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ABSTRACT

Models built with deep neural network (DNN) can handle complicated real-world data

extremely well, seemingly without suffering from the curse of dimensionality or the non-

convex optimization. To contribute to the theoretical understanding of deep learning, this

work studies the nonparametric perspective of DNNs by considering the following questions:

(1) What is the underlying estimation problem and what are the most appropriate data

assumptions? (2) What is the corresponding optimal convergence rate and does the curse of

dimensionality occur? (3) Is the optimal rate achievable for DNN estimators and is there any

optimization guarantee? These questions are investigated on two of the most fundamental

problems — regression and classification. Specifically, statistical optimality of DNN estimators

is established under various settings with special focuses on the curse of dimensionality and

optimization guarantee.

In the classic binary classification problem, statistical optimal convergence rates that

suffer less from the curse of dimensionality are established under two settings: (1) Under

the smooth boundary assumption [1 ], I show that DNN classifiers with proper architectures

can benefit from the compositional smoothness structure [2 ] underlying the high dimensional

data in the sense that the optimal convergence rates only depend on some effective dimension

d∗, potentially much smaller than the data dimension d. (2) Under a novel teacher-student

framework that assumes the Bayes classifier to be expressed as ReLU neural networks, I

obtain a dimension-free rate of convergence O(n−2/3) for DNN classifiers, which is also proven

optimal.
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1. INTRODUCTION

Deep learning has shown outstanding empirical successes and demonstrates superior per-

formance in many standard machine learning tasks, such as image classification [3 ]–[5 ],

generative modeling [6 ], [7 ], etc. Various benchmark scores have been drastically improved by

the introduction of deep neural networks [4 ]. One major surprise of deep learning methods is

their high representation power and accurate predictive performance in analyzing massive

and high-dimensional datasets. Despite common accusations of being a black box with no

theoretical guarantee, DNNs tend to achieve higher accuracy than other classical methods in

various prediction tasks, which attracts plenty of interests from researchers. In contrast to the

huge empirical success, little is yet settled from the theoretical side why DNN outperforms

other methods. Without enough understanding, practical use of deep learning models could

be inefficient and unreliable. To this end, there are mainly three aspects of theoretical deep

learning.

Approximation DNN as a function space has great flexibility and capacity. For different

structures and activation functions, what kind of functions can DNN efficiently approximate?

[8 ] shows that even a single hidden layer neural network can approximate continuous functions

on compact subsets of Rn arbitrarily well, as long as the number of neurons is large enough.

[9 ] considers the universal approximation property when the width of the network is fixed

and investigates the minimal width such that DNN can approximate continuous functions

on unit cube arbitrarily well with increasing depth. In particular, [9 ] shows that DNN with

Rectified Linear Units (ReLU) activation of width d + 1 can approximate any continuous

d-dimensional convex function arbitrarily well. [10 ] show that there exist certain functions

representable by a ReLU DNN such that for any ReLU DNN with at fewer layers, it will require

exponentially many more total nodes to represent. Optimality has also been established when

representing smooth functions. To approximate d-variate, β-time differentiable functions to

error ε measured in ‖ · ‖∞ norm, [11 ] show that DNN needs SL � O(ε− d
β ), where S is the

number of nonzero weights and L is the depth.
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Optimization The optimization in training DNN is highly non-convex. However, simple

gradient-based methods such as stochastic gradient descent (SGD) works fairly well in practice.

[12 ] propose Adam, the adaptive learning rate optimization algorithm that’s been designed

specifically for training DNNs. Many researchers have been studying the loss surface of

DNN optimization [13 ]–[15 ] and convergence properties of certain gradient-based algorithms

[16 ]–[19 ]. [20 ] proves that under certain assumptions, optimizing the squared loss of DNN

has no poor local minima that every local minima is a global minima and every critical point

is either a global minimum or a saddle point. [21 ], [22 ] show that adding one exponential

neuron in the DNN can eliminate all bad local minimums. [17 ] specifically consider training

one-hidden-layer ReLU neural network with GD and show that as long as the network is

heavily overparametrized and initialized closely to zero, the training loss converges to zero

as training step increases. [23 ] introduced neural tangent kernel (NTK) to characterize the

convergence behavior of infinitely wide DNNs and it inspired numerous follow-ups [24 ]–[26 ].

Generalization Advances in optimization assure that we can efficiently minimize the

empirical risk. But how close is the empirical risk minimizer to the population counterpart?

Generalization error bound quantifies the gap between training error and population error. In

learning theory, the generalization bound is directly linked to the complexity measurement of

the model [27 ]. Various generalization error bounds in deep learning are developed using the

PAC-Bayesian framework [28 ], [29 ] and Rademacher complexity [17 ], [30 ]–[32 ]. It’s empirically

observed that DNNs have great generalization ability and overparametrization tends to help

with generalization. The model generalizes well even when training data is interpolated and

the prediction error keeps decreasing after training error reaches zero [33 ], [34 ]. Among others,

[35 ]–[37 ] link overparametrization to good generalization behavior and [38 ]–[40 ] study the

effect of implicit or explicit regularizations on generalization.

1.1 The Nonparametric Perspective

The aforementioned theories are not perfect in characterizing the performance of DNNs.

On one hand, despite the huge empirical success, deep learning is not better than traditional

methods in every task. In turn, the success of DL should not only be contributed to the

13



effectiveness of DNNs, but also those specific tasks themselves, e.g., the data structures,

noise level, etc. The approximation capacity of DNNs, the flexibility of the architecture,

the adaptivity to specific tasks all contribute to deep learning’s empirical success. However,

the optimization/generalization perspective mainly depends on properties of the DNNs

but not the data distributions or the tasks at hand. To illustrate, [20 ] shows that under

mild assumptions, i.e., full rank, distinct eigenvalues in training data matrices, every local

minimum is a global minimum for deep linear network. [16 ] prove that under some regularity

conditions, gradient descent (GD) provably optimizes overparametrized neural networks. A

more comprehensive understanding of deep learning can be developed by incorporating the

underlying data assumptions into the analysis of DNNs.

On the other hand, the generalization error bounds mostly depend on the complexity of

the DNN family used, often independent of data. Typical complexity measures include VC-

dimension [41 ], number of parameters, norm or margin based complexities [30 ], [31 ], [33 ], [42 ].

However, almost all generalization error bounds are vacuous [43 ] and often doesn’t reflect the

actual generalization performance. [44 ] carried out large scale of empirical studies and showed

that theoretical bounds doesn’t correlate well with practice. The current generalization error

bounds are not tight enough and sharper tools are needed.

To this end, statistics has a lot to offer, especially the nonparametric estimation perspective,

where task-specific and statistical optimal results can be derived. The nonparametric

perspective views the supervised or unsupervised learning tasks as estimation problems. By

making specific assumptions about the data, the corresponding optimal rate of convergence

can be established and we can sharply characterize the performance of different estimation

methods. Together with sharp characterizations of the DNNs, this nonparametric perspective

provides another angle to understand why models built with neural networks handle large-

scale, high dimensional data extremely well. Specifically, we want to answer the following

questions for the tasks DL excels at:

• What is the estimation problem and what are the most appropriate data assumptions?

• What is the corresponding optimal convergence rate and does curse of dimensionality

occur?

14



• Is the optimal rate achievable for DNN estimators? If so, are there any algorithmic or

optimization guarantees?

From the nonparametric perspective, an estimation method is said to have statistical

optimality if it achieves the above optimal rate of convergence, indicating that it performs the

best in the worst possible scenario. The current gold standard in deep learning community is

empirical performance, which depends on too many aspects, e.g. DNN structure, initialization,

step size, tuning parameters, etc. and doesn’t provide a fair assessment of the estimation

method at its core. Statistical optimality, on the other hand, focuses on asymptotic behaviours

of the estimator in the specific estimation problem and can provide clearer, more quantitative

characterizations of the methods. Comparing to the typical theoretical DL approaches,

the proposed nonparametric perspective provides new insights and the key differences are

highlighted in Table 1.1 .

Table 1.1. Nonparametric perspective from Statistics v.s. Optimization/Gen-
eralization perspective. The modified check mark means not quite, in between
yes (3) and no (7). There are data assumptions when analyzing optimiza-
tion/generalization but they are not as thorough as those from the nonparamet-
ric estimation perspective. In turn, theories from optimization/generalization
are not as strong, e.g., the generalization error bound can be tighter and tighter
but no optimality can be established.

Nonparametric Optimization/Generalization

Ground Truth Assumption 3 X–

Theoretical Guarantee 3 X–

Optimality 3 7

Studying the nonparametric perspective of deep learning can produce sharp characteriza-

tion of the performance of DNN models and offer fair comparisons between different models.

As a different angle, the nonparametric perspective compliments the other research areas

revolving DNNs. To summarize, this thesis views DNNs as flexible nonparametric estimation

tools and investigates whether DNN based methods can achieve statistical optimal rates in

popular tasks of deep learning. Under various settings, affirmative answers are given with
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special focuses on the curse of dimensionality in Section 2 and optimization guarantee in

Section 3 .

Acknowledgment Section 2.2 and Section 3 is based on my own preprints, [45 ], [46 ]

respectively.

1.2 Preliminary

Notations Bold letters denote vectors and regular letters denote scalars. For any function

f(x) : X → R, denote ‖f‖∞ = supx∈X |f(x)| and ‖f‖p = (
∫

X |f(x)|pdx)1/p. For any vector

x, ‖x‖p denotes its p-norm, for 1 ≤ p ≤ ∞. Lp and lp are used to distinguish function norms

and vector norms. For two given sequences {an}n∈N and {bn}n∈N of real numbers, we write

an . bn if there exists a constant C > 0 such that an ≤ Cbn for all sufficiently large n. Let

Ω(·) be the counterpart of O(·) that an = Ω(bn) means an & bn. Further, an = Õ(bn) and

an = Ω̃(bn) are used to hide the log n terms. Similarly, Ō(·) and Ω̄(·) are used to indicate

there are specific requirements for the multiplicative constants. We write an � bn if an . bn

and an & bn. Let λmin(A) be the minimum eigenvalue of a symmetric matrix A. We use

I to denote the indicator function and Id to denote the d × d identity matrix. N(µ,Σ)

represents Gaussian distribution with mean µ and covariance Σ and poly(t1, t2, . . .) denotes

some polynomial function with arguments t1, t2, . . ..

Neural Network Setup We consider DNNs with Rectified Linear Unit (ReLU) acti-

vation σ(x) = max{0, x}. For a L-hidden-layer neural network, denote the weight ma-

trices and bias vectors in each layer to be W1,W2, · · · ,WL and b1, b2, · · · , bL. We denote

Θ = ((W (l), b(l)))l=1,...,L+1 to be the parameter set including all weights and biases. For the

given Θ, let |Θ| be the number of layers in Θ. Let Nmax(Θ) be the maximum number of nodes,

that is, f(·|Θ) has at most Nmax(Θ) nodes at each layer. We define ‖Θ‖0 as the number of

nonzero parameters in Θ,

‖Θ‖0 =
L+1∑
l=1

(
‖vec(W (l))‖0 + ‖b(l)‖0

)
,
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where vec(W (l)) transforms the matrix W (l) into the corresponding vector by concatenating

the column vectors. Similarly, we define ‖Θ‖∞ as the largest absolute value of the parameters

in Θ,

‖Θ‖∞ = max
{

max
1≤l≤L+1

‖vec(W (l))‖∞, max
1≤l≤L+1

‖b(l)‖∞

}
.

For a given n, let Fn be

Fn = FDNN(Ln, Nn, Sn, Bn, Fn)

=
{
f(x|Θ) : |Θ| ≤ Ln, Nmax(Θ) ≤ Nn, ‖Θ‖0 ≤ Sn,

‖Θ‖∞ ≤ Bn, ‖f(·|Θ)‖∞ ≤ Fn
}
.

Smoothness of Functions A function has Hölder smoothness index β if all partial

derivatives up to order bβc exist and are bounded, and the partial derivatives of order bβc

are β − bβc Lipschitz. The ball of β-Hölder functions with radius R is then defined as

Hβ
d (R) =

{
f : Rd → R : (1.1)
∑

α:|α|<β
‖∂αf‖∞ +

∑
α:|α|=bβc

sup
x,y∈D

x 6=y

|∂αf(x) − ∂αf(y)|
|x − y|β−bβc

∞
≤ R

}
,

where ∂α = ∂α1 . . . ∂αr with α = (α1, . . . , αr) ∈ Nr and |α| := |α|1.

1.3 Nonparametric Regression

Suppose we observe data {(xi, yi)}ni=1, given by

yi = f ∗(xi) + εi, (1.2)

where f ∗ is the ground truth, xi ∈ Rd, and εi’s are i.i.d. random noises with mean 0 and finite

variance σ2. The goal is construct an estimator f̂ from data such that the L2 estimation error

‖f̂ − f ∗‖2 is small. From the nonparametric perspective, we want to know how fast does

the error converge to zero as sample size grows. Note that the L2 convergence rate critically

depends on the assumptions of the true function, e.g., linearity, smoothness, boundedness,
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etc., based on which minimax lower bounds are established [47 ]. In nonparametric statistics,

[48 ] shows that when f ∗ is d-variate and β-time differentiable, the optimal rate of convergence

for the L2 estimation error is n−β/(2β+d). Many popular methods such as kernel methods,

Gaussian process, splines, etc., achieve this rate.

DNNs in Nonparametric Regression Statistical optimality of DNN estimators has only

been recently established. [2 ] considers using ReLU DNN in regression where the ground

truth f ∗ in (1.2 ) is the composition of several smooth functions. Under the compositional

smoothness assumption, the author proves that the DNN estimator (sparsely connected) from

empirical risk minimization achieves the minimax optimal convergence rate up to a log(n)

factor. Following the same setting, [49 ] later improved the convergence rate and removed

the log(n) factor by considering B-spline, whose eigenvalues are known to have balanced

orders. [50 ] investigate another compositional structure for the ground truth called generalized

hierarchical interaction model, which is defined sequentially via smooth functions. Optimal

convergence rate are given for the constructed DNN estimator, which is also structured and

sparsely connected. If using fully connected DNN, [51 ] show that in general, the optimal

rate cannot be achieved anymore. To showcase the advantage of DNN in regression, [52 ]

consider learning a certain class of non-smooth functions, where ReLU DNNs are almost

optimal while some of the popular models, linear estimators, e.g. kernel methods, splines,

Gaussian processes, etc., do not attain the same rate. Statistical optimality has also been

established in regression on manifolds [53 ]–[55 ].

1.4 Binary Classification

Classification is fundamentally different from regression due to the combinatorial nature

of the class labels. Consider binary classification with a feature vector x ∈ X ⊂ Rd and a

label y ∈ {−1, 1}. Assume x|y = 1 ∼ p(x),x|y = −1 ∼ q(x) where p and q are two bounded

densities on X w.r.t. some base measure Q. If p, q have disjoint support, we say the data

distribution or the classification problem is separable. For simplicity, let Q be the Lebesgue

measure, positive and negative labels are equally likely to appear, i.e., labels are balanced.

Denote classifiers to be C : X → {−1, 1} and let C be a class of classifiers. The objective of
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classification is to find the optimal classifier (called the Bayes classifier) C∗, which is defined

as

C∗ = argmin
C∈C

R(C) := argmin
C∈C

E [I{C(x) 6= y}] .

Using p, q, the Bayes classifier can be written as C∗(x) = sign(p(x) − q(x)). We can estimate

C∗ from the training data by minimization the empirical risk. That is, we estimate C∗ using

Ĉ, where

Ĉn = argmin
C∈Cn

Rn(C) := argmin
C∈Cn

n∑
i=1

I{C(xi) 6= yi}/n,

where Cn is a given class of classifiers depending on the sample size n. In practice, Ĉ is not

computationally feasible because minimizing the empirical risk with the 0-1 loss over Cn is

NP hard [56 ]. An alternative approach is to replace the 0-1 loss with other computationally

easier losses so-called surrogate losses, e.g. logistic loss (φ(z) = log(1 + exp(−z))), hinge loss

(φ(z) = (1 − z)+ = max{1 − z, 0}), etc. In addition, instead of a class of classifiers Cn, we

consider a class of real-valued functions Fn. For a given surrogate loss φ, we estimate f̂ by

minimizing the surrogate empirical risk (or empirical φ-risk)

Rφ,n(f) =
n∑

i=1
φ(yif(xi))/n

on Fn, and construct a classifier by Ĉ(x) = sign(f̂(x)). Accordingly, define an optimal f ∗
φ as

f ∗
φ = argmin

f∈F
Rφ(f),

where Rφ(f) := ERφ,n(f) is the population risk. Given that C(x) = sign(f(x)), with a slight

abuse of notation, we write R(C) and R(f) interchangeably. A classifier C is evaluated by its

excess risk defined as the difference of the population risk between C and the Bayes optimal

classifier C∗ that

E(C,C∗) = R(C) −R(C∗) or Eφ(C,C∗) = Rφ(C) −Rφ(C∗).
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Classification problem can be seen as nonparametric estimation of sets. The Bayes

classifier C∗ corresponds to the optimal decision region G∗ := {x ∈ X , p(x) − q(x) ≥ 0}.

The set estimate Ĝ = {x ∈ X , f̂(x) ≥ 0} can be constructed through deep neural network

classifiers f̂ : Rd → R trained using either 0-1 loss or surrogate losses. For set estimation, we

define two distances over sets. The first one is the usual symmetric difference of sets: for any

G1, G2 ⊂ Rd,

d4(G1, G2) = Q(G14G2) = Q ((G1\G2) ∪ (G2\G1)) .

The second one is induced by densities p and q, which has deep connections to the 0-1 loss:

for any G1, G2 ⊂ Rd,

dp,q(G1, G2) =
∫
G14G2

|p(x) − q(x)|Q(dx).

There are two key factors governing the rate of convergence in classification:

• The complexity of the set G∗ where the optimal G∗ resides.

• How concentrated the data are around the decision boundary;

For the first factor, bracketing entropy is often used to measure the complexity of a collection

of subsets G in Rd. For any δ > 0, the bracketing number NB(δ,G, d4) is the minimal number

of set pairs (Uj, Vj) such that

(a) For each j, Uj ⊂ Vj and d4(Uj, Vj) ≤ δ;

(b) For any G ∈ G, there exists a pair (Uj, Vj) such that Uj ⊂ G ⊂ Vj.

Simply denote NB(δ) = NB(δ,G, d4) if no confusion arises. The bracketing entropy is defined

as HB(δ) = log NB(δ,G, d4). In statistics literature, one of the most common assumptions

on the complexity is called smooth boundary fragments [1 ], [57 ]. The set G∗ is assumed to be

Gβ := {x ∈ Rd : h(x−d) − xd ≥ 0, h ∈ Hβ
d−1(R)}, (1.3)

where x−d = (x1, · · · , xd−1) and Hβ
d−1(R) is as defined in (1.1 ). It has been shown that such

set of sets satisfies

HB(δ,Gβ, d4) ≤ Aδ− d−1
β .
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For the second factor, the following Tsybakov noise condition [1 ] quantifies how close p and q

are:

(N) There exists constant c > 0 and κ ∈ [0,∞] such that for any 0 ≤ t ≤ T

Q ({x : |p(x) − q(x)| ≤ t}) ≤ ctκ.

The parameter κ > 0 is referred to as the noise exponent. The bigger the κ, the less

concentrated the data are around the decision boundary and hence the easier the classification.

In the extreme case that p, q have different supports, κ can be arbitrarily large (∞) and the

classification is easy. To another extreme where Q{x ∈ X : p(x) = q(x)} > 0, there exists a

region where different classes are indistinguishable. In this case, κ = 0 and the classification

is hard in that region. Under the smooth boundary fragment assumption (smoothness β)

and the Tsybakov noise condition (noise exponent κ), [1 ] shows that the optimal rate of

convergence for the 0-1 loss excess risk is

inf
C∈C

sup
G∗∈Gβ

E(C,C∗) = Ω
(
n− β(κ+1)

β(κ+2)+(d−1)κ

)
, (1.4)

where C is any classifier family.

DNN in Classification Convergence rate of DNN classifiers has also been investigated.

[58 ] derive fast convergence rates of ReLU DNN classifiers learned using the hinge loss. Under

the smooth boundary fragment assumption (1.3 ) and Tsybakov noise condition (N), the

empirical hinge loss minimizer

f̂φ,n = argmin
f∈Fn

1
n

n∑
i=1

φ(yif(xi)),

within some DNN family with carefully selected Ln, Nn, Sn, Bn, and Fn satisfies

sup
C∗∈Gβ

E
[
E(f̂φ,n, C∗)

]
.

(
log3 n

n

) β(κ+1)
β(κ+2)+(d−1)(κ+1)

,
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which is almost optimal comparing to the minimax lower bound (1.4 ). Inspired by the success

of convolutional neural network (CNN) in image classification, [59 ] analyze classifiers based

on CNNs and show that under suitable assumptions on the smoothness and structure of the

conditional probability, the convergence rate is fast and independent of the dimension of the

data. However, no statistical optimality is established.
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2. STATISTICAL OPTIMALITY THAT BREAKS THE CURSE

OF DIMENSIONALITY

With the introduction of convolutional neural network [3 ] and residual neural network (ResNet)

[5 ], various benchmarks in computer vision have been revolutionized and neural network

based methods have achieved better-than-human performance [60 ]. For instance, AlexNet [3 ]

and its variants [61 ], [62 ] have demonstrated superior performance in ImageNet data [63 ],

[64 ], where the data dimension is huge, i.e., each image has pixel size 256 × 256 and hence is

an 65536-dimensional vector. This is quite surprising given that neither structural model

assumptions, such as additive or sparsity structure, are imposed, nor explicit dimension

reduction steps, such as LASSO, are incorporated in deep learning methods. Traditional

statistical thinking sounds an alarm when facing such high-dimension data as the “curse of

dimensionality” usually prevents nonparametric classification achieving fast convergence rates.

In this chapter, we attempt to provide theoretical explanations for the empirical success

of deep neural networks in (especially high dimensional) classification, beyond the existing

statistical theories.

In the context of nonparametric regression, similar investigations have been recently

carried out. Among others [49 ], [65 ]–[69 ], [2 ] showed that deep ReLU neural networks can

achieve minimax rate of convergence when the underlying regression function possesses a

certain compositional smooth structure; [50 ], [70 ] showed a similar result by considering an

alternative hierarchical interaction models. However, for classification tasks, there are few

similar results. Classification and regression are fundamentally different due to the discrete

nature of class labels. Specifically, in nonparametric regression, we are interested in recovering

the whole underlying function while in classification, the focus is on the nonparametric

estimation of sets corresponding to different classes, i.e., the decision boundaries. As a result,

it is well known that many established results on regression cannot be directly translated to

classification.

The goal of this section is hence to fill this gap by investigating how well neural network

based classifiers can perform in theory and further provide a theoretical explanation for

the “break-the-curse-of-dimensionality” phenomenon. Recall the optimal convergence rate
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in (1.4 ) and note that curse of dimensionality does occur in this bound. As d gets larger,

the rate becomes extremely slow. In ultra-high dimension, a natural assumption to make is

that the true classifier does have some low-dimensional structure. To this end, following the

road map of our nonparametric perspective, two settings with different data assumptions are

investigated.

2.1 Smooth Boundary Fragments with Compositional Structure

As a starting point, we adopt the compositional smoothness assumption [2 ] with effective

dimension d∗ and effective smoothness β∗∗ in the smooth boundary fragment setting (2.1 )

and investigate the rate of convergence of the excess risk.

Compositional Smooth Function Assume h in (2.1 ) is of the compositional form in [2 ]

such that

h = gl ◦ gl−1 ◦ . . . ◦ g1 ◦ q0, (2.1)

where gi : [ai, bi]di → [ai+1, bi+1]di+1 . Denote components of gi by {gij}di+1
j=1 and let ti be the

maximal number of variables gij’s depend on. Thus, each gij is a ti-variate function. It’s

further assumed that each function gij shares the same Hölder smoothness βi. Since gij is also

ti-variate, gij ∈ Cβi
ti ([ai, bi]ti ,Mi) and the underlying function space becomes

H
(
l,d, t,β, R

)
:=
{
h = gl◦ . . . ◦ q0 : gi = (gij)j : [ai, bi]di → [ai+1, bi+1]di+1 ,

gij ∈ Cβi
ti

(
[ai, bi]ti , R

)
, for some |ai|, |bi| ≤ R

}
,

with d := (d0, . . . , dq+1), t := (t0, . . . , tq), β := (β0, . . . , βq). Denote

β∗
i := βi

q∏
l=i+1

min{βl, 1} and φn = max
i=0,1,··· ,q

n
−

2β∗
i

2β∗
i +ti := n− 2β∗∗

2β∗∗+d∗ .

In the above formula, β∗
i describes the effective smoothness for each layer of functions and the

overall effective smoothness and dimension are denoted as β∗∗ and d∗. For ease of notation,

denote H(q,d, t,β, R) as H(d∗, β∗∗). Note that φn is proven to be the best possible rate from
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regression with L2 loss [2 ]. If h(x) is a general (d − 1)-dimensional smooth function with

Hölder smoothness β, then q = 0, β∗∗ = β, d∗ = d− 1.

Having defined the compositional structure in the decision boundary, denote the corre-

sponding classifiers to be C(d∗, β∗∗) where

C(d∗, β∗∗) := {sign(h(x−d) − xd) : h ∈ H(d∗, β∗∗)}.

Functions in C(d∗, β∗∗) are not continuous but with discrete values. The next lemma establishes

the DNN approximation result for functions in C(d∗, β∗∗).

Lemma 2.1.1 For any ε > 0, p ∈ N+ and C(x) ∈ C(d∗, β∗∗), there exists a neural network

fC with layers at most O(log n+ log2(1/ε)) and non-zero weights at most O(ε−d∗p/β∗∗ log n+

log2(1/ε)) such that

‖C(x) − fC(x)‖p ≤ 2ε.

Lemma 2.1.1 demonstrates the expressive power of DNN at approximating discrete functions

and shows DNN can potentially recover the Bayes classifier arbitrarily well given large enough

size. To further characterize how fast is the convergence rate, we introduce the following

novel margin condition, which is a finer version of the Tsybakov noise condition (N).

2.1.1 Localized Margin Condition

Existing results fail to establish the statistical optimality of DNN classifiers in the smooth

boundary fragment setting (2.1 ) while methods like sieve estimators can achieve the optimal

rate of convergence [1 ]. Comparing the rates, the sub-optimality comes from the noise

exponent term κ. To this end, instead of the classical Tsybakov noise condition (N), we

propose to consider a localized, finer-grained margin condition that allows the separation

between two classes to change along the decision boundary.

Without loss of generality, let X = [0, 1]d. Let the optimal decision region associated with

C∗ be G∗ = {x ∈ [0, 1]d : h∗(x−d) − xd ≥ 0} for some h∗ ∈ H(d∗, β∗∗). Denote the decision

25



boundary to be ∂G∗ := {x ∈ [0, 1]d : h∗(x−d) = xd}. Without loss of generality, assume

Q(∂G∗) = 0. For every point in the decision boundary x ∈ ∂G∗, define

mx−d
(t) := |p((x−d, h

∗(x−d) + t)) − q((x−d, h
∗(x−d) + t))|,

which captures the how |p(x) − q(x)| changes along the direction of xd on each point of the

decision boundary. For ease of notation, we write mx−d
(t) and mx(t) when no confusion

raises. Notice that mx(0) = 0 by definition. Further define for any x ∈ ∂G∗,

K(x) = sup{k ≥ 0 : lim
t→0

mx(t)
t1/k

> 0},

which characterizes the margin condition locally at x−d, i.e. how separated are p and q on

each point of the decision boundary, along the direction of xd. Similar to the κ in (N), the

bigger the K(x), the more separated are the two densities and the easier the classification

problem locally at x. Since ∂G∗ is of measure zero, we know K(x) is non-negative. The

proposed localized margin condition is specified in the following.

(M1) There exists ε0 > 0 small enough and a constant 0 < Cε0 < ∞ such that for all x ∈ ∂G∗

and any 0 < t < ε0,
1
Cε0

≤ mx(t)
t1/K(x) ≤ Cε0 .

(M2) K(x) is α-Holder continuous for some 0 < α ≤ 1, i.e. there exists constant CK such

that for any x1,x2 ∈ ∂G∗,

|K(x1) −K(x2)| ≤ CK‖x1 − x2‖α2 .

(M1) and (M2) together provide a finer characterization of the margin condition. K(x)

specifies the separation at each point of the decision boundary and (M2) characterizes along

the xd dimension the smoothness of K(x). Note that by Tsybakov noise condition (N) with

exponent κ implies that κ ≤ infx∈∂G∗ K(x). The following lemma shows that (M1) also

implies (N).

26



Figure 2.1. Illustration of the localized margin condition in the d = 2 case.
Data are in the blue plane and the curved blue line is the decision boundary.
Fix some X2, along the x1 direction (solid blue line), the density difference
p − q is plotted in the green plane as the green solid line. (M1) defines the
noise exponent K(X1) locally at X1. If p− q is linear as shown, K(X1) = 1.

Lemma 2.1.2 If κ− = infx∈∂G∗ K(x), then condition (M1) implies Tsybakov noise condition

(N) holds with κ = κ− and T = ε
1/κ
0 /Cε0.

Since we are considering a new condition on the separation along the decision boundary,

the corresponding lower bound needs to be re-established, which is the goal of the next

theorem.

Theorem 2.1.3 Assume conditions (M1), (M2) with noise exponent κ = infx∈∂G∗ K(x) and

the composition structure (2.1 ) of the boundary function. Then, the excess risk has the

following lower bound for any classifier

inf
f̂∈F

sup
C∗∈C(d∗,β∗∗)

E[E(f̂ , C∗)] &
( 1
n

) β∗∗(κ+1)
β∗∗(κ+2)+d∗κ

,

where F is an arbitrary function class.

Theorem 2.1.3 proves the optimal rate of convergence under the compositional assumption

and localized margin condition (M1), (M2). Interestingly, the rate is adaptive to the optimal

rate of convergence (1.4 ) under (N) established in [1 ]. On one hand, this lower bound is

determined by the infimum of the localized noise exponent K(x), which plays similar roles to

the original κ. On the other hand, the rate only depends on the effective smoothness β∗∗ and

effective dimension d∗.
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Next we investigate whether DNN classifiers can achieve this optimal rate under the

proposed localized margin condition.

2.1.2 Localized Convergence Analysis

Defining the function K(x) that describes the local margin condition enables us to consider

local convergence behaviours. If K(x) ≡ κ, then our localized margin condition produces the

same results as those under (N). However, if K(x) = ∞ in region A and K(x) = 0 in region

B, the classification problem is much easier at region A and the convergence rate should

mainly depend on region B, i.e., locations with smaller K(x) are the bottlenecks for the

convergence rate. To justify this intuition, we conduct the following localized analysis.

