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ABSTRACT

As the ubiquitous computing with mobile smart devices equipped with powerful hardware and

software has become prevalent within the last decade, the demand for visual access to data has

already become part of the life of many people, which requires employing the appropriate visual

representation of data. Reports show that more than half of the internet traffic is through mobile,

so that it is now more than only a supplemental way of desktop computers. Among many

different types of data, time-series data is one of the most common types of data, such as in many

news websites, personal health tracking applications, weather forecasting applications, and

finance applications. Though there already exists a large body of literature on information

visualization, the unique properties of mobile devices, such as the small size of the display and

various context of use, make simply applying existing visualization techniques that were meant

for large displays to mobile phone displays difficult. These are challenges against fully leveraging

visual access to data using mobile phones. In this study, the performance with visualization on

mobile phones is investigated. For this purpose, this study compares the performance of users

using the two different visualization techniques to represent a collection of time-series data in

limited space: line charts and horizon graphs. Methodologically, this study employs the

crowdsourcing technique using Prolific (https://www.prolific.co).
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CHAPTER 1. INTRODUCTION

This chapter overviews the background of the problem addressed in this study and the

significance of this study. Based on the overview, the research questions and hypotheses, and the

scope of this study is suggested.

1.1 Background of the Problem

As the ubiquitous computing with mobile devices equipped with powerful hardware and

software has become prevalent for the last decade, the demand for visual access to data through

mobile devices has already become an essential part of the life of many people. The mobile

platform is now one of the primary ways of accessing data and is more than only a supplemental

way to access data. By Clement (2019), 52.2% of global website traffic was made through mobile

phones. Also, we are witnessing the proliferation of many everyday mobile applications, such as

finance (Apple, n.d.-c; Robinhood Markets, n.d.), personal health tracking (Apple, n.d.-b;

Fitbit, 2015), weather (Apple, n.d.-d; Limited, n.d.)), or navigations (Google LLC, n.d.).

Notably, the use of personal health tracking applications shows the critical aspect of using mobile

devices: mobile devices as a primary platform for generating and consuming data. This trend

requires employing the appropriate visual representation of data. Currently, mobile data

visualizations are used in many everyday applications in our daily life, such as the examples

above and many data journalism websites, including The Upshot (New York Times, n.d.) and

“FiveThirtyEight” (FiveThirtyEight, n.d.). As this trend shows, the demand for visual access to

data via mobile devices is rapidly growing. Furthermore, the necessity of adequately designed

mobile data visualization is even more emphasized when visual access to the data becomes

directly relevant to health and safety against disasters, such as the recent coronavirus pandemic.

In a survey of lower-income parents on issues related to digital connectivity, Rideout and Katz

(2016) suggested that 23 % of the families with 6- to 13-year-olds and with lower income can
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access the internet only using mobile devices, and this statistic goes even higher to 34% for

Hispanic and to 41% for Hispanic immigrants within the group. For these people, mobile data

visualization can be the only option to visually access the data about the pandemic.

One of the most common types of data is time-series, which are sets of values changing

over time (Heer et al., 2009). Because time is one of the most foundational dimensions in human

life, understanding time-series data is at the root of understanding phenomena in many areas, such

as finance, science, and public policy (Heer et al., 2009). Therefore, visualizing time-series data

has been one of the central problems in the information visualization field. There are examples of

mobile time-series visualization. Many mobile data visualizations in personal tracking apps show

time series data related to a user’s health, such as sleep time, activity, or vitals (Apple, n.d.-b).

Weather applications (Apple, n.d.-d; Limited, n.d.) shows the changes of the data related to

weather over time, such as temperature, humidity, or air quality. Specifically, visualization feature

is one of the critical features in financial applications, such as stocks trading (Apple, n.d.-c;

Robinhood Markets, n.d.) (See Figure 1.1), because users of these applications make decisions

based on the trend of stock prices based on the visualization. Considering the prevalence of time

series data, its visualizations, with its many use cases in mobile phones, time-series visualization

is a crucial part of mobile data visualization.
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(a) Apple

Stocks app

(b)

Robinhood:

Invest. Save.

Earn. app

(c) Fitbit

Figure 1.1. Examples of Multiple Time-series in Financial Apps on iOS (adapted
from (a) (Apple, n.d.-c), (b) (Robinhood Markets, n.d.), and (c) (Fitbit, 2015))

1.2 Significance of the Study

Despite the trends described above, mobile data visualizations as a research topic have not

gained much attention so far and only recently started to draw strong interests from researchers

(Brehmer, Lee, Isenberg, & Choe, 2019b; Lee et al., 2018; Watson & Setlur, 2015). Though

there already exists a considerable body of literature in the information visualization field, they

have mainly assumed using the visualization on desktop displays. Because mobile phones have

crucial differences in conditions to design and use information visualization from those for

desktop display, additional research efforts are required to fully appropriate the potential of

mobile phones as an environment to use information visualizations. Though the techniques for

representing the relatively large amount of data on small resolution of display has been one of the
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main problems of information visualization field since its beginning (Bederson, Clamage,

Czerwinski, & Robertson, 2004; Sarkar & Brown, 1992; Walker, Borgo, & Jones, 2016),

applying and scaling the suggested solution to mobile devices need careful consideration because

of the unique properties of mobile displays (Chittaro, 2006b).

The problem the users face while using information visualizations on mobile phones

emerges because mobile phones have a smaller screen with different ratios and are used in various

contexts. Though effectively using a limited amount of space has been one of the primary

problems in the information visualization field (Munzner, 2014), this aspect is even more

emphasized for mobile data visualization. “Fat finger problem” (Siek, Rogers, & Connelly,

2005), which is caused by the size of fingers relatively bigger to the size of the display, by the

main interface of visualization using thumbs causes the problem that desktop visualization users

who use the small mouse pointer to interact with a visualization do not experience. Also, in most

cases, the researchers of information visualization for desktop settings can expect their users to

use the visualization sitting in front of the display of the computer while concentrating on their

tasks because experiments were typically conducted in the lab settings. This cannot be, however,

expected to the mobile data visualization users. Therefore, the research effort considering these

conditions are required to reveal and resolve the challenges from these different contexts of use

(Brehmer, Lee, Isenberg, & Choe, 2019a; Brehmer et al., 2019b; Lee et al., 2018; Schwab et

al., 2019).

More specifically, a large number of time-series visualization use cases are found.

Reflecting on its ubiquity, there already have been various approaches to visualize time-series

data, including simple line charts (line charts sharing same space), line charts (using split space

for each line), stacked graphs, animation, and horizon graphs (HG) aiming at improving the

graphical perception of visualization users when the data density is increased (Heer et al., 2009;

Javed, McDonnel, & Elmqvist, 2010; Perin, Vernier, & Fekete, 2013). Therefore, it is beneficial

to examine whether the time-series visualization techniques are applicable to the mobile data

visualization and how users experience the visualizations using those techniques. Among those

techniques, line charts using split space for each line (LC) (Heer et al., 2009; Javed et al., 2010;

Perin et al., 2013), and HG (Few, 2008; Heer et al., 2009; Reijner et al., 2008; Saito et al.,

2005) are an interesting pair of visualization techniques in that they both split the space for each
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time series to lower the visual clutter (Javed et al., 2010) as graphs applying small multiples

technique (Tufte, 2001). However, LC more preserves the original time series, whereas HG

manipulates the shape of them by coloring, layering, mirroring, and wrapping bands (Javed et al.,

2010) to save even more space or draw more time-series than LC. This contrast can make

differences in the performance of visualization viewers when multiple time series are represented

on a mobile display.

Considering the limitation of the size of a mobile phone display, it is certainly a possible

use case that scrolling on display is required to represent many time series using LC. When the

number of time series is large enough, using HG also requires scrolling on display to use more

space than a single display. However, by mirroring and wrapping bands, HG can increase data

density more than LC without requiring interactions such as scrolling.

1.3 Research Questions

The purpose of this study is to examine whether HG can be an alternative of LC for

visualizing time series data on mobile phones. To achieve this purpose, the following research

questions are answered:

1. What are the performance differences between HG and LC on mobile phone display?

(a) What are the differences in task accuracy between HG and LC on mobile phone

display?

(b) What are the differences in task completion time between HG and LC on mobile

phone display?

1.4 Hypotheses

The following hypotheses are tested. In hypotheses, the small, medium, and large datasets

consist of six, twelve, and twenty-four time series for each. The size of the small dataset was

decided as the size not requiring vertical scrolling for LC, based on the real use cases (See Figure

1.1). Considering that the test program does not need additional elements such as search bar and
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date (Figure 1.1 (a)), total investment (Figure 1.1 (b)), or button for navigating different pages

(Figure 1.1 (c)), six time series for a screen looks reasonable choice for this study. Twelve time

series for medium size dataset is the number of time series HG can be displayed using the same

amount of space with LC. To visualize twelve time series, LC uses two pages of screen with

vertical scrolling, whereas HG uses only one page of screen without vertical scrolling.

Twenty-four time series for large size dataset is the number of time series HG can be displayed in

two pages with vertical scrolling. To visualize twenty-four time series, LC uses four pages of

screen using vertical scrolling.

H1, H2 With the small dataset, HG’s advantage in showing small variations will not lead to

significant performance differences, as HG requires time to mentally unstack. Therefore H1

and H2 are suggested.

H1. Using the small dataset, without any scrolling, participants will perform tasks faster

with LC.

H2. Using the small dataset, without any scrolling, there will be no significant difference

in task accuracy between LC and HG.

H3. Using the medium dataset without any scrolling, HG will outperform LC, with higher

accuracy and less completion time. Though mentally unstacking HG takes time, it is

expected that it will take more effort to read the LC when they cannot show small variations

of the data because of the limited height.

H4. Using the medium dataset, when vertical scrolling is needed for LC but not HG, HG will be

more effective than LC. That is, participants will do the given tasks faster with fewer errors

when they use HG. When vertical scrolling is used in LC, participants should consult their

working memory, whereas HG can visualize the same amount of data without using vertical

scrolling so that the participants can directly compare given graphs. Though reading HG

requires mentally unstacking and using eyes to switch, it is expected to have a lower

cognitive load than consulting memory.

H5. Using the large dataset, where vertical scrolling is used in both cases, HG will be more

effective than LC. That is, participants will do the given tasks faster with fewer errors when
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they use HG. Though reading HG requires mentally unstacking, using eyes to switch, and

consulting memory for two pages with vertical scrolling, it is expected to have a lower

cognitive load than that of LC consulting memory for four pages of line charts.

