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ABSTRACT

The current work centers on multi-scale approaches to simulate and predict metallic

nano-layers thermomechanical response in crystal plasticity large deformation finite element

platforms. Multiple parts including multi-scale modeling divided into two major scales; nano-

and homogenized levels, sensitivity analysis, micro-scale simulations, precipitate hardening,

and computational aid hardware and software development are researched. Copper/niobium

nano-layers are designated as case studies. At the nano-scale, a size-dependent constitutive

model based on entropic kinetics is developed through the thermodynamical phase space of

metallic nano-systems. A deep-learning adaptive boosting technique called the single layer

calibration is established to acquire associated constitutive parameters applicable to a broad

scope of setups entirely di↵erent from those of calibrations. The model is validated by ex-

perimental data with solid agreements followed by the simulation of multiple cases regarding

size, loading pattern, layer type, and geometrical e↵ects specifying the inconsequential ef-

fects of layers or loading orientations, predominant influence of size over the other traits, the

impacts of a constituent in a bi-crystal cases, and generalized size e↵ects on yield and flow

strengths as well as transition strain. Sensitivity analysis is performed on the size-dependent

constitutive model as a diagnostic-prognostic field through the factor prioritization in order

to capture the influential parameters where the size e↵ects designed parameters, namely,

m, cs, csat, and h0 are found the dominant factors on the main behavioral features. At

the homogenized level, macro-homogeneity is utilized through the statistical mechanics of

the microcanonical ensemble and the Clausius-Duhem inequality to link the scales through

entropy flux. A homogenized crystal plasticity-based constitutive model is developed with

the aim of expediting while retaining the accuracy of the computational processes for which

e↵ective constitutive functionals are realized. The high nonlinearity of the functional con-

stants is dealt with through a metaheuristic genetic algorithm approach leading to deter-

mining the associated terms in an optimized fashion. The homogenized constitutive model

12



results are favorably verified with nano-scale data while expediting computational processes

by several orders of magnitude. The temperature e↵ects are captured through developing a

temperature-dependent constitutive model where elastic constants and e↵ective functional

parameters are determined and calibrated. The model is validated with experimental data

with multiple demonstrations of temperature e↵ects identifying the degradation of a thin

nano-layer at high temperature into a thicker one at lower temperature and dramatic drops

of up to ⇡ 80% in flow strength at about 1000K. The work is expanded to micro-scale

where a crystal plasticity constitutive model is developed with the same backbones of the

model presented in the nano range. The implicit trace of size is designed in this format

as the physics behind the spectrum lead. The deep-learning single layer calibration is uti-

lized to obtain the associated constitutive parameters where validated by the experimental

data. Precipitate hardening phenomenon is realized and implemented considering Orowan

strengthening mechanism in nano-systems. Wherefore several cases indicating the impacts of

size and volume fraction of precipitates on mechanical properties are assessed and discussed

revealing the exponential increase on flow strength and hardening with respect to precipitate

volume fractions, the high stress absorption by precipitates creating extreme stress gradient

with the matrix, and the e↵ect of a strengthened constituent, here Nb, on the overall behav-

ior of these nanolamellars. The developed nano-scale size-dependent constitutive model, the

deep-learning single layer calibration method, sensitivity analysis, homogenized constitutive

model, temperature-dependent constitutive model, micro-scale constitutive model, precipi-

tated strengthening analyses, genetic algorithms, numerical solvers, and process optimizers

are implemented through three-dimensional crystal plasticity nonlinear finite element codes

in the large deformation platform. A dedicated supervised cluster has been constructed with

specific architecture and orchestration policies compatible with the current data processing

and workloads.
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1. INTRODUCTORY IN METALLIC NANO-LAYERS

1.1 Introduction

Metallic nano-layers are nano-systems made of alternating metallic lamellae while associ-

ated mechanical properties become distinctive from those of the bulk counterparts, Fig. 1.1.

These materials have exceptional mechanical properties including significant yield and flow

strength, considerable ductility, notable fatigue tolerance, substantial radiation damage for-

bearance, and forth.

(a)

(b)

Figure 1.1: (a) Metallic nano-layers made of alternating metallic lamellae with a high density of
interface. (b) Scanning electron microscopy of a copper chromium nano-layer with the thickness

of about 30 nm.
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As an example, in copper niobium nano-layers having a thickness of 40 nm, flow strength can

reach about 1.75 GPa with the ductility of more than 30 % [1], as demonstrated in Fig. 1.2.

Figure 1.2: An example of a copper niobium nano-layer having a thickness of 40 nm with flow
strength of about 1.75 GPa and the ductility of more than 30 % [1].

1.2 Application of Metallic Nano-Layers

The novel properties of these nano-composites such as high strength and ductility make

them conducive to occupy a prominent portion of vast practical applications, Fig. 1.3.

These features can be attributed to the high density of interfaces, fine microstructures, and

complex dislocation mechanisms [15]. Design and behavioral prediction of metallic nano-

lamellars necessitate a profound understanding of deformation mechanisms ascribed to layer

spacing, interface morphology and composition, and dislocation mechanisms in di↵erent seg-

ments.
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(a) (b) (c)

(d)

Figure 1.3: Diverse applications of metallic nano-layers in (a) electronic industry, (b) coating
mechanical tools, (c) solar systems, and (d) medical treatments.

1.3 Computational Methods in Metallic Nano-Layers

The majority of the studies on metallic nano-films are performed either for large scales

using local and simplified models [16, 17] or for very small scales using molecular dynamics

[2] as well as discrete dislocation dynamics.

The molecular dynamics results can not be adequately verified with experimental data as it

is deducible in Fig. 1.4, where the simulation and pillar compression test results could not

agree, especially in yielding and flow strengths.
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(a) (b)

Figure 1.4: Comparison of the results in (a) a typical loading-unloading stress-strain curve from
molecular dynamics simulations and (b) the micro-pillar compression test for two individual layer

thicknesses of 5 nm and 30 nm [2]. The appreciable discrepancy between the simulation and
experiment, especially in yielding and flow strengths, implies the remote possibility of proper

verification.

One of the most important reasons for these types of discrepancies is associated with the

consideration of a high strain rate in the atomic level which naturally is compatible with the

velocity of the variable therein, yet, not with practical cases.

Discrete dislocation dynamic simulations also su↵er more or less the same limitations. Being

unable to capture a variety of dislocation mechanisms at the same time, being restricted to

two-dimensional modeling for practicalities, as demonstrated in Fig. 1.5 [3], thus, neglecting

several three-dimensional dislocation interactions, not being capable of detecting large plastic

strains and modeling realistic unit cells as well as non-local size e↵ects, and huge time and

energy consumption, are of the shortcomings.
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Figure 1.5: Discrete dislocation dynamic simulation of (a) a two dimensional Al/Cu bilayer for
which (b) the normalized contour of the normal stress on the x1 direction is plotted [3].

1.4 Selected Computational Approach in Metallic Nano-Layers

The continuum models are able to capture vital features, however, if simplified approaches

are pursued, to a limited extent. Therefore, enhancing the constitutive models and defor-

mation mechanisms in these types of simulations are extremely beneficial in detecting the

actual, verifiable responses, due to which this work will be thoroughly concentrating on these

matters.

At the micrometer range, the Hall-Petch relation [18, 19] is often employed, � / d�0.5, indi-

cating the increase of strength with layer thickness refinement based on dislocation pile-up

against interfaces along with other transgranular dislocation mechanisms as the dominant

strength-controlling processes. The approach is founded on the average size simulation lead-

ing to the computational simplification [20] which makes it easier to incorporate in generic

applications while in the sensitive cases is not advised. At nano-scales, this relation breaks

down due to the insu�cient impact of decaying exponent and lack of other associated e↵ects

which is mostly observed when the motion of dislocations is hindered at interfaces and grain

boundaries [21].
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To overcome these di�culties and address the crystalline anisotropy and size dependence as-

pects in the associated governing equations, crystal plasticity (CP), a proper tool reflecting

the anisotropic nature of crystalline materials [22], along with finite element (FE) analysis

is utilized. The crystal plasticity finite element (CPFE) approach in the large deformation

platform, when performed in three dimensions, has the ability to assess and simulate the

grain interactions, interface abrupt mechanical transitions, mixed deformation mechanisms,

complex boundary conditions, and diverse empirical and physics-based constitutive models

[23, 24]. Three-dimensional CPFE method can be applied in a multi-scale framework pro-

viding comprehensive plastic kinematics and thermodynamics of a system.

