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ABSTRACT

The electric power system of a deep space vehicle is mission-critical, and needs to operate

autonomously because of high latency in communicating with ground-based mission control.

Key tasks to be automated include managing loads under various physical constraints, con-

tinuously monitoring the system state to detect and locate faults, and efficiently responding

to those faults.

This work focuses on three aspects for achieving autonomous, fault-tolerant operation in

the dc power system of a spacecraft. First, a sequential procedure is proposed to estimate

the node voltages and branch currents in the power system from erroneous sensor measure-

ments. An optimal design for the sensor network is also put forth to enable reliable sensor

fault detection and identification. Secondly, a machine-learning based approach that uti-

lizes power-spectrum based features of the current signal is suggested to identify component

faults in power electronic converters in the system. Finally, an optimization algorithm is set

forth that decides how to operate the power system under both normal and faulted condi-

tions. Operational decisions include shedding loads, switching lines, and controlling battery

charging. Results of case studies considering various faults in the system are presented.
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1. INTRODUCTION

With increasing integration of renewable energy sources and consumer demand for system

reliability, there is a growing interest in intelligent power system operation. Key abilities of

such systems include managing loads under various physical constraints, continuously moni-

toring the system state to detect and locate faults, and efficiently responding to them. These

capabilities are particularly important in a critical application like a manned deep space ve-

hicle (DSV), which is the focus of this thesis.

Space vehicles in the low-earth-orbit communicate with ground-based mission control in

near real-time. However, for enabling manned missions to venture further, especially beyond

cislunar space, the operation of the on-board system must be fully autonomous. This is

because the round-trip communication between such a vehicle and ground-control can take

several minutes. Hence, if a fault occurs in the power system of such a space vehicle, the

on-board system cannot rely on commands from the ground-based control for determining

its response. Astronauts on-board are also not expected to have detailed knowledge of each

component to make the most effective decisions under different circumstances. Therefore,

the on-board system must be capable of operating intelligently under normal conditions as

well in response to various faults [ 1 ].

First, we analyze the notional architecture of a DSV power system. This analysis re-

veals certain contrasting features compared to those of a terrestrial power system which has

extensively been studied. Specifically, it differs from a terrestrial power system in the way

load is forecast, generation is scheduled, and physical states are monitored. The operational

objectives also differ, focusing on achieving fault-tolerance rather than on minimizing cost.

1.1 Comparison of DSV power system with terrestrial power system

In terrestrial power systems, several independent consumers demand load depending on

their requirement. Generation is scheduled based on the forecast demand, which considers

various seasonal and historic factors. A mix of generation sources and energy storage devices

often operate in tandem to meet the consumer load demand throughout the day.
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However, in the DSV, a computer-based mission manager (MM) determines the desired

load schedule that includes individual load demands and their respective priorities for a

time horizon encompassing a few hours [  2 ]. Fig.  1.1 shows the power system of a notional

deep space vehicle based on the architecture set forth in [  3 ]. In the notional DSV, different

power sources cyclically meet the demand of loads connected to each power distribution

unit (PDU). Solar arrays SA-1 and SA-2 receive solar energy in a 60 minute-long period of

insolation during which they supply power to loads, and charge the batteries on-board. In a

subsequent 30 minute-long period of eclipse, the arrays do not generate power. At this time,

the batteries are responsible for powering all loads. Batteries and solar arrays are interfaced

with the main bus switching units (MBSUs) via power electronic converters (BCDUs and

SARs, respectively). The MBSUs that can be tied together by closing switches S1
X and S2

X ,

which are normally open. The DSV power system is, thus, normally electrically divided in

two parts, and the voltage of each MBSU node is regulated to 120 V dc.

Another difference between the two types of systems is in the way their state is monitored.

Accurate knowledge of the physical state of the power system is necessary for analyzing power

system security and making intelligent decisions related to power dispatch. The problem

of estimating the system states such as bus voltages and line currents using the available

sensor measurements, which are subject to error, is known as state estimation (SE). In

terrestrial grids, various measurements from Remote Terminal Units (RTUs) and Phasor

Measurement Units (PMUs) at substations are collated at a Supervisory Control and Data

Acquisition (SCADA) system and Phasor Data Concentrator, respectively, and then sent to

the control center for this analysis. Several papers address the SE problem for ac power

distribution [ 4 ], [  5 ] and transmission systems [  6 ]. Weighted least squares (WLS) method is

popular for filtering measurement noise in static state estimation [  7 ], [  8 ], whereas Kalman

filter-based methods are suggested for dynamic state estimation in a power system [ 9 ]–[ 12 ].

However, there is limited literature addressing state estimation for dc power systems of

critical applications such as space vehicles and future more-electric aircraft [ 13 ].

As opposed to PMUs which transmit data 1–2 times per cycle, voltage and current

sensors in the DSV transmit measurements at a sampling frequency in the order of hun-

dreds of kHz. The DSV architecture proposed by NASA consists of distributed intelligent

13
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Figure 1.1. Notional deep space power system.

software agents [  14 ], such as microcontrollers, that control each unit such as PDUs and MB-

SUs. These software agents have access to local measurements and can communicate with

other agents. They periodically transmit information to a central controller at a frequency

that is a fraction of the sensor sampling frequency.

Given the high sampling frequency, and assuming that control decisions are made based

on the observed quasi-steady state and steady state behaviour that the measurements cap-

ture, we suggest a WLS-based method to perform static SE. In a centralized SE architecture,

measurements from all sensors are aggregated at the central controller. Here, leveraging the

features of the distributed software agents, we propose an architecture in which SE is done

in parallel by each agent using measurements of local sensors and a subset of sensors from

the neighbouring unit. Thus, we solve each SE problem using a subset of measurements used

in a centralized scheme. These smaller problems based on WLS can be simplified by making
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suitable approximations, which gives us insight into the effect of various measurements on

the estimates. Using the resulting mathematical equations can speed up the computation of

estimates without significant loss of accuracy.

Apart from measurement error due to noise, various sensor faults may compromise the

accuracy of the estimates. For instance, incorrect measurements may result from incorrect

sensor connection, sensor failure, and cyber-attacks. Several papers address detection of

faults in PMUs in terrestrial power systems. Methods to locate such faults are mainly classi-

fied as model-based and model-free. Model-free methods that utilize spatio-temporal corre-

lation between measurements of PMUs connected to neighboring nodes have been proposed

in [  15 ]–[ 17 ]. If there is dissimilarity in the rate of change of measurements by neighbouring

sensors due to glitches, a sensor fault is detected. A temporary or constant bias in a sensor is

an important sensor fault that needs to be detected and identified. Such a constant offset in

measurements by a sensor would not affect this correlation and hence, it could be challenging

to identify biased sensors using these methods.

Accuracy of estimates and the ability to detect incorrect sensor measurements depend on

the sensor configuration and degree of redundancy of available measurements. Model-based

methods can be used as they provide some analytical redundancy through known physical

relations that describe the variables being measured. Largest Normalized Residual (LNR)

test is a commonly used model-based FDI method, that identifies incorrect measurements

based on the difference between measured and estimated quantities. However, it fails under

some circumstances when there is low redundancy of sensors.

In [  18 ], conditions are set forth for effective sensor FDI using Parity Space Approach

(PSA), another model-based method which has been suggested for electric drives, motors,

and electric vehicle applications [  19 ]–[ 21 ]. We propose utilizing meaningful relations obtained

from the WLS problem that is formulated for SE, that satisfy these conditions. This helps

us optimally select additional, practically realizable sensors, which enables us to identify

biased sensors. Weight, space requirement, and complexity are constraints in introducing

additional sensors in aerospace applications [  22 ]. Hence, a simple design for these additional

sensors is put forth, and the volume and weight penalty for this capability is calculated.
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Apart from sensor faults, component faults in the dc-dc power electronic converters in

the system also need to be identified. Semiconductor devices are particularly fragile [  23 ], so

the identification of switch faults has been a main focus [  24 ]–[ 26 ]. In model-free methods,

a classification system is trained with features computed using measurements of the system

under different conditions, which can then be used to predict the system status with new

measurements. Prior approaches have relied on neural-networks, support vector machines

(SVM), or fuzzy-logic [  24 ]–[ 29 ]. Frequency-domain features are commonly used to diagnose

faults [ 30 ]–[ 32 ]. The choice of signal used for FDI is important. In [  26 ], [ 33 ], the output

voltage was used to generate features that were fed to the proposed FDI algorithm. However,

in closed-loop converters with regulated output voltage, this measurement may not reveal

enough information for fault diagnosis. A few types of faults were diagnosed in closed-loop

converters by model-based techniques proposed in [ 34 ], [ 35 ] by measuring 2–3 signals.

In this work, we propose an SVM-based method for fault diagnosis in a dc-dc converter

system using features related to the power spectrum of a single signal (the input current).

The algorithm is tested on a circuit with two back-to-back 3-phase interleaved dc-dc con-

verters. The algorithm returns the fault type, if present, among different types fault types,

with high speed and reliability. Normal operating conditions that involve no change or a

step change in load are also recognized.

Finally, we can also differentiate between the operational objectives of the two types

of power systems. Minimizing cost of electricity and loss [  36 ], [  37 ] are common objectives

of electricity market operators of terrestrial grids. Accordingly, an optimization problem

known as an optimal power flow (OPF) problem is formulated subject to physical laws

and safe operating limits In its simplest form, the OPF problem consists of real variables,

such as power injection and voltage at the buses of the network. However, more advanced

formulations involving problems like unit commitment [  38 ] and network reconfiguration [  39 ]–

[ 42 ] also include binary variables.

In this work, our primary objective is ensuring service to important loads and fully

charging the batteries. A secondary objective is minimizing network ohmic loss. Accordingly,

we define the operational logic of an autonomous control system that ensures optimal system

operation under normal and faulted conditions. If a fault occurs in the power system, it is
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operated in a restorative state. This may involve rerouting power supply to loads by utilizing

alternate paths and/or charging batteries at a lower rate. In the proposed algorithm, an OPF

problem is formulated as a mixed integer linear program. It is embedded inside an outer

loop over all network configurations. The mathematical formulation is relatively simple and

computationally efficient.

1.2 Thesis Outline

This work contributes towards three aspects for autonomous, fault-tolerant operation of

a power system in a deep space vehicle.

In Chapter  2 , a state estimation algorithm is presented which utilizes information from

erroneous sensor measurements to estimate voltages and currents throughout the system.

Mathematical expressions for the estimates are derived based on WLS method. Based on the

insight gained from these expressions, a SE and sensor fault detection algorithm is proposed.

A method is also suggested to optimally choose additional sensors to enable detection of

faulted current sensors. A simple design for the additional sensors is proposed, based on

which the weight penalty for this capability is estimated.

Chapter  3 presents a machine learning approach to accurately and reliably diagnose

faults in a dc-dc converter system. The proposed algorithm employs support vector machine

(SVM) classification utilizing features related to the power spectrum of the converter input

current to identify various component failures.

In Chapter  4 , an algorithm is set forth that decides how to operate the system under

normal and faulted conditions. Its decisions include shedding loads, switching lines, and

controlling battery charging, based on the importance of the loads and the transmission loss.

It also decides the network configuration needed to best meet the mission objectives under

faulted conditions.
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2. STATE ESTIMATION AND BIASED SENSOR

IDENTIFICATION

The problem of estimating the physical states of a system using available sensor measure-

ments that may have error is known as state estimation (SE). In this chapter, we derive simple

linear expressions to estimate system voltages and currents originating from a Weighted Least

Squares (WLS) formulation. The expressions offer insight into the effect of various measure-

ments on the estimates. Using these simple equations for SE is shown to be computationally

more efficient than solving the original WLS problem.

In particular, we are interested in detecting current sensor bias. To this end, we propose

an approach based on the Largest Normalized Residual (LNR) test. Typically, the ability to

detect sensor faults is limited due to sensor cost/weight leading to low sensor redundancy. We

propose a method to optimally choose additional sensors and measurements that maximizes

our ability to identify the faulted sensor. The proposed SE and sensor fault (bias) detection

method is validated using simulation results.

Fig.  2.1 shows a simplified section of the dc power system of the notional deep space

vehicle. A dc-dc converter is connected upstream of node-1. The resistance of the circuit

connecting the converter to the main bus switching unit (MBSU) is Rc. Here, nP = 2 PDUs

are connected to the MBSU with PDU-MBSU circuit resistance Rp. There are nL constant

power loads connected to each power distribution unit (PDU) via switches. The resistance

of each switch is Rs.

The system architecture consists of distributed intelligent software agents that controls

PDUs and MBSUs [ 14 ]. These software agents have access to local measurements, and

can communicate with other agents. Utilizing these abilities, SE is performed locally for

each unit. The proposed communication architecture in Fig.  2.2 shows the measurements

used by the PDU and MBSU agents. Let Vg
P and Ig

P be vectors of all voltage and current

measurements considered local to PDU-g, respectively, ∀g ∈ {1, . . . , nP }. Thus,

Vg
P = [V g

p V g
1 . . . V g

nL
] , (2.1)

Ig
P = [Ig

1 . . . Ig
nL

] . (2.2)
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Figure 2.1. Section of deep space vehicle power system.

Let VM and IM be vectors that include all local MBSU measurements, as well as measure-

ments Vc and Ic from the voltage and current sensor connected to the converter terminal at

node-1, respectively. Thus,

VM = [Vm V 1
m . . . V nP

m V c
m Vc] , (2.3)

IM = [I1
m . . . InP

m Ic
m Ic] . (2.4)

All voltage and current measurements are assumed to be independent, and have normally-

distributed error with zero mean and a standard deviation of σv and σi , respectively. Based

on this architecture and the assumptions mentioned, we propose an SE and biased sensor

detection algorithm.

In Section  2.1 , we introduce WLS estimation and the LNR test. Next, in Section  2.2 ,

we find approximate expressions for currents and voltages in the PDU and MBSU using
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Figure 2.2. Measurements accessed by MBSU and PDU agents.

WLS estimation. From the derived expressions, we deduce that LNR test will not be able

to identify faults in PDU current sensors. Hence, in Section  2.4 , we propose a method to

optimally select additional PDU current sensors. We then derive expressions to estimate

the PDU currents using these additional sensor measurements to replace the corresponding

expressions found in  2.2 . Finally, we present results showing the performance of the proposed

SE and sensor fault detection method in Section  2.4 .