For H3, H4, and H5, though there is no previous study directly comparing the cognitive

load of mentally unstacking HG and consulting memory to compare multiple LC or small size

LC, the limitation of visual working memory is already well known and emphasized in the

visualization community (Munzner, 2014; Ware, 2019). Taking the popularity of HG as a

successful graph design for multiple time series (Heer et al., 2009; Jabbari, Blanch, &

Dupuy-Chessa, 2018a, 2018b; Javed et al., 2010; Perin et al., 2013), it was expected that the

cognitive load of using HG would be less than that of consulting memory.

1.5 Delimiters

This research covers only the visualizations on mobile phones, and other kinds of mobile

devices such as tablets and smartwatches are out of the scope of this study. As the resolution and

computing power of tablets has been increased, tablets support the use of keyboard and mouse,

and many laptops now support touch interface, the distinction between the use of tablets and

laptops has become less clear than before. Also, as tablets better support pen-based interaction

than mobile phones with a large display, which lessens the “fat finger problem” (Siek et al.,

2005), the visualization on tablets should be independently studied. Furthermore, the way to

interact with mobile devices is limited to the participants’ finger, not allowing to use a touch pen.

Also, smartwatches have a very small display, which severely limits the space for

representing and interacting with the data. Also, considering the field study that most of the

interactions with smartwatch are quickly glancing or peeking, which often take less than 5s

(Blascheck, Besançon, Bezerianos, Lee, & Isenberg, 2019; Pizza, Brown, McMillan, &

Lampinen, 2016), mobile visualization use on mobile phones and smartwatches are so different

that they should be independently studied.
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1.6 Assumptions

For this study, it is assumed that the cultural and geographical background of the

participants do not affect the performance of using visualizations on mobile devices when they

have access to mobile phones.

Also, the crowdsourcing experiment participants recruited using Prolific

(https://www.prolific.co), a crowdsourcing platform for conducting online research, is expected to

be distracted while they are participating in the experiment because they use their mobile phones

in the environment that cannot be controlled by the researcher. Also, it is assumed that among the

recruited participants, some might try to get paid without giving truthful answers. Besides, the

chances of participants’ trying to interact with the test program against the guideline or the rule of

the experiment are taken into account. Considering these expected behaviors of the experiment

design, the measures to filter out the malicious participants or control or make participants stay

focused are used.

1.7 Limitations

There is a limitation of using conducting an online experiment using Proflific instead of a

controlled lab experiment. Though Prolific has better subject pool than recruiting participants in

university (Palan & Schitter, 2018; Peer, Brandimarte, Samat, & Acquisti, 2017), a typical way

of recruiting participants for experiments in literature, it’s hard to control the context or

experiment environment of participants, including the brightness of devices or environment, noise

level affecting the participants’ concentration on the test, and other distractions. This might cause

the lowering of the internal validity of the study because it is hard to discern which variable

affects the performance. However, these contexts that are hard to control can be advantageous in

that it increases the ecological validity of the results because the diverse conditions and

distractions reflect on the real use context of mobile devices.
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1.8 Definitions of Key Terms

Information visualization: “The use of computer-supported, interactive, visual

representations of data to amplify cognition” (Card, Mackinlay, & Shneiderman, 1999)

Time-series data: sets of values changing over time (Heer et al., 2009)

Crowdsourcing: “the act of a company or institution taking a function once performed by

employees and outsourcing it to an undefined (and generally large) network of people in the form

of an open call.” (Howe, 2006)
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CHAPTER 2. REVIEW OF LITERATURE

In this chapter, the relevant literature will be examined in the following order of sections:

(1) Visualization for mobile phones, (2) Visualizing multiple time series data, (3) Visualization

evaluation study. In the first section, the limitations and design opportunities for visualization on

mobile phones will be described. Though there are many papers on mobile data visualization for

PDAs, tablets, or smartwatches, only the studies about information visualization on mobile

phones will be reviewed because other types of mobile devices are used under quite different use

contexts and have different conditions from mobile phones for displaying information, including

different screen ratios. In the second section, the techniques used for visually representing the

multiple time series data will be covered. This section starts from the systematic view of

visualizing time-series visualization, followed by visualizing multiple time series using small

multiples and horizon graphs. In the third section, the body of literature on visualization

evaluation study will be covered. Research on visualization evaluation has a considerable body of

literature since the beginning of this field and is a typical approach to the visualizations. Also, as

a relatively new research method for visualization evaluation study, using crowdsourcing for

visualization research will be examined. Though using crowdsourcing, such as Amazon’s

Mechanical Turk, has various advantages in conducting visualization research, there still are some

points to be noted for applying the techniques to the research.

2.1 Visualization for Mobile Phones

Even before Apple’s iPhone first came out in 2007, Chittaro (2006b) paid attention to the

value of mobile devices as a platform for information visualization. Discussing the disadvantages

and limitations of visually representing data on mobile devices, Chittaro (2006b) indicated those

restrictions: the display with a smaller size with lower resolution and fewer colors, the aspect

ratio different from typical 4:3, less powerful computing power and slow network connectivity,

the input peripherals inappropriate for complicated tasks, and various form-factor, performance,
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and different input equipment among different mobile devices. For these reasons, he concluded

that visualization for desktop computers do not easily scale to mobile devices. The typical

solutions for the presentation problem, such as providing overview and detail simultaneously or

representing focus with context altogether, cannot easily be applied for mobile visualization

(Chittaro, 2006b). Moreover, the extremely various context of use distracts users from keeping

paying attention to the visualization on the device (Chittaro, 2006b).

However, the technological development of modern mobile phones and the technological

environment lessened some challenges above while leaving others still relevant. Modern mobile

phones in current years are equipped with a high-resolution display, powerful computing power,

and fast network connectivity, though the restrictions by the small size of display and “fat finger

problem”(Siek et al., 2005) still exist. This development of mobile devices has been followed by

the high demand for visually accessing the data on mobile phones. Reflecting on this trend, the

body of literature examining the research space of mobile visualization in current status (Watson

& Setlur, 2015) and trying to set a research agenda (Lee et al., 2018) have emerged (Brehmer et

al., 2019b). The works in the literature include the evaluation of visual encoding and interaction

techniques through touch interface (Brehmer et al., 2019a, 2019b; Lee et al., 2018; Watson &

Setlur, 2015). More specifically, diverse data types such as time series (Brehmer et al., 2019a,

2019b), ranges (Brehmer et al., 2019b), hierarchical graphs (Brehmer et al., 2019a; Horak &

Dachselt, 2018) on mobile phones were studied (Brehmer et al., 2019a). Also, some researchers

approached in terms of diverse applications of the visualization on mobile phones, including

health data (Brehmer et al., 2019a; Chittaro, 2006a; Dalton, Katz, & Keynes, 2018; Nicolalde,

2018; Ongwere, Connelly, & Stolterman, 2018), public transportation (Kay, Kola, Hullman, &

Munson, 2016), and collaborative work using mobile data visualization over multiple devices

(Badam, 2018).

2.2 Visualizing Multiple Time Series Data with Small Multiples and Horizon Graphs

In this section, the literature on visualization techniques for multiple time series data is

covered. Before directly going into visualizing multiple time series, a categorization schema for

visual methods to analyze time-oriented data is introduced as a means of a systematic approach to
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the topic. Using this systematic categorization, the position of this study in time-series data

visualization research is defined. Also, the pair of visualization for comparison in this study,

small multiples and horizon graphs, can be understood in terms of this categorization. More

specific studies follow this systematic categorization in the literature. The challenges in designing

time series visualization and the techniques to overcome such challenges are also presented. By

reviewing the literature, the basis of choosing a set of visualization techniques compared to this

study will also be suggested.

2.2.1 Visualizing Multiple Time Series Data

2.2.1.1 Visualizing Time Series Data

Time series data is one of the most common types of data people face in daily life. Finding

the evolution of the data over time and temporally recurring patterns has been one of the common

analysis tasks in industry, academia, or even when understanding personal data, where time-series

visualization can have an important role to help understand the data about themselves. The use of

time series visualization even goes back to the 18th century. The seminal work of Playfair (Tufte,

2001) is a well-known example of time series visualization. Because of the prevalence of time

series data and its use, there is a large body of literature on time series visualization.

Though there have been many studies on visualizing time series data, most of them were

focused on specific analysis problems (Aigner et al., 2007). So, Aigner et al. (2007) developed a

systematic view of the visualization of the time series data and suggested a framework to

categorize visualization techniques for time-oriented data. The categorization schema they

developed in their research is the following Table 2.1. They suggested three categorization

criteria: time, data, and representation. And temporal primitives, and structure of time are

suggested as the subcategories of time. Temporal primitives are about the composition of the time

axis (Aigner et al., 2007). Timepoint is an instance in time, whereas time interval has an extent

specified by two timepoints or a time point with a duration (Aigner et al., 2007). Another

subcategory of time is the structure of time: linear, cycle, or branching (Aigner et al., 2007).

Linear time “corresponds to our natural perception of time as being a (totally or partially) ordered
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collection of temporal primitives” (Aigner et al., 2007), whereas cyclic time is “composed of a

finite set of recurring temporal primitives (e.g., the seasons of the year).” (Aigner et al., 2007). A

pair of examples are found in the study of (Brehmer et al., 2019b), which compared the visual

representations of temperature range charts and sleep time data using bars in linear layout and

radial layout. Lastly, the branching time-axis is “a split of the time axis into alternative scenarios,

which is particularly relevant for planning or prediction.” (Aigner et al., 2007).

As the subcategories of data, frame of reference, number of variables, and level of

abstraction are suggested (Aigner et al., 2007). The frame of reference refers to the context of the

data: the data collected in a non-spatial context vs. spatial data. The data in a non-spatial context

means the collected data itself does not have an inherent spatial layout, whereas spatial data does.

(Aigner et al., 2007). The number of time-dependent variables includes univariate and

multivariate (Aigner et al., 2007). For example, a line graph with time as the x-axis and specific

values as the y-axis are visualizing univariate data because it only shows the temporal changes of

y values. However, a famous scatter plot used in Gapminder Trendalyzer by Rosling (2006)

shows the temporal changes of two variables on the x-axis and y-axis each. Unlike a line graph

with time on the x-axis, time is represented using animation by the movement of bubbles on x, y

coordinates. In this case, the correlation between the data on the x-axis and the y-axis over time

can be presented. The comparison of these cases shows the difference between univariate and

multivariate visualizations. Level of abstraction is a subcategory of data and used when the large

dataset makes it hard to represent all the data at once causing the overcrowded and cluttered

displays (Aigner et al., 2007). To overcome such problems, the aggregation of data (Aigner et al.,

2007; López, Snodgrass, & Moon, 2005), overview + detail interfaces (Aigner et al., 2007;

Schneiderman, 1996), and feature visualization (Aigner et al., 2007; Silver, 1994) have been

suggested.

