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ABSTRACT

Rachunok, Benjamin A. Ph.D., Purdue University, December 2020. Analytical Meth-
ods for Computing the Resilience, Recovery, and Transformation of Communities and
Their Constituent Systems in the Age of Big Data. Major Professor: Roshanak
Nateghi.

Communities are increasingly vulnerable to climatic risks which are estimated to

cost $1.8 trillion and lead to 2 million deaths annually by the end of the century [1].

To minimize this vulnerability in the face of the increasing climatic risks, resilience is

used as an organizing principal by all scale of governments, decision makers, and inter-

national organizations to address climatic risks. Resilience is conceptualized across

many fields and is broadly meant to represent the ability of a system to maintain

critical functionality, adapt, and ‘bounce back’ after a shock or disruption [2].

Moving from theoretical conceptualizations of resilience to operational decisions

which aim to foster adaptive capacity in communities, requires consideration of the

dynamics of engineered, social, ecological, economic, and political systems among

others. This dissertation develops analytical techniques to leverage ‘big data’ to

understand the multifaceted aspects of how communities and engineered systems are

impacted by and recover from major disruptions in an e↵ort to bridge the gap between

resilience in theory and resilience in practice.

In the light of the disciplinary variations in conceptualization and operationaliza-

tion of resilience, the introduction to this dissertation begins by unpacking the myriad

of resilience definitions and how they relate to communities and engineered systems;

describing analytical techniques which are used to model and quantify communities

and engineered systems.

Chapters 2-5 summarize the articles included as a component of the disserta-

tion. First (Chapter 2) I analyze the characteristics of large-scale disruptions in
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network-based infrastructure systems. There is a large body of work which utilizes

graph-theoretic representations of engineered systems to model resilience to shocks.

However, the way by which shocks or disruptions are simulated in the system are

either based on random failures –indicative of component aging– or targeted failures

–based on an intentional threat like terrorism– and do not reflect the explicit spatial

structure of natural hazards. To address this gap, I propose two methods for gener-

ating failures in network based infrastructure models which have a connected, spatial

structure similar to that of a large-scale natural disaster such as a hurricane. When

evaluating the performance of the system after a disruption using network-based per-

formance metrics, the networks with spatially-distributed outages show statistically

di↵erent measures of performance compared with similarly sized randomly-distributed

outages. Additionally, when simulating the recovery of the system; the spatial char-

acteristics of the outages drastically alter the way in which the network recovers.

Of note, systems disrupted with random outages showed antifragile properties, while

spatially-distributed outages do not. This work is extended to interdependent infras-

tructure systems in Chapter 3.

In Chapter 4, I contribute to the nascent literature on harnessing social media

data for resilience analytics. Specifically, I develop algorithms for analyzing how

community members perceive the dynamics of their community during a crisis event,

using twitter data during 14 major crises events. Grounded in theories of community

resilience and sociological risk appraisal, these algorithms —called the Social Re-

silience Fingerprint— capture the patterns of discourse in communities related to the

attributes of communities which contribute to its resilience, such as infrastructure,

economic, and ecological systems. Using this framework, I show how di↵erent types

of major disruptions (hurricanes, earthquakes, political events etc) have signatures

identifiable in social media data and discuss the trends driving these similarities.

Finally, in Chapter 5 I formulate machine learning methods for evaluating the po-

tential of communities to transform after major disruptions. The current paradigm

of community resilience modeling aims to rapidly return to normal-operation follow-
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ing a disruption. By promoting the status quo, however, this modeling technique

may be counteracting itself by reinforcing persistent, maladaptive states which in-

hibit the ability of communities to grow and transform. With this gap in mind, I

have developed an alternative method for measuring community resilience, termed a

Contrastive Community Network (CNN), which identifies key drivers of community

transformation and quantifies how communities reorganize after major disruptions

into alternative, stable equilibria. Using this improved methodology, I identify re-

silience traps : risk factors which, while critical for rapid recovery to the status quo,

do not allow for any possibility of transformation and long-term adaptation. These

traps clearly demonstrate some of the pitfalls present in current methodologies for

quantifying community resilience.

The methodologies and algorithms developed in this dissertation can improve the

ability of stakeholders and decision makers to understand and analyze how commu-

nities adapt and respond to major crisis events, allowing for data-driven decisions to

be made to bolster the resilience of communities in response to climate change.
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1. INTRODUCTION

Two societal inflection points in the early 21st century are likely to be the prolif-

eration of connected technology and the data created by it, as well as the advent

of anthropogenic climatic change. Big Data has served as the basis of new indus-

tries, enabled a greater degree of connectedness throughout the world, and fostered

a new generation of analytical tools to extract insights from vast quantities of data.

The data volume coupled with these techniques has fundamentally changed the rela-

tionship between technology and society more broadly, creating trillions of dollars in

economic value [3].

Climate change on the other hand serves as a pressing crisis, with the potential to

disrupt all aspects of our current society. Natural hazards are on the rise globally, a

large fraction of the world’s population stands to be displaced from their communities;

and while climate change mitigation e↵orts are beginning to be implemented, they

may not be enough to prevent global economic loss and disruption [4]. While climate

change and big data are not opposing forces, this dissertation aims to utilize the latter

to mitigate the impacts of the former. This section introduces how big data can be

utilized to combat the impacts of climate change, and to describe how the technical

work in the later sections fits among the larger issues facing the world.

1.1 Climate Change and Communities

The IPCC’s 6th assessment report identifies many of the most severe impacts of

climate change on societies. These range from melting snow and ice are disrupting

hydrological systems, to the reduction in global crop yields, and the creation of sig-

nificant burdens to worldwide public health [4]. Of these, one of the most significant

global risks faced by climate change is the vulnerability to climate-related extremes.
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Climate extremes are perturbations in climatic trends as a results of climate change

and range from short-term changes in daily temperature and precipitation levels, to

long-term changes to the frequency and intensity of major natural hazards like floods,

droughts, and hurricanes [5]. During 2015-2020 in the US alone, these natural hazards

cost an average of $107 billion and claimed 700 lives per year [6]

A community is made up of a geographically linked groups of interacting individu-

als with shared norms and interests [7]. When natural hazards strike, they impact all

aspects of communities. To understand these impacts, communities are often broken

down into the systems and subsystems that comprise them. For example, Cutter

(2008), breaks a community down into dimensions along ecological, social, economic,

institutional, infrastructure, and community competence based on how communities

are impacted by major disruptions [8]. With the numerous of threats facing com-

munities from natural hazards, as well as the diverse methods for building adaptive

capacity, analyzing the resilience of communities is frequently done at the system or

subsystem level.

It is important to consider climate vulnerability when designing and managing

the built environment and communities. Management and design decisions can be

explicit such as considering a certain magnitude or frequency of natural hazard when

designing the strength of components in physical infrastructure, or implicit in the for-

mulation of governance and policy interventions to mitigate impacts from disruptions

in institutional or economic systems.

With constraints imposed due to limited resources and the inherent uncertainty

in predicting future climate impacts, the process of making engineering decisions to

improve a community’s ability to withstand climate impacts comes with fundamental

questions about about where improvements should be made. As an example, consider

designing a regional power grid to mitigate the impact of a major hurricane. Given

a fixed budget, one avenue could be to strengthen the components of the grid to

withstand high winds; making components less likely to fail, with a trade o↵ that it

may take more time to repair if they fail and could be more vulnerable to other modes
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of disruption such as flooding. Alternatively, a design criteria could be minimizing

the impact in a community due to the failure of any one component of the grid, with

the trade o↵ that redundancies are added into the system which create operational

expense during non-disaster times.

This process of identifying potential threats and responses represents a risk-based

or ’fail-safe’ approach to designing for uncertainty [9], and highlight the multifaceted

nature of selecting high-level objectives when aiming to design communities and sys-

tems to which can withstand climate impacts. A contrasting approach to incorporat-

ing uncertain future outcomes into design criteria is based around resilience. Broadly

defined, resilience is the concept of a system ‘bouncing back’; that is the system is

’safe-fail’ rather than ’fail-safe’ [9]. But as with the previous examples, the under-

lying objective of promoting resilient systems comes with trade-o↵s and should be

carefully considered. The technical material in this dissertation focuses on resilience

in physical and social systems and the subsequent section explain how the concept of

resilience has come to be used in the study of systems as well as nuances which are

relevant to applying resilience to communities.

1.2 Introduction to Resilience Theory

Resilience as an academic concept related to large-scale systems was introduced

by ecologist C.S. Holling in reference to how ecosystems respond to disruption, calling

resilience “An ecosystem’s ability to maintain basic functional characteristics in the

face of disturbance” [10]. The aim was largely to shift the prevailing views of ecologists

from studying and quantifying ecological systems as they are in equilibrium toward

viewing the behavior of ecological systems “in terms of the probability of extinction of

their elements.” [10] Related to the concept of bouncing back, this conceptualization of

resilience “is a measure of the ability of a system to absorb changes of state variables,

driving variables, and parameters and still persist.” [11]
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By focusing on the capacity of a system to adapt, Holling makes a key distinction

which di↵erentiates resilience from stability. A faster return to normalcy, in Holling’s

conceptualization, is a more stable system [11]. By separately defining resilience and

stability, Holling has created two axes in which to evaluate a system. i.e., a high-

resilience, low-stability system may fluctuate greatly but ultimately persist in the face

of disruptions. Likewise, a high-stability low-resilience system would have capacity

to respond in the short-term but may lack the ability to adapt in the long term.

While one of the earliest definitions of resilience, Holling’s work highlights three

key properties of resilience which are important for considering how to design com-

munities which are prepared for climate impacts. The first is that resilience is a

system-wide phenomenon and should be evaluated accordingly. The second is how

resilience changes temporally, and the importance of both short and long-term changes

to systems. The third is the separation of resilience from stability: emphasizing that

a rapid return to the status quo does not inherently mean a system is resilient. The

following sections describe how these properties influence decision-making when re-

silience thinking is applied to communities and engineered systems.

1.3 Urban & Community Resilience

Geographers, urban theorists, and urban planners have applied the ecological

concept of resilience to the study of urban systems and communities [12–14]. As

previously described, communities are a geographically linked group of interacting

individuals with shared norms and interests [7]. Urban systems are closely related,

defined broadly as the systems and subsystems which make up a city [12, 15–17].

The study of urban and community resilience evaluates how communities adapt to

adversity and disruption. Broadly, the concept of community resilience is a positive

attribute of a community associated with increasing the local capacity, social support

and resources associated with responding to crisis events combined with decreasing
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risk, miscommunication, and trauma [8,18]. Urban and community resilience exist as

interlinked concepts, with the focus of urban resilience being the planning of physical

aspects of towns and cities while community resilience is focused on the inhabitants

of these towns and cities [19].

Urban and community resilience is largely characterized as a process based at-

tribute of a community [18, 20, 21]. In this way, community resilience is thought of

as the linking of adaptive capacities from all community systems together to con-

tinuously adapt to disruptions and changes [9, 22]. Accordingly, the resilience of a

community is increased when aspects of a community work together and the com-

munity or urban system broadly shares a capacity to manage and adapt to major

events [23]. Similarly, a non-resilient community can be thought of as one which

is disoriented while a resilient community is one which reorients itself quickly [23],

emphasizing the process of adaptation in communities.

The uses and conceptualizations of resilience in urban and community systems

inherit Holling’s separation of resilience and stability, however with the explicit focus

on cities and communities, these terms get re-mapped such that resilience is referred

to as dynamic or radical resilience where stability is called equilibrium or conserva-

tive resilience [15, 24]. This distinction is particularly important in urban systems

and communitites as it reflects how resilience must be intentionally designed into

communities and community systems [15]. The intentional process of incorporating

resilience into urban and community systems also precipitates a focus on the causes of

system disruptions [12,14]. This focus on the specifics of disruptions –and the threats

and hazards that cause them– is a key aspect of community and urban resilience to

climate impacts.

Relevant to this dissertation, the important takeaways from the application of re-

silience to communities and urban systems (1) that resilience as a theoretical concept

is focused on continual (both long and short-term) adaptation, (2) that community

and urban resilience are the result of the entirety of communities acting and interact-
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ing together, and (3) that the specifics of individual threats and hazards need to be

accounted for when improving the adaptive capacity of a community.

1.3.1 Measurement

When aiming to measure community resilience, many current methods utilize a

range of attributes, or indicator-based approach [8, 18, 25]. In these methods, con-

structs which are understood to contribute to increased community resilience (such

as socioeconomic status, social capital, and access to critical goods and services) are

measured by proxy [26]. Community resilience is then estimated as a weighted sum

of these variables. For example, if education is hypothesized to increase community

resilience, then a proxy measurement –such as average educational attainment– will

be used to identify communities which are more resilient based on higher aggregate

level of household education [27]. There are growing number of proposed methods for

analyzing community resilience based on the range of attributes approach [7], with

the primary di↵erences being the community attributes hypothesized to contribute

to resilience, as well as the mathematical methods for combining them [7].

1.3.2 Transformation in Communitites

Recalling Holling’s original conceptualization of resilience as a system’s ability to

persist in the face of disruption, the ability of a system to transform is a vital part of

the resilience process [28]. Implementations of community resilience ideas based on

indicator-based approaches for improving the resilience of communities, however, have

been criticized for neglecting to incorporate or quantify the aspects of communities

which transform [16]. This criticism in operational models of resilience is due to a

focus on returning systems to their original state rapidly and e�ciently. Returning to

the key points from Holling’s first work on resilience, these models promote stability.
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From a governance perspective, the lack of consideration of transformation has been

identified as a negative aspect of resilience-based policy and has been criticized as

continuing to promote the status quo [15]. This entrenches policies and practices

which may be untenable and unsustainable given the pressures of a changing climate

[28].

1.3.3 Social Media and Community Resilience

A nascent approach to estimating community resilience which addresses the overem-

phasis on stability found in current indicator-based approaches utilizes social media

as a tool to analyze how individuals respond to disruption [29, 30]. Social media

serves as a key conduit of information flow between community members during cri-

sis events [31, 32]. As content and interaction is user-driven, social media represents

a ‘bottom-up’ look at dominant topics, themes, and events present in popular dis-

course [33]. When analyzed during crisis events, this allows for the characterization

of emergent patterns of human self-organization inherent in community resilience,

promoting for better understanding how communities adapt and respond to major

disruptions. Techniques for analyzing social media data to understand community re-

silience are based primarily on three approaches: social media content, social network

analysis, and metadata analysis.

Content-based analyses of social media utilize the user-broadcast information in

social media posts during crisis events (e.g. a tweet, Facebook post, image posted etc.)

to provide a broader situational understanding of a community disruption [34–36].

If the quantity of social media data is small and predominantly text-based (such as

Twitter or Facebook), text can be manually coded to identify commonalities and

topics of discussion [34,35]. In larger text-based social media datasets, unsupervised

statistical learning methods such as Latent Dirichlet Allocation (LDA) can be utilized

to understand emergent trends and themes in large bodies of text data [37]. Finally,

the linguistic sentiment –a method for characterizing the mood of the text such as
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happy, angry, positive etc. – can be calculated about individual or aggregate social

media posts [38]. All of these methods serve to quantify the key topics, themes, and

events present in social media data during crisis events as a way to understand the

collective opinion dynamics occurring during a disruption.

Another method of analyzing community dynamics during crisis events is by

studying the interactions of individuals on social media, specifically the social net-

work. Networks are “a collection of points [referred to as vertices or nodes ] joined

together by pairs of lines [referred to as edges or links ]” [39]. On many popular social

media platforms (e.g. Twitter, Facebook, Instagram), users choose the content they

wish to receive by choosing the users they interact with by ’following’ or subscribing

to their content. Subsequently, users can interact with the content they are viewing

(by ’liking’ a Facebook or Instagram post or ’retweeting’ an Tweet). By studying the

flow of interaction and content as a network we can gain insight into the dynamics of

communities during crisis events [40].

Networks constructed from social media data can be represented in di↵erent ways

depending on the type of analysis performed. To study information flow, a graph

can be constructed in which nodes in the graph are users, and edges represent a

follower/followee relationship [41]. In this network, the propagation of content such

as a Tweet or Facebook post can be studied to quantify how information spreads

through the social network. Similarly, a graph can be constructed in which users are

nodes, and edges represent one user interacting (through a retweet, like, or share)

with each other’s content [42, 43]. In both of these network constructions, graphical

properties of the networks, such as centrality and connectidness can be used to provide

estimates of disaster outcomes [42, 44, 45].

Finally, analyses can be conducted based on social media metadata. Metadata is

the non-content information which accompanies social media data, such as the time

of posting, user location, and language the post is written in. The location of the

user is particularly valuable to understanding community resilience as it allows for

direct, place-based analyses of how communities are responding to crisis events [31].
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By studying the content of social media data along with precise user location, accu-

rate predictions about the vulnerability of communities can be made [46–48]. User

location, however, is becoming increasingly unavailable to researchers because of con-

cerns about user privacy [49]. In the absence of location data, other metadata has

been extracted from social media data such as the time of day [50,51] in an e↵ort to

understand temporal changes in how communities respond to crisis events.

All three of these methods allow for particular aspects of communities to be an-

alyzed as they are impacted by crisis events, providing insight into their resilience.

The key benefits of social media analyses for understanding community resilience are

(1) the flexibility of temporal and spatial scales of analysis, (2) the ability to quantify

community transformation. These two points are paraphrased based on a paper by

Rachunok et al; written during my graduate studies –currently under review– but not

included in this dissertation.

The first key benefit of social media for understanding community resilience is

the ability to align the spatial and temporal scales of analysis with the spatial and

temporal scales of decisionmaking. A critique of resilience as a design goal is that

decision and policy making can occur at scales and in ways incompatible with the

scales of impact [16,52]. The flexibility of social media analysis can be tailored to pro-

vide specific insights which are useful for immediate and real-time decision making.

The second benefit of social media data is the flexibility in analysis with respect to

how a community is being impacted. Community resilience as measured by a range

of attributes approach is inherently limited to the extremes of the attributes. For

example if owning a vehicle is considered as a positive aspect of a community, then

community changes focused on improving public transportation –which is generally

beneficial to communitites but may reduce vehicle ownership– may have counter in-

tuitive or negative impacts on a ’range of attributes’ approach. With the extensive

volume of social media data available, analyses can be tailored to quantify specific
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policy aims.

1.4 Engineering Systems Resilience

One area in which the e↵ects of climate change and climate extremes are extremely

costly –and is a domain in which utilizing resilience as a goal should be carefully

considered– is in the design of engineering systems. This section provides background

on how the resilience of engineered systems can be quantified by first discussing how

engineering systems can be modeled, followed by an overview of how disruptions can

be modeled in networked system.

