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ABSTRACT

Song, Yuying. Ph.D., Purdue University, December 2020. Multi-Factor Designed Ex-
periments for Computational Performance Measurement Analysis (CPM&A) of Par-
allel Distributed Big Data Systems and Spamhaus Data Analysis. Major Professor:
William S. Cleveland.

Big Data analysis is of great challenges in practice. The data set sizes will grow

quickly. And analysing big dataset in a timely manner is critical. In fact, computa-

tional performance depends very heavily, not just on size, but on the computational

complexity of the analytic routines used in the analysis. Datasets that have com-

putational challenges have a very wide range of sizes. Furthermore, the hardware

power available to the data analyst is also an important factor. Improvements in

performance from better measurement and analysis can be provided for wide ranges

of dataset size, computational complexity, and hardware power. In my first part of

dissertation, I will develop an overall framework of practices that can provide guid-

ance to big data platform performance measurement. It has two main impacts, one

is to provide a rigorous and comprehensive performance experiment framework on

computing methods and systems for big-data analytics by bringing the statistical

thinking, the statistical experimental design, and the statistical modeling to the re-

search community. The other is to enhance performance improvement by providing

a much better understanding of performance.

In the second part of the dissertation, I will analyze a 1TB Spamhaus Blacklisted

Data by applying Divide and Recombine on Hadoop. The spamhaus data was col-

lected from the Stanford mirror of the Spamhaus Internet IP address and domain

name blacklist site. The Spamhaus service classifies IP addresses and domain names

as blacklisted or not based on many sources of information and many factors such as

being a major conduit for spam. Queries are sent to the site about the status of an



xiv

IP address or domain name, whether it is blacklisted or not, and if blacklisted the

cause. The processed data consist of values of 13 variables for each of 13,178,080,366

queries during 8 months. Subject matter divisions will be carried out and the black-

listed properties will be analyzed. The data were analyzed on Professor Cleveland’s

10-node cluster, wsc; it has a little over 1 TB of memory and 200 cores. An important

property of the blacklisting and its cause were discovered.
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1. MULTI-FACTOR DESIGNED EXPERIMENTS FOR

COMPUTATIONAL PERFORMANCE MEASUREMENT

ANALYSIS (CPM&A) OF PARALLEL DISTRIBUTED

BIG DATA SYSTEMS

Big Data analysis is of great challenges in practice. The data set sizes will grow

quickly. And analyzing big dataset in a timely manner is critical. In fact, compu-

tational performance replies greatly, not just on input size, but also on the analytic

methods’ computational complexity of the analysis. Datasets that have computa-

tional challenges have a very wide range of sizes. Additionally, the power of hardware

available for the computation is also an important factor. Improvements in computa-

tional performance from better measurement and analysis can be provided for wide

ranges of dataset size, computational complexity, and hardware power. This project

will develop a general framework of practices that can provide guidance to big data

platform performance measurement. There are two main impacts, one is to provide

a rigorous performance experiment framework on computing methods and systems

for big-data analysis by bringing the statistical thinking, the statistical experimental

design, and the statistical modeling to the research community. The other is to en-

hance potential performance improvement by providing a much better understanding

of computations and tuning parameters interactions.

For the data analyst, what matters is the elapsed times of analytic methods of

big data. The common practice is benchmarks to measure the CPM&A of big data

distributed system, which almost always do not take account of the factors, nor do

they measure run time of analytic methods. For example, CPM&A is often done using

benchmarks such as sort. We want sort to run fast, for analytic methods that depend

on sort, any improvement for the performance of an analytic method benefits analysis.

However our goal is improvements for many analytic methods when confronted with
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big data. To optimize the computational performance, we need to carry out rigorous,

statistically designed multi-factor experiments for CPM&A on analytic methods of

big data. Divide and Recombine (D&R) is a very popular statistical method in big

data analysis. And Hadoop, the parallel distributed system will be the big data

platform for our performance measurement. There are many factors that can affect

performance, and those factors have interactions that are complex. This calls for

full-factorial experiments focused on D&R with Hadoop. And the studied response

for our experiments is elapsed times of analytic routines.

1.1 D&R for Big Data Analysis

1.1.1 D&R Statistical Theory and Method

This Performance experiment project is focused on D&R ( [1] [2]) statistical

method and Hadoop platform. D&R is a statistical approach to the analysis of big

data. If the dataset size is too large to fit into the memory, it will be very difficult

to analyze or draw any useful conclusions from the input. Instead, D&R provides

a more feasible and applicable way to analyze big data. First, the original input

dataset will be divided to small subsets by some division methods. This step is called

D[dr] computation. Second, the analytic methods will be applied to each subset

independently without any communications among the subset. This is called A[dr]

computations. Lastly, a recombination step will be carried out to each output to get a

D&R result. There can be communications between the outputs, but often there can

be components that are embarrassingly parallel. This step is the R[dr] computation.

Figure 1.1 on page 3 illustrates the D&R framework( [3]). It has many applications

in time series models, MCMC simulations, Spatial and Seasonal-Temporal Modeling

and other statistical models ( [4], [5], [6], [7] ).

There are many ways to carry out D[dr] computations. One major class of division

methods is by conditioning-variable division. In very many cases, it is natural to

divide the data based on the subject matter. The data are divided by conditioning
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Fig. 1.1.: Divide and Recombine structure diagram

on the values of variables important to the analysis. For example if the data are 50

years of variables for 20,000 banks in the U.S., it makes sense to divide the data by

bank and by time. Actually, this strategy of analysis has been used in the past in

many ways because it makes sense for data of any size [6], [7]. For D&R, it is also done

for computational performance. Another major class of division is sampling division.

Each subset is viewed as a sample of the data. Subsets are replicate samples. For

example, the division method can be random sampling. In this case, we seek a single

result for all of the data. One place this arises is when subsets from conditioning

variable division are too large. When it is needed, sampling division is critical, but

in practice, it is used far less than conditioning-variable division.

The A[dr] computations are selected by the researches and analysts based on

different projects. There are no restrictions to the analytic methods applied to the
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division subsets. This is called embarrassingly parallel computation because there is

no any communications between the subsets in the A[dr] step.

The R[dr] computations have mainly three different output formats. The first

output type can be calculated by applying statistical recombination to each output

of the A[dr] step. The second format, the most common, is to return a new division

dataset which the further analysis will be based on. The last common format is draw

statistical conclusions by visual display [8].

The statistical accuracy of the D&R result is typically less than that of the di-

rect all-data result. The D&R research in statistical theory seeks to maximize the

statistical accuracy of D&R results [7].

1.1.2 DeltaRho Platform and Hadoop

The DeltaRho software platform [3] applies the D&R theory into practice. It

combines R [9] as the front end and Hadoop [10], [11] as the backend to enable

the big data analysis. The front end R is which the data analysts use to write

code for modeling and analysis. Its back end Hadoop is a platform for distributed

computing and large-scale data process. Rhipe R package, [12], [13], the R and

Hadoop Integrated Programming Environment provides communications between R

and Hadoop. The analyst specifies R code for the three D&R tasks: D[dr], A[dr], and

R[dr] using R commands through Rhipe functions. And Hadoop will carry out the

real computations.

The Hadoop ecosystem mainly consists of three components: YARN, HDFS and

MapReduce. YARN is the resource manager in a computing cluster. It is a new

feature introduced to Hadoop 2.0. It can dynamically allocate different resources

and schedule the application processing for large volume of data processing. Clients

submit MapReduce jobs and YARN decides when and what nodes are available for

those tasks. HDFS, Hadoop Distributed File System [14], is the storage unit of

Hadoop. It splits the big data as a sequence of blocks and distributes them across the
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cluster. In addition, each block is replicated for fault tolerance, that means, if some

blocks of data are lost due to the technical issues of some nodes or servers, HDFS can

recover the missing pieces from the block replicates saved on other nodes, making the

big data storage more robust to hardware failures. YARN and HDFS are also used

in Spark platform [15]. Lastly, MapReduce [16] is the computing engine. It consists

of Mappers and Reducers. As mentioned in HDFS part, the Hadoop file is saved as

a sequence type consisting of blocks in HDFS and each block is made up of different

key-value pairs. The Map operation will take each block of the data as input and

apply the user defined functions to each key-value pair and return the output key-

value pairs in parallel. There is no communications among different key-value pairs

or each block, making the map process embarrassingly parallel. The output key-value

pairs become the input for Reduce operation. The Reduce transform is carried out to

aggregate all values if they share the same key and write a new key-value pair output

to the HDFS.

There are three common input types for Rhipe: text files, sequence files and

numeric simulation types [13]. The text file is one of the most widely used data input

format in the data science world where data is laid out in lines and each line is a

record. Sequence files [17], consisting of key-value pairs, are designed for Hadoop. It

has a great of application in Hadoop as the MapReduce input and output. Besides,

it is saved in binary files, providing faster data read and writing speed than text

files. As a result, it is a common practice to source the raw input text file, form a

meaningful division and save the division to Sequence file by utilizing Rhipe functions.

It is important to keep in mind that this new division operation will only be carried

out once and the further data analysis will be based on the new division instead of

the raw text input.

Here are the detailed steps to illustrate this workflow through Rhipe by connecting

R and Hadoop with a text input. Imagine that the raw data is in the text format and

the job is to divide the data input by a conditional variable and save the new division

as the output to HDFS. Suppose the conditional variable is a timing variable Year
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without loss of generality, the output key-value pair is Year and its corresponding

data frame sharing the same value of Year. The analyst needs to specify R functions

for the three stages: Map, Reduce and Executions. First, the Map expression will

take the Map input key-value pair, carry out the divide computation and pass the

output key-value pair to the Reduce stage. The Map input key-value pair in this

example is the line number identifier and every line from text file. The output key-

value pair is Year and one-row data frame including all the information of the line

record. The Map code is an R expression to take the long string of every line, split

it to vectors and reform it to a dataframe format. This is the D[dr] computation.

Each map will take a block of data consisting of many key-value pairs and carry

out the operations above in parallel. Second, a Reduce expression is written to take

the Map output key-value pairs as input and aggregate different values if they share

the same key value of Year. The output key-value pair of the Reduce Stage is Year

and a big dataframe including all the records of the Year. Both Map and Reduce

stages are R expressions returning a list of arguments to be evaluate by the last step

execution function. The execution function in Rhipe will specify data input path and

output path in HDFS, take the Map expression and Reduce expression as arguments

and pass all the information to Hadoop for computation. Furthermore, the execution

function provides more flexibility to interact with Hadoop by allowing passing Hadoop

parameters to tune the Hadoop configuration. In summary, all the code are rewritten

in R commands by Rhipe functions but Hadoop is the platform to actually carry out

the big data analysis.

1.1.3 D&R with DeltaRho Impact

D&R with DeltaRho enables deep analysis of big data. Deep analysis refers to

analyzing data at their finest granularity, and not just summary statistics and provides

high statistical accuracy and not having to substantially sacrifice this to cope with

big data. This includes visualization, so model building and diagnostics can be used
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in place of blind analyses. Deep analysis also means that the analyst can use the

thousands of methods of statistical models and data visualization. To date, there

are 15,681 packages available through the repository maintained by Comprehensive R

Archive Network [18], which makes R the perfect programming language for statistical

computing and analysis. There is a vast R user community and the large community

commits new model packages to R everyday. However, R is not designed for big

data analysis because R can only analyze data fitting into the computer’s memory.

Hadoop written in Java, on the other hand, provides a powerful platform to manage

the big data storage and computation but brings a challenging learning curve for many

statisticians. Hence, Rhipe enables statisticians to write R code by taking advantage

of the various implemented R packages and Hadoop platform to carry out the deep

analysis of big data. D&R with DeltaRho can be used now to carry out analyses of

big data. How big the dataset size depends on the hardware power of the cluster

used. As the power increases the size of the data that can be feasibly and practically

analyzed increases.

1.2 D&R Experiment Design

There are many critical factors that will impact the overall performance [19] [20],

[21] [22] and the world of computer systems for data analysis approaches optimization

by a very weak approach of changing important factors one at a time and relying on

canonical benchmarks [23]. We are proposing a more rigorous approach in which we

measure the time of D&R statistical computations and study many critical factors by

multi-factor statistical designed experiments. This experiment framework was first

developed by Jeff Li [19] on Hadoop1 and we expand it to Hadoop2 and introduce

other important factors.

The experiment is based on the simulated Data input written to HDFS. And

the statistical model to analyze the input data is logistic regression [24] without

loss of generality. The logistic regression is a common statistical model for binary
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classification. It is applied to each subset by the R function glm.fit [25] in the A[dr]

step or the map stage. The R[dr] reduce stage is to combine the fitted coefficients

of each subset and return their average across the subsets. There are three sets of

factors of interest: statistical factors, Hadoop factor and Hardware factor. There

are two types of time response variables for this experiment, one of the object time

O to read data from HDFS and load it in memory as an R object. And the other

response variable is the logistic regression time L which starts the measurement after

O is finished, including the logistic regression A[dr] and R[dr] computations. The

summation of O and L is the total elapsed time T required to finish the whole

process of the logistic regression. Details of the response variables will be explained

in later sections. In as summary,different types of elapsed time are measured under

various combinations of factors.