Lastly, the representation contains time dependency and dimensionality as its

subcategories (Aigner et al., 2007). Time dependency distinguishes static and dynamic

representation of time-oriented data, which is whether the representations change over time

(Aigner et al., 2007). For example, a typical line graph is a static representation, whereas the

Gapminder Trendalyzer (Rosling, 2006) using an animation technique to show the temporal

change of the values on the x-axis and y-axis is a dynamic representation of data. Moreover, the
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dimensionality–2D or 3D–is another subcategory of the representation (Aigner et al., 2007). It is

widely accepted that 3D should be used with careful considerations and enough justification

(Munzner, 2014). Except for the cases with strong justification, it is more desirable to use 2D

than 3D (Munzner, 2014). However, because there are some cases certainly requiring the use of

3D, like flow or volume data, and there are advanced interaction techniques or additional visual

cues against the disadvantages of using 3D, it should be considered as an option depending on

task and data (Aigner et al., 2007).

This categorization scheme will be used for figuring out a pair of visualization techniques

evaluated in this study, small multiples, and horizon graphs, after examining them in the

following sections.

Table 2.1. Categorization Schema for Visual Methods for Analyzing Time-oriented
Data (Aigner et al., 2007)

Time
Temporal primitives time points time intervals

Structure of time linear cyclic branching

Data

Frame of reference abstract spatial

Number of variables univariate multivariate

Levels of abstraction data data abstractions

Representation
Time dependency static dynamic

Dimensionality 2D 3D

2.2.1.2 Visualizing Multiple Time Series Data

When visualizing time series data, the problem of clustering, occlusion, or over-plotting

happens with the large dataset containing lots of data items. For instance, when visualizing the

daily temperature data over ten years using a line graph, the data would contain about 3,650 data

items, 365 for a year, which is too many to represent using x, y coordinates without clustering or

occlusion. Walker et al. (2016) categorized and evaluated the techniques to resolve such an issue.

They categorized the techniques as data aggregation, lens-based approach, and layout based

approach (Walker et al., 2016). The data aggregation is aggregating data points in a meaningful

way, depicting “statistical features of the items in each segment of time through a meaningful
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visual mapping” (Walker et al., 2016). Controlling the granularity of the time, such as day, week,

or month, fall into this type of technique. The lens-based approach is adding in-place

magnification to distort the time axis to represent specific parts more in detail while maintaining

the context (Walker et al., 2016). Usage of this technique can be found in the daily use of mobile

devices, like the zooming feature in many applications. Layout based approach is modifying “the

spatial arrangement of the time-series to provide a linear mapping of time while transforming

time-series graphs” (Walker et al., 2016). According to Walker et al. (2016), this type of

technique resolves the over-plotting issue by stacking graphs with different levels of zooming on

demands (Javed & Elmqvist, 2010) or by simultaneously providing overview and detail displays

(Plaisant, Carr, & Shneiderman, 1995).

However, these techniques cover only the cases where the time axis is too much crowded.

When drawing multiple line graphs on the same x, y coordinates, the over-plotting problem

happens with a much smaller number of data items. Javed et al. (2010) addressed this issue.

Before Javed et al. (2010), most studies about the performance of multiple line graphs for time

series data involved only two time-series, and it was not certain whether the results from the

studies comparing two line graphs could be generalized (Javed et al., 2010). However,

considering that the tasks involving many time series simultaneously is common (Hochheiser &

Shneiderman, 2004; Javed et al., 2010), they evaluated and suggested the results of the

experiments covering the techniques to visualize multiple time series (Javed et al., 2010). The

techniques include small multiples (Tufte, 2001), stacked graphs (Byron & Wattenberg, 2008),

horizon graphs(Saito et al., 2005), and braided graph (Javed et al., 2010). Based on the results of

experiments with the tasks to “find the time series with the highest value at a specific point in

time” (Javed et al., 2010; Lam, Munzner, & Kincaid, 2007), “to find the time series with the

highest increase during the whole displayed time period” (Beattie & Jones, 2002; Javed et al.,

2010), and “to find the individual values of each time series and then figure out which one was the

largest one” (Javed et al., 2010; Simkin & Hastie, 1987), they found that “shared space

techniques (simple line graph and braided graph) were faster than split-space techniques for the

local Maximum task, split-space techniques (small multiples and horizon graphs) were faster than

shared-space techniques for the dispersed Discrimination task, and the slope task, with a dispersed

visual span, was special–small multiples and simple graphs were faster here ”(Javed et al., 2010).
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2.2.2 Visualizing Time Series Data Using Small Multiples

Small multiple is a visualization technique making “the same design structure repeated for

all the images” (Tufte, 1990). It is an economical way to represent multivariate time series data

because when visualization viewers understand a slice, then they can directly access to all slices

by an only slight movement of their eyes (Tufte, 1990). Because of constancy in design structure,

“the design allows the viewer to focus on changes in the data rather than on changes in graphical

design” (Tufte, 1990). Therefore, small multiples are inherently comparative and multivariate

(Tufte, 2001).

Because of its effectiveness for representing multivariate data and for comparative tasks, it

has been widely used as a visualization technique supporting comparison tasks and dealing with

clutter or occlusion problem (Robertson, Fernandez, Fisher, Lee, & Stasko, 2008; Tufte, 1990).

Currently, these small multiples designs are one of the prevalent visualization techniques on

mobile phone applications with visualization features (Brehmer et al., 2019a), such as personal

activity or health applications(Apple, n.d.-a, n.d.-b; Fitbit, 2015) or finance apps (Apple, n.d.-c;

Robinhood Markets, n.d.), just name a few. Also, considering the description about small

multiple by Tufte (1990) with many cases in the literature, this technique can be used with diverse

representations such as typical line graphs (Javed et al., 2010), horizon graphs (Few, 2008;

Reijner et al., 2008), scatter plot (Brehmer et al., 2019a; Robertson et al., 2008), animation with

traces(Brehmer et al., 2019a; Robertson et al., 2008), data glyphs (Fuchs, Fischer, Mansmann,

Bertini, & Isenberg, 2013), graph data structure or network (Archambault, Purchase, & Pinaud,

2011), flow maps (Boyandin, Bertini, & Lalanne, 2012), or even a dashboard with multiple types

of visual representations (Ondov, Jardine, Elmqvist, & Franconeri, 2019).

Though small multiples designs can be used to represent multivariate data or multiple time

series without the clutter or occlusion problem, it was indicated that the size of each slice

decrease as the number of slices increases, making the visualization less readable (Robertson et

al., 2008). Considering this aspect with mobile devices with more limited screen resolution than

desktop, it can be more critical. Robertson et al. (2008) indicated that this limitation does not

mean that the small multiples technique represented a more limited number of data points than

animation or trace. Because when the size of each display becomes very smaller as the number of
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data points increases, the clutter also becomes extreme in animation or trace (Robertson et al.,

2008). However, it is unclear whether this point is generalizable to mobile phone display because

it is much smaller than the desktop monitors, and it has a different screen ratio.

Figure 2.1. Small Multiple Line Graphs

2.2.3 Visualizing Time Series Data Using Horizon Graphs

Horizon graph was first introduced as “Two-Tone Pseudo Coloring” by Saito et al. (2005)

and has been recognized as a modern visualization technique to visualize multiple time series in

the research community (Federico, Hoffmann, Rind, Aigner, & Miksch, 2014; Gogolou,

Tsandilas, Palpanas, & Bezerianos, 2019; Heer et al., 2009; Jabbari et al., 2018a; Javed et al.,

2010; Perin et al., 2013). In industry, Panopticon (Few, 2008; Reijner et al., 2008)

commercialized this technique and gave an example of visualizing a large number of data (e.g.,

daily changes in the 50 stock prices) in a spatially efficient way with reasonable cognitive costs

while properly supporting to detect anomalies, to represent each item independently, to compare

between items, and to visualize changes requiring further examination precisely. It can be seen as

well reflecting on the famous mantra in this field by Ben Shneiderman, “Overview first, zoom and

filter, then details-on-demand” Schneiderman (1996). The cost of mirroring negative values,

dividing multiple time series into independent bands, and layering for retaining more vertical
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space for more time-series requires mental unstacking, mentally re-drawing the graph in the

simplest form. But Few (2008) insisted that the advantage of freeing more vertical spaces while

effectively supporting such tasks worth the cost of the mental unstacking.

The research effort to scientifically examine the advantages and disadvantages of using

horizon graphs to visualize multiple time series has been for a decade. Heer et al. (2009)

examined the points with a set of controlled experiments for value comparison tasks. They

conducted experiments to evaluate the effect of the number of bands, mirroring and layering in a

horizon chart, and the chart size to estimation time and accuracy. They suggested that “mirroring

does not hamper graphical perception” (Heer et al., 2009), and “layered bands are beneficial as

chart size decreases” (Heer et al., 2009). However, they only examined the value comparison task

of a horizon graph. Javed et al. (2010) conducted experiments comparing the techniques to

visualize multiple time series, including simple line graph, braided graph, small multiples, and

horizon graphs, with more tasks: “to find the time series with the highest value at a specific point

in time,” (Javed et al., 2010) “to find the time series with the highest increase during the whole

displayed time period,” (Javed et al., 2010), and “to find the individual values of each time series

and then figure out which one was the largest one” (Javed et al., 2010). Perin et al. (2013)

introduced Interactive Horizon Graph, the improved version of the horizon graph, adding baseline

panning and value zooming interaction. Federico et al. (2014) suggested the Qualizon graph

integrating qualitative information with quantitative detail over a horizon graph. Jabbari et al.

(2018a) conducted a series of experiments on the performance comparison among line graphs,

horizon graphs, and composite visual mappings, including position-value, hue-value,

texture-saturation, and hue-saturation. Most recently, Gogolou et al. (2019) examined the

similarity perception in time series visualization using a line graph, horizon graph, and colorfield

by analyzing the Electroencephalography (EEG) signal.

As presented above, the horizon graph is getting much research focus over a decade

because of its effectiveness to represent multiple time series data with high data density while

effectively supporting detecting anomalies and comparison over many time series. Considering

the ubiquity of time series data, increasing demands of visual access to those data through mobile

phones, and far more limited estate of mobile phone display than desktop monitors, it is timely to

explore the design opportunity of the horizon graph on a mobile display. Especially, considering
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the limitation of previous works, which only covered the value comparison tasks of a single

horizon graph (Heer et al., 2009), and which considered different tasks not covered by (Heer et

al., 2009) but without the detail aspects of horizon graphs such as the number and the size of

bands covered by Heer et al. (2009), examining such points on mobile phone display will be a

meaningful contribution.