1.4.1 System Representations

The breadth of systems which fall under the category of infrastructure and the

importance of protecting the integrity of these systems leads to a large body of existing

literature modeling the resilience of infrastructure. Approaches used to model the

resilience of infrastructure to disruption from hazards can be generally categorized

into (1) statistical machine learning techniques, (2) engineering fragility based models

or (3) graph (or network) theoretic approaches [53–55].This section outlines specific

methods and approaches used to model infrastructure resilience.

Statistical machine learning techniques use spatio-temporal information about a

given region combined with information about disruptions to train statisical predic-

tive models which estimate the loss in infrastructure performance [56]. Information

such as area population and demographics, infrastructure component types, land use,

and hazard intensity are used as predictors for infrastructure performance models

such as service loss in a region, or duration of service outage [56–58]. These models

accurately predict apriori damages due to a disaster, however they are unable to char-

acterize damage in non-stationary conditions such as an uncertain climate, changing

infrastructure design, or fundamental shifts in demographics. Fragility models use the
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physical properties of the components to study how they respond to perturbation [54].

This general concept has been applied to gas distribution systems [59, 60], cellular

telecommunications network [61], and power transmission and distribution [62,63].

Fragility-based models quantify the response of individual components in a larger

system to outside stress. To do this, a mapping between particular parameters of

threats –such as windspeed in hurricanes or ground acceleration in earthquakes– and

the probability of a component failing is created based on the specifics of the compo-

nent. In this way, the operational response of system components can be estimated

under steady-state, or perturbed conditions [54, 61, 64, 65]. Fragility-based models

provide insights into specific relationships between disruptions and an engineering

system, however owing to the system-specific information used for analysis, they pro-

vide limited scalability and generalization to larger, systems-level analyses.

Graph-theoretic models of infrastructure represent infrastructure systems as a net-

work, allowing for simple—and in most cases tractable—calculation of performance

measures within the system. Measurements of the overall size, degree of connectiv-

ity, length of paths between vertices, and degree of clustering are easily computed

from a network-model and provide insight as to the general performance of the sys-

tem [66–68]. Network-based models have been used to model the electricity trans-

mission and distribution systems [69], urban water drainage and water distribution

systems [70, 71], as well as transportation systems, and social mobility [72]. The rel-

ative simplicity of network-based representations make them well suited to studying

complexities in the perturbation of systems due to disruptions [62, 73]. Graphs rep-

resenting a system in which the components interact can be used to model how the

failure of one vertex may propagate through the network [74]. Theoretical analysis

has been done in which failure likelihoods are drawn from certain probability distri-

butions, showing the existence of a critical fractions of node failures for which the

failure will cascade to the entire network. This holds in single, and interdependent

infrastructure systems [75].
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Resilience Measurement Generally, engineering systems resilience is conceptual-

ized as a systems ability to prepare for, respond to, and recover from some manor of

disruption, which encompasses a large time horizon [55, 76]. Accordingly, resilience

as an attribute or process of an engineered system is based on the system’s responses

to disruption [77], the dynamics of the system throughout the disruption, and its

post-disruption behavior [78]. Definitions of engineering-systems are most typically

associated with a performance metric which allows for the quantification of the re-

silience of the system. These measures can be deterministic or stochastic, and vary

in their time horizon, but they ultimately look to provide a quantitative assessment

of a system as it is disrupted, broadly defined [55].

One highly-cited definition of engineering resileince is Bruneau et. al.’s four R’s:

robustness, rapidity, resourcefulness, and redundancy [79]. Robustness is the strength

of the system and its ability to prevent disruption; rapidity is the speed with which

systems return to original states (the rate of return to normal), resourcefulness is the

system’s ability to apply capital (tangible and intangible) in response to a disruptive

event, and finally redundancy which is the extent with which the system can sustain

damage and still function. All of these are quantifiable metrics of a system which can

be used to measure its engineering-system resilience.

Many extensions of this exist in similar frameworks, which either, (1) change the

performance metric or (2) change the calculation done with the performance metric.

Performance metrics are generally defined as the ability of a specific system to perform

a user-defined function. Performance metrics implicitly defines the boundaries of

the system as everything which can a↵ect the performance metric and excludes all

else. Typically, these performance metrics are system-specific, having previously been

defined for waterways, [80] transportation systems [81], electric power infrastructure

[82], economic systems [83] and many others. A given performance metric can be

monitored throughout the life cycle of a disruption, and calculations can be made

based on performance measures to create a numerical representation of engineering

systems resilience.
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There are a significant number of methods which propose calculating system re-

silience from performance metrics. [29,84–90] Bruneau specifically creates a tractable

formula for resilience based on a system performance metric, in which the resilience

is the complement of the integral of the performance drop for a system throughout

the disaster cycle. This creates the concept of the “Resilience Triangle” as the area

under the performance-measure curve throughout a disruption (Fig. 1.1).
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Figure 1.1. (a) Shows the conceptual representation of the resilience tri-
angle, as the area under the performance curve in tan, while (b) shows an
empirically measured triangle in Bay County, FL during 2018 Hurricane
Michael (Figure from Chapter 5)

As an example of how this is used, the data shown in Figure 1.1(b) was originally

recorded by the Florida Division of Emergency Management approximately every 3

hours during Hurricane Michael [91] and shows the fraction of Bay County Florida

with access to power during the hurricane. In this case, the performance metric

chosen to represent the status of the power system at time t, Q(t) is the fraction of

customers with power (the y-axis in Figure 1.1(b)).

Using calculations from Attoh-Okine et.al and Ayyub et. al. [89, 92], the engi-

neering resilience R, is calculated as is the area under Q(t) from point at which the
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system is impacted, t0, until the system is fully restored, tf . This integral is scaled

by the di↵erence between tf and t0. Formally, R is calculated as:

R =

R tf
t0

Q(t)

|tf � t0|
(1.1)

Using the fraction of a county with access to power as a performance metric

and calculating resilience in this way, a county with R = 0 would be one for which
R tf
t0

Q(t) = 0, the numerator of R. In practical terms, this would mean the county lost

all power immediately upon any sort of disruption, and the power remained inoperable

until it was all restored at once. At the other extreme, R = 1 occurs when there is no

deviation in the performance. Accordingly, improvements to this calculated measure

of resilience could be made by increasing the ‘slope’ of the triangle (by shortening

the recovery time), decreasing the magnitude of the disruption (shortening the initial

drop in performance), and by changing the functional form of the recovery from a

straight line to a concave down curve. Of these aspects of system performance which

can contribute to overall resilience, characterizing the impact of a major disruption

(such as a natural hazard or crisis event) is a component that this dissertation makes

significant contributions to. The following sections describe how the impacts of major

disasters on these systems can be represented mathematically.

1.4.2 Disruption Impacts in Engineering Systems

Critical to studying the resilience of infrastructure is an understanding of the

method by which disruptions are represented in the system. In infrastructure re-

silience studies, a disruption is simulated, the disruption is mapped to its impact

in the system and a partial or total failure is induced in the system as a result [55].

Characterizing the disruption is critical to contextualizing how resilient a system is to

given failures. As one of the previously mentioned key takeaways from the measure-

ment of community resilience, the specifics of individual threats and hazards must
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accounted for when improving the adaptive capacity of a community.The methods

for simulating disruptions and failures vary in their complexity and the degree of in-

formation included in them. Fragility-based models utilize representations of threats

based on hazard parameters based on the specific fragility mapping. For example, if

fragility curves are being utilized to relate hurricane wind speed to the probability

of telephone poles failing, then the disruption representation will be a spatial distri-

bution of windspeeds [64]. A disruption -or series of disruptions- is/are created and

properties of such are used to probabilistically generate failures in the system.

Many infrastructure systems analyses use random component (a physical compo-

nent in a fragility model, or nodes and edges in a graphical model) failures as the

general form of the disruption [59,60,73]. Components in the network fail with a fixed

and predetermined likelihood. This is representative of general system degradation -

in which components are assumed to fail independently- or a naive attack on a system

in which an actor only e↵ects a fixed number of elements in the system. Targeting

is another commonly used technique in which failures are induced in the network in

accordance with a network or component property Examples include targeting the

component with the highest degree, graphical betweenness, maximum system flow, or

a pre-determined ‘most important’ component in the system [62, 64, 65, 69, 74]. Tar-

geting is representative of an omnipotent attack in which an agent wishes to cause

maximum harm to a system, and additionally can create a worst-case scenario for

system failures. Other studies have considered ‘localized’ disruptions in which fail-

ures are initialized in small connected components but they have been in an e↵ort to

replicate previous incidents [60, 74].

1.4.3 Interdependence

An additional component of the study of resilient infrastructure is the inclusion of

interdependence between infrastructure systems. Interdependence between systems
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can increase vulnerability to natural or man-made disasters in multiple ways such as

(1) propagation of failures across system couplings, (2) simultaneous failures a↵ecting

all systems, and (3) poor endogenous system performance causing excess stress in

the coupled systems [93]. The interdependence does not need to be exclusively a

physical dependence. Interdependence between infrastructure has been previously

categorized by the degree and manor by which the systems interact [54]. Among the

existing categories of interdependence are physical, geographical, cyber, and logical

[94], functional and spatial [95], and budgetary and economic [93]. The breadth of

the types of interdependence lead to numerous methods for studying their e↵ect.

Ouyang (2014) categorizes these modeling approaches into the following categories

(1) empirical, (2) agent based, (3) system dynamics, (4) economic theory, and (5)

network-based [54].

Network-based models are particularly common when studying interdependent

engineering systems. Percolation theory and network di↵usion are early examples

of studying the spread of information (in this case disruptions) through interdepen-

dent networks [39]. Recent works have demonstrated how failures can propagate

through interdependent networks in situations where the interconnected graphs both

follow certain theoretical constructions, namely exponential degree distribution of

equal size [96]. Other work has studied the e↵ect of interdependence between the

electric power grid and other utilities and concluded the topology of the inter depen-

dencies can slow failure propagation during disasters but hinders daily operational

performance [65]. Nan (2017) proposes an integrated framework for measuring the

resilience of coupled infrastructure by measuring the absorptive and restorative ca-

pacity of interdependent networks, however the focus is on developing a single metric

for resilience evaluation [97]. Interdependence has additionally been studied in net-

work models which include resource bu↵ers -such as a stored commodity dependence

between systems [98]. Dueñas-Osorio (2007) performed an analysis of the degree of

interdependence between networks, however the procedure focused on the static sen-
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sitivity of network properties to the degree of interdependence between systems [99].

1.4.4 Transformation in Engineered Systems

In the engineering systems resilience domain, there is scant body of literature in

understanding how a engineering systems may exhibit transformation. Generally this

is captured in the concept of antifragility. An antifragile system is one demonstrates

higher performance after a disruption than it did before; indicating a particular type

of adaptation to the disruption [97,100]. These systems re-organize and adapt swiftly

leading to the improved post-disruption performance [100]. However, as antifragility

is still within the bounds of measuring systems via performance metrics; it is limited

in the degree of transformation it can capture. Transformation still exists within the

confines of the performance metric; that is to say a fundamental regime shift may

occur but will not be identified unless it directly impacts the metrics used to evaluate

system performance [16].

1.5 Summary of Included Papers

1.5.1 The Sensitivity of Electric Power Infrastructure Resilience to the

Spatial Distribution of Disaster Impacts

As discussed in Section 1.4.1, network-based representations of infrastructure are

utilized to model their resilience to outside disruption. Methods for simulating major

disruptions and natural hazards are based on either random attacks –representative

of general system degradation– or targeted attacks –representative of specific threats

such as terrorism. The first paper included in this dissertation develops improved

characterizations of network disruptions by simulating outages which follow a spatial

patterns [101]. Specifically, the hypothesizes that changing the spatial distribution of



18

impacts through the network will have significant impact on measurements of system

performance.

A network-based model of the electric power distribution grid in Mobile, Alabama

is used as a test bed and three methods for generating disruptions in the system

are tested. The first method simulates the impact of disruptions randomly in the

system in line with existing studies; the other two use tree-based algorithms to create

patterns of outages which are spatially clustered. Three performance measures are

used to evaluate the network immediately after each type of disruption and after

repairs are simulated in the system.

Controlling for the size of the disruption, the results indicate significant di↵erences

in the every performance metric evaluated between random and spatially-distributed

outages throughout the failure and recovery process. Additionally, the system’s failure

and recovery after random outages showed antifragile properties, but that did not

occur when utilizing spatially arranged outages.

Put in the context of the Mobile case study, a random disruption which impacts

60% of the components in the power distribution network leave 33-48% of the pop-

ulation with electricity after the initial impact compared to 26-53% using spatially

configured outages. This work demonstrates that randomly generated outages may

fundamentally mis-characterize the impacts of disasters in network-based infrastruc-

ture models and contributes fundamentally to improving the fidelity of network-based

infrastructure models for representing the impacts of major disasters.

1.5.2 Interdependent Infrastructure System Risk Resilience to Natural

Hazards

A follow-on work was completed [102] which considered the impact of the spa-

tial distribution of outages in interdependent networks. The results are similar to

the single-system case in which the e↵ects of the spatial distribution of impacts are
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detectable in both the network with outages, and any interdependently connected

networks.

1.5.3 Twitter and Disasters: A Social Resilience Fingerprint

The third work included as a component of this dissertation provides a novel

method for quantifying how communities respond to major disasters by analyzing so-

cial media [103]. As discussed in Section 1.3.3, social media analysis is a nascent area

providing methods to quantify how communities respond to disruptions and crisis

events. Existing methods for quantifying community resilience are based primarily

on using indicators to measure attributes of communities hypothesized to contribute

to resilience –called the ’range of attributes’ or ’indicator-based’ approaches in Sec-

tion 1.3.1. These approaches, however, are limited in that they only capture com-

munity change if it occurs in the specified indicators, and are limited in the scale

of analysis they can provide by the scales of available indicators. Utilizing social

media-based analysis of communities respectively addresses these gaps by capturing

emergent trends present in the discourse of communities, and allowing for analyses

at multiple temporal and spatial scales.

The third work included in this dissertation develop which examine social media

data and quantify public discourse during crisis events. The method, called the So-

cial Resilience Fingerprint, measures public perception of a crisis event through social

media through by leveraging a theoretical understanding of the attributes of a com-

munity which make it resilient. I compute the resilience fingerprint for 14 di↵erent

crisis events and evaluate how di↵erent types of events (hurricanes, earthquakes, po-

litical events etc.) manifest in the social media discussion and identify themes present

in the discourse. The results indicate that there are identifiable signatures present as

a result of each type of crisis, as well as highlight the aspects of community discourse

which contribute to this identifiability.
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1.5.4 Improving Operational Measures of Community Resilience

The final work included in this dissertation address many of the issues outlined in

Section 1.3.2 regarding the inability of current methods to capture how communities

transform as a component of their resilience. Present methods for operationalizing

resilience concepts in communities and engineered systems focus primarily on the ef-

ficient and rapid recovery of systems back to the status quo. This focus on stability,

has been criticized for limiting the potential of communities to transform. To address

this gap, this work develops a technique called the Contrastive Community Network

(CCN), which is utilized to quantify how communities transform as a result of dis-

ruption. The CCN uses unsupervised statistical learning techniques to understand

the relationship between communities and quantifies what aspects must change for

those relationships to fundamentally change. In the paper, I compare the technique

to existing methods for identifying factors contributing to the resilience of the com-

munity and find that 55% of risk factors found to contribute to resilience utilizing

existing methodologies provide no avenue for communities to transform.
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2. THE SENSITIVITY OF ELECTRIC POWER
INFRASTRUCTURE RESILIENCE TO THE SPATIAL

DISTRIBUTION OF DISASTER IMPACTS

Chapter 2 has been previously published in the journal Reliability Engineering &
System Safety.

Rachunok, Benjamin, and Roshanak Nateghi.“The sensitivity of electric power in-
frastructure resilience to the spatial distribution of disaster impacts.” Reliability En-
gineering System Safety 193 (2020): 106658.

2.1 Introduction

Defined broadly, resilience is an emergent property of a system which manifests

as the result of an iterative process of sensing, anticipation, learning, and adaptation

to all types of disruptions [9]. Using this definition, resilience must be studied at a

system-wide level, where the resilience of an entire system is studied in the context

of hazards and disruptions. Characterization of the resilience of a complex system,

therefore, is inherently a comprehensive analysis of that which acts against it. This

system–disruption paradigm allows for the study of a wide range of interaction-based

entities from ecological plant–pollinator relationships [104, 105] to the psychological

resilience of families to trauma [106].

In the context of engineering urban systems, the resilience of a critical infrastruc-

ture (e.g., the electric power grid, telecommunication networks, natural gas, water

network, etc.,) includes study of the recovery from failures induced by hydro-climatic

extremes and seismic events as well as acts of terrorism. Critical urban networked

infrastructure is well-represented by a graph [39]. Subsequently, disrupting a graph

requires removing or disabling fractions of the system consistent with an exogenous

threat or hazard.
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In this paper, we use a graph-theoretic approach to show that small changes in the

spatial characteristics of a disruption to a system radically change the characteristics

of system performance as a disruption is repaired over time. Whether the recovery is

measured in-terms of network-based performance metrics or by the extent of impact

on stakeholders, our results indicate that the measured resilience of a system is heavily

dependant on the spatial characteristics of the initial disruption. We conduct this

study in the case of an electric power distribution grid impacted by a major landfalling

hurricane. We generate di↵erent spatial distributions of initial disruptions to a power

grid and study their impact on graph-theoretic measures of network connectivity as

well as the number of customers without power. The remainder of this paper is as

follows: Section 2.2 introduces relevant other works, Section 2.3 outlines the data and

methods used for this analysis, and finally Sections 2.4 and 2.5 detail the results and

conclusion respectively.

2.2 Background

Network analysis deals with the study of graphs or networks. Networks are “a

collection of points [referred to as vertices or nodes ] joined together by pairs of lines

[referred to as edges or links ].” [39] The edge-vertex pairing lends itself to be an intu-

itive mathematical object for which to model phenomenon such as animal and plant

interactions [107], academic authorship, urban infrastructure design [67] [108] and—

most relevant to this work—electric power infrastructure [62,73,99,109]. Representing

a system as a network allows for simple—and in most cases tractable—estimations of

system performance. Measurements of the overall size, degree of connectivity, length

of paths between vertices, and degree of clustering are all easily computed from a

network model and can provide a myriad of insights about the system being repre-

sented [66]. Graphs representing a system in which the components interact can be

used to model how the failure of one vertex may propagate through the network [74].

If failure likelihoods are drawn from certain probability distributions, there can ex-
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ist critical fractions of node failures for which the failure will cascade to the entire

network. This holds when multiple networks are coupled together [96].