Choose M ∈ N and divide [0, 1]d along the x−d dimensions into disjoint equal-sized grids

[0, 1]d =
M⋃

j1,...,jd−1=1
D(j1,...,jd−1),

where D(j1,...,jd−1) := {x ∈ [0, 1]d : x1 ∈ [ j1−1
M
, j1
M

), · · · , xd−1 ∈ [ jd−1−1
M

, jd−1
M

]}. For ease of

notation, let j−d = (j1, · · · , jd−1) and x̄j−d
be the corresponding grid point. Denote JM

as all Md−1 combinations of j−d’s described above. Correspondingly, divide the dataset as

D = ∪j−d∈JM
Dj−d

where Dj−d
= {(x, y) : x ∈ Dj−d

}. Similarly, the 0-1 loss can be decomposed

as

dp,q(Ĝn, G
∗) =

∫
Ĝn4G∗

|p(x) − q(x)|dx

=
∑

j−d∈JM

∫
(Ĝn4G∗)∩Dj−d

|p(x) − q(x)|dx

:=
∑

j−d∈JM

dj−d
(Ĝn, G

∗).

Let the empirical 0-1 loss be Rn(f) = 1
n

∑n
i=1 I{f(xi)yi < 0}, which can also be decomposed

intoMd−1 parts thatRn(G) = ∑
j−d∈JM

Rn,j−d
whereRn,j−d

= 1
|Dj−d

|
∑n

i=1 I{xi ∈ Dj−d
: f(xi)yi < 0}.

Recall the compositional smoothness assumption on h∗ that it has an effective dimension

d∗ and effective smoothness β∗∗. Consider using a DNN family F̃n to approximate h∗. By

Lemma 2.1.1 , for any ε > 0, there exists a neural network f̃n ∈ F̃n with L̃n = O(log n) layers
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Figure 2.2. Illustration of region Dε in d = 2,M = 1 case.

and S̃n = O(ε−d∗/β∗∗ log n) non-zero weights such that ‖f̃n − h∗‖∞ ≤ ε. The size of f̃n is

jointly determined by ε, d∗, β∗∗ and n.

Now we focus on each Dj−d
. Similarly to that in the whole region [0, 1]d, we have the

following lemma.

Lemma 2.1.4 Under assumption (M1), further assume for some j−d ∈ JM , κ− ≤ K(x) ≤ κ+

for all x ∈ Dj−d
. Let the empirical 0-1 loss minimizer be

f̂n,j−d
:= argmin

f∈F̃n

Rn,j−d
(f).

Then the 0-1 loss excess risk satisfies

sup
h∗∈H(d∗,β∗∗)

E(Rj−d
(f̂n,j−d

) −Rj−d
(h∗)) = O

n
− (κ−+1)β∗∗

(κ−+2)β∗∗+
(

κ−+1
κ++1

)
d∗κ+

 .

Remark 2.1.5 (Local Convergence Rate) Our local convergence rate is very similar to

the established one under the original Tsybakov noise condition (N). On one hand, the

bottleneck is indeed the minimum of K(x) in that region and κ− plays the same role as κ
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in (N). On the other hand, the extra term in the denominator (κ− + 1)/(κ+ + 1) reveals the

source of the sub-optimality of existing results. If no assumption is made on κ+, then the best

rate possible reduces to that in [58 ]. However, if κ+ ≈ κ−, optimal rate can be attained.

Next, we proceed from a localized convergence analysis to the global one and evaluate

the overall convergence rate.

2.1.3 Construction of the Global Estimator

As illustrated in Figure 2.2 , f̃n is inside the 2ε-band centering at h∗. Let

Dε = {x ∈ [0, 1]d : ‖x−d − x̄j−d
‖2 ≤ ε, j−d ∈ JM}

and define event Eε := {xi /∈ Dε : ∀i = 1, 2, . . . , n}. Since p(x) and q(x) are both bounded

densities (be c0) and h∗ is Holder smooth with finite radius, there exists some constant c1

depending on c0 and the radius such that

P(x ∈ Dε) ≤ c0Q(Dε) ≤ c1(Mε)d.

Therefore, if we choose M such that nMdεd → 0 as n → ∞, then

P(Eε) ≥ (1 − c1(Mε)d)n → 1.

In the remaining of the analysis, we assume Eε happens.

For any fn ∈ F̃n, we make modifications and further construct f+
n,j−d

that satisfies the

following properties:

(P1) On Dj−d
\Dε, f+

n,j−d
= fn;

(P2) Outside Dj−d
, f+

n,j−d
= 0;

(P3) f+
n,j−d

∈ F̃+
n where F̃+

n is slightly larger than F̃n with L̃+
n = L̃n + O(1) layers and

S̃+
n = 2S̃n +O(1) number of nonzero weights.
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Figure 2.3. Illustration of the estimator DNN family Fn.

The construction details and verification of (P1) to (P3) are deferred to Section 2.4.4 .

Let’s proceed with the properties of f+
n,j−d

and F̃+
n . By (P2), f+

n,j−d
is zero outside Dj−d

and

we can combine them together to define

fn,Σ(x−d) =
∑

j−d∈JM

f+
n,j−d

(x−d). (2.2)

Easy to see that fn,Σ(x) is still a ReLU network and let the overall DNN estimator to be of

this form. Correspondingly, define such structured DNN family to be Fn, which is F̃n stacked

in parallel Md−1 times. See Figure 2.3 for illustration.

Denote the overall empirical minimizer within Fn to be

f̂n := argmin
f∈Fn

Rn(f). (2.3)

Due to the formulation of Fn, f̂n can be written in form of (2.2 ) as f̂n = ∑
j−d∈JM

f̂n,j−d
.

Under event Eε, we have that for any j−d ∈ JM ,

Rn,j−d
(f̂n) = Rn,j−d

(f̂n,j−d
) = min

f∈F̃n

Rn,j−d
(f) ≤ Rn,j−d

(f̃n). (2.4)

The second equality is guaranteed by event Eε and property (P1). The last inequality is due

to empirical risk minimization and the fact that f̃n ∈ F̃n. (2.4 ) indicates that the global

empirical minimizer within Fn also gives rise to the empirical minimizer locally within each

Dj−d
.
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2.1.4 Optimal Rate of Convergence

Now we are ready to state the statistical optimality result of the DNN classifier f̂n as in

(2.3 ). Let ρ = d∗/β∗∗.

Theorem 2.1.6 Under the compositional smoothness assumption (2.1 ), let κ = minx∈[0,1]d K(x).

Assume (M1), (M2), ρ < d∗ and n = Ω(ε−(1+ρ)
0 ). Then with probability at least exp(n

ρ−d∗+1
ρ+1.1 ),

which goes to 1 as n → ∞, the 0-1 excess risk for the empirical 0-1 loss minimizer satisfies

sup
C∗∈C(d∗,β∗∗)

E(R(f̂n) −R(C∗)) = Õ
(
n− β∗∗(κ+1)

β∗∗(κ+2)+d∗κ

)
.

Theorem 2.1.6 establishes the statistical optimality of DNN classifiers under the compo-

sitional smooth fragment assumption. The convergence rate only depends on the effective

dimension d∗, which can be potentially much smaller than d. To further illustrate its power,

we consider a special case where h(x) is a (d− 1)-dimensional additive function that

h(x−i) =
∑
i6=j
hi(xi) = g1 ◦ q0, (2.5)

where q0(x1, · · · , xd−1) = (h1(x1), · · · , hd−1(xd−1)) and g1(x1, · · · , xd−1) = x1 + · · · + xd−1. In

this case, q = 1,d = (d− 1, d− 1), t = (1, d− 1). Under the assumption that each hi(x) has

Hölder smoothness β, then β = (β,∞) and the convergence rate under the additive structure

is Õ
(
n− β(κ+1)

β(κ+2)+κ

)
.

Remark 2.1.7 (Structured DNN) The constructed DNN classifier f̂n in Theorem 2.1.6 

has special structures and is sparsely connected as illustrated in Figure 2.3 . In order to have

more practical impact, we want our DNN estimators to be as general as possible. However,

such a structural requirement is not uncommon in nonparametric study of deep learning where

almost all DNN estimators constructed with special structures [2 ], [50 ], [52 ]. In particular,

[51 ] show that in regression, the optimal rate cannot be achieved generally by fully connected

neural networks.

We have shown that DNNs classifiers can indeed benefit from the compositional structure

and statistical optimality has been established that breaks the curse of dimensionality.
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However, the optimal rates in this section are still not dimension-free and the effective

dimension d∗ is hard to evaluate in practice. In the next section, we propose to study DNN

classifiers in a teacher-student setting where the traditional smoothness assumption is no

longer present.

2.2 Teacher-Student Framework for Classification

The teacher-student framework has originated from statistical mechanics [71 ]–[73 ] and

recently gained increasing interest [74 ]–[77 ]. In this setup, one neural network, called student

net, is trained on data generated by another neural network, called teacher net. While worst-

case analysis for arbitrary data distributions may not be suitable for real structured dataset,

adopting this framework can facilitate the understanding of how deep neural networks work

as it provides an explicit target function with bounded complexity. Furthermore, assuming

the target classifier to be a teacher network of an explicit architecture may provide insights

on what specific architecture of the student classifier is needed to achieve an optimal excess

risk. At the same time, by comparing the two networks, both optimization and generalization

can be handled more elegantly. Existing works on how well student network can learn from

the teacher mostly focus on regression problems and study how the student network evolves

during training from computational aspects, e.g., [76 ], [78 ]–[81 ]. Still, there is a lack of

statistical understanding in this important direction, particularly on classification aspects.

In this section, we consider the teacher-student framework where the optimal decision

region is defined by ReLU neural networks. Recall that the Bayes classifier C∗ is defined via

the optimal decision region G∗ := {x ∈ X , p(x) − q(x) ≥ 0}. The set estimate Ĝ = {x ∈

X , f̂(x) ≥ 0} can be constructed through deep neural network classifiers f̂ : Rd → R trained

using either 0-1 loss or surrogate loss. Accordingly, a natural teacher network assumption is

that p(x) − q(x) can be expressed by some neural network f ∗
n ∈ F∗

n. Here, the underlying

densities are indexed by n, but such an assumption is not uncommon in high-dimensional

statistics, where population quantities may depend on the sample size n, e.g., [82 ]. This

setting is closely related to the classical smooth boundary assumption considered in the

Section 2.1 . The teacher-student network setting is more general as it does not impose

any special structures on the decision boundary. Moreover, by the universal approximation
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property [8 ], [10 ], [83 ], the teacher network can sufficiently approximate any continuous

function given large enough size.

In the proposed teacher-student setting, an un-improvable rate of convergence is derived as

Õ(n−2/3) for the excess risk of the empirical 0-1 loss minimizer, given that the student network

is deeper and larger than the teacher network (unless the teacher network has a limited

capacity in some sense to be specified later). When data are separable, the rate improves

to Õ(n−1). Furthermore, we extend our analysis to a specific surrogate loss, i.e., hinge loss,

and show that the convergence rate remains the same (up to higher order logarithmic terms)

while allowing deeper student and teacher nets. The obtained sharp risk bounds may explain

the empirical success of deep neural networks in high-dimensional classification as the data

dimension d only appears in the log(n) terms. Our main technical novelty is the nontrivial

entropy calculation for nonparametric set estimation based on combinatorial analysis of ReLU

neural networks.

2.2.1 Training with 0-1 Loss

For the theoretical purpose, we first focus on DNN classifiers trained with the empirical

0-1 loss. Denote

f̂n = argmin
f∈Fn

1
n

n∑
i=1

I{yif(xi) < 0},

given a certain DNN family Fn.

It is important to control the complexity of the underlying classification problem. Other-

wise, the student network would not be able to recover the Bayes classifier [84 ] with sufficient

accuracy. To this end, we impose the following teacher network assumptions on (p(x) − q(x)):

(A1) p, q have compact supports.

(A2) p(x) − q(x) is representable by some teacher ReLU DNN f ∗
n ∈ F∗

n with

S∗
n = O (nα) , L∗

n = poly(log n), N∗
n, B

∗
n = poly(n),

for some constant 0 < α < 1.
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(A3) For any n ∈ N, there exists cn, 1/Tn = poly(log n), such that for all 0 ≤ t ≤ Tn,

Q{x ∈ X : |f ∗
n(x)| ≤ t} ≤ cnt

Assumption (A3) characterizes how concentrated the data are around the decision bound-

ary, which can be seen as an extension to the classical Tsybakov noise condition [1 ]. The

difference is that in our case, the underlying densities are indexed by sample size and thus

cn and Tn are allowed to vary with n. Assumption (A3) is not unrealistic as we will show

that it holds with high probability if the teacher network is random as stated in the following

Theorem.

Theorem 2.2.1 Let f ∗
n be the teacher network with structures specified in assumption (A2).

Suppose that all weights of f ∗
n are i.i.d. with any continuous distribution, e.g. Gaussian,

truncated Gaussian, etc.. Then, with probability at least 1 − δ, assumption (A3) holds with

cn, 1/Tn ≤ A(δ)(log n)m∗d2L∗2
n where A(δ) is some constant depending on δ.

The following theorem characterizes how well the student network of proper size can learn

from the teacher in terms of the excess risk.

Theorem 2.2.2 Under the teacher assumptions (A1) through (A3), denote all such (p, q)

pairs to be P∗
n and let the corresponding Bayes classifier be C∗

n. Let Fn be a student ReLU

DNN family with Nn = O[(log n)m] and Ln = O(1) for some m ≥ m∗ and assume the student

network is larger than the teacher network in the sense that Ln ≥ L∗
n, Sn ≥ S∗

n, Nn ≥ N∗
n, Bn ≥

B∗
n. Then the excess risk for f̂n ∈ Fn satisfies

sup
(p,q)∈P∗

n

E[E(f̂n, C∗
n)] = Õd

(
n− 2

3
)
,

where Õd hides the log n terms, which depends on d.

The dependence on the dimension d is in the order of O[(log n)d2 ]. The reason for the

dimension dependence is rooted in the teacher network assumption. The complexity of the

classification problem, measured by how complicated are the sets created by the teacher,

{x ∈ Ω : f(x) ≥ 0, f ∗ ∈ F∗}, grows with dimension in a exponential fashion. If we change
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the teacher assumption that f ∗(x) = h∗(x1, · · · , xd−1) − xd where h∗ is a neural network,

then the dependence on the dimension can be overcome.

We further argue that under the present setting, the rate n−2/3 in Theorem 2.2.2 cannot

be further improved.

Theorem 2.2.3 Under the same assumptions of p, q as in Theorem 2.2.2 that (p, q) ∈ F̃∗
n.

Let F̃n be an arbitrary function space, then

inf
f̃n∈F̃n

sup
(p,q)∈F̃∗

n

E[E(fn, f ∗
n)] = Ωd

(
n− 2

3
)
,

where Ωd hides the dependence on d.

Theorem 2.2.3 shows that the convergence rate achieved by the empirical 0-1 loss minimizer

cannot be further improved (up to a logarithmic term). If p and q have disjoint supports, i.e.

separable, which could be true in some image data, the rate improves to n−1, as stated in

the following corollary. This rate improvement is not surprising since the classification task

becomes much easier for separable data.

Corollary 2.2.3.1 Under the same setting as in Theorem 2.2.2 , if we further assume p, q

have disjoint supports, then the rate of convergence of the empirical 0-1 loss minimizer

improves to

inf
fn∈Fn

sup
(p,q)∈F̃∗

n

E[E(fn, f ∗
n)] � Õ

( 1
n

)
.

Remark 2.2.4 (Disjoint Support) Given that data are separable, [85 ] derived the excess

risk bound as O(D log n/n) (under a smooth loss) where D is the VC-subgraph-dimension of

the estimation family. Additionally, separability implies that the noise exponent κ in Tsybakov

noise condition [1 ], [86 ] can be arbitrarily large, which also gives O(1/n) rate under the

“boundary fragments” assumption.

Remark 2.2.5 (Connections to the Classical Setting) The optimal risk bound under

the smooth boundary fragments assumption [1 ] is O(n−β(κ+1)/[β(κ+2)+(d−1)κ]). Interestingly,

this rate coincides with our rate when κ = 1 and β → ∞ (up to a logarithmic factor). If

we further allow κ → ∞ (corresponding to separable data), the classical rate above recovers

Õ(n−1) (up to a logarithmic factor).
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Figure 2.4. Example of a ReLU DNN function in [0, 1]. There are 5 pieces
p1, p2, . . . , p5 and among them, only p1, p4, p5 cross value 0 (horizontal line).
There are 3 active pieces in this example and they are colored red.

The imposed relation between the teacher and student nets in Theorem 2.2.2 is referred

to as “over-realization” in [76 ], [79 ], [87 ]: at each layer, the number of student nodes is larger

than that of teacher nodes given the same depth. In other words, the student network is

larger than the teacher in order to obtain zero approximation error. On the other hand,

such a requirement is not necessary as long as the corresponding Bayes classifier is not too

complicated. A ReLU neural network is a continuous piecewise linear function, i.e. its domain

can be divided into connected regions (pieces) within where the function is linear. If the

ReLU neural network crosses 0 on one piece, we call that piece as being active (see Figure 2.4 

for an illustration). One way to measure the complexity of the teacher network is the number

of active pieces. The following Corollary says that the teacher network can be much larger

and deeper as long as the number of active pieces are in a logarithmic order with respect to

n.

Corollary 2.2.5.1 The same result in Theorem 2.2.2 holds when the teacher network is

larger than the student network, i.e. Ln ≤ L∗
n, Sn ≤ S∗

n, Nn ≤ N∗
n, Bn ≤ B∗

n , given that the

total number of active pieces in the teacher network is of the following order

o

(Ln−1∏
l=1

⌊
nl
d

⌋d) d∑
j=0

(
nLn

j

) , (2.6)

where n1, · · · , nLn are the width of each hidden layer of the student network.
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The number of active pieces is the key quantity in controlling the complexity of the

optimal set G∗. The expression in (2.6 ) comes from the lower bound developed by [88 ] on

the maximum number of linear pieces for a ReLU neural network (Lemma 2.4.13 ). This

lower bound is determined by the structure of the student network. If the number of active

pieces of the teacher network is on this order, i.e. within the capacity of the student, then

the corresponding optimal set can still be recovered by an even smaller student network,

which ensures zero approximation error. Since the student network in consideration satisfies

Nn = O[(log n)m], the required order for the number of active pieces is in the order of

o[(log n)mdLn ].

2.2.2 Training with Surrogate Loss

In this section, we consider deep classifiers trained under the hinge loss φ(z) = (1 − z)+ =

max{1 − z, 0}. This kind of surrogate loss has been widely used for “maximum-margin”

classification, most notably for support vector machines [89 ]. An desirable property of hinge

loss is that its optimal classifier coincides with that under 0-1 loss [90 ], i.e. f ∗
φ(x) = C∗(x).

Hence, a lot of arguments for 0-1 loss can be easily carried over. Additionally, minimizing

the sample average of an appropriately behaved loss function has a regularizing effect [56 ]. It

is thus possible to obtain uniform upper bounds on the risk of a function that minimizes the

empirical average of the loss φ, even for rich classes that no such upper bounds are possible

for the minimizer of the empirical average of the 0–1 loss.

Under the surrogate loss, our requirement on the size of the teacher network is relaxed

from (A2) as follows:

(A2φ) p(x) − q(x) is representable by some teacher ReLU DNN f ∗
n ∈ F∗

n with

N∗
n = O[(log n)m∗ ], L∗

n = O (log n) , B∗
n, F

∗
n = O(

√
n)

for some m∗ ≥ 1.

The following theorem says that the same un-improvable rate can be obtained for the

empirical hinge loss minimizer f̂φ,n ∈ Fn.
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Theorem 2.2.6 Suppose the underlying densities p and q satisfy assumptions (A1), (A2φ),

(A3) and denote all such (p, q) pairs as F̃∗
n. Let Fn be a student ReLU DNN family with

Ln = O(log n), Nn = O[(log n)m] and Bn, Fn = O(log n) for some m ≥ m∗. Assume the

student network is larger than the teacher network, i.e., Ln ≥ L∗
n, Sn ≥ S∗

n, Nn ≥ N∗
n, Bn ≥

B∗
n, Fn ≥ F ∗

n . Then the excess risk for f̂φ,n ∈ Fn satisfies

sup
(p,q)∈F̃∗

n

E[E(f̂φ,n, C∗
n)] � Õd

(
n− 2

3
)

Similarly, results in Corollary 2.2.3.1 and 2.2.5.1 hold for the empirical hinge loss minimizer.

Specifically, when p, q are disjoint, the convergence rate of excess risk improves to n−1, and

all conclusions hold when the teacher network is larger but with bounded active pieces.

Remark 2.2.7 (Network Depth) Training with surrogate loss such as hinge loss, unlike

0-1 loss, doesn’t involve any hard thresholding, i.e. I{yf(x) < 0}. As a result, to control the

complexity of the student network, Lemma 2.4.15 is used instead of Lemma 2.4.14 , which

allows us to use deeper neural networks (Ln = O(log n)) for both the student and teacher

network.

Statistical optimality is established in the proposed teacher-student classification setting. As

long as the teacher network is not too large, the convergence rate is dimension-free, which

may provide one theoretical explanation for the empirical successes of deep neural networks

in high dimensional classification, particularly for structured data. For image data, one

consensus researchers have is that high-resolution images are not actually high-dimensional

data. The pixels close to each other tend to be highly correlated. Such local connectivity

greatly reduces the actual dimension of images. However, there is no consensus on which

is the most appropriate low-dimensional assumption for images. Considering the general

teacher-student network setting provides great flexibility. To illustrate, by considering a CNN

as the teacher, it automatically assumes the local connectivity of pixels and accounts for their

spatial correlations. CNN is also a type of DNN with convolutional sparse structures and our

theorems apply to CNNs as well.
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2.3 Discussion

In this section, we obtain optimal rates of convergence for DNN classifiers in both the

smooth boundary fragment and teacher-student setting. Through our localized analysis, we

are able to improve the existing convergence rate to optimal and prove that DNN classifiers

can benefit from the compositional structure of the data and adapt to its effective dimension

d∗. The dimension dependence is further removed in our teacher-student classification setting

where student network can achieve dimension-agnostic rate of Õ(n−2/3).

The results under the smooth boundary setting can be further improved if we can relax

the structural requirement on the DNN classifier or the local margin condition itself. In the

teacher-student setting, the results for training under 0-1 loss only hold for student networks

with O(1) layers and the assumption that f ∗
n ∈ Fn, i.e. zero approximation, is required. In

the future, we aim to relax these two constraints and provide more comprehensive analysis

of the teacher-student network. Additionally, we would like to explore other type of neural

networks such as convolutional neural network and residual neural network, which are both

very successful at image classification. Another direction is to consider the more general

improper learning scenario where the Bayes classifier is not necessarily in the student neural

network. Further investigation under the teacher-student network setting may facilitate

a better understanding of how deep neural network works and shed light on its empirical

success especially in high-dimensional image classification.

2.4 Technical Proofs

Since we are estimating the optimal decision boundary via deep ReLU neural network, the

proof can be broken down to two parts. The first part is to develop efficient approximation of

the piecewise constant Bayes classifier and the second part is to control the stochastic error

from empirical estimation.
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2.4.1 Proof of Lemmas in Section 2.1 

To address the approximation error, let’s consider a more general setting than the defined

C(d∗, β∗∗). Let H be some smooth function space from Rd−1 → R. For h ∈ H, we define the

horizon function to be

Ψh,i := I{h(x−i) ≥ xi}.

Each horizon function is a {0, 1}-function defined via a smooth function h. We further define

the corresponding support to be

Ih,i = {x ∈ X : Ψh,i(x) = 1}.

Intersection of K such support defines all the pieces A that

A(H, K) = {A ⊂ X : A =
K⋂
k=1

Ihk,jk , hk ∈ H, jk = 1, · · · , d}. (2.7)

Let C(H, K, T ) be the set of classifiers of the form

C(x) = 2
T∑
t=1

IAt(x) − 1,

where A1, · · · , AT ∈ A(H, K) are disjoint. Then C(H, K, T ) defines a family of classifiers

with smooth boundaries and the smoothness is determined by H. C(d∗, β∗∗) is a special case

of C(H, K, T ) with H = H(d∗, β∗∗), K = T = 1.

Before the proof, we present some lemmas.

Lemma 2.4.1 [Approximation Part of Theorem 1 in [2 ]] Consider the d-variate nonpara-

metric regression model for composite regression function f0 in the class H(q,d, t,β, R).

There exists f̃n in the network class FDNN
n (Ln, Nn, Sn, Bn, Fn) with Ln . log2 n, Bn = 1,

Fn ≥ max(R, 1),

Nn . max
i=0,··· ,q

n
ti

2β∗
i +ti , Sn . max

i=0,··· ,q
n

ti
2β∗

i +ti log n,
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such that

‖f̂n − f0‖2
∞ . φn.

Lemma 2.4.2 [Lemma A.2 in [91 ]] Let 1 < d ∈ N and H(x) := I[0,∞)×Rd−1(x). For every

ε > 0 there exists a neural network fDNN
H with 2 layers and 5 nonzero weights (only taking

values from {−1, 1, 1/ε}), such that 0 ≤ fDNN
H (x) ≤ 1 and

|H(x) − fDNN
H (x)| ≤ I[0,ε)×Rd−1(x), ∀x ∈ Rd.

Moreover,

‖H(x) − fDNN
H (x)‖Lp([−1/2,1/2]d) ≤ ε1/p.

Lemma 2.4.3 (Lemma A.4 in [91 ]) Let d, ` ∈ N be arbitrary. Then, there are constants

s = s(d) ∈ N, c = c(d, `) ∈ N, and L = L(d, `) ∈ N such that L ≤ (1 + dlog2 de) · (10 + `
d
)

with the following property: For any ε ∈ (0, 1
2), there is a ReLU neural network fDNN

ε with

d-dimensional input and one-dimensional output, with at most L layers, and with at most

c · ε−d/` nonzero, (s, ε)-quantized weights, and such that fDNN
ε satisfies

|fDNN
ε (x) −

d∏
i=1
xi| ≤ ε for all x ∈

[
−1

2 ,
1
2

]d
. (2.8)

The following lemma quantifies the approximation of indicator of a single basis.

Lemma 2.4.4 Assume h ∈ G(d∗, β∗∗) with the compositional structure. For any ε > 0 and

i = 1, · · · , d, there exists a neural network fDNN
Ψh,i

with 2 + log n layers and number of nonzero

weights s . ε−d∗/β∗∗ log n such that

‖Ψh,i − fDNN
Ψh,i

‖pp ≤ 2ε.

Proof Without loss of generality, consider i = 1 and let the target function be H ◦ h̃ where

H(x) = I[0,∞)×Rd−1 is the Heaviside function and

h̃(x) = (h(x2, · · · , xd) − x1, x2, · · · , xd).
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By lemma 2.4.1 , for any ε1, there exist a neural network with at most log n layers and

O(ε−d∗/β∗∗

1 log n) non-zero weights that

‖h− fDNN
h ‖∞ ≤ ε1.

By lemma 2.4.2 , for any ε2, there exist a neural network with 2 layers and 5 nonzero weights

such that

|H(x) − fDNN
H (x)| ≤ I[0,ε2]×Rd−1(x).

Construct the neural network estimator to be fDNN
H ◦ fDNN

h̃
. Then,

‖H ◦ h̃− fDNN
H ◦ fDNN

h̃ ‖p

≤ ‖H ◦ h̃−H ◦ fDNN
h̃ ‖p + ‖H ◦ fDNN

h̃ − fDNN
H ◦ fDNN

h̃ ‖p.

For the first term, note that the difference is 1 only under two cases, one being h(x2, · · · , xd)−

x1 ≥ 0 and fDNN
h (x2, · · · , xd) − x1 < 0 and the other one being h(x2, · · · , xd) − x1 < 0 and

fDNN
h (x2, · · · , xd) − x1 ≥ 0. Combining both cases, we have

h(x2, · · · , xd) ∧ fDNN
h (x2, · · · , xd) < x1 ≤ h(x2, · · · , xd) ∨ fDNN

h (x2, · · · , xd).

Thus

‖H ◦ h̃−H ◦ fDNN
h̃ ‖pp ≤

∫ ∣∣∣h(x2, · · · , xd) − fDNN
h (x2, · · · , xd)

∣∣∣ dx−1

≤ ‖h(x) − fDNN
h (x)‖1

≤ ε1.

For the second term,

‖H ◦ fDNN
h̃ − fDNN

H ◦ fDNN
h̃ ‖pp ≤

∫
I[0,ε2]×Rd−1

(
fDNN
h̃ (x)

)
dx

≤
∫ ∫

I{0≤x1+fDNN
h

(x2,··· ,xd)≤ε2}(x1)dx1dx−1

≤ ε2.

43



By choosing ε1 = ε2 = ε yields this lemma.

Proof of Lemma 2.1.1 

Proof We first consider approximation of the indicator function of a single piece A1, which

is the product of K basis indicator denoted by Ψ1, · · · ,ΨK . That is

IA1 =
K∏
k=1

Ψk.

By lemma 2.4.4 , for any ε3 > 0 there exist neural networks fDNN
Ψi

with O(log n) layers and

ε
−d∗p/β∗∗

3 such that

‖Ψi − fDNN
Ψi

‖p ≤ ε3, i = 1, 2, · · · , K.

By lemma 2.4.3 , for any ε4 > 0, we can construct neural network fDNN∏ with at most

(5+ log2(K2/ε4))dlog2(K)e layers and 36K2(5+ log2(K2/ε4))dlog2(K)e nonzero weights, such

that

‖
K∏
k=1

xk − fDNN∏ (x1, · · · , xK)‖∞ ≤ ε4.

Construct our neural network function to be fDNN∏ (fDNN
Ψ1,··· ,fDNN

ΨK

), which has layers at most

2 + log n+ (5 + log2(K2/ε4))dlog2(K)e + 1 . log n+ log2 K (log2 K + log2(1/ε4))

and non-zero weights at most

CKTε
−d∗p/β∗∗

3 log n+ 36K2T (5 + log2(K2/ε4))dlog2(K)e

.KTε−d∗p/β∗∗

3 log n+K2T log2 K(logK + log2(1/ε4)).

Thus,

‖
K∏
k=1

Ψk − fDNN∏ (fDNN
Ψ1 , · · · , fDNN

ΨK
)‖p

≤‖
K∏
k=1

Ψk −
K∏
k=1

fDNN
Ψk

‖p + ‖
K∏
k=1

fDNN
Ψk

− fDNN∏ (fDNN
Ψ1 , · · · , fDNN

ΨK
)‖p.
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For the first term, since all Ψk and fDNN
Ψk

are functions between 0 and 1,

‖
K∏
k=1

Ψk −
K∏
k=1

fDNN
Ψk

‖p

≤ ‖
K∏
k=1

Ψk − fDNN
Ψ1

K∏
k=2

Ψk‖p + ‖fDNN
Ψ1

K∏
k=2

Ψk −
K∏
k=1

fDNN
Ψk

‖p

≤ ‖(Ψ1 − fDNN
Ψ1 )

K∏
k=2

Ψk‖p + ‖fDNN
Ψ1 (

K∏
k=2

Ψk −
K∏
k=2

fDNN
Ψk

)‖p

≤ ‖Ψ1 − fDNN
Ψ1 ‖p + ‖

K∏
k=2

Ψk −
K∏
k=2

fDNN
Ψk

‖p

≤ · · · ≤
K∑
k=1

‖Ψk − fDNN
Ψk

‖p ≤ Kε3.