2.1 Preliminaries

2.1.1 Weighted Least Squares (WLS) estimation

Let z be an Nm × 1 vector of sensor measurements whose n-th element, zn, contains

the measurement of the n-th sensor. Let zt be the corresponding vector of true values of

the measured variables. The vector zt is linearly related to an Ns × 1 vector of the true

system states, x, through an Nm × Ns matrix H. The unknown error en in measurement

zn is independent of the error in all other measurements. We assume that the error has a
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Gaussian distribution with zero mean and standard deviation σn. Let e be an Nm × 1 vector

of measurement errors. Then, we can express

z = Hx + e . (2.5)

Based on maximum likelihood estimation [ 7 ], the objective function can be formulated as

min
x

J(x) =
Nm∑
n=1

zn − Hnx
σn

2

, (2.6)

where Hn is a 1 × Ns vector (n-th row of H) relating zn with the states in x. We define a

weight matrix

W =



1/σ2
1

·

·

1/σ2
Nm


. (2.7)

Minimizing J(x) results in the state estimate

x̂ = A−1b , (2.8)

where

A = H>WH , (2.9a)

b = H>Wz . (2.9b)

Then the measured variables can be estimated as

ẑ = Hx̂ . (2.10)
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2.1.2 Largest Normalized Residual (LNR) test

The Largest Normalized Residual (LNR) test is used to detect the presence and identify

the source of incorrect measurements based on the difference between the measured and

estimated values. A residual vector is defined as

r = z − ẑ . (2.11)

From ( 2.8 ), ( 2.9 ), and ( 2.10 ),

r = z − H(H>WH)−1H>Wz = Sz , (2.12)

where the sensitivity matrix

S = I − H(H>WH)−1H>W . (2.13)

Note that

SH = 0 . (2.14)

Hence, from equations ( 2.5 ) and ( 2.12 ),

r = Se . (2.15)

We can prove that the residual covariance matrix

O = E[rr>] = SW−1 . (2.16)

Incorrect measurements can be detected as follows [ 7 ]:

1. Obtain rn = zn − ẑn, ∀n ∈ {1, . . . , Nm} by performing WLS estimation.

2. Normalize the residuals as

ro
n = rn/

√
Onn , (2.17)

which have a standard normal distribution.
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3. If max(|ro
l |) is greater than a threshold (e.g., 3.0), the l-th measurement is suspected

as being corrupted.

The LNR test follows SE to check for faulty sensors. We discuss its implementation in

Section  2.3 .

2.2 State estimation using approximate expressions

In this section, we derive simple linear expressions to estimate system voltages and cur-

rents from a WLS formulation for SE. We analyze the resulting equations, and further

propose a simple, alternative method that leads to the same expressions. This alternative

method is generalized and can be more computationally efficient than the originally formu-

lated WLS-method.

2.2.1 PDU state estimation using voltages as states

In this section, we derive simplified expressions for estimates of voltages and currents

related to the PDU, based on the WLS method.

In the following expressions, we refer to variables related to PDU-g. Hence, for simplicity,

we drop the superscript from V g
h and Ig

h, ∀h ∈ {1, . . . , nL}. We also denote V g
m, Ig

m, and V g
p

by VM , IM , and VP , respectively. Here, we solve the WLS problem for nL = 2 considering

the PDU local voltages to be states. Thus, let the state estimate vector

x̂ = [V̂P V̂1 V̂2]> . (2.18)

The measurement vector z includes the local PDU measurements ((  2.1 ) and (  2.2 )) as well

as the measurements sent by the MBSU, as shown in Fig.  2.2 . Thus,

z = [VP V1 V2 VM I1 I2 IM ]> . (2.19)
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The currents measured are related to the voltages in the states vector by Kirchhoff’s Voltage

Law (KVL) and Kirchhoff’s Current Law (KCL). Hence, the corresponding matrices for WLS

estimation are

H =



1 0 0

0 1 0

0 0 1

2Rp/Rs + 1 −Rp/Rs −Rp/Rs

−1/Rs 1/Rs 0

−1/Rs 0 1/Rs

2/Rs −1/Rs −1/Rs



, (2.20)

W =



1/σ2
v

1/σ2
v

1/σ2
v

1/σ2
v

1/σ2
i

1/σ2
i

1/σ2
i



. (2.21)

We define the factors

α = Rp/Rs (2.22a)

γ = σ2
v/R2

sσ2
i (2.22b)

From ( 2.9a ), ( 2.20 ), and ( 2.21 ), we obtain

A = H>WH = 1
σ2

v


1 + (2α + 1)2 + 6γ −α(2α + 1) − 3γ −α(2α + 1) − 3γ

−α(2α + 1) − 3γ 1 + α2 + 2γ α2 + γ

−α(2α + 1) − 3γ α2 + γ 1 + α2 + 2γ

 . (2.23)
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Hence, we can find

Det(A) = 1
σ6

v

{
[3γ2 + γ(2α2 + 4) + 2α2 + 1][1 + (2α2 + 1)2 + 6γ]

− 2[α2(2α + 1)2 + 9γ2 + 6α(2α + 1)γ](γ + 1)
}

= 1
σ6

v

{
9γ2 + γ2[3(4α2 + 4α + 1) + 12α2 − 24α2 − 12α] + γg(α) + f(α)

}
,

(2.24)

where

g(α) = −4α4 − 8α3 − 2α2 − 12α + 14 (2.25a)

f(α) = 8α6 + 4α4 − 8α3 + 6α2 + 2 (2.25b)

Cancelling like terms, this simplifies to

Det(A) = (12γ2 + γg(α) + f(α))/σ6
v . (2.26)

Manipulating ( 2.23 ) and ( 2.26 ) to find the inverse of A, we obtain

A−1 = 1
Det(A)


a11 a12 a13

a21 a22 a23

a31 a32 a33

 , (2.27)

where

a11 = [3γ2 + 2γ(α2 + 2) + 2α2 + 1]/σ4
v , (2.28a)

a12 = a21 = a13 = a31 = [3γ2 + γ(2α2 + α + 3) + α(2α + 1)]/σ4
v , (2.28b)

a22 = [3γ2 + 2γ(α2 + α + 5) + 5α2 + 4α + 2]/σ4
v , (2.28c)

a23 = a32 = [3γ2 + 2γ(α2 + α − 1) − α2]/σ4
v , (2.28d)

a33 = [3γ2 + 2γ(α2 + α + 5) + 9α2 + 2]/σ4
v . (2.28e)
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From ( 2.9b ), ( 2.19 ), ( 2.20 ), and ( 2.21 ), we obtain

b = H>Wz = b1 − b2 , (2.29)

where

b1 = 1
σ2

v


VP + (2α + 1)VM

V1 − αVM

V2 − αVM

 , (2.30)

b2 = 1
Rsσ2

i


I1 + I2 − 2IM

IM − I1

IM − I2

 . (2.31)

Thus, from ( 2.8 ) and ( 2.29 ),

x̂ = A−1b1︸ ︷︷ ︸
x̂1

− A−1b2︸ ︷︷ ︸
x̂2

. (2.32)

Hence, from ( 2.27 ) and ( 2.30 ),

x̂1 = A−1b1 = 1
Det(A)


a11 a12 a13

a21 a22 a23

a31 a32 a33


1
σ2

v


VP + (2α + 1)VM

V1 − αVM

V2 − αVM

 . (2.33)

A cable that can carry the maximum current drawn by the PDU (which is 32 A) for a

short distance (of a few meters), considering the desired compactness of a spacecraft has

a resistance in the order of mΩ or tens of mΩ. The resistance of commercially available

switches that can carry this current is also in the order of mΩ. Hence, their ratio α is of the

order of 1 or 10. Also, a much smaller Rs in comparison with σv/σi results in γ � 1. Then

from ( 2.26 ),

Det(A) ≈ 12γ2/σ6
v . (2.34)
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Further, while substituting from (  2.28 ) in (  2.33 ), we neglect all terms except the quadratic

terms in γ and get

x̂1 ≈ 3γ2

12γ2


1 1 1

1 1 1

1 1 1




VP + (2α + 1)VM

V1 − αVM

V2 − αVM

 = VP + VM + V1 + V2

4


1

1

1

 . (2.35)

Similarly, from ( 2.27 ) and ( 2.31 ),

x̂2 = A−1b2 = σ6
v

12γ2


a11 a12 a13

a21 a22 a23

a31 a32 a33


1

Rsσ2
i


I1 + I2 − 2IM

IM − I1

IM − I2

 . (2.36)

Substituting ( 2.28 ) in ( 2.36 ) and considering only the terms involving γ and γ2 for γ � 1,

x̂2 ≈ Rs

12γ


3γ2 + 2γ(α2 + 2) 3γ2 + γ(2α2 + α + 3) 3γ2 + γ(2α2 + α + 3)

3γ2 + γ(2α2 + α + 3) 3γ2 + 2γ(α2 + α + 5) 3γ2 + 2γ(α2 + α − 1)

3γ2 + γ(2α2 + α + 3) 3γ2 + 2γ(α2 + α − 1) 3γ2 + 2γ(α2 + α + 5)

 ·


I1 + I2 − 2IM

IM − I1

IM − I2

 .

(2.37)

Since the rows of b2 add up to zero, this simplifies to

x̂2 = Rs

12


4 α + 3 α + 3

α + 3 2(α + 5) 2(α − 1)

α + 3 2(α − 1) 2(α + 5)




I1 + I2 − 2IM

IM − I1

IM − I2

 . (2.38)

This can be rewritten as

x̂2 = −I1Rs

12


α − 1

α + 7

α − 5

− I2Rs

12


α − 1

α − 5

α + 7

+ 2IMRs

12


α − 1

α + 1

α + 1

 . (2.39)
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From ( 2.32 ), ( 2.33 ), and ( 2.39 ),


V̂P

V̂1

V̂2

 ≈ VP + VM + V1 + V2

4


1

1

1

+ I1

12


Rp − Rs

Rp + 7Rs

Rp − 5Rs

+ I2

12


Rp − Rs

Rp − 5Rs

Rp + 7Rs

− 2IM

12


Rp − Rs

Rp + Rs

Rp + Rs

 .

(2.40)

We can then estimate the current in the loads as follows:

Î1 = (V̂1 − V̂P )/Rs = 2I1 − I2 − IM

3 = I1 − I1 + I2 + IM

3 , (2.41a)

Î2 = (V̂2 − V̂P )/Rs = 2I2 − I1 − IM

3 = I2 − I1 + I2 + IM

3 . (2.41b)

From ( 2.10 ) and ( 2.20 ),

ÎM = −(Î1 + Î2) = 2IM − I1 − I2

3 = IM − I1 + I2 + IM

3 . (2.42)

Thus, to estimate each current, a correction term (I1 + I2 + IM)/3 is subtracted from the

measured value of the corresponding current. The expected value of the correction term is

zero, because it is the net current at the PDU bus.

In this way, we find simple linear equations for estimating PDU voltages and currents.

The estimates are independent of the standard deviation of the measurement error if γ � 1.

Hence, even if the standard deviation of the error is not known exactly, we can estimate

the physical circuit variables using simple equations. Because these estimates are a linear

combinations of independent measurements, the standard deviation of the estimate can be

compared to the standard deviation of its measurement using propagation of uncertainty.

For instance, we first rewrite the expression for voltage estimate of V̂p from ( 2.40 ) as

V̂P ≈ V1 + V2 + VM + VP

4 + Rp − Rs

12 (I1 + I2 − 2IM) . (2.43)

Then, the standard deviation of the estimate V̂p can be estimated as

σv̂p =
√

4σ2
v/42 + (Rp − Rs)2(2σ2

i + 4σ2
i )/122 . (2.44)
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For small resistances, this reduces to

σv̂p

σv

≈ 1
2 . (2.45)

Thus, the standard deviation of the voltage estimate is half that of its measurement.

We further wish to construct simple expressions for all voltage and current estimates

using a simpler, more general method, for multiple loads connected to a PDU as well as for

an MBSU with multiple connected PDUs.

2.2.2 PDU state estimation using current as states

In this subsection, we discuss an alternative approach that considers currents as states to

estimate PDU voltages and currents. We show that the derived expressions are the same as

found in the previous section. However, this alternative approach helps us to simplify and

generalize the method to construct approximate expressions for similar radial networks.

Consider an SE problem in which the state vector

x̂ = [Î1 Î2]> , (2.46)

and the measurement vector

z = [I1 I2 IM ]> . (2.47)

Then,

H =


1 0

0 1

−1 −1

 , (2.48)

W = 1
σ2

i
I2 , (2.49)

where I2 is the 2 × 2 identity matrix. From (  2.9a ), ( 2.48 ), and ( 2.49 ),

A = H>WH = 1
σ2

i

2 1

1 2

 , (2.50)

29



and from ( 2.9b ), ( 2.48 ), and ( 2.49 ),

b = H>Wz = 1
σ2

i

I1 − IM

I2 − IM

 . (2.51)

Substituting ( 2.50 ) and ( 2.51 ) in ( 2.8 ), we obtain

x̂ =

Î1

Î2

 =

I1

I2

− I1 + I2 + IM

3

1

1

 . (2.52)

From ( 2.10 ) and ( 2.48 ),

ÎM = −(Î1 + Î2) . (2.53)

Substituting from ( 2.52 ),

ÎM = −(I1 + I2) + 2
3(I1 + I2 + IM) = IM − I1 + I2 + IM

3 . (2.54)

Equations ( 2.52 ) and ( 2.54 ) match ( 2.41 ) and ( 2.42 ), respectively. Thus, we obtain the

same expressions for current estimates by considering load currents as states and using only

current measurements, as we do when voltages are considered states.

Further, we hypothesize that independently calculated current estimates along with volt-

age measurements can be used to estimate the voltage of the central node in a radial network

from the relevant KVL relations of peripheral nodes. Here, the voltage measurements of pe-

ripheral nodes are V1, V2, and VM . The estimate of the corresponding branch currents are

Î1, Î2, and ÎM . We hypothesize that the estimate V̂P is the average of all KVL relations

describing the central node voltage and its own measurement VP . Thus, if we estimate

V̂P = 1
4 [VP + (VM − RpÎM) + (V1 − RsÎ1) + (V2 − RsÎ2)] , (2.55)

we can rewrite it as

V̂P = V1 + V2 + VM + VP

4 − Rp

4 ÎM − Rs

4 (Î1 + Î2) . (2.56)
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Expanding this equation by substituting ( 2.52 ) and ( 2.54 ),

V̂P = V1 + V2 + VM + VP

4 + Rp

4
(I1 + I2 − 2IM)

3 − Rs

4
(I1 + I2 − 2IM)

3 , (2.57)

which reduces to

V̂P = V1 + V2 + VM + VP

4 + Rp − Rs

12 (I1 + I2 − 2IM) . (2.58)

This expression matches equation (  2.43 ). Thus, by first performing current estimation and

taking the average of terms obtained from relevant KVL equations using the computed

current estimates along with voltage measurements, we get the same expression for the

estimate of central node voltage as we do when we consider voltages to be states.

We further hypothesize that once the central node voltage is found, we can estimate the

voltage of peripheral nodes by applying KVL using the estimated central node voltage and

Thus, using ( 2.55 ) and ( 2.52 ), consider

V̂P + Î1Rs = V1 + V2 + VM + VP

4 + Rp − Rs

12 (I1 + I2 − 2IM) + Rs

3 (2I1 − I2 − IM)

= V1 + V2 + VM + Vp

4 + Rp − Rs

12 (I1 + I2 − 2IM) + 4Rs

12 (2I1 − I2 − IM)

= V1 + V2 + VM + VP

4 + Rp

12 (I1 + I2 − 2IM) + Rs

12 (7I1 − 5I2 − 2IM) ,

(2.59)

which can be rewritten as

V̂P + Î1Rs = V1 + V2 + VM + VP

4 + I1

12(Rp + 7Rs) + I2

12(Rp − 5Rs) − 2IM

12 (Rp + Rs) . (2.60)

This expression matches that of V̂1 from ( 2.40 ). Thus, we can similarly prove that

V̂g = V̂P + ÎgRs , ∀g ∈ {1, 2} . (2.61)

We can now draw the following inferences:

1. Current estimation can be treated as an independent problem.
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2. The voltage estimate of the central node (here, V̂P ) is the average of its prediction

obtained by all relevant KVL relations expressed using voltage measurements and

current estimates.

3. The voltage of peripheral nodes can be estimated using the voltage estimate of the

central node and the corresponding current estimate.