Network-based approaches have been widely used to model the resilience of infras-

tructure [67,110,111]. This is in addition to conceptual frameworks [9,79,112], highly

detailed hazard simulations [58, 61, 113, 114], and statistical and machine learning

approaches [56, 57, 115–117]. All of this work contributes greatly toward improving

the resilience of infrastructure by advancing theoretical understandings in networks

science [111], addressing particular infrastructure ine�ciencies [118], and improving

policy decisions [53].

Generalized graph-theoretic resilience analyses commonly model disruptions by

assigning a probability of failure to each vertex in the graph [74,96,111]. The random

pattern of outages fits within a probabilistic formalism allowing for a theoretical

understanding of network properties, but provides little realism in the spatial pattern

of disruptions. Many of the infrastructure systems analyses continue to use random

vertex failures as the general form of the disruption [59, 73, 119]. Degree targeting

is another commonly used technique in which failures are initiated at vertices with

the highest degree [62, 74, 99, 120, 121]. This method is representative of a targeted

attack in which an agent wishes to remove nodes which connect to a large portion

of the network, however, there is no restriction on the spatial distribution of the

failures. Similarly, other vertex properties have been used to motivate targeting such

as betweenness [62] or maximum flow [121]. Localized failures—in which failures are

initialized in small connected components—have been previously studied, however

with limited scope; focusing primarily on repair strategies [74], or to replicate previous

incidents [119].

It should be noted that many previous studies consider disruptions to infrastruc-

ture which are -in some way- spatially organized either through explicit specifica-

tion [88], fragility curves [122], or reliance on historical data [123]. However, to our

knowledge the inclusion of spatially structured and non-spatially structured disrup-

tions is secondary to the development of an optimization [124–126] or recovery model,
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or resilience measurement algorithm [123,127]. This work is the first to focus on the

explicit impact of the spatial distribution of outages, which we perform by using

general, network-based modeling paradigms.

In this work, we isolate the importance of accounting for the spatial distribution

of a disruption and show that inducing changes in only the spatial distribution sig-

nificantly impacts measurements of system performance. Specifically, the goal of the

analysis is not so much to propose a particular spatial pattern of disruption over an-

other, but to demonstrate the importance of considering the shape of disruptions in

estimating infrastructure recovery. We present the results in a case study of an elec-

tric power distribution grid’s response to a hurricane. The electric power distribution

system has been identified as a critical component of assessing the vulnerability of

the electric power grid to severe-weather disruptions such as hurricanes, with approx-

imately 90% of outages occurring at the distribution level [63].

2.3 Methods

As previously mentioned, to investigate the sensitivity of infrastructure system

performance to the spatial distribution of disruptions, we present the case of an elec-

tric power distribution system’s recovery after a major landfalling hurricane. Specifi-

cally, we focus on the impact of the spatial distribution of hurricane-induced disrup-

tions on the performance of an electric power grid located in the Gulf Coast of the

U.S. (Figure 2.1)1. We do this by simulating large-scale disruptions in the distribu-

tion grid, mapping the hurricane-induced disruptions to component failures (outages)

in a distribution-level power grid and studying the sensitivity of the resilience of the

system to the spatial distribution of the disruption. The simulated outages are sub-

sequently repaired over time, replicating the actual recovery of the power grid from

the hurricane disruption so as to study the dynamics of the system’s recovery.

1The specific community on the Gulf-Coast is withheld for privacy reasons but represents a mid-sized
metropolitan area
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Figure 2.1. The case study network situated in the Gulf Coast of the
U.S. a The layout of the electric power grid placed over the county. b
The density of customer-level power outages during Hurricane Katrina
with the network overlain. c Census-tract level population density for the
corresponding area.

2.3.1 Electric Power Network

The city for which this analysis is being performed provided GIS files including the

location of all of the county’s power substations. These are used to locate the position

of the nodes in the test network. There are 221 substations and 2 power plants in

this data. As we were unable to retrieve information on the connections between

the substations, nodes are connected using a minimum spanning tree to establish the

edges of the graph. A minimum spanning tree represents a radial network, common

among electric power distribution systems [128] The resulting graph has 223 vertices

and 222 edges.
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Algorithm 1 Breadth-First Search
1: procedure BFS(graph = G, root = r, size = n)
2: Q empty list of vertices to search
3: T empty list of vertices in the tree
4: append r to Q
5: while |T | < n do
6: consider v, the first element of Q
7: remove v from Q
8: append v to T
9: for all w in neighbors(v) do
10: if w is not in T then
11: append w to Q

return T

2.3.2 Disruption generation algorithms

In this section, we describe the di↵erent disruption patterns evaluated in this

study. All cases described cause failures in 60% of the vertices, and this failure pro-

portion is kept constant through all trials. This is in accordance with the actual

impact of Hurricane Katrina on the electric power distribution network under study.

As previous work primarily focuses on analyzing randomized failures, we use random

outages as a base for comparison with previous studies. In simulation replication, a

di↵erent set of vertices is chosen at random such that 60% of the network is inoper-

able. The random disruptions form a control sample as there is explicitly no spatial

association among the initial disruption.

To evaluate how the spatial characteristics of the disruption impact the network,

additional simulation trials are performed using disruptions generated by search trees.

Disruptions are generated using both a Breadth-First search (BFS) and a Depth-First

search (DFS) tree [129] as both create spatially constrained patterns of outages while

using no intrinsic information about the individual vertices. Details of the algorithms

used to generate the disruptions are listed in Algorithms 1 and 2.

A BFS begins at a random vertex in the network and failures propagate to all

neighbors of that vertex before extending to neighbors-of-neighbors. As the size of
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Algorithm 2 Depth-First Search
1: procedure DFS(graph = G, root = r, size = n)
2: Q empty list of vertices to search
3: T empty list of vertices in the tree
4: append r to Q
5: while |T | < n do
6: consider v, the first element of Q
7: remove v from Q
8: append v to T
9: if w 2 neighbors(v), w 62 T then
10: append w to front of Q

return T

the failure is pre-specified, the failures continue until the BFS tree is the required size.

This provides a method for generating localized clusters of failures. Similarly, a DFS

outage pattern begins at a random vertex and progresses away from the root node as

far as possible within the network before searching additional root-node neighbors.

The spatial pattern of DFS trees are connected, but far less localized. These are

referred to as the the BFS and DFS disruption methods for the remainder of the

paper.

The search tree generation methods are computationally cheap, and are built

entirely using the spatial structure of the network. The selection of these algorithms

are motivated by existing research supporting the existence of tree-shaped outages in

distribution systems owing to the hierarchical nature of electric power distribution [63,

130]. Here, we do not validate actual spatial distributions of outages against the BFS

and DFS generation methods, but instead use these methods to isolate the significance

of di↵erent spatial configurations of outages in the network on measurements of system

performance. The initial distribution of outages for one simulation replication are seen

in Figure 2.2.
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Figure 2.2. Outage generation types. The results of three outage genera-
tion techniques, each inducing failures in 60% of the grid. Figure a is one
instance of an outage generated randomly. Figure b is a an outage gen-
erated using a breadth-first algorithm, while c is a depth-first algorithm.

2.3.3 Performance metric calculation

In order to characterize the networks as they fail and recover, we use two network-

based measurements of system performance: network e�ciency and largest connected

component. We measure the global e�ciency of the electric power network as it fails

and recovers as one dimension of network performance. Global e�ciency is defined

as

E↵(G) =
1

n(n� 1)

X

i<j2G

1

d(i, j)
(2.1)

where d(i, j) is the distance between vertex pair i and j. Network e�ciency as a

concept was proposed as a measure of how e�ciently a network exchanges information
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[131] and has been previously used the context of power system resilience evaluation

[73,132] and used as a proxy for network performance [120,133].

Additionally we measure the size of the largest connected component (LCC). This

is defined as the number of vertices in the largest connected subgraph [39]. A con-

nected subgraph is a subset of the vertices and edges for which a path exists between

all pairs of vertices. LCC has previously been used to evaluate topological models [73]

and provides a measure of the connectedness of the network (ie a fully connected net-

work has a maximal LCC because every vertex is included in the largest cluster).

LCC and e�ciency have both been previously studied as performance measurements

for network representations of power systems, and have been validated as system

performance measurements when a broad range of vulnerability scenarios are evalu-

ated [73].

2.3.4 Simulation Methodology

The recovery simulation generates initial disruptions via random, BFS and DFS

methods then subsequently repairs vertices in the network. The rate of repair (i.e.,

repaired vertices per time unit) is derived from the rate of outages seen in the gulf-

coast power operator data. This rate is kept constant through all experiments. At

every time step, the vertices to be repaired are chosen based on their contribution

to the total network e�ciency. The number of vertices to be repaired is first fixed

based on the time dependent repair rate, then the set of vertices chosen for repair are

selected from the subset of inoperable vertices which—if repaired—would maximally

improve the network e�ciency. Vertices are selected in a greedy fashion such that

the selected subset maximally improves the e�ciency of the network. The heuristic

search is detailed in Algorithm 3.

Network statistics are recorded at each step and vertices are repaired until the

network is fully operational. The simulation procedure is depicted in Figure 2.3. The

process of creating disruptions and repairing is repeated 100 times for each disruption
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Algorithm 3 Local-optimal search.
Here, GE is the global e�ciency of a graph, and F �R indicates the removal of vertices R
from F.
1: procedure LocalOpt(graph = G, failed vertices = F ,repair= n)
2: R empty list of vertices to be repaired
3: if |V (F )| = |V (G)| then
4: R = vertex with maximum degree
5: F = F �R
6: LocalOpt(G,F,n-1)
7: else |V (F )| < |V (G)|
8: if |V (F )|+ n � |V (G)| then
9: R = F
10: else|V (F )|+ n < |V (G)|
11: R = f 2 F s/t GE(G+ f) � GE(G+ f 0) 8f 0 2 F and f 0 6= f

return T

generation method to account for the inherent randomness in the generation of the

initial distributions. The analyses were performed on a 16-core Intel Xeon W-2145

processor, each operating at 3.7GHz with 32GB of ram. Simulation, analysis, and

resulting plots were all generated in R version 3.4.4 [134]. Network statistics were

calculated using igraph [135].

2.4 Results

2.4.1 Static measures of impact

We first evaluate the sensitivity of the static measure of performance—i.e., the

performance of the system at the moment the disruption occurs—to the spatial dis-

tribution of the disruption generated randomly as well as via BFS and DFS algorithms

(Figure 2.4). To provide an equal comparison—and in accordance to real data from

Hurricane Katrina—we present results which impact 60% of the network regardless of

the method of outage generation. However, our extensive sensitivity analysis suggests

that the results remained consistent when evaluating network failures ranging from

10% to 90%.
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Figure 2.3. An overview of simulation methodology. The process here
represents one simulation iteration.

Computed for 100 stochastic disruptions of each type, there is significant evidence

that the disruption methods alter the resilience of the system. The mean e�ciency

of BFS- and DFS-constructed disruptions are 485% and 457% higher than randomly

constructed disruptions respectively. Mean values vary significantly at each failure

size as seen in Table 2.1. Mean LCC increases similarly with BFS disruptions—

BFS increase of 595% over random, DFS increase of 494% over random (Table 2.3).

Results additionally indicate sample variance increases for tree-constructed disrup-
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Figure 2.4. Static disruption comparison. Relative density of network
performance after 100 disruptions for each disruption generation method.
a is the network e�ciency for all three disruption generation methods
while b is the size of the largest connected component.

tions in both performance metrics as seen in Tables 2.1 and 2.3. In the case of the

mean comparison, the distributions of e�ciency and LCC values are compared using

Kolmorogov-Smirnov (KS) two-sample tests and all comparisons are found to be sta-

tistically significant at a significance level of 0.01. Results of the KS tests are seen in

Table 2.2.

The lower e�ciency values and LCC of the random disruption method indicate

greater disruption in the system. Lower network e�ciency is representative of lower

comunicability among the network concomitant with greater static resilience to a dis-

ruption. Likewise lower LCC values indicate geographic sparsity among the network’s

operable vertices. While neither of these performance metrics directly map to the per-

formance of a high-fidelity power-system simulation, they demonstrate the sensitivity

of the spatial distribution of a disruption on generalizeable measurements of system

performance in a network model. Consequently any claim resulting from a measure of

resilience is sensitive to the spatial characteristics of the initial disruption. Likewise,
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Table 2.1.
Summary statistics for the distribution of e�ciency for respective failure
modes with the percentage of optimal network e�ciency listed in paren-
theses. Failure fraction represents the fraction of the network which was
induced as failed in each iteration. Results presented here are for failures
in 60% of the network. Complete results are presented in Appendix Table
A.1 and A.2.

Generation
method

Mean Standard
deviation

Median Min Max

Random 0.0070 0.0011 0.0070 0.0047 0.0100
(20.68) (20.68) (13.90) (29.33)

BFS 0.0414 0.0071 0.0420 0.0240 0.0494
(121.50) (123.33) (70.62) (145.10)

DFS 0.0393 0.0038 0.0401 0.0270 0.0463
(115.33) (117.80) (79.41) (136.13)

accounting for the spatial distribution of disruptions introduces greater uncertainty

into our estimation of the resilience of a system.

The sensitivity of the resilience to disruption method additionally manifests when

measuring the number of customers with restored power. Mapping the geographi-

cal location of each of the vertices in our network to their respective census tract

allows us to allocate customers to each substation relative to their population den-

sity. Using this this approximation, an average of 40.60% of the customers retain

power when disrupted randomly, versus 39.21% and 39.47% for BFS and DFS out-

ages respectively. This similarity is expected as the disruptions are constructed to

disconnect 60% of the substations in the network, leaving approximately 40% of the

network operational. However similar to measurements of e�ciency and LCC, the

variance among population a↵ected is higher for tree-based disruptions. Table 2.4

shows the distribution of the number of customers without power after the network

is made inoperable. After random outages are induced in the system 33.57%–48.35%

of the population’s distribution level power remains operational, while after BFS and

DFS outages 26.54%–53.77% and 26.94%–48.95% of the population’s power remain
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Table 2.2.
P-values for two-sample, two tailed, Kolmogorov-Smirnov tests between
the e�ciency and LCC of given initial failure methods and failure fraction.
Results at the 0.6 failure fraction are presented in this article. Results use
a significance level of ↵ = 0.05. Values of zero listed with one significant
digit indicate p < 1.11022e � 16; this cuto↵ is the numerical precision of
the machine used for computations.

E�ciency LCC

Failure
frac-
tion

Random
vs BFS

Random
vs DFS

BFS vs DFS Random
vs BFS

Random
vs DFS

BFS
vs
DFS

0.1 0 0 0.0039 0 0 0.0541
0.2 0 0 0.0004 0 0 0.0001
0.3 0 0 0.0014 0 0 0.0000
0.4 0 0 0.0014 0 0 0.0000
0.5 0 0 0.0001 0 0 0.0000
0.6 0 0 0.0000 0 0 0.0000
0.7 0 0 0.0000 0 0 0.0008
0.8 0 0 0.0000 0 0 0.0000
0.9 0 0 0.0000 0 0 0.0000

Table 2.3.
Summary statistics for the distribution of largest connected component
(LCC) for respective failure modes with percentage of the optimal value
listed in parentheses. Results presented here are for failures in 60% of the
network. Complete results are presented in Appendix Table A.3 and A.4.

Generation
method

Mean Standard
devia-
tion

Median Min Max

Random 9.05 2.32 9.00 5.00 15.00
(4.058) (4.036) (2.242) (6.726)

BFS 62.94 17.71 66.50 28.00 83.00
(28.22) (29.83) (12.56) (37.22

DFS 53.75 9.54 53.00 28.00 76.00
(24.10) (23.77) (12.56) (34.08)
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operational respectively. This represents an 88% increase in the uncertainty of the

performance estimates. Providing estimates of uncertainty is critical to decision mak-

ers for the accurate characterization of the resilience of a system [136].

Table 2.4.
Summary statistics for the distribution of percent of county customers
without power in a static analysis. All numbers represent the fraction of
the total population of the county without power.

Mean Std Dev Median Min Max

Random 0.5928 0.0351 0.5940 0.5165 0.6643
BFS 0.5909 0.0676 0.6079 0.4623 0.7346
DFS 0.6151 0.0651 0.6053 0.5105 0.7306

2.4.2 Dynamic measures of impact

We also evaluate the dynamic performance —i.e., time dependant performance

metrics—under separate initial disruption methods as the power grid is repaired (Fig-

ure 2.5). The system performance—characterized by e�ciency and LCC—is then

measured over time as the system recovers. This is done to characterize the dynamic

resilience of the grid under each disruption generation method, ceteris paribus.

Despite holding the recovery process constant, these results show the e�ciency of

the network di↵ers greatly in overall functional form between random and spatially

generated disruptions, indicating the recovery is significantly coupled to the spatial

distribution of disruptions. Recovery from a random disruption pattern increases over

time, reaching a maximum prior to all nodes being repaired (Figure 2.5e). This is an

indication of the network exhibiting antifragile properties. Antifragility is a property

by which a full reconstruction of the network is not optimal with respect to the chosen

performance metric [100, 137]. In the context of network-performance measurements

of an electric power distribution grid, antifragility indicates that a performance mea-

surement rises above the optimal value prior to the system returning to its original
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Figure 2.5. Performance metrics measured after the disruption over time
for each disruption method. In a-f, the bands of uncertainty represent 95%
confidence intervals sampled from the empirical density at each point in
time. The black line is the mean of the observations. The x-axis is the
relative-completeness of the network repair scaled by the total restoration
time for each replication.

state, as evident by the concave response seen in Figure 2.5a [118]. As antifragility is

considered an inherent property of a system [100],the lack of antifragility in spatially-

constructed outage systems indicates that it is conditional on the choice of outage

distribution. Spatially-constructed outages generally have a much higher e�ciency
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throughout but follow an entirely di↵erent functional form than the recovery from

random disruptions. The deviation between mean e�ciency is highest at the initial

disruption and decreases over time. Similar to the static analysis, the variance is

larger in the recovery from spatially characterized outages. Thus, failing to account

for the spatial characteristics of the network disruption can drastically change im-

plications drawn from the associated resilience analysis. A key di↵erence is the lack

of antifragility in the distribution electric power network with spatially characterized

outages.

The di↵erence between the disruption generation techniques is diminished when

comparing the dynamics of the mean LCC rather than mean network e�ciency (Fig-

ure 2.5 b,d,f). Beyond the initial value of the LCC at the time of failure, there is little

di↵erence in the functional form of the recovery of the network. The size of the LCC

in the network generally increases at an increasing rate when vertices are repaired in

the network, the primary di↵erence being the initial size of the LCC after failures are

generated in the network. These estimates of system recovery are therefore dependant

on the spatial characteristics of the initial disruption; however, this result is sensitive

to the performance metric used to measure recovery.