For the second term, since 0 ≤ fDNN
Ψk

(x) ≤ 1 for all k = 1, · · · , K,

‖
K∏
k=1

fDNN
Ψk

− fDNN∏ (fDNN
Ψ1 , · · · , fDNN

ΨK
)‖p

≤‖
K∏
k=1

fDNN
Ψk

− fDNN∏ (fDNN
Ψ1 , · · · , fDNN

ΨK
)‖∞ ≤ ε4.

Therefore,

‖
T∑
t=1

IAt −
T∑
t=1

fDNN
IAt

‖p ≤
T∑
t=1

‖IAt − fDNN
IAt

‖p

≤ T (Kε3 + ε4).

Choosing ε3 = ε4 = ε yields the lemma.
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Proof of Lemma 2.1.2 

Proof By definition, we can write

Q(x : |p(x) − q(x)| ≤ t) =
∫

x−d

∫
xd

I{|p(x) − q(x)| ≤ t}dxddx−d

=
∫

x−d

∫
xd

I{mx−d
(u) ≤ t}dudx−d

≤
∫

x−d

∫
xd

I{u
1/K(x)

Cε0
≤ t}dudx−d

≤
∫

x−d

(Cε0t)K(x)dx−d

≤ Ctκ,

where C is a constant depending on Cε0 , c, d.

2.4.2 Proof of Theorem 2.1.3 

The lower bound result comes from estimation of sets in the discriminative analysis [1 ]

where two sets of independent samples X + = {x+
1 , · · · ,x+

n } and x− = {x−
1 , · · · ,x−

m} with

unknown densities p or q respectively (w.r.t. a σ-finite measure Q) are given. The goal is to

predict whether a new sample x is coming from f or g with a discrimination decision rule

defined by a set G ⊂ Rd that we attribute x to p if x ∈ G and to q otherwise. Let the Bayes

risk to be

R(G) = 1
2

(∫
Gc
p(x)Q(dx) +

∫
G
q(x)Q(dx)

)
.

Denote G∗ = {x : p(x) ≥ q(x)} to be the Bayes risk minimizer. Let G̃m,n be an empirical rule

based on observations. The excess risk can be expressed as R(G̃m,n)−R(G∗) = 1
2dp,q(G̃m,n, G

∗).

In the following, we establish how fast can the excess risk go to zero under the smooth boundary

fragment setting with compositional smoothness assumption.
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For positive constants c1, c2, η0, κ and for a σ-finite measure Q, consider densities p, q on

Rd w.r.t. Q and define class F of paired densities to be

FG = {(p, q) : Q{x ∈ X : |p(x) − q(x)| ≤ η} ≤ c2η
κ for 0 ≤ η ≤ η0,

{x ∈ X : p(x) ≥ q(x)} ∈ G, p(x), q(x) ≤ c1 for x ∈ X }.

Now let the base measure Q be the Lebesgue measure Q and recall d4(G1, G2) = Q(G14G2).

The following lemma establishes the connection between d4 and dp,q.

Lemma 2.4.5 (Lemma 2 in [1 ]) There exists a constant c(κ) depending on κ such that

for Lebesgue measurable subsets G1 and G2 of X and for (p, q) ∈ FG,

c(κ)d(1+κ)/κ
4 (G1, G2) ≤ dp,q(G1, G2) ≤ 2c1d4(G1, G2).

Lemma 2.4.6 Let X = [0, 1]d and Q be the Lebesgue measure on X . Consider

Gh = {(x1, · · · , xd) ∈ X : 0 ≤ xd ≤ h(x1, · · · , xd−1), h ∈ H(d∗, β∗∗)}

and FG with G = Gh. Then

lim inf
n→∞

inf
Ĝm,n

sup
(p,q)∈FGh

(n ∧m)
β∗∗(κ+1)

β∗∗(κ+2)+d∗κEp,q[dp,q(G̃m,n, G
∗)] > 0.

Proof of Theorem 2.1.3 

Proof Without loss of generality, assume n ≤ m so we mainly focus on X +. Consider the

subset of FGh
that contains all pairs (p, q0), where q0 is fixed and f belongs to a finite class

of densities F1 that will be defined later. Then,

sup
(p,q)∈FGh

Ep,qd4(G̃m,n, G
∗) ≥ sup

(p,q0):f∈F1

Ep,qd4(G̃m,n, G
∗)

≥ Eq0

 1
|F1|

∑
f∈F1

Ep[d4(G̃m,n, G
∗)|y1, · · · , ym]

 ,
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where Ep and Eq0 denotes the expectations w.r.t. the distributions of (x1, · · · , xn) and

(y1, · · · , ym) when the underlying densities are p and q0.

Recall the compositional assumption (2.1 ) and let

i∗ ∈ argmax
i=0,1,··· ,q

n
−

2β∗
i

2β∗
i +ti and β∗ = βi∗ .

Further denote B = ∏q
l=i∗+1(βl ∧ 1) and then β∗∗ = β∗B. For simplicity, we give the proof for

the case d∗ = ti∗ = 1, that is the effective dimension of the smooth boundaries is 1 instead of

d− 1. For this case, let φ ∈ Cβ
∗

1 (R, 1) be a real-valued function supported on [ − 1, 1] with

φ(t) ≥ 0 for all t, max φ(t) = 1 and φ(0) = 1. For x = (x1, · · · , xd) ∈ [0, 1]d, define

q0(x) =(1 − η0 − b1)I{0<x2<
1
2 } + I{ 1

2 ≤x2<
1
2 +(τM−β∗ )B}

+ (1 + η0 + b2)I{ 1
2 +(τM−β∗ )B≤x2≤1}

where M ≥ 2 is an integer to be specified later and τ ∈ (0, 1) is a constant. b1 =

(τM−β∗
/c2)B/κ and b2 > 0 is chosen such that q0 integrates to 1. For j = 1, 2, · · · ,M

and t ∈ [0, 1], let

ψj(t) = τM−β∗
φ
(
M
[
t− j − 1

M

])
.

Note that ψj is only supported on [ j−1
M
, j
M

]. For vectors ω = (ω1, · · · , ωM) with elements

wj ∈ {0, 1}, define

bω(t) =
M∑
j=1

ωjψj(t).

Now we construct functions in H(d∗, β∗∗). For i < i∗, let qi(x) := (x1, · · · , xdi)ᵀ. For i = i∗

define qi∗,ω(x) = (bω(x1), 0, · · · , 0)ᵀ. For i > i∗, set qi(x) := (xβi∧1
1 , 0, · · · , 0)ᵀ.

b̃ω(x) = ql ◦ · · · ◦ qi∗+1 ◦ qi∗,ω ◦ qi∗−1 ◦ · · · ◦ q0(x) = bω(x1)B.

Notice that b̃ω(x) ≤ (τM−β∗)B. Let Ω = {0, 1}M . Define

pω(x) = 1 +
[ 1

2 + (τM−β∗)B − x2

c2

]1/κ

I{ 1
2 ≤x2≤ 1

2 +b̃ω(x)} − b3(ω)I{ 1
2 +b̃ω(x)<x2≤1},
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where b3(ω) > 0 is chosen such that pω(x) integrates to 1. Note that both q0(x) and pω(x) are

d-dimensional densities even though they seem to only depend on x1 and x2. Other entries

follow independent uniform distribution on [0, 1] and don’t show on the density formulas.

Set F1 = {pω : ω ∈ Ω} and we will show that (pω, q0) ∈ FGh
for all ω ∈ Ω. To this end,

we need to verify that

(a) pω(x) ≤ c1 for x ∈ K;

(b) {x ∈ X : pω(x) ≥ q0(x)} ∈ Gh;

(c) Q{x ∈ X : |pω(x) − q0(x)| ≤ η} ≤ c2η
κ for all 0 < η < η0.

For (a), since pω integrates to 1,

b3(ω) ≤ max
{ 1

2 ≤x2≤ 1
2 +b̃ω(x)}

[ 1
2 + (τM−β∗)B − x2

c2

]1/κ

≤
[

2τBM−β∗∗

c2

]1/κ

= O(M−β∗∗/κ).

Thus, pω(x) ≤ c1 for c1 and M large enough.

(b) is satisfied since

{x : pω(x) ≥ q0(x)} = {x : 0 ≤ x2 ≤ 1
2 + b̃ω(x1)},

and by construction, b̃ω(x) ∈ H(d∗, β∗∗) for τ small enough.

(c) follows that

Q{x ∈ X : |pω(x) − q0(x)| ≤ η}

≤Q{x ∈ X : 1
2 ≤ x2 ≤ 1

2 + (τM−β∗)B,
[

1/2 + (τM−β∗)B − x2

c2

]1/κ

≤ η}

≤Q{x ∈ X : 1
2 + (τM−β∗)B − c2η

κ ≤ x2 ≤ 1
2 + (τM−β∗)B}

≤c2η
κ.
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After verifying (pω, q0) ∈ FGh
for all ω ∈ Ω, we now establish how fast can S go to zero where

S := 1
|F1|

∑
p∈F1

Ep[d4(G̃m,n, G
∗)|y1, · · · , ym].

To this end, we use the Assouad’s lemma stated in [57 ] which is adapted to the estimation of

sets.

For j = 1, · · · ,M and for a vector ω = (ω1, · · · , ωM), we write

ωj0 = (ω1, · · · , ωj−1, 0, ωj+1, · · · , ωM),

ωj1 = (ω1, · · · , ωj−1, 1, ωj+1, · · · , ωM).

For i = 0 and i = 1, let Pji be the probability measure corresponding to the distribution of

x1, · · · , xn when the underlying density is pωji . Denote the expectation w.r.t. Pji as Eji. Let

Dj = {x ∈ X : 1
2 + b̃ωj0(x) < x2 ≤ 1

2 + b̃ωj1(x)}

= {x ∈ X : bωj0(x1) <
(
x2 − 1

2

)1/B
≤ bωj1(x1)}

= {x ∈ X : bωj0(x1) <
(
x2 − 1

2

)1/B
≤ bωj0(x1) + ψj(x1)}.

Then

S ≥ 1
2

M∑
j=1

Q{Dj}
∫

min{dPj1, dPj0}

≥ 1
2

M∑
j=1

∫ 1

0
ψj(x1)Bdx1

∫
min{dPj1, dPj0}

≥ 1
2

M∑
j=1

τBM−β∗∗
∫
φ(Mt)Bdt

∫
min{dPj1, dPj0}

≥ 1
4

M∑
j=1

τBM−β∗∗
∫
φ(Mt)Bdt

[
1 −H2(P10, P11)/2

]n

where H(·, ·) denotes the Hellinger distance.
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H2(P10, P11) =
∫ [√

pω10(x) −
√
pω11(x)

]2
dx

≤
∫ 1

0


∫ 1

2 +ψ1(x1)B

1
2

1 −

√√√√1 +
( 1

2 + τBM−β∗∗ − x2

c2

)1/κ


2

dx2

+
∫ 1

1
2

[√
1 − b3(ω10) −

√
1 − b3(ω11)

]2
dx2

dx1

≤
∫ 1

0

∫ (τM−β∗ )B

(τM−β∗ )B−ψ1(x1)B

1 −
√

1 +
(
v

c2

)1/κ
2

dvdx1

+ |b3(ω10) − b3(ω11)|2.

For the first term,

∫ 1

0

∫ τBM−β∗∗

τBM−β∗∗ −ψ1(x1)B

1 −
√

1 +
(
v

c2

)1/κ
2

dvdx1

≤
∫ 1

0

∫ τBM−β∗∗

τBM−β∗∗ −ψ1(x1)B

(
v

c2

)2/κ
dvdx1

≤ κc
−2/κ
2

κ+ 2

∫ 1

0

(
τBM−β∗∗)1+2/κ

−
(
τBM−β∗∗ − ψ1(x1)B

)1+2/κ
dx1

≤ κc
−2/κ
2

κ+ 2
(
τBM−β∗∗)1+2/κ ∫ (

1 − (1 − φ(Mt)B)1+2/κ
)
dt

= O
(
M−β∗∗(1+2/κ)−1

)
.

On the other hand,

∫ 1

0

∫ 1/2+bω(x1)B

1/2

[ 1
2 + τBM−β∗∗ − x2

c2

]1/κ

dx2dx1 = b3(ω)
[1
2 − bω(x1)B

]
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yields

b3(ω11) = 1
1
2 − bω11(x1)B

∫ 1

0

∫ 1/2+bω11 (x1)B

1/2

[ 1
2 + τBM−β∗∗ − x2

c2

]1/κ

dx2dx1

≤ Mc
−1/κ
2

1
2 − τBM−β∗∗

∫ 1

0

∫ τBM−β∗∗

τBM−β∗∗ (1−φ(Mx1))
u1/κdudx1

= Mc
−1/κ
2 τB

(1
2 − τBM−β∗∗)(1 + 1/κ)M

−β∗∗(1+1/κ)
∫

(1 − (1 − φ(Mt)B)1+1/κ)dt

≤ c
−1/κ
2 τB

(1
2 − τBM−β∗∗)(1 + 1/κ)M

−β∗∗(1+1/κ)

= O(M−β∗∗(1+1/κ)).

Hence |b3(ω11) − b3(ω10)| = O(M−β∗∗(1+1/κ)−1) and we have

H2(P10, P11) = O
(
M−β∗∗(1+2/κ)−1 ∨M−β∗∗(2+2/κ)−2

)
= O

(
M−β∗∗(1+2/κ)−1

)
.

Now choose M as the smallest integer that is larger or equal to

n
κ

(2+κ)β∗∗+κ .

Then we have H2(P10, P11) ≤ C∗n−1 (1 + o(1)) for some constant C∗ depending only on

κ, c2, τ, φ and ∫
min{dPj1, dPj0} ≥ 1

2

[
1 − C∗

2 n−1(1 + o(1))
]n

≥ C∗
1

for n large enough and C∗
1 is another constant. Thus for n large enough,

S ≥ 1
2C

∗
1τ

BM−β∗∗
∫
φ(t)dt ≥ C∗

2n
− κβ∗∗

(2+κ)β∗∗+κ .

The constant C∗
2 only depends on κ, c2, τ and φ.

Combining all the results so far yields that

lim inf
n→∞

inf
G̃m,n

sup
(p,q)∈FGh

(n ∧m)
β∗∗κ

β∗∗(κ+2)+d∗κEp,q[d4(G̃m,n, G
∗)] > 0
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holds when d∗ = 1. Using Lemma 2.4.5 , we have

lim inf
n→∞

inf
G̃m,n

sup
(p,q)∈FGh

(n ∧m)
β∗∗(κ+1)

β∗∗(κ+2)+d∗κEp,q[dp,q(G̃m,n, G
∗)] > 0.

2.4.3 Proof of Theorem 2.1.6 

Let Gf := {x ∈ X : f(xd) − xd ≥ 0}. Then we have the following lemma characterizing

the relationship between d4 and dp,q.

Lemma 2.4.7 Under assumption (M1), further assume on some D ⊂ X , 0 < κ− ≤ K(x)

for all x ∈ D. For any set G = Gf ⊂ D satisfying ‖f − h∗‖∞ ≤ ε0, the following inequality

holds

d4(G,G∗)
κ−+1

κ− . dp,q(G,G∗).

Proof Let δ(x−d) := |f(x−d) − h∗(x−d)| ≤ ε0. Consider G4G∗ in dimension xd and x−d

separately and write G4G∗ = ((G4G∗)−d, (G4G∗)d). Then

d4(G,G∗) =
∫

(G4G∗)−d

∫
(G4G∗)d

dxddx−d

=
∫

(G4G∗)−d

δ(x−d)dx−d.

Applying assumption (M1) and Jensen’s inequality yields

dp,q(G,G∗) =
∫
G4G∗

|p(x) − q(x)|dx

=
∫

(G4G∗)−d

∫ δ(x−d)

0
mx(t)dtdx−d

≥
∫

(G4G∗)−d

∫ δ(x−d)

0

1
Cε0

t1/κ
−
dtdx−d

≥ 1
Cε0(1 + 1/κ−)

∫
(G4G∗)−d

δ(x−d)
κ−+1

κ− dx−d

≥ 1
Cε0(1 + 1/κ−)d4(G,G∗)

κ−+1
κ− .
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Following the notations of [92 ] and [86 ]. Let vn(h) =
√
n
∫
h(x)d(Pn−P ) where P denotes

the data distribution, i.e. x ∼ P and Pn denotes the empirical distribution of x1, · · · ,xn.

Lemma 2.4.8 (Theorem 5.11 in [92 ]) For some function space H with suph∈H ‖h(x)‖∞ ≤

K and suph∈H ‖h(x)‖L2(P ) ≤ R where P is the distribution of x. Take a > 0 satisfying (1)

a ≤ C1
√
nR2/K; (2) a ≤ 8

√
nR;

(3) a ≥ C0

(∫ R

a/64
√
n
H

1/2
B (u,F , L2(P ))du ∨R

)
;

and (4) C2
0 ≥ C2(C1 + 1). Then

P
(

sup
h∈H

∣∣∣∣√n ∫ hd(Pn − P )
∣∣∣∣ ≥ a

)
≤ C exp

(
− a2

C2(C1 + 1)R2

)
,

where Pn is the empirical counterpart of P .

The next lemma investigates the modulus of continuity of the empirical process. It’s

similar to Lemma 5.13 in [92 ] but with a key difference in the entropy assumption (2.9 ),

where the entropy bound contains n.

Lemma 2.4.9 For a probability measure P , let Hn be a class of uniformly bounded (by 1)

functions h in L2(P ) depending on n. Suppose that the δ-entropy with bracketing satisfies for

all 0 < δ < 1 small enough, the inequality

HB(δ,Hn, L2(P )) ≤ An log(1/δ), (2.9)

where 0 < An = o(n). Let h0n be a fixed element in Hn. Let Hn(δ) = {hn ∈ Hn :

‖hn − h0n‖L2(P ) ≤ δ}. Then there exist constants D1 > 0, D2 > 0 such that for a sequence of

i.i.d. random variables x1, · · · ,xn with probability distribution P , it holds that for all T large

enough,

P

 sup
hn∈Hn(

√
An/n)

∣∣∣∣∫ (hn − h0n)d(Pn − P )
∣∣∣∣ ≥ T

An
n


≤ C exp

(
−TAn

8C2

)
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and for n large enough,

P

 sup
hn∈Hn;

‖hn−h0n‖>
√
An/n

|vn(hn) − vn(h0n)|
A

1/2
n ‖hn − hn0‖

> D1x


≤ D2e−Anx

for all x ≥ 1.

Proof The main tool for the proof is Lemma 2.4.8 . Replace H with Hn(δ) in Lemma 2.4.8 

and take K = 4, R =
√

2δ and a = 1
2C1A

1/2
n δ, with C1 = 2

√
2C0. Then (1) is satisfied if

δ ≥
√
An
n
, (2.10)

under which, (2) and (3) is trivially satisfied when n is large enough. Choosing C0 sufficiently

large will ensure (4). Thus, for all δ satisfying (2.10 ), we have

P
(

sup
hn∈Hn(δ)

∣∣∣∣√n ∫ (hn − h0n)d(Pn − P )
∣∣∣∣ ≥ C1

2 An
1/2δ

)

≤ C exp
(

−C1An
16C2

)
.

Let B = min{b > 1 : 2−b ≤
√
An/n} and apply the peeling device. Then,

P

 sup
hn∈Hn;

‖hn−hn0‖>
√
An/n

|
√
n
∫
(hn − hn0)d(Pn − P )|
A

1/2
n ‖hn − hn0‖

≥ C1

2


≤

B∑
b=0

P
(

sup
hn∈Hn(2−b)

∣∣∣∣√n ∫ (hn − hn0)d(Pn − P )
∣∣∣∣ ≥ C1

2 An
1/2(2−b)

)

≤
B∑
b=0

C exp
(

−C1An
16C2

)
≤ 2C(log n) exp

(
−C1An

16C2

)
,

if C1An is sufficiently large.
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Proof of Lemma 2.1.4 

Proof For ease of notation, we will write Gf and its defining function f interchangeably.

For any ε > 0, by construction, we can find f̃n ∈ F̃n such that ‖f̃n − h∗‖∞ ≤ ε. The 0-1 loss

can be bounded as

dj−d
(f̃n, h∗) =

∫
Dj−d

:Gf̃n,j−d
4Gh∗

|p(x) − q(x)|dx

≤
∫
Dj−d

∫ ε

0
mx(t)dtdx−d

≤ Cε0

∫
Dj−d

∫ ε

0
t1/K(x)dtdx−d

≤ Cε0
Md−1(1 + 1/κ+)ε

κ++1
κ+ .

Since f̂n,j−d
is the empirical risk minimizer within F̃n, we have Rn,j−d

(f̂n,j−d
) ≤ Rn,j−d

(f̃n).

Therefore,

dj−d
(f̂n,j−d

, h∗) ≤dj−d
(f̃n, h∗) + [Rn,j−d

(f̃n) −Rn,j−d
(h∗) − dj−d

(f̃n, h∗)]

+ [Rn,j−d
(h∗) −Rn,j−d

(f̂n,j−d
) + dj−d

(f̂n,j−d
, h∗)]

:≤ Cε0
Md−1(1 + 1/κ+)ε

κ++1
κ+ + I(f̃n, h∗) + I(f̂n,j−d

, h∗).

For I(f̃n, h∗), by Lemma 2.4.9 , we have

I(f̃n, h∗) ≤ sup
f∈F̃n:‖f−h∗‖1

≤
√
An/n

∣∣∣Rn,j−d
(f) −Rn,j−d

(h∗) − dj−d
(f, h∗)

∣∣∣+
√
And4(f̃n, h∗)

n
sup

f∈F̃n:‖f−h∗‖1

>
√
An/n

√
n
∣∣∣Rn,j−d

(f) −Rn,j−d
(h∗) − dj−d

(f, h∗)
∣∣∣√

And4(f, h∗)

= OP

(
An
n

)
+
√
And4(f̃n, h∗)

n
OP(1),
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where An is from the assumption (2.9 ). Similarly for I(f̂n,j−d
, h∗), we have

I(f̂n,j−d
, h∗) = OP

(
An
n

)
+

√√√√And4(f̂n,j−d
, h∗)

n
OP(1).

By construction, d4(f̃n, h∗) ≤ ε. Hence

dj−d
(f̂n,j−d

, h∗) ≤ Cε0
Md−1(1 + 1/κ+)ε

κ++1
κ+ +OP

(
An
n

)
+√√√√An

(
d4(f̂n,j−d

, h∗) + ε
)

n
OP(1).

The last term dominates the second term. Omitting the approximation error, i.e. ε
κ++1

κ+ .√
An

n
d

1/2
4 (f̂n,j−d

, h∗), by Lemma 2.4.7 we have

dj−d
(f̂n,j−d

, h∗) ≤
√
An
n
d

1/2
4 (f̂n,j−d

, h∗) OP(1)

≤
√
An
n
dj−d

(f̂n,j−d
, h∗)

κ−
2(κ−+1) OP(1),

which simplifies to

dj−d
(f̂n,j−d

, h∗) = OP

(
An
n

)κ−+1
κ−+2

.

From Lemma 2.1.1 , we know that An = O(ε−ρ log n). Balancing the approximation error and

the empirical error by choosing

ε = O

(
n

− κ+(κ−+1)
(κ−+2)(κ++1)+ρκ+(κ−+1)

)

yields

E dj−d
(f̂n,j−d

, h∗) = O
( 1
n

) κ−+1

κ−+2+κ+ρ

(
κ−+1
κ++1

)
.
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Proof of Theorem 2.1.6 

Proof Choose ε = n−1/(1+ρ), M = log n. Notice that nMdεd → 0, i.e., P(Eε) → 1 as n → ∞

as long as ρ < d− 1. Assumption n = Ω(ε−(1+ρ)
0 ) implies that the approximation error ε can

be smaller than ε0. Let

κ−
j−d

:= min
x∈Dj−d

K(x) and κ+
j−d

:= max
x∈Dj−d

K(x).

Since Rn,j−d
(f̂n) = Rn,j−d

(f̂n,j−d
) ≤ Rn,j−d

(f̃n) for any j−d ∈ JM as in (2.4 ), Lemma 2.1.4 

yields that

sup
h∗∈F(d∗,β∗∗)

E(Rj−d
(f̂n) −Rj−d

(h∗)) .
( 1
n

)
κ−

j−d
+1

κ−
j−d

+2+

(
κ−

j−d
+1

κ+
j−d

+1

)
ρκ+

j−d

.

Then, the overall 0-1 loss excess risk can be decomposed as

sup
h∗∈F(d∗,β∗∗)

E(R(f̂n) −R(h∗)) ≤
∑

j−d∈JM

sup
h∗∈F(d∗,β∗∗)

E(Rj−d
(f̂n) −Rj−d

(h∗))

.
∑

j−d∈JM

( 1
n

)
κ−

j−d
+1

κ−
j−d

+2+

(
κ−

j−d
+1

κ+
j−d

+1

)
ρκ+

j−d

.

By assumption (M2), we can write for any j−d ∈ JM that

( 1
n

)
κ−

j−d
+1

κ−
j−d

+2+

(
κ−

j−d
+1

κ+
j−d

+1

)
ρκ+

j−d

=
( 1
n

)
κ−

j−d
+1

κ−
j−d

+2+ρκ−
j−d

+ρ

κ+
j−d

−κ−
j−d

κ+
j−d

+1

≤
( 1
n

) κ−
j−d

+1

κ−
j−d

+2+ρκ−
j−d

+ρCK (
√

d/M)α

=
( 1
n

) κ−
j−d

+1

κ−
j−d

+2+ρκ−
j−d

+
(κ−

j−d
+1)ρCK (

√
d/M)α

(κ−
j−d

+2+ρκ−
j−d

+ρCK (
√

d/M)α)(κ−
j−d

+2+ρκ−
j−d

)

= O
( 1
n

) κ−
j−d

+1

κ−
j−d

+2+ρκ−
j−d .
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The last equality follows from the fact that M = log n and n−1/ logn = O(1). Since κ is

defined as the overall minimum, under Eε, we have

sup
h∗∈H(d∗,β∗∗)

E(R(f̂n) −R(h∗)) .
∑

j−d∈JM

( 1
n

) κ−
j +1

κ−
j +2+ρκ−

j

= O
(
n− (κ+1)β∗∗

(κ+2)β∗∗+κd∗ (log n)d−1
)
.

2.4.4 Proof of Properties (P1) to (P3)

Let’s first consider the d = 2 case and focus on some region Di = {(x1, x2) ∈ [0, 1]2 : x1 ∈

(a, b)} with b − a > 2ε. Let fn ∈ F̃ be any DNN. Define three continuous piecewise linear

functions

g(x1) =



x1 if a ≤ x1 ≤ b

a if x1 < a

b if x1 > b

, c(x1) =



fn(0) if a+ ε ≤ x1 ≤ b− ε

0 if x1 < a or x1 > b

linear transition else

and

h(x1) =



0 if a+ ε ≤ x1 ≤ b− ε

a if x1 < a

b if x1 > b

linear transition else.
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Figure 2.5. Illustration of the constructed functions g, h, c in d = 2 case.

Linear transition means linking the end points with a line segment. The constructed piecewise

linear functions are illustrated in Figure 2.5 . Let f+
n,i(x1) := fn(g(x1)) − fn(h(x1)) + c(x1).

Then, it’s easy to verify that

f+
n,i(x1) =



fn(x1) if a+ ε ≤ x1 ≤ b− ε

0 if x1 < a or x1 > b

piecewise linear else.

Therefore, (P1) and (P2) hold and we move to evaluate (P3). The constructed g, h, c are

all piecewise linear functions with at most 5 pieces. By Theorem 2.2 in [10 ], they can all be

represented by two-layer ReLU neural networks with width at most 5. f+
n,i(x1) is constructed

by composition and addition of ReLU networks, which correspond to stacking more layers

and expanding the width respectively. Easy to see that f+
n,i(x1) satisfies (P3).
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In the d > 2 case, we can make similar constructions. Consider some region Dj−d

and denote D◦
j−d

:= Dj−d
\Dε. For each of the dimensions x1, . . . , xd−1, we can define

gi(xi), hi(xi), ci(xi) separately as in the d = 2 case. Let g(x−d) = (g1(x1), . . . , gd−1(xd−1)),

h(x−d) = (h1(x1), . . . , hd−1(xd−1)), c(x−d) = (c1(x1), . . . , cd−1(xd−1)) and f+
n,j−d

= (fn ◦ g − fn ◦ h+ c).

Then, it’s easy to verify that

f+
n,j−d

(x−d) =



fn(x−d) if x−d ∈ D◦
j−d

0 if x−d /∈ Dj−d

piecewise linear else.

Thus, (P1) and (P2) hold. For (P3), notice that g(x−d) can be viewed as a ReLU neural

network with the same depth as gi(xi) but (d− 1)-times the width.

2.4.5 Proof of Lemmas in Section 2.2 

We first present some preliminary lemmas. Corresponding to assumption (A3), we define

(Nn) as an extension to the classical Tsybakov noise condition (N).

(Nn) There exists cn > 0 depending on n and κ ∈ [0,∞] such that for any 0 ≤ t ≤ Tn

P ({x : |pn(x) − qn(x)| ≤ t}) ≤ cnt
κ.

Note that the (N) is a special case of (Nn) with Tn and cn being absolute constant. The

following lemma establishes the connection between d4 and dp,q, which is adapted from

Lemma 2 in [1 ] to our teacher network setting.

Lemma 2.4.10 Assume (Nn) and pn, qn are bounded by b2 > 0. Then, there exists absolute

constants b1(κ) > 0 depending on κ such that for any Lebesgue measurable subsets G1 and G2

of X ,

b1(κ)
(
Tn ∧ c−1/κ

n

)
d

(κ+1)/κ
4 (G1, G2) ≤ dpn,qn(G1, G2) ≤ 2b2d4(G1, G2).
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Proof The second inequality is trivial given that p, q are bounded by b2. For the first

inequality, since Q(|pn − qn| ≤ t) ≤ cnt
κ for all 0 ≤ t ≤ Tn, the boundedness of Q(X ) implies

that

Q(|pn − qn| ≤ t) ≤ Ant
κ, ∀ t > 0,

where An =
(
Q(X )
Tκ

n
∨ cn

)
. Then,

dpn,qn(G1, G2)

≥
∫
G14G2

|pn − qn|I{|pn − qn| ≥
(
d4(G1, G2)

2An

)1/κ

}dQ

≥
(
d4(G1, G2)

2An

)1/κ
Q(G14G2) − Q(|pn − qn| <

(
d4(G1, G2)

2An

)1/κ

)


≥ d4(G1, G2)1+1/κ

(2An)1/κ − 1/2d4(G1, G2)(κ+1)/κ

(2An)1/κ

≥ 2−(κ+1)/κ

A
1/κ
n

d4(G1, G2)(κ+1)/κ.

Lemma 2.4.11 characterizes the complexity of a special collection of sets.