4. If we lose the measurements of a voltage sensor because of a sensor fault or communi-

cation failure, we can easily calculate the estimate without having to solve ( 2.8 ) using

modified matrices. For example, if measurement V2 becomes unavailable, we can take

the average of the other 3 KVL relations, and estimate

V̂P = 1
3 [Vp + (V1 − RsÎ1) + (VM − RpÎM)] . (2.62)

Based on these inferences, we can now generalize the expressions for voltage and current

estimates for nL ∈ N, ∀g ∈ {1, . . . , nP } as follows:

Îg
h = Ig

h − 1
nL + 1

(
Ig

m +
nL∑
l=1

Ig
l

)
, ∀h ∈ {1, . . . , nL} , (2.63a)

Îg
p = Îg

m = −
nL∑

h=1
Îg

h = Ig
m − 1

nL + 1

(
Ig

m +
nL∑

h=1
Ig

h

)
, (2.63b)

V̂ g
p = 1

nL + 2

[
V g

p +
nL∑

h=1
(V g

h − RsÎ
g
h) + (V g

m − RpÎg
m)
]

, (2.63c)

V̂ g
h = V̂ g

p + Îg
hRs , ∀h ∈ {1, . . . , nL} , (2.63d)

V̂ g
m = V̂ g

p + Îg
mRp . (2.63e)

Thus, we can construct generalized approximate expressions for currents and voltages using

this alternative approach. The number of arithmetic operations needed to perform SE using

these expressions is 2.5–3 times fewer than needed to solve the original WLS problem. In the

results section, we compare the accuracy of estimates obtained using these equations with

those obtained from the traditional WLS method without making approximations.
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2.2.3 MBSU state estimation

Employing the alternative approach described in section  2.2.2 , we first perform current

estimation of currents local to the MBSU current, and use them to estimate related voltages

from appropriate KVL equations.

PDU-g sends measurements V g
p and Ig

p = −
nL∑

h=1
Ig

h to the MBSU. Since measurements

Ig
h, ∀h ∈ {1, . . . , nL} are independent with standard deviation σi , Ig

p would have a standard

deviation of √
nLσi . We consider the current flowing from the MBSU to PDUs as states

while performing current estimation using WLS method. Thus, let the state estimate vector

x̂ = [Î1
m . . . ÎnP

m ]> , (2.64)

and the measurement vector

z = [I1
p . . . InP

p I1
m . . . InP

m Ic
m Ic]> . (2.65)

Hence,

H =



InP

InP

−11×nP

11×nP


, (2.66)

where 11×nP
= [1 1 . . . 1] , and

W = 1
σ2

i


1

nL
InP

InP

I2

 . (2.67)

First, we solve this problem for nP = 2 PDUs. From (  2.9a ), ( 2.66 ), and ( 2.67 ),

A = H>WH = 1
σ2

i

3 + 1/nL 2

2 3 + 1/nL

 . (2.68)

33



Hence, we can find

Det(A) = 1
σ4

i
[(3 + 1/nL)2 − 22] = 1

σ4
i
[5 + 6/nL + 1/n2

L] = (nL + 1)(5nL + 1)
σ4

i n2
L

. (2.69)

Thus, from ( 2.68 ) and ( 2.69 ), we find

A−1 = σ−2
i

Det(A)

3 + 1/nL −2

−2 3 + 1/nL



= nLσ2
i

(nL + 1)(5nL + 1)

3nL + 1 −2nL

−2nL 3nL + 1

 .

(2.70)

From ( 2.9b ), ( 2.65 ), ( 2.66 ), ( 2.67 ),

b = H>Wz = 1
nLσ2

i

I1
p

I2
p

+ 1
σ2

i

I1
m

I2
m

− (Ic
m − Ic)

1

1

 . (2.71)

Thus, from ( 2.8 ), ( 2.70 ), and ( 2.71 ),

Î1
m

Î2
m

 = nL

(nL + 1)(5nL + 1)

(5nL + 1)

I1
m + I1

p /nL

I2
m + I2

p /nL

− 2nL

nP∑
g=1

(Ig
m + Ig

p /nL)

1

1



− (nL + 1)(Ic
m − Ic)

1

1


 .

(2.72)

Similarly, solving for nP = 3 PDUs, from ( 2.9a ), ( 2.66 ), and ( 2.67 ),

A = 1
σ2

i


3 + 1/nL 2 2

2 3 + 1/nL 2

2 2 3 + 1/nL

 . (2.73)
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Hence, we can find

Det(A) = 1
σ6

i
{(3 + 1/nL)[3 + 1/nL)2 − 22] − 4(3 + 1/nL − 2) + 4(−3 − 1/nL + 2)}

= 1
σ6

i
{(3 + 1/nL)[5 + 6/nL + 1/n2

L] − 8(1 + 1/nL)}

= 1
σ6

i

(nL + 1)(3nL + 1)(5nL + 1)
n3

L

− 8n2
L(nL + 1)

n3
L


= (nL + 1)

n3
Lσ6

i
(7n2

L + 8nL + 1) ,

(2.74)

which simplifies to

Det(A) = (nL + 1)2(7nL + 1)
σ6

i n3
L

. (2.75)

Thus, from ( 2.73 ) and ( 2.75 ),

A−1 = n3
Lσ2

i

(nL + 1)2(7nL + 1)


5 + 6/nL + 1/n2

L −2 − 2/nL −2 − 2/nL

−2 − 2/nL 5 + 6/nL + 1/n2
L −2 − 2/nL

−2 − 2/nL −2 − 2/nL 5 + 6/nL + 1/n2
L



= nLσ2
i

(nL + 1)(7nL + 1)


5nL + 1 −2nL −2nL

−2nL 5nL + 1 −2nL

−2nL −2nL 5nL + 1

 .

(2.76)

From ( 2.9b ), ( 2.65 ), ( 2.66 ), and ( 2.67 ),

b = H>Wz = 1
nLσ2

i


I1

p

I2
p

I3
p

+ 1
σ2

i


I1

m

I2
m

I3
m

− (Ic
m − Ic)


1

1

1

 . (2.77)
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Thus, from ( 2.8 ), ( 2.76 ), and ( 2.77 )


Î1

m

Î2
m

Î3
m

 = nL

(nL + 1)(7nL + 1)

(7nL + 1)


I1

m + I1
p /nL

I2
m + I2

p /nL

I3
m + I3

p /nL

− 2nL

nP∑
i=1

(I i
m + I i

p/nL)


1

1

1



− (nL + 1)(Ic
m − Ic)


1

1

1


 .

(2.78)

As explained in the previous section, current and voltage estimation is done in two successive

steps. First, the voltage of the central node in the radial network is estimated. The peripheral

node voltage measurements include V c
m, Vc, V h

m and V h
p , ∀h ∈ {1, . . . , nP } The estimates of

the corresponding branch currents are Îc
m, Îc, Îh

m and Îh
p , ∀h ∈ {1, . . . , nP }, respectively. The

estimate V̂m is the average of all KVL relations describing the central node voltage and its

own measurement Vm. Generalizing, for nP ∈ N, ∀g ∈ {1, . . . , nP },

Îg
m = Îg

p = nL

nL + 1(Ig
m + Ig

p /nL) − 2n2
L

(nL + 1)[(2nP + 1)nL + 1]

nP∑
h=1

(Ih
m + Ih

p /nL)

− nL

[(2nP + 1)nL + 1]
(Ic

m − Ic) ,

(2.79a)

Îc
m = −Îc = −

nP∑
g=1

Îg
m , (2.79b)

V̂m = 1
2nP + 3

{
Vm +

nP∑
h=1

(V h
m + RsÎ

h
m) +

nP∑
h=1

[V h
p + (Rs + Rp)Îh

p )]

+ (V c
m + RsÎ

c
m) + [Vc − (Rs + Rc)Îc]

}
,

(2.79c)

V̂ g
m = V̂m − Îg

mRs , (2.79d)

V̂ g
p = V̂ g

m − Îg
p Rp , (2.79e)

V̂ c
m = V̂m − Îc

mRs , (2.79f)

V̂c = V̂ c
m + ÎcRc . (2.79g)
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Thus, general, approximate expressions for MBSU currents and voltages are constructed. In

the results section, accuracy of estimates obtained using these equations is compared with

those obtained from the traditional WLS method without making approximations.

2.3 Sensor Fault Detection and Identification (FDI)

The WLS method is derived under the assumption that the measurement error has a

Gaussian distribution with zero mean. Using the LNR test, we suspect that a measurement

is corrupted if the difference between the estimate and the measurement of a variable exceeds

the set threshold. This is because, based on the sensor statistics and analytical relationships

between the measured variables, such a measurement has low probability of occurrence. This

corrupt measurement could be a temporary outlier. If several consecutive measurements in

time by a sensor are corrupt, it could indicate the presence of a sensor fault such as a bias.

The concept that the maximum normalized residual corresponds to the corrupt measure-

ment is derived by first assuming that only one sensor (say, sensor-l) has error while others

are error-free [  7 ]. Let the l-th sensor error el 6= 0, while en = 0, ∀n ∈ {1, . . . , Nm}, n 6= l.

Then, from ( 2.15 ), only the l-th column is picked from S, and hence

rn = Snl el , ∀n ∈ {1, . . . , Nm}, n 6= l . (2.80)

From ( 2.15 )–( 2.17 ), the normalized residual would be

ro
n = Slnel√

Onn
= Slnel

√
Wnn

Snn
, ∀n ∈ {1, . . . Nm} . (2.81)

Similar to the LNR test, we find the sensor having the maximum normalized residual, and

check if it exceeds a predetermined threshold. The threshold tn, ∀n ∈ {1, . . . , Nm} is set

here as

tn = et

√
SnnWnn , (2.82)

where et is the error threshold, which we keep fixed for the same type (current/voltage) of

sensor. Thus, if |ro
l | > |ro

n| , ∀n ∈ {1, . . . , Nm} , n 6= l, and |ro
l | ≥ tl , sensor-l is suspected as

measuring incorrectly. If sensor-l is suspected multiple consecutive times for having large er-
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ror, we suspect that the sensor has a fault, e.g, a bias. Thus, we use local measurements and

a subset of measurements from the neighbouring unit(s) to sequentially perform current and

voltage estimation, as explained in section  2.2.2 . We test for presence of fault/incorrect mea-

surement in current and voltage sensors after current and voltage estimation, respectively. In

both cases, the incorrect sensor measurement can be removed from the measurement vector,

and the states re-estimated using the remaining measurements.

2.4 Selection of additional sensors for FDI in PDU current sensors

In this section, we show that the set of current measurements used by the PDU are

insufficient for FDI. We then discuss the mathematical foundation that enables FDI in the

context of SE using WLS. This helps us determine how current sensors should be chosen for

enabling detection of faults in current sensors used for PDU SE. We then present a search

algorithm to optimally choose current sensors. With the optimal sensor configuration found,

we derive new expressions for PDU current estimates using WLS. We present a simple design

for the additional current sensors, based on which we estimate their weight.

From ( 2.63a ) and ( 2.63b ), the residual for the current estimates would be

Ig
h − Îg

h = Ig
m − Îg

m = 1
nL + 1

(
Ig

m +
nL∑
l=1

Ig
l

)
, ∀h ∈ {1, . . . , nL} . (2.83)

Thus, the residuals of all current estimates found by the PDU-SE are equal. If any mea-

surement is incorrect, it will reflect equally in all residuals (  2.83 ). Hence, LNR test fails to

identify the faulty sensor in this case. This can also be explained intuitively. Since the only

equation relating all the current measurements is the KCL at the central node, if the sum

of all current measurements is not zero (or close to zero), it will be impossible to identify

which sensor is reading the current incorrectly. Thus, there is a lack of analytical as well

as hardware (number of sensors) redundancy in this sensor network. Therefore, to identify

faulty sensors amongst PDU current sensors, we propose introducing additional sensors.
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2.4.1 Mathematical background to enable FDI

To choose additional sensors that would enable FDI, we use certain relations obtained

from SE using WLS.

From (  2.14 ), it follows that rank(S) ≥ Nm −Ns. If the Ns columns of H are independent,

they span the null-space of S, and rank(S) = Nm − Ns. We will only consider H matrices

that have linearly independent columns. Since S has Nm − Ns independent columns, its

column space is spanned by Nm − Ns eigenvectors corresponding to non-zero eigenvalues.

We can also prove that S is a symmetric matrix. Therefore, the eigenvectors are orthogonal.

We will choose these eigenvectors to be orthonormal. Let matrix Y be an Nm × (Nm − Ns)

matrix whose columns are these orthonormal eigenvectors, which also form the basis of the

column space of S. Thus, from (  2.15 ),

r = Se = Y rP , (2.84)

where rP is an (Nm − Ns) × 1 vector of coefficients, called the parity vector. Since the

eigenvectors are orthonormal, we can also express

rP = Y> r , (2.85)

Also,

Y> H = 0 . (2.86)

So, from ( 2.85 ), ( 2.15 ), ( 2.13 ) and ( 2.86 ),

rP = Y>S e = Y>e . (2.87)

While performing current estimation for a PDU, if we use measurements of only the PDU

load currents and the current from the MBSU to the PDU, there would be just Nm − Ns = 1

independent eigenvector or axis. The parity vector would have only one component (dimen-

sion). Irrespective of which sensor has a large error, only that one component would be
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affected, in that its magnitude could change. This is another explanation to why it would

impossible to identify which of the sensors is faulted.

However, if the Nm > Ns +1, the dimension of the parity vector would be greater than 1.

Hence, each of the parity vectors could have distinct directions in multidimensional space.

We next show that a biased sensor can be identified if each parity vector has a distinct

direction in such a space.

Consider, for instance, a case where Nm − Ns = 3, resulting in a 3D-parity space. Let

the w-th eigenvector/axis

Yw = [yw
1 . . . yw

Nm
]> , w ∈ {1, 2, 3} . (2.88)

If there is unit error only in the l-th sensor, with no noise in the measurements, the l-th

element of e would be unity, while the other elements would be zero. Thus, from (  2.87 ), the

parity vector, denoted by rl
e, would pick up the l-th column from Y> (l-th row of Y, having

dimension Nm − Ns). Thus,

rl
e = [y1

l y2
l y3

l ]> (2.89)

If there is a large error in sensor-l equal to el, with no noise in other measurements, the

parity vector would be

rP = el [y1
l y2

l y3
l ]> (2.90)

Practically, there may be some error (smaller in magnitude compared to el) due to noise

in the other measurements. Thus, the parity vector would have elements that are close

to (ely
1
l , ely

2
l , ely

3
l ) but may not be exactly as defined in (  2.90 ). This implies that for a

large positive error, rP will lie close to the ray in the direction of rl
e, whereas for a large

negative error, rP will lie close to the ray in the direction of −rl
e. The vectors rl

e and −rl
e,

∀l ∈ {1, . . . , Nm}, are henceforth referred to as error-rays. From ( 2.90 ), the length of the

parity vector rP increases with increase in magnitude of el. If all the error-rays are distinct,

a bias in each sensor will result in a distinct parity vector in the corresponding error-ray

direction. This will enable FDI in the sensors.
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Figure 2.3. Parity vector due to error in sensor-l in parity-space.

The mathematical properties discussed in this section form the foundation for selection

of additional sensors, which is discussed in the next section.

2.4.2 Search algorithm for additional optimal sensors

The objective is to find a set of measurements of combinations of load currents (as defined

by a matrix H) that can best distinguish between faults in various sensors.