Advanced CPFE analyses can be utilized in a widen length spectrum from nano to macro

polycrystalline scales through constitutive models derived based on the specifics of the body

phase space. In addition, the acquired outcomes can be adequately compared through the

experimental data as one of the prominent advantages of utilizing such approaches.
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2. FUNDAMENTAL THEORIES AND SCHEMES

2.1 Introduction

This research is aimed at developing a homogenized multi-scale crystal plasticity model

with parametric representations of the nano-level morphology in its evolution laws. In this

framework, CP models hierarchically encompass dominant features at each scale through the

constitutive models followed by the implementation of microstructure properties and finally

behavioral prediction and design. The computational processes proceed through calibration

and validation with experimental data including pillar compression tests, to gather informa-

tion assisting with the constitutive model variables and e↵ective functionals terms. In order

to create a broad, in-depth perspective, in the subsequent sections, the rational behind the

utilization of CPFE approaches are discussed in detail.

2.2 Crystal Plasticity Approach

The elastoplastic deformation of crystalline aggregates is mechanically anisotropic due to

the anisotropy of the elastic constants and the activation of the crystallographic deformation

mechanisms. As a consequence, the associated mechanical phenomena such as flow stress

and strain hardening inhere the same trait indicating that mechanical parameters of a crys-

talline matter embedded in constitutive models are tensor quantities [25]. Fig. 2.1 exhibits a

polycrystalline copper including eleven grains under uniaxial tensile test with a non-uniform

distribution of plastic deformation across the sample along and even within the grains.
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Figure 2.1: An example of nonuniform plastic deformation in a polycrystalline copper including
eleven grains under a uniaxial tensile test [4]. Irregular deformations are observed along and

within the grains.

Furthermore, in single crystals, orientation dependence can result in significant discrepancies

in mechanical properties. Fig. 2.2 displays di↵erent stress-strain curves for a single crystal

nickel-base superalloy in both elastic and plastic regimes for dissimilar orientations of h001i,

h011i, and h111i. These concerns can be addressed through crystal plasticity by having

orientations as the primary state variables while continuum plasticity is unable to account

for those e↵ects due to the lack of related intrinsic variables within.
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Figure 2.2: The stress-strain curves of a single crystal nickel-base superalloy for three directions
of h001i, h011i, and h111i indicating the anisotropy phenomenon [5].

2.3 Large Deformation Analysis

Plasticity theories are applicable primarily to solids experiencing inelastic deformations

considerably greater than elastic ones. Once strains or rotations become so immense, large

displacement kinematics must be considered which is the case for most metals and metallic

alloys. The crystal plasticity approach has the potential to be designed for either small

or large deformation [25]. Small deformation relations simplify the implementation and

simulation process, yet, make the model limited to a small strain range. Experimental

results in metallic nano-composites, as demonstrated in Fig. 2.3, suggest the existence of

large strains up to about 30%.
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Figure 2.3: Stress-strain curves for single crystals of copper for four thicknesses of 111 nm, 155
nm, 256 nm, and 500 nm with large plastic deformation up to about 30 % [6].

Thereby, in spite of the straightforward use of infinitesimal strain theory, those relations

cannot be relied on for practical strain ranges, and finite strain theory must be accommo-

dated where di↵erent configurations are considered for deformation conditions linked through

motion functions.

2.4 Rate Dependence Phenomenon

Another characteristics related to metals and metallic alloys, is the rate dependence

responses of these materials, as illustrated in Fig. 2.4.

As observed, the critical points of the stress-strain curves change values with the variation

of the applied strain rates. Thus, this matter must as well be addressed properly in the

associated governing relations, otherwise, the real properties can not be reliably detected.
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Figure 2.4: Stress-strain curves of an aluminum specimen under four di↵erent strain rates [7].
The variation in strain rates a↵ects the critical points values as well as the overall behavior of the

sample indicating the rate dependence nature of the tested material.

2.5 Large Deformation Kinematics

The kinematics of finite strain describes the process where a body originally located in

a reference configuration is deformed in the current state by a combination of externally

applied forces and displacements over a period of time, t. The motion function �(X, t) maps

a material position vector X or a reference line element dS to a spatial position vector s or

a current line element ds with material displacement U(X, t) and designated right-handed

coordinate system, as demonstrated in Fig. 2.5
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Figure 2.5: Deformation of a material position and line from reference to spatial configuration
mapped by the motion function.

In this system, the deformation gradient representing the quality of the motion is defined in

terms of motion or displacement functions with

F(X, t) = rX �(X, t) = I+
@U

@X
, (2.5.1)

as a generalized definition of deformation in a system. Accordingly, the Lagrangian strain is

determined as

E =
1

2

"
@U

@X
+

✓
@U

@X

◆T

+
@U

@X

✓
@U

@X

◆T
#
, (2.5.2)

where the first two terms generally define the small strain relations whereas the last term

appears only due to the large deformation consideration emphasizing the second-order dis-

placement gradient. Similarly, the Eulerian strain is described through

e =
1

2

"
@u

@x
+

✓
@u

@x

◆T
#
. (2.5.3)

25



At this point, the rate dependence feature of the system is recognized via the velocity gradient

as

l = rxv(x, t) . (2.5.4)

Now, by incorporating the fundamental concepts of the finite strain scheme, the main struc-

ture of crystal plasticity is built as discussed in the following sections.

2.6 Crystal Plasticity in Large Deformation Finite Element

Large strain-description is accommodated through a multiplicative decomposition of the

total deformation gradient, F, into the elastic deformation gradient, Fe, which is the de-

formation component due to the reversible response of the lattice under external loads and

displacements as well as rigid-body rotations, and the plastic deformation gradient, Fp, as

an irreversible deformation that persists when all external forces and displacements are re-

moved. In this sense, the transformation of the reference state by Fp leads to the creation

of the intermediate configuration. The intermediate configuration signifies the presence of

dislocations which produce the permanent shape changes. In addition, due to the rate de-

pendence of most metals and metallic alloys, the rate of deformation gradient needs to be

involved through the velocity gradient, l = ḞF�1, as well.

The decomposition framework is demonstrated in Fig. 2.6, where an atomistic structure in

the reference configuration is in the undeformed state. The current configuration displays

the deformed structure including both elastic and plastic deformations where the plastic part

of displacements in the form of stretch type is calculated in the intermediate configuration.
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Figure 2.6: Framework decomposition into reference, intermediate, and current configuration.

With the presence of plastic deformations, multiplicative decomposition is adopted in order to

divide the elastic and plastic parts of the deformation. In fact, an intermediate configuration

is introduced to solve the indeterministic equation of F = FeFp by calculating Fp. For a

given deformation, the plastic part Fp is calculated using constitutive model via the plastic

part of the velocity gradient, lp = ḞpF�p, where Asaro equation [26] is employed in order to

find lp as

lp =
NX

↵=1

�̇↵s↵0 , (2.6.1)

in which s↵0 = m↵
0 ⌦n↵

0 is the Schmid tensor where m↵
0 and n↵

0 are slip and normal directions,

respectively, in the reference configuration. Most of the constitutive models are Orowan
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based [27], i.e.,

�̇↵ = ⇢↵mb
↵v↵ , (2.6.2)

where ⇢↵m is the mobile dislocation density, b↵ the Burgers vector, and v↵ the dislocation

velocity for a given slip system. At this point, constitutive models must be utilized in order

to calculate Ḟp. Thus, an integration scheme needs to be accommodated to determining the

total plastic part of the deformation gradient. Afterward, the elastic part of the deformation

is computed through

Fe = FF�p (2.6.3)

Further, the elastic part of deformation gradient can be used in Hooke’s law in order to

acquire the Second Piola-Kirchho↵ stress, S, which is obtained in terms of Green-Lagrange

strain and anisotropic material elastic tensor, C , with

S = CE , (2.6.4)

where E in terms of the deformation gradient is expressed as

E =
1

2
(FeTFe

� I) . (2.6.5)

Here, solving the equilibrium equation in the current configuration requires the calculation

of Cauchy stress, �, with regard to Second Piola-Kirchho↵ stress by

� =
1

|Fe|
FeSFeT . (2.6.6)

This relation holds due to plastic incompressibility, i.e., detFp = 1.

In the subsequent parts, the equilibrium equation is specified through finite element meth-
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ods. Finite element (FE) methods are a powerful numerical tool with a broad scope of

science and engineering applications. In FE analysis the problem domain is discretized into

geometric elements along with considering the material properties and governing equations.