The whole experiment performance is well designed to eliminate potential system

noises. Firstly, the cluster is exclusively occupied by the performance experiment, no

other process or users are allowed to use it during the experiment time. Secondly, each

experiment run (one combination of factor levels is one run) should be independent

from each other, that is, the process of last run should not impact the next run. As

a result, sleep time is introduced between different runs so that the occupied cluster

resources will be released and get ready for the next run. Lastly, there are three

replicates with each setting of factors for the purpose of the experiment error control.

Replicates are necessary to estimate the factor effects. The performance experiment

is carried out on two clusters. Cluster operation is a very complex process and there

might be unknown system operations going on during the experiment. Rerunning is

allowed if one run is interfered by other operations. Error diagnostics and analysis

will be carefully carried out in the model building step.
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1.2.1 Experiment Response Variables

To measure the CPM&A, the response variables are the elapsed time of an ana-

lytic routine. We break total elapsed time T , into two components to have a more

informative way to understand the computations of big data. As a result, there are

two different timing response variables. The data input is saved as sequence files on

HDFS and the objective is to carry out a logistic regression with Rhipe on it. The

elapsed time T is the total time it takes to finish this process. It can be broken

into two parts: the first response variable Object Time O and the second response

variable Logistic Time L. O measures the elapsed time required to read the raw data

saved on HDFS and form key-value pairs as R objects for the Hadoop job. L time

begins its measurement after O step finishes. Once the data is available as R object

format in R, L time starts by carrying out the logistic regression in Map, recombining

model coefficient and writing output to HDFS in Reduce. So their mathematical

relationship is T = O + L.

It is important to notice that L is a latent response variable, which means there

is no way to measure it directly since we need to have data available first before we

can start the L measurement. As a result, we will measure O and T independently

from different runs with assumption that L can be derived from T = O + L. This as-

sumption will be carefully examined in the model building and diagnostics steps. The

analysis of the two response variables O and L can help us to better understand the

time distribution of the big data analysis and of vital importance to understand the

different factor impact to the computation. The statistical models with deconvolution

methods will be carried out for the L analysis.

1.2.2 Experiment Factors

There are three sets of experiment factors that we are interested in: Statistical

Variables, Hadoop Variable and Hardware Variable. The details are discussed in the

following sections.
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Statistical Variables

The input data can bring challenges to computations and modeling from two

perspectives: the number of observations N and the number of variables V. V consists

of one binary response variable and P = V − 1 explanatory variables. The larger N

or V is, the more complex the computation is. The data size is growing fast with

the improvement of the database ability and big data with TB, PB size are quite

common in the modeling nowadays. D&R provides feasible ways to analyze big data

with different scales by dividing the raw data into different subsets. The typical

routine for D&R is to read the raw data (often in text format) once, divide the

raw data and save the new division as the sequence file format to HDFS. And the

new division becomes the new input for the future analysis. The sequence file has

much more prevailing advantages than text file for big data analysis. It has more

efficient storage power with binary storage, suitable for key-value pair and applicable

for parallel computing. As a result, the simulated sequence file with different subset

divisions becomes our input in the performance experiment. That is, a sequence of

key-value pairs saved as sequence file are simulated as input, where the key is the

subset number and the value is subset.

The number of observations in the subset M really matters in the computation.

M and V is the number of rows and number of columns for the subset data frame

respectively, so the subset dataset size can be fully determined by M and V. The total

number of observations N is fixed: N = 230 and M is a changing variable. Suppose

R is the subset numbers after division, their relationship is N = M · R. There are R

key-value pairs in the input data and each value is a M · V data frame. So M value
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is directly related to the data division. The log scale is applied for the purpose of

symbol simplicity:

n = log2(N) = 30

r = log2(R)

m = log2(M)

v = log2(V )

The Table 1.1 shows the overall data input size where the smallest input size is

64GB and the largest input is 512 GB or 0.5 TB. The Table 1.2 displays the two

dataset variables and their values. The log2 scale of subset observations m has 9

values, changing from 9 to 17 with increment of value one. The log2 scale of variables

v has four values, 3, 4, 5 and 6. The subset size s = 2m+v+3 varies from 32 KB to 64

MB. The number of subsets R varies from 8,192 to 2,097,152.

Table 1.1.: Input Data Size

v 3 4 5 6

Data Size(GB) 64 128 256 512

Table 1.2.: Dataset Variable

Variable Value

m 9, 10, ..., 16, 17

v 3, 4, 5, 6

In the experiment, there are N = 230 observations of V variables. One is the bi-

nary response variable: 0 or 1 with equal probability. And there are V −1 explanatory

variables where each is randomly and independently generated from normal distribu-

tion with mean 0 and variance 1. The data are simulated and written to the HDFS
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by D[dr] computation. It is worthy noticing that there is no relationship between

the response variable and V − 1 explanatory variables in our simple data simulation.

We can develop more elegant simulation methods such as developing the response

variables given a preset list of model parameters. Our current simulation provides a

framework to understand the elapsed time it takes to apply a statistical model with

D&R, so the simple data input simulation is sufficient to serve our elapsed time mea-

surement purpose. Also, the data simulation time is not part of measurement of the

experiment.

Hadoop Variable

There are many critical tuning parameters for a Hadoop cluster [20], [21], [22],

[26], [27]. The cluster administrator will configure a Hadoop cluster and there are

many parameters that users can actively interact with in their map-reduce jobs to

tune the computation performance. Block size (B) is one of the most important

tuning parameters in Hadoop. The Hadoop HDFS puts subsets into multiple same

size blocks. B in a single disk is the minimum amount of data that can be read or

written at one time. Similarly, B in HDFS is the minimum computation and storage

unit where the large files in HDFS will be broken into numbers of blocks and each map

task will operate on a block of data every time in parallel [10]. There are many benefits

to operate on block abstractions for HDFS. Firstly, HDFS is designed to support very

large files storage so it is very common that a single file is too large to save in a single

disk. Instead, a large file is broken into multiple blocks and blocks can be saved

across the cluster. Block abstraction is applicable in big data practice and simplifies

the storage system. Furthermore, blocks works well with the fault tolerance feature of

HDFS. A Hadoop cluster can be simplified as a integrity of multiple k computers and

each computer has a fixed rate of failure p. If one of the computer is crashed (such

as hard-disk failure, RAM crash) without any data backup, data is lost and any job

depending on this job will fail. The failure rate of the cluster equals to 1− (1− p)k.
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If a cluster consists of 1000 computers with p = 0.1% failure rate, the failure rate for

the cluster is as high as 63.2%. As a result, HDFS in Hadoop2 achieves high fault

tolerance by replicating blocks of data on different datanodes or machines. If any

of the machines fails, the data block is still available from the copies saved on other

computers.

The default block size on HDFS is 64 MB for Hadoop1 and 128 MB for Hadoop2.

The HDFS block size is much larger than a computer disk block size (usually 512

byte [28]). The main reason for a large HDFS block is to reduce the cost of disk

seek time and internet traffic. The total time to read a block data is the summa-

tion of seek time and transfer time where seek time is the time required to locate

the file and transfer time is to read its content off disk without doing any more

seeks. The transfer rate is a fixed feature determined by disk and the transfer time =

File size/transfer Rate. Disk seeks are generally expensive operations on large data

and here is one example to illustrate the total time operation. Suppose that the

seek time is 10ms, the transfer rate is 100MB/s, file size is 100MB and block size is

100MB, so this file is only saved into one block. The time required to access this data

is 10ms+ 100MB/(100MB/s) = 1.01s. On the other hand, if the block size is small

with 1MB, the 100MB input dataset will be saved into 100 blocks and the access time

is increased to 100 ∗ 10ms+ 100MB/(100MB/s) = 2.0s. Large data sets with TB or

PB are very common in Hadoop framework and they are chopped into fixed size of

blocks, so large block size is expected to reduce the seek time. It doesn’t mean the

larger B is, the better performance is. There are constrains for B maximum value

from RAM and performance perspective. And Block size also impacts the parallelism

of mappers. The B effects will be carefully examined in our performance experiment.

In the experiment, this factor has three values: 64 MB, 128 MB, and 256 MB (Table

1.3).
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Table 1.3.: Hadoop Variable

Variable Value

BLK (MB) 64, 128, 256

Hardware Variable

The third set of experiment factors is Hardware factor. It includes two clusters

wsc cluster and wolf cluster (Table 1.4) where the same experiment will be carried

out. The wsc computation cluster is maintained by Purdue ITaP Research Computing

Center(RCAC) [29], suitable for high performance computing. It consists of 10 nodes,

20 cores per node, 128GB RAM per node and 160TB total disk storage. The wolf

cluster, maintained by system administrators at the Department of Statistics Purdue

University, is a pseudo cluster [30] because it only has one single node. The single

node wolf cluster has 24 cores, 192GB RAM in total and overall 4TB disk storage.

Both clusters run Apache Hadoop2. Table 1.5 compares the different configurations of

the two clusters. There are 200 cores in wsc cluster and one container is corresponding

to a core. One of the containers will be assigned to launch the Application Master

so there will be at most 199 containers running in parallel for a task. Similarly, wolf

cluster has at most 23 containers running in parallel. The total disk storage of wsc

is 40 times of that of the wolf cluster. The RAM of wsc is more than 6 times of

wolf. Obviously, wsc cluster has considerably more compute power than wolf. But

quantifying the difference is one of the most important goals of our experiment. It

provides actionable information on how much needs to be spent on hardware for a

project.

All the experiment runs are carried out on a Hadoop cluster but Rhipe protects

the analyst from many details of Hadoop. The analyst does not have to manage

key-value pairs, Map, and Reduce, and thinks solely in terms of division methods
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Table 1.4.: Hardware Variable

Variable Value

cluster wsc, wolf

Table 1.5.: Two Cluster Settings

Software Version WSC WOLF

R 3.4.3 3.6.1

Hadoop 2.7.4 2.9.1

Protocol Buffer 2.5.0 2.5.0

Java 1.8.0 191 11.0.8

Rhipe 0.75.2 0.76.0

Processor Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz

Namenodes wscadm.rcac.purdue.edu wolf.stat.purdue.edu

Number of Nodes 10 1

Number of Cores Per Node 20 24

RAM Per Node 128GB 192GB

Number of Disk Per Node 4 2

Storage Per Drive 4TB 2TB

Total Disk Storage 160TB 4TB

Drive Technology Spinning SSD

Number of Replication 3 1

and recombination methods developed as part of our statistics research. And Hadoop

will carry out the computations.

Experiment Factors Summary

Knowledge of the functioning of the computational environment provides infor-

mation that helps greatly in choosing the factors and their levels. However, that

knowledge does not provide strong insight into interactions. We must rely on empir-

ical study for this. For this reason the design is full factorial. There are 9 values of

m, 4 values of v, 3 values of B, 2 values of cluster, 2 measurement types, so there are

432 combinations of the factors. Table 1.6 summarizes the three sets of experiment
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Table 1.6.: Experiment Factors and Response

Variables Name Levels Value Description

Statistical Factor
m 9 9,10, ..., 17 log num of subset rows

v 4 3,4,5,6 log num of subset columns

Hadoop Factor B(MB) 3 64, 128, 256 HDFS block size

Hardware Factor cluster 2 wsc, wolf two clusters

Response Variables compute type 2 o, l two types of log elapsed time

factors and response variables. There are 3 replicates for each combination so there

are 1,286 runs in total.

The experiment is carefully designed and carried out to eliminate the potential

noises. Three replicates are necessary since there is error variation that cannot be

controlled in the experiment. Most variation is eliminated by giving each run exclu-

sive use of the hardware so there is no contention from other users or other runs.

But system processes that keep the hardware running must continue. They use a

variable amount of capacity on the cluster. They are complex and cannot be easily

measured, so they become error variation. We expect this variation to be small in

magnitude compared with the effects of the experimental factors. Cluster operation

is a very complex process, including unknown system operations going on during the

experiment. So re-running is allowed if one run is interfered by other operations.

Error diagnostics will be carefully carried out in the model building step.

1.3 Exploratory Data Analysis

Runs with different factors combinations are carried out in the two clusters and

their elapsed time O and T are recorded for the further analysis. The interactions

between different factors and the main effects might be very complicated. Data

visualization is the first step to analyze data and trellis display is heavily involved

in the exploratory data analysis to propose plausible and reasonable model fittings.



17

As we discussed previously, L is a latent variable and couldn’t be measured directly.

We measure O and T instead and will derive the potential L format from data

visualization and modeling. This requests a deconvolution model for L.