From (  2.89 ), if rl
e has a much smaller magnitude compared to rn

e , ∀n ∈ {1, . . . , Nm} ,

n 6= l, the parity vector of an extra noisy measurement or outlier, whose direction is close

that of rl
e could be mistaken to be the result of a large error in sensor-l. This implies that the

magnitudes of all rn
e , ∀n ∈ {1, . . . , Nm}, (e.g., length of segment OA in Fig.  2.3 ), should be

large and close in length. Also, for effective discrimination between faults in various sensors,

the rays need to be well-separated in the parity-space.
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Consider all possible H matrices of the form

H =


InL

C

−11×nL

 , (2.91)

where C is an cn × Ns matrix cn ∈ N. Thus, the first nL sensors measure load currents. The

next cn sensors measures some combination of at least cn load currents with the constraint

that elements of C ∈ {−1, 0, 1}, for simplicity of sensor design. The last sensor, local to

the MBSU, measures the current flowing into the PDU. Such combination of measurements

leads to an H matrix that has linearly independent columns.

We perform a brute force search over all Nc possible H matrices, Hn, ∀n ∈ {1, . . . , Nc},

with nc = 1 for the optimal matrix according to the algorithm in Fig.  2.4 . Let q be the

the ratio of magnitude of the shortest error-ray to the length of the longest error-ray. The

matrices leading to error-ray that are relatively close in magnitude (checked by q) are short-

listed. We then normalize each error-ray to length. The product of distance of every tip

of normalized error-ray from every other is defined here as the separation. The H matrix

leading to the best separated rays is chosen. If no matrix satisfies these conditions, we repeat

the brute force algorithm with nc = 2, and so on.

Let X be an nL × nL matrix of ones. Thus,

XnL
=



1 · · 1

· · · ·

· · · ·

1 · · 1


. (2.92)
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Figure 2.4. Brute-force search for optimal measured combinations.
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Performing the search according to the algorithm, the shortlisted matrices were found to

have the following properties:

CC> = 6 I2 , (2.93a)

CX = 02×nL
, (2.93b)

XC> = 0nL×2 , (2.93c)

These properties will be used in the next section to simplify the expression for PDU current

estimate. The matrix determined to be optimal for nL = 8

C =

−1 0 −1 0 1 1 1 −1

1 1 −1 −1 0 −1 1 0

 . (2.94)

Thus, 2 additional sensors are chosen that measure a combination of 6 load currents.

2.4.3 PDU state estimation using additional sensors

In this section, we derive PDU current estimates, with the additional measurements

included, using WLS. With the chosen additional measurements, denoted as IA1 and IA2

corresponding to rows nL + 1 and nL + 2 of ( 2.91 ), the state estimate vector for PDU-g,

∀g ∈ {1, . . . nP } for current estimation is still

x̂ = [Îg
1 . . . Îg

nL
]
>

, (2.95)

while the measurement vector changes to

z = [ Ig
1 . . . Ig

nL︸ ︷︷ ︸
Ig

L

Ig
A1 Ig

A2︸ ︷︷ ︸
Ig

A

Ig
m]> , (2.96)
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where Ig
L and Ig

A are column vectors. The measurement vector Ig
P from (  2.2 ) thus changes to

Ig
P =


Ig

L

Ig
A

Ig
m


>

. (2.97)

Assuming the additional sensors have similar error statistics as the other current sensors,

the weight matrix

W = 1
σ2

i
I(nL+3) . (2.98)

From ( 2.9a ),

A = H>WH = 1
σ2

i
H>H . (2.99)

From ( 2.91 ),

H>H =
[
InL

C> −1nL×1

]
·


InL

C

−11×nL

 = InL
+ C>C + XnL

= (InL
+ X)︸ ︷︷ ︸
P

+C>C . (2.100)

Thus, from ( 2.99 ) and ( 2.100 ),

A = 1
σ2

i
(P + C>C) . (2.101)

For WLS estimation, we will require A−1, which can be found by

A−1 = σ2
i (P + C>C)−1

. (2.102)

The matrix P = I+X is a full-rank matrix. Thus its inverse exists, and hence, we can apply

the Woodbury matrix identity to expand the above equation. According to the Woodbury

matrix identity,

(B + DQR)−1 = B−1 − B−1D(Q−1 + RB−1D)−1VB−1 , (2.103)
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where B, D, Q, and R are n × n, n × l, l × l, and l × n matrices, respectively. Putting

B = P , D = C> , Q = I2 , and R = C , we get

(P + C>I2C)−1 = P−1 − P−1C>(I2 + CP−1C>)−1CP−1 . (2.104)

The inverse of P can be found as

P−1 = (InL
+ X)−1 =



2 1 · 1

1 2 · 1

· · · ·

1 1 · 2



−1

= 1
nL + 1



nL −1 · −1

−1 nL · −1

· · · ·

−1 −1 · nL


. (2.105)

Thus, we can express

P−1 = 1
nL + 1 [ (nL + 1)InL

− X ] = InL
− 1

nL + 1X . (2.106)

Equation ( 2.104 ) can be rewritten as

(P + C>C)−1 = P−1
[
InL

− C>(I2 + CP−1C>)︸ ︷︷ ︸
Pc

−1CP−1
]

. (2.107)

Substituting from ( 2.106 ),

Pc = CP−1C> = C
(

InL
− 1

nL + 1X
)

C> = CC> − 1
nL + 1CXC> . (2.108)

Thus, from ( 2.93a ) and ( 2.93c ),

Pc = CC> = 6 I2 . (2.109)

Plugging this result into ( 2.107 ),

(P + C>C)−1 = P−1
[
InL

− C>(7 I2)−1CP−1
]

= P−1
[
InL

− 1
7C>CP−1

]
.

(2.110)
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Expanding ( 2.110 ) using ( 2.106 ), and then simplifying using ( 2.93b ),

(P + C>C)−1 =
(
InL

− 1
nL + 1X

)[
InL

− 1
7C>C

(
InL

− 1
nL + 1X

)]
=
(
InL

− 1
nL + 1X

)[
InL

− 1
7C>C

] . (2.111)

Using ( 2.93c ),

(P + C>C)−1 = InL
− 1

nL + 1X − 1
7C>C . (2.112)

Plugging this result into ( 2.101 ),

A−1 = σ2
i

(
InL

− 1
nL + 1X − 1

7C>C
)

. (2.113)

Substituting from ( 2.9b ), (  2.113 ), (  2.98 ), and (  2.91 ) in ( 2.8 ), and dropping the dimension

subscripts, we get

x̂ = A−1H>Wz

= σ2
i

(
I − 1

nL + 1X − 1
7C>C

) [
I C> −1

] 1
σ2

i
I z .

(2.114)

Expanding it, and then using ( 2.93a ) and ( 2.93c ),

x̂ =
[
I − 1

nL+1X − 1
7C>C C> − 1

nL+1XC> − 1
7C>CC> −(1 − nL

nL+1)1 + 1
7C>C1

]
z

=
[
I − 1

nL+1X − 1
7C>C 1

7C> − 1
nL+11

]
z

.

(2.115)

Substituting from ( 2.96 ), the vector of load current estimates for PDU-g,

Îg
L = Ig

L − 1
nL + 1

(
nL∑

h=1
Ig

h + Ig
m

)
1nL×1 − 1

7C>( CIg
L − Ig

A) . (2.116)

The vector of estimates for the 2 additional sensors can be found by

Îg
A = CÎg

L . (2.117)

47



The current from the MBSU to the PDU can be estimated as

Îg
m = −

nL∑
h=1

Îg
h . (2.118)

Note that the residual of the load current estimates would be

Ig
L − Îg

L = 1
nL + 1

(
nL∑

h=1
Ig

h + Ig
m

)
1nL×1 + 1

7C>( CIg
L − Ig

A) . (2.119)

Comparing ( 2.119 ) with ( 2.83 ), the additional term is 1
7C>( CIg

L −Ig
A). The properties ( 2.93 )

make it possible to derive this expression.

Expressions (  2.116 )–( 2.117 ) can be used for current estimation, and will not require

matrix inversion or other algorithms used for solving a set of linear equations. They replace

( 2.63a )–( 2.63b ). Then, the LNR test is performed for current sensor FDI; currents can be

re-estimated by removing the suspected measurements if bias is detected. Following that,

voltage estimation is performed according to (  2.63c )–( 2.63e ) using voltage measurements

and the estimated currents. Finally, voltage sensors are tested for faults. If present, the

voltages are re-estimated after removing the suspected measurements.

2.4.4 Sensor design

In this section, we design a sensor that relies on the Hall Effect for measuring each of the

additional PDU quantities IA1 and IA2.

The Hall Effect is observed in the presence of a magnetic field perpendicular to the

direction of current flow in a conductor or semiconductor known as the Hall element. When

such a magnetic field is applied to the Hall element, its charge carriers experience the Lorentz

force. The resulting distribution of current density establishes an electric field across the

conductor, perpendicular to the direction of current and to the magnetic field. This effect

is utilized by a Hall effect sensor. Such a sensor measures the voltage produced across the

Hall element, to find the magnitude of the applied magnetic field, which is proportional to

the voltage [  43 ]. If this magnetic field is set up by a current, or in our case, a combination

of currents, we can find its magnitude using such a sensor.
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Figure 2.5. Cross-sectional view of proposed additional sensor.

We select conductor of AWG 14 whose ampacity is 32 A, and diameter is 1.628 mm for

carrying the load current. With the appropriate PVC insulation of thickness (0.381 mm),

the outer diameter of the cable would be 1.628 + 2 × 0.381 ≈ 2.39 mm. To fit 6 such

cables, a toroid with an inner diameter di = 8.14 mm, outer diameter do = 12.7 mm, and

height h = 3.18 mm is selected. The material-L with a relative permeability µr = 900 is

chosen [ 44 ].

Hall Effect sensor IC EQ731L [  45 ] can measure up to ±38.5 mT. Since its width is

1.15 mm, let the air gap g be 1.3 mm to allow for some clearance between the core and the

IC. The cross-section of the proposed sensor is shown in Fig.  2.5 . The mean path length l

for the flux inside the core is

l = (2π − θ)
2π

π(di + do)
2 , (2.120)
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where

θ = 2 arcsin [2g/(di + do)] . (2.121)

Let B be the magnetic flux density and A be the area of the flux path inside the core.

Then, the reluctances of the air gap and the core are Rg = g/(µ0A) and Rc = l/(µ0µrA) ,

respectively, where µ0 is the permeability of free space. Then the magnetic flux

Φ = BA =

6∑
n=1

NnIn

Rg + Rc

=
µ0µrA

6∑
n=1

NnIn

µrg + l
. (2.122)

where Nn is the number of turns of the n-th conductor enclosed by the flux path carrying

current In. Since N1 = . . . = N6 = 1 ,

B =
µ0µr

6∑
n=1

In

µrg + l
. (2.123)

For a maximum load demand of 4 A, the maximum magnitude of the sum of currents is

12 A (from ( 2.94 )). Substituting this in (  2.123 ), the maximum magnitude of B = 11.3 mT ,

which is within the range of the flux density that the Hall Effect sensor can measure.

The core material has a density ρ = 4.8 g/cm3. So, the weight of the toroid would be

ρ
[

π(d2
o−d2

i )
4 − g(do−di)

2

]
h = 1.09 g. Hence, the total weight of the toroids of the 2 extra sensors

is 2.18 g.

Thus, the weight and space requirement based on a simple design for the additional

sensors that lend FDI capability to the PDU-SE is calculated.

2.5 Results

In this section, we present simulation based results that statistically show the performance

of the SE and bias detection algorithm.

The system considered has nP = 2 PDUs connected to an MBSU, with nL = 8 loads

connected to each PDU. The resistances Rs = 3 mΩ, Rp = 8 mΩ, and Rc = 4 mΩ . For

a fixed operating point of Vm = 120 V , and load currents as given in Table  2.1 , R = 2000
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Table 2.1. Current drawn by each load
Load no. PDU-1 PDU-1

1 3.73 A 3.68 A
2 1.77 A 2.16 A
3 3.67 A 1.11 A
4 2.72 A 1.84 A
5 2.61 A 2.05 A
6 1.02 A 2.29 A
7 3.56 A 2.73 A
8 2.11 A 0.15 A

measurements of each circuit variable with random normally-distributed error are taken. For

all voltage and current measurements, the standard deviation of the error is σv = 0.1 V and

σi = 0.2 A, respectively.

Let zt be the true value of some variable, and zr be its measurement in the r-th set of

measurements. The MBSU estimates are obtained from ( 2.79 ). PDU currents are estimated

using (  2.116 ), ( 2.117 )–( 2.118 ), while its voltages are estimated using ( 2.63c )–( 2.63e ). Let

the estimate corresponding to zr be ẑr. The sample mean of the estimate ẑr over all R sets

µz = 1
R

R∑
r=1

ẑr , (2.124)

while its standard deviation

σz =

√√√√ 1
R − 1

R∑
r=1

(ẑr − µz)2 . (2.125)

The % difference between the mean estimate and the true value of the measured quantity is

calculated as

dz = |µz − zt|
|zt|

× 100 . (2.126)

These metrics will be used to evaluate the accuracy of various estimates based on the derived

approximate expressions.
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Table 2.2. Accuracy comparison
Variables WLS method Proposed method Calculated

dz(%) σz dz(%) σz σ

PDU voltages 1.5×10−4 32.1 mV 2.0 ×10−4 30.6 mV 31.7 mV
PDU currents 6.4×10−2 164.0 mA 17.1×10−2 163.6 mA 164.0 mA

MBSU voltages 3.0×10−4 37.8 mV 6.2×10−4 37.9 mV 37.8 mV
MBSU to PDU currents 8.1×10−3 146.5 mA 3.1×10−2 144.3 mA 145.7 mA

Converter to MBSU current 4.3×10−3 125.9 mA 1.5×10−3 124.6 mA 123.7 mA

2.5.1 Validation of analytical expressions for state estimation

In this section, we compare the performance of the SE method using the derived ap-

proximate expressions with the method using WLS formulation. To solve the WLS problem

without making approximations, let the state estimate vector for MBSU-SE

x̂ = [V̂m V̂ 1
m . . . V̂ nP

m ]> , (2.127)

while the measurement vector

z = [VM IM ]> . (2.128)

The currents measured are related to the states via a conductance matrix found using ap-

propriate KVL and KCL equations. The resulting A matrix is an (nP + 1) × (nP + 1)

square matrix, while b is an (nP + 1) × 1 vector. Similarly, to solve the WLS problem for

PDU-g without making approximations, let the state estimate vector

x̂ = [V̂ g
p V̂ g

1 . . . V̂ g
nL

]> , (2.129)

while the measurement vector

z = [Vg
P Ig

P ]> , (2.130)

where Ig
P is the vector in (  2.97 ). The resulting A matrix would be an (nL + 1) × (nL + 1)

square matrix, while b would be an (nL +1)×1 vector. With these x̂ and z vectors, we solve

WLS problem ( 2.8 )–( 2.9 ) for the MBSU and PDUs. The σz and dz of estimates obtained by
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using this WLS method is compared with the proposed method. The results are tabulated

in Table  2.2 .

From Table  2.2 , we observe that dz using both methods is small, indicating that, on an

average, the estimates are very close to the actual value of the estimated quantity. The

σz of estimates of variables using both methods are approximately equal. They are very

close to the standard deviation (shown in the last column) calculated from the approximate

analytical equations using the principle of propagation of uncertainty.