Afterwards, the domain is constructed and represented with equations through associated

boundary conditions. These equations are solved signifying the estimated responses of the

system. Generally, in solid mechanics, the focus is on bodies in equilibrium, that is, the

summation of forces and moments is also zero for any sub-system or element. In any closed

sub-domain, conservation of linear momentum compels force balances expressed by

�ij,j + fi = 0 (2.6.7)

as equilibrium equations, where �ij,j denotes the Cauchy stress components and fi the body

force members in the indicial notation and large deformation framework. The relation be-

tween stress and strain, make equilibrium equalities, partial di↵erential equations with exact

and approximate solutions. The former normally requires simple geometries and loading

conditions where most practical cases are excluded from that realm. The latter, however,

can be dealt with through FE analysis as one of the numerical methods in order to acquire

possible solutions in intricate real cases with numerous material and geometrical nonlinear-

ities involved in their base relations.

The prime relations in the FE method commonly are derived through the potential energy.

Considering Lagrangian description and the principle of virtual work on a system with the

volume ⇤ and surface @⇤, the equilibrium equation in the variational form with neglecting

point loads is stated with

Ptotal =

Z

⇤

S : �E dV �

Z

⇤

f : �u dV �

Z

@⇤

T : �u dS , (2.6.8)

where S corresponds to second Piola-Kirchho↵ stress, E the Lagrangian strain, f the body

force, �u an arbitrary virtual displacement field, and T the surface traction.
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The virtual strain �E due to the virtual displacement can be expressed by

�E =
1

2

"✓
@�u

@X

◆T @x

@X
+

✓
@x

@X

◆T @�u

@X

#
. (2.6.9)

Due to the fact that the majority of practical problems are in fact three dimensional, the

associated finite element analysis is of interest in this work. Thereby, eight-node hexahedral

elements demonstrated in Fig. 2.7 are discussed and utilized in the computational processes.

For the mapped cubic element, the Lagrange shape functions are written as

NI =
1

8
(1 + ⇠I⇠)(1 + ⌘I⌘)(1 + ⇣I⇣) ; I = 1, 2, ..., 8 , (2.6.10)

where (⇠I , ⌘I , ⇣I) denotes the coordinates of the node I.

Figure 2.7: Eight-node hexahedral element.

For an isoparametric element, X = NI XI , the virtual displacement field can be interpolated

with shape functions NI as a function of the virtual displacements in elemental nodes, �ǔ,
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hence, the virtual Lagrangian strain is represented with

�E =
1

2

X

I

⇥
(�ǔI ⌦rXNI)

TF+ FT (�ǔI ⌦rXNI)
⇤
. (2.6.11)

Now, the Eulerian virtual displacement can be derived considering e = F�T �EF�1 and

rx = rXF�1 as

�e =
1

2

X

i

⇥
(�ǔi ⌦rxNi) + (�ǔi ⌦rxNi)

T
⇤
. (2.6.12)

Considering a domain with volume, v, subjected to external forces and displacements on its

boundary, �, as demonstrated in Fig. 2.7, in the absence of body forces and inertial e↵ects,

the principle of virtual work for any arbitrary velocity vector field, �v, compatible with all

kinematically admissible constraints is expressed as

Z

v

� : �ddv �

Z

�

t�vd� = 0 , (2.6.13)

where �d is the virtual strain rate associated with the velocity field �v in

�d =
1

2
(�l+ �lT ) , �l =

@�v

@x
. (2.6.14)

By substituting the obtained virtual Eulerian strain in the equilibrium equation, the residual

force by neglecting body forces of the system in the current configuration with volume � and

surface @� is determined through

R(ǔ) =

Z

�

(rxNi)
T�dV �

Z

@�

Ni T dS . (2.6.15)

As observed, the equation itself is highly nonlinear which needs to be solved also through

a numerical method such as the Newton-Raphson procedure to update the displacement
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iteratively until the desired precision is reached. Following this technique results in

ǔn+1 = ǔ�

✓
@R

@ǔ

◆�1

n

Rn (2.6.16)

and

@R

@ǔ
=

Z

�

(rxNi)
TD(rxNi) dV �

Z

@�

(rxNi)
T
⌦ �(rxNi)

T dS (2.6.17)

which defines material sti↵ness tensor with

Kmat =

Z

�

(rxNi)
TD(rxNi) dV (2.6.18)

and geometrical sti↵ness tensor as

K� =

Z

@�

(rxNi)
T
⌦ �(rxNi)

T dS . (2.6.19)

The material sti↵ness tensor can appear in the calculations only if the large deformation is

considered which indicates the crucial e↵ects of considering this description.

At this point, crystal plasticity approaches are incorporated in order to obtain the relation

of the sti↵nesses and further implementations in the computational process. By solving the

equilibrium equations over a discretized domain, the velocity corresponding to a material

point within an element, v is approximated by the velocity of each integration point, v̂i

through

v =
kX

i=1

Niv̂i , (2.6.20)
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where k is the number of nodes per element, i, and N the interpolation matrix, while

F =
kX

i=0

xi ⌦rXNi . (2.6.21)

Thus, the velocity gradient is acquired with

l =
kX

i=1

v̂i ⌦rxNi = r(⇠,⌘,⇣)Ni

h kX

i=1

xi ⌦r(⇠,⌘,⇣)Ni

i
v̂ , (2.6.22)

where ⇠, ⌘, ⇣ are associated with the local coordinate system. By combining Eq.s 2.6.13,

2.6.14, and 2.6.22 the equilibrium equation becomes a nonlinear relation to be solved via

numerical methods by defining the residual force, R, in the current configuration as

R(v̂) =

Z

v

(rxNi)
T�dv �

Z

s

Nit�d� = 0 . (2.6.23)

The Newton-Raphson procedure is utilized to solve this nonlinear equation and update the

velocity until the desired precision is attained, i.e.,

v̂n+1 = v̂n
�

⇣@R
@v̂

⌘�1

n
R , (2.6.24)

where

@R

@v̂
=

Z

v

(rxNi)
TDep(rxNi)dv

| {z }
Material Sti↵ness

+

Z

v

(rxNi)
T� ⌦ (rxNi)dv

| {z }
Geometrical Sti↵ness

. (2.6.25)

The first term of this equation is the material sti↵ness as a general term appeared in generic

finite element methods while the second term is the geometric sti↵ness that only exists due

to the consideration of large deformation. In other words, the approaches using infinitesimal

strain methods ignore the significant e↵ects of the geometrical resistance which is the origin

of a variety of inconsistencies observed between the results and associated experimental data.
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At this point, a constitutive model needs to be incorporated in order to obtain both sti↵nesses

through the plastic deformation gradient and proceed for further kinetics representations.

The next section is dedicated to the discussion of the generic types of constitutive models.

2.7 Constitutive Models in Crystal Plasticity

In general, constitutive models are categorized into two main classes in terms of intrinsic

variables; phenomenological and physics-based models. Phenomenological constitutive mod-

els are functions of the resolved shear stress introduced as the state variable for each slip

system whereas the physics-based constitutive models rely on internal variables including

dislocation densities.

2.7.1 Phenomenological Constitutive Models

One of the frequently used models in this category is the power-law model where the flow

rule is a function of resolved shear stresses considering loading and hardening parameters

for a given slip system [28] which can be stated as

�̇↵ = �̇0|
⌧↵

⌧↵cut
|
1
m sgn(⌧↵) , (2.7.1)

in which �̇↵ is the rate of plastic shear strain on the slip system ↵, ⌧↵ the resolved shear

stress, ⌧↵cut the orthogonal slip resistance stress, �̇0 the initial plastic strain rate, and m the

material constant. ⌧↵cut acts as the hardening factor and is a function of shear strain rate

considered instantaneously on all slip systems to reflect self and latent hardening e↵ects,

that is,

⌧̇↵cut =
NX

�=1

h↵�|�̇
�
| , (2.7.2)
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where h↵� is the hardening parameter including self, ↵, and latent, �, hardening specified

with

h↵� = q↵�


h0

✓
1�

⌧↵cut
⌧sat

◆a�
. (2.7.3)

Here, h�
0 is the initial hardening parameter, q↵� a magnitude for self and latent hardening,

a a material constant, and ⌧�sat the saturation shear stress.