1.3.1 Elapsed Time vs Subset Rows m

The following six Figures: Figure 1.2, Figure 1.3, Figure 1.4, 1.5,Figure 1.6 and

Figure 1.7 display the relationship between the log elapsed time o, t vs m conditional

on different variables. We will explore the interactions of m with other factors by

conditional and grouping on different variables in trellis display.

Figure 1.2 plots o, t vs m superpose on v conditional on B, compute type and

two clusters. It has 12 panels and each panel is the elapsed time under different

combinations of factors. A line is drawn by connecting average of three replicates

in each combination of factors. As we can see from Figure 1.2 and within the same

panel:

• o is moving slowly, almost constant for smaller m values. It increases as m

increases when m gets larger.

• the relationship between t and m is more complicated. It has different inter-

actions with different v values. For example, when v = 6, t is increasing as

m increases. But for other v values, t first decreases as m increase and then

increases.

• o and t increases as v increases.

Figure 1.3 plots o, t vs m superpose on B conditional on v, compute type and

two clusters. It has 16 panels and each panel is the elapsed time under different

combinations of factors. A line is drawn by connecting average of three replicates

in each combination of factors. As we can see from Figure 1.3 and within the same

panel:
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Fig. 1.2.: Log time vs m superpose v

• o is moving slowly, almost constant for smaller m values. It increases as m

increases when m gets larger.

• It is clearer than Figure 1.2 that the relationship between t and m is more

complicated. It has different interactions with different v values. For example,

when v = 6, t is increasing as m increases. But for other v values (other panels),

t first decreases as m increase and then increases.

• The larger the B is, the smaller o and t are.

Figure 1.4 and 1.5 plot o, t vs m superpose on compute type conditional on v, B

for two clusters. Each has 12 panels and each panel is the elapsed time under different

combinations of factors. A line is drawn by connecting average of three replicates in

each combination of factors. As we can see from the two figures and within the same

panel:

• o takes a large portion of t.
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Fig. 1.3.: Log time vs m superpose B

• The portion of o in t is changing as B and m change.

Figure 1.6 and Figure 1.7 plot o, t vs m superpose on cluster conditional on v,

B for two compute type o and t. Each has 12 panels and each panel is the elapsed

time under different combinations of factors. A line is drawn by connecting average

of three replicates in each combination of factors. As we can see from the two figures:

• wsc cluster is faster than wolf cluster in each panel.

• The elapsed time ratio of wolf vs wsc is larger as v increases across panels.

1.3.2 Elapsed Time vs Subset Columns v

Figure 1.8 shows o, t vs v superpose on m conditional on B, compute type and

two clusters. Each has 12 panels and each panel is the elapsed time under different
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Fig. 1.4.: wsc: Log time vs m superpose compute type

combinations of factors. A line is drawn by connecting average of three replicates in

each combination of factors. As we can see from Figure 1.8:

• The larger v is, the larger o and t are.

• the impact of v on o and t is interacted with m.

• the relationship of v on o and t is very closed to linear in wolf cluster.

1.3.3 Elapsed Time vs Block Size B

Figure 1.9 shows the relationship between time and B. It displays o, t vs B su-

perpose on V conditional on m, compute type and two clusters. It has 36 panels and

each panel is the elapsed time under different combinations of factors. A line is drawn

by connecting average of three replicates in each combination of factors. As we can

see from Figure 1.9:



21

Log Number of Observations per Subset 
(log base 2 number)

Lo
g 

T
im

e 
in

 tw
o 

cl
us

te
rs

 (
lo

g 
ba

se
 2

 m
in

ut
e)

1.
5

2.
5

10 12 14 16

v=3
bl=64
wolf

2.
5

3.
5

4.
5 v=4

bl=64
wolf

4.
0

5.
0

10 12 14 16

v=5
bl=64
wolf

5.
0

6.
0

v=6
bl=64
wolf

1.
0

2.
0

v=3
bl=128

wolf

2.
0

3.
0

v=4
bl=128

wolf

3.
0

4.
0

v=5
bl=128

wolf

4.
5

5.
5

v=6
bl=128

wolf

0.
5

1.
5

v=3
bl=256

wolf

10 12 14 16

1.
5

2.
5

v=4
bl=256

wolf

2.
5

3.
5

v=5
bl=256

wolf

10 12 14 16

3.
5

4.
5

5.
5 v=6

bl=256
wolf

O T

Fig. 1.5.: wolf: Log time vs m superpose compute type

• The larger B is, the smaller o and t are.

• the relationship of B on o and t is very closed to linear.

1.3.4 Elapsed Time vs Replicates

All the figures above display all the experiment results including the three repli-

cates. The replicates almost overlap with each other or only divert by a small amount.

That means the experiment noise is relatively small. Figure 1.10 and Figure 1.11 give

better view of experiment noises by grouping on replicates. This is illustrated by fo-

cusing on BLK = 256MB for two clusters and similar patterns hold for other block

sizes. As we can see from Figure 1.10 and Figure 1.11, three lines of replicates almost

overlap with each other so the noises are very small. And there is no obvious patterns

in the run orders. Experiment noises and errors will be further examined in the model

building steps.
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Fig. 1.6.: o vs m superpose cluster

1.4 Categorical Model Building

The exploratory analysis of the experiment results gives us good insight of poten-

tial relationships between elapsed time and factors:

• As v increases, the o and t increase monotonously with other factors hold as

constant. This is expected since as v increases, the whole dataset size increases

accordingly. Larger datasets will need more computation resources and take

longer time. We would expect l increases as v increases, too.

• As m increase with other factors holding as constant, o first stays unchanged

then begins to increase for large m values. When the total number of observa-

tions N and V are fixed, the input data size is fixed. And the total number of

blocks are only subject to the value of B and one block of data can consist of

multiple key-value pairs or subsets. As a result, the varying values of m would

only impact the subset size and number of subsets R. The number of blocks
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Fig. 1.7.: t vs m superpose cluster

stays the same while the number of subsets in one block would be different as m

changes. The number of mappers are determined by the number of blocks so the

number of mappers stay the same as m changes. When m values are relatively

small, o stays unchanged. However, when m gets larger, the subset size gets

larger and one subset might be spilled across two blocks and that increases the

IO time and network traffic. As a result, o increases as m increases.

• The relationship between t and m is more complicated. As we can see from

Figure 1.3, t first decreases as m increases then increases. This suggests l

probably has a more complicated up and down relationship with m. For larger

m values, it will require more memory to carry out the logistic regression which

might cause the map running longer. On the other hand, some very small

m values will increase the number of key-value pairs and it might increase the
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number of intermediate files written to local disk between map and reduce stage.

This in turn increase the total time.

• There is a clear interaction between m and v.

• Larger value of B will reduce both o and t.

• Factor B interacts with v on o and t.

1.4.1 Categorical Model on m and v

There are four factors with potential complicated interactions. And the hardware

variable - two clusters have quite different configuration which brings more challenges

to the model building. The m and v are statistical variables and it is determined

by the data analyst, data set input and analytic method so We will focus on the

categorical model building on m and v first. That means, we will fit a full categorical
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Fig. 1.9.: Log time vs B superpose v

model of o and l on m and v for each combinations of B and clusters. There will be

a six sets of fittings for each o and t. The full categorical model is essential since we

have little knowledge about the interactions.

We specify the mathematical annotations for m, v, o, l and t as following for the

purpose of model simplicity.

mi = log2(Mi),

vj = log2(Vj),

oijk = log2(Oijk),

lijk = log2(Lijk),

tijk = log2(Tijk)

where i = [1, 2, ..., 9],m levels; j = [1, 2, 3, 4], v levels;

k = [1, 2, 3], replicates.
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Fig. 1.10.: Log time vs m superpose replicates

We propose a tentative general function form for o and t :

Oijk = {2go(mi,vj)} · 2ε1,ijk , (1.1)

Tijk = {2go(mi,vj) + 2gl(mi,vj)} · 2ε2,ijk (1.2)

where:

• go and gl are functions related to m and v.

• Error term ε1,ijk ∼ i.i.d N( 0, σ2
1 ).

• Error term ε2,ijk ∼ i.i.d N( 0, σ2
2 ).

• ε1,ijk and ε2,ijk are independent from each other.

It is worth to notice that the term 2(gl(mij ,vij)) in Equation 1.2 is actually a latent

variable since it quantifies the formula of L time and we couldn’t observe or measure
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Fig. 1.11.: Log time vs m superpose replicates

it directly. However, we have O measurement and T measurement that O is part of

T. So the format of 2(gl(mij ,vij)) can be derived from our data. We will examine this

assumption carefully in the model fitting and diagnostics steps.

In the categorical model fitting with m and v, we allow full interactions between

m and v, thus we fit a full categorical models for each of the six combinations of B

and cluster :

go(mi, vj) = µo + τ oi + βoj + (τβ)oij (1.3)

gl(mi, vj) = µl + τ li + βlj + (τβ)lij (1.4)

The model parameter fit is achieved by minimizing the sum of square errors in the

Equation 1.7 of o and t with fitted go and gl. There are three replicates for each of

the six combinations of block size factor and hardware factor, combining two compute

types, there are 9 · 4 · 3 · 2 = 216 runs in total. Hence we have enough observations to

fit the 9 · 4 · 2 = 72 parameters in the full categorical model 1.3 and 1.4.
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SSEo =
∑
i,j,k=1

(oijk − ĝo(mijk, vjjk))
2 (1.5)

SSEt =
∑
i,j,k=1

[tijk − log2(2
ĝo(mijk,vijk) + 2ĝl(mijk,vijk))]2 (1.6)

SSE = SSEo + SSEt (1.7)

1.4.2 Model Diagnostics

The categorical models are fitted and we carry out the model diagnostics to eval-

uate the model assumptions and goodness of fit. Figure 1.12 and 1.13 show the

residual plots. There is no obvious patterns from the residual plots: residual plots

are distributed symmetrically around horizontal line y = 0 and constant variance

assumptions hold. Figure 1.14 displays the normal quantile distribution plot of resid-

uals: normality holds for most panels. There are several big outliers or extreme values

in the tail for wolf cluster that divert a little big from the normality assumption. But

the errors are small in magnitudes so we will skip the further interventions.

1.4.3 Model Fitting

The model diagnostics show no lack of fit for our fitted categorical model. We

will check the o, t and l fit and different factors effects and their interactions in the

following sections.

o Fit and t Fit in the Categorical Model

Figure 1.15, 1.16, 1.17 and 1.18 compare the fitted value with the actual. The

fitted values are falling in between the three replicates so there is no obvious lack

of fit. Figure 1.19 displays the fitted o and t vs m superpose on v conditional on

B,cluster and compute type. We can draw the same conclusion as the exploratory

data analysis section:
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Fig. 1.12.: o fit: Residual vs m

• o is moving slowly, almost constant for smaller m values. It increases as m

increases when m gets larger.

• there is an up and down curve between t and m.

• there is an interaction effect between m and v.

• the larger v is, the larger o and t are.

• wolf cluster is slower than wsc cluster under the same setting of factors.

• the larger blocksize is, the smaller o and t are.

We can also visualize the fitted o and t vs different factors other than m or conditional

on different factors to get a more clear relationship among factor effects. However,

the patters are very similar to the results in the exploratory analysis so we will not

provide these plots for the purpose of paper length control.
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Fig. 1.13.: t fit: Residual vs m

l Fit in the Categorical Model

l fit is the focus of attention here. Figure 1.20 plots the fitted l vs m superpose

on v conditional on B and clusters. As we can see from Figure 1.20,

• there is an interaction effect between m and v on l. For most values of v, l first

decreases as m increases then increases, similarly to the pattern of t. But for

wsc cluster, l increases slowly as m increases.

• there is some zig-zag pattern in l fits. This is probably because there are some

noises when fitting the curve.

Figure 1.21 shows a more clear pattern of l vs v. The magnitude of L time is

1 min ∼ 16 min for wolf cluster and 0.25 min ∼ 4 min for wsc cluster. There is

almost a linear relationship between l and v with some polynomial curve.

Figure 1.22 explores the relationship between l vs B where we have some very in-

teresting findings. It has 18 panels, superpose on v and conditional on m and clusters.
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As we can see from Figure 1.22, the l fits stay as constant for three different block

size values and this patterns hold across almost every panel and grouping variable v.

This suggests that different B has little impact on l if other factors are unchanged.

The B might plays a more import role in o, not l which means we can try to include

B into functions go but not gl.

1.4.4 Categorical Model on m, v and B

The similar model fitting is carried out by re-specifying the format of go and gl as

Equation 1.8 and Equation 1.9 below. It is worth to notice that now we have more

data to fit the parameters since there is only two sets of fit for each of the cluster.