2.5.2 Comparison with centralized state estimation

In a centralized SE architecture, a central processor collects measurements by all the

sensors in the system. It uses all these measurements to estimate the currents and voltages

throughout the system. We now compare the accuracy of estimates obtained using the pro-

posed method with that obtained from a centralized formulation. In case of the centralized

SE problem, let the state estimate vector

x̂ = [V̂m V̂ 1
m . . . V̂ nP

m V̂ 1
p V̂ 1

1 . . . V̂ 1
nL

V̂ 2
p V̂ 2

1 . . . V̂ 2
nL

]> (2.131)

The measurement vector contains all PDU and MBSU measurements. Thus,

z = [VM V1
P . . . VnP

P IM I1
P . . . InP

P 01×nP
]> (2.132)

where Ig
P is the vector from (  2.97 ), and 01×nP

is a vector of zeroes. The zero measurements

are used to represent the following KCL equation in terms of the states:

V̂ g
m − V̂ g

p

Rp

+
nL∑

h=1

V g
h − V g

p

Rs

= 0 , ∀g ∈ {1, . . . , nP } . (2.133)

The weights associated with zero measurements are taken as 100σi to ensure that ( 2.133 ) is

satisfied in the WLS solution. All the other measurements can be expressed in terms of the

voltages in the state vector via KVL and KCL relations. Table  2.3 shows the comparison of
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Table 2.3. Accuracy comparison
Variables Centralized architecture Proposed architecture

dz(%) σz dz(%) σz

PDU voltages 1.8×10−4 21.6 mV 2.0 ×10−4 30.6 mV
PDU currents 5.0×10−2 176.1 mA 17.1×10−2 163.6 mA

MBSU voltages 1.2×10−4 21.2 mV 6.2×10−4 37.9 mV
MBSU to PDU currents 1.3×10−3 68.7 mA 3.1×10−2 144.3 mA

Converter to MBSU current 1.3×10−3 137.3 mA 1.5×10−3 124.6 mA

accuracy between the centralized and proposed formulation in terms of dz and σz. Overall,

we obtain slightly more accurate estimates using a centralized formulation.

2.5.3 Identification of biased sensors

In this section, the ability of the modified LNR test to detect faults is statistically tested.

In particular, we test the ability to identify bias in the PDU current sensors, given the

additional sensors found in section  2.4.2 . If we suspect bad data being measured by the

same sensor 4 or more times out of 5 consecutive sets of measurements, we declare that

sensor as faulty.

For PDU currents, a bias b increasing in magnitude from 0 to 3 A in steps of 0.05 A was

introduced in each of the nL + 3 = 11 sensors, one at a time. In Fig.  2.6 , the plots show the

percentage of cases declaring fault in sensor-l, ∀l ∈ {1, . . . , nL + 3}, when the faulted sensor

is the one measuring I1
1 (sensor 1), I1

5 (sensor 5), I1
7 (sensor 7), I1

A1 (sensor 9), I2
A2 (sensor 10),

and I1
m (sensor 11), respectively.

Thus, using the LNR test, we can identify biased PDU current sensors when the additional

sensors are included.

2.5.4 Reestimation after sensor fault detection

After sensor fault is detected in a current or voltage sensor, we remove the corresponding

incorrect measurement, and reestimate the system state.
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(b) Bias in sensor measuring I1
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(c) Bias in sensor measuring I1
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(d) Bias in sensor measuring I1
A1.
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(e) Bias in sensor measuring I1
A2.
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(f) Bias in sensor measuring I1
m.

Figure 2.6. Plots showing classification rate when PDU current sensors are biased.

Consider a fault in voltage sensor of load 1 of PDU-1 (measuring V 1
1 ). We inject a

bias of 0.75 V in the sensor in all R = 2000 studies. If the biased measurement is not

removed, the dz of the voltage estimates becomes 6.2 × 10−2 compared to 2.0 × 10−4, when

all measurements are healthy (Table  2.2 ). However, using the LNR test, we correctly identify

the biased sensor. Thus, if the biased measurement is removed, and we perform SE using the

remaining measurements, dz = 5.9 × 10−4, thus indicating much more accurate estimates.
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3. FAULT DIAGNOSIS IN POWER ELECTRONIC

CONVERTERS

The capability to detect and identify faults within power electronic converters is crucial

for critical applications such as spacecraft power systems. This chapter presents a machine

learning approach to accurately and reliably diagnose faults in a dc-dc converter system.

The proposed algorithm employs support vector machines (SVM), a supervised machine

learning technique, to classify various conditions of a converter. To determine the condition

of the converter, the proposed method utilizes features related to the power spectrum of the

converter input current.

3.1 Support Vector Machine (SVM) preliminaries

Support Vector Machine (SVM) is a supervised machine-learning method, popular for

classification of unknown data into predetermined categories known as classes. Data points

of a class are characterized by certain known features, which differentiate them from samples

of other class(es). Data samples whose classes are known are labeled according to their class,

and fed as inputs to the SVM algorithm. Such data points are known as training samples

because they are used to train the SVM model. Training the SVM model implies finding

the function(s) that best separates the data points of different classes. The SVM algorithm,

thus, comprises of an optimization problem that needs to be solved as part of the training

process. Once trained, the SVM model can determine the class of samples that are not

already labeled.

Consider the problem of classifying samples of 2 classes, that are labeled as ‘+1’ and

‘-1’ [ 46 ]. A training sample xu is an nf ×1 vector, whose elements are its features, with yu as

its class label. Thus, S = {(xu, yu) | xu ∈ Rnf , yu ∈ {1, −1}, u ∈ {1, . . . , s}} is the training

dataset having s training samples. A hyperplane described by the equation

wox + wo
0 = 0 (3.1)

separates samples of the two classes, where wo is a 1 × nf vector of coefficients.
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Figure 3.1. Maximal margin classification of 2 class samples.

For instance, consider a classification problem in R2, as shown in Fig.  3.1 . The shaded

and unshaded circles represent individual training samples of classes labeled ‘+1’ and ‘-1’

respectively. The two dashed lines, parallel to the classifier wox + wo
0 = 0, and passing

through some of the training samples are called support lines. They are equidistant from the

classifier. Hence, let these support lines be represented by the equations wox + wo
0 = wc and

wox + wo
0 = −wc, respectively. By substituting w = wo/wc, they can be also be represented

by wx + w0 = 1 and wx + w0 = −1, respectively. The perpendicular distance between

the support lines, called the margin, is equal to 2/||w||. So, to maximize this margin, the

problem is formulated as

max
w,w0

2
||w||

(3.2)

subject to:

wxu + w0 ≥ 1 , u : yu = 1 , (3.3a)

wxu + w0 ≤ −1 , u : yu = −1 , (3.3b)

To relax the requirement that all training samples of a class need to be separated from all
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samples of the other class by the optimal classifier, slack variables ξu, ∀u ∈ {1, . . . , s}, are

introduced. The inequality constraints (  3.3 ) are modified to

yu(wxu + w0) ≥ 1 − ξu , ∀u ∈ {1, . . . , s} . (3.4)

To limit the number of misclassified samples and the magnitude of the slack variables, a

penalty term, κ
Ns∑

u=1
ξu is introduced in the objective, where κ > 0 is the cost of misclassifica-

tion. Thus, the problem is modified to the following:

min
w,w0,ξ

1
2 ||w||2 + κ

Ns∑
u=1

ξu (3.5)

subject to:

yu(wxu + w0) ≥ 1 − ξu , u ∈ {1, . . . , s} , (3.6a)

ξu ≥ 0 , u ∈ {1, . . . , s} . (3.6b)

After some manipulation, the dual problem can be written as:

min
Λ

1
2

s∑
u=1

s∑
v=1

λuλvyuyvx>
u xv −

s∑
v=1

λv (3.7)

subject to

s∑
v=1

λvyv = 0 , (3.8a)

λv ≥ 0 , v ∈ {1, . . . , s} , (3.8b)

λv ≤ κ , v ∈ {1, . . . , s} . (3.8c)

where Λ = {λ1, . . . , λs} is a vector of Lagrangian multipliers. Solving this convex quadratic

optimization problem yields the solution Λ∗ = {λ∗
1, . . . , λ∗

s} . Then, the optimal hyperplane

can be found as

w∗x + w∗
0 = 0 , (3.9)
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where, using any sample, (say, sample number v ∈ {1, . . . , s}),

w∗
0 = yv −

s∑
u=1

λ∗
uyu(x>

u xv) , (3.10)

w∗ =
s∑

u=1
λ∗

uyux>
u . (3.11)

Putting (  3.10 ) and (  3.11 ) in (  3.9 ), we can determining the optimal hyperplane. Based on

that, a decision function t(x) can be defined as

t(x) =
s∑

u=1
λ∗

uyu(x>
u x) + w∗

0 (3.12)

The sgn(t(xT )) is the class of a test sample xT .

If samples of the two classes are linearly inseparable in the nf -dimensional space, they

can be mapped to an mf -dimensional space where they are linearly separable through a

mapping function p(x). Then, the optimal hypersurface wp(x) + w0 = 0 is found by solving

the optimization problem ( 3.5 ) with constraint ( 3.6a ) modified to

yu(wp(xu) + w0) ≥ 1 − ξu , u ∈ {1, . . . , s} . (3.13)

The objective ( 3.7 ) of the dual problem changes to

min
Λ

1
2

s∑
u=1

s∑
v=1

λuλvyuyvp(xu)>p(xv) −
s∑

v=1
λv (3.14)

The term p(xu)>p(xv) can be replaced by a function K(xu, xv) = p(xu)>p(xv), known as a

kernel. In this work, we use the Radial Basis Function (RBF) kernel given by

K(xu, xv) = e−β||xu−xv ||2 , (3.15)

59



where β is a constant that, along with penalty factor κ, can be tuned to better discriminate

between samples. An unknown sample xT is classified based on the side of the optimal

hyperplane on which it lies, found by the sign of the decision function evaluated at xT as

tK(xT ) =
s∑

u=1
λ∗

uyuK(xu, xT ) + w∗
0 (3.16)

where for any sample number v ∈ {1, . . . , s}

w∗
0 = yv −

s∑
u=1

λ∗
uyuK(xu, xT ) . (3.17)

In our problem, we simulate the converter under different conditions (classes) to obtain

waveforms capturing the resultant input current signal. We generate a training sample from

each waveform by computing certain features related to the power spectrum characterizing

the signal. SVM classifiers are trained to recognize NC classes, each corresponding to a

different condition. Once trained, they can identify the condition of the converter using the

measured input current signal.

3.1.1 Probabilistic output

As explained in the previous section, an input sample xT is classified based on the sign of

the function tK(xT ). Our confidence in the resulting classification, i.e., the probability that it

is correct, would depend on the proximity of the sample to the classifier as quantified by the

magnitude of the decision value tK(xT ). Intuitively, the larger the magnitude of tK(xT ), the

greater would be the probability of correct classification. Accordingly, a monotonic function

from (−∞, ∞) whose range is [0, 1] must be defined to map the decision value tK(xT ) to

the corresponding probability. A sigmoid is a common function [ 46 ], [  47 ] relating these two

quantities by

P (tK) = 1
1 + exp(a1tK + a2)

, a1 < 0 (3.18)

The value P (tK(xT )) is the posterior class probability that the sample xT belongs to the class

yT . The parameters of the sigmoid function, a1 and a2 are found by solving an optimization

problem that maximizes the probability that the samples are being classified correctly.
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Along with the determined class of a sample, we utilize the posterior probability of it

belonging to the class in order to identify the condition of the converter.

3.2 Feature Selection

As explained in the previous section, each sample is characterized by certain features

that help in determining its class. Thus, we must select a set of nf features that allow us

identify the condition of the converter.

When a fault or step change occurs in a converter system, transients are generated in

the input current, and its subsequent waveform may change. Depending on the type of

fault, the signal characteristics may differ. Thus, we select features related to the frequency

components present in the subsequent waveform. Consider a signal x sampled at a fre-

quency fs. A window of L consecutive samples of the signal [x(1), . . . , x(L)] is taken. Each

window corresponds to a data sample. A Discrete Fourier Transform (DFT) of the signal is

performed, and sample features based on the average power in predominant frequency bands

are computed. The k-th frequency component of the signal

Xk =
L∑

m=1
x(m)e−j 2πkm

L . (3.19)

The J-th feature xJ of sample x corresponding to this window is computed as

xJ = log
 kJ +D∑

k=kJ −D

|Xk|2
 , (3.20)

where kJ is a component in the DFT selected to characterize the waveform, and D is the

number of frequency components on either side of kJ selected to represent a frequency band.

Thus, DFT of each window of L consecutive samples will be performed and its features

will be computed according to ( 3.20 ).

3.3 Training

This section explains how SVM-classifiers are trained to identify different conditions of

the converter system. We wish to identify events of not two, but NC types. Thus, a binary
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classifier discriminating between class-C and the remaining NC − 1 classes is generated,

∀ C ∈ NC .

Training samples of each class are needed to generate a classifier (the optimal hyper-

plane). To obtain them, we sample several input current waveforms (having L consecutive

measurements) of the converter at a sampling frequency fs. Each window shows the transi-

tion from normal to the considered condition under different loading levels and other random

variations. The nf features characterizing each waveform are computed using (  3.20 ) resulting

in a corresponding sample x ∈ Rnf .

When finding the C-th classifier, samples belonging to class-C are labeled as ‘+1’ while

all the remaining samples from the training data set are labeled ‘−1’. This produces NC clas-

sifiers, each of which determines whether an unknown sample belongs to its own class or not.

To find the constants β and κ for each classifier, we use B-folded cross-validation. It is

a process in which the training data is first split into B subsets containing equal samples.

Then, for some value of the pair (β, κ), the classifiers are trained on one data subset and

tested on the remaining B −1 subsets, and this process is repeated for each subset. Since the

labels of training samples are known, the misclassified samples in the remaining B−1 subsets

are counted. The objective is to select β and κ so that the average percentage of misclassified

samples, over the B times that this process is repeated, is minimized. Thus, a grid-search is

performed for finding the pair (β, κ) that minimizes this objective.

The optimal classifiers so determined are used to identify the class of an unlabelled

sample.

3.4 Testing

The objective is to determine to which class an incoming measured signal belongs to

indicate the system condition.

Fig.  3.2 shows the algorithm used to identify the system conditions. At any point in

time, the past L signal measurements are captured. The signal features for this window of

L consecutive samples in time (x(a−L+1)
T , . . . , x

(a)
T ) are computed using ( 3.20 ). The sample

xT (corresponding to this window) so characterized is tested against each of the NC binary

classifiers. The sign of the decision function of each classifier C predicts whether xT belongs
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Figure 3.2. SVM-based algorithm for classifying events.

to its class or not by returning the label yC ∈ {1, −1}, respectively. Using the trained

sigmoid models (  3.18 ), the posterior probability PC of this classification is calculated. Thus,

the output of this step is a prediction of whether xT belongs to class-C, C ∈ {1, 2, . . . , NC}

or not, along with a corresponding posterior probability PC .

The logic block decides the class yT ∈ {1, . . . , C} of the sample as follows: If only one

classifier predicts that the sample belongs to its class-C by returning yC = 1 with a posterior

probability PC ≥ Pt (set threshold), the class of the event is identified as C. However, if

PC < Pt, ∀ C ∈ {1, 2, . . . , NC} or if more than one classifier declares that the event belongs

to a particular class with PC ≥ Pt, the sample remains unclassified. This condition helps us

avoid false alarms.

3.5 Results

The algorithm is tested on the converter system shown in Fig.  3.3 . The circuit consists

of two back-to-back 3-phase interleaved dc-dc converters connected via a 30 V dc link.