2.7.2 Physics-Based Constitutive Models

Physics-based constitutive models, particularly, dislocation density-based models involve

internal variables such as dislocation densities. The advanced dislocation density-based con-

stitutive models that consider the evolution of dislocation density followed by the calculation

of associated plastic deformation commonly have a functional form of mobile dislocation den-

sity in terms of parallel and forest ones. In general, parallel and forest dislocation densities

can be computed in terms of statistically stored dislocations or SSDs which evolve from

random trapping processes during plastic deformation [29, 30]. The parallel dislocation den-

sities, ⇢↵F , and forest dislocation densities, ⇢↵P , can be calculated as a function of statistically

stored dislocation densities, ⇢SSD, with

⇢↵F =
NX

�=1

�↵�⇢↵SSD|cos(n
↵, t�)| (2.7.4)

and

⇢↵P =
NX

�=1

�↵�⇢↵SSD|sin(n
↵, t�)| , (2.7.5)

where n↵ and t� = (m�
⇥ n�) are unit vectors for a given slip system and �↵� is the interac-

tion strength coe�cient. These relations, however, can be modified in order to capture size

e↵ects. Similar to anisotropy, the size e↵ect cannot be addressed by classical plasticity due
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to the lack of associated intrinsic variables. Thereby, CPFEMs are utilized by incorporating

the related state variables embedded in the constitutive models in which, the size e↵ect on

the strengthening and the evolution of material hardening can be explained through modified

dislocation-based descriptions.

Geometrically necessary dislocations (GNDs) appear in strain gradient fields due to geo-

metrical constraints of a crystal lattice. Gradients in the plastic strain due to nonuniform

plastic deformation and related size e↵ects such as the presence of lattice curvature and

distortions caused by precipitates, interface, and grain boundaries give rise to GND densi-

ties in order to maintain continuity and preserve lattice compatibility in a crystal. GNDs

do not contribute to plastic strain but act as obstacles to the motion of other dislocations,

accordingly, enhance the work hardening of the material. The GND densities are polarized

entities accommodating the local plastic strain gradients [25] and can be obtained if the

variation of plastic deformation on crystal planes is known. The formulation of GNDs first

introduced by Nye [31] and extended by Ashby [32] and Kroner [33] giving a physical basis for

strain gradient-dependent material behavior. Dislocation interaction models highlight the

increased concentration of dislocations with size shrinkage inherent to the increased inhomo-

geneous deformation. GNDs are largely concentrated in the grain boundary, interface, and

around precipitates where the lattice mismatch is most pronounced and can be calculated

from Nye’s tensor, ⇤, as

⇤ = �
1

b

�
5X ⇥ FpT

�T
. (2.7.6)

The rate of Nye’s tensor can be obtained by summation of the rate of Nye’s tensor over each

activated slip system through

⇤̇ =
NX

↵=1

⇤̇↵ . (2.7.7)
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Here, GNDs can be decomposed into three components including one screw, ⇢̇↵GNDs, and two

edge parts, tangential, ⇢̇↵GNDet, and normal, ⇢̇↵GNDen, which are derived from the material

time derivative of Nye’s tensor as

⇢̇↵GNDs =
1

b

⇥
5X ⇥

�
�̇↵FpTn↵

�⇤
.m↵ (2.7.8)

⇢̇↵GNDet =
1

b

⇥
5X ⇥

�
�̇↵FpTn↵

�⇤
.t↵ (2.7.9)

⇢̇↵GNDen =
1

b

⇥
5X ⇥

�
�̇↵FpTn↵

�⇤
.n↵ (2.7.10)

Considering these modifications, the parallel and forest dislocation densities given in Eqs. 2.7.4, 2.7.5

in the presence of GNDs are represented with

⇢
↵
F =

NX

�=1

�
↵� [⇢↵SSD|cos(n

↵
, t

�)|+ ⇢
↵
GNDs|cos(n

↵
,m

�)|

+ ⇢
↵
GNDet|cos(n

↵
, t

�)|+ ⇢
↵
GNDen|cos(n

↵
, n

�)|] (2.7.11)

⇢
↵
P =

NX

�=1

�
↵� [⇢↵SSD|sin(n

↵
, t

�)|+ ⇢
↵
GNDs|sin(n

↵
,m

�)|

+ ⇢
↵
GNDet|sin(n

↵
, t

�)|+ ⇢
↵
GNDen|sin(n

↵
, n

�)|] , (2.7.12)

where �↵� is the interaction strength coe�cient. The mobile dislocation density is specified by

⇢
↵
m = cm

p
⇢
↵
F ⇢

↵
P , where cm =

c0KBT

Gb3
, with c0 as a material constant and G shear modulus. Thus,

the velocity of mobile dislocations used in Orowan equation will be

v
↵ = v0 exp

✓
�

Q

kBT

◆
sinh

✓
|⌧

↵
|� ⌧

↵
pass

⌧
↵
cut

◆
sgn(⌧↵) , (2.7.13)

with v0 =
c1p
⇢
↵
P⇢

↵
F

as the initial dislocation velocity expressed in terms of parallel and forest

dislocation densities. The dislocation velocity depends upon the hardening parameters of passing
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and cutting stresses which are determined through

⌧
↵
pass = c2Gb

p
⇢
↵
P + ⇢

↵
F , ⌧

↵
cut =

c3kB✓

b2

p
⇢
↵
F . (2.7.14)

Here, c2 and c3 are material constants. Contributions to the total slip resistance are due to ⇢↵SSD

including all dislocation mechanisms that can increase or decrease dislocation densities. At low

temperature, two increasing mechanisms of lock and dipole formations and one decreasing mechan-

ical of athermal annihilation are recognized. The lock formation is the immobilization of mobile

dislocations defined as

⇢̇
↵
SSDlf

=
c4

b

p
⇢
↵
F �̇

↵ (2.7.15)

and dipole formation with the increasing rate of

⇢̇
↵
SSDdf

=
c5

b

p
3Gb

16⇡(1� ⌫)
(|⌧↵|� ⌧

↵
pass)

�1
⇢
↵
m�̇

↵
. (2.7.16)

The athermal annihilation has a decreasing rate due to the interaction of mobile dislocations of one

slip system with the immobile dislocations on the same one with the rate of

⇢̇
↵
SSDaa

= �c6⇢
↵
SSD�̇

↵
. (2.7.17)

In these equations c4, c5, and c6 are material constants. Therefore, the rate of the density of SSDs

is specified as

⇢̇
↵
SSD = ⇢̇

↵+
SSDlf

+ ⇢̇
↵+
SSDdf

+ ⇢̇
↵�
SSDaa

(2.7.18)

Ultimately, the mobile dislocation density and the average velocity of glissile dislocations can be

obtained for further analyses.
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2.8 Crystal Plasticity Large Deformation Finite Element (CPFE)

Considering any type of constitutive models, phenomenological or physics-based, utilized in

analytical and computational processes, in order to obtain the sti↵ness of a system, second Piola-

Kirchho↵ stress must be determined which is expressed in terms of deformation gradients and

material elastic tensor, C , as

S(⌧) =
C

2


F
p�T (⌧)FT (⌧)F(⌧)Fp�1(⌧)� I

�
. (2.8.1)

With Asaro equation [26], this relation is represented with

S(⌧) =
C

2

 nslipX

↵=1

✓
I���↵ (m↵

0 ⌦ n
↵
0 )

T

◆
F
p�T (t)FT (⌧)

F(⌧)F�p(t)
nslipX

↵=1

✓
I���↵ m

↵
0 ⌦ n

↵
0

◆
� I

�
, (2.8.2)

where the time increment is defined as ⌧ = t+�t. This relation in terms of the current and next

time steps can be written in a general format of elastic and a functional of the second Piola-Kirchho↵

stress, respectively, with

S(⌧) = Sel + f(S(⌧)). (2.8.3)

As noted, it is a nonlinear equation that needs to be solved through numerical approaches. Here,

by defining unbalanced stress, G(S), the equation is solved through the following process.

G(S) = S(⌧)� Sel +
nslipX

↵=1

C
↵ ��↵ (2.8.4)

and

G
0(S) = I+

nslipX

↵=1

H(↵)⌦
@��↵

@S(⌧)
, (2.8.5)
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where

@
�
��↵

�

@S
=
@
�
��↵

�

@⌧↵

@⌧
↵

@S
=
@
�
��↵

�

@⌧↵
(m↵

0 ⌦ n
↵
0 ) , (2.8.6)

in which H(↵) is a nonlinear function of slip system, ↵. Now, by obtaining the plastic deforma-

tion gradients, Cauchy stress is achieved which leads to determining the geometrical sti↵ness in

Eq. 2.6.25.