Lemma 2.4.11 Let X = [0, 1]d and G be a collection of polyhedrons with at most S vertices

in Rd. Then the bracketing entropy of Ḡ = G ∩ X satisfies

HB(δ, Ḡ, d4) = log NB(δ, Ḡ, d4) . d2S log(d3/2S/δ)

Proof Let’s first introduce some notations and terminologies. For any δ > 0, let Mδ

denote the smallest integer such that Mδ > 1/δ. Consider the set of lattice points Xd
δ =

{(i1/Mδ, . . . , id/Mδ) : i1, . . . , id = 0, 1, . . . ,Mδ} which has cardinality (Mδ+1)d. LetG(x1, · · · ,xs)

denote a polyhedron with vertices x1, · · · ,xs ∈ [0, 1]d where s ≤ S. (the xi’s are not necessar-

ily distinct). Any convex polyhedron G in Rd is the intersection of multiple (d−1)-dimensional

hyperplanes. If we move all such hyperplanes inwards (to the direction perpendicular to the

hyperplanes) by a small distance δ, they produce another polyhedron, denoted G−δ, called as

the δ-contraction of G. Note that G−δ can be empty if δ is not small enough.
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Figure 2.6. Grid in 2D and the outer cover (green) constructed for with grid
points for a polygon (blue).

We prove the result for d = 1, in which Ḡ is a collection of subintervals in [0, 1]. For any

subinterval [a, b] ⊂ [0, 1], there exist xi, xj ∈ X1
δ such that

xi ≤ a ≤ xi+1, xj ≤ b ≤ xj+1.

(By convention, [xi, xj] is empty if xi > xj.) Then ([xi, xj+1], [xi+1, xj]) is a 2δ-bracket of [a, b]

since obviously

[xi+1, xj] ⊂ [a, b] ⊂ [xi, xj+1], d4([xi, xj+1], [xi+1, xj]) ≤ 2δ. (2.11)

There are
(
Mδ+1

2

)
different choices of [xi, xj], hence,

(
Mδ+1

2

)
different choices of the pairs

([xi, xj+1], [xi+1, xj]). Any [a, b] ⊂ [0, 1] can be 2δ bracketed by one of such pairs in the sense

of (2.11 ). This shows that HB(2δ) ≤ log
(
Mδ+1

2

)
≤ 2 log(1/δ).

When d ≥ 2, any G ∈ Ḡ has at most S vertices, so Ḡ := G∩ [0, 1]d has at most dS vertices

where the factor d is due to the fact that each edge of G intersects at most d edges of [0, 1]d

therefore creates at most dS vertices for Ḡ. For any polygon G(x1, · · · ,xs) where s ≤ dS,

denote G−
√
dδ(x1, · · · ,xs) = G(x−

1 , · · · ,x−
s ). Each vertex must be in one of the grids in Xd

δ .

It is easy to see that there exist v1
1, . . . ,v

d
1 , · · · ,v1

s , . . . ,v
d
s ∈ Xd

δ , where v1
i , . . . ,v

d
i are in the

same grid, such that
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• G(x1, · · · ,xs) ⊂ G(v1
1, . . . ,v

d
1 , · · · ,v1

s , . . . ,v
d
s );

• ‖vj
i − xi‖2 ≤

√
dδ for i = 1, 2 · · · , s and j = 1, 2, · · · , d.

See Figure 2.6 for an illustration when d = 2.

Similarly for G(x−
1 , · · · ,x−

s ), there exist u1
1, . . . ,u

d
1, · · · ,u1

s, . . . ,u
d
s ∈ Xd

δ such that

• G(x−
1 , · · · ,x−

s ) ⊂ G(u1
1, . . . ,u

d
1, · · · ,u1

s, . . . ,u
d
s);

• ‖uj
i − x−

i ‖2 ≤
√
dδ for i = 1, 2 · · · , s and j = 1, 2, · · · , d.

By the definition of G−
√
dδ, we have ‖xi − x−

i ‖2 ≥
√
dδ. Thus ‖uj

i − x−
i ‖2 ≤

√
dδ implies

G(u1
1, . . . ,u

d
1, · · · ,u1

s, . . . ,u
d
s) ⊂ G(x1, · · · ,xs). On the other hand,

d4(G(u1
1, . . . ,u

d
1, · · · ,u1

s, . . . ,u
d
s), G(v1

1, . . . ,v
d
1 , · · · ,v1

s , . . . ,v
d
s ))

≤ d4(G+
√
dδ(x1, · · · ,xs), G−

√
dδ(x1, · · · ,xs))

≤ s · 2
√
dδ,

where the term s is due to the fact that G(x1, · · · ,xs) has at most O(s) faces. Notice that

G(u1
1, . . . ,u

d
1, · · · ,u1

s, . . . ,u
d
s), G(v1

1, . . . ,v
d
1 , · · · ,v1

s , . . . ,v
d
s ) ∈ Ḡ,

and s ≤ dS. Thus, with at most (Mδ + 1)d2S pairs of subsets in Ḡ, we can 2d3/2Sδ-bracket

any Ḡ ∈ Ḡ. Therefore,

log NB((2d3/2Sδ), Ḡ, d4) . log
(
(Mδ + 1)d2S

)
,

which implies

log NB(δ, Ḡ, d4) . d2S log(d3/2S/δ).
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Lemma 2.4.12 (Theorem 1 in [93 ]) Consider a deep ReLU network with L layers, nl
ReLU nodes at each layer l, and an input of dimension n0. The maximal number of linear

pieces of this neural network is at most

∑
(j1,...,jL)∈J

L∏
l=1

(
nl
jl

)
,

where J = {(j1, . . . , jL) ∈ ZL : 0 ≤ jl ≤ min{n0, n1 − j1, . . . , nl−1 − jl−1, nl} ∀l = 1, . . . , L}.

This bound is tight when L = 1. When n0 = O(1) and all layers have the same width N , we

have the same best known asymptotic bound O(NLn0) first presented in [94 ].

Consider a deep ReLU network with n0 = d inputs and L hidden layers of widths ni ≥ n0

for all i ∈ [L]. The following lemma establishes a lower bound for the maximal number of

linear pieces of deep ReLU networks:

Lemma 2.4.13 (Theorem 4 in [88 ]) The maximal number of linear pieces of a ReLU

network with n0 input units, L hidden layers, and ni ≥ n0 rectifiers on the i-th layer, is lower

bounded by (
L−1∏
i=1

⌊
ni

n0

⌋n0
)

n0∑
j=0

(
nL
j

)
.

2.4.6 Proof of Theorem 2.2.2 

Lemma 2.4.14 Let F be a class of ReLU neural networks, defined on X = [0, 1]d, with at most

L layers and N neurons per layer. Let Gf = {x ∈ X : f(x) ≥ 0} and GF = {Gf : f ∈ F}.

Then the bracketing number of GF satisfies

log NB(δ,GF , d4) . NLd2
d3
(
Ld2 log(N) ∨ log(1/δ)

)
.

Proof The proof relies on Lemma 2.4.11 for which we need to control the number of vertexes

of Gf based on the number of pieces (linear regions) of the ReLU neural network. Since
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Figure 2.7. Demonstration of how a polygon in d = 2 case can be divided into
basic triangles. The union of the two brackets form a bracket of the original
polygon. The blue shade is the symmetric difference.

ReLU neural networks are piecewise linear, Gf is a collection of sets of polyhedrons. Define

the subgraph of a function f : Rd → R to be the set of points in Rd+1:

sub(f) = {(x, t) : f(x) ≥ t}.

In this sense, sub(f) ∩ {(x, 0) : x ∈ X } = {(x, 0) : x ∈ Gf}, a slice of the subgraph. Denote

all the pieces to be p1, p2, · · · , ps. Each piece is a d-dimensional polyhedron on which f(x) is

linear. To control the complexity of Gf , consider the most extreme case that the function

crosses zero on each piece, i.e. for any i = 1, . . . , s, {(x, f(x)) : x ∈ pi}∩{(x, 0) : x ∈ X } 6= ∅.

Each intersection resides in a (d− 1)-dimensional hyperplane, e.g. dot for d = 1, line segment

for d = 2 and so on. So the number of such (d− 1)-dimensional hyperplanes in Gf is at most

s.

A vertex of a polyhedron in [0, 1]d can be thought of as the intersection of at least d

hyperplanes of dimension d− 1. Thus, with at most s hyperplanes there are at most
(
s
d

)
< sd

vertices in Gf . In order to apply Lemma 2.4.11 , we break the collection of polyhedrons into

the so-called basic polyhedrons each with d+ 1 vertices. For instance, the basic polyhedrons

are intervals when d = 2, are triangles when d = 3, and so on.

A polyhedron G with at most s vertices can be divided into at most s disjoint basic

polyhedrons B1, . . . , Bs. For instance, Figure 2.7 demonstrates the d = 2 case. Therefore, the

bracketing number of the polyhedrons can be derived by bracketing the basic polyhedrons.
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For a basic polyhedron B, denote its δ-bracketing pair to be (UB,δ, VB,δ), i.e., UB,δ ⊂ B ⊂ VB,δ.

Then (UG,δ, VG,δ), defined as below

UG,δ =UB1,δ ∪ UB2,δ ∪ · · · ∪ UBs,δ

VG,δ =VB1,δ ∪ VB2,δ ∪ · · · ∪ VBs,δ,

form a (sδ)-bracket of G. Hence, the bracketing number of all polyhedrons is controlled by

the s-th power of the bracketing number of all basic polyhedrons. Applying Lemma 2.4.12 

we know s = O(NLd) and the number of vertices is at most S = O(NLd2). Together with

Lemma 2.4.11 , we therefore get that

log NB(Sδ,GF , d4) . S(d+ 1)d2 log((d+ 1)d3/2/δ),

which implies

log NB(δ,GF , d4) . NLd2
d3 log(NLd2

d3/δ)

. NLd2
d3
(
Ld2 log(N) ∨ log(1/δ)

)
.

Lemma 2.4.14 is the main result for controlling the bracketing entropy of the estimation

sets. Below we point out some key properties of this result and compare it to other entropy

bounds of neural networks.

Exponential Dependence on Depth The bracketing entropy of GF developed in Lemma

2.4.14 is much larger than that of F itself with respect to ‖ · ‖∞, as described in Lemma

2.4.15 . The main difference is the dependence on the number of layers L: the dependence is

linear in Lemma 2.4.15 while exponential in Lemma 2.4.14 . Thus, even though GF is a slice

of the subgraph of F , GF is much more complicated than F in term of entropy. We argue

that this gap cannot be closed even in the special case d = 1.

A lower bound on the maximum number of linear pieces for a ReLU neural network is

established in [88 ] (Lemma 2.4.13 ). Consider a 1-dimensional ReLU DNN function with L
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Figure 2.8. Example of a ReLU function in 1D. The induced set where f > 0
is colored red and it’s a union of two intervals (a1, b1), (a2, b2). All pieces cross
0 so there are all active.

layers and 2 nodes on each layer. Corollary 5 of [88 ] show that there exists some f with

s = Ω(2L−1) pieces on [0, 1]. With scaling and shifting, assume that on each piece the linear

function crosses 0. Then, Gf will be at least bs/2c = Ω(2L−2) intervals. Denote these disjoint

intervals to be {(ai, bi)}bs/2c
i=1 . Since they are disjoint, to construct a δ-bracket of all the

intervals, we need to δ-cover all the ai’s and bi’s. Similar to the grid argument from the proof

of Lemma 2.4.11 , we need at least

(
1/δ
s

)
= Ω ((1/δ − s)s)

different combinations of the s grid points. Hence the bracketing entropy must be in the

order of

log((1/δ − s)s) = 2L−2 log(1/δ).

The exponential dependence of depth L in the entropy stems from the fact that the number

of linear regions of ReLU DNNs scales exponentially with L.

Independent of Weights Magnitude We also want to point out that the entropy of GF

is not concerned with the magnitude of the neural network weights, in contrast to the bound

in Lemma 2.4.15 . This is because any scaling of the function doesn’t change how it intercepts

with zero. Hence, unlike F , the entropy of GF doesn’t depend on the weight maximum B.

68



The Use of ReLU Activation The reason why we can even bound the entropy of GF

critically relies on the fact that we are considering the ReLU activation function. If we

consider smooth nonlinear activation functions, e.g. hyperbolic tangent, sigmoid, instead of

the order log(1/δ), we can only get the entropy of a much larger order

HB(δ,GF , d4) ≤ Aδ−α

for some constant A > 0 and α > 0. To see this, consider the case d = 2. Instead of polygons,

which can be controlled by the vertices, the regions have smooth boundary and will require

O(1/δ) many grid points to cover. Thus the covering number is of order

(
1/δ2

1/δ

)
= O

((1
δ

)2/δ)
.

Thus, the entropy is in a polynomial order of 1/δ.

To characterize the bracketing entropy in our teacher-student setting, as an intermediate

step, we investigate the bracketing entropy with respect to dpn,qn . As a direct outcome from

Lemma 2.4.10 , we can conclude that

HB

(
b1(κ)

(
Tn ∧ c−1/κ

n

)
δ

κ+1
κ ,G, d4

)
≤ HB (δ,G, dpn,qn) . (2.12)

To bound HB (δ,G, dpn,qn), we construct the brackets of G using the δ-covering set of F

with respect to ‖ · ‖∞. Let N and H = log(N ) denote the covering number and entropy

respectively. The following lemma establishes upper bounds on the L∞ covering number of

neural networks.

Lemma 2.4.15 [Lemma 3 in [66 ]] For any δ > 0, the covering number of FDNN(L,N, S,B)

(in sup-norm) satisfies

log N (δ,FDNN(L,N, S,B), || · ||∞)

≤ 2L(S + 1) log(δ−1(L+ 1)(N + 1)(B ∨ 1)).
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For any f ∈ F , let Gf := {x ∈ X : f(x) ≥ 0} and GF := {Gf : f ∈ F}. Now we state our

bracketing entropy bound for G∗, which is GF∗
n

in our teacher student setting.

Lemma 2.4.16 Let F∗
n denote the teacher DNN family FDNN(L,N, S,B). Under assump-

tions (A1) to (A3), we have

HB

(
δ,GF∗

n
, d4

)
≤ cSL log(δ−1 ∨ n),

where c > 0 is some constant independent of the neural network architecture.

Proof Let the δ-covering set of F∗
n with respect to L∞ norm be F̄δ, i.e., ∀f ∗

n ∈ F∗
n, there

exists f̄δ ∈ F̄δ such that ‖f ∗
n − f̄δ‖∞ ≤ δ. Denote f̄δ− := f̄δ − δ and f̄δ+ := f̄δ + δ. Construct

bracketing set G̃δ := {(Gf̄δ−
, Gf̄δ+

) : f̄δ ∈ F̄δ}. Notice that f̄δ−(x) ≤ f ∗
n(x) ≤ f̄δ+(x) for all

x ∈ X , which indicates Gf̄δ−
⊂ Gf ⊂ Gf̄δ+

, i.e., G̃δ is a bracketing set of GF∗
n
.

Next, we show that dpn,qn(Gf̄δ−
, Gf̄δ+

) ≤ c0δ for any teacher network f ∗
n ∈ F∗

n, where c0 is

the Lebesgue measure of the support union of pn and qn, i.e., c0 = Q(supp(pn)∪supp(qn)). By

assumption (A1), c0 < ∞. For any x ∈ Gf̄δ−
4Gf̄δ+

, by definition we have f(x) + δ ≥ 0 and

f(x)−δ < 0, which suggests |f(x)| ≤ δ. Recall the teacher network setting that pn−qn ∈ F∗
n.

Then, we can conclude

dpn,qn(Gf̄δ−
, Gf̄δ+

) =
∫
Gf̄δ−

4Gf̄δ+

|pn − qn|

=
∫
Gf̄δ−

4Gf̄δ+

|f | ≤ c0 · δ.

Therefore, G̃δ is a c0δ-bracketing set of GF∗
n

and

HB

(
c0δ, GF∗

n
, dpn,qn

)
≤ log |G̃δ| ≤ H (δ, F∗

n, ‖ · ‖∞) .
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Applying (2.12 ) and Lemma 2.4.15 yields

HB

(
δ,GF∗

n
, d4

)

≤ H


 c

− κ+1
κ

0 · δ
b1(κ)

(
Tn ∧ c

−1/κ
n

)


κ
κ+1

,F∗
n, ‖ · ‖∞


≤ 2κL(S + 1)

κ+ 1 log
b1(κ)

(
Tn ∧ c−1/κ

n

)
c

− κ+1
κ

0 · δ

 (L+ 1)(N + 1)(B ∨ 1)


By assumption (A2) we have log(LNB) . log n and assumption (A3) indicates κ = 1 and

log(Tncn) = o(log n). The proof is complete.

Next, we present some lemmas that can take advantage of the obtained entropy bound

and eventually take us to the proof of the excess risk convergence rate. So far, the presented

lemmas are only concerned with the general case, i.e. set G∗, p, q, etc. that does not depend

on n. However, in our teacher-student framework, the optimal set G∗
n is indexed by n as it’s

determined by the teacher network F∗
n. In the remaining part of the proof, we will consider

specifically for our teacher network case.

Our goal in classification is to estimate G∗
n by Ĝn = argminG∈Gn

Rn(G), where Gn is some

collection of sets associated with the student network Fn and

Rn(G) = 1
2n

n∑
i=1

(I{xi ∈ G|yi = 1}(x) + I{xi /∈ G|yi = −1}(x)) .

Similar to Theorem 1 in [1 ], we have the following lemma regarding the upper bound on the

rate of convergence.

Lemma 2.4.17 Suppose 0 < Q(X ) < ∞ and let G∗
n be a collection of subsets of X ⊂ Rd.

Define

DG∗
n
n = {(pn, qn) : Q{x ∈ X : |pn(x) − qn(x)| ≤ t} ≤ cnt

κ for 0 ≤ t ≤ Tn,

{x ∈ X : pn(x) ≥ qn(x)} ∈ G∗
n, pn(x), qn(x) ≤ b2 for x ∈ X },

(2.13)
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where b2 is an absolute constant. Let Gn be another class of subsets satisfying G∗
n ⊂ Gn.

Suppose there exist positive constants An > 0 depending on n such that for any δ > 0 small

enough,

HB(δ,Gn, d4) ≤ An log(1/δ). (2.14)

Then we have

lim
n→∞

sup
(pn,qn)∈DG∗

n
n

(
An log2 n

n

)− κ+1
κ+2 (

Tn ∧ c−1/κ
n

) κ
κ+2 E[dpn,qn(Ĝn, G

∗
n)] < ∞. (2.15)

Proof For (pn, qn) ∈ FG∗
n

n , let G∗
n = {x ∈ X : pn(x) ≥ qn(x)}. For a given set G ∈ X , let

hG(x) = I{x ∈ G}. In particular, let h∗
n = hG∗

n
. Let ‖h‖2

p =
∫
h2(x)p(x)Q(dx). Since both

pn and qn are bounded,

‖hGn − h∗
n‖2

p =
∫
Gn4G∗

n

pn(x)Q(dx) ≤ b2d4(Gn, G
∗
n),

‖hGn − h∗
n‖2

q =
∫
Gn4G∗

n

qn(x)Q(dx) ≤ b2d4(Gn, G
∗
n).

(2.16)

Consider the random variable

Vn = −
√
n
Rn(Ĝn) −Rn(G∗

n) − E(Rn(Ĝn) −Rn(G∗
n))√

And4(G∗
n, Ĝn) log(1/d4(G∗

n, Ĝn))
.

Since G∗
n ⊂ Gn, we have Rn(Ĝn) ≤ Rn(G∗

n). Thus

√
n E(Rn(Ĝn) −Rn(G∗

n))√
And4(G∗

n, Ĝn) log(1/d4(G∗
n, Ĝn))

≤ Vn. (2.17)

Note that

Rn(Gn) −Rn(G∗
n) = 1

2n

n∑
i=1

I{yi=1}(h∗
n − hGn)(xi)

+ 1
2n

n∑
i=1

I{yi=−1}(hGn − h∗
n)(xi).
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Then Vn can be written as

Vn =
(1/2n)∑n

i=1 I{yi=1}(hĜn
− h∗

n)(xi) − E(I{y=1}(hĜn
− h∗

n)(x))√
And4(G∗

n, Ĝn)/n log(1/d4(G∗
n, Ĝn))

+

(1/2n)∑n
i=1 I{yi=−1}(h∗

n − hĜn
)(xi) − E(I{y=−1}(h∗

n − hĜn
)(x))√

And4(G∗
n, Ĝn)/n log(1/d4(G∗

n, Ĝn))
.

Consider the event En = {d4(G∗
n, Ĝn) >

√
An/n} and let G̃n = {G ∈ Gn : d4(G,G∗

n) >√
An/n}. If En holds, then

Vn = −
√
n
Rn(Ĝn) −Rn(G∗

n) − E(Rn(Ĝn) −Rn(G∗
n))√

And4(G∗
n, Ĝn) log(1/d4(G∗

n, Ĝn))

≤ sup
Gn∈G̃n

√
n
Rn(G∗

n) −Rn(Gn) − E(Rn(Gn) −Rn(G∗
n))√

And4(G∗
n, Gn) log(1/d4(G∗

n, Gn))

≤ sup
Gn∈G̃n

|(1/2n)∑n
i=1 I{yi=1}(hGn − h∗

n)(xi) − E(I{y=1}(hGn − h∗
n)(x))|√

And4(G∗
n, Gn)/n log(1/d4(G∗

n, Gn))
+

sup
Gn∈G̃n

|(1/2n)∑n
i=1 I{yi=−1}(hGn − h∗

n)(xi) − E(I{y=−1}(hGn − h∗
n)(x))|√

And4(G∗
n, Gn)/n log(1/d4(G∗

n, Gn))

≤ sup
hn∈Hn

|(1/2n)∑n
i=1 I{yi=1}(hn − h∗

n)(xi) − E(I{y=1}(hn − h∗
n)(x))|

2b−1/2
2

√
An/n‖hn − h∗

n‖p log(
√
b2/‖hn − h∗

n‖p)
+

sup
hn∈Hn

|(1/2n)∑n
i=1 I{yi=1}(hn − h∗

n)(xi) − E(I{y=1}(hn − h∗
n)(x))|

2b−1/2
2

√
An/n‖hn − h∗

n‖q log(
√
b2/‖hn − h∗

n‖q)
,

where Hn = {hn(x) = I{x ∈ Gn} : Gn ∈ Gn}. The last inequality follow from the fact that
√
x log(1/x) is strictly increasing when x < 1. Notice that hn’s are uniformly bounded by 1

and the L2 norm squared of hG1 − hG2 is d4(G1, G2). Applying Lemma 2.4.9 , we have

E[VnI(En)] ≤ C (2.18)

for some finite constant C. Now we use this inequality to prove the main result. From (2.17 ),

we know that

dpn,qn(Ĝn, G
∗
n) ≤ Vn(An/n)1/2d4(G∗

n, Ĝn)1/2 log(1/d4(G∗
n, Ĝn)),
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which, together with Lemma 2.4.10 , yields that

dpn,qn(Ĝn, G
∗
n) .Vn(An/n)1/2

(
Tn ∧ c−1/κ

n

)− κ
2(κ+1) dpn,qn(Ĝn, G

∗
n)

κ
2(κ+1)

· [ log(1/dpn,qn(Ĝn, G
∗
n)) + log(b1(κ)(Tn ∧ c−1/κ

n ))],

which simplifies to be

dpn,qn(Ĝn, G
∗
n) . V

2κ+2
κ+2

n

(
An log2 n

n

)κ+1
κ+2 (

Tn ∧ c−1/κ
n

)− κ
κ+2 .

where we used the fact that dpn,qn(Ĝn, G
∗
n) & 1/n. Therefore, under En, (2.18 ) implies that

E[dpn,qn(Ĝn, G
∗
n)] .

(
An log2 n

n

)κ+1
κ+2 (

Tn ∧ c−1/κ
n

)− κ
κ+2 .

On the other hand, under Ec
n, we have

d4(Ĝn, G
∗
n) ≤

√
An/n.

By Lemma 2.4.10 we know dp,q(Ĝn, G
∗
n) is also bounded by

√
An/n. Since (κ+1)/(κ+2) ≤ 1,

the rate under En dominates and the proof is complete.

Proof of Theorem 2.2.2 

Proof First, we verify that the Tsybakov noise condition holds for κ = 1 in our setting.

The proof is based on the fact that a ReLU network is piecewise linear and the number of

linear pieces is quantifiable. Assumption (A3) implies (Nn) with cn, 1/Tn = O(log n)m∗d2L∗
n

and κ = 1. In the case where p, q have disjoint support, obviously κ can be arbitrarily large.

Next, we consider the bracketing number of Gn defined via Fn that Gn = {x ∈ X : f(x) ≥

0, f ∈ Fn}. From Lemma 2.4.14 we have

log NB(δ,Gn, d4) . NLd2
d2
(
Ld2 log(N) ∨ log(1/δ)

)
.
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Thus, An = O(Nn)d2Ln as in (2.14 ) if δ � 1/N . Recall from assumption (A2) and (A3) that

Ln = O(1), Nn = O(log n)m and 1/Tn, cn = O(log n)m∗d2L∗
n . Applying Lemma 2.4.17 with

κ = 1 we have that the excess risk has upper bound

sup
(p,q)∈F̃∗

n

E[E(f̂n, C∗
n)]

.

(
An log2 n

n

) 2
3 (
T−1
n ∧ cn

) 1
3

.
( 1
n

) 2
3

(log n)
2
3 (md2Ln+2)+ 1

3m
∗d2L∗

n .

Corollary 2.2.3.1 easily follows from the fact that p, q having disjoint support implies κ = ∞

in (Nn).

2.4.7 Proof of Theorem 2.2.3 

We will show that the lower bound holds in special case that (1) assumption (A3) satisfies

cn, 1/Tn being absolute constants that doesn’t depend on n; (2) instead of general ReLU

neural network f ∗
n ∈ F∗, we consider a special structure where f ∗

n is linear in one of the

dimensions, reminiscent of the “boundary fragment” assumption. In this special case, we are

able to show the best possible convergence rate already matches that in Theorem 2.2.2 . For

ease of notation, we omit the subscript n and write pn, qn as p, q if no confusion arises.

Proof The proof is very similar to that of Theorem 2.1.3 . For completeness, the full proof is

shown. Without loss of generality, let X = [0, 1]d. Consider the “boundary fragment” setting

and let G̃n be a set defined by a ReLU network family F̃n containing functions from Rd−1 to

R:

G̃n = {(x1, · · · , xd) ∈ [0, 1]d : 0 ≤ xj ≤ h(x−j), h ∈ F̃n, j = 1, · · · , d},

where x−j = (x1, · · · , xj−1, xj, · · · , xd). Notice that if h(x−j) is a ReLU network on Rd−1, then

h̃(x) = h(x−j) − xj is a ReLU network on Rd. Thus G̃n is a subset of Gn which corresponds

to the student network that

Gn = {x ∈ X : f(x) > 0, f ∈ Fn} (2.19)
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Let G̃n denote the empirical 0-1 loss minimizer over G̃n. To show the lower bound, consider

the subset of DG̃n (2.13 ) that contains all pairs like (p, q0), where p ∈ F1, q0 will be specified

later. Then,

sup
(p,q)∈DG̃n

Ed4(G̃n, G
∗) ≥ sup

(p,q0):p∈F1

Ed4(G̃n, G
∗)

≥ Eq0

 1
|F1|

∑
p∈F1

Ep[d4(G̃n, G
∗)|Dq0 ]

 ,
where F1 is a finite set to be specified later, p, q0 are the underlying densities for the two

labels and Dq0 denotes all the data generated from q0.

For ease of presentation, we first give the proof for the case d = 2 and then extend to

general d. Let φ(t) be a piecewise linear function supported on [ − 1, 1] defined as

φ(t) =



t+ 1 −1 < t ≤ 0,

−t+ 1 0 < t < 1,

0 |t| ≥ 1.

Rewrite φ as φ(t) = σ(t+ 1) −σ(t) +σ(−t+ 1) −σ(−t) − 2, which is a one hidden layer ReLU

neural network with 11 non-zero weights that are either 1 or −1. For x = (x1, x2) ∈ [0, 1]2,

define

q0(x) =(1 − η0 − b1)I{0 ≤ x2 < 1/2} + I{1/2 ≤ x2 < 1/2 + e−M}

+ (1 + η0 + b2)I{1/2 + e−M ≤ x2 ≤ 1},

where M ≥ 2 is an integer to be specified later. Let b1 = c
−1/κ
2 e−M/κ and b2 > 0 be chosen

such that q0 integrates to 1 (so q0 is a valid probability density).

For j = 1, 2, · · · ,M and t ∈ [0, 1], let

ψj(t) = e−Mφ
(
M
[
t− j − 1

M

])
.
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Note that ψj is only supported on [ j−1
M
, j
M

]. For any vector ω = (ω1, · · · , ωM ) ∈ Ω := {0, 1}M ,

define

bω(t) =
M∑
j=1

ωjψj(t),

and

pω(x) =1 +
[

1/2 + e−M − x2

c2

]1/κ

I{1/2 ≤ x2 ≤ 1/2 + bω(x1)}

− b3(ω)I{1/2 + bω(x1) < x2 ≤ 1},

where b3(ω) > 0 is a constant depending on ω chosen such that pω(x) integrates to 1. Let

F1 = {pω : ω ∈ Ω} and we will show that (pω, q0) ∈ DG̃n for all ω ∈ Ω.

To this end, we need to verify that

(a) pω(x) ≤ c1 for x ∈ [0, 1]2;

(b) {x ∈ X : pω(x) ≥ q0(x)} ∈ Gn;

(c) Q{x ∈ X : |pω(x) − q0(x)| ≤ η} ≤ c2η
κ.

For (a), since pω integrates to 1,

b3(ω) ≤ max
{1/2≤x2≤1/2+bω(x1)}

[
1/2 + e−M − x2

c2

]1/κ

= O(e−M/κ).

Thus, pω(x) ≤ c1 for a large enough M and some absolute constant c1. For (b), notice that

{x : pω(x) ≥ q0(x)} = {x : 0 ≤ x2 ≤ 1/2 + bω(x1)}

= {x ∈ [0, 1]2 : bω(x1) − σ(x2) + 1/2 ≥ 0} ∈ Gn,

where the last inclusion follows from the definition of Gn (2.19 ) and the fact that bω(x1) −

σ(x2) + 1/2 is a ReLU neural network with one hidden layer, whose width and number

of non-zero weights are both O(M). Later we will see that M = O(log n), and thus the
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constructed neural network satisfies all the size constraints in Theorem 2.2.2 . For (c), it

follows that

Q{x ∈ X : |pω(x) − q0(x)| ≤ η}

≤Q{x ∈ X : 1/2 ≤ x2 ≤ 1/2 + e−M ,

[
1/2 + e−M − x2

c2

]1/κ

≤ η}

≤Q{x ∈ X : 1/2 + e−M − c2η
κ ≤ x2 ≤ 1/2 + e−M}

≤c2η
κ.

Since the above (a)-(c) hold and by the definition of DG̃n (2.13 ), we conclude that (pω, q0) ∈

DG̃n for all ω ∈ Ω . We next establish how fast S := |F1|−1∑
p∈F1 Ep[d4(G̃n, G

∗)|Dq0 ] can

converge to zero. To this end, we use the Assouad’s lemma stated in [57 ] which is adapted to

the estimation of sets.