That means, we need to fix (o, l) for each of wsc and wolf cluster. Hence there are

9 · 4 · 3 · 3 · 2 = 648 observations in total to fit 9 · 4 · 3 + 9 · 4 = 144 parameters in the

full categorical model 1.8 and 1.9.
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Fig. 1.15.: wolf o fits and actuals vs m

go(mi, vj, Bk) = µo + τ oi + βoj + γok + (τβ)oij + (τγ)oik + (βγ)ojk + (τβγ)oijk (1.8)

gl(mi, vj) = µl + τ li + βlj + (τβ)lij (1.9)

1.4.5 Model Diagnostics

The categorical models in Equation 1.8 and Equation 1.9 were fitted and we

carry out the model diagnostics to evaluate the model assumptions and goodness

of fit. Figure 1.23 shows the residual plots. There is no obvious patterns from the

residual plots: residual plots are distributed symmetrically around horizontal line y =

0 and constant variance assumptions hold. Figure 1.24 displays the normal quantile

distribution plot of residuals where we can conclude that Normality assumption is

reasonable.
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Fig. 1.16.: wsc o fits and actuals vs m

1.4.6 Model Fitting

The model diagnostics show no lack of fit for our fitted categorical model. The o

and t fits are similar as before (Figure 1.25) so we will focus on l fit.

l Fit in the Categorical Model

We have more data to fit the l shape so we expect to see a smoother fit. Figure

1.26 plots the fitted l vs m superpose on v conditional clusters. And Figure 1.27 plots

the fitted l vs v superpose on m conditional clusters. As we can see from Figure 1.26

and Figure 1.27:

• It seems there is a quadratic effect of m on l.

• There is almost linear relationship between l and v and there is a slight convex

upward pattern.
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Fig. 1.17.: wolf t fits and actuals vs m

• There is an interaction between m and v on l.

1.5 Polynomial Model Building

The categorical model fitting in Section 1.4.1 and Section 1.4.4 are full categorical

models and might be over fitted. Categorical models suggest a potential polynomial

model between o, l and other variables. We specify a polynomial form of go and gl in

Equation 1.10 and Equation 1.11. Similarly, there are 9 ·4 ·3 ·3 ·2 = 648 observations

in total to fit 10 + 6 = 16 parameters in model 1.10 and 1.11 so we have enough

information for model fitting.
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Fig. 1.18.: wsc t fits and actuals vs m

go(m, v,B) = α0 + α1m+ α2v + α3B + α11m
2 + α22v

2 + α33B
2

+ α12mv + α13mB + α23vB (1.10)

gl(m, v) = β0 + β1m+ β2v + β11m
2 + β22v

2 + β12mv (1.11)

where

• m, v, B are numeric.

• m, v, B are standardized to avoid the multicollinearity problem in the polyno-

mial model fitting.

1.5.1 Polynomial Model Diagnostics

The polynomial models are fitted and model diagnostics are carried out to evaluate

the model assumptions and goodness of fit. Figure 1.28 shows the residual plots.
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Fig. 1.19.: o,t fits vs m

There is no obvious patterns from the residual plots: residual plots are distributed

symmetrically around horizontal line y = 0 and constant variance assumptions hold.

There are several big residuals of o fits for (m = 17, v = 6) and (m = 9, v = 3).

(m = 17, v = 6) is corresponding to the largest subset in our experiment while

(m = 9, v = 3) defines the smallest subset. This explains these relative large residuals

that the polynomial fit has some divergence of fitting for the edge cases. Figure 1.29

displays the normal quantile distribution plot of polynomial fit residuals: normality

holds for most panels.

1.5.2 Polynomial Model Fitting

The model diagnostics show no lack of fit for our fitted polynomial model. We

will check the o, t and l fit under different combinations of variables in the following

sections.
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Fig. 1.20.: l fits vs m

o Fit and t Fit in the Polynomial Model

Figure 1.30 and 1.31 illustrate the fitted value with the actuals for wolf cluster.

As we can see from Figure 1.30, we can see there are some small divergences of

fittings with (m = 17, v = 6) and (m = 9, v = 3), which matches the residual plots

1.28. Figure 1.32 displays the fitted o and t vs m superpose on v conditional on B,

cluster and compute type. Figure 1.33 displays the fitted o and t vs v superpose on

m conditional on B, cluster and compute type. Figure 1.34 and 1.35 display the fitted

o and t vs B superpose on v conditional on other variables. We can draw the similar

conclusions as categorical models from figures above:

• There is a quadratic relationship between m and o. o is increasing slowly for

smaller m values and increases faster when m gets larger.

• there is an up and down curve between t and m interacted with v.
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Fig. 1.21.: l fits vs v

• there is interaction effect between m and v.

• o and l increases almost linearly as v.

• the larger B is, the smaller o and t are.

l Fit in the Polynomial Model

Now we need to check the l fit from the polynomial model. Figure 1.36 plots the

fitted l vs m superpose on v conditional on clusters. And Figure 1.37 plots the fitted

l vs v superpose on m conditional on clusters. We have a much smoother fit and

clear patters for l fit. As we can see from Figure 1.36 and 1.37:

• There is a quadratic relationship between m and l. l first decreases then in-

creases as m increases.

• There is an interaction effect between m and v on l.
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Fig. 1.22.: l fits vs B

• The relationship between v and l are not strict linear and there are a slight

convex upward pattern of l value as v increases.

1.6 Experiment Factor Effects

The categorical model analysis in Section 1.4 and the polynomial model analysis in

Section 1.5 provide good insight about the complicated main effects and interactions

among factors with the experiment elapsed time. We will continue to use Trellis

display to explore the factors effects in the following sections.

1.6.1 Block Size Effects

As we discuss before, B is one of the most important Hadoop configuration pa-

rameters and is the storage unit and computation unit. As a result, it can not only
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Fig. 1.23.: Residual vs m

impact how data is split and saved on HDFS but also impact the number of Map

tasks computation. If we hold other factors unchanged, when B value is increased,

each Mapper will read and operate on a larger piece of data. In the meanwhile, the

number of mappers will decrease. Thus, B directly impacts the I/O of the HDFS and

thus we would expect it to have an effect on o; And B also affects mapper numbers,

so it could potentially impact l as well. However, as we discussed in Section 1.4,

the B has immaterial impact on L in our experiment and the larger B will lead to

a smaller O and T time. That means, the effect of B on total time T is all from

its contributions to O. This is probably because our chosen analytic method in the

experiment is logistic regression and the reduce step is to average the parameters from

logistic regression fits. So L step is not a CPU-intensive computation so we might

not be able to observe the B effects on L in the current settings.

In the experiment, we have three values of B : 64MB, 128 MB and 256 MB. We also

observe a non-linear, convex decreasing curve between B and O (Figure 1.34). So we
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will compare the effects of different values of B next. Figure 1.38 plots the difference

of o between two different block size superpose on v, conditional on B and clusters.

It has four panels and each row shares the same cluster information. This will help

us to compare the different pairs of B impact: (64MB vs 128MB) and (128MB vs

256MB). It is worthy noticing that the difference between log Elapsed Time (O) is

actually the log ratio of two values:

oB2 − oB1 = log2(OB2)− log2(OB1) = log2(
OB2

OB1

)

So if the difference oB2 − oB1 = 1, this means the ratio of object time OB2

OB1
= 2, the

object time O with B1 is two times of that with B2. As we can see from Figure 1.38:

• in each panel, the larger v is, the larger the difference is between two block size

if holding m value unchanged. That means, larger value of block size has more

time reduction benefit for large data set analysis than smaller ones.
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Fig. 1.25.: l fits vs m

• similarly, if we hold v value constant in each panel, there is a linear increasing

relationship between the log difference and m. This also suggests that it is more

recommended to set a large block size value if your key-value pair or subset size

is large.

• if we compare the two panels in the same row, we can observe that the the

line in the left panel is always above the line with the same color in the right

panel. Take wsc cluster v = 6,m = 17 (the blue line) for example, the log ratio

of time between 64MB and 128MB is close to 0.9 while the log ratio between

128MB and 256MB is close to 0.7. This means, the time reduction benefit is

more significant when you change blocksize size from a smaller one to a big one.

The elapsed time benefit by increasing blocksize might be limited.

Similarly, Figure 1.39 plots the difference of o between two different block size

superpose on v, but with different conditional factor orders. It first conditional on
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Fig. 1.26.: l fits vs m

clusters and then B. Hence it has four panels and each row shares the same information

of blocksize comparison. Figure 1.39 gives us a better view to compare two clusters.

Besides of the same conclusions we can draw from Figure 1.38, we can see from Figure

1.39:

• With the same values of v and m, the log ratio in the left panel is always larger

than that in the right panel. This suggests that changing B has more impact

on wolf cluster than wsc cluster.

Figure 1.40 plots the ratio of O and T against m superpose on B conditional on v

and cluster. It has eight panels and each row shares the same information of cluster.

It shows the information of the percentage of Object time O in the total elapsed time

T. As we can see from Figure 1.40:
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Fig. 1.27.: l fits vs v

• the larger the blocksize is, the smaller percentage of O in T is. That means,

a larger blocksize will reduce the object time O and reduce the percentage in

return.

• there are different change patters of percentage between two clusters. Assume

we hold v constant, in the wsc cluster, the percentage has a up and down

pattern as m increases. On the contrast, in the wolf cluster, there is a strictly

increasing pattern of percentage as m increases. This suggests a structural

difference between wsc cluster and wolf cluster.

Block Size Summary

Blocks are the storage and computation unit in Hadoop. HDFS stores files by

dividing them into equal size of blocks, and distribute it among HDFS. The current

default value for block size is 64MB for Hadoop1 and 128MB for Hadoop2. Our
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Fig. 1.28.: Poly fit: Residual vs m

experiment suggests a value of 256MB of the block size can achieve the best com-

putation performance, especially when the raw data input size is large. Users can

actively interact with the block size value by tuning Hadoop parameter dfs.blocksize

in the task. Increasing block size brings a lot of computational benefits but it doesn’t

mean its value can be increased without limitations. Each mapper is running on a

container and one mapper is reading one block of data. So the block size should not

be larger than the RAM allocated to each container. Furthermore, the total RAM of

a cluster is a fixed amount and it is configured to allocate to each container and other

system operations. If the RAM per container is increased, the number of containers

running in parallel at one time are reduced, which in turn might increase the total

elapsed time.
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1.6.2 Hardware factor Effects

We have seen the similarities and differences in the computational performance

between wsc and wolf cluster in the previous sections. There are a lot of structural

difference between wsc and wolf clusters (Table 1.5) where wolf is a small one-node

sudo cluster compared with wsc cluster. The comparison between clusters will give

good insights that one node cluster can takes care of very large data computation.

Figure 1.41 and Figure 1.42 visualize and compare the two clusters effects.

Figure 1.41 plots the ratio of fitted time between wolf and wsc against m superpose

on v and compute type. It has six panels and each row shares the same information

of compute type. As we can see from Figure 1.41:

• the ratio range for T between wolf cluster and wsc cluster is between 4 ∼ 8.

This means, wsc cluster has better performance than wolf cluster as expected
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Fig. 1.30.: wolf o fits and actuals vs m

and the elapsed time T in wolf cluster is 4 times or 8 times the speed of that

in wsc cluster among different combinations of other factors.

• the larger the v is, the faster of wsc cluster than wolf cluster is. This means,

wsc cluster has more computation advantage than wsc cluster when analyzing

large data set.

Figure 1.42 plots the ratio of fitted time between wolf and wsc against m superpose

on B and compute type. It has six panels and each row shares the same information

of compute type. As we can see from Figure 1.42:

• Similarly, the larger the v is, the faster of wsc cluster than wolf cluster is by

comparing across panels.

• Within the most panels, the larger the B is, the smaller the ratio is. This sug-

gests, increasing B will narrow the computation speed gap between wolf cluster
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Fig. 1.31.: wolf t fits and actuals vs m

and wsc cluster, which suggests changing B has more impact on computations

in the wolf cluster than that in the wsc cluster. This observation holds true for

most of the panels except the last panel with compute type T and v = 6, where

the ratio across three different blocksize almost overlap with each other. This

suggests that when the subset size keeps increasing, the benefit of changing B

on wolf cluster is smaller.

Cluster Computation Performance

The wsc cluster and wolf cluster are two very different clusters. As we can see

from Table 1.5, there are at most 199 containers running in parallel in wsc cluster vs

23 containers in wolf cluster, this means the parallel number of containers in wsc is

more than 8 times of that in wolf. The total disk storage of wsc is 40 times of that of

the wolf cluster. The RAM of wsc is more than 6 times of wolf. Obviously, wsc cluster
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Fig. 1.32.: Polynomial model: o,t fits vs m

has considerably more compute power than wolf. It is also much more expensive to

set up and maintain a 10 node cluster than a one node sudo-cluster. The cluster

analysis in section 1.6.2 quantifies the cluster difference. As we can conclude, the wsc

cluster is much faster than the wolf cluster as expected. However, the difference is

not very large: the elapsed time T in wolf cluster is 4 times ∼ 8 times the speed of

that in wsc cluster.