Figure 2.2. Horizon Graph

2.3 Visualization Evaluation Using Crowdsourcing

2.3.1 Visualization Evaluation Studies

This study follows the traditional approach established in the information visualization

field by Cleveland and McGill (1984). In their seminal work on the graphical perception of visual

elements by an experimental approach, they identified a set of “elementary tasks and perceptual

tasks that are carried out when people extract quantitative information from graphs” (Cleveland &

McGill, 1984), including a position on a common scale, position on non-aligned scales, length,

direction, angle, area, volume, curvature, and shading. Also, they examined how quantitative

information from graphs was used when people view the various charts, such as bar charts, pie

charts, or scatter plots (Cleveland & McGill, 1984). And based on the results of the experiments,

they ranked the tasks by the accuracy. (Cleveland & McGill, 1984). After that, these experimental

methods have been used by many researchers to examine the effect of visual encoding on the

accuracy or response time Heer and Bostock (2010). Most of the articles examined in this study

applied this experimental approach established since Cleveland and McGill (1984).
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Huang, Eades, and Hong (2008, 2009) suggested an approach to evaluate visualization in

terms of cognitive load. They indicated that there could be some situations where task

performance measure is not sensitive enough to show the differences of visualizations, such as

when the same level of performances is measured requiring different amounts of cognitive

load.“Cognitive load refers to the amount of cognitive resources needed to perform a given task”

(Huang et al., 2009), therefore it “can also be called ‘memory demand”’ (Huang et al., 2009;

Wickens, Hollands, Banbury, & Parasuraman, 2015). As one of the ways of measuring cognitive

load, they suggested subjective or self-report measures, one of which is reporting mental effort

“by mapping the perceived amount of mental effort to a numerical value . . . from 1 to 9” (Huang

et al., 2009; Paas, 1992) and is suggested as “reliable, non-intrusive and sensitive to small

changes in memory demand” (Huang et al., 2009; Tuovinen & Paas, 2004).

2.3.2 Visualization Evaluation Using Crowdsourcing

Most graphical perception studies have conducted controlled experiments in a laboratory.

However, as the crowdsourcing got the attention as a viable way to collect and take advantage of

the labor of crowd (Borgo et al., 2017), visualization researchers have considered it as a way to

experiment while overcoming the limitations of controlled laboratory studies with its scalability

and low-cost (Borgo et al., 2017; Heer & Bostock, 2010). Crowdsourcing is “a new labor

market phenomenon where simple, often monotonous labor tasks are replaced by open

self-managed recruitment of large groups of people from the general public” (Borgo et al., 2017).

Crowdworkers are often micro-paid per small tasks they complete (Heer & Bostock,

2010). Amazon’s Mechanical Turk is a famous example (Buhrmester, Kwang, & Gosling, 2011),

and recently the alternatives are emerging with different target users, such as Prolific

(https://www.prolific.co) for researchers and startups and Crowdflower

(https://www.crowdflower.com) for companies working on data science (Peer et al., 2017). In

recent years, using crowdsourcing instead of experiments under controlled lab setting is gaining

much attention from visualization researchers. The annual numbers of studies using

crowdsourcing for their experiments show an upward trend since 2009, when the first paper

employing crowdsourcing for its visualization experiment was published (Borgo et al., 2017).

27



This trend emerged because of the clear advantages of using crowdsourcing. By

employing a crowdsourcing experiment instead of a controlled experiment, researchers can

collect many participants from larger participant pools with a much lower cost in a short time

(Borgo, R., Micallef, L., Bach, B., McGee, F., Lee, 2018). As researchers can conduct their

experiment with larger sample sets, they can expect greater statistical significance (Borgo, R.,

Micallef, L., Bach, B., McGee, F., Lee, 2018). Also, because crowdworkers are expected to have

more varied backgrounds and demographics, the generalizability of the findings is assured

(Borgo, R., Micallef, L., Bach, B., McGee, F., Lee, 2018). Though researchers could lose some

control over the participants of the experiment, which could be a factor lowering the internal

validity of the experiment, simultaneously, the ecological validity increases because less control

reflects on more real context of use (Heer & Bostock, 2010).

Besides, by replicating the previous graphical perception study, which employed

conventional control experiments, using crowdsourcing and comparing both results, Heer and

Bostock (2010) suggested that employing crowdsourcing for an experiment is a viable alternative

of the control experiment. With Heer and Bostock (2010), Borgo et al. (2017) also indicated that

crowdsourcing could be used for comparative study, which is “to compare two visualization

techniques in terms of their ability to support different tasks and workflows.”(Borgo et al., 2017).

Though there are concerns about the demographics of crowdworkers (Goodman, Cryder, &

Cheema, 2013) and controlling the context participants perform the experiments (Brehmer et al.,

2019b), considering larger and diverse subject pool (Borgo et al., 2017) and successful

replications of existing lab experiment in the visualization field Borgo et al. (2017); Heer and

Bostock (2010) and even other fields including economics and psychology (Amir, Rand, et al.,

2012; Crump, McDonnell, & Gureckis, 2013; Horton, Rand, & Zeckhauser, 2011; Paolacci,

Chandler, & Ipeirotis, 2010; Peer et al., 2017; Suri & Watts, 2011), using a crowdsourcing

platform for a visualization graphical perception study is a reliable option.

2.4 Summary of the ROL

The generalized points from the review of the literature propose that this study is valid in

its importance and methods. Time series visualization is one of the most prevalent types of
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visualization in daily life, so that there have been many studies on designing spatially efficient

time series visualization. Also, considering the high demand for visually accessing data on

ubiquitous mobile phones and its vast share in total internet traffic, studying the way to efficiently

representing time-series visualization on mobile phones is valid in its importance. Also, using

crowdsourcing for an experiment is one of the proper ways to gain ecological validity and the

generalizability of the results. Furthermore, methodologically, employing this emerging way of

experiment in the information visualization and reflecting on the process, and the results will also

be a meaningful contribution to the research community.
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CHAPTER 3. METHODOLOGY

This study is aimed at comparing the task performance of LC and HG for visualizing

time-series data on mobile phones. For this purpose, the graphical perception experiment

comparing the visualization viewers’ performance using LC and HG with different conditions

was conducted using Prolific, a crowdsourcing platform for conducting online studies. Along

with the static LC and HG layout, the vertical scrolling interaction is one of the crucial factors to

be taken into account when visualizing a large dataset that cannot be represented on a display,

maintaining readability. Notably, it is inevitable to involve the vertical scrolling for visualizing

many multiple time series using LC because line graphs with too low height cannot sufficiently

visualize the variation of values. Considering the real use cases (Apple, n.d.-c; Robinhood

Markets, n.d.), when a user wants to add more than eight stock items in the case of Figure 1.1,

the use of vertical scrolling is inevitable. In particular, because mobile phones have much less

screen resolution than desktop monitors, mobile phone users more scroll than when desktop users

using monitors (Kim, Thomas, Sankaranarayana, Gedeon, & Yoon, 2016). For these reasons,

along with the cases without using the interaction to compare the basic graphical perception of

two layouts, the cases involving the vertical scrolling interaction were considered.

3.1 Experiment Design

The experiment employed 2 x 3 x 2 factorial design, with the size of the dataset

(small/medium/large), layout (LC / HG), and use of vertical scrolling (use or not) as independent

variables. But as shown in Table 4.1, some conditions were not tested. Further detail is covered

below in the treatment section. The experiments used the mixed-design of between-subjects

design and within-subjects design, setting the layout as the between-subjects factor and others as

within-subjects factors because the main focus is the comparison of LC and HG under different

conditions.
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Also, the experiments were conducted after pre-registering the experiment design to the

Open Science Forum to make the results more valid and reliable (https://osf.io/e4rvy). Nosek,

Ebersole, DeHaven, and Mellor (2018) pointed out that while scientific progress partly relies on

generating and testing hypotheses, “the distinction between postdiction and prediction is

appreciated conceptually but is not respected in practice.” The pre-registration process is

suggested to prevent a researcher from doing postdiction by registering a study before conducting

an experiment. This study followed this process.

3.1.1 Data

For the experiments, the real-world data from Nasdaq

(https://www.nasdaq.com/market-activity/quotes/historical) was used because, considering

mobile devices’ use context, the differences of the controlled lab experiments and the real-world

situation can be more significant than those of using desktop or laptop in that people are more

easily distracted. Also, it is easier to switch to different tasks while doing a task using a mobile

phone. In addition to DOW 30 items, eleven more items were added to make sure that all the

items have the data for the last five years and the graphs have clear distinctions in their shapes and

trends. For every trial in every condition, a predetermined number of items were randomly chosen

and visualized depending on its size of the dataset.

3.1.2 Participants

3.1.2.1 Pilot Study

For three rounds of the pilot study, three participants were recruited for the first pilot study

through word-of-mouth. Fifteen and twenty participants were recruited for each of the second and

third pilot studies through Prolific. Of the three first pilot participants, one was a nurse, and two

were graduate students, one studying HCI and another one studying Social sciences. Two of them

were not familiar with visualization. Their ages were the late 20s or early 30s. Those were

recruited considering the report of demographics of participants on Mechanical Turk that they
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Table 3.1. Experiment Design

Layout
LC HG

V
er

tic
al

sc
ro

lli
ng

N
ot

us
ed Size of data set

small / medium / large
Size of data set

small / medium / large

U
se

d Size of data set
small / medium / large

Size of data set
small / medium / large

tend to be more educated (Goodman et al., 2013), this population was appropriate for the pilot

study. Though the report also indicated that the participants tend to be Caucasian/European

Americans (Goodman et al., 2013), the racial differences do not look to have a considerable effect

on the performance of the tasks. More details about the pilot study are covered in another section.

3.1.2.2 Primary Study

For the primary study, 196 participants were recruited through Prolific. The number was

determined by running the a priori power analysis based on the second and third pilot studies’

results ran on Prolific. The effect size of the response time was

Cohen′s d =
Meanlc response time−Meanhg response time√

(nlc−1)∗σ2
lc response time+(nhg−1)∗σ2

hg response time
nlc+nhg−2

= 7648.41−5006.29
2057.19 ≈ 1.28. And the effect size

of the accuracy was Cohen′s d =
Meanlc accuracy−Meanhg accuracy√

(nlc−1)∗σ2
lc accuracy+(nhg−1)∗σ2

hg accuracy
nlc+nhg−2

= 0.621−0.574
0.099 ≈ 0.473. Since

the d of the accuracy was smaller than that of the response time, the number of participants for the

primary study had to be enough to catch the effect of layout on the accuracy. By running the a

priori one-tailed power analysis with the calculated effect size, α = .05, and the power β = .95

for the two independent means, 98 participants for each layout was calculated.