For j = 1, · · · ,M and ω = (ω1, · · · , ωM) ∈ Ω, let

ωj0 = (ω1, · · · , ωj−1, 0, ωj+1, · · · , ωM)

ωj1 = (ω1, · · · , ωj−1, 1, ωj+1, · · · , ωM)

For i = 0 and i = 1, let Pji be the probability measure corresponding to the distribution of

x1, · · · , xn when the underlying density is fωji . Denote the expectation w.r.t. Pji as Eji. Let

Dj = {x ∈ X : 1/2 + bωj0(x1) < x2 ≤ 1/2 + bωj1(x1)}

= {x ∈ X : bωj0(x1) < x2 − 1/2 ≤ bωj0(x1) + ψj(x1)}.
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Then

S ≥ 1/2
M∑
j=1

Q(Dj)
∫

min{dPj1, dPj0}

≥ 1/2
M∑
j=1

∫ 1

0
ψj(x1)dx1

∫
min{dPj1, dPj0}

≥ 1/2
M∑
j=1

e−M
∫
φ(Mt)dt

∫
min{dPj1, dPj0}

≥ 1
4

M∑
j=1

e−M
∫
φ(Mt)dt

[
1 −H2(P10, P11)/2

]n
,

where H(·, ·) denotes the Hellinger distance. Then it holds that

H2(P10, P11) =
∫ [√

fω10(x) −
√
fω11(x)

]2
dx

≤
∫ 1

0


∫ 1/2+ψ1(x1)

1/2

1 −

√√√√1 +
(

1/2 + e−M − x2

c2

)1/κ


2

dx2

+
∫ 1

1/2

[√
1 − b3(ω10) −

√
1 − b3(ω11)

]2
dx2

dx1

≤
∫ 1

0

∫ e−M

e−M −ψ1(x1)

1 −
√

1 +
(
v

c2

)1/κ
2

dvdx1

+ |b3(ω10) − b3(ω11)|2.

We will analyze the last two terms. For the first term,

∫ 1

0

∫ e−M

e−M −ψ1(x1)

1 −
√

1 +
(
v

c2

)1/κ
2

dvdx1

≤
∫ 1

0

∫ e−M

e−M −ψ1(x1)

(
v

c2

)2/κ
dvdx1

≤ κc
−2/κ
2

κ+ 2

∫ 1

0

(
e−M

)1+2/κ
−
(
e−M − ψ1(x1)

)1+2/κ
dx1

≤ κc
−2/κ
2

κ+ 2
(
e−M

)1+2/κ ∫ (
1 − (1 − φ(Mt))1+2/κ

)
dt

= O
( 1
M

e−M(1+2/κ)
)
.
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For the second term, notice that

∫ 1

0

∫ 1/2+bω(x1)

1/2

[
1/2 + e−M − x2

c2

]1/κ

dx2dx1 = b3(ω) [1/2 − bω(x1)]

which yields

b3(ω11) = 1
1/2 − bω11(x1)

∫ 1

0

∫ 1/2+bω11 (x1)

1/2

[
1/2 + e−M − x2

c2

]1/κ

dx2dx1

≤ Mc
−1/κ
2

1/2 − e−M

∫ 1

0

∫ e−M

e−M (1−φ(Mx1))
u1/κdudx1

= Mc
−1/κ
2

(1/2 − e−M)(1 + 1/κ)e−M(1+1/κ)
∫

(1 − (1 − φ(Mt))1+1/κ)dt

≤ c
−1/κ
2

(1/2 − e−M)(1 + 1/κ)e−M(1+1/κ)

= O
(
e−M(1+1/κ)

)
.

Hence, |b3(ω11) − b3(ω10)| = O
(
e−M(1+1/κ)

)
. Unifying the above, we have

H2(P10, P11) = O
( 1
M

e−M(1+2/κ) ∨ e−M(2+2/κ)
)

= O
( 1
M

e−M(1+2/κ)
)
.

Now choose M as the smallest integer such that

M ≥ κ

κ+ 2 log n.

Then we have H2(P10, P11) ≤ C∗n−1 (1 + o(1)) for some constant C∗ depending only on

κ, c2, φ, and ∫
min{dPj1, dPj0} ≥ 1/2

[
1 − C∗

2 n−1(1 + o(1))
]n

≥ C∗
1

for n large enough and C∗
1 is another absolute constant depending only on C∗. Thus for n

large enough,

S ≥ 1
4C

∗
1e−M

∫
φ(t)dt ≥ C∗

2n
− κ

κ+2 ,
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in which the constant C∗
2 only depends on κ, c2 and φ.

Combining all the results so far we get that

lim inf
n→∞

inf
G̃n

sup
(p,q)∈DG̃n

n
κ

κ+2E[d4(G̃n, G
∗)] > 0,

which holds when d = 2. Using Lemma 2.4.10 , we have

lim inf
n→∞

inf
G̃n

sup
(p,q)∈DG̃n

n
κ+1
κ+2E[dp,q(G̃n, G

∗)] > 0.

Using the same argument as in the proof of Theorem 2.2.2 , we get κ = 1, which will give us

the rate 2/3.

The proof for general d can be derived similarly. We treat the last dimension xd as x2 in

the d = 2 case and treat x−d := (x1, · · · , xd−1) as x1 in the d = 2 case. Define

q0(x) =(1 − η0 − b1)I{0 ≤ xd < 1/2} + I{1/2 ≤ xd < 1/2 + e−M}

+ (1 + η0 + b2)I{1/2 + e−M ≤ xd ≤ 1},

and

pω(x) =1 +
[

1/2 + e−M − x2

c2

]1/κ

I{1/2 ≤ xd ≤ 1/2 + bω(x−d)}

− b3(ω)I{1/2 + bω(x−d) < xd ≤ 1},

where bω(x−d) is constructed similarly as a shallow ReLU neural network that

bω(x−d) =
M∑

j1,··· ,jd−1=1
ωj1,··· ,jd−1ψj1,··· ,jd−1(x−d),

where ωj1,··· ,jd−1 are binary 0, 1 variables and

ψj1,··· ,jd−1(x−d) = e−Mφ
(
M
[
x−d −

( j1 − 1
M

, · · · , jd−1 − 1
M

)])
,
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where φ(·) is a shallow ReLU neural network with input dimension d − 1 satisfying the

following conditions:

• φ = 0 outside [ − 1, 1]d and φ ≤ 1 on [ − 1, 1]d;

• maxx−d∈[−1,1]d φ(x−d) ≤ 1 and φ(0) = 1.

Such a construction is similar to the “spike” function in [95 ] and it requires O(d2) non-zero

weights. The rest of the proof follows the d = 2 case.

2.4.8 Proof of Theorem 2.2.6 

One important observation to be used in the proof is that the Bayes classifier under hinge

loss is the same as that under 0-1 loss, i.e. f ∗
φ(x) = C∗(x). To show the upper bound on

excess risk convergence rate, we utilize the following lemma from [58 ]. Let η(x) denote the

conditional probability of label 1 that η(x) = P(y = 1|x).

Lemma 2.4.18 [Theorem 6 of [58 ]] Let φ be the hinge loss. Assume (N) with the noise

exponent κ ∈ [0,∞], and that following conditions (C1) through (C4) hold.

(C1) For a positive sequence an = O(n−a0) as n → ∞ for some a0 > 0, there exists a

sequence of function classes {Fn}n∈N such that Eφ(fn, f ∗
φ) ≤ an for some fn ∈ Fn.

(C2) There exists a real valued sequence {Fn}n∈N with Fn & 1 such that supf∈Fn
‖f‖∞ ≤ Fn.

(C3) There exists a constant ν ∈ (0, 1] such that for any f ∈ Fn and any n ∈ N,

E
[{
φ(Y f(X)) − φ(Y f ∗

φ(X))
}2
]

≤ C2F
2−ν
n {Eφ(f, f ∗

φ)}ν

for a constant C2 > 0 depending only on φ and η(·).

(C4) For a positive constant C3 > 0, there exists a sequence {δn}n∈N such that

HB(δn,Fn, ‖ · ‖2) ≤ C3n

(
δn
Fn

)2−ν

,

for {Fn}n∈N in (C1), {Fn}n∈N in (C2), and ν in (C3).
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Let ε2
n � max{an, δn}. Assume that n1−ι(ε2

n/Fn)(κ+2)/(κ+1) & 1 for an arbitrarily small

constant ι > 0. Then, the empirical φ-risk minimizer f̂φ,n over Fn satisfies

E
[
E(f̂φ,n, C∗)

]
. ε2

n.

In Lemma 2.4.18 , condition (C1) guarantees the approximation error of fn to f ∗
φ to be

sufficiently small. For condition (C3), we introduce the following lemma, which is reminiscent

of Lemma 2.4.10 in the sense that it characterizes the relationship between the Eφ(f, f ∗
φ) and

the some other distance measure between f and f ∗
φ.

Lemma 2.4.19 (Lemma 6.1 of [96 ]) Assume (N) with the Tsybakov noise exponent κ ∈

[0,∞]. Assume ‖f‖∞ ≤ F for any f ∈ F . Under the hinge loss φ, for any f ∈ F ,

E
[(
φ(Y f(x)) − φ(Y f ∗

φ(x))
)2
]

≤ Cη,κ(F + 1)(κ+2)/(κ+1)
(
E
[
φ(Y f(x)) − φ(Y f ∗

φ(x))
])κ/κ+1

,

where Cη,κ =
(
‖(2η − 1)−1‖κκ,∞ + 1

)
I(κ > 0) + 1 and ‖(2η − 1)−1‖κκ,∞ is defined by

‖(2η − 1)−1‖κκ,∞ = sup
t>0

(
tκ Pr

(
{x : |(2η(x) − 1)−1| > t}

))
.

Proof of Theorem 2.2.6 

Proof The lower bound directly follows from Theorem 2.2.3 , as the constructed ReLU neural

network in the proof also satisfy assumption (A2φ).

For the upper bound on the convergence rate, we utilize Lemma 2.4.18 and check the

conditions (C1) through (C4). Since the student network is larger than the teacher, (C1) and

(C2) trivially hold with arbitrarily small an and Fn = O(log n) as assumed. To apply Lemma

2.4.19 , notice that Cη,κ = O(cn) = O(log n)m∗d2L∗
n by assumption (A3) and F = O(log n), we

have (C3) holds for ν = κ/(κ+ 1) + εn, where εn = (2 +m∗d2L∗
n) log log n/ log n. The term

εn is to deal with the fact that Cη,κ can also diverge at an O(log n)m∗d2L∗
n rate.
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For (C4), by Lemma 2.4.15 ,

log N (δn,FDNN(Ln, Nn, Sn, Bn, Fn), ‖ · ‖∞)

≤ 2Ln(Sn + 1) log
(
δ−1
n (Ln + 1)(Nn + 1)(Bn ∨ 1)

)
. (log n)2m+2 log

(
δ−1
n ∨ logm(n)

)
.

Therefore, (2.4.18 ) implies that (C3) is satisfied if we choose δn with

δ
κ+2
κ+1
n &

(log n)2m+2+(κ+2)/(κ+1)+2+m∗d2L∗
n+1

n
,

which can be satisfied by choosing

δn =
(

(log n)2m+m∗d2L∗
n+7

n

)κ+1
κ+2

.

Similar to the proof of Theorem 2.2.2 , the Tsybakov exponent κ = 1. Thus, by Lemma 2.4.18 

with ε2
n = δn, the proof of Theorem 2.2.6 is completed.

2.4.9 Proof of Theorem 2.2.1 

In this section, Assumption (A3) will be examined in the setting that the teacher network

f ∗
n has random weights. We will argue that with probability at least 1 − δ, f ∗

n will satisfy

assumption (A3) with Tn = A(δ)/(log n)m∗d2Ln and cn = B(δ)(log n)m∗dL∗
n(L∗

n+1), where

A(δ), B(δ) are constants depending only on δ and the distribution of the random weights,

e.g. normal, truncated normal, etc. Hence, the results which assume Assumption (A3) will

hold with high probability.

A Toy Case To illustrate the intuition, consider the case where d = 1 and f ∗
n is the

following one hidden-layer ReLU neural network

f ∗
n(x) =

N∗
n∑

j=1
w2jσ(w1jx+ bj) + b, x ∈ [0, 1], (2.20)
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with L∗
n = 1, N∗

n = O(log n) and w1j, w2j, bj, b are i.i.d. standard Gaussian. Since all the

weights are almost surely nonzero, we omit the zero weight cases for the analysis. Let

pi = (ui, vi), i = 1, 2, . . . , s, denote the active pieces of (2.20 ). By Lemma 2.4.12 , we know

that s = O(log n). For each pi, define the following quantities:

1. ki = the slope of f ∗
n(x) on x ∈ pi;

2. ti = maxx∈pi f
∗
n(x) ∧ maxx∈pi −f ∗

n(x).

See Figure 2.9 for an illustration. Then, assumption (A3) is satisfied if

min
i

{|ki|} = Ω(1/ log2 n) and min
i

{ti} = Ω(1/ log n). (2.21)

Next we will rigorously examine (2.21 ).

From (2.20 ), each ki can be expressed as ∑j∈J w1jw2j for some index set J ⊂ {1, 2, · · · , N∗
n}.

Notice f ∗
n has at most N∗

n + 1 pieces and denote the corresponding index sets to be

J0, J1, · · · , JN∗
n
. As a result, min1≤i≤N∗

n
{|ki|} = minJ0,...,JN∗

n
{|∑i∈Ji w1jw2j|}. Since w1j, w2j are

i.i.d. standard Gaussian, we have

P( min
0≤i≤N∗

n

{|ki|} < k) = P( min
0≤i≤N∗

n

{|
∑
j∈Ji

w1jw2j|} < k)

≤
N∗

n∑
i=0

P

∣∣∣∣∣∣
∑
j∈Ji

w1jw2j

∣∣∣∣∣∣ < k


≤ (N∗

n + 1)P
(√

|w11w21| <
√
k
)

≤ 2(N∗
n + 1)

√
k.

By choosing k =
(

δ
2(N∗

n+1)

)2
, we have min1≤i≤N∗

n
{|ki|} = Ω(1/log2 n) with probability at least

1 − δ.

On the other hand, for any i = 1, . . . , s, ti = |f ∗
n(xhi)| for some hi ∈ {1, · · · , N∗

n}, where

xhi = −bhi/w1hi . Hence

min
1≤i≤s

{ti} ≥ min
1≤j≤N∗

n

{|f ∗
n(xj)|}.
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Figure 2.9. Example of a ReLU function in [0, 1]. There are two active pieces
p1, p2. On each active piece, ti.ki are illustrated in color red.

Let W1 = {w1j, bj}N
∗
n

j=1. Then, f ∗
n(xi) |W1 ∼ N(0, σ2

xi
), where σ2

xi
has an expression of∑N∗

n
j=1 σ(w1jxi + bj)2 + 1. Hence, for any t > 0,

P(min
i≤N∗

n

{|f ∗
n(xi)|} < t |W1) ≤

N∗
n∑

i=1
P(|f ∗

n(xi)| < t |W1)

= N∗
nP(|f ∗

n(xi)| < t |W1) ≤ N∗
n

(
t

σxi

)
.

Since σxi ≥ 1, by taking t = δ/N∗
n, we have that with probability at least 1 − δ, mini{ti} ≥ t

and t = Ω(1/ log n). Therefore, (2.21 ) holds with high probability, so that assumption

(A3) holds by setting 1/cn = mini{|ki|} and Tn = mini{ti}, which are both in the order of

Ω(1/ log n).

General Case Now we consider the general case d > 1 and L∗
n > 1. The teacher network

has an expression

f ∗
n(x) = W (L∗

n+1)σ(W (L∗
n),b(L∗

n)) ◦ · · · ◦ σ(W (1),b(1))(x) + b(L∗
n+1),x ∈ [0, 1]d.

Let N∗
n = O(log n)m∗ . By Lemma 2.4.12 , f ∗

n has linear pieces p1, . . . , ps for s = O(log n)m∗L∗
nd.

Let {xi,x2, . . . ,xvs} be the collection of vertices of {p1, . . . , ps}. We call such xi ∈ Rd a piece

vertex and it’s not the same as the vertex of {x ∈ X : fn(x) ≥ 0}, which is closely examined

in the proof of Lemma 2.4.14 . The following lemma states that vs = O(log n)m∗L∗
nd

2 .

Lemma 2.4.20 Let f be a ReLU neural network with d-dimensional input, L hidden layers

and width N for every layer. Then, vs = O(N)Ld2.
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Proof Recall that w
(l)
i and b(l)

i for i = 1, . . . , N , 1 ≤ l ≤ L are the weight vectors and biases

on the l-th hidden layer. For i = 1, . . . , N , define

f
(l−1)
i (x) = w

(l)
i σ(W (l−1),b(l−1)) ◦ · · · ◦ σ(W (1),b(1))(x) + b

(l)
i ,

which maps Rd → R. We can rewrite f as

f(x) =
N∑

i=1
w

(L+1)
i σ(f (L−1)

i (x)) + b(L+1), (2.22)

In other words, f (L−1)
i (x) represents the inputs to the i-th ReLU unit in the last hidden layer

of f and itself is an (L− 1)-hidden-layer ReLU neural network.

The key idea of the proof is by induction. Notice that the piece vertices of f can only

come from the following two ways: Type I: The piece vertices of f (L−1)
1 , f

(L−1)
2 , . . . , f

(L−1)
N , in

whose local neighbourhoods, the ReLU units in the last layer doesn’t change sign; Type II:

By activations of the ReLU unit in the last layer. i.e. f (L−1)
i (x) = 0 for some i = 1, . . . , N .

Let V (l) be the maximum number of piece vertices of an l-hidden-layer ReLU neural network

with width N and let U(l) be the maximum number of Type II piece vertices created at layer

l. Then for 1 < l ≤ L we have

V (l) ≤ NV (l − 1) + U(l). (2.23)

For U(l), the key is to connect the Type II piece vertices of f to the vertices of {x ∈

X : f (L−1)
i (x) ≥ 0}, which has been extensively studied in Lemma 2.4.14 . To this end, we

define another quantity. On the i-th ReLU unit in the l-th hidden layer, let R(l)
i := {x ∈

X : f (l)
i (x) = 0}, which consists of (d− 1)-dimensional hyperplane segments. To be specific,

denote all the active pieces of f (l)
i (x) to be {p(l)

ij : j = 1, . . . , s(l)
i }, where s(l)

i = O(N)(l−1)d

according to Lemma 2.4.12 for any 1 ≤ i ≤ N . On each active piece p(l)
ij , denote

h
(l)
ij = {(x, f (l)

i (x)) : x ∈ p
(l)
ij } ∩ {(x, 0) : x ∈ p

(l)
ij },
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which is part of a (d−1)-dimensional hyperplane. Then we have R(l)
i = {h(l)

ij : j = 1, . . . , s(l)
i }, a

collection of (d− 1)-dimensional hyperplane segments. Let R(l) = ∪N
i=1R

(l)
i , which corresponds

to the piece boundaries of f l+1.

By definition, all Type II pieces vertices must reside in at least one of the the activation sets

(z = 0 in σ(z)) of the ReLU units in the last layer. R(L) contains all such activation sets for

the last hidden layer, i.e. for any h ∈ R, there exists 1 ≤ i ≤ N such that fi(x) = 0, ∀x ∈ h.

The Type II pieces vertices are jointly determined by such activation sets and the piece

boundary of fi’s (dimension d − 1), i.e. R(L−2)
i . Therefore, the total number of such piece

vertices can be bounded by

U(l) ≤
(∣∣∣R(l−1)

∣∣∣+ ∣∣∣R(l−2)
∣∣∣

d

)
= O(N)(l−1)d2+d,

where
∣∣∣R(l)

∣∣∣ denotes the number of elements in R(l), which is bounded by O(N)(l−1)d+1.

For V (L), we first conclude that V (1) = O(Nd). For a 1-hidden layer ReLU network, the

decision boundary of every ReLU unit is a (d−1)-dimension hyperplane, i.e. {x : w1x+b1 = 0}.

The maximum number of piece vertices is bounded by
(
N
d

)
= O(Nd). Then, (2.23 ) can be

repeatedly broken down as

V (L) ≤ NV (L− 1) + U(L)

≤ N2V (L− 2) +NU(L− 1) + U(L)

≤ · · ·

≤ NL−1V (1) +
L−1∑
l=0

N lU(L− l)

= O
(
NL−1+d

)
+O

(
L−1∑
l=0

N (L−l−1)d2+d+l
)

= O
(
N (L−1)d2+d

)
= O

(
NLd2)

.

As an extension to the toy case, for any 1 ≤ i ≤ s, define

1. ki = minj=1,...,d
{∣∣∣∂f∗

n(x)
∂xj

∣∣∣ : x ∈ pi
}
;
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2. t0 = min1≤i≤vs {|f ∗
n(xi)|} .

That is, ki is the minimal absolute values of the directional derivatives of f ∗
n on piece pi.

Assumption (A3) is satisfied if the following holds:

min
1≤i≤s

{ki}, t0 = Ω(log n)m∗d2L∗2
n . (2.24)

We will check (2.24 ). The partial derivative of f ∗
n(x) for x ∈ pi can be expressed as sum

of the product of the random weights, i.e. ∑J

∏L∗
n+1

l=1 w
(l)
Jl

, where w(l)
Jl

is an element from W (l)

and J is some collections of L∗
n + 1 index pairs, e.g. {(il, jl)}L

∗
n+1

l=1 . There are s pieces and

denote the corresponding index sets by J1, J2, · · · , Js. Then we have

min
1≤i≤s

{ki} = min
1≤i≤s

∣∣∣∣∣∣
∑
J=Ji

L∗
n+1∏
l=1

w
(l)
Jl

∣∣∣∣∣∣ ,
Since all the weights are i.i.d. from standard normal distribution, we have for any index set

J that

P

∣∣∣∣∣∣
∑
J

L∗
n+1∏
l=1

w
(l)
Jl

∣∣∣∣∣∣ < k

 ≤ P

∣∣∣∣∣∣
L∗

n+1∏
l=1

w
(l)
1,1

∣∣∣∣∣∣ < k

 .
Therefore,

P( min
1≤i≤s

{ki} < k) ≤
Js∑

J=J1

P

∣∣∣∣∣∣
∑
J

L∗
n+1∏
l=1

w
(l)
Jl

∣∣∣∣∣∣ ≤ k


≤ s P


∣∣∣∣∣∣
L∗

n+1∏
l=1

w
(l)
1,1

∣∣∣∣∣∣
1/(L∗

n+1)

< k1/(L∗
n+1)


. s k1/(L∗

n+1).

By taking

k0 = Ω
(

δ

(N∗
n)L∗

nd

)L∗
n+1

,

we have that with probability at least 1−δ, min1≤i≤s{ki} ≥ k0 and k0 = Ω(1/ log n)m∗Ln(L∗
n+1)d.
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On the other hand, for any ti, there exist j = 1, . . . , vs such that ti = f ∗
n(xj). Hence

min
i=1,...,vs

{ti} ≥ min
j=1,...,vs

{|f ∗
n(xj)|}.

Let W−L∗
n

:= {W (l), b(l)}L
∗
n

l=1. Then we have f ∗
n(xj) | W−L∗

n
∼ N(0, σ2

xj
), where σ2

xj
depends

on W−L∗
n

and σ2
xj

≥ 1 that

σ2
xj

| W−L∗
n

: =
NL∗

n∑
i=1

σ2
i (xj) + 1,

which is reminiscent of (2.22 ) and NL∗
n

is the width of the last layer and σj(·)’s are outputs

(post-activations) from the last layer given W−L∗
n
. Therefore, for any t > 0, we have

P( min
1≤j≤vs

{|f ∗
n(xj)|} < t | W−L∗

n
) ≤

vs∑
j=1

P(|f ∗
n(xj)| < t | W−L∗

n
)

= vsP(|f ∗
n(x1)| < t | W−L∗

n
)

≤ vs

(
t

σxi

)
≤ t(N∗

n)d2L∗
n .

Thus by taking t = δ/(N∗
n)d2L∗

n , we have that with probability at least 1 − δ, mini{ti} ≥ t

and t = Ω(1/ log n)m∗d2L∗
n . Therefore, (2.24 ) holds. That is to say, when d ≥ 2, with high

probability, Assumption (A3) holds in which cn, 1/Tn = O(log n)m∗d2L∗2
n .

Notice that the probability arguments used in this section don’t rely on Gaussian distri-

bution. As long as all weights are i.i.d. with distribution that doesn’t have a point mass at 0,

our claim holds.
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3. STATISTICAL OPTIMALITY WITH ALGORITHMIC

GUARANTEES

In the previous section, we have extended the nonparametric theory of deep learning by

establishing statistical optimality of DNNs under various new settings. However, this type

of results has two limitations. Firstly, they only apply to the empirical risk minimizer

or some specially constructed DNNs without any algorithmic guarantee. Secondly, the

theoretical analysis relies on delicate complexity control of the DNN family and cannot handle

overparametrization, which is very common in practice. Therefore, statistical optimality

without algorithmic guarantees are less helpful in understanding deep neural network models.

Recently, many efforts have been devoted to provable deep learning methods with al-

gorithmic guarantees, particularly training overparametrized neural networks by gradient

descent (GD) or other gradient-based optimization. It has been shown that with enough

overparametrization, e.g., neural network width tends to infinity, training DNN resembles a

kernel method with a specific kernel called as “neural tangent kernel” (NTK) [23 ]. In the

NTK regime, GD can provably minimize the training error to zero in both regression [16 ], [17 ],

[97 ], [98 ] and classification [99 ]–[101 ] settings. Corresponding generalization error bounds are

developed to ensure prediction performance on unseen data. However, a closer inspection of

these generalization results reveals that they only hold under the noiseless assumption, i.e.,

the response variable is deterministic given the explanatory variables. For overparametrized

neural networks, the training loss can be minimized to zero so that the generalization error

equals the population loss, which cannot be zero in the presence of noises. As random noises

are ubiquitous in the real world, theoretical guarantees and provable learning algorithms that

take into account of random noises are much needed in practice.

In contrast, classic nonparametric statistics literature demonstrate that in the presence of

noises, the L2 estimation error can still go to zero with possibly optimal rates as established

in [48 ]. To further investigate how overparametrized neural networks trained via GD work

and how well they can learn the underlying true function with noisy data, we consider the

classic nonparametric regression setting (1.2 ). In this section, we consider neural network

estimators f̂ produced by overparametrized one-hidden-layer ReLU neural networks, where
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the number of neurons can be much larger than the sample size, and investigate how fast the

L2 estimation error ‖f̂ − f ∗‖2 converges to zero as sample size grows. The main contributions

in this section are:

• We prove that overparametrized one-hidden-layer ReLU neural networks trained using

GD do not recover the true function in the classic nonparametric regression setting (1.2 ),

i.e., the L2 estimation error is bounded away from zero as sample size goes to infinity.

To predict well on unseen data, a delicate early stopping rule has to be deployed.

• We analyze the `2-regularized GD trajectory and show that the `2 penalty on network

weights amounts to penalizing the reproducing kernel Hilbert space (induced by NTK)

norm of the associated neural network. With `2 regularization, overparametrized neural

network trained by GD resembles the solution of kernel ridge regression.

• We further prove that by adding proper `2 regularization, overparametrized neural

network trained by GD achieves the minimax-optimal L2 convergence rate n−d/(4d−2),

in recovering the ground truth in (1.2 ).

The correspondence between overparametrized neural network trained by `2-regularized

GD and kernel ridge regression is nontrivial and technically challenging. In spite of the

well-established equivalence between NTK and infinite-width DNN trained by GD, there is a

huge technical gap for finite-width overparametrized neural networks, especially when the

training objective includes explicit regularization terms.

To sum up, this work broadens the current scope of the NTK literature and connects the

recent advances in deep learning theory, e.g., analyzing the trajectory of GD updates, implicit

bias of overparametrization, etc., to the classical results in nonparametric statistics. More

specifically, our findings not only contribute to the theoretical (in particular, nonparametric)

understanding of training overparametrized DNN on noisy data but also promotes the use of

`2 penalty or weight decay in practice for better theoretical guarantees.
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3.1 Overparametrized Neural Networks and Kernel Methods

Overparametrized neural networks trained by gradient descent can provably overfit any

training data. As the width goes to infinity, training DNN under resembles kernel regression

and the corresponding kernel is called Neural Tangent Kernel (NTK).

Neural Tangent Kernel The seminal paper [23 ] proves that the evolution of DNNs

during training can be described by the so-called neural tangent kernel, which is central

to characterize the convergence and generalization behaviors. [16 ], [17 ], [97 ] investigate

specifically for one-hidden-layer ReLU neural networks and show explicitly that with enough

overparametrization, the weight vectors and the corresponding NTK do not change much

during GD training. Similar investigations have been done for other neural networks and

other settings [98 ], [100 ]. Among others, [17 ], [102 ] provide generalization error bounds and

provable learning scenarios, but only hold for noiseless data.

For noisy data, explicit regularizations have recently been considered in the NTK literature.

[103 ] promote the `2 penalty when using NTK by showing that in a constructed classification

example, sample efficiency can benefit from the regularization. [104 ] consider classification

with noisy labels and propose to add `2 regularization to ensure robustness. However, their

analyses only apply to the kernel estimator directly using NTK and only relate to infinite

width neural networks, which greatly restricts the model class capacity. As pointed out before,

bridging the technical gap between NTK and finite-width overparametrized neural networks is

technically challenging when the training objective includes an `2 regularization term and we

should not take it for granted. [105 ] demonstrate the similarity between the Laplace kernels

and ReLU NTKs. However, in order for NTK to be a good characterization of neural network

training, how wide is wide enough remains an active field of research [106 ]. In comparison, we

directly analyze GD trajectories of training finite-width neural networks (with and without

`2 regularization) and prove that the corresponding NTK solutions can be well-approximated

after a polynomial number of GD iterations. To the best of our knowledge, we are among the

first to rigorously establish the L2 convergence rate for trained neural networks under noisy

data. [107 ] recently provide similar convergence rate analysis by considering a particular
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penalized stochastic gradient descent algorithm but they require the neural network width to

be exponential with n.

Our algorithm-dependent statistical analysis bridges the gap between these two types of

research. Based on the GD trajectories and the corresponding NTK, we are able to analyze

the trained overparametrized neural networks within the nonparametric framework and show

they can also achieve the optimal convergence rate with proper regularizations.

Neural Network Setup Consider the one-hidden-layer ReLU neural network family F

with m nodes in the hidden layer, expressed as

fW ,a(x) = 1√
m

m∑
r=1

arσ(w>
r x),

where x ∈ Rd denotes the input, W = (w1, · · · ,wm) ∈ Rd×m is the weight matrix in

the hidden layer, a = (a1, · · · , am)> ∈ Rm is the weight vector in the output layer, σ(z) =

max{0, z} is the rectified linear unit (ReLU). The initial values of the weights are independently

generated from

wr(0) ∼ N(0, τ 2Im), ar ∼ unif{−1, 1}, ∀r ∈ [m].

When m � n, the neural network is highly overparametrized. As is usually assumed in the

NTK literature [17 ], [104 ], [108 ], we consider data on the unit sphere Sd−1, i.e., ‖xi‖2 = 1

for any i ∈ [n]. Throughout this work, we further assume that x1, . . . ,xn are uniformly

distributed on Sd−1 so that Ex∼unif(Sd−1)(f̂(x) − f ∗(x))2 and ‖f − f ∗‖2
2 are equal up to a

constant multiplier and thus will be used interchangeably.