Cluster Computation Capacity

One another topic of high interest is how large data set wolf and wsc cluster can

deal with. In our experiment, the largest data input size is 0.5TB. The total drive

disk storage in wsc cluster is 160TB and 4TB in wolf cluster. The total elapsed time

in wsc cluster can be as small as 3.7 minutes and 28.8 minutes in wolf cluster. This

is impressive how efficient the cluster with Rhipe is on big data analysis. We also
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Fig. 1.33.: Polynomial model: o,t fits vs v

explore to expand the input data set size to 1TB and even 2TB on both clusters. Both

clusters finish the logistic regression successfully. It is not surprising for wsc cluster on

analyzing a 2TB data but the wolf cluster shows the surprising computation capacity

to deal with very large data set. We can continue to increase the input data set size

and the wolf cluster can finish the analysis with longer elapsed time.

1.7 Experiment Conclusion

With the fast development of new technologies, hardware updating and social net-

work, the amount of data produced every day is growing very fast. This requires high

storage capacity and computation efficiency. There are researchers and companies

developing big data distributed platforms to improve the computation performance.

The common practice is benchmarks to measure the CPM&A of big data distributed

system, which almost always do not take account of the factors, nor do they measure
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Fig. 1.34.: Polynomial model: o fits vs B

run time of analytic methods. For example, CPM&A is often done using benchmarks

such as sort. For the data analyst, what matters is the elapsed times of analytic

methods of big data. D&R with DeltaRho computation environment provides a fea-

sible way to analyze big data. We propose and design a multi-factor experiments

for CPM&A on analytic methods of big data illustrating using D&R with DeltaRho.

The multi-factor experiment gives us insight of how different factors are interacting

with each other and how to tune some parameters to improve the computational

performance. Here are the conclusions we can draw from this experiment:

• O increases as v increases. The relationship between v and o is closed to linear

with a slightly convex upward.

• O is a big portion of T, could be larger than 80%.

• O increases very slowly as m increases and when m is small. The slop of the

increment gets larger and larger as m value gets larger.
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Fig. 1.35.: Polynomial model: t fits vs B

• O is a big portion of T, could be larger than 80%.

• Block size mainly impact O time, not L. This might because the analytic method

in the experiment is logistic regression and the reducer is averaging coefficients,

which are not heavily CPU-intensive computations. Large Block size is recom-

mended for large data computation.

• Parameter tuning could reduce O by more than 200%, T by more than 100%.

• Hadoop system is very robust to large data computation and it can handle large

data set beyond the RAM.

• This experiment gives good insights that one node cluster can takes care of very

large data. The wsc cluster is 3 ∼ 7 times faster than wolf. But it is much more

expensive to set up and maintain a 10 nodes cluster than a single cluster.
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Fig. 1.36.: l fits vs m

There are other important tuning variables and other big data platform, such

as Spark that are included in the experiment. And this project provides a statisti-

cally design multi-factor experiment framework for the CPM&A that can be easily

generalized to other platforms.
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2. ANALYSIS OF TEN BILLION SPAMHAUS INTERNET

BLACKLISTING QUERIES

2.1 Spamhaus Data

2.1.1 Spamhaus Service

An IP address referring to the internet protocol address, is a unique numerical

label assigned to every device connected to a computer network that uses the Internet

Protocol for communications [31]. It identifies the computer device and contains

information of its location and access. Host computers on the Internet, e.g., laptops,

web servers, mail servers, and routers, have IP addresses. These addresses have four

sets of numbers and each number ranges from 0 to 255, separated by dots. For

example, 10.1.60.9 is an IP address.

The Spamhaus project [32] is a global non-profit organization that provides service

of classifying IP addresses as blacklisted or not based on many sources of information

and many factors such as creating spam, being a major conduit for spam, or violating

internet policies. It is queried in real time by internet mail servers and it is one of

the largest database to provide blacklisted or non-blacklisted information for mail

service and has been protecting more than 3 BN user mailboxes [33] till November

2020. Figure 2.1 describes how the mail service communicates with Spamhaus service:

when a mail server (Receiver) receives an email from the Sender across the Internet,

it sends a query to Spamhaus to determine if an IP address or domain name is

blacklisted or not; The Spamhaus will response Yes or No depending on whether the

queried IP is on the blacklists or not. If the sender’s IP address meets the Spamhaus

policy and is not blacklisted, the Receiver will deliver and process the mail normally.

On the other side, if the sender’s IP turns to be blacklisted, the receiver will makes its
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own policy decisions based on the its settings. The common practice is to reject the

message and notifies the sender. The Spamhaus service is only responsible to check

the IP’s status and receivers will take different actions based on the system settings.

Fig. 2.1.: Basic DNSBL flow

DNSBL stands for Domain Name System Block List [34] and it provides a list

of malicious hosts information. The Spamhaus provides several DNSBL zones for IP

check, such as XBL zone, SBL zone, CSS zone and PBL zone. Different zones are

various database of block lists with different focused study of policy violations. All the

four zones are live database of IP addresses. XBL zone [35] is the Spamhaus Exloits

Block List. It lists all the spam IPs compromised to third party devices exploits,

such as worm viruses in spam engines and open proxies. SBL zone [36] provides

the Spamhaus Block List with spam emails that are recommended to be rejected by

Spamhaus service. It lists all the IPs with unsolicited bulk email (spam) and other

security threats, such as Snowshoe spam, Spam hosting, Phish sites and Hacking

attempts. CSS zone [37] is a component of SBL zone with focus on IPs sending

out low reputation emails. PBL zone [38] provides a Policy Block List of IPs that

sending unauthenticated SMTP emails to mail servers. SBL and XBL zones cover the

majority of spam types of blacklisted IPs. The Spamhaus project provides the those

block lists for mails servers to check. There are more than 80 public Spamhaus mirror

servers distributed worldwide for the purpose of high redundancy and efficiency.



59

Our goal is to study the properties of the blacklisting process for blacklisted IPs.

Spamhaus has a process by which a blacklisted IP can be unlisted from the blacklisted

lists, but the time frame is on the order of hours and even days. One might expect

then to see blacklisting persist for some time. A major task is to study for an IP

address with blacklistings, the change through time back and forth of blacklisting

and non-blacklisting. A pilot study [39] showed there was a faster back and forth

blacklisting and non-blacklisting than expected. Our major goal of the project is to

find the cause of this quick back and forth of blacklisting and non-blacklisting.

2.1.2 Spamhaus Data Collection

Receivers send queries and get responses from Spamhaus service all the time.

Queries and their responses are collected by John Gerth in the Computer Graphics

Laboratory from the Stanford mirror of the Spamhaus site in 2014. The data was

collected at a raw data rate of 100 GB per week, over a period of eight calendar

months. The Spamhaus Data packets were collected using TCPDump and were saved

in pcap [40] format for files. Ashrith Barthur [39] from the Department of Statistics of

Purdue University first transferred and processed the Spamhaus DNS packets using

python [41] by which the raw data was converted from the binary format to text

readable format. Approximately 1.0TB raw data was saved into 13,204 text files

written to HDFS of wsc cluster. The wsc cluster is used in the analysis of Spamhaus

data. It has 10 nodes, 200 cores, 1.25 TB RAM and 160 TB disk storage (Table 1.4).

It is worthy noticing that the physical memory size of wsc cluster is only 25% greater

than the data size. The large size of the raw data input is one of the largest challenges

in the data analysis. D&R was used to analyze the data. Computations were carried

out by utilizing R/RHIPE/Hadoop in wsc cluster.
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2.1.3 Spamhaus Data Variables

Each query, along with its response is our data raw input. Each row in the raw

text input is a query and response from Spamhaus Service. Each row has 13 variables

to study the properties of blacklisting:

• time: numeric in second, query response collection time.

• source: character, the source IP address or querying IP address, such as

192.221.138.161.

• qtype: character, specifying the queried address type: IP address or Domain

name or query error.

• qname: character, sender or queried address, such as 10.1.60.10.

• rcode: character, the response code identifying correct and incorrect query

formatting.

• state: character, state of query and response: noinfo, blacklisted or query error.

• ab.isp: IP address ISP policy violation, 1 or 0.

• ab.s: IP address Spam, 1 or 0.

• ab.sc: IP address CSS spam, 1 or 0.

• ab.e: IP address Spamhaus exploit, 1 or 0.

• ab.p: IP address Spamhaus policy violation, 1 or 0.

• db.s: Domain address Spamhaus spam, 1 or 0.

• db.sr: Domain address Spamhaus spam redirection, 1 or 0.

The time variable is the timestamp when the response from Spamhaus were col-

lected by the TCPDump package. This variable provides very important information

of blacklisted properties of IPs.
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The two variables source and qname are querying IPs and queried addresses

respectively where qname can be either a IP address or Domain name. The variable

qtype specifies whether the queried address is a IP address or Domain name. IP

address is different from a Domain name. IP address is a unique numerical label

assigned to every device. It is very useful and machine friendly for communications

between computers but not human friendly to understand. Domain name is more

user friendly to locate and understand, for example,“www.google.com” is a domain

name for Google. Users use domain name to visit a website while computer will use

the IP address to access information. Domain name and IP address are connected

by the DNS system (Domain Name System). One domain name can correspond to

multiple IPs while one IP can uniquely identify the device. As a result, our Spamhaus

data analysis will focused on blacklisted IPs not on listed domain names. There are

two blacklisted types for a blacklisted domain name: db.s and db.sr determined by

DBL zone [42]. So the variables related to Domain name properties will be removed

from the further data cleaning steps.

The variable rcode is the response code from DNS packet to identify whether the

query output is valid or not and whether there is query error or format error [39].

And rcode variable partially defines state variable. The state variable is a derived

variable that identify the status of the queried IP: blacklisted, noinfo or query error.

When rcode returns code of no information, the value of state is set to noinfo as

well, which suggests that there is no listing for the domain requested in DNS. When

rcode returns query error, state is set to queryerror. If the rcode returns noerror,

state value is determined by the five blacklisted response variables: ab.isp, ab.s,

ab.sc, ab.e, ab.p. If there are blacklisted violations, the value of state is set as

blacklisted.

There are five blacklisted types related to a blacklisted IP address: ab.isp, ab.s,

ab.sc, ab.e, ab.p. Each is a binary variable with value 1 or 0 where value of 1 means

the queried IP is on the blacklisted list with the violation of corresponding listed

behaviours. One queried IP can have zero and up to five violations. Table 2.1 displays
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Table 2.1.: Spamhaus Block Lists and Return Codes

Block List Return Code Variable Description

SBL
127.0.0.2 as.s Spamhaus Violation

127.0.0.3 as.sc CSS Spam

XBL 127.0.0.4 ab.e Exploit

PBL
127.0.0.10 as.isp ISP Violation

127.0.0.11 as.p Spamhaus Policy Violation

the relationship between Spamhaus block lists and the five blacklisted variables for IPs

where CSS is included in SBL. There are common return codes specified by Spamhaus

service connecting to different block lists and different malicious activities.

The spamhaus data analysis will focus on IP addresses and their blacklisted be-

haviors so that not all the 13 variables above will be analyzed in the data analysis.

The domain name related variables will be dropped from the analysis later on.

2.1.4 Spamhaus Data Summary Statistics

The size of the raw input data is 1.0TB and there are 13,204 text files written to

HDFS. The processed data consist of values of 13 variables for each of 10,621,808,809

queries during more than 8 months. The following pieces of information summarize

the features of our input data.

• Duration of collection in months: 8+.

• Total number of queries: 10,621,808,809.

• Total number of querying IP addresses: 982,293.

• Total number of queried IP addresses: 206,952,971.

• Total number of queried IP addresses with at least one blacklist result: 59,432,518.
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We are interested in the behaviour of Spamhaus blacklisted responses. And the

raw data input is a very large dataset and we will apply D&R of big data analysis to

the Spamhaus data in the following sections.

2.2 Spamhaus Data Divisions

The size of the raw input data is 1.0TB with 13,204 text files written to HDFS.

Hadoop has a relatively poor performance to deal with large number of small key-

value pairs [10], especially for text file input types. When the input data is text file,

each query or line number is a key and the corresponding line is a value. This means

there are 10,621,808,809 key-value pairs. It is always time consuming for Hadoop to

access text inputs and the common practice is to divide the text inputs and save it to

sequence files on HDFS. There are different ways to divide data and one of the most

common method is by subject-matter divisions, that is, chunking data into subsets

by conditioning on meaningful variables important to the analysis, such as time or

location variables. All divisions in the Spamhaus analysis here are by subject-matter

divisions. The raw input data will be broken up into numbers of key-value pairs and

saved into sequence files in HDFS. The value is a R data frame for each key.