In order to find the material sti↵ness, the derivative of the Cauchy stress with respect to Lagrangian

strain needs to to be obtained through

d�

dE
=

1

detFe

⇥dFe

dE
SF

eT + F
e dS

dE
F
eT + F

e
S
dF

eT

dE
� (Fe

SF
eT ) tr(

dF
e

dE
F
e�1⇤

. (2.8.7)

By defining P = @Fe

@E and Q = @S
@E , elastoplastic material sti↵ness, Dep, is determined as

Dep =
1

detFe

⇥
PSF

eT + F
e
QF

eT + F
e
SP� F

e
SF

eT
tr(PF

�1)
⇤
. (2.8.8)

At this point, the material sti↵ness specified in Eq. 2.6.25 is also acquired which leads to a complete

process in just a one-time step for each integration point. Taking into account that, at just one-time

step, several nonlinear equations must be solved other than the nonlinear system equation through

hundreds of iterations and also knowing that thousands of time steps are required to complete

the process for each node in a whole domain that contains thousands of elements each with at

least eight Gauss points, delineate the astronomical computational workload. Thereby, the public

clusters generally do not su�ce and another path must be taken to proceed. Consequently, a

dedicated cluster is constructed to overcome this barrier as subsequently discussed.

2.9 Dedicated Cluster

Considering the amount of workload in the current study, a horizontal scaling approach is

utilized to handle the computational process. The general structure of the cluster has gradually

been evolving compatible with the technological availabilities, however, the base structure of the

cluster facilitating platform follows a unified approach.
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Here, the Kubernetes platform is utilized in order to manage the containers in several aspects

including:

• Creating of applications and associated deployments.

• Preserving the operation speed and continuity.

• Floating the container images in the build and release processes.

• Monitoring the health, availability, and operating system level of containers.

• Diversifying running stacks over distributed gates without losing the agility.

• Determining and predicting the e�ciency and performance of the possible running process

and making decision-based on that

Therefore, the platform stabilizes the network tra�c, distributes the required resources propor-

tionally throughout each process among the nodes, and automates the process by replacing more

adequate containers than the healing ones for deployments. A schematic structure of the cluster is

shown in Fig. 2.8 consisting of one prime and several operative nodes where one operative node is

illustrated due to the similarity of the architecture.

The prime node manages the operative nodes with its specific components. The API server is

responsible for the general orchestration of the operative nodes through monitoring and enforcing

the desired states of applications. The controller part monitors the nodes’ current states, captures

discrepancies with the application programming interface transports, and resolves the di↵erences.

The scheduler segment arranges the timetable via checking and assigning requests from API Server

to healthy nodes, assessing nodes qualities and deploying PODs to best-suited nodes, and appoint-

ing pending states to proper containers. The key-value store compartments are in charge of storing

the desired features and retrieving the image parameters of nodes, points of delivery, and containers.
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Figure 2.8: A schematic structure of the cluster consisting of one prime and operative nodes.
Each segment of the nodes and associated connections are also displayed.

The operative nodes sustain running points of delivery (PODs) and supply the Kubernetes runtime

environment through Kubelet as a connector agent of the API server by joining containers, PODs,

and tasks to the whole cluster and assessing the task states. The container runtime section is

responsible for running containers by starting and ending registry images. The network proxy

sector generates internet proxy addresses and handles routing and tra�c load-balancing. Finally,

PODs are virtual gates illustrating a quality title for each node and directing tasks to healthy

nodes.

2.10 Genetic Algorithms

Genetic algorithms (GAs) are stochastic, metaheuristic search approaches based on natural se-

lection and genetics processes in biological evolution for solving both constrained and unconstrained
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optimization problems. GA iteratively selects survival of the fittest string at random from the ex-

isting data to be parents and creates children for the next generation. Over successive generations

through e�ciently exploited historical information, the population evolves toward an optimal so-

lution. The procedures of GAs are mostly utilized in circumstances that are not well suited for

typical optimization approaches such as optimizing discontinuous, non-di↵erentiable, stochastic, or

highly nonlinear objective functions. Genetic algorithms are theoretically and empirically proven to

provide robust search in complex spaces [34] with main characteristics of robustness and e�ciency-

e�cacy balance [35].

Extensive applications of GAs in business, science, and engineering fields are due to the computa-

tional robustness, at the same time, adequate simplicity of these techniques which are independent

of restrictive assumptions in a search space. There are several searching methods to be com-

pared with GAs such as calculus-based and enumerative techniques. Calculus-based methods are

inherently localized, highly dependent upon the starting points, and well-defined slope values in

capturing the main peak, hence, exhibit extremely limited capabilities in discontinuous, multi-

modal, and noisy functions. Enumerative schemes are mostly incorporated within a finite or a

discretized infinite search space by constantly obtaining objective function values at every point in

the space which clearly disqualifies the approach due to the lack of e�ciency especially for practical

spaces with moderate to large starting data and complexities. Myriad conventional optimization

techniques are utilized in vast problems; however, the increase of cases complexities necessitates

hybrid combinations and permutations among those methods to the extent that a need for a more

vigorous, e�cient approach can be sensed.

Utilizing GA is a solution to the all said shortcomings over which optimal points are acquired

through enhanced routes with the emphasis on convergence.

GAs are fundamentally di↵erent from typical optimization and search procedures in several behav-

iors as

• Working with the coding of the parameter set, not the parameters themselves;

• Searching from a population of points, not a single point.

• Using objective function information, not derivatives or other auxiliary knowledge;
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• Utilizing probabilistic transition rules, not deterministic ones.

GAs start from a rich database and achieve many extremums in parallel using probabilistic tran-

sition rules; thus, the possibility of finding a false one is reduced over methods that go point to

point. It employs random choice as a tool to guide a search toward regions of the search space with

likely improvement [35].

The strings of artificial genetic systems are analogous to chromosomes in biological systems where

one or more chromosomes combine to form the total genetic prescription for the construction and

operation of some organisms. Accordingly, in an artificial system, a genetic algorithm is composed

of three operators, namely, reproduction, crossover, and mutation. In the reproduction process

individual decision strings, either numeric or non-numeric, are coded as a binary unsigned integer

with weighting functions based on their contribution in the next o↵spring and the objective func-

tion values, f , to be optimized. Strings, S are, commonly, generated over the binary alphabet as

S = si ; i = 1, 2, ..., l , considering indicial notation for the length of strings, l. Afterwards, crossover

proceeds by randomly matching reproduced strings and producing an integer position, k, along the

string arbitrarily between 1 and the string length less one, [1, l � 1]. Two new strings are created

by swapping all characters between positions k + 1 and l inclusively, as shown in Fig. 2.9.

Figure 2.9: Crossover between two reproduced strings where k = 5 and l = 8.

Finally, the mutation operates at a small rate as a secondary mechanism after crossover. Now, the

new population is generated which needs to be decoded into new strings and the whole process is

performed until the desirable answer in terms of some tolerances is obtained.
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3. CRYSTAL PLASTICITY AND DEEP–LEARNING
ALGORITHMS IN MULTI-SCALE ANALYSES AND

MODELING OF METALLIC NANO-LAYERS

The majority portions of this chapter have been under consideration in a journal for publication.

3.1 Introduction

Crystalline nano-layers are formed by alternating nanoscale metallic lamellae where the reduction

of size to the order of nanometers instigates physicochemical attributes notably depart from those

of the bulk counterparts. Metallic nano-systems exhibit exceptional mechanical properties in which

the layer size is comparable with the electron or phonon mean free path [36]. Size e↵ects are piv-

otal aspects in copiously modulated thermodynamically non-equilibrium metallic nano-composites

where the rigid body relaxation as the relative translational motion of adjacent crystallites is lim-

ited due to the constraints of neighboring nano-phases [37]. The salient, di↵erentiating traits in

mechanical responses are assigned to the primary role of layer thicknesses and significant density

of interfaces. These features are considered the controlling parameters to modify and modulate the

strength and multi-functionality of metallic nano-structures [38] where the dynamic characteristics

of the atomic energy with local non-equilibrium multi-valley potentials [39, 20] promote the per-

formances of nano-metals to be governed and altered towards desired applications.

Typically, interfaces function as sources, sinks, and barriers for defects, particularly dislocations.

Dislocations, with anisotropic mobility and spreading cores throughout interfaces, describe various

aspects of metallic nano-layers physical properties [32, 40] and represent them as tunable structures

with remarkable responses in extreme environments [41, 42]. Interfaces of distinct atomic structures

supply glissile dislocations into contiguous building blocks throughout inelastic deformation. The

reduction of activation volume induce dislocation mechanisms at a shorter distance [43, 44] where

the amplified emission of interface dislocations and the onset of plasticity through interphases

are of consequence. Reduced strain-hardening results from dislocation nucleation and dynamic

annihilation-recovery at interfaces [45, 46]. These occurrences are mostly due to relatively sup-

pressed dislocation densities and substructures leading to the nucleation of individual dislocations

at grain boundaries, extension across, and migration into the opposite side [47, 48]. Consider-
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able ductility is another attribute caused by non-equilibrium interfaces confining dislocations and

blocking sever shear localization [49, 50].