The input to the module is a 24 V dc voltage source, and a constant power load (CPL) is

connected at the 24 V output. MOSFETs are employed as switches in the circuit. The circuit

parameters are shown in Table  3.1 . The switching frequency is 30 kHz. Voltages vdc and vo

are regulated. Noise is added in the measured input current signal (ii), and quantization by

the current sensor is taken into account.
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Figure 3.3. Back-to-back dc-dc converter circuit.

Table 3.1. Circuit parameters

Component Value
Capacitor Ci 38.7 µF
Capacitor Co 38.7 µF
Capacitor Cdc 67.2 µF
Inductor L 44.0 µH
Resistor r 16.0 mΩ
Constant power load 50 – 600 W
Fault resistance 0 – 0.1 Ω

The conditions identified are shown in Table  3.2 . By running 5 ms-long simulations,

200 training samples of each of the NC = 8 classes were obtained. For class 1–7 simulations,

the corresponding fault or step change was inserted at t = 1.5 ms. The input current (ii)

waveform was sampled at fs = 360 kHz. Thus, each training sample corresponds to a window

of current signal with L = 5 ms × fs = 1800 consecutive measurements in time. Frequencies

1 kHz, 2 kHz, . . . , 14 kHz, 30 kHz, and 60 kHz with D = 2, were used to compute the

features. The feature corresponding to the dc component of the signal was also included in
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the set, leading to a total of 17 features. To obtain the parameters (β, κ) for each classifier,

3-folded cross-validation was used.

Table 3.2. Event classes

Class Event
1 Load shorted
2 DC-link capacitor shorted
3 Lower switch of a phase leg of converter 1 open circuited
4 Upper switch shorted and lower switch open circuited in a phase leg of converter 1
5 Upper switch open circuited in a phase leg of converter 2
6 Upper switch open circuited and lower switch shorted in a phase leg of converter 2
7 Step change in load
8 Normal operation with no change

Testing samples were generated by running 100 more 15 ms-long simulations of each class.

The input current signal under each condition is shown in Fig.  3.4 . In these simulations,

the system operated normally until t = 6.5 ms when the fault or step-change was inserted,

except in case of class-8. The threshold posterior probability Pt was set to 0.9.

The percentage of samples of class-C that were classified as class-F , ∀ F ∈ {1, . . . , 8}

with respect to time was visualized using plots, here defined as confusion plots. Confusion

plots of samples of different classes are shown in Fig.  3.5 and  3.6 . None of the samples of

class-C in these plots were classified as other than class-C or class-8, over time. Hence, for

simplicity, their percentages were not plotted.

For the first few milliseconds, 100% of the samples were classified as the “normal no-change”

condition (class-8) because there was no disturbance in the system. The windows that fol-

lowed were either correctly classified as class-C or stayed unclassified. After t = 6.5 ms,

the tested windows captured a portion of the transient. Hence, the percentage of correctly

classified samples (referred to as the classification accuracy) shot up. The classification accu-

racy was invariably 100% at t = 10 ms because the tested window (capturing waveform data

from t = 5–10 ms) matched with the training window, in that the condition is introduced

at t = 1.5 ms after the beginning of the window. After 11.5 ms, the classification accuracy
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Figure 3.4. Input current signal under each condition.
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(a) Class 1 confusion plot.

6 8 10 12 14

Time (ms)

0

20

40

60

80

100

S
am

p
le

cl
as
si
fi
ca
ti
on

(%
)

2

8

(b) Class 2 confusion plot.
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(c) Class 3 confusion plot.
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(d) Class 4 confusion plot.

Figure 3.5. Confusion plots when events 1–4 occur.

dropped because the window no longer captured any portion of the waveform behaviour with

which the classifier was trained.

Thus, the algorithm is able to accurately and reliably identify the type of system condition

that it has been trained to recognize.
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(a) Class 5 confusion plot.
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(b) Class 6 confusion plot.
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(c) Class 7 confusion plot.

Figure 3.6. Confusion plots when events 5–7 occur.
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4. OPTIMAL POWER DISPATCH

In this chapter, we define the operational logic of an autonomous control system that ensures

optimal system operation under normal and faulted conditions. A computer-based mission

manager (MM) determines the desired load schedule that includes individual load demands

and their respective priorities for a time horizon encompassing a few hours [  2 ]. The au-

tonomous control system then decides an optimal load dispatch that meets all operational

constraints, while ensuring service to important loads. If a fault occurs in the power system,

it is operated in a restorative state. This may involve rerouting power supply to loads by

utilizing alternate paths and/or charging batteries at a lower rate. The proposed algorithm

combines network reconfiguration with an optimal power flow. The associated mathematical

formulation is relatively simple and computationally efficient.

Our system has three types of binary variables, namely, loads that can be switched on and

off, decisions that choose appropriate battery charging rates, and switch states that determine

the network topology. For a deep space vehicle, the speed of obtaining a solution is more

important than its accuracy, especially when restoring the system after a fault. Therefore,

the proposed approach is to use only the load on/off commands and battery-charging rate

decisions as binary variables in the OPF problem. This leads to a mixed-integer linear

program (MILP) that is efficiently solved using a software package called Gurobi. The OPF

is a sub-problem embedded inside an outer loop over all network configurations.

4.1 System description

Fig.  4.1 shows the power system of a notional deep space vehicle based on the architecture

set forth in [ 48 ]. The batteries and solar arrays are interfaced with power electronic converters

(BCDUs and SARs, respectively). The power distribution units (PDUs) provide power to

several loads. There are two main bus switching units (MBSUs) that can be tied together

by closing switches S1
X and S2

X , which are normally open. Under normal conditions, when

the system is electrically divided in two parts, the voltage of each MBSU node is regulated

to a nominal value, Vnom = 120 V. We define the following sets: all nodes N = {1, . . . , nN},

MBSU nodes M = {m1, m2} ⊂ N , SAR output nodes A ⊂ N , PDU nodes D ⊂ N , and
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Figure 4.1. Notional deep space power system.

BCDU terminal nodes B ⊂ N . The conductance of line ls,r between nodes s and r ∈ N

is denoted by Gs,r. There are nN = 16 nodes, nP = 8 PDUs, and nB = 4 batteries.

The PDUs are normally connected to one of the MBSUs based on their location via the

shorter cable (for lower resistance). Thus, for PDU-1 through PDU-4, it is assumed that

G5,4 = G6,4 = G7,16 = G8,16 < G5,16 = G6,16 = G7,4 = G8,4. A similar assumption is made for

the cables connecting PDU-5 through PDU-8.

4.1.1 Solar arrays

Arrays SA-1 and SA-2 receive solar energy in a 60 minute-long period of insolation,

during which they can generate up to Ps,max,k = 30 kW (assumed constant for simplicity),

where the index k ∈ {k1, . . . , kT } denotes the time interval. In a subsequent 30 minute-long

period of eclipse, Ps,max,k = 0 kW [ 2 ]. The assumed SAR efficiency is ηs = 0.95.
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4.1.2 Loads

Each PDU handles roughly 3 kW at peak load. The desired load schedule is decided

by the MM [  2 ]. The power demanded by load h on PDU-g at time k is denoted as P g
Dh,k.

All loads are assumed to be constant power loads, in the sense that they draw the needed

power regardless of the voltage at the PDU bus. If load h connected to PDU-g is “binary”,

then bg
h ∈ {0, 1} is a decision variable for turning it off or on, respectively. Otherwise, if the

load power can be adjusted in a continuous manner, the corresponding decision variable is

cg
h ∈ R, 0 ≤ cg

h ≤ 1. We assume that nb = 4 binary loads and nc = 4 continuous loads are

connected to each PDU, and denote the total number of loads at each PDU as nL = nb + nc.

Each load is assigned a corresponding weight W g
h,k ≥ 0 for every time interval k, such that

higher weight implies greater importance. Loads have been classified as non-vital (W g
h = 1),

semi-vital (W g
h = 50), and vital (W g

h = 500).

4.1.3 Batteries

The batteries are based on a 2.6-Ah lithium ion cell [  49 ]. The variation of the cell open-

circuit voltage e with its state-of-charge (SoC), denoted by z, is shown in Fig.  4.2 [ 50 ]. A

piecewise cubic Hermite interpolant is derived from the data points. The battery packs have

np = 14 parallel strings of ns = 36 cells in series. Assuming that the SoC of individual cells is

the same, the batteries are modeled by a simple equivalent circuit [  51 ] such that the battery

terminal voltage vB and current iB are related by

vB(z, iB) = nse(z) − iBRB , (4.1)

where the internal cell resistance rc = 20 mΩ. Hence, the battery equivalent resistance is

RB = nsrc/np = 51 mΩ. The coulombic efficiency ηc relates to the amount of charge trans-

ferred to or from the battery cells (a fraction of charge is lost in electrochemical side reac-

tions). Thus, the variation of the battery SoC with time is found using

dz

dt
= −ηciB

Q
, (4.2)
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Figure 4.2. Cell open-circuit voltage vs. state of charge.

where Q is the battery capacity in coulombs. We assume charging ηc = 0.99, discharging

ηc = 1, and BCDU energy conversion efficiency ηB = 0.9.

At the beginning of each insolation or eclipse period, or following a system fault, the SoC

of each battery in the system is obtained from the battery management system. This initial

SoC (z0) and iB(t) serve as model inputs, and are used to determine the battery charging

or discharging profiles. To maintain the long-term health of the batteries, the SoC is not

allowed to drop below zmin = 20% or to exceed zmax = 90%.

Charging

Charging is initially performed with current at a constant rate until a desired terminal

voltage is reached, after which constant-voltage mode is employed [ 52 ]. The constant initial

charging current iB can be represented with an equivalent C-rate, which is the charging/dis-

charging current relative to its nominal capacity Q. Thus, a yC rate refers to the current that

would fully charge/discharge the battery in 1/y hours (assuming ηc = 1). Since batteries are

the only source of energy during an eclipse, charging them to the fullest level possible is of

paramount importance. Hence, charging is not delayed and starts at the very beginning of

insolation.
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Figure 4.3. Battery charging profiles using constant-current constant-voltage method.

We define a set of nR predetermined charging C-rates, Y = {y1, . . . , ynR
}. Examples of

battery charging profiles for z0 = 0.2 with Y = {0.1, 0.5, 1} are shown in Fig.  4.3 . Constant-

voltage mode is employed when vB = nse(zmax). The calculated power profile, PB(t) =

vB(t)iB(t), is discretized by averaging over time intervals, as shown for the 1C rate case in

Fig.  4.3 . Similarly, for each BAT-g and with each charging rate yh ∈ Y , we compute the

discretized input power P g
Bh,k at every interval k. Of these, only one power profile is selected

for each battery.

Thus, we introduce binary decision variables dg
h ∈ {0, 1}, ∀g ∈ {1, . . . , nB} and ∀h ∈

{1, . . . , nR}, such that dg
h = 1 implies that BAT-g is initially charged at C-rate yh (and

possibly later with constant voltage). In this study, we set Y = {0, 0.1, 0.2, . . . , 1}. Hence,

there are nR = 11 possible initial C-rates, including the trivial case of not charging.

The final SoC at the end of the charging period can be expressed as a function zf (z0, yh).

The minimum C-rate needed to achieve zf ≈ zmax decreases with increasing z0. Increasing
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the C-rate above this value does not significantly increase zf . Given that the objective of

the charging strategy is to charge the batteries so that zf reaches sufficiently close to zmax,

weights W g
Bh corresponding to dg

h are assigned based on

WB(zf ) = WBmax

√
zf − zmin

zmax − zmin
, (4.3)

where WBmax = 1000. A plot of this function is shown in Fig.  4.4 . The weights corresponding

to C-rates achieving zf = 85–90% have relatively small difference, which could lead to optimal

solutions exhibiting a tradeoff between maximizing SoC and serving additional loads.

To summarize, for each BAT-g, the battery dynamic model takes z0 as an input, computes

a P g
Bh profile and values of zf (z0, yh) for each considered C-rate, whence WB(zf ) is obtained.

These parameters are provided to the optimization problem set forth in the next section.

Discharging

Batteries discharge during the eclipse period to supply power to the loads in a manner

determined by the OPF, subject only to power and energy limits. In particular, the energy

limit is determined as the energy EBg(z0) that BAT-g can provide when discharged continu-
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ously at the maximum allowed rate (here, 2C), from the time it starts discharging (t1) until

zmin is reached (say, at tmin),

EBg(z0) =
∫ tmin

t1
P g

B(t) dt . (4.4)

4.2 OPF Formulation

The OPF is solved separately over insolation and eclipse periods. Time is discretized

using an index k ∈ {k1, . . . , kT }, forming intervals of duration ∆t. The first interval k1

may correspond to the beginning of insolation or eclipse, or it could be the first interval

immediately after a fault (which may occur at any time instant). The final time interval

kT is always the final interval of the current period (insolation or eclipse). Power system

injections from BCDUs, SARs, and PDUs are assumed positive. We define the following

time-k vectors, assuming that at all PDUs, the continuous loads are listed after binary

loads.

Binary and continuous load decision variables:

bk =
[
b1

1,k, . . . , b1
nb,k, . . . , bnP

1,k, . . . , bnP
nb,k

]
(4.5)

ck =
[
c1

nb+1,k, . . . , c1
nL,k, . . . , cnP

nb+1,k, . . . , cnP
nL,k

]
(4.6)

Net power injected at node s:

Pk =
[
Ps,k

]
, ∀s ∈ A ∪ B (4.7)

Line power between nodes s and r:

Pl,k =
[
Ps,r,k

]
, ∀s ∈ N , r ∈ N (4.8)

Voltage at each node:

Vk =
[
Vs,k

]
, ∀s ∈ N (4.9)

75



Charging profile binary decision variables:

d =
[
d1

1, . . . , d1
nR

, . . . , dnB
1 , . . . , dnB

nR

]
(4.10)

These variables are collected in xk = [bk, ck, Pk, Pl,k, Vk] and x = [xk1 , xk2 , . . . , xkT
, d].

4.2.1 OPF formulation during insolation

During insolation under normal conditions, the OPF problem is formulated as follows:

max
x

kT∑
k=k1

nP∑
g=1


nb∑

h=1
bg

h,kW g
h,k +

nL∑
h=nb+1

cg
h,kW g

h,k

+
nB∑
g=1

nR∑
h=1

dg
hW g

Bh (4.11)

subject to:

Approximate line power flow from s ∈ N to r ∈ N :

Ps,r,k = VnomGs,r

(
Vs,k − Vr,k

)
. (4.12)

Power balance equation at node s:

Ps,k =
∑
r∈N

Ps,r,k , ∀s ∈ N . (4.13)

Power injection at node s ∈ D for the corresponding PDU-g:

Ps,k = −
nb∑

h=1
bg

h,kP g
Dh,k −

nL∑
h=nb+1

cg
h,kP g

Dh,k . (4.14)

Selection of only one charging profile for each battery:

nR∑
h=1

dg
h = 1 , ∀g ∈ {1, . . . , nB} . (4.15)

Power injection into node s ∈ B for charging BAT-g:

Ps,k = − 1
ηB

nR∑
h=1

dg
hP g

Bh,k , ∀s ∈ B . (4.16)
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Reference node voltage:

Vm,k = Vnom , ∀m ∈ M . (4.17)

Node voltage constraints (±5% around Vnom):

Vs,min ≤ Vs,k ≤ Vs,max , ∀s ∈ N . (4.18)

Power injection limits:

0 ≤ Ps,k ≤ ηsPs,max,k , ∀s ∈ A . (4.19)

4.2.2 OPF formulation during eclipse

During an eclipse under normal conditions, the OPF problem is formulated as follows:

max
x

kT∑
k=k1

nP∑
g=1


nb∑

h=1
bg

h,kW g
h,k +

nL∑
h=nb+1

cg
h,kW g

h,k

 (4.20)

with xk = [bk, ck, Pk, Pl,k, Vk] and x = [xk1 , xk2 , . . . , xkT
] ,

subject to:

Equations ( 4.12 )–( 4.14 ), ( 4.17 )–( 4.19 ),

Power injection at node s ∈ B supplied by BAT-g:

∆t

ηB

kT∑
k=k1

Ps,k ≤ EBg(z0) , ∀s ∈ B . (4.21)

BAT-g power injection limits:

0 ≤ P g
B ≤ PB,max . (4.22)

where PB,max is determined by the maximum discharge rate of the battery.