Gradient Descent Let y = (y1, · · · , yn)> and ε = (ε1, · · · , εn)>. Denote ui = fW ,a(xi) to

be the network’s prediction on xi and let u = (u1, ..., un)>. Without loss of generality, we

consider fixing the second layer a after initialization and only training the first layer W by

GD. Fixing the last layer is not a strong restriction since a ·σ(z) = sign(a) ·σ(|a|z) and we can
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always reparametrize the network to have all ai’s to be either 1 or −1. Denote the empirical

squared loss as Φ(W ) = 1
2‖y − u‖2

2. The gradient of Φ(W ) w.r.t. wr can be written as

∂Φ(W )
∂wr

= 1√
m
ar

n∑
i=1

(ui − yi)Ir,ixi, r ∈ [m],

where Ir,i = I{w>
r xi ≥ 0}. Then the GD update rule at the k-th iteration is given by

wr(k + 1) = wr(k) − η
∂Φ(W )
∂wr

∣∣∣∣∣
W =W (k)

,

where η > 0 is the step size (a.k.a. learning rate). In the rest of this work, we use k to index

variables at the k-th iteration, e.g., ui(k) = fW (k),a(xi), etc. Define Ir,i(k) = I{wr(k)>xi ≥ 0},

Z(k) ∈ Rmd×n that

Z(k) = 1√
m


a1I1,1(k)x1 . . . a1I1,n(k)xn

... . . . ...

amIm,1(k)x1 . . . amIm,n(k)xn


and H(k) = Z(k)>Z(k). It is shown that matrices Z(k) and H(k) are close to Z(0) and

H(0), respectively for any k, when m is sufficiently large [17 ]. We can rewrite the GD update

rule as

vec(W (k + 1)) = vec(W (k)) − ηZ(k)(u(k) − y), (3.1)

where vec(W ) = (w>
1 , · · · ,w>

m)> ∈ Rmd×1 is the vectorized weight matrix.

Kernel Ridge Regression with NTK The study of one-hidden-layer ReLU neural

networks is closely related to the NTK defined as

h(s, t) =Ew∼N(0,Id)
(
s>t I{w>s ≥ 0,w>t ≥ 0}

)
=s>t(π − arccos(s>t))

2π
, (3.2)

95



where s, t are d-dimensional vectors. It can be shown that h is positive definite on the unit

sphere Sd−1 [108 ]. Let the Mercer decomposition of h be h(s, t) = ∑∞
j=0 λjϕj(s)ϕj(t), where

λ1 ≥ λ2 ≥ ... ≥ 0 are the eigenvalues, and {ϕj}∞
j=1 is an orthonormal basis.

The following lemma states the decay rate of eigenvalues of the NTK associated with

one-hidden-layer ReLU neural networks, as a key technical contribution of this work.

Lemma 3.1.1 Let λj be the eigenvalues of NTK h defined above. Then we have λj � j−
d

d−1 .

Let N denote the reproducing kernel Hilbert space (RKHS) generated by h on Sd−1, equipped

with norm ‖ · ‖N . For an unknown function f ∗ ∈ N , the kernel ridge regression minimizes

min
f∈N

1
2

n∑
i=1

(yi − f(xi))2 + µ

2 ‖f‖2
N , (3.3)

where µ > 0 is a tuning parameter controlling the regularization strength. The representer

theorem says that the solution to (3.3 ) can be written as

f̂(x) = h(x,X)(H∞ + µIn)−1y (3.4)

for any point x ∈ Rd, where h(x,X) = (h(x,x1), ..., h(x,xn)) ∈ R1×n and H∞ =

(h(xi,xj))n×n (H∞ is usually called the NTK matrix). In the following theorem, we show

that the function f̂ is close to the true function f ∗ under the L2 metric.

Theorem 3.1.2 Let f̂ be as in (3.4 ). By choosing µ � n(d−1)/(2d−1), we have

‖f̂ − f ∗‖2
2 = OP

(
n− d

2d−1
)
, ‖f̂‖2

N = OP(1).

The proof of the convergence rate requires an accurate characterization of the complexity of

N , which is determined by the eigenvalues and eigenfunction expansion of the NTK h. If the

eigenvalues decay at rate λj � j−2ν , the corresponding minimax optimal rate is n−2ν/(2ν+1)

[109 ], [110 ]. Building on the the eigenvalue decay rate established in Lemma 3.1.1 , it can be

shown that the L2 estimation rate in Theorem 3.1.2 is minimax-optimal.

In the rest of this work, we assume that f ∗ ∈ N .
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3.2 Problems of Gradient Descent from the Nonparametric Perspective

In this section, we consider training overparametrized neural networks with the GD

update rule (3.1 ). Among others, [16 ], [17 ] prove that as iteration k → ∞, the training data

are interpolated, achieving zero training loss. However, in the presence of noises, i.e., εi in

(1.2 ), such an overfitting to the training data can be harmful for recovering the ground truth.

The following theorem shows that if k is too small or too large, the L2 estimation error of

the trained neural network is bounded away from zero.

Theorem 3.2.1 Fix a failure probability δ ∈ (0, 1). Let λ0 be the largest number that with

probability at least 1 − δ, λmin(H∞) ≥ λ0. Suppose m ≥ τ−2poly
(
n, 1

λ0
, 1
δ

)
, η = Õ

(
λ0
n2

)
, and

τ = Õ
(
λ0δ
n

)
. For sufficiently large n, if the iteration k = Ω̃

(
logn
ηλ0

)
or k = Õ

(
1
nη

)
, then with

probability at least 1 − 2δ, we have

Eε‖fW (k),a − f ∗‖2
2 = Ω(1).

The conditions on m, η, and τ have the same rates as those in Theorem 5.1 of [17 ], but

the constants requirements are different. The probability 1 − 2δ in Theorem 3.2.1 comes from

the randomness of λmin(H∞) and (W (0),a).

Theorem 3.2.1 states that the estimation error for non-regularized one-hidden-layer neural

networks is bounded away from zero by some constant if trained for too short or too long.

The latter scenario indicates that overfitting is harmful in terms of the L2 estimation error.

Similar results have been shown in [111 ] for specifically designed overparametrized DNNs that

is a linear combination of Ω(n10d2) smaller neural networks, which is much more restrictive

than ours.

In order to have low L2 estimation errors, Theorem 3.2.1 implies that the iteration number

k must satisfy (ηλ0)−1 log n . k . (nη)−1. However, deriving a precise order of k, which

leads to the optimal rate of convergence, could be extremely challenging. Alternatively, we

consider the infinite-width limit of one-hidden-layer ReLU networks, i.e., directly using the

NTK (3.2 ) in kernel regression. This may shed some light on the optimal stopping time for

practical overparametrized neural networks.
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In kernel regression, the objective becomes

min
f∈N

1
2

n∑
i=1

(yi − f(xi))2, (3.5)

whose solution can be explicitly expressed as h(x,X)(H∞)−1y, by setting µ = 0 in (3.4 ). How-

ever, inverting the kernel matrix can be computationally intensive. In practice, gradient-based

methods are often applied to solve (3.5 ) [110 ]. The following theorem establishes estimation

error results for the NTK estimators trained by GD, complementary to Theorem 3.2.1 .

Theorem 3.2.2 Consider using GD to optimize (3.5 ) with a sufficiently small step size η

depending on n (but not on k). There exists a stopping time k∗ depending on data, such that

E‖f̂k∗ − f ∗‖2
2 = O

(
n− d

2d−1
)
,

where f̂k is the predictor obtained at the k-th iteration. Moreover, if k → ∞, the interpolated

estimator f̂∞ satisfies

E‖f̂∞ − f ∗‖2
2 = Ω(1).

To specify the optimal stopping time k∗ in Theorem 3.2.2 , we first introduce the local

empirical Rademacher complexity defined as

R̂H∞(ε) :=
(

1
n

n∑
i=1

min
{
λ̂i/n, ε

2
})1/2

,

which relies on the eigenvalues λ̂1 ≥ · · · ≥ λ̂n > 0 of H∞. Then, the stopping time k∗ is

defined to be

k∗ := argmin
{
k ∈ N | R̂H∞

( 1√
ηk

)
>

1
2eσηk

}
− 1. (3.6)

In essence, the optimal stopping time decreases with the noise level σ and increases with the

model complexity, measured by the eigenvalues of H∞.

Remark 3.2.3 (k∗ for neural networks) To derive the order of k∗ for overparametrized

neural network, a sharp characterization of the eigen-distribution of H∞ is needed. To the
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best of the authors’ knowledge, no such results are available yet. Even though as m → ∞,

neural network resembles its linearization (NTK), it doesn’t necessarily mean such a stopping

rule can be easily derived for finite-width neural networks. In general, theoretical guarantees

of an early stopping rule for training overparametrized neural networks is challenging and left

for future work.

Besides early stopping, explicit regularizations are usually employed in deep learning

models to balance the bias-variance trade-off and prevent overfitting, for example, weight

decay [112 ], batch normalization [40 ], dropout [38 ], etc., to prevent overfitting. In the next

section, we investigate the `2 regularization [113 ]–[115 ] and demonstrate its effectiveness in

the nonparametric regression setting.

3.3 `2-Regularized Gradient Descent for Noisy Data

Without any regularization, GD overfits the training data and the estimation error is

bounded away from zero. Instead, we propose using the `2-regularized gradient descent

defined as

vec(WD(k + 1)) =vec(WD(k)) − η1ZD(k)(uD(k) − y)

− η2µvec(WD(k)), (3.7)

where η1, η2 > 0 are step sizes, and µ > 0 is a tuning parameter. It can be easily seen that

(3.7 ) is the GD update rule on the following loss function

Φ1(W ) = 1
2‖y − u‖2

2 + µ

2 ‖vec(W )‖2
2. (3.8)

The `2 regularization has long been used in practical training neural networks and

is equivalent to “weight decay” [112 ] when using GD [116 ]. In the NTK literature, `2

regularization is also considered as a way to improve generalization [103 ], [104 ]. However, we

are among the first to directly analyze the `2-regularized GD trajectories of overparametrized

neural networks and show its connection to kernel ridge regression using NTK. In the rest of
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this work, we use subscript D to denote the variables under the regularized GD (3.7 ), e.g.,

uD(k) for the predictions at the k-th iteration.

Theorem 3.3.1 Let λ0 be the largest number such that with probability at least 1 − δn,

λmin(H∞) ≥ λ0, and δn → 0 as n goes to infinity1
 . For sufficiently large n, suppose

µ � n
d−1

2d−1 , η1 � η2 = o(n− 3d−1
2d−1 ), τ = O(1), m ≥ τ−2ploy(n, λ−1

0 ), and the iteration number k

satisfies log (ploy1(n, τ, 1/λ0)) . η2µk . log (ploy2(τ, 1/n,
√
m)) . Then we have

‖uD(k) − H∞(CµI + H∞)−1y‖2 = OP

(√
n(1 − η2µ)k

)
, (3.9)

‖vec(WD(k)) − (1 − η2µ)kvec(WD(0))‖2 = OP(1), (3.10)

for some constant C > 0. Moreover, during the training process, the mean squared loss

satisfies

Φ(WD(k))/n ≤ (1 − η2µ)kΦ(WD(0))/n+OP(1). (3.11)

In the above theorem, three upper bounds are provided. In (3.9 ), we provide an upper bound

on the difference between the prediction using one-hidden-layer neural networks and that

obtained by (3.4 ), which converges to zero as the sample size goes to infinity. This indicates

that the `2 penalty on neural network weights has similar effects to penalizing the RKHS

norm as in (3.3 ). Combining (3.9 ) and Theorem 3.1.2 , we can conclude that the `2-regularized

one-hidden-layer ReLU neural network recovers the true function on the training data points

x1, . . . ,xn.

In (3.10 ), we provide an upper bound on the distance between the weight matrix at the

k-th iteration and the “decayed” initialization WD(0). Under the conditions in Theorem

3.3.1 , their distance measured in Frobenius norm is bounded by some constant depending

on the underlying true function. Unlike the results in [17 ], the upper bound presented in

(3.10 ) does not depend on data. Therefore, as long as the underlying function is within the

RKHS generated by NTK, the total movement of all the weights is not large even if the data

observed are corrupted by noises.
1Potential dependency of λ0 on n is suppressed for notational simplicity.
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In (3.11 ), we give a characterization of how the training objective decreases over iterations,

which is reminiscent of Theorem 4.1 in [16 ]. Unlike the results without regularization, our

`2-regularized objective is not expected to converge to zero, i.e., no data interpolation, which

is essential to ensure the best trade-off between the bias and variance.

Remark 3.3.2 (More Iterations) The required iteration number k in Theorem 3.3.1 is

approximately (η2µ)−1, up to a logarithmic term. We believe the upper bound on k is not

necessary and may be relaxed. The stated results are expected to hold if k → ∞ and we

conjecture that the output will converge to the optimal solution of kernel ridge regression as

in (3.4 ). Simulation results in Section 3.4 support our conjecture and we leave the technical

proof for future work.

Remark 3.3.3 (Neural Network Width) In the previous result, the requirement for the

width m ≥ τ−2ploy(n, λ−1
0 ) indicates that m is in polynomial order of sample size. Such a

overparametrization is not uncommon in the NTK literature. It should be noted that there is

a huge gap between overparametrized, finite-width networks and infinite-width networks. The

former is still a network while the latter reduces to the exact NTK methods. It remains an

active field of research on characterizing the size and approximation error dependence between

the two [106 ].

Next, we extend the results in Theorem 3.3.1 and establish the L2 convergence rate for

neural networks trained with `2-regularized GD.

Theorem 3.3.4 Suppose the assumptions of Theorem 3.3.1 hold. Then we have

‖fWD(k),a − f ∗‖2
2 = OP(n− d

2d−1 ).

The above theorem states that with probability tending to one, the neural network estimator

can still recover the true function with the optimal convergence rate of n− d
2(2d−1) , demonstrating

the effectiveness of the `2 regularization for noisy data. Unlike other optimality results

established for neural networks [2 ], [50 ], our convergence rate result applies to overparametrized

networks and is obtainable using the `2-regularized GD.
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Figure 3.1. The results for f ∗
1 are shown on the left figure and the results

for f ∗
2 are shown on the right figure. The L2 estimation errors are shown for

all methods vs. σ, with their standard deviations plotted as vertical bars.
Similarly for both f ∗

1 and f ∗
2 , we observe that NTK and ONN do not recover

the true function well. Early stopping and `2 regularization perform similarly
for NTK, especially for f ∗

2 . ONN+`2 performs the best in both cases.

3.4 Numerical Studies

In practice, regularization techniques are widely used in training deep learning models.

Among others, [33 ], [114 ], [117 ]–[119 ] have investigated the effectiveness of `2 regularization

and early stopping in training DNNs, and comprehensive comparisons have been made

empirically against other regularization techniques. Therefore, one major goal of this section

is not to show state-of-the-art performance using `2 regularization, but to use it as an example

to illustrate, from a nonparametric perspective, the necessity of regularization in training

overparametrized neural networks with GD. Another goal is to demonstrate the robustness

of our theory when some underlying assumptions are violated, e.g., one hidden layer, ReLU

activation function and data on a sphere, etc.

Specifically, we consider NTK without regularization (NTK), NTK with early stopping2
 

(NTK+ES), NTK with `2 regularization (NTK+`2), overparametrized neural network with

and without `2 regularization, denoted as ONN and ONN+`2, respectively. For ONN, we

use two-hidden-layer ReLU neural networks and m = 500 for each layer. To train the
2As specified in Theorem 3.2.2 , the optimal stopping time k∗ in (3.6 ) depends on σ, which is to be estimated
from data. In our simulation, we directly use the true value.
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neural networks, instead of GD, we consider the more popular RMSProp optimizer [120 ]

with the default setting. For ONN+`2 and NTK+`2, the tuning parameter µ is selected by

cross-validation.

Neural network setup The neural network used in all experiments is a 2-layer ReLU

neural network with m = 500 nodes in each hidden layer. All the weighs are initialized with

the Glorot uniform initializer, also called as Xavier uniform initializer [121 ], which is the

default choice in the TensorFlow Keras Sequential module. All the weights are trained by

RMSProp [120 ] optimizer with the default setting, e.g. learning rate of 0.001, etc. All ONN

experiments are conducted using TensorFlow 2 with Python API.

3.4.1 Simulated Data

Consider the d = 2 case where the training data points x1, . . . ,xn are i.i.d. sampled from

unif([ − 1, 1]2). We set n = 100 and let noises follow N(0, σ2). Two target functions are

considered: f ∗
1 (x) = 0 and f ∗

2 (x) = x>x. The L2 estimation error is approximated using a

noiseless test dataset {(x̄i, f
∗(x̄i))}1000

i=1 where x̄i’s are new samples i.i.d. from unif([ − 1, 1]2).

We choose σ = 0.1, 0.2, ..., 0.5 and for each σ value, 100 replications are run to estimate the

mean and standard deviation of the L2 estimation error. Results are presented in Figure

3.1 . The learning rate for NTK+ES is η = 0.01 and the GD update rule is as specified in

(3.30 ). In the `2-regularized methods, the tuning parameter µ for each task is chosen by cross

validation. The validation dataset is of size 100 that is also noiseless and follows the same

generating mechanism as the test dataset. For NTK+`2, we use a grid search of interval

[0, 1] with µ = 0.01, 0.02, . . . , 1 and for ONN+`2, the µ candidates are 0.1, 0.2, . . . , 10. In

both cases, we observe that the optimal µ increases with the noise level σ. For f ∗
2 , we plot

the chosen µ and k∗ for NTK+`2 and NTK+ES respectively vs. σ. For each σ value, the

reported value is the average of 100 replications. The results are shown in Figure 3.2 .

Figure 3.1 clearly demonstrates that ONN and NTK do not recover the true function well.

As is explained in the section, without regularization, overfitting the training data is harmful

for the L2 estimation. To illustrate this point, we show the trained estimators of f ∗
2 for all

the methods in Figure 3.3 when σ = 0.1.
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Figure 3.2. Left: Cross-validation of µ in NTK+`2 for fitting f ∗
2 when σ = 0.1.

The horizontal axis is values of µ (100 points from 0.01 to 1) and the vertical
axis is the validation mean squared error. The cross-validated µ in this case
is 0.13. Right: Optimal stopping time k∗ in NTK+ES and cross-validated µ
in NTK+`2 for fitting f ∗

2 are shown vs. σ. The optimal GD stopping time
decrease with noise level while the best µ increases with σ.

3.4.2 Real Data

To showcase our results on the L2 estimation, an ideal dataset is one that can be well-fitted

by neural networks so that we can treat it as noiseless and then manually inject random

noises. Inspired by the numerical studies in [104 ], we consider the MNIST dataset (digits 5

vs. 8 relabeled as −1 and 1), where the test accuracy can reach over 99% by shallow fully

connected neural networks [122 ]. For images 5 and 8, the training and test split are the

default.3  We change label 5 and 8 to −1 and 1 respectively. No further pre-processing is done

to the dataset. For NTK+ES, the learning rate is η = 0.0001 and the GD update rule is as

specified in (3.30 ). To account for the high data dimension, we divide the NTK matrix H∞

by d. For the ONN+`2 and NTK+`2, we choose µ by cross-validation and the candidates

are µ = 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000 for ONN+`2 and µ = 1, 2, 3, . . . , 100

for NTK+`2. The training/validation split is 80%/20% for cross-validation so the actual

training data size is 9107 for all methods (ONN, NTK and NTK+ES do not use the validation

dataset). The cross-validated µ for ONN+`2 and optimal stopping time k∗ for NTK+ES are

shown in Figure 3.4 , together with the cross-validation results specifically for σ = 1.
3http://yann.lecun.com/exdb/mnist/
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Figure 3.3. Visualizations for the trained estimators of NTK (top left),
NTK+`2 (bottom left), ONN (top right) and ONN+`2 (bottom right). Training
data are plotted as red dots. The green surface is the estimator and the grey
surface is the true function f ∗

2 . Both surfaces are approximated by grid points
(i/100, j/100) for i, j from -100 to 100. As can be seen in the top row, without
regularization, the estimators overfit training data. The fitted estimators are
very rough and don’t recover the true function well.

Even though the dataset is for classification, we can treat the labels as continuous and

learn the true function under the proposed regression setting. We use y∗ to denote the

true labels and manually add noises ε to the training data, where each element of ε follows

N(0, σ2) independently. The perturbed labels are denoted by y = y∗ + ε. By gradually

increase σ, we investigate how ONN and ONN+`2 perform under the additive label noises

setting.

105



Figure 3.4. Left: Cross-validation result for µ in ONN+`2 when σ = 1 (with
extra µ candidates of 300 and 400). In the range of µ = 5 to µ = 1000, we
can clearly see a V-shape and the best µ in this case is 200. Right: Optimal
stopping time k∗ in NTK+ES and cross-validated µ in ONN+`2 for MNIST
dataset are shown vs. σ. The optimal stopping time decreases with noise level
while the best µ increases with σ.

Remark 3.4.1 (Additive label noises) To manually inject noises to classification data, many

works consider replacing part of the labels by random labels [17 ], [33 ]. However, such noises

are not i.i.d. and cannot be applied to the regression setting. Similar additive label noises are

also considered in [104 ].

The training dataset contains n = 11272 vectorized images of dimension d = 784. The

test dataset size is 1866. For ONN+`2, our training objective function is Φ1 as in (3.8 ) and

setting µ = 0 corresponds to the objective function of training ONN. On test dataset, which

is not contaminated by noises, we use the sign of the output for classification and calculate

the misclassification rate as a measure of estimation performance. To be more specific, a test

image x̄ is classified as label 8 if f̂(x̄) ≥ 0, and label 5 if f̂(x̄) < 0, where f̂ is the neural

network estimator. The misclassification rate is the percentage of incorrect classifications

on the test images. We choose σ = 0, 0.25, ..., 1.5 and for each σ value, 100 replications are

run to estimate the mean and standard deviation of the test misclassification rate. How the

training root mean square error (RMSE) and test misclassification rate evolve during training

when σ = 1 for ONN and ONN+`2 is also investigated. The results are reported in Figure

3.5 and 3.6 .
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Figure 3.5. The test misclassification rates for all methods vs. σ with their
standard deviations plotted as vertical bars is shown in the figure. NTK+ES
for σ = 0 is omitted since k∗ is not well-defined when σ = 0 and NTK+ES
in this case should be the same as NTK, i.e. k∗ = ∞. As σ increases, all
misclassification rates increase but NTK+`2 and ONN+`2 perform significantly
better than NTK and ONN with smaller misclassification rate and better
stability, i.e., the standard deviation is smaller. The NTK+ES is the green line
and it performs the worst when σ ≤ 0.5 but better than NTK and ONN when
σ ≥ 1.

Remark 3.4.2 (NTK+ES) The performance of NTK+ES is shown in Figure 3.5 . Unlike in

the simulated dataset where NTK+ES and NTK+`2 perform almost identically, NTK+ES

performs noticeably worst for the MNIST dataset, especially when σ is small. One possible

explanation lies in our additive label noise setting. Even though we treat the labels as

continuous during training, the reported misclassification rate only depends on the sign of the

label. If σ is small, the probability of changing signs is small. This may be one of the reasons

that NTK, ONN perform relatively well for small σ’s, since if the signs remain the same, it is

not very harmful to overfit the labels. Note that NTK+`2 and ONN+`2 choose small µ’s such

that it is not very different from NTK and ONN. The stopping rule in NTK+ES, on the other

hand, doesn’t take the classification setting into consideration and tends to underestimate the

stopping time when the additive label noises are small. Nonetheless, we don’t recommend

NTK+ES for handling large datasets. Firstly, the noise level σ needs to be estimated, which
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Figure 3.6. The figure shows how the training RMSE and test misclassification
rate evolve across iterations for ONN and ONN+`2 when σ = 1. For both
methods, the training RMSEs decrease fast in the first 1K iterations. However,
as the ONN training RMSE flattens after 10K iterations, its test misclassification
rate goes up while that for ONN+`2 remains flat even after 50K iterations,
which supports our conjecture in Remark 3.3.2 . The right figure also reveals
the potential early stopping time for ONN around iteration 10K, which has
test misclassification rate comparable to that of ONN+`2.

brings extra instability to the algorithm. Secondly, NTK+ES is very computationally intensive,

especially for the eigenvalues of the NTK matrix.

3.5 Discussion

From a nonparametric perspective, this section studies overparametrized neural networks

trained with GD and establishes optimal L2 convergence rates for trained neural network

estimators under the `2 regularization. On one hand, our result broadens the NTK literature

by incorporating an explicit penalty term in the training objective. On the other hand,

our convergence analysis extends the statistical theory of deep neural networks by bringing

algorithmic guarantees into the network estimator and offsetting the extra complexity from

overparametrization through delicate GD analysis. Our simulation results corroborate

the theoretical analysis and imply that the assumptions of our theory may be relaxed.

More investigations along this direction would advance our statistical understandings of

deep learning. For example, our work can be further improved by relaxing the sphere
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assumption on the input data and the iteration number k imposed in Theorems 3.3.1 and

3.3.4 . Additionally, as empirically shown in numerical experiments, it is possible to extend our

theory to multi-layer neural networks with other types of activation functions and training

algorithms.

The nonparametric perspective is potentially helpful in understanding other popular

regularization techniques, e.g., batch normalization [40 ], data augmentation [123 ], knowledge

distillation [74 ], etc. On the other hand, novel and problem-specific regularization approaches

may be motivated during the convergence analysis that inspires better performance in practice.

3.6 Technical Proofs

We introduce some additional notations. Denote y∗ = (f ∗(x1), · · · , f ∗(xn))> as the the

vector of underlying function’s functional values at sample points. Let Ir(x) = I{w>
r x ≥ 0}

and

z(x) = 1√
m


a1I1(x)x

...

amIm(x)x

 ∈ Rmd×1. (3.12)

Thus, Z(k) = (z(x1), ..., z(xn))|W =W (k). When the context is clear, we omit the dimension

and write Id as I.

Proof of Lemma 3.1.1 We will use the following lemma, which states the Mercer decom-

position of h as in (3.2 ).

Lemma 3.6.1 (Mercer decomposition of NTK h) For any s, t ∈ Sd−1, we have the

following decomposition of the NTK,

h(s, t) =
∞∑
k=0

µk

N(d,k)∑
j=1

Yk,j(s)Yk,j(t),

where Yk,j, j = 1, ..., N(d, k) are spherical harmonic polynomials of degree k, and the non-

negative eigenvalues µk satisfy µk � k−d, and µk = 0 if k = 2j + 1 for k ≥ 2.
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The proof of Lemma 3.6.1 is similar to the proof of Proposition 5 in [108 ]. The difference is

that the Proposition 5 in [108 ] considers the kernel function

h1(s, t) = 4h(s, t) +

√
1 − (s>t)2

π
,

and we only need to consider the kernel function h(s, t). A generalization of Proposition 5 in

[108 ] can be found in Theorem 3.5 of [124 ].

Note that in the proof of Lemma 3.6.1 ,

N(d, j) = 2j + d− 2
j

 j + d− 3

d− 2

 = Γ(j + d− 2)
Γ(d− 1)Γ(j) ,

where Γ is the Gamma function. By the Stirling approximation, we have Γ(x) ≈
√

2πxx−1/2e−x.

Therefore, we have the number N(d, j) is equivalent to jd−2. Thus, by Lemma 3.6.1 , the j-th

eigenvalue λj can be denoted by

λj = µl, for
l−1∑
i=1

N(d, 2i) ≤ j <
l∑

i=1
N(d, 2i),

which can be approximated by λj � µl, for (2l − 2)d−1 ≤ j < (2l)d−1. By Lemma 3.6.1 , we

have µl � l−d, which implies λj � j−
d

d−1 .

Proof of Theorem 3.1.2 

Proof Let G be a metric space equipped with a metric dg. The δ-covering number of

the metric space (G, dg), denoted by N(δ,G, dg), is the minimum integer N so that there

exist N distinct balls in (G, dg) with radius δ, and the union of these balls covers G. Let

H(δ,G, dg) = logN(δ,G, dg) be the entropy of the metric space (G, dg). We first present an

upper bound on the entropy of the metric space (N , ‖ · ‖∞), where the proof can be found in

Section 3.6.3 .
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Lemma 3.6.2 Let N be the reproducing kernel Hilbert space generated by the NTK h defined

in (3.2 ), equipped with norm ‖ · ‖N . The entropy H(δ,N (1), ‖ · ‖∞) can be bounded by

H(δ,N (1), ‖ · ‖∞) ≤ A0δ
− 2(d−1)

d ,

where N (1) = {f : f ∈ N , ‖f‖N ≤ 1}, and A0 > 0 is a constant not depending on δ.

For the regression problem, consider a general penalized least-square estimator

f̂ := argmin
f∈N

(
1
n

n∑
i=1

(yi − f(xi))2 + λ2
nI

v(f)
)
,

where λn > 0 is the smoothing parameter and I : N → [0,∞) is a pseudo-norm measuring

the complexity. We use the RKHS norm ‖f‖N (Ω) in our case. Let ‖ · ‖n denote the empirical

norm. The following lemma establishes the rate of convergence for the estimator f̂ .

Lemma 3.6.3 (Lemma 10.2 in [92 ]) Assume Gaussian noises and entropy bound H(δ,N (1), ‖·

‖n) ≤ Aδ−α for some constants A > 0 and 0 < α < 2. If v ≥ 2α
2+α , I(f ∗) > 0 and

λ−1
n = OP

(
n1/(2+α)

)
I(2v−2α+vα)/2(2+α)(f ∗).

Then we have

‖f̂ − f ∗‖n = OP(λn)Iv/2(f ∗)

and I(f̂) = OP(1)I(f ∗).

To bound the difference between empirical norm and L2 norm, we utilize the following

lemma. For a class of functions F , define for z > 0

J∞(z,F) := C0 inf
δ>0

[
z
∫ 1

δ/4

√
H∞(uz/2,F)du+

√
nδz

]
.

Lemma 3.6.4 (Theorem 2.2 in [125 ]) Let

R := sup
f∈F

‖f‖2, K := sup
f∈F

‖f‖∞
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Then, for all t > 0, with probability at least 1 − exp [ − t],

sup
f∈F

∣∣∣∣∣‖f‖2
n − ‖f‖2

2

∣∣∣∣∣/C1 ≤ 2RJ∞(K,F) +RK
√
t√

n
+ 4J2

∞(K,F) +K2t

n

where C1 > 0 is some constant not depending on n.

Proof of Theorem 3.1.2 

Proof Consider our estimator f̂ as in (3.4 ), in which case, v = 2 and I(f) is the RKHS

norm of f . Since ‖f‖n ≤ ‖f‖∞, Lemma 3.6.2 indicates that α = 2(d− 1)/d < 2. By choosing

λn � n−d/(4d−2), which corresponds to µ � n(d−1)/(2d−1) in (3.3 ), Lemma 3.6.3 yields that

‖f̂ − f ∗‖2
n = OP(n−d/(2d−1)) and ‖f̂‖2

N = OP(1).

Now we use Lemma 3.6.4 to obtain a bound on ‖f̂ −f ∗‖2. First consider {f −f ∗ : f ∈ N (1)}.