The inverse dependence of strength on grain size refinement in metals and metallic alloys at micro-

scale with an average size in the order of micrometers follows the Hall–Petch relation [18, 19] where

deformation kinematics encompass dislocation pile-up against interfaces along with other trans-

granular dislocation mechanisms. This quality remains intact regardless of synthesizing approaches

such as physical vapor deposition (PVD) [51, 52] or accumulative roll bonding (ARB) [53]. How-

ever, in nano-scale once the average grain size is reduced to the order of nanometers evincing the

participation of a fewer dislocations in a pile-up, the inadequacy of this relation conceivably emerges

in a reduced Hall–Petch slope. Instead, it is governed by the Orowan mechanism [21] especially

pronounced at heterophase boundaries [54].

Hereby, a more detailed governing relation including the main features of size and constituent ef-

fects must be accommodated to analyze metallic nanolamellars responses. In general, these types

of models deliver verifiably solid results, however, with complex, nonlinear structures, hence, the

elevated cost of computational processes. The multi-scale analysis is sought a proper resolution

especially when nonlinearity is involved. In circumstances where size e↵ects are crucial to final

assessments, homogenized ensembles inherently possess the governing elements through the varia-

tion of the fundamental thermodynamics behaviors including internal energy and entropy that are

intrinsically nonlinear and can be statistically generalized on a larger scale. In this sense, capturing

temperature e↵ects by homogenization approaches is a significant advantage considering limited

experimental results due to a variety of encountered challenges throughout testing. These di�-

culties include rigorously controlling the atmosphere under which tests are performed to prevent

specimens’ chemical and microstructural alterations, precise management of thermal gradients be-

tween the sample and fixture during the process to avoid thermally misfit deformation and noise

in the load and displacement sensors drifting the results, and challenges as such [55, 56].

This work centers on constructing a robust theoretical approach while alleviating computational en-

cumbrance through curtailing partly dependent phenomena into optimized independent variables.

The crystal plasticity finite element (CPFE) approach in the large deformation platform is utilized

due to the high capacity of analyzing grain interactions, interface abrupt mechanical transitions,
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mixed deformation mechanisms, complex boundary conditions, and diverse phenomenological and

physics-based constitutive models [22, 23].

The multi-scale computational schemes are pursued leading to the development of multiple govern-

ing relations. At the nano-scale, a size-dependent constitutive model and a deep-learning approach

named the single layer calibration (SLC) method with the ability to obtain generalized parameters

applicable to a broad range of setups are developed. These models simulate, predict, and design

the responses of metallic nano-layers in the range of 20 nm to 1 µm with any arbitrary geometrical

combinations through a single process. A homogenized crystal plasticity-based model is established

with parametric representations of the nano-structural features. The e↵ective functional param-

eters and associated constants are obtained by metaheuristic genetic algorithms. The model is

designed consistent with the nano-model backbone remarkably conducive in simulations of poly-

crystalline microstructures and significantly expediting computational processes by several (> 4)

orders of magnitude, while retaining accuracy. Ultimately, a modified homogenized constitutive

model is developed to determine the e↵ects of temperature on the overall responses of metallic

nanolamellars. The validation proceeds through the simulation of several copper-niobium, Cu/Nb,

nano-layers and comparison with experimental data. Accordingly, the e↵ects of size, loading pat-

terns, layer type, and geometrical combination on overall responses are predicted and discussed.

The rest of this work embraces the notion of homogenization in developing expeditious, yet, precise

computational approaches to capture mechanical responses of metallic nano-layers under thermo-

mechanical loading conditions. The developed size-dependent constitutive model in nano-scale is

the explicit representation of the prominent size and constituent e↵ects with the susceptibility of

excessive time and energy consumption. The hierarchical framework is incorporated through the

homogenization of lower scale reaction functions and development of higher scale constitutive rela-

tions. The model reflects the e↵ect of interfaces through the rendition of critical parameters in the

hardening laws, specifically, the saturation shear stress and initial hardening parameters. Thereby,

a modified homogenized temperature-dependent model is represented with the ability to capture

constitutive responses of metallic nanolamellars at ambient as well as elevated temperatures for

which the model parameters are obtained for Cu/Nb cases and favorably verified with experimen-

tal results. In the end, multiple demonstrations of temperature e↵ects on the said specimens are
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analyzed and discussed.

The developed nano-scale size-dependent constitutive model, the deep-learning single layer calibra-

tion method, homogenized constitutive model, temperature-dependent constitutive model, numer-

ical solvers, and process optimizers are implemented through three-dimensional crystal plasticity

nonlinear finite element codes in the large deformation platform. A dedicated supervised cluster has

been constructed with specific architecture and orchestration policies compatible with the current

data processing and workloads.

3.2 Plastic Deformation Kinematics

Considering large plastic deformation in metallics nano-composites, finite strain kinematics are

accommodated through a multiplicative decomposition of total deformation gradient, F, into the

elastic, Fe, and plastic, Fp, parts as

F = F
e
F
p
. (3.2.1)

The deformation gradient, F = rxX, maps material tangent vectors, X, into spatial ones, x, with

the quality of a two-point tensor involving points in two distinct configurations. F
p represents

crystallographic slip in a relaxed, intermediate configuration where the lattice is in its reference

orientation and F
e designates elastic distortion and rigid body rotation.

The rate dependence is manifested in the rate of the deformation gradient, Ḟ, through the velocity

gradient,

l = ḞF
�1

. (3.2.2)

The plastic velocity gradient,

l
p = ḞpF

�p
, (3.2.3)
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involving plastic shear strain rate, �̇↵, on the slip systems, ↵, [26, 28], specified with

l
p =

NX

↵=1

�̇
↵
s
↵
0 , (3.2.4)

are utilized to solve the indeterminate equation of F = F
e
F
p, where s

↵
0 = m

↵
0 ⌦ n

↵
0 is the Schmid

tensor in which m
↵
0 and n

↵
0 are the slip direction and normal, respectively.

The plastic shear strain rate for each slip system is calculated through the Orowan equation [27],

�̇
↵ = ⇢

↵
m b v

↵
, (3.2.5)

where ⇢↵m is the mobile dislocation density, b the Burgers vector, and v
↵ the average mobile dis-

location velocity. The integration of Ḟp determines F
p and, accordingly, Fe through F

e = FF
�p

which yields the second Piola-Kirchho↵ stress, S, in terms of Lagrangian strain,

E =
1

2
(FeT

F
e
� I) , (3.2.6)

and the anisotropic material elastic tensor, C , with S = CE.

Solving the equilibrium equation in the current configuration requires the calculation of Cauchy

stress,

� =
1

|Fe|
F
e
SF

eT
, (3.2.7)

and its derivative with respect to true strain to obtain the system sti↵ness. This relation holds

due to plastic incompressibility, i.e., detFp = 1. A constitutive model must be incorporated to

acquire F
p and further kinetics representations. The next section describes the rationale behind

the proposed constitutive model.

3.3 Entropic Kinetics and Constitutive Model in Nano-Scale

Considering metals and metallic alloys with nanoscale size under generic loading conditions,

stress- and temperature-driven interface and surface evolution phenomena bear significance in me-
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chanical responses. Dislocation-mediated deformations are entropy sources compelling a system

towards a higher probability state independent of ordinary thermal fluctuations. Thus, a system

kinematics must encompass dislocation-specific thermodynamics representation [57, 58].