Modifications made to the nominal formulation for various scenarios involving system

faults are listed in Table  4.1 and further explained in the next section.
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Table 4.1. Reconfiguration/OPF formulation under different scenarios
Condition Constraint changes Allowable combinations (Ra)
Normal – [110011000]
Fault in SA-v Reduce Ps,max,k; ( 4.17 ) removed for mv ∈ M Those with S1

X = 1
Fault in BAT-g Set P g

B,k = 0 R
Line-to-ground fault in ls,r – Those with switch in ls,r open
MBSU-v fault Set Gs,mv = 0, s ∈ A ∪ B; ( 4.17 ) removed for mv ∈ M Sv

g = 0, ∀g ∈ {1, . . . , nP }
SC fault of PDU-g at node a ∈ D Set Ga,mv = 0, mv ∈ M Those with S1

g = 0
SC fault on load h of PDU-g Set P g

Dh = 0 R

4.3 Combined system reconfiguration and OPF algorithm

Reconfiguration involves making decisions about operating the switches Sv
g ∈ {0, 1},

∀g ∈ {1, . . . , nP }, and Sv
X ∈ {0, 1}, v ∈ {1, 2}. A PDU is connected to just one MBSU at a

time. Therefore, the pairs {S1
g , S2

g } are complementary, each pair corresponding to a single

decision. We thus introduce a switch decision vector s = [S1
1 S1

2 . . . S1
nP

S1
X]. The set R

contains all the 2nP +1 possible switch combinations, each represented by a unique r. The

operational algorithm follows these steps:

1. Retrieve desired load schedule, solar generation forecast, SoC of each battery, and fault

location, if a fault is detected. These are the algorithm inputs.

2. Calculate battery energy availability (during eclipse).

3. Modify constraints to reflect the status of the system (normal/fault), as mentioned in

Table  4.1 .

4. Modify line power flow constraints to reflect the considered switch combination r.

5. If S1
X = S2

X = 1, modify reference node voltage constraint to set only one MBSU node

voltage equal to Vnom, with m1 ∈ M being the default node.

6. Solve the optimization problem and store the maximum objective function value (f)

for all allowable switch decision combinations (Ra ⊆ R), repeating steps 4 and 5 each

time. This constitutes the outer loop of the algorithm.
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Table 4.2. Maximum PDU power demands and network parameters
Maximum power demand Cable resistances
PDU no. PD,max (kW) From node to node value (mΩ)

1 2.8 1 4 4.0
2 2.3 2 4 3.2
3 2.6 3 4 4.0
4 2.7 5 4 4.0
5 2.8 7 4 6.0
6 2.6 9 4 8.0
7 2.4 11 4 10.0
8 2.7

7. If the highest magnitude of f is attained in more than one combination, choose the

one which leads to the least network energy loss, estimated by

∆t

2

kT∑
k=k1

nN∑
s=1

nN∑
r=1
r 6=s

Gs,r(Vs,k − Vr,k)2 . (4.23)

To visualize the solution, we define three indices related to the load power as follows. Let

all loads at time k belong to Lv,k, Ls,k, and Ln,k, if they are considered to be vital, semi–vital,

and non–vital, respectively. The index Hv,k is defined as the ratio of the sum of decision

variables (bg
h,k or cg

h,k) of loads in Lv,k to the total number of loads in Lv,k. The indices Hs,k

and Hn,k are similarly defined over the sets Ls,k and Ln,k, respectively. Since the algorithm

prioritizes vital loads over semi–vital loads, and semi–vital over non–vital loads, it is expected

that 0 ≤ Hn,k ≤ Hs,k ≤ Hv,k ≤ 1. Table  4.2 contains more information about the system in

the case studies. The power consumption of individual loads at each PDU is 80–750 W. The

OPF was solved for ∆t = 5 minute intervals using Gurobi Optimizer. Each optimal solution

was obtained within a few seconds. The complete system information, including power

demand of each load and weight assignment at every interval, can be obtained from [ 53 ].

79



0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Figure 4.5. Load serving indices following BAT-2 malfunction.

4.3.1 Case study: normal operation

In this case study, we analyzed the OPF solution when the system was operating in

normal condition. As mentioned in Table  4.1 , only the configuration corresponding to

s = [1 1 0 0 1 1 0 0 0] was evaluated. All load demands were met during insolation, even

with the initial SoCs of all batteries set to zmin = 20%. Thus, Hv,k = Hs,k = Hn,k = 1,

∀k ∈ {k1, . . . , kT }. The C-rate chosen by the algorithm for charging all batteries was 1C.

All loads were also served during an eclipse, with z0 = 90% for all batteries.

4.3.2 Case study: battery malfunction during eclipse

In this case study, a malfunction of BAT-2 occurring at the very beginning of an eclipse

was considered, which led to its disconnection. With one less battery functional and z0 = 90%

for the remaining batteries, the algorithm decided that some non-vital loads had to be

shed, as observed from Fig.  4.5 . The optimal switch combination was determined to be

s = [0 1 0 0 1 1 0 0 1]. Only the MBSU-1 node voltage was regulated to Vnom, according to

Step 5 of the algorithm. As an example, the PDU-3 power demand over time and the

amount of power curtailment determined by the algorithm is shown in Fig.  4.6 . Table  4.3 

lists the PDU-3 load dispatch during the 0–5 min interval.
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Figure 4.6. Power demand and supply of PDU-3 following BAT-2 malfunction.

Table 4.3. PDU-3 results during BAT-2 fault
Load no. (h) Type P 3

Dh (W) W 3
h decision (b3

h or c3
j )

normal BAT-2 fault

1 binary 150 500 1 1
2 binary 750 1 1 1
3 binary 380 50 1 1
4 binary 80 50 1 1
5 continuous 750 1 1 0.28
6 continuous 180 50 1 1
7 continuous 260 1 1 1
8 continuous 110 500 1 1

4.3.3 Case study: solar array fault during insolation

A fault in SA-2 occurred at the very beginning of the insolation period, which led to

its disconnection. Therefore, to charge BAT-3 and BAT-4, power from SA-1 had to flow

through the cross-bus tie, as mentioned in the second row of Table  4.1 . The initial SoCs

of the batteries were 30%, 35%, 45%, and 25%, respectively. The algorithm selected switch

combination s = [1 1 1 1 1 1 1 1 1], and the optimal C-rates as 0.8C, 0.7C, 0.6C, and 0.8C,

respectively. The resultant power injections into the BCDU nodes are shown in Fig.  4.7 . As

seen from the plots, the battery SoCs reached 88.6%, 88.6%, 89.2%, and 87.9%, respectively,
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(a) BAT-1 charging.
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(b) BAT-2 charging.
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(c) BAT-3 charging.

0 10 20 30 40 50 60
0

1

2

3

4

5

0

20

40

60

80

100

(d) BAT-4 charging.

Figure 4.7. BCDU input power and battery SoC charging following SA-2 fault.

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

Figure 4.8. Load serving indices following SA-2 fault.

by the end of the insolation period. The plot in Fig.  4.8 implies that all vital and semi-vital

load demands were fully met.
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4.3.4 Case study: line short during eclipse

In this case study, at the beginning of the eclipse period, a line-to-ground fault oc-

curring on line l4,9 was considered. To clear the fault, the normally closed switch S1
5

was opened. Hence, S2
5 was closed to maintain power supply to PDU-5. It was assumed

that all batteries had z0 = 85% when the fault occurred. In this case, Ra contains all

switch combinations with the fifth element of s fixed to zero. Solving the OPF for all

these combinations (Step 6 of the algorithm), 177 switch combinations achieved the high-

est value of objective function, and were shortlisted. For all shortlisted combinations,

Hv,k = Hs,k = Hn,k = 1, ∀k ∈ {k1, . . . , kT }, as observed from Fig.  4.9 . Among these,

the maximum energy loss was estimated as 28.28 Wh. The optimal switch combination de-

termined by the algorithm in Step 7 was s = [1 1 0 0 0 1 0 1 0 ], because it led to the minimum

network losses, approximately 16.84 Wh.

A simpler solution would have been to connect PDU-5 to MBSU-2, without checking all

possible system configurations. The PDUs that remained connected to MBSU-1 (PDUs-1,

2, and 6) could then meet all their load demands. However, MBSU-2 would be connected to

5 PDUs, whose entire load demand would not be met due to the limited energy capacity of

the batteries. The vital and semi-vital loads would have been unaffected but non-vital load

index would have reduced as seen in Fig.  4.9 .

4.3.5 Case study: simultaneous MBSU and battery fault during eclipse

At the very beginning of an eclipse, all batteries had been charged to 80% when BAT-4

developed a fault. As a result, some non-vital loads were shed, and s = [1 1 0 0 1 1 1 0 0]

was selected for optimal system operation. Ten minutes later, another fault occurred at

MBSU-1. As a result of this fault, SA-1, BAT-1, and BAT-2 were disconnected from the

system. The algorithm was rerun under the additional conditions listed in row 5 of Table  4.1 

to obtain a new solution until the end of the eclipse. Accordingly, all PDUs were connected

to MBSU-2 via switches S2
g , ∀g ∈ {1, . . . , nP }, and only the MBSU-2 node voltage was

regulated to Vnom. With BAT-3 acting as the sole power source, which had discharged to

65.34% at t = 10 minutes, all non-vital and semi-vital loads were shed, and even the vital
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Figure 4.9. Non-vital load index following a fault in l4,9.
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Figure 4.10. Load serving indices following MBSU-1 and BAT-4 faults.

load index Hv,k dropped below 1 in some subsequent time intervals of the eclipse, as observed

in Fig.  4.10 .
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5. CONCLUSION AND FUTURE WORK

The architecture and operation of a deep space vehicle (DSV) power system differs from the

extensively studied terrestrial power system. Important differences lie in the way load is fore-

cast, generation is scheduled, physical states are monitored, and the operational objectives.

The power system of a DSV also needs to operate autonomously because of high latency in

communicating with ground-based mission control. This work focuses on three aspects for

achieving autonomous, fault-tolerant operation in the dc power system of a spacecraft.

First, utilizing the features of the distributed software agents [ 14 ] in the power system,

we propose performing state estimation is performed locally for each unit (PDU or MBSU),

based on Weighted Least Squares (WLS) estimation. The resultant WLS formulation can be

simplified by making suitable approximations, which gives us insight into the effect of various

measurements on the estimates. An important observation is that the current estimation

can be treated as in independent problem, which can be followed by voltage estimation using

simple arithmetic expressions. Using the resulting mathematical equations can speed up the

computation without significant loss of accuracy.

The accuracy of estimates may suffer if any of the sensors develop a fault. In current

sensor networks that have a low redundancy of measurements, a method to optimally select

additional, practically realizable sensors is put forth. Including these additional sensors

enables us to identify faulted sensors using the Largest Normalized Residual Test. A simple

design for these sensors is also put forth, based on which the volume and weight penalty for

the capability to identify faults is calculated.

Secondly, to identify component faults in the dc-dc power electronic converters in the

system, a machine-learning based approach based on support vector machines (SVM), is

suggested. Features related to the power-spectrum of the current signal are used to charac-

terize different faults while training, and are used to classify them while testing the trained

model. The algorithm is tested on waveforms generated by simulations of a dc-dc converter.

The algorithm is able to return the system condition with high speed and reliability.
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Future work can focus on hardware validation of the algorithms for identifying sensor

and converter faults. Methods that inform the choice of features in SVM-based classification

of converter fault classification can be explored.

Finally, an optimization algorithm is set forth that decides how to operate the power

system under both normal and faulted conditions. The primary objective is ensuring service

to important loads and fully charging the batteries, while a secondary objective is minimizing

network ohmic loss. In the proposed algorithm, an OPF problem is formulated as a mixed

integer linear program, and embedded inside an outer loop over all network configurations.

The mathematical formulation is relatively simple and computationally efficient. Results of

case studies considering various faults in the system show that the most critical loads are

served by shedding unimportant loads and/or reconfiguring the network, and that batteries

are charged in a way that maximizes their final state-of-charge.

In future work, a more detailed model of the batteries and converters can be included as

part of the OPF problem. Minimizing the number of switching operations while reconfiguring

the system can be another objective to be considered.

86



REFERENCES

[1] J. Soeder, A. McNelis, R. Beach, N. McNelis, T. Dever, L. Trase, and R. May, “Overview
of intelligent power controller development for human deep space exploration,” in Proc.
AIAA Propulsion and Energy Forum, 12th Int. Energy Conversion Engineering Conf.
(IECEC), Cleveland, OH, Jul. 2014, isbn: 978-1-62410-304-9. doi:  10.2514/6.2014-
3833 .

[2] R. May, J. F. Soeder, R. Beach, P. George, J. D. Frank, M. Schwabacher, S. P. Colom-
bano, L. Wang, and D. Lawler, “An architecture to enable autonomous control of a
spacecraft,” in Proc. AIAA 12th Int. Energy Convers. Engin. Conf., Cleveland, OH,
Jul. 2014, isbn: 978-1-62410-304-9. doi:  10.2514/6.2014-3834 .

[3] P. Kulkarni, D. Aliprantis, B. Loop, and N. Wu, “Autonomous power dispatch for a
deep space vehicle power system,” in Proc. IEEE Power and Energy Conf. Illinois
(PECI), 2020, pp. 1–8.

[4] A. Primadianto and C. Lu, “A review on distribution system state estimation,” IEEE
Trans. Power Syst., vol. 32, no. 5, pp. 3875–3883, 2017.

[5] M. Majdoub, J. Boukherouaa, B. Cheddadi, A. Belfqih, O. Sabri, and T. Haidi, “A
review on distribution system state estimation techniques,” in Proc. 6th Int. Renewable
and Sustain. Energy Conf. (IRSEC), 2018, pp. 1–6.

[6] M. Korkalı and A. Abur, “Detection, identification, and correction of bad sensor mea-
surements for fault location,” in Proc. IEEE Power and Energy Soc. General Meeting,
2012, pp. 1–6.

[7] A. Abur and A. G. Exposito, Power System State Estimation: Theory and Implemen-
tation. New York: Marcel Dekker, Inc, 2004.

[8] M. Meriem, C. Bouchra, B. Abdelaziz, S. O. B. Jamal, E. M. Faissal, and C. Nazha,
“Study of state estimation using weighted-least-squares method,” in Proc. Int. Conf.
Elect. Sci. and Technol. Maghreb (CISTEM), 2016, pp. 1–5.

