI
ZZIIIIIT
YXXYIIII
IYZYXZXI
HITYXXY
IITIZITZ
ITYYYYII
IIIIXZXI
IYYIYZZY

0.093507 -0.017015i
0.005216 -0.000949i
0.030922 -0.0056271
0.021209 -0.0038591
0.001646 -0.022572i
0.034554 -0.0062881
-0.0215614-0.0779561
0.013729 -0.002498i
0.133407 -0.024276i
0.040337 -0.0073401
0.017127 -0.003117i
-0.000541+-0.000098i
-0.009705+0.008779i
0.017127 -0.003117i
0.033580 -0.006110i
0.020644 -0.003757i
0.034152 -0.0062151
0.126456 -0.023011i
0.031161 -0.005670i
-0.035671+0.030324i
0.038659 -0.0070351
0.085046 -0.015476i
0.012162 -0.002213i
0.018705 -0.003404i
0.012201 -0.0022201
0.128680 -0.023416i
0.020481 -0.003727i
-0.0300674-0.081498i
0.006593 -0.0012001
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Table C.1. (Continued) The coefficients and tensor product operators in Hy ’s
complex-rotated Hamiltonian at 6 = 0.18, o = 1.00 when using 6-31g basis
set.

YZYIYZYI
IIXXYZZY
IITIIIZZ
IIIIIXZX
ITZIIIIT
ITXXIXXI
YYIIIIXX
XZXZIIII
YYXXIIIT
IIXXYYII
IXZXIIZI
ZIITXZXI
YYIIIIYY
IZIITZ11
IMIZIYZY
IXXIXZZX
TITITY YT
YYIIXZZX
TTIIX XTI
17111117
IYZYIZI1
IYYIYYII
XXYYIIII
IIIIYZYZ
IYZYIYZY
ITIIIIIT
IMZIIXZX
IIZIT1Z1
IIIIXYYX

0.027826 -0.005063i
-0.031698+-0.005768i
0.107859 -0.019627i
-0.012982+-0.018373i
-0.612966+-0.2710361
-0.0005414-0.000098i
0.021209 -0.003859i
0.020644 -0.003757i
0.002957 -0.000538i
0.020481 -0.003727i
0.026040 -0.004739i
0.038659 -0.007035i1
0.021209 -0.003859i
0.094105 -0.017124i
0.038191 -0.006950i
0.006593 -0.001200i
-0.0075504-0.006494i
-0.0192544-0.0035041
0.000598 -0.021276i
0.110454 -0.0200991
0.012371 -0.002251i
0.003919 -0.000713i
0.002957 -0.000538i
0.020604 -0.003749i
0.015728 -0.002862i
1.734311 -1.110499i
0.024717 -0.004498i
0.120598 -0.021945i
0.012201 -0.002220i

ITZI1XZXI
IIIITIZI
YZZYIXXI
IXXIXXII
XZXIIYZY
IIITYYIT
XZZXYYII
YZZYIIYY
YZYIIIZI
IXZXIXZX
XYYXIIII
IIXXITYY
17711111
ITYYXXII
IYYIIIXX
ITIIZXZX
Ivavai
IXXIIIIT
XZZXIYYI
IZIIIIIT
IXXITYYI
YYIIIXXI
IXXIYYII
IIIIYZYI
IZITXZXI
ITIIIIIZ
IZITIXZX
XZZXIIYY
IYZYZIIT

0.033580 -0.006110i
-0.611815+0.267480i
0.004990 -0.0009081
0.003919 -0.000713i
0.017127 -0.003117i
0.000598 -0.0212761
-0.0166474-0.003029i
-0.0295574-0.005379i
0.032587 -0.005930i
0.015728 -0.002862i
0.012162 -0.002213i
0.034554 -0.006288i
0.087497 -0.015922i
0.020481 -0.003727i
-0.002794+-0.000508i
0.013729 -0.0024984i
0.103932 -0.018913i
-0.0097054-0.008779i
0.004990 -0.000908i
-0.388873+-0.102313i
0.008283 -0.0015071
0.005216 -0.000949i
0.003919 -0.000713i
-0.0300674-0.081498i
0.013080 -0.0023801
-0.8962474-0.3695561
0.013159 -0.0023951
-0.0295574-0.005379i
0.034152 -0.0062151
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Table C.1. (Continued) The coefficients and tensor product operators in Hy ’s
complex-rotated Hamiltonian at 6 = 0.18, o = 1.00 when using 6-31g basis
set.

ITYYIIII
XZXIIIIZ
XZZXXXII
YIYIIIII
XZZXIIIT
XXIIXZZX
ZITITZ11
[IIITZIT
ITIZ1Z11
IIITYYXX
YZYTZIIT
XZZXIIXX
IITZIIIT
IYZYYZYI

0.047746 -0.040370i
0.052229 -0.009504i
-0.0166474-0.003029i
0.017118 -0.003115i
-0.027204+-0.031862i
-0.0192544-0.0035041
0.102700 -0.0186881
-0.386698+-0.1001351
0.105681 -0.019231i
0.002918 -0.0005311
0.040337 -0.0073401
-0.029557+-0.005379i
-0.8940714-0.367379i
0.018705 -0.003404i

IXZXYZYI
XZXIIIIT
ZINIYZY

IYYIXZZX
IIIIYZY
XZXI1Z11

IIIITZ1Z
IYYIIXXI
XXIIIIIT
1Z1Z1111
XXXXIIII
ITIZI11Z
I1ZITI1Z

0.018705 -0.003404i
-0.021561+-0.0779561
0.030922 -0.005627i
0.006593 -0.001200i
-0.012982+-0.018373i
0.011702 -0.002129i
0.092214 -0.016780i
0.008283 -0.001507i
0.001646 -0.022572i
0.092214 -0.016780i
0.015119 -0.002751i
0.184425 -0.033560i
0.144136 -0.026228i
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