The population of participants was not strictly limited to a particular group. Considering

the previous studies employing crowdsourcing on visualization research (Borgo et al., 2017;

Borgo, R., Micallef, L., Bach, B., McGee, F., Lee, 2018; Brehmer et al., 2019a, 2019b; Heer &

Bostock, 2010) and the advantage of using crowdsourcing to collect the participants with a more

diverse background than standard internet samples or American college samples (Buhrmester et

al., 2011), it was expected that the population of participants would be more representative of
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possible viewers of the visualizations than those recruited for a controlled laboratory experiment

at university. Therefore, the participants were limited to the ones with the age between 18 and 50,

who are fluent in English to read instructions, and with the Prolific’s approval rate over 95%.

3.1.3 Visualization Design

2-band HG was used following Heer et al. (2009)’s design guideline to use 2-band HG

based on their results, showing better performance than 3-band or 4-band HG. Also, as a baseline,

yb0 =
yM−ym

2 , with yM and ym being the maximum and minimum values in the dataset for each

graph, was used to differentiate the areas with different colors, red for below the baseline and

green for the above. This color mapping was decided considering the color scheme being used in

stock portfolio charts, red for decrease and green for the increase of stock price. Though the

standard color scheme of horizon graphs from previous studies (Heer et al., 2009; Javed et al.,

2010) and example of visualizing stock prices using horizon graphs (Few, 2008; Reijner et al.,

2008) were considered at the first time, finally the color scheme with red for negative and green

for positive was used after the first pilot study where the accuracy of the slope task with horizon

graphs was significantly low. The possibility was considered that the participants might have been

confused with the meaning of the red-blue color because one of the symbolic meanings of the red

was sometimes related to something dangerous or negative, the increase of the prices is

considered as good in many cases in the stock market. Also, considering the possibility where the

people might have been confused with the mapping of color and positive/negative, the offset

mode of the horizon graph (Heer et al., 2009) was used instead of the typical mirror mode.

Because Heer et al. (2009) suggested that there were no performance differences between using

horizon graphs with mirror mode and the one with the offset mode, it was expected that using the

offset mode would not have at least a negative impact on the performance in this study.

Though the use cases of Apple Stocks (Apple, n.d.-c) and Robinhood (Robinhood

Markets, n.d.) sometimes provide dashed lines to show the opening price of a stock item in a day,

considering the purpose of the graphical perception study examining the effect of using HG, each

horizon graph was drawn to appropriate the features of HG as much as possible. Also, the
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baselines for splitting the area with each color into two tones, yb1 =
yM−yb0

2 and yb2 =
yb0−ym

2 were

be used. And the participants were able to vertically scroll as much as they need.

Because this study evaluates the visual perception of time series, any additional features

were not added to the graphs. As Javed et al. (2010); Perin et al. (2013), no scale, tick, and

numeric values were added. The baseline that can be seen in the graph of GE in Figure 1.1 (a)

was not added. But as references, numbers starting from 0 were assigned to each graph.

3.1.4 Treatment

From twelve possible experiment conditions by combining independent variables, which

were the size of the dataset, layout, and use of vertical scrolling, only seven conditions were

tested (See Table 3.1), excluding the cases not using vertical scrolling for the large dataset, the

ones using vertical scrolling interaction for a small dataset, and the one where vertical scrolling

interaction was used for HG with the medium dataset. They were not relevant, considering the

goal of this study.

Table 3.2. Ratio of Resolutions of Pairs

Virtual resolution of display*

(LC : HG)

Real height of each graph

(LC : HG)

Virtual resolution of each graph

(LC : HG)

Pair 1 1:1 1:1 1:2

Pair 2 1:1 1:1 1:2

Pair 3 2:1 2:1 1:1

Pair 4 4:2 2:1 1:1

* 1 represents the resolution of single display without vertical scrolling

3.1.5 Tasks

Because time-series visualization techniques have been one of the main topics in this field,

there have already been efforts to evaluate the techniques for different tasks. To choose the tasks

for the experiment, the taxonomy by Andrienko and Andrienko (2006) was used because the
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categorization of elementary tasks, which deals with individual elements, and synoptic tasks,

which consider sets of references, was found useful in analyzing the real use cases of the tasks.

For example, using Apple Stocks (Apple, n.d.-c) and Robinhood (Robinhood Markets, n.d.),

users can make a wish list of stock items of which the prices are represented using LC. From the

list, they can choose a stock item they are interested in or want to buy or sell, and the details about

the item are provided on-demand. It is a partial application of Ben Shneiderman’s mantra,

“Overview, zoom and filter, then details on demand” (Schneiderman, 1996). Because the use of

LC in the apps provides an overview of the changes in the price of multiple stock items, most

relevant tasks, in this case, are understood as the synoptic tasks.

Considering the taxonomy by Andrienko and Andrienko (2006), the work of Perin et al.

(2013), which deployed the taxonomy for evaluating their Interactive Horizon Graph and

Reduced Line Charts for the Maximum, Discriminate, and Matching tasks, and Javed et al. (2010)

which tested the Maximum, Slope, and Discrimination tasks, the tasks for this study was decided.

• Matching

The participants were required to choose the matching time series in its shape with given

reference time series (Synoptic task for relation-seeking) (Andrienko & Andrienko, 2006).

This task was chosen considering the comparison of market summary indices, such as

NASDAQ or Dow Jones, with specific stock items.(Javed et al., 2010; Perin et al., 2013)
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(a) HG

(small

dataset)

(b) HG

(medium/large

dataset)

(c) LC

(small

dataset)

(d) LC

(medium/large

dataset)

Figure 3.1. Matching Task Examples

• Maximum/Minimum

The participants were required to choose the time series with the highest points on its

y-scale at t (Elementary task for direct comparison (Andrienko & Andrienko, 2006)). It is

to test the performance of basic comparison among values in a time series (Javed et al.,

2010; Perin et al., 2013).
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(a) HG

(small

dataset)

(b) HG

(medium/large

dataset)

(c) LC

(small

dataset)

(d) LC

(medium/large

dataset)

Figure 3.2. Maximum/minimum Task Examples

• Slope

The participants were required to compare the slopes within a given time interval. They

chose a time series of which the represented price was most increased/decreased in a given

time interval (Synoptic task for direct pattern comparison) (Andrienko & Andrienko,

2006). It is to make decisions on choosing which one to get more detailed information, the

comparison of trends over multiple time series is essential. Javed et al. (2010) assessed

Slope task as a global task requiring participants to find the time series with the highest

increase in whole the graph, but in this study, the time interval for the slope was a part of

the display, with 1/2, 1/3, 1/4 of the width of each graph. (Javed et al., 2010)

For each trial, completion time and whether the response to the trial was correct were

recorded. The completion time was measured from when the participants touched the instruction

about each trial to the moment when they select their response and touch the DONE button below

the screen. And the accuracy was calculated by the individual based on whether each response

was correct. To collect subjective responses, the participants were asked to conduct a
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(a) HG
(small

dataset)

(b) HG
(medium/large

dataset)

(c) LC
(small

dataset)

(d) LC
(medium/large

dataset)

Figure 3.3. Slope Task Examples
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self-assessment of their performance at the end of the trials of each condition in terms of response

time and accuracy were collected and to rate these using a Likert scale from 1 (low) to 5 (high).

The experiment was designed to take approximately 25 minutes, including practice

sessions. Participants received $3.96 when they finish all the tasks and submit the completion

code to Prolific. When all the study was done in Prolific, the average reward rate was $10.12 per

hour, which was around average in Prolific, based on the dashboard given by Prolific. The initial

number of trials is two practice trials and five timed trials in LC and three practice trials and five

timed trials in HG in each experiment condition, and 90 or 78 trials in total. The differences of the

number of trials for LC and HG was because there were four conditions using LC and three

conditions using HG. In the trials involving vertical scrolling, half of the answers were on the

second page where the participant needs to use the scrolling, and the rest of the answers were on

the first page, not requiring vertical scrolling. Because the chances are that when a task involves

scrolling, the answer’s location might affect how much attention the participants would give to

each element (Guan & Cutrell, 2007; Kim et al., 2016). But the exact number of trials was

changed depending on the additional practice trials each participant tried.

The order of tasks was as suggested above, because it was expected and also turned out by

the pilot studies that the matching task was the easiest one, the maximum/minimum was the next,

and the slope task was the hardest one. For the Matching task, participants could find the correct

answer by skimming through the graphs to figure out overall shape. For the Maximum/minimum

task, they needed to accurately compare the position of the highest or lowest point at the vertical

line, which required more accurate reading of the graph than Matching task. for the Slope task,

they needed to calculate the slope when the y values at the starting and ending points of a span

were different each other, requiring much more complicated caluclation to compare with each

other. Considering that the participants were expected to be general population without expertise

in graph reading, they were expected to lose their focus easily if they started with the hardest one.

Therefore, the experiment was designed to gradually increase the difficulty of the tasks.

As the purpose of this research does not include evaluating the visualization literacy of the

participants at Prolific, practice sessions for each type of task on every visual representation were

given to make participants familiar with reading the visual representations. Because HG is less

common in use cases, participants might not be familiar with using it. Therefore, a brief

39



description of how the HG is made and how to read HG was given before the test and during the

practice sessions. Two test trials for the participants using line charts and 3 test trials for the

participants using horizon graphs for each condition were prepared. Also, they could practice

more sessions as much as they wanted.

To ensure participants stay focused on the tasks, there was a time limit of 77 minutes to

complete the tasks to get a reward, and intermittent easy tasks were inserted and required to

answer correctly to get a reward (Brehmer et al., 2019b). For the matching task, the attention trial

was finding a graph that matches to the example, the only one orienting downward from five

graphs. For the maximum/minimum task, the participants were asked to choose the one with the

maximum value at the vertical line among six graphs when only one graph had a positive value at

the vertical line. For the slope task, which the results of the pilot study suggested that this task is

the most difficult one, the participants were asked to select the one with the steepest slope in the

span 1/4 width of the whole graph, when only one graph had a steep slope and others were

relatively flat. In this case, they were directly given the index of the one with the steepest slope.

This time limit and required intermittent tasks were notified before starting the tasks in Prolific.