2.2.1 First Division by Variable Time

There are computation challenges to read and divide the Spamhaus data in prac-

tice due to its large input size and complex relations among variables. As we discussed,

Hadoop is not suitable to deal with large number of small size key-value pairs but

there is also performance problems when the key-value pair size is too large. There

will be job failures if the key-value pair size is too large to fit into container memory.

For this reason, we first divide the input to data frame with fix number of k rows

by variable time. The value choice of k is set to be 6000 for a better computation

performance [39]. That means the raw input data is chunked to multiple number of

key-value pairs:
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• Key: time stamp.

• Value: data frame with 6,000 rows and 13 columns, ordered by time stamp.

Here is one key-value pair example for the first division by time:

> head(key)

[1] 1390972922

> head(value,2)

time source rcode qtype qname

1 1390972922 166.104.239.11 noinfo address 125.246.106.87.sbl.spamhaus.org

2 1390972922 8.0.35.239 noinfo address 147.66.112.74.zen.spamhaus.org

state ab.isp ab.s ab.sc ab.e ab.p db.s db.sr

1 noinfo 0 0 0 0 0 0 0

2 noinfo 0 0 0 0 0 0 0

> dim(value)

[1] 6000 13

The first division is saved to sequence file on HDFS and becomes our new input for

further analysis. It contains the same information as the raw text files but more efficient in

computation performance than text inputs.

2.2.2 Second Division by Queried IPs

The objective of the Spamhaus analysis is to understand the properties and behaviours

of the blacklisted IPs. The blacklisted IP is defined as IP that has at least one blacklisted

queries across time. As a result, we need to collect all the queries over time related to the

same queried IP and determine whether this IP is blacklisted or not. That suggests we need

to form divisions by IP. Hence our second division is by queried IPs. The following steps

describe how we form the second division.

• Firstly, form by-IP-by-week division: the key is (IP, week) and the value is a data

frame including all the queries for the queried IP within a week.
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• Secondly, form by-IP-by-month division: the key is (IP, month) and the value is a

data frame including all the queries for the queried IP within a month.

• Lastly, form by-IP division: the key is IP and the value is a data frame including all

the queries for the queried IP across 8+ months.

We are not directly forming the by-IP division due to the computation complexity.

Instead, we first form the by by-IP-by-week division, then use that as input to form by-

IP-by-month division and then form the final by-IP division. We take several interim steps

before we got the by-IP division. The reason is we are dealing with big data analysis

and some queried IPs might have very large number of queries and there will be memory

problem and computational failures to include all the queries in one subset. In fact, there

are Hadoop job failures when combining all months queries together for the same IP. It

will simplify our analysis if we can include all the queries of queried IP in a subset so we

need to optimize the data frame structure to reduce the subset size. There are two tricks

to optimize the data storage. Firstly, we remove the variables that are not related to IP

analysis, such as domain name related variables. Secondly, we reformat the variables types

and summarize information by:

• converting the character variable source IP to numeric numbers. Character types

takes more space to store than Numeric types.

• reducing five blacklisted variables ab.isp, ab.s, ab.sc, ab.e, ab.p into one variable

ab.sum. As we discussed previously, each of the five variables is a binary variable

with value 1 or 0 where value of 1 means the queried IP is on the blacklisted list with

the violation of corresponding listed behaviours and one queried IP can have zero and

up to five violations. So we can carry out the binary-to-decimal calculation to form

one variable ab.sum. For example, assuming (ab.isp,ab.s,ab.sc,ab.e,ab.p) =

(1, 0, 0, 0, 1), the corresponding decimal value of ab.sum for binary number 10001 is

17: 17 = (1 ·24)+(0 ·23)+(0 ·22)+(0 ·21)+(1 ·20). The binary to decimal conversion

are one to one mapping, that is, the five variables can be well represented by ab.sum

and ab.sum can be easily transformed back to five binary variables.
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The numeric transformation of source IP and binary calculation of ab.sum reduce one

subset size by 33% to 60%. And we keep all the information we need and successfully reduce

the subset size. Here is the key-value pair information for the second by-IP division:

• Key: Queried IP.

• Value: data frame with 3 columns.

And the one sample key-value pair is:

> head(key)

[1] "0.1.48.8"

> head(value,2)

time source ab.sum

1 1404479983 4446037760 0

2 1406261684 27787453 0

There are 206,952,971 queried IPs in total which means there are 206,952,971 subsets

or key-value pairs. Each subset is a data frame including all the queries for the queried IP

across 8+ months. Some IPs are very active to send emails and some are not. The number

of queries among IPs varies from 1 to 16,777,216. About 56% queried IPs have only one

query. And there is only 10% queried IPs with equal to or over 16 queries. Most queried

IPs are not informative in statistical modelling.

2.2.3 Third Divison by Blacklisted Queried IPs

The focus subject of interest are blacklisted queried IPs (BBQ-IP) which are with at

least one query that has a blacklist result. It is very straightforward to build a third division

by BBQ-IP based on the input of the second by-IP division. We will only keep the IP and

its corresponding queries if the IP is blacklisted. Here is the key-value pair for the third

division:

• Key: BBQ-IP

• Value: data frame with 3 columns
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And one key-value pair example is:

> head(key)

[1] "0.0.0.0"

> head(value,2)

time source ab.sum

1 1390953601 3213870602 0

2 1390953608 908939772 1
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Fig. 2.2.: Distribution of log2 number of queries per IP

There are 59,432,518 number of subsets in the third division which means there are

59,432,518 BBQ-IPs in total and 28.7% of IPs are blacklisted. We calculate the global

summary statistics across all the 59,432,518 BBQ-IPs to understand the data properties.

Figure 2.2 displays the distribution of total queries number among BBQ-IPs in log2 base

where the range of query numbers per IP varies from 1 to 2,439,536. There are 13,569,257

IPs, 22.8% of the total BBQ-IPs, with query counts more than or equal to 16. And 9,114,378

(15.3%) IPs have queries more than or equal to 32. This means, there are only 22.8% of
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Fig. 2.3.: Distribution of subset size

BBQ-IPs queried more than or equal to 16 times across the 8+ months period while the

majority of the BBQ-IPs stay in an inactive status. It is not statistically informative to

study the blacklisted properties of inactive BBQ-IPs so we will firstly focus on the 22.8%

of BBQ-IPs that have query numbers ≥ 16. Figure 2.3 shows the distribution of the subset

size of the 13,569,257 IPs. The subset size change from 210 Byte to more than 55 MB which

further shows that there is a vast difference among IPs’ activities. Figure 2.4 shows the

distribution of log2 number of blacklisted queries per IP among the 22.8% of selected BBQ-

IPs where 50% of IPs have less than 19 number of blacklisted queries across the 8+ months

period. The range of the number of blacklisted queries varies from one to 1,997,428. Figure

2.5 shows the distribution of blacklisted frictions per IP. The blacklisted friction per IP is

calculated by comparing the total number of blacklisted queries versus the total number

of queries. The smallest blacklisted frictions is 0.0004% which happens for one specific IP

with only one blacklisted IP and 232,559 total queries. There are 38,443 blacklisted IPs

with blacklisted fraction value equal to 100%, which means all the queries for the IP are

blacklisted. The total query numbers vary from 16 to 8033. And 50% (medium) of the
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blacklisted frictions are larger than 40.6%. We will carry out the exploratory analysis for

the Spamhaus data in the following sections.
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Fig. 2.4.: Distribution of log2 number of blacklisted queries per IP

2.3 First Sample Analysis of the Most Queried IPs

We selected 13,569,257 BBQ-IPs that have query counts more than or equal to 16 from

the last section. This is still a large number of objects. Furthermore, Figure 2.3, 2.4 and

2.5 suggest there might be different blacklisted properties among different IPs, which might

bring more challenges into data analysis. We are interested in the blacklisted properties

and need to develop informative metrics or statistics to explore and understand it. For

this purpose, we carry out the first sample analysis by selecting the top 100 blacklisted IPs

with the most number of queries. The selected 100 BBQ-IPs are the most active ones which

might convey more information of blacklisted property. Figure 2.6 describes the distribution

of the queries numbers for the 100 selected IPs where the total query numbers per IP vary

from 35,600 to 2,440,000. Figure 2.7 shows the distribution of IP’s active time duration
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Fig. 2.5.: Distribution of blacklisted queries frictions

which is defined as the time difference between IP’s first query to the last query. As we can

see from Figure Figure 2.7, the duration lasts from 88 days to 215 days (8 months). Figure

2.8 gives the distribution of the blacklisted frictions among the 100 selected IPs where we

can see more than 75% of the selected IPs with blacklisted friction less than 1%. This

suggests that our selected most active IPs are lack of necessary blacklisted information.

We need to have enough blacklisted data to study the blacklisted properties so we need to

reform the criteria of sample selection.

2.4 Second Sample Analysis with Friction and Count Constrains

Now we have all the blacklisted IPs and we need to study those who have the most

statistical information about the blacklisting properties. The first sample of most active

IPs did not provide good representatives of blacklisted information. So we take the second

sample of BBQ-IPs by the following two criteria:
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Fig. 2.6.: Distribution of queries numbers for 100 selected IPs

• The number of queries should be larger or equal to 213. We need to have active IPs

to analyze the quick back-and-force blacklisting and non-blacklisting behaviours.

• The blacklisted fraction should be larger than or equal to 25%. We need to have

enough blacklistings to understand the blacklilsting properties.

The two constrains will ensure that we have active IPs as well as good representatives

of blacklisted activities. As a result, 30,088 BBQ-IPs are selected out of the 13,569,257

BBQ-IPs.

The selected 30,088 BBQ-IPs are our focus of study for the following sections. As we

mentioned in the Section 2.1.1: our goal is to study the properties of the blacklisting process

for blacklisted IPs. Spamhaus has a process by which a blacklisted IP can be unlisted from

blacklisted lists, but the time frame is on the order of hours and even days. One might

expect then to see blacklisting persist for some time. A major task is to study for an IP

address with blacklistings, the change through time back and forth of blacklisting and non-
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Fig. 2.7.: Distribution of IP active duration for 100 selected IPs

blacklisting. Our major goal of the project is to find the cause of this quick back and forth

of blacklisting and non-blacklisting.

Figure 2.9 summarizes the distribution of the number of queries per IP which vary from

8,192 to 1,286,000. The total number of queries across all the 30,088 IPs are 526,732,379.

Figure 2.10 shows the distribution of blacklisted fraction: the range of fractions are from

25.0% to 99.7%. 50.0% of BBQ-IPs has blacklisted frictions larger than 44.0%. The distri-

bution is right skewed with more than 99.7% of fractions smaller than 70.0% and only less

than 0.3% are larger than 70.0%.

We need to develop relevant metrics to understand the blacklisted activities. The se-

lected 30,088 BBQ-IPs are still a large number of object so we select 100 IPs from the 30,088

ones to better understand the blacklisted pattern and to form meaningful statistics. 100 IPs

are selected from the 30,088 IPs with the blacklisted frictions equally spaced between 0.25

and 1.0 so that we have a good representative of IPs across different blacklisted frictions.

However, the fraction distributions are not uniformly distributed between 0.25 and 1.0 due

to the right skewed distribution of fractions (Figure 2.10) and the right tail does not have
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Fig. 2.8.: Distribution of blacklisted frictions for 100 selected IPs

enough data to sample from. There are only 21 IPs with fractions larger than 85.5% so we

keep all the 21 IPs in the 100 samples. Figure 2.11 displays the index plot of the blacklisted

fraction of the 100 IPs where we can see the 100 selected IPs’s fractions linearly increase

from 25.0% to 99.7% and there are some curvature off linear pattern in the tail.

We will first analyze the blacklisted properties on the 100 selected IPs and then gener-

alize to the 30,088 BBQ-IPs.

2.4.1 Sample Analysis – Blacklisted Rate

We first study the blacklisted properties by analyzing the time series of blacklisted rate.