2.5 Conclusion

A key element of resilience is the ability of a system to respond to and recover

from disruptions of unprecedented magnitude or unforeseen cause. By their nature,

all disruptions will require recovery. This positions system recovery as a critical

measurement in evaluating the multifaceted resilience of infrastructure systems. A

holistic understanding of all types of community recovery is imperative for the con-

tinued adaptation to unforeseen challenges. However, these holistic understandings

must be built upon a foundational knowledge of the interaction of disasters with

the built environment. We contribute to the knowledge related to the interaction

of the power distribution grid and hurricanes by providing a novel framework for
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network resilience analysis which is agnostic to the specifics of the system, allowing

for general insights about all facets of community recovery. Our framework for con-

sidering spatially-constrained disruptions can be applied to any hierarchical network

within a community adversely e↵ected by natural hazards. We plan to extend the

work presented here by evaluating the impact of spatial distributions of outages on

high-fidelity models of infrastructure systems.

We show that the post-disruption network-performance of the electrical power

distribution grid is highly sensitive to the spatial characteristics of disruptions in

the system. Consequently, any insights about general grid resilience which fail to

account for the spatial characteristics of the hazard significantly misrepresent the

impact of natural hazards on distribution-level electric power infrastructure. More

specifically, through the repeated simulation of multiple methods of failure and recov-

ery, we show that previous methods of evaluating disaster impact overestimate the

certainty associated with the measurements of system recovery. We show via multiple

avenues that improved characterizations of disaster impact significantly increase both

the magnitude and uncertainty of the initial impact in the system. This di↵erence

holds through the duration of the recovery process; and when considering the dynam-

ics of the system we find that emergent system properties such as antifragility are

also dependant on the characteristics of the initial disruption. These di↵erences are

most striking when contextualized by their impact on the power distribution grid at

a customer level. Our estimates indicate that the estimated range of customers with

access to electricity varies from 33-48% of the county using previous methods, and

up to 26-53% when using improved outage characterizations, highlighting the need

for continued study of both the pattern of impacts due to natural disasters and the

vulnerability of the electric power distribution grid. By demonstrating the sensitivity

of the spatial distribution of outages on the electric power grid, we hope to encourage

consideration of the spatial distribution of disruptions in conducting infrastructure

resilience analytics.
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3. INTERDEPENDENT INFRASTRUCTURE SYSTEM
RISK & RESILIENCE TO NATURAL HAZARDS

Chapter 3 has been previously published in Proceedings of the Institute of Indus-
trial & Systems Engineering Annual Conference. A post-review version is hosted on
arXiv:1904.05763.

3.1 Introduction

Interdependence is inherent in many critical systems vital to the continuation of

a nation’s well-being [138]. Electricity, natural gas, transportation, and telecommu-

nication are all provided by infrastructure systems which require bi-directional inter-

and intra-system connection for optimal functionality. For example, telecommuni-

cation grids require continued power for operation, while the electric grid requires

telecommunication networks to function [61, 120, 138]. The criticality of the goods

and services provided by these systems necessitates the design of resilient interdepen-

dent systems. In this work, we study the disruption and recovery of interdependent

systems after a major disturbance and quantify the influence of changes in the spatial

distribution of hazards on overall system resilience.

Much attention has been given to the study of failures in interdependent networks

from both a theoretical and applied perspective. Interdependence has been shown

previously to improve overall system robustness to disruption [121] at the expense of

reducing steady-state performance. Previous work has shown that interdependent in-

frastructure systems will respond di↵erently to an identical hazard or disruption due

to their individual components and their topology (e.g. telecommunications networks

and water distributions will not be impacted similarly by a hurricane) [128]. Previ-

ous work has considered disruptions to the network which occur randomly [59, 121]
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-indicative of general system aging and degedration- or via targeting [74] in which

vertices are removed because of their importance. This work improves upon previous

studies by considering the impact of changes to the spatial distribution of failures on

system performance while controlling for the influence of the size of the disruption.

We hypothesize that –contrary to previous analyses– the impact of hazards on inter-

dependent systems does not follow a random pattern and may be clustered locally. To

test our hypothesis, we change the spatial distribution of failures in each system and

compare the resulting system performance immediately after failure and while the

simulated systems are being repaired. This provides evidence to indicate that –when

controlling for the size of the impact– system performance is significantly influenced

by the spatial distribution of outages. We further show that a significant change in

system performance can be measured in both systems if disruptions are assumed to

impact each system with a separate spatial distribution.

3.2 Methods and Data

To evaluate the impact of di↵erent outages on measurements of system perfor-

mance, we simulate the failure an recovery of two interdependent systems in response

to di↵erent sizes and spatial distributions of disruptions. The performance of each

system is measured as it fails and is repaired. What follows is an overview of the

simulation methodology, the calculation of performance metrics, and the data used

to construct the systems.

3.2.1 Methods

Our analysis of the interdependent systems uses two graphs -representative of

two infrastructure systems- and couples them to create interdependencies among the

systems. The two networks, g1 and g2 are generated such that

g1 = G(V1, E1) g2 = G(V2, E2)
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each are made up an edge set, E, and a vertex set, V . The size of the edge

set and vertex set (i.e. the number of edges and vertices) of g1 are |E1|, and |V1|

respectively [139]. The degree of each vertex is the number of edges to which it

connects, and here is represented as.

Degree of vertex i = d(vi), vi 2 V (g)

To generalize the connections between the vertices in opposing graphs, a depen-

dence matrix Dg1,g2 is used to relate elements of g1 to elements of g2. Dg1,g2 is defined

as a matrix of size |V1|⇥ |V2|. Elements of the matrix represent individual component-

level dependencies. Consequently, Dg1,g2(i, j) = 1 if vj depends on vi to function and

vi 2 g1 and vj 2 g2. This allows for the representation of directional dependence in

failures and recovery. if Dg1,g2(i, j) = Dg1,g2(j, i), then we have an interdependence

between components, and if Dg1,g2 = Dt
g1,g2 then the systems are fully coupled insofar

as Dg1,g2(i, j) = Dg1,g2(j, i) 8i 2 [1, |V1|] and j 2 [1, |V2|]. An example would be:

Dg1,g2 =

2

6666664

0 1 0 0 . . .

0 1 0 0 . . .

1 1 1 1 . . .
...

...
...

...
. . .

3

7777775

in which v1 through v4 in g2 depend on v3 to function. This provides a general

framework to relate one network to the other in the failure and recovery of the systems.

3.2.2 Failures

After g1 and g2 are coupled via D, outages are generated in each system. The

methods of outage generation are discussed in subsequent sections. In the disruptions,

the set of failures is comprised of two sets. First are the failures directly induced by

the disruption’s impact on the system. Second is the dependent impacts within or

across systems. The initial set of failures -those induced by the hazard- in graph g are
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denoted f f
g and the subsequent dependent failures in graph g are denoted fd

g . After

the initial set of failures are generated in g1 and added to f f
g1, dependencies in g2 are

identified via D. fd
g2 is updated to reflect the elements of g2 which fail as a result of a

failure in g1. fd
g1 is then updated based on fd

g2. The failures cascade across the the two

networks until no more dependencies are found. The process is repeated starting with

f f
g2 and propagates until equilibrium. The results of the failure generation represent

the total, initial impact of a disruption on the interdependent system.

3.2.3 Failure Generation Methods

We aim to evaluate how asymmetry in the impact across networks influences

measurements of system performance, and to do so we evaluate three methods of

disruption generation. The first are random disruptions in the system in which each

node has an independent and identical probability of failure. Random failures are

representative of system aging or general degradation. The second and third meth-

ods are derived from search trees and generate disruptions in the graphs which are

spatially connected. The second method (BFS) uses a breadth-first search tree to cre-

ate locally clustered distributions of failures around a randomly selected root node.

The third method (DFS) uses a depth-first search tree to create a connected cluster of

failures propagating away from a randomly selected root node and progressing away

from the root to maximal length. Examples of each failure generation method are

seen in Figure 3.1. The three disruption types are selected to isolate the impact of

the spatial distribution of failures on the interdependent systems. In this way, we can

evaluate how a disruption which induces failures asymmetric to the two systems, im-

pacts overall system performance and measurements of system resilience. The three

failure generation methods listed here are all used to generate the set of initial failures

f f
g1 and f f

g2.
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Figure 3.1. Examples of system disruption types, orange vertices are
operational, white have failed. Left is a network after random failures,
center is a network after BFS failures, and right is a network after DFS
failures. All three represent a failure of 60% of the vertices in the system.

3.2.4 Recovery

After the initial failures in the system are generated, the system is repaired sequen-

tially. rng1 is the n
th node repaired in the graph g1 such that rng1 2 {f f

g1\r1g1, . . . , rn�1
g1 }1.

That is, the eligible nodes for repair in g1 at step n are those which are have failed

directly (f f
g1) but have not yet been repaired (r1g1, . . . , r

n�1
g1 ). At step n, rg1 and rg2 are

selected such to maximize the total system performance improvement. Total system

performance is simply the sum of each individual network’s performance. After rg1

and rg2 are repaired, any dependent failures (elements of fd
g1 [ fd

g2 connected to rg1

and rg2 via D) are also repaired. In this way, we can di↵erentiate between repairs of

directly failed elements of the systems and repair of elements which have only failed

because of their dependency. The recovery and repair procedure is continued until

both networks are fully operational.

1In this notation, \ indicates the removal of the vertices r1g1, . . . , r
n�1
g1 from the set ff

g1
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3.2.5 Data and parameters

The networks in our model are based on publicly available electric power distri-

bution grid location and the natural gas pipeline layout of Mobile County, Alabama.

The electric power distribution system contains 223 vertices and 222 edges, while

the natural gas system contains approximately 25 vertices and 35 edges 2. In this

analysis, the failure and recovery of the system is simulated on randomly generated

graphs of equivalent degree. The degree of interdependence is estimated based on the

physical proximity of nodes in the system which results D having a matrix density of

0.01. Both networks are assigned a failure generation method (Random, BFS, DFS),

and failures are generated such that 10, 20, 60, and 90% of the components fail -

holding the size constant in each replication. Every parameter combination (failure

size, generation method in g1, and generation method in g2) is simulated 250 times,

wherein each trial generates the failures randomly from one of the three methods.

Network performance is measured after the initial failures and is recorded through-

out the recovery process. System performance is measured as the global e�ciency of

each network. Global e�ciency is defined as

E↵(G) =
1

n(n� 1)

X

i<j2G

1

d(i, j)

where d(i, j) is the distance between vertex pair i and j. Network e�ciency as a

concept was introduced by Latora (2001) as a measure of how e�ciently a network

exchanges information [131]. It has been evaluated in the context of power system

resilience evaluation [73] and used as a proxy for network performance [120,133].

2Estimates of the gas pipeline network are take from public-level aggregated pipeline locations
available through the National Pipeline Management System
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3.3 Results

3.3.1 Spatial Di↵erences in Initial Disruption

Immediately after the failures in the system have completed propagating, we mea-

sure the e�ciency of both systems in each replication. The distribution of the e�-

ciency is listed for both systems in Appendix Table B.1 and density plots of the

respective e�ciency can be seen in Figure 3.2. At a fixed size of disruption, changing

the spatial distribution of outages (or the shape of the outages) in either network im-

pacts the overall system performance for both networks. Table 3.1 shows the results

of two-sample Kolmogorov-Smirnov tests comparing the distributions of network ef-

ficiency for both systems after failures induced by di↵erent methods. The results of

the KS tests show that there is a statistically significant di↵erence in the performance

of g1 and g2 when changing the spatial distribution of either network away from a

random field of outages.
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Figure 3.2. Di↵erences in initial disruptions. Left are density plots of both
graphs subset by the corresponding distribution of failures in g1 (rows)
and g2 (columns). Right shows the change in performance measure as a
function of failure size (rows).
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Table 3.1.
Comparison of initial disruption types. P-values taken from 2-sample
Kolmogorov-Smirnov tests. Values of 2.2x10�16represent a p-value smaller
than the numerical precision of R

Statistical test P-value for dif-
ference in g1

P-value for dif-
ference in g2

Random-Random vs Random-BFS 0.00089 2.2x10�16

Random-Random vs Random-DFS 1.576x10�9 2.2x10�16

Random-Random vs BFS-BFS 2.2x10�16 2.2x10�16

Random-Random vs BFS-DFS 2.2x10�16 2.2x10�16

Random-Random vs DFS-DFS 2.2x10�16 2.2x10�16

3.3.2 Changes in recovery of systems

As the network is repaired, we measure changes in the performance of both sys-

tems. Figure 3.4 shows the recovery of the systems as they are repaired subset by

the distribution of outages in g1 and g2. Similar to in the previous section, changes

in the distribution of failures in either system induce changes in the overall recovery

of the system. Additionally, changes in the distributions of outages - from random

to a spatially-constrained outage- e↵ect the variability of observations, with random

outages exhibiting the highest variability among outage types.

In each simulation replication, the time is measured after failure until the system

is exhibiting full performance. Because of redundancies in the network, it is frequently

the case that the the system is fully operational prior to all elements being repaired.

The Time to Repair (TTR) in this case is measured as the first time a system is

performing optimally in a given replication. Figure 3.4 shows the TTR broken down

by failure size and disruption type. As expected, larger failure sizes have higher TTR

-corresponding to a longer time to repair. However changes in the time to repair can

be observed when the distribution of failures is altered in either network.
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Figure 3.3. Recovery of system over time subset by the distribution of
failures in g1 (rows) and g2 (columns). Red points are the system e�ciency
for g1, and blue are the e�ciency of g2. Black lines indicate the mean of
all replications at a given percentage of the system repaired.

3.4 Conclusion

In this work, we construct a simulation of interdependent networks, representing

coupled infrastructure, which are subsequently disrupted and repaired. We hypoth-

esize that a major hazard which disrupts interdependent systems will impact the

constituent systems asymmetrically, inducing di↵erent magnitudes of failures and

di↵erent spatial distributions of failures in each system. Via leveraging a rigorous

simulation methodology to test our hypothesis, we provide evidence that the di↵er-

ences in the system performance can be observed when the spatial distribution of

failures is changed; this is done while also controlling for the e↵ect of the disruption
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Figure 3.4. Di↵erences in time to repair (TTR) by failure method subset
by the size of failures (columns) and the distribution of failues in g1 (rows).
Each individual plot shows the di↵erence in TTR for g1 (red) and g2 (blue)
for changes in the distribution of failures in g2 (sub-columns).

size. The spatial distribution of the failures additionally changes the recovery of the

system- measured by the time to system repair and functional recovery form. Consid-

eration the impact of a disturbance on each network within an interdependent system

can provide better assessments of infrastructure and system risk and resilience.
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4. TWITTER AND DISASTERS: A SOCIAL
RESILIENCE FINGERPRINT

Chapter 4 has been previously published in IEEE Access.
B. A. Rachunok, J. B. Bennett and R. Nateghi, “Twitter and Disasters: A So-
cial Resilience Fingerprint,” in IEEE Access, vol. 7, pp. 58495-58506, 2019, doi:
10.1109/ACCESS.2019.2914797.

4.1 Introduction

There is a temporal trend toward more frequent and more unexpectedly intense

natural disasters [140]. To prepare for uncertain future disasters, it is fundamental to

question what constitutes a resilient community so as to build a body of knowledge

useful in enhancing communities’ adaptive capacity in the face of the next generation

of unforeseen disasters. Resilience is a concept with multiple definitions, all of which

stem from understanding how elements of a community protect against, respond to,

and recover from a disruption [8, 77, 79, 83, 87, 103, 105, 141]. At their core, these

definitions establish how an exogenous disruption bears on the dynamic interactions

and responses inside a community whether through ecological, infrastructure, social,

or economic mechanisms. However, previous analyses do not directly incorporate the

experience of individuals during disasters when measuring the totality of a commu-

nity’s resilience. Instead, (community) resilience analyses examine the impact of a

disaster or disruption on individuals as manifested through an existing social, physi-

cal, economic, or ecological systems [83,104,105,138]. Recent work has hypothesized

that online social networks (OSNs) can fill the this gap in the study of resilience by

incorporating the direct measurement of individuals in a community throughout the

response to a major disruption [29,142].
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In this work, we formulate measurements of the resilience of a community by

augmenting existing conceptualizations of community resilience with data from online

social networks, namely the microblogging platform Twitter. In 2017, 80% of the US

population is estimated to have a social media account; of those Twitter is among

the most popular with 62 million monthly active users in the US in 2018 [143, 144].

Twitter is a platform for disseminating and consuming content at an unprecedented

scale, providing a direct conduit into the response of individuals to major events.

Interactions on Twitter are based on short messages of 280 characters. These messages

(called tweets) are broadcast to a user’s followers. Particularly during major events,

the follower–followee relationships leads to emergent social properties at a macro-scale

which are driven by a bottom-up self-organization of information [33], thus providing

unique access to information deemed important by the community. Consequently

when the resilience of a community is tested by a major event, the self-organization

of Twitter discourse indicates that topics which are relevant to the resilience of a

community are detectable. In this paper, we leverage this bottom-up information to

develop a multi-dimensional social resilience fingerprint which analytically captures

the interactions within pillars of community resilience during a disruption.

We introduce the resilience fingerprint as a multi-dimensional concept for under-

standing community resilience. A resilience fingerprint is the unique combination of

components of community resilience in response to a major event or disruption. We

use the analogy of a fingerprint to emphasize the identifiability of components critical

to community resilience. In this way, we move away from evaluating resilience in

one dimension and instead propose a relative-mapping of the interrelated aspects of

resilience to one another. Rather than asking how resilient is a community we ask

what constitutes a resilient community. We subsequently describe methods for mea-

suring the resilience fingerprint of communities impacted by major events through

analysis of the social media discourse surrounding the event thus establishing a social

resilience fingerprint.
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A social resilience fingerprint is an analytical method for understanding the in-

teractions between components of community resilience as observed through social

media. This is calculated first by defining community resilience as a set of resilience

components suitable for measurement by social media, then categorizing the macro-

scale Twitter response of a community before, during, and after a major event by its

impact on the individual components. The relative measurements of each resilience

component –along with the interaction between components– form the basis of the

social resilience fingerprint.

The remainder of this paper is as follows: Section 4.2 provides background on

community resilience and describes our categorization of community resilience in the

context of online social network analysis; Section 4.3 describe the data used in this

analysis, as well as the methods used to turn large corpora of tweets into a social

resilience fingerprint. Finally, Section 4.4 applies the techniques presented to 14 events

with a significant Twitter response, the results of which are presented in Section 4.5.

4.2 Background

Externally, communities are the “totality of social system interactions within a

defined geographic space such as a neighborhood, census tract, city, or county” [8], and

can be characterized by internal dynamics which comprise combinations of individuals

and groups with multiple –potentially competing– interests and associations [2, 145].