Also, to filter the fast deceivers (Borgo et al., 2017; Gadiraju, Kawase, Dietze, & Demartini,

2015), the minimum threshold for the correctness of the answers to get a reward was decided

(Borgo et al., 2017) and considered with the total time taken and the average response time for

each condition.

Also, considering the “fat finger problem” (Siek et al., 2005), choosing the correct value

on the chart was not clicking the exact point. Instead, it was choosing an area covering the exact

point of value answering multiple-choice questions, referring to the case of Brehmer et al.

(2019b).

3.1.6 Implementation

The test application was a mobile web application only accessible on mobile devices with

the portrait display mode. The visualization for the test application was implemented using the

D3.js library (Bostock, Ogievetsky, & Heer, 2011). The server ran on the Microsoft Azure Cloud

computing service (Microsoft, n.d.). The backend server for the web application was written
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using Node.js (Joyent Inc., n.d.). The color scheme of the test program user interface referred to

Brehmer et al. (2019a, 2019b). Also, referring to the test application of Brehmer et al. (2019b),

the orientation of the display was limited to “portrait,” and the size of the displayed testing

program was limited using a CSS media query. The width was limited to between 320 px and

1440 px, and height was limited up to 1440 px. With this limitation, the size of the displayed

testing application was limited even with the devices with a relatively large display for

smartphones.

3.2 Experiment

Before the primary experiment, three pilot tests were conducted to ascertain the

appropriateness of the planned procedure for expected participants, the comprehensibility of the

tasks and instructions, allocating enough time, the robustness and proper difficulty of attention

check, and the fairness of reward for the participants (Borgo et al., 2017). The first pilot study

was conducted iteratively with three participants. They were given the link, did the tasks, and

gave feedback. Reflecting on their common feedback that the experiment too long than expected,

the experiment design was changed from fully within-subjects design to the mixed design of

between-subjects and within-subjects design by setting the layout as a between-subjects factor

and others as within-subjects factors. Also, reflecting on the feedback on the readability of the

graphs, the number of graphs was decreased from eight, sixteen, and thirty-two to six, twelve, and

twenty-four for each of small, medium, and large datasets. Considering that most studies on the

number of stocks for the substantial diversification suggest six to fifteen stocks, and some suggest

over fifty or even more than 73 (Alexeev, Tapon, et al., 2014), these numbers of graphs for each

size of dataset looked reasonable. Furthermore, reflecting on the feedback that there are too many

points on each graph, making not only less readable but also hard to figure out the exact point to

compare in the maximum/minimum task or the slope task, the number of points were decreased to

1/8 by leaving every first one from every eight points.

The second pilot study was conducted with fifteen participants on Prolific. Half the

participants were randomly assigned to use line charts, and the other half were to use horizon

graphs. The second pilot results suggested a very low accuracy of the maximum/minimum and
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slope tasks with horizon graphs. Because the low accuracy of the maximum/minimum task with

horizon graphs was not expected, the possibility that the participants might have been confused

was considered, and the solutions to make the task clearer was applied. Considering that the red

color used to represent the positive area, over the baseline, was also used to signify something

dangerous and negative, the color scheme for horizon graphs was changed from the red-blue to

the green-red, so that the positive, over the baseline area became green, and the negative, below

the baseline area, became red. Also, to make use of the orientation as an additional channel to

visualize, the mode of horizon graphs was changed from the mirror mode to the offset mode (See

3.4). Though it was indicated that the use of the offset mode didn’t have an impact on the

performance of using horizon graphs (Heer et al., 2009), it was expected that it would help the

participants be less confused about which area was positive and negative. Also, the use of the

offset mode was expected to help participants in the slope task because, with the offset mode

horizon graph, they didn’t need to flip the negative area to calculate the slope.

The third pilot study was conducted with twenty participants on Prolific. The results of the

third pilot suggested that the use of the green-red color scheme and the offset mode worked for

improving the accuracy of the horizon graphs, though this impact was not tested statistically. But

the accuracy of the slope task was still very low for both line charts and horizon graphs, and

specifically, that of the trials with the long span, requiring to consider the whole span of each

graph, was significantly low. Therefore, asking participants to do the slope task with the long span

was regarded meaningless, and the length of the span was changed from 1, 1/2, and 1/4 of the

whole span of each graph to 1/2, 1/3, and 1/4.

After these three rounds of the pilot studies, the sample size of the primary study was

determined and the primary study was conducted with 196 participants on Prolific.
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Figure 3.4. Construction of HG (adapted from Heer et al. (2009)

43



CHAPTER 4. RESULTS

In the first section of this chapter, the primary study results are overviewed in three parts:

completion time, accuracy, and subjective responses. Each part provides the mean and standard

deviation for each condition. From the data, the outliers under mean−1.5∗ IQR or over

mean+1.5∗ IQR for each metric were removed (Tukey, 1977). And in the second section, the

results are analyzed centered on four pairs of conditions corresponding to the four hypotheses for

each.

4.1 Overview

4.1.1 Completion Time

Figure 4.1 shows the mean and standard deviation of the completion times with columns

as tasks. The blue bars represent the completion times of LC, and the orange bars represent those

of HG. The unit of completion time on the y-axis is ms. The standard deviation of each condition

is represented using black lines. Since scrolling was not used for the medium size data with HG,

the bars for HG in the case of “Medium/no scroll” and “Medium/scroll” are the same. Along with

the mean and standard deviation of the completion times, the statistics of the T-test, p-value and d

Table 4.1. Pairs of Conditions

Pairs Size of dataset
Vertical scrolling interaction

LC HG
Pair 1 Small Not used Not used
Pair 2

Medium
Not used Not used

Pair 3 Used Not used
Pair 4 Large Used Used
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as a measure of the effect size, where 0.2 is a small size, 0.5 is a medium size, and 0.8 is a large

size (Cohen, 2013), are reported in the Table 4.2.

(a) Matching (b) Maximum/minimum

(c) Slope (d) All

Figure 4.1. Completion Times for Each Task

For all the tasks, the completion times increased as the size of datasets increased. Also, as

the size of datasets increase, the conditions with LC showed a more rapid increase in the

completion time than HG. Standard deviations also more rapidly increase with LC than HG. For

all tasks, HG took less time than LC. Matching task took less time with HG, which took 5.16

seconds on average for all conditions than LC, which took 6.55 seconds on average for all

conditions (See Fig 4.1). Maximum/minimum task with LC took 8.61 seconds on average for all

conditions, which was larger than 6.17 seconds of HG. Slope task with LC took 8.40 seconds on

average for all conditions, which was larger than 6.62 seconds of HG.
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Table 4.2. Effects of Layout on Completion Time

Task Pair T p d
All All 4.890 *** 0.723

Pair 1 (small size data) 1.396 0.207
Pair 2 (medium size data, no scroll) 4.822 *** 0.715
Pair 3 (medium size data, scroll in LC) 5.644 *** 0.844
Pair 4 (large size data, scroll in both) 6.586 *** 0.968

Matching All 5.672 *** 0.832
Pair 1 (small size data) 2.157 * 0.323
Pair 2 (medium size data, no scroll) 8.167 *** 1.212
Pair 3 (medium size data, scroll in LC) 8.295 *** 1.251
Pair 4 (large size data, scroll in both) 5.275 *** 0.769

Maximum/minimum All 6.762 *** 1.003
Pair 1 (small size data) 0.471 0.070
Pair 2 (medium size data, no scroll) 5.392 *** 0.789
Pair 3 (medium size data, scroll in LC) 7.457 *** 1.094
Pair 4 (large size data, scroll in both) 8.548 *** 1.264

Slope All 3.245 ** 0.482
Pair 1 (small size data) 2.770 ** 0.418
Pair 2 (medium size data, no scroll) 2.319 * 0.345
Pair 3 (medium size data, scroll in LC) 1.928 0.288
Pair 4 (large size data, scroll in both) 4.361 *** 0.641

*: p < .05, **: p < .01,***: p < .001

46



4.1.2 Accuracy

Figure 4.2 shows the accuracy and standard deviation of the accuracy with the column as

tasks. As above, the blue bars represent LC, whereas the orange bars represent HG. Also, as

above, scrolling was not used for the medium size data with HG, and the bars for HG in the case

of “Medium/no scroll” and “Medium/scroll” are the same one with the medium size dataset.

Along with the means and standard deviations, the statistics of T-test, p-value, and d as a measure

of the effect sizes, where 0.2 is a small size, 0.5 is a medium size, and 0.8 is a large size (Cohen,

2013), are reported in the Table 4.3. Figure 4.2 shows that overall accuracy decreases as the size

of the dataset increases. Also, the accuracy of the conditions with the Matching task was the

highest, and the Maximum/minimum task was the next, and that of the Slope task was the lowest.

It is notable that the accuracy of the Slope task with HG more rapidly decreased as the size of the

dataset increased. Considering it with the high standard deviation of the Slope task conditions

with HG, it is likely that the task was too difficult to find a clear impact of the increase of the size

of the dataset.
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(a) Matching (b) Maximum/minimum

(c) Slope (d) All

Figure 4.2. Accuracy for Each Task

4.1.3 Subjective Responses

The means and standard deviations of the subjective responses about the completion time

(see Figure 4.3) and accuracy (see Figure 4.4) are reported. Also, the T-test statistics, p-values,

and d as a measure of the effect size, where 0.2 is a small size, 0.5 is a medium size, and 0.8 is a

large size(Cohen, 2013), are reported.

Overall, the trends in the subjective responses follow those of the completion time and

accuracy, as the size of the datasets increases and the task proceeded from the Matching to

Maximum/minimum and Slope task. But about the Slope task, though the participants did trials

significantly faster, the survey results of the Slope task show that the participants who did the
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Table 4.3. Effects of Layout on Accuracy

Task Pair T p d
All All 2.229 * 0.353

Pair 1 (small size data) 2.120 * 0.479
Pair 2 (medium size data, no scroll) 2.101 * 0.306
Pair 3 (medium size data, scroll in LC) 0.985 0.142
Pair 4 (large size data, scroll in both) 1.509 0.217

Matching All 0.059 0.009
Pair 1 (small size data) 0.237 0.034
Pair 2 (medium size data, no scroll) -2.489 * -0.365
Pair 3 (medium size data, scroll in LC) -2.759 ** -0.397
Pair 4 (large size data, scroll in both) 2.999 ** 0.465

Maximum/minimum All -1.270 -0.184
Pair 1 (small size data) 0.739 0.106
Pair 2 (medium size data, no scroll) -0.598 -0.086
Pair 3 (medium size data, scroll in LC) -2.696 ** -0.388
Pair 4 (large size data, scroll in both) -1.483 -0.214

Slope All 7.968 *** 1.183
Pair 1 (small size data) 4.387 *** 0.632
Pair 2 (medium size data, no scroll) 4.546 *** 0.656
Pair 3 (medium size data, scroll in LC) 5.662 *** 0.817
Pair 4 (large size data, scroll in both) 7.749 *** 1.147

*: p < .05, **: p < .01,***: p < .001
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tasks with the HG were less confident than the ones who did with the LC. Chances are that they

were less confident in their completion time because, as the low accuracy of the Slope task

conditions with HG show, the trials were more difficult than the ones they did in other conditions.