[9] J. Zhao, M. Netto, and L. Mili, “A robust iterated extended kalman filter for power
system dynamic state estimation,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 3205–
3216, 2017.

[10] R. D. May, C. Beierle, Mingguo Hong, and K. A. Loparo, “Highly distributed state
estimation for a dc spacecraft power system,” in Proc. IEEE Power and Energy Soc.
General Meeting, 2015, pp. 1–5.

87

https://doi.org/10.2514/6.2014-3833
https://doi.org/10.2514/6.2014-3833
https://doi.org/10.2514/6.2014-3834


[11] H. Tebianian and B. Jeyasurya, “Dynamic state estimation in power systems using
kalman filters,” in Proc. IEEE Elect. Power and Energy Conf., 2013, pp. 1–5.

[12] A. Alamin, H. M. Khalid, and J. C. Peng, “Power system state estimation based on
iterative extended kalman filtering and bad data detection using normalized residual
test,” in Proc. IEEE Power and Energy Conf. Illinois (PECI), 2015, pp. 1–5.

[13] S. Yousefizadeh, J. D. Bendtsen, N. Vafamand, M. H. Khooban, F. Blaabjerg, and
T. Dragičević, “Tracking control for a dc microgrid feeding uncertain loads in more
electric aircraft: Adaptive backstepping approach,” IEEE Trans. Ind. Electron., vol. 66,
no. 7, pp. 5644–5652, 2019.

[14] R. May and K. Loparo, “The use of software agents for autonomous control of a dc
space power system,” in Proc. 12th Int. Energy Convers. Eng. Conf., Jul. 2014, isbn:
978-1-62410-304-9. doi:  10.2514/6.2014-3860 .

[15] M. Wu and L. Xie, “Online detection of low-quality synchrophasor measurements: A
data-driven approach,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 2817–2827, 2017.

[16] L. Zhu and D. J. Hill, “Cost-effective bad synchrophasor data detection based on
unsupervised time series data analytics,” IEEE Internet of Things J., pp. 1–1, 2020.

[17] F. Aeiad, W. Gao, and J. Momoh, “Bad data detection for smart grid state estimation,”
in Proc. North Amer. Power Symp. (NAPS), 2016, pp. 1–6.

[18] R. J. Patton and J. Chen, “A review of parity space approaches to fault diagnosis,”
in Proc. IFAC Symp. Fault Detection, Supervision and Safety for Technical Processes,
1991, pp. 65–81.

[19] H. Berriri, M. W. Naouar, and I. Slama-Belkhodja, “Easy and fast sensor fault de-
tection and isolation algorithm for electrical drives,” IEEE Trans. Power Electron.,
vol. 27, no. 2, pp. 490–499, 2012.

[20] M. Ben Hamed, L. Sbita, and S. Beni Hamed, “Direct current motor real time applica-
tion of sensor and actuator faults detection and isolation based on structural residual
space parity approach,” in Proc. Int. Conf. Elect. Sci. and Technol. Maghreb (CIS-
TEM), 2014, pp. 1–6.

[21] A. Viehweider, Kanghyun Nam, H. Fujimoto, and Y. Hori, “A fault detection and
isolation scheme for lateral vehicle dynamics of EVs using a quantitative parity space
approach,” in Proc. 38th Annu. Conf. IEEE Ind. Electron. Soc., 2012, pp. 4630–4636.

[22] E. Balaban, A. Saxena, P. Bansal, K. F. Goebel, and S. Curran, “Modeling, detection,
and disambiguation of sensor faults for aerospace applications,” IEEE Sensors J.,
vol. 9, no. 12, pp. 1907–1917, 2009.

88

https://doi.org/10.2514/6.2014-3860


[23] S. Yang, A. Bryant, P. Mawby, D. Xiang, L. Ran, and P. Tavner, “An industry-
based survey of reliability in power electronic converters,” in IEEE Energy Conversion
Congress and Exposition (ECCE), Sep. 2009, pp. 3151–3157. doi:  10.1109/ECCE.
2009.5316356 .

[24] F. Zidani, D. Diallo, M. E. H. Benbouzid, and R. Nait-Said, “A fuzzy-based approach
for the diagnosis of fault modes in a voltage-fed PWM inverter induction motor drive,”
IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 586–593, Feb. 2008, issn: 1557-9948.
doi:  10.1109/TIE.2007.911951 .

[25] M. Beibei, S. Yanxia, W. Dinghui, and Z. Zhipu, “Three level inverter fault diagnosis
using EMD and support vector machine approach,” in Proc. 12th IEEE Conf. on
Industrial Electronics and Applications (ICIEA), Jun. 2017, pp. 1595–1598. doi:  10.
1109/ICIEA.2017.8283093 .

[26] H. Lan, H. Liu, W. Yue, and N. Shen, “Intelligent fault diagnosis method in controlled
rectifier based on support vector machines,” in Proc. Asia-Pacific Power and Energy
Engineering Conf. (APPEEC), Mar. 2012, pp. 1–4. doi:  10.1109/APPEEC.2012.
6307674 .

[27] M. A. Masrur, Z. Chen, and Y. Murphey, “Intelligent diagnosis of open and short circuit
faults in electric drive inverters for real-time applications,” IET Power Electronics,
vol. 3, no. 2, pp. 279–291, Mar. 2010, issn: 1755-4535. doi:  10.1049/iet-pel.2008.
0362 .

[28] N. V. Prasad Kuraku, Y. He, and M. Ali, “Probabilistic PCA-support vector machine
based fault diagnosis of single phase 5-level cascaded H-bridge MLI,” in Proc. Int.
Power Electronics Conf. (IPEC-Niigata 2018 -ECCE Asia), May 2018, pp. 2317–2323.
doi:  10.23919/IPEC.2018.8507478 .

[29] J. Zhao, X. Gu, h. Yu, and Wangyan, “Fault diagnosis of power electronic based on
multi-resolution analysis and support vector machine,” in Proc. Second Int. Conf. on
Computational Intelligence and Natural Computing (CINC), vol. 1, Sep. 2010, pp. 121–
124. doi:  10.1109/CINC.2010.5643877 .

[30] Z. Tian and X. Ge, “An on-line fault diagnostic method based on frequency-domain
analysis for IGBTs in traction PWM rectifiers,” in Proc. IEEE 8th Int. Power Elec-
tronics and Motion Control Conf. (IPEMC-ECCE Asia), May 2016, pp. 3403–3407.
doi:  10.1109/IPEMC.2016.7512841 .

[31] Y. M. Yeap, N. Geddada, K. Satpathi, and A. Ukil, “Time- and frequency-domain
fault detection in a VSC-interfaced experimental dc test system,” IEEE Trans. Ind.
Informat., vol. 14, no. 10, pp. 4353–4364, Oct. 2018, issn: 1941-0050. doi:  10.1109/
TII.2018.2796068 .

89

https://doi.org/10.1109/ECCE.2009.5316356
https://doi.org/10.1109/ECCE.2009.5316356
https://doi.org/10.1109/TIE.2007.911951
https://doi.org/10.1109/ICIEA.2017.8283093
https://doi.org/10.1109/ICIEA.2017.8283093
https://doi.org/10.1109/APPEEC.2012.6307674
https://doi.org/10.1109/APPEEC.2012.6307674
https://doi.org/10.1049/iet-pel.2008.0362
https://doi.org/10.1049/iet-pel.2008.0362
https://doi.org/10.23919/IPEC.2018.8507478
https://doi.org/10.1109/CINC.2010.5643877
https://doi.org/10.1109/IPEMC.2016.7512841
https://doi.org/10.1109/TII.2018.2796068
https://doi.org/10.1109/TII.2018.2796068


[32] A. Ismail, L. Saidi, and M. Sayadi, “An open circuit switching fault diagnosis approach
for back-to-back converter using wavelet analysis,” in 10th International Renewable
Energy Congress (IREC), Mar. 2019, pp. 1–6. doi:  10.1109/IREC.2019.8754513 .

[33] S. Khomfoi and L. M. Tolbert, “Fault diagnostic system for a multilevel inverter using
a neural network,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 1062–1069, May
2007, issn: 1941-0107. doi:  10.1109/TPEL.2007.897128 .

[34] D. R. Espinoza-Trejo, E. Diez, E. Bárcenas, C. Verde, G. Espinosa-Pérez, and G.
Bossio, “Model-based fault detection and isolation in a MPPT boost converter for
photovoltaic systems,” in Proc. 42nd Annual Conf. of the IEEE Industrial Electronics
Society (IECON), Oct. 2016, pp. 2189–2194. doi:  10.1109/IECON.2016.7793421 .

[35] J. Poon, P. Jain, I. C. Konstantakopoulos, C. Spanos, S. K. Panda, and S. R. Sanders,
“Model-based fault detection and identification for switching power converters,” IEEE
Trans. Power Electron., vol. 32, no. 2, pp. 1419–1430, Feb. 2017, issn: 0885-8993. doi:

 10.1109/TPEL.2016.2541342 .

[36] T. Morstyn, B. Hredzak, and V. G. Agelidis, “Dynamic optimal power flow for dc
microgrids with distributed battery energy storage systems,” in Proc. IEEE Energy
Convers. Congr. Expos. (ECCE), Sep. 2016, pp. 1–6. doi:  10.1109/ECCE.2016.
7855059 .

[37] A. A. Zazou, J. Gaubert, E. Chevrier, E. Grolleau, P. Richard, and L. Bellatreche,
“Distribution network reconfiguration problem for energy loss minimization with vari-
able load,” in Proc. 42nd Ann. IEEE Ind. Electron. Soc. Conf. (IECON), Oct. 2016,
pp. 3848–3853. doi:  10.1109/IECON.2016.7793560 .

[38] M. Carrion and J. M. Arroyo, “A computationally efficient mixed-integer linear formu-
lation for the thermal unit commitment problem,” IEEE Trans. Power Syst., vol. 21,
no. 3, pp. 1371–1378, Aug. 2006, issn: 1558-0679. doi:  10.1109/TPWRS.2006.876672 .

[39] K. W. Hedman, R. P. O’Neill, E. B. Fisher, and S. S. Oren, “Optimal transmis-
sion switching with contingency analysis,” IEEE Trans. Power Syst., vol. 24, no. 3,
pp. 1577–1586, Aug. 2009. doi:  10.1109/TPWRS.2009.2020530 .

[40] S. Bose, S. Pal, C. Scoglio, B. Natarajan, S. Das, and N. Schulz, “Analysis of optimized
reconfiguration of power system for electric ships,” in Proc. North Amer. Power Symp.,
Arlington, TX, Sep. 2010, pp. 1–7. doi:  10.1109/NAPS.2010.5618967 .

[41] F. Shariatzadeh, N. Kumar, and A. K. Srivastava, “Optimal control algorithms for re-
configuration of shipboard microgrid distribution system using intelligent techniques,”
IEEE Trans. Ind Appl., vol. 53, no. 1, pp. 474–482, Jan. 2017. doi:  10.1109/TIA.
2016.2601558 .

90

https://doi.org/10.1109/IREC.2019.8754513
https://doi.org/10.1109/TPEL.2007.897128
https://doi.org/10.1109/IECON.2016.7793421
https://doi.org/10.1109/TPEL.2016.2541342
https://doi.org/10.1109/ECCE.2016.7855059
https://doi.org/10.1109/ECCE.2016.7855059
https://doi.org/10.1109/IECON.2016.7793560
https://doi.org/10.1109/TPWRS.2006.876672
https://doi.org/10.1109/TPWRS.2009.2020530
https://doi.org/10.1109/NAPS.2010.5618967
https://doi.org/10.1109/TIA.2016.2601558
https://doi.org/10.1109/TIA.2016.2601558


[42] J. A. Taylor, Convex Optimization of Power Systems. Cambridge University Press,
2015.

[43] J. R. Brauer, “Hall effect and magnetoresistive sensors,” in Magnetic Actuators and
Sensors. 2006, pp. 143–163. doi:  10.1002/0471777714.ch10 .

[44] Magnetics. (2017). “Ferrite catalog,” Magnetics.

[45] (May 2012). “EQ-317L linear Hall IC datasheet,” Asahi Kasei Microdevices Corpora-
tion (AKM).

[46] N. Deng, Y. Tian, and C. Zhang, Support Vector Machines: Optimization Based The-
ory, Algorithms, and Extensions. Dec. 2012, pp. 1–315, isbn: 9780429110283. doi:

 10.1201/b14297 .

[47] J. C. Platt, “Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods,” in Advances in Large Margin Classifiers, MIT Press,
1999, pp. 61–74.

[48] J. Csank, J. Soeder, J. Follo, M. Muscatello, Y. H. Hau, and M. Carbone, “An au-
tonomous power controller for the NASA human deep space gateway,” in Proc. AIAA
Int. Energy Convers. Engin. Conf., Cleveland, OH, Jul. 2018. doi:  10.2514/6.2018-
4634 .

[49] (Jan. 2019). “26650 datasheet,” Lithium Werks Inc.

[50] (Feb. 2013). “Cylindrical battery pack design, validation, and assembly guide cover,”
A123 Systems.

[51] G. L. Plett, Battery Management Systems, Volume 1 - Battery Modeling. Artech House,
2015.

[52] A. Al-Haj Hussein and I. Batarseh, “A review of charging algorithms for nickel and
lithium battery chargers,” IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 830–838, Mar.
2011, issn: 1939-9359. doi:  10.1109/TVT.2011.2106527 .

[53] P. Kulkarni. (2019). “Notional deep space vehicle power system parameters,” [Online].
Available:  http://dx.doi.org/10.21227/r2ak-nd75 .

91

https://doi.org/10.1002/0471777714.ch10
https://doi.org/10.1201/b14297
https://doi.org/10.2514/6.2018-4634
https://doi.org/10.2514/6.2018-4634
https://doi.org/10.1109/TVT.2011.2106527
http://dx.doi.org/10.21227/r2ak-nd75

	TITLE PAGE
	COMMITTEE APPROVAL
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOMENCLATURE
	ABSTRACT
	INTRODUCTION
	Comparison of DSV power system with terrestrial power system
	Thesis Outline

	STATE ESTIMATION AND BIASED SENSOR IDENTIFICATION
	Preliminaries
	Weighted Least Squares (WLS) estimation
	Largest Normalized Residual (LNR) test 

	State estimation using approximate expressions
	PDU state estimation using voltages as states
	PDU state estimation using current as states
	MBSU state estimation

	Sensor Fault Detection and Identification (FDI)
	Selection of additional sensors for FDI in PDU current sensors
	Mathematical background to enable FDI
	Search algorithm for additional optimal sensors
	PDU state estimation using additional sensors
	Sensor design

	Results
	Validation of analytical expressions for state estimation
	Comparison with centralized state estimation
	Identification of biased sensors
	Reestimation after sensor fault detection


	FAULT DIAGNOSIS IN POWER ELECTRONIC CONVERTERS
	Support Vector Machine (SVM) preliminaries
	Probabilistic output

	Feature Selection
	Training
	Testing
	Results

	OPTIMAL POWER DISPATCH
	System description
	Solar arrays
	Loads
	Batteries
	Charging
	Discharging


	OPF Formulation
	OPF formulation during insolation
	OPF formulation during eclipse

	Combined system reconfiguration and OPF algorithm
	Case study: normal operation
	Case study: battery malfunction during eclipse
	Case study: solar array fault during insolation
	Case study: line short during eclipse
	Case study: simultaneous MBSU and battery fault during eclipse


	CONCLUSION AND FUTURE WORK
	REFERENCES
	INDEX