For each of the 100 selected BBQ-IPs, their queries are sorted by time chronologically. We

break down the queries per IP into groups of 64 consecutive queries. Let ti be the time

duration of the ith group of a IP where ti is the time difference between the first query and

64th query in ith group. Now we define the blacklisted query rate, non-blacklisted query rate

and query rate as in Equation 2.1, Equation 2.2 and Equation 2.3 respectively. There are
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Fig. 2.9.: Distribution of queries count of 30,088 IPs

two different types of listing rate: the blacklisted query rate and non-blacklisted query rate

where blacklisted query rate measures how fast the blacklisted is while the non-blacklisted

query rate measures how fast the non-blacklisted is. Equation 2.4 and Equation 2.5 describe

the mathematical relationship among the two listing rates and the query rates: we keep the

total queries per group as a constant value 64 and measuring the duration.

blacklisted query ratei =
number of blacklisted queriesi

ti
=

BLi
ti

(2.1)

non-blacklisted query ratei =
number of non-blacklisted queriesi

ti
=

NonBLi
ti

(2.2)

queried ratei =
number of queriesi

ti
(2.3)

where:

blacklisted queried ratei + non-blacklisted queried ratei = query ratei (2.4)

BLi + NonBLi = 64 (2.5)
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Fig. 2.10.: Distribution of blacklisted frictions of 30,088 IPs

We are interested in the relationship between the different listed rates versus query rates

per IP so we fit a robust linear regression [43] of the blacklisted query rate versus queried rate

(Equation 2.6) and non-blacklisted query rate versus queried rate in log format respectively

(Equation 2.7). The robust regression is useful when there are outliers and it can gives

better accuracy than ordinary linear regression by weighting the outliers impact. Robust

regression is applied to each IP using the rlm() function in R package MASS.

log2(blacklisted queried rate) ∼ a1 + k1 · log2(queried rate) (2.6)

log2(non-blacklisted queried rate) ∼ a2 + k2 · log2(queried rate) (2.7)

Equation 2.6 and Equation 2.7 were fitted to each of the 100 IPs independently so there

are 200 fittings in total. Trellis display is heavily used in the analysis of listing rates and

queried rates. There are 100 pages of the queried rate scatter plot and each page is for

a specific IP. The 100 pages plot is not included here for the thesis size purpose but we

will illustrates the plot by showing several IPs. Figure 2.12 and Figure 2.13 illustrate the

scatter plot between the listing rates and queried rates for two example IPs. Figure 2.12
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Fig. 2.11.: Distribution of blacklisted frictions of 100 selected IPs

is for IP 209.217.224.13 with overall blacklisted friction 52.4%. It has two panels: the left

panel is log2 of blacklisted query rate versus log2 of queried rate; the right panel is log2

of non-blacklisted query rate versus log2 of queried rate; a line was fitted by applying the

robust linear regression to each panel. Similarly Figure 2.13 is for IP 162.248.73.103 with

overall blacklisted friction 61.7%. Both Figure 2.12 and Figure 2.13 show a strong linear

relationship between the log2 of listing rate and log2 of queried rate for both IPs. And both

the slope value of k1 and k2 are 1.0 for the two IPs. We summarize the slope information

across the 100 IPs and Figure 2.14 displays the distribution of the slope values. It has two

panels: the left panel is the fitted slope distribution of blacklisted rates k1 and the right

panel is for non-blacklisted fitting k2. As we can see from Figure 2.14, both the value of k1

and k2 are concentrated at value 1.0.

We apply the same analysis to all the 30,088 IPs in Rhipe and summarize the 30088 ·2 =

60, 176 fittings in Figure 2.15 where we can conclude that the same conclusion holds: the

slopes of k1 and k2 are concentrated at value 1.0. Furthermore, the distribution plot of the

two slopes difference k1−k2 in Figure 2.16 shows that k1−k2 is concentrated at value 0. All
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Fig. 2.12.: Log2 listing rate vs. log2 query rate example1

the discussions above have lead to the following important findings about the blacklisted

properties of IPs:

• The blacklisting rate is proportional to the queried rate, which means the quicker the

IP was queried, the faster the IP gets blacklisted.

• k1 = k2 for the most selected BBQ-IPs. For each group of 64 consecutive queries per

IP, we can derive the following relationship between the blacklisted query numbers

BLi and non-blacklisted numbers NonBL by applying Equation 2.1, 2.2 and 2.5 to

model 2.6 and model 2.7:

BLi
NonBLi

∝ queried rate
(k1−k2)
i

If k1 = k2, this suggests BLi
NonBLi

is constant across all the groups of 64 consecutive

queries per IP. Furthermore, based on Equation 2.5, this suggests the blacklisted

fraction BLi
64 is constant across every 64 queries within IP.
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• These suggest a rapid back and forth of blacklisting and non-blacklisting activities:

the blacklisting runs then the not-blacklisting runs, rather than long periods of each.

2.4.2 Sample Analysis – On-Off Process

Section 2.4.1 explores the blacklisted properties by calculating blacklisted frictions. Now

we define a different metric to understand more blacklisted behaviours from time perspec-

tive.

A marked point process is a point process and associate marks [44], which can be

expressed as:

{(ti,mi) : i = 1, ..., n},

where t1, ..., tn are about locations information and m1, ...,mn are associated marks. For the

30,088 subsets, each is a marked point process. The point process ti is the query time and

the marks mi are relevant variables for each query time. Each row of the subset is a query

to validate the status of IP. These blacklisted queried IPs time profiles are detailed data.
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Fig. 2.14.: Distribution of slopes of robust linear regression for 100 IPs.

Now we define the On-Off run Process to understand how long a IP can stay as blacklisted

or non-blacklisted:

• On interval is the consecutive blacklistings.

• Off interval is the consecutive non-blacklisting.

• Blacklisting counts: consecutive blacklisting count.

• Non-Blacklisting counts: consecutive non-blacklisting count.

For example, suppose we have an queried IP with consecutive queries status: 0, 1, 1,

1, 0, 0, 0, where value 1 stands for a blacklisted query and 0 stands for a non-blacklisted

query, we can see there is a On and Off runs switch: off, on, off. This is alternating time

process. An important question is what the distributions of the lengths of the On and Off

intervals are. Our measuring device is the queries themselves. The On process ends when

there is a 1 followed by 0. But the On process could end anytime between the 1 and 0.

Similarly, the On process begins when there is a 0 followed by 1. However, its start time
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Fig. 2.15.: Distribution of slopes of all 30,088 IPs.

could begins anytime between 0 and 1. The best we can do is the upper bound and lower

bound for the length of the interval. Similarly is for the Off process. Here we define the

On and Off lower bound and upper bound:

• On Time Lower Bound L1,i: the duration between the first blacklisted query and the

last blacklisted query in one run i.

• On Time Upper Bound U1,i: the duration between the last non-blacklisting of one

run and the next non-blacklisting i.

• Off Time Lower Bound L0,j : the duration between the first non-blacklisted query and

the last non-blacklisted query in one run j.

• Off Time Upper Bound U0,j : the duration between the last blacklisting of one run j

and the next blacklisting.

We illustrate the lower bound and upper bound calculation by using the last example

query lists: 0, 1, 1, 1, 0, 0, 0 with corresponding time t1, t2, t3, t4, t5, t6, t7. The On time
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Fig. 2.16.: Distribution of slope difference k1 - k2 of 30,088 IPs.

lower bound for the first On run is L1,1 = t5 − t1; The On time upper bound for the first

On run is U1,1 = t4 − t2. Similar calculation holds for Off process. For each IP, we can

calculate a sequence of lower bound and upper bound for On and Off process: On lower

bound list {L1,1, L1,2, ..., L1,n}; On upper bound list {U1,1, U1,2, ..., U1,n}; Off lower bound

list {L0,1, L0,2, ..., L0,m}; and Off upper bound list {U0,1, U0,2, ..., U0,m}. We use Trellis

display to analyze the distributions of the lower and upper bound list for On-Off process

for each IP. So the distribution plot for On process contains 100 pages for the selected 100

IPs: each page is the upper bound and lower bound distribution for a specific IP. Similar

holds for Off analysis. Figure 2.17 illustrate one IP’s On upper bound and lower bound

distributions: the red dot is for upper bound; the black dot is for lower bound; a horizontal

line with value log2(10minutes) was plotted. As we can tell from Figure 2.17, more than

99% of the runs have both upper bound and lower bound less than 10 minutes, which

suggests that the time duration for a IP to stay as blacklisted is less than 10 minutes. This

means there is very fast non-blacklisted process which violates our understanding about

Spamhaus service. We would expect that once a IP address is listed on the Spamhaus
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blacklisted list zones, it will persist a blacklisted status in a time order of hours and days.

The administrator for a blacklisted IP needs to contact the Blocklist Removal Center [32]

to apply for the removal from the detected lists.
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Fig. 2.17.: One upper bound and lower bound distributions example

We calculated the medium of the lower bound and upper bound for each IP On and

Off process and summarize their distributions in Figure 2.18 and Figure 2.19. Figure 2.18

describes the distribution of mediums of upper bound with two panels: the left panel is the

upper bound for the On process and the right panel is for Off process; a red horizontal line

specifying 10 minutes was put to each panel. As we can see from this plot, the mediums of

both On and Off panels are between 7 minutes to 10 minutes. Figure 2.19 describes the

distribution of mediums of lower bound with two panels: the left panel is the lower bound

for the On process and the right panel is for Off process; a red horizontal line specifying

1 minutes was put to each panel. As we can see from this plot, both panels has a large

percentage of zero lower bound which happens when there is a quick blacklisting and non-

blacklisting alternating: {0, 1, 0 } or { 1, 0, 1 }. There is only one blacklisting following the



83

non-blacklisting in the sequence of {0, 1, 0} so the lower bound for blacklisting persisting

is 0.
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Fig. 2.18.: On-Off medium distribution of upper bound across 100 IPs

We apply the same analysis of the 100 IPs to all the 30,088 hosts and get the similar

conclusions. Figure 2.20 and 2.21 describe the medium distribution of upper and lower

bound of On-Off process across all the 30,088 IPs. The 2.21 suggests there are a large per-

centage of zero lower bound and quick switch of one blacklisted followed by non-blacklisted

or the other way around. And as we can see from Figure 2.20, the medium of upper bound

is between 7 minutes to 10 minutes for both On and Off process.

The Table 2.2 provides a reasonable explain for the fast back and forth blacklisting

and non-blacklisting activities. Table 2.2 shows the three list of blacklisted zones for IP

Spamhaus service, their corresponding blacklisted types and updating time. XBL [35] and

SBL [36] are the top two largest spam zones in the Spamhaus service covering the most

of blacklisted types of queries. Both XBL and SBL have over 80 public DNSBL mirror

servers located around the world. Each mirror server is running independently to provide

IP check service. And query checks are sent and saved locally for the most efficiencies and
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Fig. 2.19.: On-Off medium distribution of lower bound across 100 IPs

speed. The check and respond speed is in milliseconds. Both the XBL and SBL DNS zone

are rebuilt and reloaded every 10 minutes, 24 hours and 7 days a week, “to ensure that

new ‘no Unauthenticated SMTP allowed’ IP addresses are blocked and that any mistaken

listings are swiftly removed” [35] [36]. The updating time for PBL zone [38] is 15 minutes

as shown in Table 2.2. The fast blacklisting and non-blacklisting back and forth might be

related to the Blacklisted lists Zone rebuilt frequency. A IP can send emails to different

locations and different queries are sent to different Spamhaus servers. The local lists zone

are updated every 10 or 15 minutes so they may make different responses globally. Figure

2.22 displays the dotplot of the distribution of blacklisted types of all queries where we can

see Exploit from XBL zone is the most frequent cause of spamhaus violations with more

than 55% of the total violations. Spam and CSS Spam from SBL zone are one of the most

frequent cause too. Actually, violations related to XBL and SBL take more than 99% in

our total violation queries. The medium of upper bound of On interval is 7 minutes to

10 minutes from Figure 2.20 and it is a reasonable conclusion that the fast back and forth

blacklisting and non-blacklisting is related to the 10 minutes of SBL and XBL updating
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Fig. 2.20.: On-Off medium distribution of upper bound across 30,088 IPs

frequency. It is worth noticing that the updating time was 10 minutes for both XBL and

SBL, 15 minutes for PBL when we check the Spamhaus website in February 2019. And

the updating time has reduced to 5 minutes for XBL and SBL, 10 minutes for PBL when

we recheck on November 2020. So if we recollect the most recent data, we would expect

the upper bound for the consistent On interval will be reduced from 10 minutes to close 5

minutes.

Table 2.2.: Blacklisted Lists and its Blacklisted types

Blacklisted Lists Blacklisted Type Updating Time (minute)

XBL Exploit 10

SBL Spam, CSS Spam 10

PBL ISP Violation, Spamhaus Policy Violation 15
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Fig. 2.21.: On-Off medium distribution of lower bound across 30,088 IPs

2.5 Conclusion

We provide a reasonable explain for the quick back and forth blacklisting and non-

blacklisting phenomenon by analyzing the blacklisted frictions and On-Off process. Our

conclusion is this is driven by the Spamhaus list zones updating and rebuilding frequency.

There are two major challenges of the Spamhaus data analysis: one is the large input of the

1.0 TB raw data; second is to form some useful data metrics to understand and explain the

blacklisted properties. The former was accomplished by applying D&R to the data analysis

so that we form meaningful data divisions and are able to carry out the big data analysis.

The latter was done by analyzing the universal statistical distributions and carrying out

the sample analysis to recover the blacklisted behaviours. There are still other works to be

done to better understand the Spamhaus data. Our current work is based on the queried

IPs and we can form a more complicated data structure by forming Queried IP-Query IP

division so there might be some interesting findings among interactions of queried IPs and

querying IPs.
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A. BASH FILE SAMPLE

Here is the bash command sample to carry out experiment of v = 3 and blocksize =

64MB: run_experiment.v3.64.sh .