Since ‖f‖N ≤ 1 for every f ∈ N (1), we have K,R = O(1). By the entropy bound in Lemma

3.6.2 we have J∞(z,N (1)) ≤ 2C0z
1/d. Therefore, Lemma 3.6.4 yields

sup
f∈N (1)

∣∣∣∣∣‖f − f ∗‖2
n − ‖f − f ∗‖2

2

∣∣∣∣∣ = OP

√ 1
n

 .
Combined with ‖f̂ − f ∗‖2

n = OP(n−d/(2d−1)), we can conclude that for any t > 0 large enough,

‖f̂ − f ∗‖2
2 = O(

√
t/n) with probability at least 1 − exp(−t). Utilizing Lemma 3.6.4 again

with R = O(
√
t/n) we have for some C > 0,

P
(

sup
f∈G(R)

∣∣∣∣∣‖f − f ∗‖2
n − ‖f − f ∗‖2

2

∣∣∣∣∣ ≤ Ct

n

)
≥ 1 − e−t,

where G(R) := {f ∈ N (1) : ‖f − f ∗‖2 ≤ R}. Notice that f̂ ∈ G(R) with probability at

least 1 − exp(−t). Therefore, ‖f̂ − f ∗‖2
2 = O(n−d/(2d−1) + t/n) with probability at least

1 − 2 exp(−t).
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3.6.1 Proofs of main theorems in Section 3.2 

For brevity, let f̂k = fW (k),a. For two positive semidefinite matrices A and B, we write

A ≥ B to denote that A − B is positive semidefinite and A > B to denote that A − B is

positive definite. This partial order of positive semidefinite matrices is also known as Loewner

order. We focus on the L2 loss of our estimator f̂k after k GD updates. Let f̃ denote the

kernel regression solution with kernel h(·, ·) that interpolates all {(xi, f
∗(xi))}ni=1, i.e.,

g(x) = h(x,X)(H∞)−1y∗. (3.13)

We first provide some lemmas used in this section. The proofs of lemmas are presented

in Section 3.6.3 . Lemma 3.6.5 states some basic inequalities that are also used in the proof

of Theorem 3.3.1 . Lemma 3.6.6 provides the convergence rate of interpolant using NTK.

Lemmas 3.6.7 can be found in [17 ]. Lemma 3.6.8 is implied by the proof in [17 ]. Lemma 3.6.9 

provides some bounds on the related quantities used in the proofs of Theorems 3.2.1 and

3.3.4 . Lemma 3.6.10 provide some properties of Loewner order.

Lemma 3.6.5 Let µ be as in Theorem 3.1.2 . Then we have

h(s, s) − h(s,X)(H∞)−1h(X, s) ≥ 0,∫
x∈Ω

h(x,X)(H∞ + µI)−2h(X,x)dx =OP(n− d
2d−1 ),∫

x∈Ω
h(x,x) − h(x,X)(H∞)−1h(X,x)dx =OP(n− 1

2d−1 ),

where h(x,X) = (h(x,x1), ..., h(x,xn)) and h(X,x) = h(x,X)>.

Lemma 3.6.6 Assume the true function f ∗ ∈ N with finite RKHS norm, then g(x) defined

(3.13 ) satisfies

‖g − f ∗‖2 = OP
(
n−1/2

)
.
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Lemma 3.6.7 (Lemma C.1 in [17 ]) If λ0 = λmin(H∞) > 0, m = Ω
(

n6

λ4
0τ

2δ3

)
and η =

O
(
λ0
n2

)
, with probability at least 1 − δ over the random initialization, we have

‖wr(k) − wr(0)‖2 ≤ R0, ∀ r ∈ [m],∀ k ≥ 0,

where R0 = 4
√
n‖y−u(0)‖2√

mλ0
.

Lemma 3.6.8 ([17 ]) Denote ui(k) = fW (k),a(xi) to be the network’s prediction on the i-th

input and let u(k) = (u1(k), ..., un(k))> ∈ Rn denote all n predictions on the points x1, ...,xn

at iteration k. We have

u(k) − y = (I − ηH∞)k(u(0) − y) + e(k)

where

‖e(k)‖2 = O

k (1 − ηλ0

4

)k−1
ηn5/2‖y − u(0)‖2

2√
mλ0τδ

 .
Lemma 3.6.9 With probability at least 1 − δ, we have

(a) ‖Z(k) − Z(0)‖F = O
(
n3/4‖y−u(0)‖1/2

2√
m1/2λ0τδ

)
;

(b) ‖H(0) − H∞‖F = O
(
n
√

log(n/δ)
√
m

)
;

(c) ‖z0(·)>Z(0) − h(·,X)‖2 = O
(√

n
√

log(n/δ)
√
m

)
;

(d) ‖z0(·)>vec(W (0))‖2 = O
(
τ
√

log(1/δ)
)
.

Lemma 3.6.10 (Properties of Loewner order) For two positive semi-definite matrices

A and B,

(a). Suppose A is non-singular, then A ≥ B ⇐⇒ λmax(BA−1) ≤ 1 and A > B ⇐⇒

λmax(BA−1) > 1, where λmax(·) denotes the maximum eigenvalue of the input matrix.

(b). Suppose A, B and Q are positive definite, A and B are exchangeable, then A ≥ B =⇒

AQA ≥ BQB.
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Proof of Theorem 3.2.1 

Proof For notational simplification, we use f̂k = fW (k),a. Define

f̃k(x) = vec(W (k))>z0(x),

where z0(x) = z(x)|W =W (0). Then we can write the following decomposition

f̂k − f ∗ = (f̂k − f̃k) + (f̃k − g) + (g − f ∗) = ∆1 + ∆2 + ∆3, (3.14)

where g is as in (3.13 ). It follows from Lemma 3.6.6 that

‖∆3‖2 = OP

√ 1
n

 . (3.15)

For ∆1, under the assumptions of Lemma 3.6.7 , with high probability, we have ‖wr(k) −

wr(0)‖2 ≤ R0. Thus, for fixed x, we have

|wr(k)>x − wr(0)>x| ≤ ‖wr(k) − wr(0)‖2‖x‖2 ≤ R0.

Define event

Br(x) = {|wr(0)>x| ≤ R0},∀r ∈ [m].
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If I{Br(x)} = 0, then we have Ir,k(x) = Ir,0(x), where Ir,k(x) = I{wr(k)>x ≥ 0}. Therefore,

for any fixed x, we have

|f̂k(x) − f̃k(x)| =
∣∣∣∣∣ 1√
m

m∑
r=1

ar(Ir,k(x) − Ir,0(x))wr(k)>x

∣∣∣∣∣
=
∣∣∣∣∣ 1√
m

m∑
r=1

arI{Br(x)}(Ir,k(x) − Ir,0(x))wr(k)>x

∣∣∣∣∣
≤ 1√

m

m∑
r=1

I{Br(x)}|wr(k)>x|

≤ 1√
m

m∑
r=1

I{Br(x)}
(
|wr(0)>x| + |wr(k)>x − wr(0)>x|

)
≤ 2R0√

m

m∑
r=1

I{Br(x)}

Recall that ‖x‖2 = 1, which implies that wr(0)>x is distributed as N(0, τ 2). Therefore, we

have

E[I{Br(x)}] = P
(
|wr(0)>x| ≤ R0

)
=
∫ R0

−R0

1√
2πτ

exp
{

− u2

2τ 2

}
du ≤ 2R0√

2πτ
.

By Markov’s inequality, with probability at least 1 − δ, we have

m∑
r=1

I{Br(x)} ≤ 2mR0√
2πτδ

.

Thus, we have

‖∆1‖2 ≤ 2R0√
m

‖
m∑
r=1

I{Br(·)}‖2 ≤ 4
√
mR2

0√
2πτδ

= O

(
n‖y − u(0)‖2

2√
mτλ2

0δ

)
. (3.16)

Next, we evaluate ∆2. Recall that the GD update rule is

vec(W (j + 1)) = vec(W (j)) − ηZ(j)(u(j) − y), j ≥ 0.
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Applying Lemma 3.6.8 , we can get

vec(W (k)) − vec(W (0))

=
k−1∑
j=0

(vec(W (j + 1)) − vec(W (j)))

= −
k−1∑
j=0

ηZ(j)(u(j) − y)

=
k−1∑
j=0

ηZ(j)(I − ηH∞)j(y − u(0)) −
k−1∑
j=0

ηZ(j)e(j)

=
k−1∑
j=0

ηZ(0)(I − ηH∞)j(y − u(0)) +
k−1∑
j=0

η(Z(j) − Z(0))(I − ηH∞)j(y − u(0)) −
k−1∑
j=0

ηZ(j)e(j)

=
k−1∑
j=0

ηZ(0)(I − ηH∞)j(y − u(0)) + ζ(k).

For the first term of ζ(k), applying Lemma 3.6.9 (a), with probability at least 1 − δ, we get

‖
k−1∑
j=0

η(Z(j) − Z(0))(I − ηH∞)j(y − u(0))‖2

≤
k−1∑
j=0

O

n3/4‖y − u(0)‖1/2
2√

m1/2λ0τδ

 η‖I − ηH∞‖j
2‖(y − u(0))‖2

≤O

n3/4‖y − u(0)‖3/2
2√

m1/2λ0τδ

 k−1∑
j=0

η(1 − ηλ0)j

=O
n3/4‖y − u(0)‖3/2

2

m1/4τ 1/2λ
3/2
0 δ1/2

 .
Denote that zi(j) = z(xi)|W =W (j). By (3.12 ), we have ‖zi(j)‖2 ≤ 1. Thus,

‖Z(j)‖F =
(

n∑
i=1

‖zi(j)‖2
2

) 1
2

≤
√
n ,∀ j ≥ 0. (3.17)
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For the second term of ζ(k), we have

‖
k−1∑
j=0

ηZ(j)e(j)‖2

≤
k−1∑
j=0

η‖Z(j)‖F‖e(j)‖2

≤
k−1∑
j=0

η
√
nO

j
(

1 − ηλ0

4

)j−1
ηn5/2‖y − u(0)‖2

2√
mτλ0δ


=O

(
n3‖y − u(0)‖2

2√
mλ3

0τδ

)
.

Therefore,

‖ζ(k)‖2 = O

n3/4‖y − u(0)‖3/2
2

m1/4τ 1/2λ
3/2
0 δ1/2

+O

(
n3‖y − u(0)‖2

2√
mλ3

0τδ

)
. (3.18)

Define Gk = ∑k−1
j=0 η(I − ηH∞)j. Recalling that y = y∗ + ε, for fixed x, we have

f̃k(x) − g(x) =z0(x)>vec(W (k)) − h(x,X)(H∞)−1y∗

=z0(x)>
[
Z(0)Gk(y − u(0)) + ζ(k) + vec(W (0))

]
=
[
h(x,X)(Gk − (H∞)−1)y∗ + h(x,X)Gkε

]
+
[
z0(x)>Z(0) − h(x,X)

]
Gky

+
[
z0(x)>vec(W (0)) + z0(x)>ζ(k) − z0(x)>Z(0)Gku(0)

]
=∆21(x) + ∆22(x) + ∆23(x). (3.19)

Using Lemma 3.6.9 (c), we can bound ∆22 as

‖∆22‖2 ≤‖z0(x)>Z(0) − h(x,X)‖2‖Gky‖2

≤O

√
n
√

log(n/δ)
√
m

 ‖(H∞)−1y‖2

=O
√

n
√

log(n/δ)‖y‖2√
mλ0

 . (3.20)
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Since the i-th coordinate of u(0) is

ui(0) = z0(xi)>vec(W (0)) =
m∑
r=1

arw(0)>xiI{w(0)>xi},

where ar ∼ unif{1,−1} and w(0)>xi ∼ N(0, τ 2), it is easy to prove that ui(0) has zero

mean and variance τ 2. This implies E[‖u(0)‖2
2] = O(nτ 2). By Markov’s inequality, with

probability at least 1 − δ, we have ‖u(0)‖2 = O
(√

nτ
δ

)
. Similar to (3.17 ), we can obtain

‖Z(0)‖F = O(
√
n). Thus,

|z0(x)>Z(0)Gku(0)| ≤ ‖z0(x)‖2‖Z(0)‖F‖Gku(0)‖2 ≤
√
n‖(H∞)−1u(0)‖2 = O

(
nτ

λ0δ

)
.

(3.21)

Combining Lemma 3.6.9 (d), (3.18 ) and (3.21 ), we obtain

‖∆23‖2 ≤‖z0(·)>vec(W (0))‖2 + ‖z0(·)‖2‖ζ(k)‖2 + ‖z0(·)>Z(0)Gku(0)‖2

=O
(
τ
√

log(1/δ)
)

+O

n3/4‖y − u(0)‖3/2
2

m1/4τ 1/2λ
3/2
0 δ1/2

+O

(
n3‖y − u(0)‖2

2√
mλ3

0τδ

)
+O

(
nτ

λ0δ

)

=O
n3/4‖y − u(0)‖3/2

2

m1/4τ 1/2λ
3/2
0 δ1/2

+O

(
n3‖y − u(0)‖2

2√
mλ3

0τδ

)
+O

(
nτ

λ0δ

)
. (3.22)

By (3.14 ) and (3.19 ), we can rewrite f̂k − f ∗ as

f̂k − f ∗ = ∆21 + (∆1 + ∆3 + ∆22 + ∆23) := ∆21 + Ξ,

Next we bound the expected value of ‖Ξ‖2
2 over noise, Eε‖Ξ‖2

2. Note that we have

Eε‖y‖2
2 = Eε‖y∗ + ε‖2

2 ≤ 2y∗>y∗ + 2Eεε
>ε = O(n). (3.23)
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By Markov’s inequality, with probability 1 − δ over random initialization, we have

Eε‖y − u(0)‖2 ≤
(
Eε‖y − u(0)‖2

2

) 1
2

≤

3EW (0),a
[
u(0)>u(0) + y∗>y∗ + Eεε

>ε
]

δ


1
2

=O
√n(1 + τ 2)

δ

 = O
(√

n

δ

)
, (3.24)

where the last equality of 3.24 is because τ 2 . 1. By (3.15 ), (3.16 ), (3.20 ), (3.22 ), (3.23 ) and

(3.24 ), Eε‖Ξ‖2
2 can be upper bounded as

Eε‖Ξ‖2
2 ≤4Eε(‖∆1‖2

2 + ‖∆3‖2
2 + ‖∆22‖2

2 + ‖∆23‖2
2)

=Eε

[
O

(
n2‖y − u(0)‖4

2
mτ 2λ4

0δ
2

)
+O

( 1
n

)
+O

(
n log(n/δ)‖y‖2

2
mλ2

0

)]
+ 4Eε‖∆23‖2

2

≤O
(

n4

mτ 2λ4
0δ

4

)
+O

( 1
n

)
+O

(
n2 log(n/δ)
mλ2

0δ

)
+O

(
n2τ 2

λ2
0δ

2

)
+

+ Eε

[
O

(
n3/2‖y − u(0)‖3

2
m1/2τλ3

0δ

)
+O

(
n6‖y − u(0)‖4

2
mτ 2λ6

0δ
2

)]

=O
(

n4

mτ 2λ4
0δ

4

)
+O

( 1
n

)
+O

(
n2 log(n/δ)
mλ2

0δ

)
+O

(
n2τ 2

λ2
0δ

2

)

+O

(
n3

√
mτλ3

0δ
5/2

)
+O

(
n8

mτ 2λ6
0δ

4

)

=O
( 1
n

)
+O

(
n2τ 2

λ2
0δ

2

)
+

poly
(
n, 1

λ0
, 1
δ

)
m

1
2 τ

.

In the following, we will evaluate ∆21 and discuss how the iteration number k would affect

the L2 estimation error ‖f̂k − f ∗‖2
2.

Case 1: The iteration number k cannot be too small By taking expectation of

‖∆21‖2
2 over the noise, we have

Eε‖∆21‖2
2 =

∫
x∈Ω

h(x,X)
[
(H∞)−1 − Gk)y∗y∗>((H∞)−1 − Gk) + G2

k

]
h(X,x)dx

=
∫

x∈Ω
h(x,X)(H∞)−1Mk(H∞)−1h(X,x)dx,
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where

Mk =(I − ηH∞)kS(I − ηH∞)k + (I − (I − ηH∞)k)2

=[(I − ηH∞)k − (S + I)−1](S + I)[(I − ηH∞)k − (S + I)−1] + I − (S + I)−1

(3.25)

and S = y∗y∗>. If k ≥ C0
(

logn
ηλ0

)
for some constant C0 > 1, we have

(I − ηH∞)k ≤ (1 − ηλ0)kI ≤ exp{−ηλ0k}I ≤ exp{−C0 log n}I = 1
nC0

I,

Since 1 + ‖y∗‖2
2 ≤ C1n for some constant C1, we have

λmax

( 1
nC0

(S + I)
)

= 1 + ‖y∗‖2
2

nC0
≤ C1

nC0−1 < 1.

By Lemma 3.6.10 (a), we have

(I − ηH∞)k ≤ 1
nC0

I < (S + I)−1.

Therefore, we have

(S + I)−1 − (I − ηH∞)k ≥ (S + I)−1 − 1
nC0

I,

where (S + I)−1 − (I − ηH∞)k and (S + I)−1 − n−C0I are positive definite matrices. It is

also obvious that the two matrices are exchangeable. By Lemma 3.6.10 (b) and (3.25 ), we

have

Mk ≥
(

1 − 1
nC0

)2
I + 1

n2C0
S.

Then we have

Eε‖∆21‖2
2 ≥

(
1 − 1

nC0

)2
I1 + 1

n2C0
I2 ≥ c0I1
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where c0 ∈ (0, 1) is a constant,

I1 =
∫
h(x,X)(H∞)−2h(X,x)dx, and I2 =

∫
[h(x,X)(H∞)−1y∗]2dx.

By the Cauchy-Schwarz inequality, we have

Eε‖f̂k − f ∗‖2
2 =Eε‖∆21 + Ξ‖2

2

≥1
2Eε‖∆21‖2

2 − Eε‖Ξ‖2
2

≥c0

2 I1 −O
( 1
n

)
−O

(
n2τ 2

λ2
0δ

2

)
−

poly
(
n, 1

λ0
, 1
δ

)
m

1
2 τ

. (3.26)

Let τ ≤ C3
λ0δ
n

‖(H∞)−1h(X, ·)‖2 for some constant C3 > 0 such that the third term of (3.26 )

is bounded by c0
4 ‖(H∞)−1h(X, ·)‖2

2. Therefore, Eε‖f̂k − f ∗‖2
2 can be lower bounded as

Eε‖f̂k − f ∗‖2
2 ≥ C∗

1‖(H∞)−1h(X, ·)‖2
2 −O

( 1
n

)
, (3.27)

where C∗
1 > 0 is a constant. Note that I1 is Eε‖f̂∞ − g∗‖2

2, where g∗ ≡ 0 and f̂∞ is the

interpolated estimator of g∗, as in Theorem 3.2.2 . Therefore, by Theorem 3.2.2 , there exists

a constant c1 such that Eε‖f̂∞ − g∗‖2
2 ≥ c1, which implies I1 ≥ c1. Taking n large enough

such that the second term in (3.27 ) is smaller than C∗
1c1, we finish the proof of the case that

k is large.

Case 2: The iteration number k cannot be too large We can rewrite ∆21 as

∆21 =h(x,X)Gk(y∗ + ε) − h(x,X)(H∞)−1y∗

=∆∗
21 − h(x,X)(H∞)−1y∗.

Since

Gk =
k−1∑
j=0

η(I − ηH∞)j =
k−1∑
j=0

η
n∑

i=1
(1 − ηλi)jviv

>
i ≤ ηkI,
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we have

Eε‖∆∗
21‖2

2 =
∫

x∈Ω
h(x,X)Gk(S + I)Gkh(X,x)dx

≤η2k2
∫

x∈Ω
h(x,X)(S + I)h(X,x)dx

=η2k2
(∫

x∈Ω

[
h(x,X)y∗

]2
dx + ‖h(·,X)‖2

2

)
=O

(
η2k2n2

)
.

Therefore,

Eε‖f̂k − f ∗‖2
2 =Eε‖∆∗

21 + Ξ − h(·,X)(H∞)−1y∗‖2
2

≥1
2‖h(·,X)(H∞)−1y∗‖2

2 − Eε‖∆∗
21 + Ξ‖2

2

≥1
2‖h(·,X)(H∞)−1y∗‖2

2 − 2Eε‖∆∗
21‖2

2 − 2Eε‖Ξ‖2
2

≥1
2‖h(·,X)(H∞)−1y∗‖2

2 −O
(
η2k2n2

)
−O

( 1
n

)
−O

(
n2τ 2

λ2
0δ

2

)
−

poly
(
n, 1

λ0
, 1
δ

)
m

1
2 τ

. (3.28)

Let k ≤ C1
(

1
ηn

)
for some constant C1 > 0 such that the the second term of (3.28 ) can be

bounded by 1
8‖h(·,X)(H∞)−1y∗‖2

2. Let τ ≤ C2
(
δλ0
n

)
for some constant C2 > 0 such that

the fourth term in (3.28 ) can be bounded by 1
8‖h(·,X)(H∞)−1y∗‖2

2. Note that we can also

choose m such that the fifth term in (3.28 ) is bounded by 1
8‖h(·,X)(H∞)−1y∗‖2

2. Therefore,

we have

Eε‖f̂k − f ∗‖2
2 ≥C∗

2‖h(·,X)(H∞)−1y∗‖2
2 −O

( 1
n

)
≥C∗

3‖f ∗‖2
2 −O

( 1
n

)
, (3.29)

where the last inequality is because of Lemma 3.6.6 , and C∗
2 > 0 is a constant. By taking n

large enough such that the second term in (3.29 ) is smaller than C∗
3‖f ∗‖2

2/2, we finish the

proof.
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Proof of Theorem 3.2.2 

Proof Let’s first introduce the GD update for the kernel ridge regression. By the representer

theorem [126 ], the kernel estimator can be written as

f̂(x) =
n∑

i=1
ωih(x,xi) := h(x,X)ω,

where ω = (ω1, . . . , ωn) is the coefficient vector. Consider using the squared loss

Φ(ω) = 1
2

n∑
i=1

(f̂(xi) − yi)2.

Let ωk be the ω at the k-th GD iteration and choose ω0 = 0. Then, the GD update rule for

estimating ω can be expressed as

ωk+1 = ωk − η
(
(H∞)2ω − H∞y

)
(3.30)

In the formulation of the stopping rule, two quantities play an important role: first, the running

sum of the step sizes αj := ∑j
i=0 ηi, and secondly, the eigenvalues λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n ≥ 0 of

the empirical kernel matrix H∞, which are computable from the data. Recall the definition of

the optimal stopping time k∗ as in (3.6 ). The following lemma establishes the L2 estimation

results for f̂k∗ for kernels with polynomial eigendecay.

Lemma 3.6.11 (Corollary 1 in [110 ]) Suppose that variables {xi}ni=1 are sampled i.i.d.

and the kernel class N satisfies the polynomial eigenvalue decay λj . j−2ν for some ν > 1/2.

Then there is a universal constant C such that

E‖f̂k∗ − f ∗‖2
2 ≤ C

(
σ2

n

) 2ν
2ν+1

.

Moreover, if λj � j−2ν for all j = 1, 2, . . ., then for all iterations k = 1, 2, . . .,

E‖f̂k∗ − f ∗‖2
2 ≥ σ2

4 min
{
1, (αk)

1
2ν

n

}
.
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By Lemma 3.1.1 , apply Lemma 3.6.11 with 2ν = d/(d− 1) and the running sum of the

step sizes αk = kη gives the convergence rate.

Moreover, if k → ∞, i.e., interpolation of training data, the lower bound result in Lemma

3.6.11 implies E‖fT̂ − f ∗‖2
2 & σ2 that doesn’t converge to 0.

3.6.2 Proofs of main theorems in Section 3.3 

Proof of Theorem 3.3.1 

Proof Consider event

Air = {∃w ∈ Rd : ‖w − (1 − η2µ)kwr(0)‖2 ≤ R, I{x>
i wr(0) ≥ 0} 6= I{x>

i w ≥ 0}},

where R will be determined later. Set Si = {r ∈ [m] : I{Air} = 0} and S⊥
i = [m]\Si. Then Air

happens if and only if |wr(0)>xi| < R/(1 − η2µ)k. By concentration inequality of Gaussian,

we have P(Air) = P(|wr(0)>xi| < R/(1 − η2µ)k ≤ 2R√
2πτ(1−η2µ)k . Thus, it follows the union

bound inequality that with probability at least 1 − δ we have

n∑
i=1

|S⊥
i | ≤ CmnR

δ(1 − η2µ)k , (3.31)

where C is a positive constant.

Let uD(l) = (uD,1(l), ..., uD,n(l))> ∈ Rn be the predictions on the points x1, ...,xn using

the modified GD at the k-th iteration. We first study the difference between two predictions

uD(l + 1) and uD(l). For any i ∈ [n], we have

uD,i(l + 1) − (1 − η2µ)uD,i(l) = 1√
m

m∑
r=1

ar(σ(wD,r(l + 1)>xi) − (1 − η2µ)σ(wD,r(l)>xi))

= 1√
m

∑
r∈S⊥

i

ar(σ(wD,r(l + 1)>xi) − (1 − η2µ)σ(wD,r(l)>xi))

+ 1√
m

∑
r∈Si

ar(σ(wD,r(l + 1)>xi) − (1 − η2µ)σ(wD,r(l)>xi))

=I1,i(l) + I2,i(l). (3.32)
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The first term I1,i(l) can be bounded by

I1,i(l) = 1√
m

∑
r∈S⊥

i

ar(σ(wD,r(l + 1)>xi) − (1 − η2µ)σ(wD,r(l)>xi))

≤ 1√
m

∑
r∈S⊥

i

∣∣∣(wD,r(l + 1) − (1 − η2µ)wD,r(l))>xi

∣∣∣
≤ 1√

m

∑
r∈S⊥

i

‖wD,r(l + 1) − (1 − η2µ)wD,r(l)‖2

= 1√
m

∑
r∈S⊥

i

‖ η1√
m
ar

n∑
j=1

(uD,j(l) − yj)Ir,j(l)xj‖2

≤η1

m

∑
r∈S⊥

i

n∑
j=1

|uD,j(l) − yj|

≤η1
√
n|S⊥

i |
m

‖uD(l) − y‖2. (3.33)

In (3.33 ), the second and the last inequalities are by the Cauchy-Schwarz inequality. The

second term I2,i(l) can be bounded by

I2,i(l) = 1√
m

∑
r∈Si

ar(σ(wD,r(l + 1)>xi) − (1 − η2µ)σ(wD,r(l)>xi))

= 1√
m

∑
r∈Si

arIr,i(l)(wD,r(l + 1) − (1 − η2µ)wD,r(l))>xi

= − 1√
m

∑
r∈Si

arIr,i(l)
 η1√

m
ar

n∑
j=1

(uD,j(l) − yj)Ir,j(l)xj

>

xi

= − η1

m

n∑
j=1

(uD,j(l) − yj)x>
j xi

∑
r∈Si

Ir,i(l)Ir,j(l)

= − η1

n∑
j=1

(uD,j(l) − yj)Hij(l) + I3,i(l), (3.34)

where

I3,i(l) = η1

m

n∑
j=1

(uD,j(l) − yj)x>
j xi

∑
r∈S⊥

i

Ir,i(l)Ir,j(l).
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The term I3,i(l) in (3.34 ) can be bounded by

|I3,i(l)| ≤

∣∣∣∣∣∣∣
η1

m

n∑
j=1

(uD,j(l) − yj)x>
j xi

∑
r∈S⊥

i

Ir,i(l)Ir,j(l)

∣∣∣∣∣∣∣
≤η1

m
|S⊥

i |
n∑

j=1
|uD,j(l) − yj|

≤η1
√
n|S⊥

i |
m

‖uD(l) − y‖2. (3.35)

Plugging (3.33 ) and (3.34 ) into (3.32 ), we have

uD,i(l + 1) − (1 − η2µ)uD,i(l) = −η1

n∑
j=1

(uD,j(l) − yj)Hij(l) + I1,i(l) + I3,i(l),

which leads to

uD(l + 1) − (1 − η2µ)uD(l) = −η1H(l)(uD(l) − y) + I(l), (3.36)

where I(l) = (I1,1(l) + I3,1(l), ..., I1,n(l) + I3,n(l))>. By the triangle inequality, we have

‖uD(l + 1) − (1 − η2µ)uD(l)‖2 ≤‖η1H(l)(uD(l) − y)‖2 + ‖I(l)‖2. (3.37)

By (3.31 ), (3.33 ), and (3.35 ), the term ‖I(l)‖2 in (3.37 ) can be bounded by

‖I(l)‖2 ≤
n∑

i=1
|I3,i(l)| + |I1,i(l)| ≤

n∑
i=1

2η1
√
n|S⊥

i |
m

‖uD(l) − y‖2

≤2η1
√
n

m

CmnR

δ(1 − η2µ)k ‖uD(l) − y‖2 = 2Cη1n
3/2R

δ(1 − η2µ)k ‖uD(l) − y‖2. (3.38)

Gershgorin’s theorem [127 ] implies

λmax(H(l)) ≤ max
j

n∑
i=1

Hij(l) ≤ n.
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Therefore, the term ‖η1H(l)(uD(l) − y)‖2 in (3.37 ) can be bounded by

‖η1H(l)(uD(l) − y)‖2 ≤ η1λmax(H(l))‖uD(l) − y‖2 ≤ η1n‖uD(l) − y‖2.

By (3.37 ) and (3.38 ), ‖y − uD(l + 1)‖2 can be bounded by

‖y − uD(l + 1)‖2
2 =‖y − (1 − η2µ)uD(l)‖2

2 − 2(y − (1 − η2µ)uD(l))>(uD(l + 1) − (1 − η2µ)uD(l))

+ ‖uD(l + 1) − (1 − η2µ)uD(l)‖2
2

=‖y − (1 − η2µ)uD(l)‖2
2 + 2η1(y − (1 − η2µ)uD(l))>H(l)(uD(l) − y)

− 2η1(y − (1 − η2µ)uD(l))>I(l) + ‖uD(l + 1) − (1 − η2µ)uD(l)‖2
2

=T1 + T2 + T3 + T4. (3.39)

The first term T1 can be bounded by

T1 =‖y − (1 − η2µ)uD(l)‖2
2

=η2
2µ

2‖y‖2
2 + (1 − η2µ)2‖y − uD(l)‖2

2 + 2η2µ(1 − η2µ)y>(y − uD(l))

≤(η2
2µ

2 + η2µ)‖y‖2
2 + (1 + η2µ)(1 − η2µ)2‖y − uD(l)‖2

2. (3.40)

The second term T2 can be bounded by

T2 =2η1(y − (1 − η2µ)uD(l))>H(l)(uD(l) − y)

=2η1(1 − η2µ)(y − uD(l))>H(l)(uD(l) − y) + 2η1η2µy>H(l)(uD(l) − y)

= − 2η1(1 − η2µ)(y − uD(l))>H(l)(y − uD(l)) + 2η1η2µy>H(l)(uD(l) − y)

≤4η1η2µn‖y‖2
2 + 4η1η2µn‖uD(l) − y‖2

2.