The broad scope of communities leads to a vast number of approaches and methods for

the study of their resilience. In this section we discuss how conceptualizing resilience

as a multidimensional fingerprint fits within context of existing studies of resilience

and online social networks.

4.2.1 Community resilience

In order to understand how multiple dimensions of disaster resilience can be stud-

ied through social media, we establish a definition of community resilience based on
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previous constructions and in alignment with evaluation through online social net-

works. Community resilience has been formalized as a comparative assessment of the

resilience of community components or categories [8, 87, 146]. Category-based defini-

tions of community resilience share substantial overlap. One such definition is given

by the Multidisciplinary Center for Earthquake Engineering Research, which catego-

rize community resilience with the acronym PEOPLES: Populations, Environment and

ecosystem, Organized government, Physical infrastructure, Lifesyle and community,

Economic development, and Social-cultural capital [87]. A similar definition proposes

a framework which distinguishes categories of resilience by how they are measured [8].

They include ecological resilience, social resilience, economic resilience, institutional

resilience, infrastructure resilience, and community competence [8]. We leverage a

multi-dimensional categorization of community resilience, defined as a set of com-

ponents which are derived from previous definitions of community resilience so as to

theoretically ground our analysis [8]. We define the categories of community resilience

in an OSN context as the Ecological, Economic, Institutional, Social, Infrastructure,

and Quality of life categories. These categorizations are not mutually exclusive, but

are collectively exhaustive. Table 4.1 lists high level descriptions of the components

of a social resilience fingerprint and the topics they encompass through Twitter.

4.2.2 Twitter

Since its inception in 2006, Twitter has been a common source of academic inquiry

particularly relating to its use during disasters and major events. Since Twitter is

a platform for sharing and consuming media, early work in the evaluation of tweet

content established relationships between public Twitter posts and internal sentiment,

situational awareness during disaster, and psychological trauma [33,147].

Twitter has also been studied as a form of sensing network which can augment

more traditional analyses performed during a disaster such as the study of vulnera-

bility or resilience [29, 142]. Understanding how online social networks can be used
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Table 4.1.
Resilience components, their description, and community elements from
that category

Component Description Example elements

Ecology Related to natural systems
and features of the environ-
ment and ecosystem

Coasts, marshes,
streams, beaches,
wetland

Economy Financial, economic, and
business aspects within a
community

Currency, business op-
eration, labor

Institutions Government and service-
based institutions provid-
ing community function and
care

Police, hospital,
FEMA, government
o�cials

Social Non-institutional support
systems within a commu-
nity

Humanatarian aid,
volunteerism, neigh-
bors

Infrastructure Physical infrastructure sys-
tems and their dependencies

Pipelines, power sys-
tems, cell communica-
tion

Quality of life The health and wellbeing of
the community

Health, hospital, men-
tal well-being
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to derive meaningful insight has been defined as social media analytics [29,40]. Work

in this area is typically broken down into multiple dimensions based on how social

media is used for analysis (e.g., tweet location, tweet content etc.) [40]. What follows

is a review of literature relating to understanding disasters and communities through

social media.

Social media analytics has been previously used in many disaster-related contexts

to gather information about the spatial distribution of disasters in an attempt to

correlate measurable elements of a disaster with measurable elements of social media.

Tweets related to a topic of a disaster were shown to be more likely to occur near

disaster-related areas during a flood of the Elbe river [31, 46]. There is also signif-

icant evidence to suggest GIS and remote-sensing applications can be significantly

improved by augmentation with social media data [32]. The primary benefit of this

augmentation is that social media provides a ground-up network of sensors which can

allow for hyper-local and rapid updating of geographic systems [47].

Temporal associations between tweets and disasters have also been investigated.

A study of Hurricane Sandy found the time for an individual to learn about a dis-

aster through social media was proportional to an individual’s distance from the

impact [148]. In a di↵erent context, the role of individuals in a disaster is found to

be temporally-dependent [149]. During times of disasters, individuals are observed to

transition toward an information-sharing role on Twitter, broadcasting and exchang-

ing information [150].

Another thrust of social media analytics is an analysis of tweet content, in which

a semantic understanding of a tweet is used to make assessments of the tweet author

[40]. Related to disasters, the ‘mood’ of tweets was tracked through multiple disasters

a↵ecting North America as a proxy for how individuals recover psychologically from

disasters [51]. Other analyses use the content of social media networks to understand

the patterns of information di↵usion in disaster [151].
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4.3 Data and Methods

The accessibility of tweets issued prior to 7 days in the past as well as Twitter’s

terms of service make acquiring corpora of tweets a non-trivial task. In this section

we first briefly discuss the process of tweet acquisition, and follow with the methods

used to analyze the Twitter corpora.

4.3.1 Tweet Acquisition

Our tweet datasets were retrieved from various archival sources described at a

high-level in Table 4.2, with more details presented in Appendix Table C.1. Over 14

million tweets were analyzed spanning 14 major events. The major events include

5 hurricanes, 2 events of public violence, 2 political referendums, 2 earthquakes, 1

public health crisis, 1 death of a celebrity, and 1 solar eclipse. Events were chosen

based on the scale of the social-media response to the event, but little other restriction

was placed on inclusion in our study. This results in a corpus of tweets which spans

multiple years, sizes, event types, and archival methods.

As of early 2019, Twitter limits access to the entire body of published tweets

via a paid subscription service. Additionally, Twitter’s Terms of Service prohibit

the reproduction or distribution of datasets of whole tweets and instead only allow

for the distribution of lists of numerical serial numbers corresponding to each tweet,

called tweet IDs [152]. Hence, the medium of tweet compilation and sharing is the

tweet ID, which can be used to re-construct the original tweets. IDs are simply

serial numbers corresponding to each tweet and provide no actionable information,

therefore, the process of hydrating tweets must be carried out to convert tweet IDs

into a full tweet as it would be seen on the platform. Hydrating repeatedly calls the

Twitter API with a specified tweet ID and returns the associated tweet content as

well as additional meta-data such as the author, the date of publication, whether

it is a retweet of someone else, etc. As this is a process of retroactively accessing

data, there may be a loss of data. Tweets may not be available due to deletion of
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the previous tweet, tweet-author’s user account, or change in privacy settings of a

user account. Recent work has shown that despite this data loss, remaining samples

of tweets are still representative of the data published in real time [152]. Based

on previous findings which indicate that Twitter messages sent during consequential

events are more focused on information-broadcasting and information sharing [149],

we additionally remove retweets (i.e. a user re-broadcasting the tweet originally

authored by someone else) from our data to focus on originally produced content.

4.3.2 Data processing

After hydrating and removal of retweets, the text data of each tweet are processed

to remove abnormalities. First, URLs, and non-ASCII characters are removed us-

ing customized regular expressions [153] 1. English and Spanish stop words are then

removed. Stop words are non-informative, frequently-used words which do not con-

tribute to a semantic understanding of text [154]. In this case stop words are defined

using the popular stopwords R package [155–157]. Each event’s tweets are then

processed to remove words occurring less than 10 times through all tweets related

to an event. Additionally -if the dataset was complied based on keyword filtering-

the words used for filtering were removed from the corpora, as they would other-

wise be included in all tweets by construction. Finally, the remaining words are

stemmed to remove word endings using the Porter stemming algorithm, implemented

in R [158–160]. Stemming removes word endings to avoid di↵erentiating between

words of similar meaning used in di↵erent tenses, conjugations etc. For example

ecological and ecology would both stem to the same root: ecolog. Word stemming

has been previously shown to greatly improve text processing and analysis [154].

1This is increasingly important in recent datsets as the use of emojis becomes more prevalent
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4.3.3 Social Resilience Fingerpring

At the core of the methodology proposed in this paper is understanding how indi-

vidual components of community resilience can be measured and understood through

the lens of social media. Formally we have a set of all events E comprised of n indi-

vidual events E such that E1, E2, . . . , En 2 E. For a given event E⇤, we have a set

of tweets, tE
⇤

1 , tE
⇤

2 , . . . , tE
⇤

m 2 E⇤, where m is the total number of tweets compiled for

each event after hydration and processing. Each tweet is subsequently comprised of

a series of features, f , which are the individual words in each tweet such that for a

given tweet t⇤, f t⇤
1 , f t⇤

2 , . . . , f t⇤
l 2 t⇤. As each tweet can contain multiple copies of the

same word, we also have a set of all features FE for a given event E.

Additionally, we manually coded a set of words for each category in order to map

the set of features to our pre-defined resilience categories. Thus, each category of

resilience contains a set of words which indicate associated discourse. For example,

Cinfrastructure = {power, water, cell, outage, road, . . . }. The words were manually

selected by two groups individually, then consensus was established between the two

sets. The full listing of words coded for each category is listed in Appendix C.3.

To parse the features for a given event into categories we construct a category

co-association matrix, A for each event. A is a symmetric 6 by 6 matrix with each

row and column corresponding to a resilience category. Aij is then the co-association

of category i with category j. The co-association of a given category is based on the

co-occurrence of words from categories. As such, for resilience categories i and j,

Aij =
X

r2Ci
s2Cj

X

t

X

r2t
occ(r, s) (4.1)

Where

occ(r, s) =

8
><

>:

1 if word r occurs with s

0 otherwise
(4.2)
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After fixing a word r from one category, and word s from another, the occ function

is an indicator function taking a value of 1 each time word r occurs with word s in

a given tweet. This is summed over all occurrences of r in a given tweet (innermost

summation of (4.1)), then subsequently summed over every tweet. This is done for

all combinations of words in category i and category j. Thus Aij is the total times a

word from category i occurs in the same tweet as category j. The matrix of values

A –one for each event– form the social resilience fingerprint. O↵ diagonal values

of A represent the frequency of resilience categories appearing together in Twitter

discourse. The diagonals of A are less intuitive, representing the relative frequency

of words from the same category appearing in a tweet. This is a modified version

of a co-occurrence matrix, used for term clustering in natural language processing

[161–163]. This extension uses apriori categorizations –grounded in the theoretical

definitions of community resilience– to find associations within topics to determine

the relative association of categories of resilience. In the following section, we apply

this fingerprinting methodology to multiple major events and discuss the feasibility

of extracting category-based insights using this method. For the 14 events listed in

Table 4.2, the categorical binning described in (4.1) and (4.2) are used to establish the

social resilience fingerprint. As the total number of tweets gathered for each event vary

substantially, the A matrices are scaled. This allows for a more balanced comparison

between events as it removes information regarding the total number of tweets from

the fingerprint so that any comparison made between events is based solely on the

pattern of interactions among the components of the resilience fingerprint. Sinkhorn-

Knopp matrix regularization is used on A matrices [164]; this preserves the structure

of the fingerprint while allowing the relations between categories to be compared

across events.
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4.4 Results

Visual representations of the social resilience fingerprints are shown in Figure

4.1. Each heatmap and associated bargraph show the relative association of each

category and the frequency of each category respectively. The respective heatmaps

are visual examples of the matrices A, representing the co-association of discourse

related to components of community resilience. Because of the self-organization of

tweets in response to major events, we hypothesize that stronger textual association

of categories indicate a stronger underlying relationship between the categories in the

community and by extension in the resilience of the community. This is in line with

previous findings which found that event-related keywords were indicative of a major

event’s impact on an individual [148].

4.4.1 Event Similarity

From the wide range of the events studied, we hypothesize that the Twitter dis-

course in reaction to similar events will itself be similar, as measurable through the

resilience fingerprint. To evaluate this, we measure the component-wise Spearman

distance between scaled A matrices for all events. The result is a numerical measure

of similarity among the structure of the resilience fingerprints in which a smaller dis-

tance represents a more-similar pattern of Twitter discourse between two events. In

Figure 4.2, the resulting pair-wise distances are visualized in a heatmap after hierar-

chical clustering is performed on the rows and columns –a technique called VAT or

a Visual assessment of Cluster Tendency [134, 165, 166]. Each element in Figure 4.2

represents the distance between the row and column event.

The VAT methodology is formulated to allow for visual identification of trends

in data [165]. A VAT cluster appears visually as a square block along the lower-left

to upper-right diagonal of the heatmap. In Figure 4.2, there are clear clusters cor-

responding to Hurricanes Florence, Irma, Sandy, Harvey, Maria as well as the 2018

Eclipse. Additionally, a case could be made for the clustering of the Nepalese earth-
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Figure 4.1. Visualizing social resilience fingerprints. Each heatmap rep-
resents the association between one category with another. The color
red indicates the most association, and the color blue represents the least
association. Diagonal values in the heatmap are indicative of how self-
associative a category is. Bar-graphs show the relative occurrence of each
category. Note the color scheme in this plot is based on log-normalization
of A, as opposed to Sinkhorn-Knopp, to aid in visualization.

quake and the California earthquake. Finally, the upper right of Figure 4.2 provides

evidence of clustering of the Las Vegas shootings, Charlottesville riots, Ireland’s 8th
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constitutional amendment, and the death of Aretha Franklin. As we calculated the

distance between the events by summing component-wise distances between two fin-

gerprints –each scaled from their original counts– these clusters are representative

of similarity in the pattern of associations between components of resilience. From

this, we see a similarity in the social resilience fingerprints of alike events, providing

evidence that our proposed methodology has discriminating power.

Based on this distance measure, we subsequently analyzed each event’s closest

match using an alternative distance measure, namely, the Pearsons’s correlation coef-

ficient. This is also computed between each pair of fingerprints. The closest-correlated

event to each event are listed in Table 4.3, along with the associated correlation. The

results paint a similar picture to the VAT comparison. Natural disasters, such as

hurricanes and earthquakes, pair closely with one another, as do acts of violence like

the Las Vegas shooting and Charlottesville riots.

We perform another similarity measurement by comparing the clusters generated

via the k-means clustering algorithm. We select 3 clusters as the marginal within-

cluster error does not improve greatly with additional number of clusters. Figure 4.3

shows the three clusters plotted on the axes of the first two principle components

of the data. The cluster containing the hurricanes and eclipse di↵ers most greatly

in the direction of the first principle component, while the remaining two clusters

di↵er based on the second component. The first principle component is driven by

di↵erences in ecological categories of resilience while the second is a di↵erence in

social, economic, and institutional resilience.

From the results of these clustering methods, we hypothesize that the similarity

between the fingerprints of similar events indicates that much of the emergent prop-

erties of the resilience of a community is driven by the specific disaster. Through this

hypothesis, we propose that the elements of community resilience common to each

type of event are distinct enough to a↵ect the Twitter discourse of the individual

communities to an extent that it is measurable at a macro scale.
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Table 4.3.
Closest Events. The Pearson correlation is calculated between all pairs of
events, with the closest match listed. The correlations above 80% have
been highlighted in bold.

Event Best Match Correlation

aretha lasvegas 0.77

brexit charlottesville 0.50

calquake nepal 0.85

charlottesville lasvegas 0.86

ebola irma 0.56

eclipse charlottesville 0.51

florence irma 0.94

harvey irma 0.89

ireland calquake 0.78

irma florence 0.94

lasvegas charlottesville 0.86

maria florence 0.90

nepal calquake 0.85

sandy irma 0.88
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4.4.2 Critical Components of Community Resilience

To further understand the importance of the categories of community resilience,

we now ask which elements of community resilience drive the similarity among events

by looking at the loading of each variable –corresponding to an i, j element of the

fingerprint across all events– as projected onto the first two principle components.

The variable loading for the 10 most contributing variables are plotted in Figure 4.3

along with the events.

From the variable loadings, we can see that –as expected– the vectors with sim-

ilar directionality have overlapping categories. Along the x-axis of Figure 4.3 are

the associations of the ecological category with all others, indicating they are strong

contributors to the similarity of the hurricane-events. Likewise, institutional and

economic category dominate the first quadrant. Finally, social components tend in

the direction of the cluster associated with the Charlottesville riots and Las Vegas

shootings. In Figure 4.3, a small angle between vector loading indicate high correla-

tion between variables. From this we can generally infer a positive correlation within

the ecological and social categories as well as between the institution and economy

categories.

From Figure 4.3 we can also interpret that the first principle component is driven

by changes in the ecological categories indicating this may be primary drivers be-

hind the clustering of the hurricanes, and consequently a significant component of

community resilience.

4.4.3 Posterior Analysis

To further investigate the components most influential in the social resilience

fingerprint, we look at the explicit di↵erence between events of di↵erent types. The

most apparent cluster of events are Hurricanes Florence, Irma, Sandy, Harvey, and

Maria. As such, we compute the element-wise mean fingerprint of the hurricane-events

and non-hurricane-events. The element-wise di↵erence –calculated as the hurricane
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sents the di↵erence between the hurricane and non-hurricane association
of categories. Blue indicates stronger association in non-hurricane events,
while red indicates stronger association in hurricane events . Coloration
based on log-normalization of A matrices rather than Sinkhorn-Knopp for
visual clarity

mean minus the non-hurricane mean– is visualized in a heatmap in Figure 4.4. For

each pair of categories, the color of the cell value indicates whether those categories

have a stronger association among the hurricane fingerprints (colored red), or the

non-hurricane fingerprints (colored blue).

Figure 4.4 confirms the results of the PCA analysis and indicates the ecological

and infrastructure categories of resilience are much stronger in the hurricane finger-

prints than in the non-hurricane fingerprints. The interaction of infrastructure and

ecological categories are the strongest for the hurricane category among the non-

diagonal elements. At the same time, the economic-institutional relationship is most

strong among the non-hurricane events.
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4.5 Discussion

After clustering the social resilience fingerprints for all events and analyzing what

drives their similarity, we identify two major trends: first is the strong distinction

between hurricane and non-hurricane events with respect to fingerprint similarity,

and second is the importance of ecological and infrastructure resilience in making

that distinction.

We see a strong association, not just of one hurricane with another, but among all

hurricanes for which we could collect data. The hurricane-related tweet corpora were

collected in a variety of ways and span distinct spatial and temporal scales. Despite

these di↵erences, the similarity in the fingerprints indicate generalizable patterns

in community resilience in the face of hurricane impacts. Moreover, it provides a

strong evidence supporting the fingerprinting methodology. It also suggests that

Twitter is a persistent source of data about individual responses to a disaster within

a community, establishing Twitter as a valuable tool for measuring disaster resilience

across communities.