(a) Matching (b) Maximum/minimum

(c) Slope (d) All

Figure 4.3. Survey Results on Completion Time

50



(a) Matching (b) Maximum/minimum

(c) Slope (d) All

Figure 4.4. Survey Results on Accuracy

4.2 Result Analyses

In this section, the results of the hypotheses test with the independent t-test are reported.

The independent t-test of LC and HG was conducted for the following four pairs of different

conditions. By pair 1 and pair 2, the basic graphical perception of two different visual

representations was compared. Also, with these pairs, the effect of the low height of LC on

readability and that of using HG were compared. Pair 1 was a baseline for comparing two layouts

because representing small data using LC does not lose readability in the given vertical space.
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Table 4.4. Effects of Layout on the Subjective Response for Completion Time

Task Pair T p d
All All -0.111 -0.030

Pair 1 (small size data) 1.348 0.127
Pair 2 (medium size data, no scroll) -0.698 -0.101
Pair 3 (medium size data, scroll in LC) -0.788 -0.104
Pair 4 (large size data, scroll in both) -0.392 -0.061

Matching All -2.243 * -0.249
Pair 1 (small size data) -1.170 -0.188
Pair 2 (medium size data, no scroll) -2.650 ** -0.415
Pair 3 (medium size data, scroll in LC) -1.191 -0.208
Pair 4 (large size data, scroll in both) -0.875 -0.138

Maximum/minimum All -0.777 -0.093
Pair 1 (small size data) 1.205 0.161
Pair 2 (medium size data, no scroll) -0.669 -0.121
Pair 3 (medium size data, scroll in LC) -1.591 -0.239
Pair 4 (large size data, scroll in both) -0.765 -0.135

Slope All 2.757 ** 0.383
Pair 1 (small size data) 2.170 * 0.303
Pair 2 (medium size data, no scroll) 1.770 0.212
Pair 3 (medium size data, scroll in LC) 1.290 0.257
Pair 4 (large size data, scroll in both) 0.953 0.554

*: p < .05, **: p < .01,***: p < .001
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Table 4.5. Effects of Layout on the Subjective Response for Accuracy

Task Pair T p d
All All 2.128 * 0.169

Pair 1 (small size data) 2.485 * 0.349
Pair 2 (medium size data, no scroll) 0.967 0.122
Pair 3 (medium size data, scroll in LC) 0.066 -0.003
Pair 4 (large size data, scroll in both) 0.854 0.103

Matching All -0.723 -0.089
Pair 1 (small size data) 0.849 0.094
Pair 2 (medium size data, no scroll) -1.369 -0.249
Pair 3 (medium size data, scroll in LC) -0.978 -0.187
Pair 4 (large size data, scroll in both) -0.021 -0.006

Maximum/minimum All 0.388 0.027
Pair 1 (small size data) 1.824 0.253
Pair 2 (medium size data, no scroll) 0.881 0.110
Pair 3 (medium size data, scroll in LC) -1.397 -0.212
Pair 4 (large size data, scroll in both) -1.021 -0.154

Slope All 4.627 *** 0.413
Pair 1 (small size data) 2.756 ** 0.381
Pair 2 (medium size data, no scroll) 2.327 * 0.318
Pair 3 (medium size data, scroll in LC) 2.290 * 0.330
Pair 4 (large size data, scroll in both) 2.900 ** 0.397

*: p < .05, **: p < .01,***: p < .001

Table 4.6. Hypotheses Test Results

Hypothesis Test result
H1: Using the small dataset, without any scrolling, participants will perform tasks faster with LC. Not supported
H2: Using the small dataset, without any scrolling, there will be no significant difference in task accuracy between LC and HG. Not supported
H3: Using the medium dataset without any scrolling, HG will outperform LC, with higher accuracy and less completion time. Partially supported
H4: Using the medium dataset, HG will be more effective than LC when vertical scrolling interaction is used in LC and is not used in HG. Supported
H5: Using the large dataset, HG will be more effective than LC when vertical scrolling interaction is used in both cases. Supported
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With pair 3 with the medium dataset and vertical scrolling only in LC, the effect of

interaction, and that of consulting memory and using HG to performance were compared. In this

pair of conditions, the virtual resolution of the display of LC was twice that of HG, and the virtual

resolution of each horizon graph was equal to that of an LC because it used half the space with a

2-band offset.

Lastly, with pair 4 with the large dataset and vertical scrolling in both LC and HG, the

effect of using HG for consulting to memory was examined. In this case, to make HG involve

vertical scrolling, the virtual resolution of the display in the case of HG was twice of a single

display. It used two pages of display. And the virtual resolution of the display in the case of LC

was twice that of HG to make the virtual display, with four pages (See Table 3.2). In this

condition, tasks were comparing line graphs or HG displayed on the different pages requiring

scroll.

For all the results of the t-test for these pairs, refer to Table 4.2 and 4.3.

4.2.1 Pair 1: with the Small Dataset

With pair 1, the performances of LC and HG with the small dataset, six graphs are

compared. In this pair, by the definition of the small dataset in this study, scrolling was not used

for either of LC and HG. In this pair, the heights of LC and HG were the same. However, since

LC and HG were using the same vertical space for the same number of graphs, the virtual

resolution of HG was quadruple that of LC because the height of each of the positive and negative

span was twice that of HG as layered. There was a statistically significant difference in the

completion time between LC and HG in the results of all of the three task trials. HG was

significantly faster than LC. For the detailed results, refer to the Table 4.2.

There was no statistically significant difference in the accuracy between LC and HG in the

Matching and Maximum/minimum task conditions. However, in the Slope conditions, HG was

significantly less accurate than LC (See Table 4.3).

Based on this result, H1, using the small dataset, without any scrolling, participants will

perform tasks faster with LC, is not supported. And H2, using the small dataset, without any

scrolling, there will be no significant difference in task accuracy between LC and HG is not
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supported. Overall, the LC was more accurate than HG, especially because of the difference in

the accuracy of the Slope task. Unlike the initial expectation that LC will outperform HG when

there is no clear advantage of using HG for saving vertical space, HG outperformed LC except for

the Slope task where no significant difference existed.

4.2.2 Pair 2: with the Medium Dataset, without Scrolling for Both LC and HG

With pair 2, the performances of LC and HG with the medium dataset, twelve graphs were

compared. In this pair, scrolling was not used in both LC and HG. To provide twelve graphs

without scrolling, the height of each LC in this pair was half that of the small dataset. In this case,

the heights of both LC and HG were the same, but the virtual resolution of HG was quadruple that

of LC.

In these conditions in all the tasks, there were statistically significant differences in the

completion time between LC and HG. HG was significantly faster than LC for all the tasks. Also,

considering the overall effect size of this pair with pair 1, the advantage of using HG in terms of

completion time was more clear. The d of completion time in pair 1 was 0.207, which was small

(Cohen, 2013), whereas that in pair 2 was 0.715, which was between the medium size effect, 0.4,

and the large size effect, 0.8 (Cohen, 2013).

In terms of accuracy, LC overall outperformed HG(p < .05,d = .232). More specifically,

though HG was more accurate in the Matching (p < .05,d =−0.365) and more or as much

accurate as LC in he Maximum/minimum task conditions (p > .05,d =−0.086), HG was far

significantly more accurate in the Slope conditions (p < .001,d = 0.656).

Based on the results above, H3 is partially supported because overall, HG is faster but less

accurate than LC.

4.2.3 Pair 3: with the Medium Dataset, Scrolling Only in LC

With pair 3, the performances of LC and HG with the medium dataset, twelve graphs were

compared. In this pair, scrolling was used in LC but not in HG. In the case of LC, since twelve

graphs were represented using two pages, the height of a graph in LC conditions was the same as
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that of LC with the small dataset. Since the height of each HG was half that of each LC, the

virtual resolution of HG was double that of LC.

In this condition, in all the tasks, there were statistically significant differences in the

completion time between LC and HG. HG was significantly faster than LC. Comparing the effect

sizes of this pair with those of pair 2, not using scroll, the effect sizes of pair 3 is larger than those

of pair 2 except for the Slope task condition, the difference of overall was .129, in the Matching

task conditions, .039, in the Maximum/minimum conditions, .305, and in the Slope conditions,

-.063. In terms of accuracy, HG outperformed in the Matching and Maximum/minimum

conditions, but underperformed in the Slope conditions.

Based on these results, H4 is supported because overall, HG was faster than LC and as

accurate as LC.

4.2.4 Pair 4: with the Large Dataset, Scrolling in Both LC and HG

With pair 4, the performances of LC and HG with the large dataset, twenty-four graphs

were compared. In this pair, scrolling was used in both LC and HG. In the case of LC, since

twenty-four graphs were represented using four pages, six graphs per page, the height of a graph

in LC conditions were the same as that of LC with the small dataset. HG was represented using

two pages. Therefore the height for a graph in HG conditions was the same as that of HG with the

medium dataset. Since the height of a graph of LC was double that of a graph of HG, the virtual

resolution of HG was double that of LC.

In this condition, in all the task conditions, there were statistically significant differences

in the completion time between LC and HG. HG was significantly faster than LC. In terms of

accuracy, overall, there was no statistically significant difference between HG and LC. But LC

was more accurate in the Matching and the Slope task conditions and HG was more accurate in

the Maximum/minimum task condition.

Based on these results, H5 is supported because overall, HG is faster and as accurate as

LC.
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CHAPTER 5. DISCUSSION

Based on the results in the previous chapter, the implication of the results is discussed

with consideration of the research questions. The design implications of the results, limitations of

this study, and future work are also discussed.