128



Using (3.38 ), the third term T3 can be bounded by

T3 = − 2η1(y − (1 − η2µ)uD(l))>I(l)

= − 2η1(1 − η2µ)(y − uD(l))>I(l) + 2η1η2µy>I(l)

≤2η1(1 − η2µ) 2Cη1n
3/2R

δ(1 − η2µ)k ‖uD(l) − y‖2 + 4η1η2µ‖y‖2
2 + 4η1η2µ‖I(l)‖2

2

≤2η1(1 − η2µ) 2Cη1n
3/2R

δ(1 − η2µ)k ‖uD(l) − y‖2
2 + 4η1η2µ‖y‖2

2 + 4η1η2µ

(
2Cη1n

3/2R

δ(1 − η2µ)k

)2

‖uD(l) − y‖2
2.

The fourth term T4 can be bounded by

T4 =‖uD(l + 1) − (1 − η2µ)uD(l)‖2
2

≤2‖η1H(l)(uD(l) − y)‖2
2 + 2‖I(l)‖2

2

≤2η2
1n

2‖uD(l) − y‖2
2 + 2

(
2Cη1n

3/2R

δ(1 − η2µ)k

)2

‖uD(l) − y‖2
2. (3.41)

Plugging (3.40 ) - (3.41 ) into (3.39 ), we have

‖y − uD(l + 1)‖2
2

≤(η2
2µ

2 + η2µ)‖y‖2
2 + (1 + η2µ)(1 − η2µ)2‖y − uD(l)‖2

2 + 4η1η2µn‖y‖2
2 + 4η1η2µn‖uD(l) − y‖2

2

+ 2η1(1 − η2µ) 2Cη1n
3/2R

δ(1 − η2µ)k ‖uD(l) − y‖2
2 + 4η1η2µ‖y‖2

2 + 4η1η2µ

(
2Cη1n

3/2R

δ(1 − η2µ)k

)2

‖uD(l) − y‖2
2

+ 2η2
1n

2‖uD(l) − y‖2
2 + 2

(
2Cη1n

3/2R

δ(1 − η2µ)k

)2

‖uD(l) − y‖2
2

=a1‖y‖2
2 + a2‖uD(l) − y‖2

2, (3.42)
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where

a1 =(η2
2µ

2 + η2µ) + 4η1η2µn+ 4η1η2µ ≤ 2η2µ+ 8η1η2µn,

a2 =(1 + η2µ)(1 − η2µ)2 + 4η1η2µn+ 2η1(1 − η2µ) 2Cη1n
3/2R

δ(1 − η2µ)k

+ 4η1η2µ

(
2Cη1n

3/2R

δ(1 − η2µ)k

)2

+ 2η2
1n

2 + 2
(

2Cη1n
3/2R

δ(1 − η2µ)k

)2

≤1 −
(
η2µ− 4η1η2µn− 2η1

2Cη1n
3/2R

δ(1 − η2µ)k − 2η2
1n

2
)

=1 − ν0.

By the conditions imposed on η1, η2, µ,m, the dominating terms in a1 and ν0 are both η2µ.

Thus a1 = o(1/n), ν0 = o(1/n) and a1/ν0 = O(1). Using (3.42 ) iteratively, we have

‖y − uD(l + 1)‖2
2 ≤a1‖y‖2

2 + a2‖uD(l) − y‖2
2

≤... ≤
l∑

i=0
(1 − ν0)i(a1‖y‖2

2) + (1 − ν0)l+1‖y − uD(0)‖2
2

≤a1‖y‖2
2

ν0
+ (1 − ν0)l+1‖y − uD(0)‖2

2.

By the modified GD rule, we have

wD,r(l + 1) − (1 − η2µ)wD,r(l) = − η1√
m
ar

n∑
j=1

(uD,j(l) − yj)Ir,j(l)xj,

which implies

‖wD,r(l + 1) − (1 − η2µ)wD,r(l)‖2 ≤η1
√
n√
m

‖uD(l) − y‖2 ≤ Cη1n√
m

(3.43)
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for some constant C. Using (3.43 ) iteratively yields

‖wD,r(l + 1) − (1 − η2µ)l+1wD,r(0)‖2

≤‖wD,r(l + 1) − (1 − η2µ)wD,r(l)‖2 + ‖(1 − η2µ)wD,r(0) − (1 − η2µ)l+1wD,r(l)‖2

≤Cη1n√
m

+ (1 − η2µ)‖wD,r(l) − (1 − η2µ)lwD,r(0)‖2

≤... ≤
l∑

i=0
(1 − η2µ)iCη1n√

m
≤ Cη1n

η2µ
√
m
. (3.44)

By similar approach as in the proof of Lemma C.2 of [16 ], we can show that with probability

at least 1 − δ with respect to random initialization,

‖Z(l) − Z(0)‖2
F ≤ 2nR√

2πτδ(1 − η2µ)k
+ n

m
= O

(
η1n

2

(1 − η2µ)kη2µ
√
mδ3/2τ

)
,∀l ∈ [k],

and

‖H(l) − H(0)‖F ≤ 4n2R√
2πτ

+ 2n2δ

m
= O

(
η1n

3

(1 − η2µ)kη2µ
√
mδ3/2τ

)
,∀l ∈ [k].

By Lemma C.3 of [16 ], we have with probability at least 1 − δ with respect to random

initialization,

‖H(0) − H∞‖F = O

n
√

log(n/δ)
√
m

 .
By (3.36 ), we have

uD(l + 1) − (1 − η2µ)uD(l) = − η1H(l)(uD(l) − y) + I(l)

= − η1H
∞(uD(l) − y) + I(l) − η1(H(l) − H∞)(uD(l) − y),

which yields

uD(l + 1) −B = ((1 − η2µ)I − η1H
∞) (uD(l) −B) + I(l) − η1(H(l) − H∞)(uD(l) − y),

(3.45)
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where

B = (η2µI + η1H
∞)−1η1H

∞y = η1H
∞(η2µI + η1H

∞)−1y.

Iteratively using (3.45 ), we have

uD(l + 1) −B = ((1 − η2µ)I − η1H
∞)l+1 (uD(0) −B)

+
l∑

i=0
((1 − η2µ)I − η1H

∞)i (I(l − i) − η1(H(l − i) − H∞)(uD(l − i) − y))

= ((1 − η2µ)I − η1H
∞)l+1 (uD(0) −B) + el, (3.46)

where

el =
l∑

i=0
((1 − η2µ)I − η1H

∞)i (I(l − i) − η1(H(l − i) − H∞)(uD(l − i) − y)).

The term el can be bounded by

‖el‖2 =‖
l∑

i=0
((1 − η2µ)I − η1H

∞)i (I(l − i) − η1(H(l − i) − H∞)(uD(l − i) − y))‖2

≤
l∑

i=0
‖(1 − η2µ)I − η1H

∞‖i
2(‖I(l − i)‖2 + η1‖H(l − i) − H∞‖2‖uD(l − i) − y‖2)

≤
l∑

i=0
(1 − η2µ)iO

(
2Cη2

1n
5/2

η2µ
√
mδ3/2(1 − η2µ)k + η2

1n
7/2

(1 − η2µ)kη2µ
√
mδ2τ

)

=O
(

η2
1n

7/2

η2
2µ

2√mδ2(1 − η2µ)kτ

)
. (3.47)

By (3.46 ) and taking l = k − 1, with probability at least 1 − δ with respect to the random

initialization, the difference uD(k) −B can be bounded by

‖uD(k) −B‖2 ≤‖ ((1 − η2µ)I − η1H
∞)k (uD(0) −B)‖2 + ‖ek‖2

=O
(

√
n(1 − η2µ− η1λ0)k + n7/2

µ2√mδ2(1 − η2µ)kτ

)

=O
(

√
n(1 − η2µ)k + n7/2

µ2√mδ2(1 − η2µ)kτ

)
.
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This implies that

‖uD(k) −B‖2 = OP

(
√
n(1 − η2µ)k + n7/2

µ2√m(1 − η2µ)kτ

)
.

By choosing m = poly(n, 1/τ, 1/λ0) such that n7/2

µ2√
m(1−η2µ)kτ

≤
√
n(1 − η2µ)k, we finish the

proof of (3.9 ).

Now consider vec(WD(l + 1)). Direct calculation shows that

vec(WD(l + 1)) =(1 − η2µ)vec(WD(l)) − η1Z(l)(uD(l) − y)

=(1 − η2µ)vec(WD(l)) − η1Z(0)(uD(l) − y) − η1(Z(l) − Z(0))(uD(l) − y)

=(1 − η2µ)l+1vec(WD(0)) − η1Z(0)
l∑

i=0
(1 − η2µ)i(uD(l − i) − y)

−
l∑

i=0
(1 − η2µ)iη1(Z(l) − Z(0))(uD(l) − y). (3.48)

Plugging

uD(l + 1) = ((1 − η2µ)I − η1H
∞)l+1 (uD(0) −B) + el +B

into (3.48 ), we have
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vec(WD(l + 1)) − (1 − η2µ)l+1vec(WD(0))

= − η1Z(0)
l∑

i=0
(1 − η2µ)i ((1 − η2µ)I − η1H

∞)l−i (uD(0) −B)

− η1Z(0)
l∑

i=0
(1 − η2µ)i(el−i−1 +B − y) −

l∑
i=0

(1 − η2µ)iη1(Z(l) − Z(0))(uD(l) − y)

=η1Z(0)
l∑

i=0
(1 − η2µ)i ((1 − η2µ)I − η1H

∞)l−i η1H
∞(η2µI + η1H

∞)−1y

− η1Z(0)
l∑

i=0
(1 − η2µ)i ((1 − η2µ)I − η1H

∞)l−i uD(0)

− η1Z(0)
l∑

i=0
(1 − η2µ)iel−i−1 − η1Z(0)

l∑
i=0

(1 − η2µ)i(B − y)

−
l∑

i=0
(1 − η2µ)iη1(Z(l) − Z(0))(uD(l) − y)

=E1 − E2 + E3 − T5 − E4. (3.49)

Let

Tl =
l∑

i=0
(1 − η2µ)i ((1 − η2µ)I − η1H

∞)l−i

=(1 − η2µ)l
l∑

i=0

(
I − η1

(1 − η2µ)H∞
)i

(3.50)

and

a1 =η1H
∞(η2µI + η1H

∞)−1y.
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The first term E1 can be bounded by

‖E1‖2
2 =‖η1Z(0)Tla1‖2

2

=η2
1a>

1 TlZ(0)>Z(0)Tla1

=η2
1a>

1 TlH
∞Tla1 + η2

1a>
1 Tl(H(0) − H∞)Tla1

=η2
1a>

1 TlH
∞Tla1 + η2

1O

n
√

log(n/δ)
√
m

a>
1 T 2

l a1. (3.51)

By (3.50 ), we have

Tl =(1 − η2µ)l
n∑

j=1

1 − (1 − η1
(1−η2µ)λj)l+1

η1
(1−η2µ)λj

vjv
>
j � (1 − η2µ)l

η1λ0
I,

and

TlH
∞Tl =(1 − η2µ)2l

n∑
j=1

1 − (1 − η1
(1−η2µ)λj)2l+2

η1
(1−η2µ)λj

2

λjvjv
>
j � (1 − η2µ)l+1

η2
1

(H∞)−1.

Therefore,

η2
1a>

1 TlH
∞Tla1 ≤(1 − η2µ)2l+2a>

1 (H∞)−1a1,

η2
1O

n
√

log(n/δ)
√
m

a>
1 T 2

l a1 ≤O

n2(1 − η2µ)2l
√

log(n/δ)
√
mλ2

0

 .
Together with (3.51 ), we have

‖E1‖2
2 = (1 − η2µ)2l+2a>

1 (H∞)−1a1 +O

n2(1 − η2µ)2l
√

log(n/δ)
√
mλ2

0

 . (3.52)
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By similar approach, the second term E2 can be bounded by

‖E2‖2
2 =‖η1Z(0)

l∑
i=0

(1 − η2µ)i ((1 − η2µ)I − η1H
∞)l−i uD(0)‖2

2

=η2
1uD(0)>T1(l)Z(0)>Z(0)T1(l)uD(0)

=η2
1uD(0)>T1(l)H∞T1(l)uD(0) + η2

1uD(0)>T1(l)(H(0) − H∞)T1(l)uD(0)

=(1 − η2µ)2l+2uD(0)>(H∞)−1uD(0) +O

n2(1 − η2µ)2l
√

log(n/δ)
√
mλ2

0

 . (3.53)

By (3.47 ), the third term E3 can be bounded by

‖E3‖2
2 =‖η1Z(0)

l∑
i=0

(1 − η2µ)iel−i−1‖2
2

=η2
1

(
l∑

i=0
(1 − η2µ)iel−i−1

)>

H(0)
(

l∑
i=0

(1 − η2µ)iel−i−1

)

=O
(

η6
1n

8

η6
2µ

6mδ4(1 − η2µ)2kτ 2

)
. (3.54)

The fourth term E4 can be bounded by

‖E4‖2
2 =‖

l∑
i=0

(1 − η2µ)iη1(Z(l) − Z(0))(uD(l) − y)‖2
2

=O
(

η3
1n

3

(1 − η2µ)kη3
2µ

3√mδ3/2τ

)
. (3.55)

Note that

B − y =η1H
∞(η2µI + η1H

∞)−1y − y

=(η1H
∞ − η2µI − η1H

∞)(η2µI + η1H
∞)−1y

= − η2µ(η2µI + η1H
∞)−1y.
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Therefore, the remaining term T5 can be bounded by

‖T5‖2
2 =‖η1Z(0)

l∑
i=0

(1 − η2µ)i(B − y)‖2
2

≤η2
1y>(η2µI + η1H

∞)−1H∞(η2µI + η1H
∞)−1y

≤y>(η2µ/η1I + H∞)−1H∞(η2µ/η1I + H∞)−1y.

By the assumption that η2 � η1, the term T5 can be further bounded by

‖T5‖2
2 ≤y>(CµI + H∞)−1H∞(CµI + H∞)−1y. (3.56)

The right-hand side of (3.56 ) is ‖f̂‖2
N , where f̂ is defined in (3.4 ). The term ‖f̂‖2

N can be

bounded by some constant as in Theorem 3.1.2 . This also implies

a>
1 (H∞)−1a1 = η2

1y>(η2µI + η1H
∞)−1H∞(η2µI + η1H

∞)−1y = O(1). (3.57)

Note also that

uD(0)>(H∞)−1uD(0) = O

(
nτ 2

λ0

)
. (3.58)

By the assumptions of Theorem 3.3.1 , plugging (3.51 )-(3.58 ) into (3.49 ), and taking the

iteration number at k, we can conclude that

‖vec(WD(k)) − (1 − η2µ)kvec(WD(0))‖2
2

=O((1 − η2µ)2k) +O

n2(1 − η2µ)2k−2
√

log(n/δ)
√
mλ2

0


+O

(
nτ 2

λ0
(1 − η2µ)2k

)
+O

n2(1 − η2µ)2k−2
√

log(n/δ)
√
mλ2

0


+O

(
n8

µ6mδ4(1 − η2µ)2kτ 2

)
+O

(
n3

(1 − η2µ)kµ3√mδ3/2τ

)
+O(1)

=O(1), (3.59)
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where the last equality is because we can select some polynomials such that all the terms in

(3.59 ) except the O(1) term converge to zero, and exp(−2η2µk) ≤ (1 − η2µ)k ≤ exp(−η2µk)

for sufficiently large n. This finishes the proof of (3.10 ) in Theorem 3.3.1 .

Proof of Theorem 3.3.4 

Proof For notational simplification, we use f̂k = fW (k),a. Similar to the proof of Theorem

3.2.1 , we define

f̃k(x) = vec(WD(k))>z0(x),

where z0(x) = z(x)|WD=WD(0). Then we can write the following decomposition

f̂k(x) − f ∗(x) =(f̂k(x) − f̃k(x)) + (f̃k(x) − f̂(x)) + (f̂(x) − f ∗(x))

=∆1(x) + ∆2(x) + ∆3(x),

where f̂ is as in (3.4 ). It follows from Theorem 3.1.2 that

‖∆3‖2
2 = OP

(
n− d

2d−1
)
. (3.60)

Next, we consider ∆1. From (3.44 ), it can be seen that

‖wD,r(k) − (1 − η2µ)kwD,r(0)‖2 ≤ Cη1n

η2µ
√
m
.

Define event

BD,r(x) = {|(1 − η2µ)kwD,r(0)>x| ≤ R1},∀r ∈ [m],
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where R1 = Cη1n
η2µ

√
m

. If I{BD,r(x)} = 0, then we have Ir,k(x) = Ir,0(x), where Ir,k(x) =

I{wD,r(k)>x ≥ 0}. Therefore, for any fixed x,

|∆1(x)| = |f̂k(x) − f̃k(x)|

=
∣∣∣∣∣ 1√
m

m∑
r=1

ar(Ir,k(x) − Ir,0(x))wD,r(k)>x

∣∣∣∣∣
=
∣∣∣∣∣ 1√
m

m∑
r=1

arI{BD,r(x)}(Ir,k(x) − Ir,0(x))wD,r(k)>x

∣∣∣∣∣
≤ 1√

m

m∑
r=1

I{BD,r(x)}|wD,r(k)>x|

≤ 1√
m

m∑
r=1

I{BD,r(x)}
(
|(1 − η2µ)kwD,r(0)>x| + |wD,r(k)>x − (1 − η2µ)kwr(0)>x|

)
≤ 2R1√

m

m∑
r=1

I{BD,r(x)}.

Note that ‖x‖2 = 1, which implies that wD,r(0)>x is distributed as N(0, τ 2). Therefore, we

have

E[I{BD,r(x)}] = P
(
|(1 − η2µ)kwD,r(0)>x| ≤ R1

)
=
∫ R1/(1−η2µ)k

−R1/(1−η2µ)k

1√
2πτ

exp
{

− u2

2τ 2

}
du ≤ 2R1√

2π(1 − η2µ)kτ
.

By Markov’s inequality, with probability at least 1 − δ, we have

m∑
r=1

I{BD,r(x)} ≤ 2mR1√
2π(1 − η2µ)kτδ

.

Thus, we have with probability at least 1 − δ,

‖∆1‖2 ≤ 2R1√
m

‖
m∑
r=1

I{BD,r(·)}‖2 ≤ 4
√
mR2

1√
2π(1 − η2µ)kτδ

= O

(
n2

√
mλ2

0δ
2(1 − η2µ)kτ

)
,

which implies

‖∆1‖2 = OP

(
n2

√
mλ2

0(1 − η2µ)kτ

)
. (3.61)
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Now we bound ∆2. Note that Define Gk = ∑k−1
j=0 η(I − ηH∞)j. Recalling that y = y∗ + ε,

for fixed x, we have

∆2(x) =f̃k(x) − f̂(x)

=z0(x)>vec(WD(k)) − h(x,X)(H∞ + η2µ/η1I)−1y

=z0(x)>E1 − z0(x)>E2 + z0(x)>E3 − z0(x)>T5 − z0(x)>E4

+ (1 − η2µ)kz0(x)>vec(WD(0)) − h(x,X)(H∞ + η2µ/η1I)−1y, (3.62)

where E1, E2, E3, T5, E4 are as in (3.49 ). Noting that ‖z0(x)‖2 = OP(1), we have that

|z0(x)>E1|2 ≤ ‖z0(x)‖2
2‖E1‖2

2 =OP((1 − η2µ)2k) +OP

n2(1 − η2µ)2k−2
√

log(n)
√
mλ2

0

 , (3.63)

|z0(x)>E2|2 ≤ ‖z0(x)‖2
2‖E2‖2

2 =OP

(
nτ 2

λ0
(1 − η2µ)2k

)
+OP

n2(1 − η2µ)2k−2
√

log(n)
√
mλ2

0

 ,
(3.64)

|z0(x)>E3|2 ≤ ‖z0(x)‖2
2‖E3‖2

2 =OP

(
η6

1n
8

η6
2µ

6m(1 − η2µ)2kτ 2

)
, (3.65)

|z0(x)>E4|2 ≤ ‖z0(x)‖2
2‖E4‖2

2 =OP

(
n3

(1 − η2µ)kµ3√mδ3/2τ

)
, (3.66)

where (3.63 ) is because of (3.52 ) and (3.57 ), (3.64 ) is because of (3.53 ) and (3.58 ), (3.65 )

is because of (3.54 ), and (3.66 ) is because of (3.55 ). By Lemma 3.6.9 (d), the term (1 −

η2µ)kz0(x)>vec(WD(0)) in (3.62 ) can be bounded by

‖(1 − η2µ)kz0(·)>vec(WD(0))‖2 = OP((1 − η2µ)kτ).

Define

B = η1H
∞(η2µI + η1H

∞)−1y.
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Note that

B − y =η1H
∞(η2µI + η1H

∞)−1y − y

=(η1H
∞ − η2µI − η1H

∞)(η2µI + η1H
∞)−1y

= − η2µ(η2µI + η1H
∞)−1y.

Therefore, the remaining term in (3.62 ) −z0(x)>T5 − h(x,X)(H∞ + η2µ/η1I)−1y can be

bounded by

− z0(x)>T5 − h(x,X)(H∞ + η2µ/η1I)−1y

= − z0(x)>Z(0)
k−1∑
i=0

η1(1 − η2µ)i(B − y) − h(x,X)(H∞ + η2µ/η1I)−1y

= − z0(x)>Z(0)η1
1 − (1 − η2µ)k

η2µ
(B − y) − h(x,X)(H∞ + η2µ/η1I)−1y

=z0(x)>Z(0)η1(1 − (1 − η2µ)k)(η2µI + η1H
∞)−1y − h(x,X)(H∞ + η2µ/η1I)−1y

=(z0(x)>Z(0) − h(x,X))(H∞ + η2µ/η1I)−1y − η1(1 − η2µ)kz0(x)>Z(0)(η2µI + η1H
∞)−1y.

(3.67)

The first term in (3.67 ) can be bounded by

‖(z0(·)>Z(0) − h(·,X))(H∞ + η2µ/η1I)−1y‖2

≤‖(z0(·)>Z(0) − h(·,X))‖2‖(H∞ + η2µ/η1I)−1y‖2

=OP

n
√

log(n)η1√
mη2µ

 , (3.68)

where we utilize

‖(H∞ + η2µ/η1I)−1y‖2
2 = y>(H∞ + η2µ/η1I)−2y ≤ η2

1
η2

2µ
2 ‖y‖2

2 = OP

(
η2

1
η2

2µ
2n

)
,

and Lemma 3.6.9 (c).
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The second term in (3.67 ) can be bounded by

‖(1 − η2µ)kz0(·)>Z(0)(H∞ + η2µ/η1I)−1y‖2

≤(1 − η2µ)k‖(z0(·)>Z(0) − h(·,X))(H∞ + η2µ/η1I)−1y‖2

+ (1 − η2µ)k‖h(·,X)(H∞ + η2µ/η1I)−1y‖2

≤OP

n
√

log(n)η1√
mη2µ

+ (1 − η2µ)k‖h(·,X)(H∞ + η2µ/η1I)−1y‖N

=OP((1 − η2µ)k), (3.69)

where the second inequality is because of (3.68 ) and the last equality is because of Theorem

3.1.2 and the assumption η1 � η2. Plugging (3.63 )-(3.69 ) to (3.62 ), we can conclude that

‖∆2‖2 = oP(n− d
2d−1 ), (3.70)

by choosing k and m as in Theorem 3.3.4 . Combining (3.61 ), (3.70 ), and (3.60 ) finishes the

proof.

3.6.3 Proof of lemmas

Proof of Lemma 3.6.1 

Proof The proof of Lemma 3.6.1 mainly from Appendix C of [108 ] and Appendix D of [128 ],

with some modifications.

We first review some background of spherical harmonic analysis [129 ], [130 ]. Let Yk,j be

the spherical harmonics of degree k on Sd−1, where N(p.k) = 2k+d−2
k

 k + d− 3

d− 2

. Then

Yk,j is an orthonormal basis of L2(Sp−1, dξ), where dξ is the uniform measure on the sphere.

Then we have

N(d,k)∑
j=1

Yk,j(s)Yk,j(t) = N(d, k)Pk(s>t),
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where Pk is the k-th Legendre polynomial in dimension d, given by

Pk(t) =(−1/2)k
Γ(d−1

2 )
Γ(k + d−1

2 )
(1 − t2)(3−d)/2

(
d

dt

)k
(1 − t2)k+(d−3)/2.

The polynomials Pk are orthogonal in L2([−1, 1])dν, where the measure dν = (1− t2)(d−3)/2dt

with Lebesgue measure dt, and

∫
[−1,1]

P 2
k (t)(1 − t2)(d−3)/2dt = wd−1

wd−2

1
N(d, k) ,

where wd−1 = 2πd/2

Γ(d/2) . Furthermore, it can be shown that [129 ]

tPk(t) = k

2k + d− 2Pk−1(t) + k + d− 2
2k + d− 2Pk+1(t),

for k ≥ 1, and for j = 0 we have tP0(t) = P1(t). This implies that for large k enough, we have

µk = k

2k + d− 2µ0,k−1 + k + d− 2
2k + d− 2µ0,k+1,

where µ0,k−1 and µ0,k+1 are as in Lemma 17 of [108 ]. By Lemma 17 of [108 ], we have

µ0,k � k−d for large k, if k = 1 mod 2. This finish the proof of Lemma 3.6.1 .

Proof of Lemma 3.6.2 

Proof By Theorem 1 of [131 ] and Lemma 3.6.1 , we can see that the function space N is a

subspace of the Sobolev space Hs(Sd−1). Therefore, the entropy of N (1) can be bounded if

the entropy of Hd/2(Sd−1)(1) can be bounded. By Theorem 1.2 of [132 ], we have that the

k-th entropy number ek(T ) can be bounded by k−d/(2(d−1)). This implies that

H(δ,N (1), ‖ · ‖L∞) ≤ Aδ− 2(d−1)
d .
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Proof of Lemma 3.6.5 

Proof The first inequality follows the fact that h is positive definite, which implies the

inverse of
 h(s, s) h(X, s)

h(s,X) h∞


is positive definite. By block matrix inverse, we have the first inequality in Lemma 3.6.5 

holds.

The second inequality and third inequality are direct results of Theorem 3.1.2 implies

Eε,X(‖ĝn − g∗‖2
2)

=
∫
Sd−1

(g∗(x) − h(x,X)(H∞ + µI)−1y∗)2 + h(x,X)(H∞ + µI)−2h(X,x)dx = OP(n− d
2d−1 )

for any function g∗ with ‖g∗‖N ≤ 1. Then we have

∫
Sd−1

h(x,X)(H∞ + µI)−2h(X,x)dx = OP(n− d
2d−1 ),

which finishes the proof of the second equality. Let g∗(x) = h(s,x), then we have

∫
Sd−1

(h(s,x) − h(x,X)(H∞ + µI)−1h(X, s))2dx = OP(n− d
2d−1 ).

By the interpolation inequality, we have

h(s, s) − h(s,X)(H∞ + µI)−1h(X, s))

≤‖h(s, ·) − h(·,X)(H∞ + µI)−1h(X, s))‖∞

≤C‖h(s, ·) − h(·,X)(H∞ + µI)−1h(X, s))‖1− d−1
d

2 ‖h(s, ·) − h(·,X)(H∞ + µI)−1h(X, s)‖
d−1

d
N

=OP(n− 1
2d−1 )(h(s, s) + h(s,X)(H∞ + µI)−1H∞(H∞ + µI)−1h(X, s)) d−1

d

≤OP(n− 1
2d−1 )(h(s, s) + h(s,X)(H∞)−1h(X, s))

d−1
d = OP(n− 1

2d−1 ),

where the last inequality follows the first inequality of Lemma 3.6.5 .
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Proof of Lemma 3.6.6 

Proof Given that g and f ∗ have the same value at all xi’s, the empirical norm ‖g−f ∗‖n = 0.

Notice that both g and f ∗ are in the RKHS generated by the NTK h, denoted by N . Utilizing

Lemma 3.6.2 and 3.6.4 similarly as in the proof of Theorem 3.1.2 , we have R,K = O(1) and

J∞(z,N ) . z1/d, which leads to

sup
h∈G(R)

∣∣∣∣∣‖h‖2
n − ‖h‖2

2

∣∣∣∣∣ = OP

√ 1
n

 ,
where G(R) := {g ∈ N (1) : ‖g − g∗‖2 ≤ R}. Therefore, we can conclude that ‖g − f ∗‖2 =

OP(n−1/2).

Proof of Lemma 3.6.9 

Proof The proof of (a) and (b) can be found in [17 ].

For (c), the i-th coordinates of z0(x)>Z(0) and h(x,X) are

1
m

m∑
r=1

x>xiI{w>
r (0)x ≥ 0}I{w>

r (0)xi ≥ 0}, and Ew∼N(0,I)[x>xiI{w>x ≥ 0}I{w>xi ≥ 0}],

respectively. ∀i ∈ [n], (z0(x)>Z(0))i is the average of m i.i.d. random variables, which have

expectation hi(x,X) and bounded in [0, 1]. For any fixed x, by Hoeffding’s inequality, with

probability at least 1 − δ∗,

|(z0(x)>Z(0))i − hi(x,X)| ≤
√

log(2/δ∗)
2m

holds. By defining δ = nδ∗ and applying a union bound over all i ∈ [n], with probability at

least 1 − δ, we have

‖z0(x)>Z(0) − h(x,X)‖2
2 = O

(
n

log(2n/δ)
2m

)

For (d), since

z0(x)>vec(W (0)) = 1√
m

m∑
r=1

arI{wr(0)>x ≥ 0}wr(0)>x
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Define random variables Vr, r ∈ [m] as

Vr = arI{wr(0)>x ≥ 0}wr(0)>x

Since

wr(0)>x ∼ N(0, τ 2) and ar ∼ unif{1,−1}.

It’s easy to prove that Vr, r ∈ [m] are i.i.d. with mean 0 and sub-Gaussian parameter τ . By

Hoeffding’s inequality, at fixed bx, with probability at least 1 − δ, we have

∣∣∣∣∣ 1√
m

m∑
r=1

Vr

∣∣∣∣∣ ≤
√

2τ
√

log(2/δ).

Thus ‖z0(·)>vec(W (0))‖2 = O
(
τ
√

log(1/δ)
)
.
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4. SUMMARY

Deep learning has achieved breakthroughs in many machine learning tasks. In contrast to the

great empirical success, theoretical understanding of deep learning is still lacking. It is my

firm believe that statistics has a lot more to offer for deep learning theories. This thesis aims

to investigate the nonparametric perspective of DNNs. Through the lens of nonparametric

estimation, statistical optimality is established for DNNs in popular tasks such as regression

and classification. We have shown that, without much modification, DNN estimators can

adapt to different kinds of underlying low-dimensional structures of the data and alleviate

the curse of dimensionality. Even though the optimization of DNNs is highly non-convex,

training algorithm can be brought into the nonparametric framework and act as a way of

regularization. Statistical optimality can also be proven with algorithmic guarantees.

Our results contribute to the current literature of statistical deep learning. The com-

bination of classical statistical results and recent advances in approximation, optimization,

generalization of DNNs brings out great potentials into understanding why deep learning

works so well in practice. Along this line, more work could be done for more complicated

network structures, e.g., CNN, ResNet, etc. and on more estimation problems such as

density estimation. On one hand, this type of analysis can potentially explain in theory, the

advantages of popular deep learning models and training techniques. On the other hand, from

such theoretical analysis, new techniques for training better and more robust deep learning

models could be motivated.
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