Additionally, general similarity among specific non-hurricane events indicates emer-

gent themes in the Twitter responses manifesting as similar social resilience finger-

prints of related events, and thus similarities in the underlying resilience. The relative

similarity of the California and Nepalese earthquakes, as well as the public violence

in Charlottesville and Las Vegas, both indicate that other types of major events may

also have fundamental, emergent themes decodable through Twitter discourse. We

conjecture that similarity in the social resilience fingerprints of related events is in-

dicative of fundamental similarity in the resilience of the communities facing such

events. That is, there are emergent similarities between the way di↵erent communi-

ties respond to the same event across all types of events. However, we recognize the

limitation of drawing conclusions from the similarity of only two events studied in

this paper and intend to expand upon this analysis to test our conjecture.
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The second major trend in the analysis of the social resilience fingerprints is the

influence of individual components of resilience in the separation of one event from

another. Ecology, infrastructure, and economic categories drive much of the sepa-

ration between the emergent clusters in the data. Economic resilience is intuitively

intertwined with all other categories in our definition [77, 83, 87], and is seen in the

Principle Component Analysis to contribute greatly to the distinction between clus-

ters of non-hurrican events.

The significance of infrastructure resilience in di↵erentiating between hurricane

and non-hurricne events –as seen in Figure 4.4– is likely due to the significance of in-

frastructure damage in communities a↵ected by hurricanes. Ecological resilience and

its close ties to sustainability, have been previously shown to be strong drivers of com-

munity resilience at all levels [8,77]. We see the distinction in Figure 4.3, manifesting

as the ecological loadings in the direction of the first principle component –indicating

that ecology explains the largest degree of variance among the fingerprints. This

reveals that the resilience fingerprint method is not limited by what has hampered

the previous attempts in quantifying community resilience –namely the di�culty in

acquiring data related to specific ecosystems. Due to the di�culties in finding rele-

vant measurement indicators, ecological resilience has previously been excluded from

resilience assessments [26].

The resilience fingerprints of three events were not revealed as expected: The Irish

constitutional amendment, Brexit, and the Ebola outbreak. The authors hypothe-

sized that the Irish constitutional amendment and Brexit would be similar events due

to their close physical proximity and the general political nature of the event; a trend

which did not emerge from our analysis. One explanation for the di↵erence are in

the specificity of search terms used for the generation of the Irish amendment tweet

dataset. The Irish amendment tweet dataset used 52 terms to filter by, the most

most filter terms used by almost a factor of 2 (See Appendix Table C.2 for terms);

the Brexit dataset was built on only one search term: brexit. The terms used to

filter the Irish referendum dataset are also more specific than the others, leading to
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a corpus of tweet text which may be overly specific to the Irish political system and

the issues of the referendum, lacking substantive information about the community’s

response in favor of the individuals. Tweets related to the Ebola virus additionally

showed little relation with other events. In this case, we hypothesize that the loca-

tion of the event relative to major Twitter-adoptive societies may a↵ect the ability of

fingerprinting to detect a signal. International Twitter use is lower than that of the

US [144]. As such we hypothesize that someone tweeting about Hurricane Florence

was more likely witnessing community impacts due the storm than someone tweeting

about the ebola outbreak.

4.6 Conclusion and Future Research

In this paper, we present the resilience fingerprint as a concept for understanding

community resilience as the relationship of individual components. We then calculate

a social resileince fingerprint by leveraging social media analytics guided by the com-

munity resilience theory. We find evidence that resilience fingerprinting can highlight

the di↵erent community responses to a variety of major events and identify the com-

ponents of community resilience which most contribute to the overall response. We

leverage a category-based definition of community resilience to classify the macro-

scale response on Twitter to a disaster into elements of community resilience.

In summary, the resilience fingerprint provides a concept for the multi-dimensional

analysis of the emergent responses of communities to major events. The rapid spread

of information via social media makes social resilience fingerprinting a vital comple-

ment to existing resilience analyses, capable of categorizing the community response

to a disaster.

In this work, the categories were manually coded, as guided by the literature in

community resilience. However, an ongoing extension of this work is to use automated

topic detection to both determine what individual words best comprise a resilience

category, and to determine the emergent resilience categories in an unsupervised way.
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Additionally, we aim to extend the classification of tweets beyond word-association

based on recent developments in the classification of tweets related to disasters [167].

Finally, we are expanding the fingerprinting methods to allow for the creation of a

resilience fingerprint in real time. This will provide a dynamic look at the interactions

among communities as they respond to major disasters and events.
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5. IMPROVING OPERATIONAL MEASURES OF
COMMUNITY RESILIENCE

Chapter 5 is currently under review

5.1 Introduction

Accelerated urbanization and climate change have amplified the vulnerability of

communities to climate disasters. Resilience has long served as an organizing principle

for marshalling resources to reduce vulnerability and stimulate recovery in response to

major natural hazards and disruptions [55,168]. Theoretical and analytical studies of

resilience exist in the social sciences, ecology, urban planning and engineering [17,55].

Despite disciplinary di↵erences, resilience is broadly conceptualized as capacities to

bounce back after shocks and systematically adapt and transform to preserve system

functionality [2, 28, 169]

More recently, there is a push to move beyond ontological discussions of resilience

towards an operational paradigm at the community level, with a community under-

stood as geographically linked groups of interacting individuals with shared norms

and interests [170]. Despite recent advancements in operational models of commu-

nity resilience [170–173], fundamental knowledge gaps remain. These gaps can be

traced to an overwhelming focus on bouncing back after disruptions, thus preserv-

ing the status quo. Specifically, in existing paradigms, a resilient system deviates

minimally from its current state and returns to the status quo rapidly upon disrup-

tion [29,55,80–84,86,87,89,89,90,168]. Referred to as stable-equilibrium or engineering

resilience [11,174], this paradigm has been frequently applied to economic systems [83]

and civil infrastructure [54].
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Engineering resilience has served as the foundation for many decision and poli-

cymaking frameworks aimed at building resilient and sustainable systems and com-

munities [88, 175–177]. At their core, these frameworks quantify how communities

are disrupted and recover –typically through measuring reliable access to critical in-

frastructure such as the electric power grid– and seek to identify risk factors within

communities and/or systems which mitigate disruptions and promote a rapid return

to a pre-disruption equilibrium. These frameworks are beneficial for prioritizing relief

and mitigation e↵orts, but are incomplete in operationalizing the concept of resilience

as they focus only on a system returning to the status quo rather than systematically

transforming.

In this work, we shrink the gap between conceptual and operational models of

resilience by developing methods to quantify the potential of communities to trans-

form. Based on a definition of transformation as a ‘systemic change of the urban

system’ [28] which includes nonlinear reorganizations of infrastructure, ecosystems,

lifestyles, institutions, and governance [28, 178], we measure and track the reorga-

nization and transformation of communities in conjunction with quantifying their

engineering resilience. Rather than solely focusing on identifying factors associated

with rapid recovery, we use statistical machine learning to also identify key risk fac-

tors which can catalyze or inhibit transformation. We quantify threshold e↵ects and

conduct tipping point analyses by estimating the degree of change needed in risk fac-

tors to cause transformation using the 2018 Hurricane Michael in Florida as a case

study.
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5.2 Contrastive Community Networks

To quantify how communities transform, we develop a new approach termed

Contrastive Community Networks (CCN). CCN is grounded in Self Organized Maps

(SOMs) which are a class of unsupervised learning techniques for dimension reduc-

tion and projection [184]. The CCN utilizes a SOM to create a relational network of

communities –here counties in Florida (Fig. 5.1 a)– in which proximity in the network

corresponds with similarity in demographic and socioeconomic risk factors between

counties. In contrast to previous methods which measure the temporal di↵erence in

risk factor values as a proxy for community change [173], the CCN algorithm mea-

sures transformation by monitoring for changes in risk factors substantial enough to

be detected as a change in the relational network. Thus, rather than assessing trans-

formation on the basis of change in individual risk factors, we quantify transformation

by measuring the degree of contrast between a county and its peers. This section out-

lines the data used as inputs to the CCN method (Section 5.2.1), the methods used

to calculate engineering resilience (Section 5.2.2) identify how risk factors contribute

to engineering resilience (Section 5.2.3), a description of the SOM algorithm (Section

5.2.4), and finally the CCN algorithm (Section 5.2.5).

5.2.1 Community Risk Factors

We identify a pool of county level risk factors related to the environmental opin-

ions, sociodemographic, economic, housing, and mobility characteristics for each of

the 67 counties in Florida [185, 186] (See Appendix Table D.1 for a list of the risk

factors, their sources, and descriptions). We select 96 county level variables to de-

scribe communities in the case study of Florida. The initial pool of variables are

drawn from the American Community Survey [185, 187] and Yale Program on Cli-

mate Change Communication [186]. The variables describe the sociodemographic,

economic, housing, mobility and environmental opinions for every county for the pe-
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riod of time surrounding Hurricane Michael. A full list of included variable names

and sources are listed in Appendix Table D.1.

Storm exposure data is taken from the US National Centers for Environmental

Information’s Storm Events Database [188]. county level exposure is included as a

binary variable, labeled as true if the county is included in the Storm Events Database

for Hurricane Michael, false otherwise. We also include a measure of distance to the

storm center as a continuous variable. Distance is measured as the minimum distance

between Hurricane Michael’s center and the mean population center of each county,

calculated with the R package stormwindmodel [189], with a maximum distance

of 1000 miles.

5.2.2 System Resilience: Restored Access to Electricity

As a measurement of system resilience, we measure the performance of the Florida

electric power grid as impacted by 2018 Hurricane Michael. county level power out-

ages are taken from outage reports for the Florida Division of Emergency Management

for October 10th through November 9th, 2018 [91,190]. For each of the 67 counties in

Florida, the Division of Emergency Management publishes the number of customers

without power approximately every 3 hours. At a time t, Q(t) is the fraction of the

county with access to power and represents the service level of the power system. We

leverage a formal quantification of engineering resilience for a given county [89, 92].

Resilience for a county, Rcounty is the area under the service level curve, Q(t) from

the time of first disruption t0 to the time when all outages are restored tf scaled by

the di↵erence between tf and t0. Rcounty is defined as

Rcounty =

R tf
t0

Q(t)

|tf � t0|
(5.1)

In this way, a county which lost all power immediately and remained so until it

was recovery would have a resilience value of 0 and one with no disruption would

have a resilience value of 1. Examples of the calculated resilience along with visual
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descriptions of R, t0, tf , andQ(t) are shown in Appendix Fig. D.1 and D.2. Calculated

resilience values for Hurricane Michael are given in Appendix Table D.2.

5.2.3 Engineering Resilience Model

To identify the community risk factors which contribute to system resilience, we

utilize a predictive modeling paradigm. Predictive modeling aims to find a function,

y = F̂ (X) which maps inputs (X) to outputs (y) so as to minimize a measure of

the distance between the predicted values and true values. Here, y is the county

level resilience of the power grid and X are the community risk factors, and R2 and

RMSE (Root Mean Square Error, Eq. 5.2) are used as measures of distance. RMSE

is defined as

RMSE =

rPn
i=1(yi � ŷi)2

n
(5.2)

Here, n is the total number of observations in the test dataset, yi is the ith actual

value of the response variable, and ŷi is the response estimated by the model trained

on the test data and evaluated on the test data. We train 5 model classes: linear mod-

els [134], generalized linear models [191], Random Forest modesl [192], and Bayesian

Additive Regression Trees [193] –all implemented in R [134]. Selecting model classes

based on minimizing prediction error, however, can lead to overfit models in which the

prediction error is reduced at the expense of generalization to non-training observa-

tions. To counteract this, we perform a 5-fold cross validation procedure in which data

is partitioned into 5 roughly equivalently sized folds [194]. Each fold –corresponding

to approximately 20% of the data– is removed from the dataset, while remaining 4

fold are utilized to train the statistical models. The withheld fold (the test data) is

then utilized to evaluate the out-of-sample predictive quality of the model. Out of

sample RMSE and R2 are shown in Appendix Figure D.3.

Based on out-of-sample performance measures, we select a random forest model

to relate community risk factors to system resilience. Random forest is a tree-based,
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non-parametric statistical model [195]. To predict response values, the random forest

algorithm builds B decision trees [196] on random subsets of the data. The data used

in the tree creation is called the in the bag data, and the data not used is the out of

the bag or OOB data. The random forest algorithm averages the output over B trees

to create a final estimate of the predicted variable, f̂(x) such that

f̂(x) =
1

B

BX

b=1

Tb(x) (5.3)

To extract the importance Using this trained model, we investigate the relative

importance of community risk factors using the random-forest-based, three-step vari-

able selection process VSURF [197, 198] to determine which community risk factors

most greatly contribute to single-equilibrium system resilience. VSURF, or Variable

Selection Using Random Forest is an algorithmic process for selecting the importance

of variables from random forest models which aims to simultaneously find variables

most related to the response for the purposes of interpretation, and to do this with

the smallest set of variables possible [199].

The importance of a variable, j, in a random forest model –denoted V I(Xj)–

is computed by permuting variables to determine their sensitivity to the calculated

error. Formally, errorOOB is the RMSE of a single tree on the data which was not

used to construct it. For the variable j, Xj is perturbed and the error calculated

on the perturbed dataset, called ˜errorOOB. The importance of the variable, then, is

denoted as:

V I(Xj) =
1

B

BX

b=1

( ˜errorOOB
j

t � errorOOBt) (5.4)

VI for each variable is shown in Fig. 5.3.The VSURF procedure begins by calculating

VI for every variable included in the model, and sorting them in decreasing order of

importance. Those below a threshold, chosen to be 2.95e�5 our procedure, are re-

moved. A series of random forest models are then created with the step-wise addition
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of variables in descending order of importance until the mean errorOOB decreases by

less than a pre-defined threshold.

The selected community risk factors are used as inputs to the CCN to create a

baseline: i.e., establishing the network of similarities between the communities. In

this step, 48 input nodes are selected to form the baseline CCN and each county is

mapped to one of the CCN nodes based on the values of the selected risk factors (Fig.

5.1 b). Counties which occupy adjacent or nearby nodes in the CCN have greater

similarity in the 20 selected risk factors (Fig. 5.1 a). As communities transform,

their similarity with others will morph; resulting in a reconfiguration of the CCN and

subsequently a county being mapped to alternative nodes in the CCN.

5.2.4 Self Organized Maps

To develop contrastive community networks, we utilize Self Organized Maps (SOM)

[181,184,200]. SOMs are an unsupervised learning algorithm, based on artificial neu-

ral networks, for producing a low-dimensional, nonlinear representations of complex

high-dimensional data [184]. SOM models are a graph of adjacent vertices in which

each element in high dimensions is mapped to a node in the network. The process

of assigning input data to nodes is done iteratively through a competitive learning

process detailed. The result is a graph (Fig. 5.1 a) which preserves the vectorial

topology of the input data where closer nodes (called map units) within the map

have higher similarity in the original input variables.

SOM models have been previously utilized for understanding the similarity be-

tween items in high-dimensional space without imposing assumptions on the structure

of the data [201], and when looking for trends in spatiotemporal data relating to com-

munity and urban change [202–204].

What follows is a description of the SOM training process developed by Koho-

nen [184], and implemented in R [134, 200]. For a fixed number of nodes (or map di-

mension), the training process assigns weights to each risk factor of the input data at
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each node in the map. In our experiments, 40 nodes were selected with 6 connections

between neighbors based on SOM size heuristics [205].This creates the initial map-

ping between input space (original data) and output space (the SOM). The weights

between nodes are initially assigned at random, then a random input data point is

selected. The winning map node –defined as the node with mean input data which

is closest to the selected point– is selected. The weights between winning node and

all others are updated by a value �wj,i, based on the number of iterations and the

mean risk factor values of nodes within the selected node’s topological neighborhood

T . Eq. 5.5 shows the updating procedure of �wj,i

�wj,i = ⌘(t) ⇤ Tj,I(x)(t) ⇤ (xi � wj,i) for all i, j (5.5)

where i and j refers to di↵erent neurons, xi is the value of the input data for

node i, t refers to iteration number, I(x) refers to the winning neuron, and wi,j is

the weight between node i and j. The learning rate as a function of iteration is ⌘(t),

where

⌘(t) = ⌘0 exp(�t/⌧n) (5.6)

and ⌘ decreases with t and based on a pre-assigned hyperparameter ⌧n, chosen in

our experiments to be 0.05 based on previous empirical studies [200]. The topological

neighborhood, T , defines how many neighboring nodes contribute to updating the

learning rate of the selected node and is defined where

Tj,I(x)(t) = exp(�S2
j,I(x)/2�(t)

2) (5.7)

and Sj,i is the distance between weights such that Sj,i = ||wj � wi|| and �(t) =

�0 exp(�t/⌧0), which shrinks the neighborhood size over successive iterations as well.

This process of updating node weights is repeated for for every input data point

over a fixed number of iterations, chosen to be 10000 in our experiments based on

empirically observing convergence of the distances between nodes.
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5.2.5 Contrastive Community Networks

We utilize the SOM algorithm as the basis for developing a contrastive community

network (CCN). The details of the CCN procedure are shown in Algorithm 4, and

described in summary here. Input variables for the CCN are the community risk

factors, r, selected as important in the VSURF procedure for each county in Florida

with storm exposure variables removed so as to compare communities on the basis

of their structure rather than their hazard exposure. Risk factors are scaled to a

standard deviation of 1 with mean 0 to facilitate integration of input data of di↵erent

magnitudes into the training of the SOM in line with previous empirical studies [200].

For each county, c, and each risk factor r, the initial node the county is mapped

to in the SOM, n0 is recorded. The value of the risk factor for the given county, xr,c

is perturbed in increments of 0.01 (� in Algorithm 4) which is in units of standard

deviation of each risk factor. Each risk factor is perturbed starting from its lower

limit, Rmin
i to its upper limit, Rmax

i .

For risk factors with implicitly have lower and/or upper limits based on the way

they are calculated –like county level fractions of the population or income inequality

which are defined on the range [0, 1]– we scale the limits in the same way as the input

data and utilize the scaled values as limits to the perturbation of each risk factor.

For risk factors without explicit limits –such as income deficit– we perturb values

within a range of 1.5 times the minimum and maximum risk factor observed across

the counties.

At each perturbation iteration, the perturbed risk factor x0
r,c is included in the

set of all risk factors across all counties, and an updated SOM, S 0 is calculated.