Assuming quasi-static transitions in all configurations, the contributions due to total dynamic quan-

tities are negligible, however, the system is not necessarily in thermodynamic equilibrium. Total

entropy generation per unit time, �(t), as the di↵erence between the reference rate of change of

entropy, Ṡ = DS
Dt , and the rate of entropy input, Q̇, of a body with volume, ⇤, and boundary

surface, @⇤, follows the global format in the reference configuration with

�(t) =
DS

Dt
� Q̇ =

D

Dt

Z

⇤
⌘(�, t) dv +

Z

@⇤
H(�, t) · n ds�

Z

⇤
R(�, t) dv � 0 , (3.3.1)

and then

�(t) =
D

Dt

Z

⇤
⌘(�, t) dv +

Z

@⇤

Q(�, t)

⇥(�, t)
· n ds�

Z

⇤

R(�, t)

⇥(�, t)
dv � 0 , (3.3.2)

where ⌘(�, t) is the entropy per unit volume as a function of material position vector, �, and time,

t, H(�, t) the true entropy flux, Q(�, t) the material heat flux, n the normal boundary surface

vector, ⇥(�, t) the thermal scalar field, and R(�, t) the entropy source. Since the rate of entropy

change is always greater than the rate of entropy input, the total entropy generation is time- and

direction-dependent specifying the irreversibility of thermodynamic processes [59, 60] including

plastic deformation. The rate of thermal work involving the total heat flux and source is inversely

related to the rate of entropy input through the thermal scalar field and first Piola-Kirchho↵ stress,

P(�, t). Based on the divergence theorem,
R
s v ·nds =

R
v r ·( v)dv, the local form of the entropy

inequality can be expressed as

⌘̇(�, t)�
R(�, t)

⇥(�, t)
+

1

⇥(�, t)
r ·Q(�, t)�

1

⇥2(�, t)
Q(�, t) ·r⇥(�, t) � 0 , (3.3.3)

and

⇥(�, t) ⌘̇(�, t) +
1

⇥(�, t)
Q(�, t) ·r⇥(�, t) +P(�, t) : Ḟ� ė � 0 , (3.3.4)
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in which the local form of balance of energy,

ė = P(�, t) : Ḟ�r ·Q(�, t) +R(�, t) , (3.3.5)

is considered, where r is the di↵erential operator. The heat conduction inequality,

Q(�, t) ·r⇥(�, t)  0 , (3.3.6)

applies a constraint on the heat flux vector, i.e., there is no heat flux without a temperature. For

elastoplastic behavior of a crystal, the local entropy production, ⌥in, is positive or at least zero

where heat flux approaches to zero in reversible processes, i.e.,

⌥in = P(�, t) : Ḟ� ė+⇥(�, t) ⌘̇(�, t) � 0 . (3.3.7)

Therefore, the internal dissipation stems from three sources; the rate of internal mechanical work

per unit volume, the rate of internal energy, and the absolute temperature coupled with the rate

of entropy, respectively. With the aid of the balance of energy, the lower bound of Eq. 3.3.7 can be

represented by

⇥(�, t) ⌘̇(�, t) = ⌥in +R(�, t)�r ·Q . (3.3.8)

The constitutive relation Q(�, t) = {r⇥(�, t) relates the the material heat flux to the tempera-

ture gradient with thermal conductivity, {, as a function of deformation and temperature where

{r2⇥(�, t) � 0 signifying the elliptical nature of the equation for which the solutions are accord-

ingly to be realized. For an adiabatic thermodynamic process, P(a), the thermal power and the rate

of entropy input are zero since thermal energy can not traverse the system boundary surfaces, be

generated, or destroyed. In this circumstance, no decay in the total entropy is possible while that

is not the case for point-wise entropy that degenerates the energy balance equation and annihilates
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that for an additional reversibility condition, P(a,r) [61].

8
>><

>>:

⇥(�, t)⌘̇ = ⌥in ; P(a)

⇥(�, t)⌘̇ = 0 ; P(a,r)

(3.3.9)

Considering the anisotropic elastoplastic behavior of crystalline materials, internal variables need to

be independently assimilated in any thermodynamical approaches, hence, the Helmholtz free-energy

function, H (F,⇥(�, t),Vi), is defined as a function of deformation gradient, thermal field, and

internal variables, Vi ; i = 1, ..., n, respectively. Here, Vi represents plastic deformation mechanisms,

associated with any admissible inelastic phenomena, n, for presumed external thermomechanical

loading conditions. Thus, the Helmholtz free-energy function can be described in terms of the

internal dissipation inequality as

⌥in = P(�, t) : Ḟ� ˙H (F,⇥(�, t),Vi)� ⇥̇(�, t) ⌘(�, t),Vi) � 0 , (3.3.10)

where the chain rule time di↵erentiation of the Helmholtz free-energy function yields

˙H (F,⇥(�, t),Vi) =

✓
@H (F,⇥(�, t),Vi)

@F

◆

⇥,Vi

: F+

✓
@H (F,⇥(�, t),Vi)

@⇥

◆

F,Vi

⇥̇(�, t)

+
nX

i=1

✓
@H (F,⇥(�, t),Vi)

@Vi

◆

F,⇥

: V̇i . (3.3.11)

The acquired constitutive equation involves stress, thermal flux, and internal entropy associated

with plastic deformations through internal strain rates, ˙Vi, for which

⌥in =
nX

i=1

Di : V̇i � 0 ; Di = �

✓
@Hi(F,⇥(�, t),Vi)

@Vi

◆

F,⇥

, (3.3.12)

is deduced in terms of internal dissipations, Di. For the stretch type deformation, compatible

with dislocation mechanisms, considering symmetric internal variables, Ui, and stretch tensor, C,
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Eq. 3.3.12 becomes

nX

i=1

@Hi(C,⇥(�, t),Ui)

@Ui
: U̇i  0 , (3.3.13)

where the rate of the symmetric internal variables, U̇i, evolves in irreversible mechanisms with a

designated function, E , through

Ḋi = E (C,⇥(�, t),U1,U2, ...,Un) . (3.3.14)

The second Piola-Kirchho↵ stress, S, is involved in the evolution equations due to its dependence

on the free energies of either reversible or irreversible processes which represents that as a function

of external variables as

S = S (C,⇥(�, t)) . (3.3.15)

The internal states of disorder in a crystalline solid contain the majority of barriers including point

defects, grain boundaries, junctions, intersections, locks, stacking faults, or combinations of those

in dislocation dynamic annihilations and recoveries [58]. The average velocity of dislocations, vd,

and the time spent between obstacles, td, both are functions of applied stress, ⌧ , and absolute

temperature, T , which define the dislocation mean free path with

ld = td(⌧, T ) vd(⌧, T ) . (3.3.16)

The probability function indicating the possible states of slip due to thermal fluctuation and applied

loading is

Ps = exp

✓
�
�G

kBT

◆
, (3.3.17)
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where �G is the activation free enthalpy and kB the Boltzmann constant. If a dislocation is

e↵ectively vibrating with the frequency of fd, it successfully overcomes barriers at a rate of

Ṗs = fd exp

✓
�
�G

kBT

◆
, (3.3.18)

therefore, the dislocation velocity associated with the mean free path for each conquered obstacle

with the presence of thermal fluctuation will be

vd = ldfd


exp

✓
�
�G

kBT

◆�
. (3.3.19)

The dependence of flow strength on temperature and applied stress is determined based on the

required energy to overcome any types of barriers while dislocations slip. In a general nonlinear

temperature-dependent case it can be demonstrated in terms of the Helmholtz free energy as

�G = �H

"
1�

 
|⌧

↵
|� ⌧

k
r

⌧?r

!p#q
, (3.3.20)

where ⌧↵ is the resolved shear stress and ⌧kr and ⌧?r are the resistance stresses parallel and orthogonal

to slip surface, respectively. The exponents, p and q, can be initially identified with mechanistic

assessments and finalized through calibration processes. The rate of Helmholtz energy in Eq. 3.3.11

is a function of external and internal dissipative variables. Consequently, the energy needed to

overcome hinderances is manifested in deformation mechanisms controlled by thermal activation

and applied loading [62, 63]. Considering the alternating directions of dislocation motion over an

obstacle, thermally activated plastic shear strain rate for each slip system can be expressed as

�̇ = ⇢
↵
m b l

↵
d f

↵
d sinh

✓
�

Va

kBT
(|⌧↵|� ⌧

k
r )

◆
exp

✓
�
�H

kBT

◆
, (3.3.21)

where Va is the activation volume and b the Burgers vector. The pre-exponential terms can be

merged into the initial plastic strain rate, �̇↵0 = ⇢
↵
mbl

↵
d f

↵
d = ⇢

↵
mb

2
fD, where fD denotes the Debye

frequency of constituents. This term is considered a slow variable since the change of mobile

dislocation density is not decisive relative to that of free energy, yet, not completely uneventful.