5.1 Understanding the Perception of HG and Participants’ Strategy using HG

The results of the conditions with the small dataset were different from the initial

expectations. Initially, LC was expected to be better for the tasks than HG with the small dataset

because, with the small dataset, HG would require additional cognitive load than line charts for

mentally unstacking, interpreting layering and mirroring or offset, and virtually implementing the

shape of line charts in mind. Also, with the small size dataset, it was assumed that LC provides

enough readability so that HG was expected not to have an advantage of better showing variations

than LC. However, HG outperformed or performed as much as LC with the small dataset, and one

of the potential explanation is using the preattentive processing (Healey & Enns, 2011;

Treisman, 1985). The preattentive processing is the detection of a limited set of visual features in

less than 200-250 milliseconds (Healey & Enns, 2011). The preattentive visual features include

hue (Bauer, Jolicoeur, & Cowan, 1997; D’Zmura, 1991; Healey & Enns, 1999; KAWAI,

Uchikawa, & Ujike, 1995; Nagy & Sanchez, 1990), orientation (Julesz & Bergen, 1983; Sagi

& Julesz, 1984; Weigle et al., 2000; Wolfe, Friedman-Hill, Stewart, & O’Connell, 1992),

length (Sagi & Julesz, 1985; Treisman & Gormican, 1988), size (Healey & Enns, 1999;

Treisman & Gelade, 1980), curvature (Treisman & Gormican, 1988), etc. (Healey & Enns,

2011). Considering that the use of hue for the positive/negative values is the clearest difference

between HG and LC, hue might have an impact on the perception of HG.

Another way of understanding the perception of HG is to directly ask the strategy they

used to complete the tasks with HG. If the approach using the theories about the preattentive
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processing is low-level, asking about the strategy used is more of a higher level since the

participants need to actively make a decision on which strategy they would use and find their own

strategy as they become more familiar with using HG. As future work, the strategies used by the

participants should be examined by interview or survey.

5.2 Implication for Design

As indicated in the first chapter, the purpose of this study is to examine whether using HG

for visualizing time series data is a viable design choice for mobile phones when compared to LC.

Considering this goal, the research question of this study was What are the performance

differences between HG and LC on the mobile phone display? This research question was divided

into two subquestions, one about the differences in completion time and another about the

differences in accuracy.

In terms of completion time, HG was faster than LC, even in the case with the small size

data where LC was expected to outperform. From the results with different conditions, the

advantage of using HG for shorter completion time is clear. This result is also meaningful,

considering subjective responses. Even though it was expected that participants would not be

familiar with using HG than LC, the results suggest that the participants who used HG performed

the tasks faster than those who used LC and also were more or as much confident in their

completion time as those who used LC (See Table 4.4).

In terms of accuracy, though overall results suggest that LC was more accurate, especially

the accuracy should be considered with the detailed results of each task since the Matching and

Maximum/minimum tasks and the Slope task show strong contrast in the results. As suggested in

Figure 4.2 and Table 4.3, in the Matching and Maximum/minimum task conditions, HG was more

accurate or as much accurate as LC. And there was no significant difference in the results of the

overall subjective responses. But in the Slope task conditions, LC was significantly accurate in all

the pairs. However, the accuracy of HG in the Slope task conditions were about 40% with the

small dataset, slightly over 20% with the medium dataset, and lower than 20% with the large

dataset, which is too low to use in the field. Though the accuracy of LC in the Slope task

condition is also lower than that of other tasks, that of HG rapidly decreased in this condition.
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And the subjective responses to the Slope task suggest that the participants were significantly

more confident in using LC for the task.

Also, considering the use of space, HG showed better completion time while using less

space than LC in pairs 2, 3, and 4. For the pair 2 and 3 in Matching and Maximum/minimum task

conditions, HG was more accurate than LC or as much accurate as LC. But for pair 4, LC was

significantly more accurate than HG in the Matching and Slope tasks, and as much accurate in the

Maximum/minimum task.

Therefore, HG can be potentially considered as a design choice over LC in the context

where the Slope task is not expected to be important, in that it can save time without losing much

accuracy. However, it should be considered when scrolling is used with HG because the accuracy

highly depends on the task. More specifically, considering that this study is about the low-level

primitive graphical perception study which used no visual aids used in real-world cases, such as

ticks, values, and other information about data that can help participants, it is concluded that the

experiment results show the high potential of HG as an alternative to LC. With more visual aids

that can help improve the advantage of using HG and recover the disadvantages of using HG in

cases such as where the Slope task is expected, HG can be a good alternative to LC. How to

harness the potential advantage of using HG can be a meaningful next step.

5.3 Impact of Using Scrolling Interaction and the Different Size of Dataset

This study is mainly focused on examining the performance difference between HG and

LC. However, by comparing the absolute effect sizes of pair 2 and pair 3, the impact of scrolling

and small size on the performance using LC can be inferred.

In terms of completion time, considering the effect sizes of pair 2 and pair 3, except for

the Slope task conditions, the effect sizes of pair 3 were larger than that of pair 2 (See Table 4.2.

When aggregated, the d of pair 2 was 0.715, pair 3, 0.844, with the Matching task, that of pair 2

was 1.212, pair 3, 1.251, and with the Maximum/minimum task, that of pair 2 was 0.789, and pair

3, 1.094). From these results, it can be inferred that the use of scrolling has a larger impact on the

completion time of using LC than the use of smaller graphs.
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In terms of accuracy, considering the absolute effect sizes of pair 2 and pair 3, except for

the Slope task conditions, the absolute effect sizes of pair 3 were large than those of pair 2 (See

Table 4.3. With the Matching task, the absolute d of pair 2 was 0.365, pair 3, 0.397, and with the

Maximum/minimum task, that of pair 2 was 0.086 and pair 3, 0.388). From these results, it can be

inferred that the use of scrolling has a larger impact on the accuracy of using LC than the use of

smaller graphs.

Except for the Slope task conditions, the results above suggest that scrolling has a larger

impact on the performance than using the graphs with smaller size.

5.4 Optimal Conditions for Using HG

In this study, it was found that HG outperforms LC, and the effect of using HG was larger,

especially when the number of graphs on a display increased. Exploring more tasks that can fully

take advantage of HG would be a meaningful next step.

Also, though this study initially followed the guideline suggested by (Heer et al., 2009) to

choose the features of HG, including the number of bands, mode, and color scheme, running the

study for checking if the optimal conditions suggested by (Heer et al., 2009) is also optimal for

HG on mobile phones will be a meaningful contribution for using HG on mobile phones.

Specifically, in the pilot study, it was found that the accuracy of HG increased when the mode of

HG was changed from mirror to offset. Because it was only the result of the pilot study with a

small sample size, fifteen and twenty, it was not examined enough. As a part of finding the

optimal conditions for using HG on mobile phones, this can be checked as well.

Also, this study set the number of graphs on a display referring to the real use cases and

reflecting on the feedback from the participants of the pilot study. But finding the optimal number

of graphs on a display would be useful.

5.5 Comparison to the Previous Studies

This study is the first study that examined the performance of using HG on a mobile

display. Also, this study explicitly and actively used a priori power analysis to decide the exact
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sample size to make sure the statistical results with enough statistical power. By following this

process, this study recruited 196 participants for the primary study, which is far more than

previous studies, which mostly recruited less than or equal to 20 participants (Heer et al., 2009;

Jabbari et al., 2018a, 2018b; Javed et al., 2010; Perin et al., 2013).

In terms of the results, it is notable that unlike what Javed et al. (2010) reported that the

visualization type did not have a significant effect on accuracy, this study reports that the layout

(LC or HG) had an impact on the accuracy overall and particularly in the Slope task conditions

(See Table 4.3). As suggested in Perin et al. (2013), it is likely that the use of the real-world

dataset with large and small scale variation (Perin et al., 2013) or the difference in the size of the

display were related to this result.

5.6 Limitations

Since the experiment of this study was conducted using a crowdsourcing platform, there

were inevitable tradeoffs between ecological validity and control over the participants. Though

about two hundred participants were recruited shortly and the limitation of the control over them

is advantageous for ecological validity in that it realizes the context of use in everyday life of

participants using mobile phones, participating in an experiment, and doing the tasks for 25

minutes were not a very realistic situation. However, by designing and implementing the features

for quality control and by checking the error and completion time of participants together, quality

data could be collected. Since Prolific supported to reject the submissions that did not pass the

attention checks, that with too low accuracy, or that did not follow the instruction appropriately,

the submissions with the low quality could be excluded without losing the number of participants.

Also, how the test program is viewed cannot be fully controlled. First, depending on the

resolution and the status of the display of devices participants use, the size and color of the graphs

can be different. When a participant uses the color filters, such as the blue light filter and the

filters for color blindness, the graphs can be seen differently. A researcher cannot fully control the

settings of the Operation System level. Also, though how the test program is viewed on a mobile

browser can be controlled and it did not allow the participants to use the zoom interaction,

technically, if the zooming is set by the Operating System level, this cannot be controlled by the
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researcher. Since most participants were in the 20s or 30s (mean = 25.58,std = 6.66), most of

them are unlikely to use the zooming or magnifying feature on the Operating System level for

helping their weak eyesight.

As indicated above, this study is a low-level primitive graphical perception study, which

compared the pure perception of HG and LC without a very specific context of use. Though the

study aimed at high ecological validity of the results by running an online crowdsourcing

experiment using the real-world data on mobile display settings, there were no visual aids, such as

ticks, specific values on the axes, names of the stock items, which are common in the real-world

context. The tasks were more primitive ones, and the questions for each task was more

decontextualized and abstract than the queries in the real-world use cases. Therefore, the results

of this study are not directly connected to the practical design guidelines that can be directly used

in the field. It is rather suggesting the potential of HG as an alternative to LC when properly used.

Lastly, the color scheme used for HG in this study was found not to support the

participants with red-green color blindness. Since the positive and negative value ranges were

redundantly encoded with color and the position of the starting point of a range, positive from the

bottom and negative from the top, even the people with red-green color blindness can read the

graph. However, it might have had an impact on the performance of those with red-green color

blindness.
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CHAPTER 6. CONCLUSION

In this study, the viability of HG as an alternative to LC was examined by running the

crowdsourcing experiments with different conditions by the size of the dataset and vertical

scrolling. The results of the experiment suggest that HG is a viable design and can be an excellent

alternative to LC to represent a large number of multiple time series data. In the experiment, in

most cases, HG outperformed LC, except for the Slope task, which was the most challenging task

even with LC and was turned out that HG was not appropriate for. Even in the case where LC was

initially expected to outperform HG, HG was more or as accurate as LC while taking much less

time. In addition to supporting to use of HG as an alternative to LC to visualize multiple

time-series data, these results leave further works to understand why HG outperforms LC. This

could be approached in terms of low-level, using the preattentive processing theories (Healey &

Enns, 2011), or high-level by asking participants about their strategy. Since HG has multiple

visual properties, including hue, the brightness of color, shape of the area, and different starting

points to represent positive/negative values, there can be various strategies to complete the tasks

fast and accurately.
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