The node the county is mapped to with the updated risk factor values, n1, is then

compared against n0. If the new node, n1 is di↵erent than the original node n0, the

euclidean distance between them is denoted tr,c which represents the length of the

transformation trajectory, and x0
r,c at the value of the change is the transformation

threshold.
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Algorithm 4 Contrastive Community Network

1: ri is a risk factor, where ri 2 [Rmin
i , Rmax

i ]
and X = {ri} 8i

2: c is a county where c = {1, . . . , C}
3: N(S, c) is the node of the self organized

map, S which county c maps to
4: ni is an arbitrary node i in the SOM
5: tr,c is the temporal trajectory length for

factor r and county c, and T = [tr,c] 8r, c
6: |ni, nj |S as the euclidean distance in the

SOM S between nodes i and j
7: Select predictive model F using cross-

validation
8: Select important features, x using vari-

able selection on F

9: Train SOM, S = SOM(X 0)
10: Tune SOM hyperparameters to minimize

mean distance from county to node
11: for all r 2 X do
12: for all c 2 C do
13: n0 = N(S, c)
14: xr,c = Rmin

15: while xr,c 2 [Rmin
i , Rmax

i ] do
16: x0r,c = xr,c + �
17: S0 = SOM(X 0)
18: n1 = N(S0, c)
19: if n0! = n1 then
20: tr,c = |n0, n1|S0

CCN algorithm to return the set of temporal trajectories for each county and risk factor.
In summary, the algorithm trains a self-organized map based on pre-selected community
features, then systematically perturbs the values of the risk factors and remaps the counties
to the SOM using the perturbed risk factors to determine if reconfiguration occurs.

Computing multiple SOMs with alternative input data and has previously been

utilized to understand how high-dimensional data about the makeup of communities

transform over time [202–204]. As neighboring nodes in the CCN are of higher sim-

ilarity than those farther apart, a county being re-mapped to a node farther away

indicates a greater degree of transformation; thus the length of the transformation

trajectory represents the magnitude of reorganization as a result of the change in the

community risk factor. This process is outlined in detail in Algorithm 4.
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5.3 Results

5.3.1 Quantifying Community Transformation

After creating a baseline CCN, we perturb each community risk factor for each

county, monitoring the configuration of the CCN at every updated value. We do this

until the perturbation is great enough that the structure of the CCN re-organizes or

’tips’ into an alternative configuration and county is mapped to a non-baseline node

(Fig. 5.2b,c). Tracing the location of a county within the CCN as it re-organizes is

called the county’s transformation trajectory [202, 203] (see Appendix Figure D.4),

and the distance from the original to updated node within the CCN corresponds

with the degree of transformation experienced. To illustrate the insights that can be

drawn from this approach coupled with an engineering resilience model, we calculate

the temporal trajectories for each risk factor in Bay County Florida (Fig. 5.2): a

county which experienced extensive damage due to Hurricane Michael [206].

Results indicate that in Bay County, only 8 community risk factors (40% of those

evaluated) have the possibility of triggering community transformation (Fig.5.2 a).

For those which trigger transformation, we calculate the transformation threshold : the

percentage increase or decrease in the risk factor associated with CCN reconfiguration.

Transformation thresholds provide a relative comparison of the importance of risk

factors as they contribute to transformation, such that counties or risk factors with

lower thresholds are more sensitive to transforming.

In Bay County, two risk factors –the county level fraction of individuals who moved

within the county and county level fraction of renter-occupied housing– have negative

transformation thresholds while the other six (Fig.5.2 a) are positive. The six positive

risk factors are the county level fraction of workers commuting primarily by public

transportation, the county level fraction of the population who has moved to a given

county from elsewhere in Florida in the past year, the county level measures of racial

and income inequality, the county level fraction of the population who primarily works

from home, and the county level fraction of the population that has lived in the same
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residence for more than one year. These thresholds range from 11% (county level

fraction of the population living in the same residence for more than one year ) to

260% (county level fraction of workers commuting by public transportation). These

transformation thresholds have two interpretations based on the normativity of the

risk factor and the sign of the transformation.

5.3.2 Transformation vs. Degradation

In instances where the transformation threshold is positive and the risk factor

is normatively good or neutral (i.e. risk factors for which an increase would be a

community improvement and the threshold is positive), the transformation threshold

represents a target for policy and decision makers. For example, in Bay County, a

positive increase in the fraction of the population who commutes by public trans-

portation –a normatively positive risk factor for improving the sustainability of a

community [207]– will lead to community transformation (Fig. 5.2 a). This is in line

with previous work which has found that access to public transportation provides

sustainability and resilience benefits by improving individual health and equitable

community connectivity [208, 209]. This also applies to the inverse, in which norma-

tively negative risk factors have negative transformation thresholds which serves as

reduction targets.

Alternatively, community risk factors which are normatively negative but with

positive transformation thresholds are indications of the potential for negative trans-

formation or degradation. These degradation thresholds serve to highlight vulnerable

community risk factors which could lead to a systematic transition toward negative

outcomes. In Bay County, racial inequality and income inequality are both norma-

tively negative risk factors which have positive transformation thresholds (Fig. 5.2a).

A 29% increase in income inequality, for example, would lead to transformation, but

represents a negative community outcome. As inequality in socioeconomic status is a



86

key contributor to vulnerability [25], this threshold outlines the relative degradation

risk faced by Bay County as a result of changes in income inequality.

In instances where the transformation threshold is positive and the attribute is nor-

matively good or neutral (i.e. attributes for which an increase would be a community

improvement and the threshold is positive), the transformation threshold represents a

target for policy and decision makers. For example in Bay County, a positive increase

in the fraction of a population who commutes by public transportation –a norma-

tively positive attribute for improving the sustainability of a community [207]– will

lead to community transformation (Fig. 5.2 a), in line with previous work which has

found that access to public transportation provides resilience benefits by improving

individual health and equitable community connectivity [208, 209]. This also applies

to the inverse, in which normatively negative attributes have negative transformation

thresholds which serves as reduction targets.

5.3.3 Engineering Resilience and Transformation

To provide a more complete operational model of resilience which includes both

engineering resilience and transformation, we calculate the relative contribution of

risk factors toward transformation across the entire state of Florida, and compare

those to risk factors associated with increased engineering resilience. Engineering

resilience methods for assessing community resilience and access to critical services

utilize predictive or explanatory modeling techniques to relate risk factors to disaster

outcomes [82,170–173,210].



87

St
or

m
 E

xp
os

ur
e

W
ith

in
 S

ta
te

 R
el

oc
at

io
n

C
el

lp
ho

ne
 O

nl
y

G
ED

Ba
tc

he
lo

r's
 D

eg
re

e

C
om

m
ut

in
g 

Al
on

e

W
ith

in
 C

ou
nt

y 
R

el
oc

at
io

n

R
ac

ia
l I

ne
qu

al
ity

In
co

m
e 

Th
ro

ug
h 

In
te

re
st

In
te

rn
et

 A
cc

es
s

1−
ye

ar
 H

ou
si

ng
 T

en
ur

e

W
al

ki
ng

 C
om

m
ut

e

R
en

ts
 D

we
llin

g

In
co

m
e 

In
eq

ua
lit

y

Sp
ea

ki
ng

 S
pa

ni
sh

Pu
bl

ic
 T

ra
ns

po
rta

tio
n 

C
om

m
ut

in
g

Sp
ea

ki
ng

 A
PI

Ab
ro

ad
 R

el
oc

at
io

n

Po
pu

la
tio

n

W
or

ki
ng

 F
ro

m
 H

om
e

In
co

m
e 

D
ef

ic
it

St
or

m
 D

is
ta

nc
e

−0
.2

5
0.

00
0.

25
0.

50
R

el
at

ive
 V

ar
ia

bl
e 

Im
po

rta
nc

e

Va
ria

bl
e 

Im
pa

ct
N

eg
at

ive

Po
si

tiv
e

C
on

tri
bu

tio
n 

of
 V

ar
ia

bl
es

 to
 P

ow
er

 S
ys

te
m

 R
es

ilie
nc

e
a

●

●

●

●

●

●

●

●

30
0 

km

N

20
18
−1

0−
10

20
18
−1

0−
11

25
°N

26
°N

27
°N

28
°N

29
°N

30
°N

31
°N 88

°W
86
°W

84
°W

82
°W

80
°W

Lo
ng

itu
de

Latitude

0.
4

0.
6

0.
8

1.
0

G
rid

 R
es

ilie
nc

e

C
ou

nt
y 

Le
ve

l P
ow

er
 S

ys
te

m
 R

es
ilie

nc
e

b

F
ig
u
re

5.
3.

C
om

m
u
n
it
y
ri
sk

fa
ct
or
s
co
nt
ri
b
u
ti
n
g
to

b
as
el
in
e
en
gi
n
ee
ri
n
g
re
si
li
en
ce
.
(a
)
S
h
ow

s
th
e
re
su
lt
s
of

th
e

m
ac
h
in
e-
le
ar
n
in
g
va
ri
ab

le
se
le
ct
io
n
in
d
ic
at
in
g
w
h
ic
h
co
m
m
u
n
it
y
as
p
ec
ts

h
av
e
th
e
h
ig
h
es
t
re
la
ti
ve

co
nt
ri
b
u
ti
on

to
re
si
li
en
ce

an
d
w
h
et
h
er

th
ey

m
ak
e
a
p
os
it
iv
e
(y
el
lo
w
)
or

n
eg
at
iv
e
(b
lu
e)

co
nt
ri
b
u
ti
on

to
re
si
li
en
ce
.
(b
)
a
m
ap

co
lo
re
d
by

th
e
re
si
li
en
ce

of
th
e
p
ow

er
gr
id

to
H
u
rr
ic
an

e
M
ic
h
ae
l
al
on

g
w
it
h
th
e
st
or
m
’s

tr
ac
k.

D
ar
ke
r
co
u
nt
ie
s

w
er
e
m
or
e
re
si
li
en
t
to

th
e
st
or
m
.
F
ig
u
re
s
(a
-b
)
cr
ea
te
d
in

R
(v

3.
2.
1;

ht
tp
s:
//
w
w
w
.r
-p
ro
je
ct
.o
rg
/)

[1
79
]
u
si
n
g

th
e
g
g
p
l
o
t
2
p
ac
ka
ge

(v
3.
3.
0;

ht
tp
s:
//
gg
p
lo
t2
.t
id
yv

er
se
.o
rg
/)

[1
80
].

P
lo
t
b
ad

d
it
io
n
al
ly

u
se
d
u
s
m
a
p
(v

0.
5.
0;

ht
tp
s:
//
gi
th
u
b
.c
om

/p
d
il
/u

sm
ap

)
[1
82
].
M
ap

sh
ap

efi
le
s
in

b
ar
e
fr
om

u
s
m
a
p
an

d
th
e
U
S
C
en
su
s
B
u
re
au

[1
83
].



88

Table 5.1.
CCN importance and engineering resilience importance.

Risk Factor CCN Impor-
tance Ranking
(Fig. 5.2 a)

Engineering Re-
silience Impor-
tance Ranking
(Fig. 5.3 a)

1-year Housing Tenure 1 17

Income Inequality 2 11

Internet Access 3 18

Within County Relocation 4 16

Within State Relocation 5 1

Working From Home 6 4

Rents Dwelling 7 12

Racial Inequality 8 20

Public Transportation Commuting 9 8

Given the localized and place-based nature of community resilience [211], and in

line with previous studies [171, 173], we perform our analysis at a county level and

use the same set of county level risk factors as the CCN. In the engineering resilience

model, these indicators serve as independent variables in a model which predict the

performance of critical infrastructure while controlling for population and hazard ex-

posure (see Section 5.2.1); in our case study, this is the engineering resilience of the

power grid at a county level in response to 2018 Hurricane Michael in Florida (Fig.

5.3b). By comparing the relative contribution of the risk factors toward improv-

ing engineering resilience with the contribution toward activating transformation, we

demonstrate the importance of including both transformation and engineering re-

silience when operationalizing concepts of community resilience.
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5.3.4 Triggering Transformation

Comparing the transformation thresholds and trajectories for all risk factors and

counties in Florida (Fig. 5.4) against the risk factors identified as important in a

engineering resilience model (Fig. 5.3), we find that the majority of risk factors

identified as important for transformation are not identified as significant contributors

to engineering resilience (Tab. 5.1). The risk factors with the lowest transformation

thresholds are: the county level fraction of households who have lived in their current

residence for over one year (10.3%), county level income inequality (15.8%), and

county level internet access (43.9%). In the case of these three risk factors, the are

the 17, 11, and 18th most important toward contributing to engineering resilience

(Fig. 5.3 a).

Length of residence in a disaster-prone region is associated with decreased like-

lihoods of evacuation from major hurricanes, and greatly reduces perceptions of

risk [212,213]. While the links between risk perception and community resilience are

still being understood [214], we believe the importance of this risk factor in contribut-

ing to transformation comes from the place-based nature of community resilience and

the social capital built with increased length of residence. Income inequality has

also been identified as tightly linked to disaster outcomes; having been identified as

both a consequence of major disasters [215], and a driver of more severe disaster out-

comes [216], and individual behavior [217]. Access to communication technology has

also been identified as a component of resilience in previous work [26,218].

5.3.5 Resilience Traps

The community risk factors which are identified as important through the engi-

neering resilience model but do not allow for any possibility of transformation repre-

sent resilience traps. The term trap is used in many instances to describe feedback

loops in which governance and interventions designed to rectify a larger societal prob-

lem contribute or exacerbate the problem, such as poverty traps in which individuals
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are held in impoverished conditions by external forces [219], and rigidity traps when

institutions and systems become self-reinforcing, and inflexible [220].

Contrary to poverty and rigidity traps —conceptualized as entirely social phenom-

ena— resilience traps occur when mutually reinforcing socio-techno-ecological feed-

backs drive systems towards persistent maladaptive states [221]; in essence emerging

when short-term strategies are favored in the name of resilience over those which

promote continual adaptation [222]. We argue that resilience traps occur because

of an incomplete translation of resilience concepts into operational models, in which

engineering resilience is the dominant paradigm. We identify risk factors which may

be resilience traps in our case study by comparing the transformation thresholds for

each risk factor and county in Florida with the relative importance of the risk factors

contributing to engineering resilience. Risk factors which are candidates for being

resilience traps are those which have a high relative importance in contributing to

engineering resilience, but do not have any potential for transformation.

We find that of the risk factors included in the CCN, 11 of the 20 have no potential

for transformation in any county evaluated in Florida while 9 allow for transformation

in at least one (Fig. 5.4a-d). Of those which allow for transformation, county level

income inequality has the smallest mean transformation threshold (6.25% across all

counties), while the county level fraction of the population commuting by public

transportation is the largest, with a mean transformation threshold of 12,042%. For

the risk factors which do not allow for transformation, their importance as determined

by an engineering resilience model is listed in Table 5.2.

The risk factors which do not allow for transformation range from the 4th to

20th most important variables as determined by the engineering resilience model

(Tab. 5.2). The discrepancy in importance between engineering resilience and trans-

formation highlight the possibility of resilience traps when aiming to operationalize

the resilience of communities; and the potential barriers imposed by current resilience

paradigms. Short-sighted policies, interventions, and investments motivated by solely

prioritizing the risk factors which are associated with rapid recovery can entrench un-
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tenable and non-sustainable aspects of the status quo [17] and inhibit transformation

needed to promote a sustainable and resilient society.

5.3.6 Improved Operationalization of Community Resilience

In this section, we show the importance of including both engineering and trans-

formation aspects of resilience when developing operational models by integrating the

results of the CCN and engineering resilience models in our case study with previous

work analyzing risk factors contributing to community resilience.

Income Deficit and Income Through Interest are two risk factors which do not

contribute to transformation but are positively associated with engineering resilience.

Income deficit quantifies the cumulative amount below the poverty line for all impov-

erished households the county [185]. This shows not just the number of households

below the poverty line, but the degree of poverty experienced 1 Income through in-

terest is the fraction of households receiving income through interest, dividends or

net rental income [185]. Previous work has found that higher income is associated

with positive disaster outcomes [223] and is the most widely used resilience indica-

tor [224]. There is also extensive evidence showing a greater impact of disasters on

low income populations [26, 225]. Additionally, disasters create permanent increases

rent in a↵ected areas, while wealthy households expand their post-disaster real es-

tate holdings [226]. Finally, federal disaster aid is primarily allotted to homeowners

for disaster recovery [218]. Coupled these existing findings with CCN results which

show that income-related risk factors do not contribute to transformation, we argue

that the impact of income on disaster outcomes is based on the ability of wealthy

communities to recover rapidly.

Additionally, the Commuting Alone risk factor –the fraction of a county who

primarily commutes alone by car– is negatively associated with engineering resilience,

while the fraction of a county who commutes by walking (Walking Commute) is

1Note that deficit is a negative value so higher values of it correspond with less cumulative poverty.
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positively associated with engineering resilience. This confirms previous results which

show the prioritization of post-disaster recovery which favors higher-walkability urban

areas as opposed to suburban or rural areas [115]. Finally, we note that two education-

based risk factors –the fraction of a county with bachelor’s degrees and GEDs as their

highest degrees earned (Bachelor’s Degree, and GED)– are negatively associated with

engineering resilience. In this instance, we believe this is due to the proximity of the

landfall location of Hurricane Michael to Leon County, FL. Leon County is home to

Tallahassee and Florida State University both contributing to the county having the

second highest proportion of Bachelor’s earners in the state.

Minority groups are frequently identified as vulnerable to disaster impacts [227,

228], however in our case study the fraction of communities speaking primarily Span-

ish (Speaking Spanish) or Asian and Pacific Island languages (Speaking API ) are both

positively associated with resilience outcomes in the engineering resilience model. We

believe this indicates the presence of community organization and cohesion which is

strongly associated with positive resilience outcomes [229].

Table 5.2.
Engineering resilience importance for non-transformation risk factors

Risk Factor Engineering Re-
silience Impor-
tance Ranking
(Fig. 5.3 a)

Cellphone Only 4

Income Deficit 5

GED 7

Abroad Relocation 9

Speaking API 10

Speaking Spanish 12

Bachelor’s Degree 13

Commuting Alone 16

Walking Commute 17

Income Through Interest 20
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As is the case with all of the aforementioned risk factors, policy decisions and in-

terventions based recovery-oriented risk factors will neglect the transformative aspects

of resilience which are required for long-term sustainability. This echos qualitative

analyses of resilience-oriented policies which have found that the unilateral empha-

sis on restoring the status quo in engineering resilience models engenders norms and

policies which inhibit the ability of communities to transform into alternative stable

states [15, 24, 169, 230, 231]. Transformation as a process within communities is crit-

ical when a current system is untenable [232], and thus will be vital for attaining a

high-sustainability future [28, 233].