#!/ bin /bash

n=30

v=3

m=9

mapper=23

b l o c k s i z e =67108864

run=1

whi le ( ( $m <= 17 ) )

do

nohup Rscr ipt −−v a n i l l a 1 . d i v i d e .R

$n $v $m $mapper $ b l o c k s i z e > 1 .$m. rout 2>&1

rm 1 .$m. rout

whi l e ( ( $run <= 3 ) )

do

nohup Rscr ipt −−v a n i l l a 2 . experiment . ob j e c t . time .R

$n $v $m $ b l o c k s i z e $run > 2 .m$m. rout 2>&1

rm 2 .m$m. rout

nohup Rscr ipt −−v a n i l l a 3 . experiment . t o t a l . time .R

$n $v $m $ b l o c k s i z e $run > 3 .m$m. rout 2>&1

rm 3 .m$m. rout

l e t run+=1

done

l e t m+=1

run_experiment.v3.64.sh
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run=1

done
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B. PERFORMANCE FUNCTIONS R SCRIPT

Here is the Performance Functions R script 0.performance.function.R.

l i b r a r y ( Rhipe )

r h i n i t ( )

rhopt ions ( z i p s = ”/wsc/ song273 / bin /R. Pkg . ta r . gz ”)

rhopt ions ( runner = ”sh . /R. Pkg/ l i b r a r y /Rhipe/ bin /RhipeMapReduce . sh ”)

#n=30

#r . vec = 10 :23

#m. vec = n − r . vec

d iv ide data o ld way = func t i on (n , v , m, mappers ,

b l o c k s i z e =134217728 ){

pr in t ( paste ( ” b l o c k s i z e i s : ” , b l o c k s i z e ) )

dm = l i s t ( )

p = 2ˆv−1

d i r . exp = paste ( ”/wsc/ song273 / pf /n” ,n ,”/ v ” ,v , ”/” , sep =””)

dm$map = expr e s s i on ({

f o r ( r in map . va lue s ){

s e t . seed ( r )

va lue = matrix ( c ( rnorm (m∗p ) ,

sample ( c ( 0 , 1 ) , m, r e p l a c e=TRUE) ) ,

nco l=p+1)

r h c o l l e c t ( r , va lue ) # key i s subset id

}

})

dm$input = c (2ˆ( n−m) , mappers )

0.performance.function.R
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dm$output = paste ( d i r . exp , ” d iv id e /m” ,m, sep =””)

dm$jobname = dm$output

dm$mapred = l i s t (

mapreduce . task . t imeout =0,

mapreduce . job . reduces=0,## no reduce

mapreduce . job . maps=mappers , ## number o f mappers

d f s . b l o c k s i z e = b l o c k s i z e

# mapreduce .map . memory .mb = 6000 ,

# mapreduce .map . java . opts =”−Xmx4800m”

)

dm$parameters = l i s t (m=2ˆm, p=p)

dm$readback = FALSE

dm$jobname = dm$output

dm$noeval = TRUE

dm. mr = do . c a l l (” rhwatch ” , dm)

rhex (dm. mr , async=FALSE)

pr in t (m)

rhc l ean ( )

re turn ( )

}

ob j e c t t ime = func t i on (n , v , m, run ,

path=”performance / r s t /” ,

b l o c k s i z e =134217728

){

# m = 10

# n = 30

# v = 4

# run = 1

# path i s the l o c a l path to save the r e s u l t



95

# path = ”/home/ song273 / performance / r e s u l t s /”

# d i r . exp i s the hdfs path

d i r . exp = paste ( ”/wsc/ song273 / pf /n” ,n ,”/ v ” ,v , ”/” , sep =””)

b l = 2ˆ( log2 ( b l o c k s i z e )− 20)

name1 = paste ( ’ n ’ , n , ’ v ’ , v , ’ bl ’ , bl , sep =””)

d i r . l o c a l = path

t iming = data . frame ( )

## timing f o r O

p = 2ˆv−1

type = ”O”

d i r .dm = paste ( d i r . exp , ” d iv id e /m” ,m, sep =””)

d i r . n f = paste ( d i r . exp , ” nf /m” ,m, ’ / run ’ , run , sep =””)

nf = l i s t ( )

nf$map = expre s s i on ({} )

nf$mapred = l i s t (

mapreduce . task . t imeout =0,

mapreduce . job . reduces =1,

#r h i p e m a p b u f f s i z e =2ˆ15 ,

d f s . b l o c k s i z e = b l o c k s i z e

)

nf$parameters = l i s t (p=p)

nf$ input = d i r .dm

nf$output = d i r . nf

nf$jobname = nf$output

n f$noeva l = TRUE

nf . mr = do . c a l l ( ’ rhwatch ’ , n f )

t = as . numeric ( system . time ({ rhex ( nf . mr , async=FALSE ) } ) [ 3 ] )

## d i v i s i o n s i z e in gb

input tmp = r h l s ( d i r .dm) [ −1 , ]

d i v i s i o n s i z e = 2ˆ( log2 (sum( input tmp$s i ze ))−30)

num f i l e = nrow ( r h l s ( d i r .dm) )
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t = data . frame ( type=type , n=n , p=p ,m=m, run=run , t=t , b l o c k s i z e=bl ,

d i v i s i o n s i z e=d i v i s i o n s i z e , num f i l e=num f i l e )

t iming = rbind ( timing , t )

#save ( timing , f i l e=paste ( d i r . l o c a l , name1 , ” . RData” , sep =””))

wr i t e . t a b l e ( timing ,

f i l e=paste ( d i r . l o c a l , name1 , ” . csv ” , sep =””) ,

append=TRUE,

sep = ” , , ” ,

row . names = FALSE,

c o l . names = FALSE

)

pr in t ( t iming )

Sys . s l e e p ( time =120)

}

t o t a l t i m e = func t i on (n , v , m, run ,

path=”performance / r s t /” ,

b l o c k s i z e =134217728

){

# m = 10

# n = 30

# v = 4

# run = 1

# path = ”/home/ song273 / performance / r e s u l t s /”

b l = 2ˆ( log2 ( b l o c k s i z e )− 20)

name1 = paste ( ’ n ’ , n , ’ v ’ , v , ’ bl ’ , bl , sep =””)

d i r . exp = paste ( ”/wsc/ song273 / pf /n” ,n ,”/ v ” ,v , ”/” , sep =””)

d i r . l o c a l = path

t iming = data . frame ( )

p = 2ˆv−1

type = ”T”
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d i r .dm = paste ( d i r . exp , ” d iv id e /m” ,m, sep =””)

d i r . g f = paste ( d i r . exp , ” nf /m” ,m, ’ / run ’ , run , sep =””)

g f = l i s t ( )

gf$map = expr e s s i on ({

f o r ( v in map . va lue s ) {

value = glm . f i t ( v [ , 1 : p ] , v [ , p+1] , f ami ly=binomial ( ) ) $ coe f

r h c o l l e c t (1 , va lue )

}

})

g f$ reduce = expr e s s i on (

pre = {

v = rep (0 , p)

nsub = 0

} ,

reduce = {

v = v +

colSums ( matrix ( u n l i s t ( reduce . va lue s ) , nco l=p , byrow=TRUE) )

nsub = nsub + length ( reduce . va lue s )

} ,

post = { r h c o l l e c t ( reduce . key , v/nsub ) }

)

gf$mapred = l i s t (

mapreduce . task . t imeout =0,

mapreduce . job . reduces =1,

#r h i p e m a p b u f f s i z e =2ˆ15 ,

d f s . b l o c k s i z e = b l o c k s i z e

)

g f$parameters = l i s t (p=p)

g f$ input = d i r .dm

gf$output = d i r . g f

gf$jobname = gf$output
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g f$noeva l = TRUE

gf . mr = do . c a l l ( ’ rhwatch ’ , g f )

t = as . numeric ( system . time ({ rhex ( g f . mr , async=FALSE ) } ) [ 3 ] )

## d i v i s i o n s i z e in gb

input tmp = r h l s ( d i r .dm) [ −1 , ]

d i v i s i o n s i z e = 2ˆ( log2 (sum( input tmp$s i ze ))−30)

num f i l e = nrow ( r h l s ( d i r .dm) )

t = data . frame ( type=type , n=n , p=p ,m=m, run=run , t=t , b l o c k s i z e=bl ,

d i v i s i o n s i z e=d i v i s i o n s i z e , num f i l e=num f i l e

)

t iming = rbind ( timing , t )

wr i t e . t a b l e ( timing ,

f i l e=paste ( d i r . l o c a l , name1 , ” . csv ” , sep =””) ,

append=TRUE,

sep = ” , , ” ,

row . names = FALSE,

c o l . names = FALSE

)

pr in t ( t iming )

Sys . s l e e p ( time =120)

}
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C. DIVIDE STEP R SCRIPT

Here is Divide Step R script 1.divide.R.

#!/ usr / bin /env Rscr ipt

args = commandArgs ( t r a i l i n g O n l y=TRUE)

### load func t i on

source ( ” 0 . performance . f unc t i on .R”)

n = as . numeric ( args [ 1 ] )

v = as . numeric ( args [ 2 ] )

#r . vec = 10 :23

m. vec = as . numeric ( args [ 3 ] )

mappers = as . numeric ( args [ 4 ] )

b l o c k s i z e = as . numeric ( args [ 5 ] )

#### 1 . d iv id e

f o r ( m in m. vec ){

s t a r t t = proc . time ( ) [ 3 ]

d iv ide data o ld way (n , v , m, mappers , b l o c k s i z e=b l o c k s i z e )

d i v i d e t = proc . time ( ) [ 3 ]

long = round ( ( d i v i d e t − s t a r t t )/60 , 2)

p r i n t ( paste (” Divide : i t takes ” , long , ” minutes f o r m” , m, sep =””) )

}

1.divide.R
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D. OBJECT TIME MEASUREMENT R SCRIPT

Here is the R script 2.experiment.object.time.R to measure the object time.

#!/ usr / bin /env Rscr ipt

args = commandArgs ( t r a i l i n g O n l y=TRUE)

### load func t i on

source ( ” 0 . performance . f unc t i on .R”)

n = as . numeric ( args [ 1 ] )

v = as . numeric ( args [ 2 ] )

#r . vec = 10 :23

m. vec = as . numeric ( args [ 3 ] )

b l o c k s i z e = as . numeric ( args [ 4 ] )

run = as . numeric ( args [ 5 ] )

#### 2 . ob j e c t time

f o r ( m in m. vec ){

s t a r t t = proc . time ( ) [ 3 ]

ob j e c t t ime ( n , v , m, run , b l o c k s i z e=b l o c k s i z e )

o b j e c t t = proc . time ( ) [ 3 ]

long = round ( ( o b j e c t t − s t a r t t )/60 , 2)

p r i n t ( paste (” Object time : i t takes ” , long ,

” minutes f o r m” , m, ” in the run ” , run , sep =””) )

}

2.experiment.object.time.R
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E. TOTAL TIME MEASUREMENT R SCRIPT

Here is the R script 3.experiment.total.time.R to measure the total time.

#!/ usr / bin /env Rscr ipt

args = commandArgs ( t r a i l i n g O n l y=TRUE)

### load func t i on

source ( ” 0 . performance . f unc t i on .R”)

n = as . numeric ( args [ 1 ] )

v = as . numeric ( args [ 2 ] )

#r . vec = 10 :23

m. vec = as . numeric ( args [ 3 ] )

b l o c k s i z e = as . numeric ( args [ 4 ] )

run = as . numeric ( args [ 5 ] )

#### 3 . t o t a l time

f o r ( m in m. vec ){

s t a r t t = proc . time ( ) [ 3 ]

#### 3 . t o t a l time

t o t a l t i m e (n , v , m, run , b l o c k s i z e=b l o c k s i z e )

t o t a l t = proc . time ( ) [ 3 ]

long = round ( ( t o t a l t − s t a r t t )/60 , 2)

p r i n t ( paste (” Total time : i t takes ” , long , ” minutes f o r m” , m,

” in the run ” , run , sep =””) )

}

3.experiment.total.time.R
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#### 4 . d e l e t e d i v i s i o n

i f ( run == 3){

f o r ( m in m. vec ){

path = paste (”/ wsc/ song273 / pf /n” ,n ,”/ v ” ,v , ”/ d iv id e /m” , m, sep =””)

rhde l ( path )

rhde l ( paste ( ”/wsc/ song273 / pf /n” ,n ,”/ v ” ,v , ”/ nf ” , sep=”” ) )

p r i n t ( paste (” Delete d i v i s i o n f o r n” , n , ”v ” , v , ”m” , m,

” in the run ” , run , sep = ””) )

}

}
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