By developing quantitative methods to assess the ability of communities to trans-

form, we aim to shrink the gap between conceptual and operational models of re-

silience. We find that –when changed– only a subset of risk factors allow for transfor-

mation within a community and within those, certain risk factors will lead to positive

transformation if they are improved while others will lead to negative transforma-

tion if they deteriorate. Furthermore, we identify resilience traps in which existing,

engineering resilience models place importance on risk factors which ultimately do

not allow for community transformation. The methods utilized in this work are scale

and system agnostic. This allows for the systems analyzed and scale of analysis

to be tailored to the scale and importance needed for e↵ective decision-making. In

this way, decision and policymakers can evaluate the level of transformation achiev-

able through implementation policies and interventions to promote sustainable and

resilient lifestyles, economies and societies.
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Table A.1.
Summary statistics for the distribution of e�ciency for respective failure

modes. Failure fraction represents the fraction of the network which was
induced as failed in each iteration. Results presented in the body of the
work represent a failure fraction of 0.6

Generation
method

Failure
fraction

Mean Standard
deviation

Median Min Max

Random 0.1 0.0178 0.0025 0.0174 0.0138 0.0245

BFS 0.1 0.0298 0.0046 0.0297 0.0215 0.0363

DFS 0.1 0.0308 0.0042 0.0320 0.0217 0.0363

Random 0.2 0.0124 0.0016 0.0121 0.0095 0.0191

BFS 0.2 0.0294 0.0050 0.0278 0.0213 0.0408

DFS 0.2 0.0312 0.0066 0.0293 0.0216 0.0410

Random 0.3 0.0099 0.0013 0.0097 0.0076 0.0134

BFS 0.3 0.0307 0.0056 0.0295 0.0236 0.0427

DFS 0.3 0.0324 0.0075 0.0286 0.0232 0.0443

Random 0.4 0.0084 0.0010 0.0083 0.0059 0.0119

BFS 0.4 0.0313 0.0043 0.0294 0.0257 0.0410

DFS 0.4 0.0310 0.0033 0.0304 0.0243 0.0390

Random 0.5 0.0076 0.0009 0.0075 0.0058 0.0099

BFS 0.5 0.0360 0.0055 0.0358 0.0255 0.0467

DFS 0.5 0.0340 0.0023 0.0343 0.0279 0.0384

Random 0.6 0.0070 0.0011 0.0070 0.0047 0.0100

BFS 0.6 0.0414 0.0071 0.0420 0.0240 0.0494

DFS 0.6 0.0393 0.0038 0.0401 0.0270 0.0463

Random 0.7 0.0068 0.0015 0.0069 0.0043 0.0119

BFS 0.7 0.0479 0.0127 0.0462 0.0264 0.0751

DFS 0.7 0.0506 0.0052 0.0508 0.0322 0.0659

Random 0.8 0.0071 0.0016 0.0069 0.0035 0.0126

BFS 0.8 0.0561 0.0174 0.0533 0.0294 0.0880

DFS 0.8 0.0699 0.0126 0.0724 0.0427 0.0867

Random 0.9 0.0097 0.0031 0.0097 0.0045 0.0184

BFS 0.9 0.0659 0.0208 0.0609 0.0392 0.1389

DFS 0.9 0.0971 0.0140 0.0961 0.0600 0.1372
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Table A.2.
Summary statistics for the distribution of e�ciency for respective failure

modes scaled by the e�ciency when the network is fully repaired. In this
table, a value of 100 is the same performance metric seen at a fully repaired
system.

Generation
method

Failure
fraction

Mean Median Min Max

Random 0.1 52.29 51.12 40.54 71.97

BFS 0.1 87.54 87.25 63.16 106.64

DFS 0.1 90.48 94.01 63.75 106.64

Random 0.2 36.43 35.55 27.91 56.11

BFS 0.2 86.37 81.67 62.57 119.86

DFS 0.2 91.66 86.08 63.45 120.45

Random 0.3 29.08 28.50 22.33 39.37

BFS 0.3 90.19 86.66 69.33 125.44

DFS 0.3 95.18 84.02 68.16 130.14

Random 0.4 24.68 24.38 17.33 34.96

BFS 0.4 91.95 86.37 75.50 120.45

DFS 0.4 91.07 89.31 71.39 114.57

Random 0.5 22.33 22.03 17.04 29.08

BFS 0.5 105.76 105.17 74.91 137.19

DFS 0.5 99.88 100.76 81.96 112.81

Random 0.6 20.56 20.56 13.81 29.38

BFS 0.6 121.62 123.38 70.51 145.12

DFS 0.6 115.45 117.80 79.32 136.02

Random 0.7 19.98 20.27 12.63 34.96

BFS 0.7 140.72 135.72 77.56 220.62

DFS 0.7 148.65 149.24 94.59 193.60

Random 0.8 20.86 20.27 10.28 37.02

BFS 0.8 164.81 156.58 86.37 258.52

DFS 0.8 205.35 212.69 125.44 254.70

Random 0.9 28.50 28.50 13.22 54.05

BFS 0.9 193.60 178.91 115.16 408.05

DFS 0.9 285.25 282.31 176.26 403.06
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Table A.3.
Summary statistics for the distribution of largest connected component

(LCC) for respective failure modes.

Generation
method

Failure
fraction

Mean Standard
deviation

Median Min Max

Random 0.1 84.46 23.86 83.00 42.00 138.00

BFS 0.1 158.22 35.67 160.50 82.00 202.00

DFS 0.1 164.34 35.36 181.00 80.00 202.00

Random 0.2 41.89 12.49 40.00 20.00 87.00

BFS 0.2 122.21 32.35 125.00 82.00 179.00

DFS 0.2 125.23 43.74 111.50 66.00 180.00

Random 0.3 25.54 8.05 24.00 13.00 50.00

BFS 0.3 105.79 29.70 91.00 64.00 154.00

DFS 0.3 105.84 40.11 80.50 54.00 159.00

Random 0.4 16.90 4.33 16.00 9.00 29.00

BFS 0.4 85.47 19.73 82.00 44.00 129.00

DFS 0.4 73.91 13.19 70.00 44.00 124.00

Random 0.5 12.22 2.83 12.00 7.00 21.00

BFS 0.5 76.04 17.13 82.00 39.00 100.00

DFS 0.5 62.14 7.92 64.00 41.00 80.00

Random 0.6 9.05 2.32 9.00 5.00 15.00

BFS 0.6 62.94 17.71 66.50 28.00 83.00

DFS 0.6 53.75 9.54 53.00 28.00 76.00

Random 0.7 6.80 1.51 7.00 4.00 12.00

BFS 0.7 46.78 15.55 47.00 17.00 68.00

DFS 0.7 47.43 7.66 49.00 24.00 66.00

Random 0.8 5.03 1.01 5.00 3.00 8.00

BFS 0.8 28.57 9.98 28.00 10.00 46.00

DFS 0.8 35.42 9.02 38.00 16.00 46.00

Random 0.9 3.40 0.57 3.00 3.00 5.00

BFS 0.9 11.49 4.49 10.00 5.00 24.00

DFS 0.9 16.25 3.35 16.00 9.00 24.00
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Table A.4.
Summary statistics for the distribution of largest connected component

(LCC) for respective failure modes, scaled by the total LCC when the net-
work is fully repaired. In this table, a value of 100 is the same performance
metric seen at a fully repaired system.

Generation
method

Failure
fraction

Mean Median Min Max

Random 0.1 37.87 37.22 18.83 61.88

BFS 0.1 70.95 71.97 36.77 90.58

DFS 0.1 73.70 81.17 35.87 90.58

Random 0.2 18.78 17.94 8.97 39.01

BFS 0.2 54.80 56.05 36.77 80.27

DFS 0.2 56.16 50.00 29.60 80.72

Random 0.3 11.45 10.76 5.83 22.42

BFS 0.3 47.44 40.81 28.70 69.06

DFS 0.3 47.46 36.10 24.22 71.30

Random 0.4 7.58 7.17 4.04 13.00

BFS 0.4 38.33 36.77 19.73 57.85

DFS 0.4 33.14 31.39 19.73 55.61

Random 0.5 5.48 5.38 3.14 9.42

BFS 0.5 34.10 36.77 17.49 44.84

DFS 0.5 27.87 28.70 18.39 35.87

Random 0.6 4.06 4.04 2.24 6.73

BFS 0.6 28.22 29.82 12.56 37.22

DFS 0.6 24.10 23.77 12.56 34.08

Random 0.7 3.05 3.14 1.79 5.38

BFS 0.7 20.98 21.08 7.62 30.49

DFS 0.7 21.27 21.97 10.76 29.60

Random 0.8 2.26 2.24 1.35 3.59

BFS 0.8 12.81 12.56 4.48 20.63

DFS 0.8 15.88 17.04 7.17 20.63

Random 0.9 1.52 1.35 1.35 2.24

BFS 0.9 5.15 4.48 2.24 10.76

DFS 0.9 7.29 7.17 4.04 10.76
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Table C.3.
Categories of resilience and associated keywords. Keywords are manually
coded based on conceptual definitions of resilience categories.

Ecological Social Economy Institution Infrastructure Quality

ecological social economy institution power community
ecology love nation nation nation love
erosion peace market hospital emergency life
wetlands prayer business vote flight home
biology family bank poll airplane hospice
coast life trade country safe hospital
marsh bless stock police water protest
dune spirit politic mayor power health
fish protest money president relief school
bird rally dollar governor city doctor
river monument credit senator coal nurse
climate change god job flag evacuate medic
rainfall church jobs doctor airport safe
nature donate work nurse cell found
floodwater aid money govern water aid
beach network wealth school outage humanatarian
sun church property medic road life
stream faith pay fema bus health
flood friend employer shelter car depression
storm friends employee school infrastructure
wind family potus
rain pray red cross
water neighborhood church
weather town evacuate
beach homeland
tropic responders
climate fema

ems
police
fire
government
alderman
county
o�cials
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APPENDIX D

APPENDIX FOR CHAPTER 4

Resilience Calculation Figures
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Figure D.1. Power Outages During Hurricane Michael for Bay County, FL

Examples of the resilience calculation performed for each county. For each county,

the value Q(t) is the fraction of the county with access to power at time t; represented

in these figures as the solid black lines. The time of initial disruption, t0 is the first

time in which Q(t) drops below 0.99 (a pre-defined threshold; represented in Figs.

D.1 and D.2 as the left-most black circle. Similarly, tf is the first post-disruption

time in which Q(t) exceeds 0.99 and is shown in the above figures as the right-most
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Figure D.2. Power Outages During Hurricane Michael for Holmes County,
FL

black circles. The numerator of the Eq. 5.1 for calculating Rcounty,
R tf
t0

Q(t), is shaded

green in Figs.D.1 and D.2. tf � t0|, the denominator of Rcounty, is the duration of

time between the initial disruption and repair time.
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Model selection plots and comparisons

null lm GLM RF BART
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Figure D.3. Out of sample RMSE and R2 for the prediction of engineering
resilience as a function of the selected community risk factors. Note the null
model’s out of sample R2 is 0 because the standard deviation of predictions
is 0.
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Community Risk Factors

Table D.1.: Original Input Variables

Category Variable

Name

Description Year (s) Source

Demographics Population County level popu-

lation

2018 American Commu-

nity Survey, Table:

B01003 [185]

Racial In-

equity

Kolm’s Inequality

Measure of racial

demographcs of

census tracts in

each county

2018 American Community

Survey,Table: B02001

[185]

Citizenship County level frac-

tion of population

who are citizens

2018 American Commu-

nity Survey, Table:

B05001 [185]

Housing 1-Year

Housing

Tenure

County level frac-

tion of population

living in the same

home for more than

1 year

2018 American Commu-

nity Survey, Table:

B07001 [185]

Within

County

Relocation

County level frac-

tion of population

who moved within

the state in the past

year

2018 American Commu-

nity Survey, Table:

B07001 [185]
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Within

State

Relocation

County level frac-

tion of population

who moved from

outside the county

but within the state

in the past year

2018 American Commu-

nity Survey, Table:

B07001 [185]

Out of

State

Relocation

County level frac-

tion of population

who moved from

outside the state

but within the US

in the past year

2018 American Commu-

nity Survey, Table:

B07001 [185]

Abroad

Relocation

County level frac-

tion of population

who moved from

outside the US in

the past year

2018 American Commu-

nity Survey, Table:

B07001 [185]

Household

Size,

Renters

County level aver-

age household size

of renter-occupied

housing units

2018 American Commu-

nity Survey, Table:

B25010 [185]

Household

Size, Own-

ers

County level aver-

age household size

of owner-occupied

housing units

2018 American Commu-

nity Survey, Table:

B25010 [185]
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Rents

Dwelling

County level frac-

tion of population

in renter-occupied

housing

2018 American Commu-

nity Survey, Table:

B25008 [185]

Mobility Commuting

Alone

County level frac-

tion of population

who primarily com-

mutes in a car,

truck or van alone

2018 American Commu-

nity Survey, Table:

B08101 [185]

Carpool

Commute

County level frac-

tion of population

who primarily com-

mutes by carpool-

ing in a car, truck,

or van

2018 American Commu-

nity Survey, Table:

B08101 [185]

Public

Trans-

portation

Commut-

ing

County level frac-

tion of population

who primarily com-

mutes via public

transportation (ex-

cluding taxis)

2018 American Commu-

nity Survey, Table:

B08101 [185]

Walking

Commute

County level frac-

tion of population

who primarily com-

mutes by walking

2018 American Commu-

nity Survey, Table:

B08101 [185]
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Bike, cab,

other com-

muting

County level frac-

tion of population

who primarily

commutes by taxi-

cab, motorcycle,

bicycle, or other

means

2018 American Commu-

nity Survey, Table:

B08101 [185]

Working

From

Home

County level frac-

tion of population

who primarily

works from home

2018 American Commu-

nity Survey, Table:

B08101 [185]

Educational

Attainment

High

School

Degree

County level frac-

tion of population

over 25 with a

regular high school

diploma

2018 American Commu-

nity Survey, Table:

B15003 [185]

GED County level frac-

tion of population

over 25 with a GED

or alternative cre-

dential

2018 American Commu-

nity Survey, Table:

B15003 [185]

Associates

Degree

County level frac-

tion of population

over 25 with an As-

sociate’s degree

2018 American Commu-

nity Survey, Table:

B15003 [185]
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Bachelor’s

Degree

County level frac-

tion of population

over 25 with a

Bachelor’s degree

2018 American Commu-

nity Survey, Table:

B15003 [185]

Language Speaks En-

glish

County level frac-

tion of population

5 years and older

speaking only En-

glish at home

2018 American Commu-

nity Survey, Table:

B16007 [185]

Speaks

Spanish

County level frac-

tion of population

5 years and older

speaking Spanish

at home

2018 American Commu-

nity Survey, Table:

B16007 [185]

Speaks

Indo-

European

County level frac-

tion of population

5 years and older

speaking other

Indo-European

Languages at home

2018 American Commu-

nity Survey, Table:

B16007 [185]

Speaks

API

County level frac-

tion of population

5 years and older

speaking Asian and

Pacific Island Lan-

guages at home

2018 American Commu-

nity Survey, Table:

B16007 [185]
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Income Income In-

equality

County level Gini

Index of income in-

equality

2018 American Commu-

nity Survey, Table:

B19083 [185]

Aggregate

Household

Income

County level ag-

gregate household

income in the past

12 months in 2018

inflation-adjusted

dollars

2018 American Commu-

nity Survey, Table:

B19025 [185]

Income

Through

Earning

County level frac-

tion of households

with income from

wage or salary in-

come

2018 American Commu-

nity Survey, Table:

B19051 [185]

Income

Through

Interest

County level

fraction of house-

holds with income

through interest,

dividends or net

rental income

2018 American Commu-

nity Survey, Table:

B19054 [185]

Income

Through

SSI

County level frac-

tion of households

with Social Secu-

rity income

2018 American Commu-

nity Survey, Table:

B19054 [185]

Communication Internet

Access

County level frac-

tion of households

with internet access

2018 American Commu-

nity Survey, Table:

B28002 [185]
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Cellphone

Only

County level frac-

tion of households

with only a cellular

data plan with no

other type of inter-

net subscription

2018 American Commu-

nity Survey, Table:

B28002 [185]

No In-

ternet

Access

County level frac-

tion of households

without internet

access

2018 American Community

Survey, Table:B28002

[185]

Climate

Change

Opinions

Climate

Opinions

County level PCA

decomposition of

positive responses

to climate change-

related polls

2019 Yale Program on Cli-

mate Change Commu-

nication [186]

In addition, the census-tract level data was collected for each ACS variable and

Kolm’s inequality measure [245] was computed for each county and variable. 1-year

Data from the American Community Survey are collected from January 1st 2018 to

December 31st 2018 for populations of 20,000 or more.
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Table D.2.: County and resilience values for each county

in Florida during Hurricane Michael (2018)

County Resilience value

ALACHUA 0.9259779

BAKER 1.0000000

BAY 0.6339356

BRADFORD 0.8244461

BREVARD 0.9860843

BROWARD 1.0000000

CALHOUN 0.4019630

CHARLOTTE 1.0000000

CITRUS 1.0000000

CLAY 1.0000000

COLLIER 1.0000000

COLUMBIA 0.9881542

DESOTO 1.0000000

DIXIE 1.0000000

DUVAL 1.0000000

ESCAMBIA 0.9681062

FLAGLER 1.0000000

FRANKLIN 0.3629637

GADSDEN 0.5167954

GILCHRIST 0.4537804

GLADES 1.0000000

GULF 0.5326955
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HAMILTON 0.7993632

HARDEE 1.0000000

HENDRY 1.0000000

HERNANDO 1.0000000

HIGHLANDS 1.0000000

HILLSBOROUGH 1.0000000

HOLMES 0.5542315

INDIAN 0.8273789

JACKSON 0.4582192

JEFFERSON 0.5209264

LAFAYETTE 0.8433915

LAKE 1.0000000

LEE 1.0000000

LEON 0.6739230

LEVY 1.0000000

LIBERTY 0.4777898

MADISON 0.8937640

MANATEE 1.0000000

MARION 1.0000000

MARTIN 1.0000000

MIAMI-DADE 1.0000000

MONROE 1.0000000

NASSAU 1.0000000

OKALOOSA 0.9813354

OKEECHOBEE 1.0000000

ORANGE 1.0000000
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OSCEOLA 1.0000000

PALM 1.0000000

PASCO 1.0000000

PINELLAS 1.0000000

POLK 1.0000000

PUTNAM 1.0000000

SANTA 1.0000000

SARASOTA 1.0000000

SEMINOLE 1.0000000

ST JOHNS 1.0000000

ST LUCIE 1.0000000

SUMTER 1.0000000

SUWANNEE 0.9570933

TAYLOR 0.8497418

UNION 0.9877392

VOLUSIA 1.0000000

WAKULLA 0.6641285

WALTON 0.8435221

WASHINGTON 0.7034305
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Example Temporal Trajectory

Figure D.4. Example County Movement. (a) shows the location of nodes
with no perturbation, (b) shows the temporal trajectory of Bay County
associated with the shift to the lowest alternative- equilibrium seen in
Figure5.2 c. (c) is the temporal trajectory for the change to the high-
est alternative-equilibrium seen in Figure 5.2c. The length of the arrows in
(b) and (c) are the magnitudes of transformation for each perturbation.
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