54



The obstacles surmounted by thermal energy and mechanical work are described [57] by

(|⌧↵|� ⌧
k
r ) Va . (3.3.22)

In metals with nano-range sizes, activation volumes decline significantly due to diminished local

volumes involved in the depinning of a propagating dislocation [64], thermally activated mechanism

generating interface mediated dislocations [65], and so forth. Thereby, considering an increase in

a system entropy due to thermal fluctuations, internal and external state variables, statistical

probabilities of dislocation positions, and unidirectional dislocation jumps, a constitutive model

is developed at the size spectrum of 20 nm to 1 µm encapsulating size and constituent e↵ects in

abrupt variations of activation volumes, stress concentration, and complex dislocation mechanisms

with

�̇
↵ =

8
>><

>>:

�̇
↵
0 exp

n
�

Qactive
kBT

h
1�

⇣
(⌧↵e↵)

2

⌧↵cut
cs⇡
µb d

⌘piqo
sgn(⌧↵) ⌧

↵
e↵ > 0

0 ⌧
↵
e↵  0

(3.3.23)

The model is constructed based on exclusively addressing size e↵ects in d as the layer thickness

and the constituent type and morphology through cs as the material shape parameter. The e↵ec-

tive shear stress is defined as ⌧↵e↵ = |⌧
↵
| � ⌧

↵
pass, where passing, ⌧↵pass, and cutting, ⌧↵cut, stresses

are athermal and thermal shear resistances, respectively, Qactive is the activation energy, and µ

the shear modulus. Long-range athermal resistances stem from the composition, heat treatment,

and dislocation structure of the material including the stress fields of other dislocations and inco-

herent inclusions, while short-range thermal barriers involve sources such as the Peierls-Nabarro

force, stress fields of coherent inclusions, cross slip, climb, and dislocations intersections. Plas-

ticity initiation is recognized when the e↵ective shear stress is positive while elastic behavior is

resumed otherwise. The athermal resistance is designed with an evolution in terms of contrasting

slip systems, �, by

⌧̇
↵
pass =

NX

�=1

h
↵�

|�̇
�
| , (3.3.24)
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where �̇� specifies the e↵ect of other N slip systems and h
↵� includes both self and latent hardening

with

h
↵� =

8
>>>><

>>>>:

NX

�=1

h
�
0

������
1�

���
���⌧�cut + ⌧

�
pass

���
���
2

⌧
�
sat

������

r
h
q
↵� + (1� q

↵�)�↵�
i ���

���⌧�cut + ⌧
�
pass

���
���
2
 ⌧

�
sat

0
���
���⌧�cut + ⌧

�
pass

���
���
2
> ⌧

�
sat

(3.3.25)

in which || x ||2 denotes the Euclidean norm, h�0 is the initial hardening, q↵� a magnitude for self

and latent hardening considered 1.0 for coplanar slip systems and 1.4 otherwise, r the hardening

exponent, and �
↵� the slip systems Kronecker delta function. ⌧

�
sat is the saturation shear stress

defined as ⌧sat = csat d
m where csat and m are the saturation coe�cient and exponent, respectively.

In order to utilize the constitutive model in crystal plasticity procedures and solve system equations,

derivation techniques and computational approaches are required to be carried out as delineated

in appendices A and B. Inevitably, multiple parameters in the model must be realized before any

further analysis for which the next section is assigned.

3.4 Deep-Learning Single Layer Calibration (SLC) Method

In order to acquire constitutive parameters a deep-learning single-layer calibration (SLC) method

is developed. This technique is able to reduce the experimental data, recognize and distinguish dom-

inant and trivial patterns, and e�ciently decide trade-o↵s between bias and variance paths along

with some other optimization, recognition, and decision capabilities. In the following section, deep-

learning algorithms utilized to classify the acquired data from computational processes and allocate

the most compatible paths to the acquired values are demonstrated. Subsequently, the application

of the SLC method in the parameter calibration of Cu/Nb nano-layers is evinced.

3.4.1 Training and Learning Techniques in The SLC Approach

This approach is based on adaptive boosting technique [66] over a committee of models. The

operation proceeds through combining classifiers, Mj ; j = 1, 2, ...,m, by sequentially training

n models and concluding the final prediction based on the ultimate outcome. One of the main
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advantages of this procedure is obtaining favorable results even if the base classifiers are not strong

learners. However, the possibility of achieving solid outcomes exponentially increases in the cases of

moderate or advanced classifiers that are believed characterizes the current work features. Boosting

can be extended to regression problems [67] which in some optimization stages is employed as well.

The classifiers are trained using a weighted array in which the coe�cient values depend on the

performances of the previous classifiers. The descending sorted coe�cients are proportional to the

level of the misclassification of data and are key in the final decision. At the beginning, each of n

weighting coe�cient, c(i)w , in the array is uniformly initialized based on the data point vectors, vi,

and binary target values, ti 2 {�1, 1} , i = 1, 2, .., n, among the classifiers as c
(i)(j)
w = 1

n . Then,

each model is trained while the associated weighted error function,

ej =
nX

i=1

c
(i)(j)
w N (Mj(vi) 6= tn) , (3.4.1)

is minimized, where

N (Mj(vi), tn) =

8
>><

>>:

1 Mj(vi) 6= tn

0 Mj(vi) = tn

(3.4.2)

is the indicator function. After training the first classifier, M1(vi), weighting coe�cients are con-

tinuously adjusted for succeeding models by a modifier,

 j =

 
1�

Pn
i=1 c

(i)(j)
w N (Mj(vi) 6= tn)
Pn

i=1 c
(i)(j)
w

!
, (3.4.3)

allocating larger weighting values to more precise classifiers and updates the weighting coe�cient

array by

c
(i+1)(j)
w = c

(i)(j)
w

 Pn
i=1 c

(i)(j)
w

Pn
i=1 c

(i)(j)
w N (Mj(vi) 6= tn)

� 1

!N (Mj(vi) 6=tn)

. (3.4.4)
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The exponential error function [68] is defined as

E =
1

2

nX

i=1

mX

j=1

exp [�ti jMj(vi)] , (3.4.5)

which is sequentially minimized in terms of  j andMj(vi). This relation holds with the assumptions

of fixed base classifiers and their modifiers. The boosting framework is illustrated schematically in

Fig. 3.1 where each base classifier is trained according to the assigned weighted function acquired

in terms of the precision of previous classifiers in data allocation with the error function between

two consecutive classifiers as

E =
nX

i=1

mX

j=1

exp

✓
�
1

2
[ti j�1Mj�1(vi)� ti jMj(vi)]

◆
. (3.4.6)

Figure 3.1: Demonstration of adaptive boosting technique where base classifiers with simple
thresholds are trained according to the assigned weighted function acquired relative to the
precision of the previous classifier in data allocation. Each sample shows the number of

classifiers, m, trained up to that point. The solid and dashed lines in the domains are the the
decision made and revised choices, respectively, based on the weight of the misplaced data

illustrated with expanded boundaries.
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If data points are divided into proper, C+
j , and improper, C�

j , categories, Eq. 3.4.6 can be specified

by

E =
p
 j � 1

X

i2C+
j

c
(i)(j)
w +

s
1

 j
� 1

X

i2C�
j

c
(i)(j)
w , (3.4.7)

and accordingly with

E =

 
p
 j � 1�

s
1

 j
� 1

!
nX

i=1

c
(i)(j)
w N (Mj(vi) 6= tn) +

s
1

 j
� 1

nX

i=1

c
(i)(j)
w . (3.4.8)

Thus, from Eqs. 3.4.6 , 3.4.8 and

tiMj(vi) = 1� 2N (Mj(vi) 6= tn) , (3.4.9)

weighting coe�cients are modified as

c
(i+1)(j)
w = c

(i)(j)
w exp

✓
�
1

2
ti jMj(vi)

◆
= c

(i)(j)
w

p
 j � 1

✓
1

 j
� 1

◆N (Mj(vi) 6=tn)

2

. (3.4.10)

Finally, when the training of the classifiers are completed, the sign of the combined function for

each data point vector is obtained with

SGN(vi) = sgn

"
Mj(vi) ln

 Pm
j=1 c

(i)(j)
w

Pn
i=1 c

(i)(j)
w N (Mj(vi) 6= tn)

� 1

!#
. (3.4.11)

3.4.2 Application of The SLC Approach

The presented deep-learning SLC approach utilizes the single crystal stress-strain curve of each

constituent and delivers generalized parameters via a single process applicable to a broad scope of

setups that are entirely di↵erent than those of the calibration ones.

Here, several Cu and Nb nano-layers are separately simulated for which elastic constants are Ini-

tially obtained through analytical processes and databases displayed in Table 5.2.
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Table 3.1: Material constants of copper and niobium acquired from analytical processes and
databases.

Material Elastic Constants Cu Nb

C11(GPa) 168.4 246.0

C12(GPa) 121.4 134.0

C44(GPa) 75.4 28.7

µ(GPa) 48.0 38.0

Qactive(J) 8.05e�19 8.9e�19

b(m) 2.56e�10 2.86e�10

Subsequently, the constitutive parameters are obtained, Table 3.2, via experimental data of single

crystalline Cu [6] and Nb [69].

Table 3.2: Material constants of copper and niobium acquired from analytical processes and
databases.

Material Parameters Cu Nb

�̇
↵
0 5.0e6 6.0e6

p 0.98 1.01

q 1.12 1.14

r 1.115 1.121

cs 0.2 0.002

csat 70,000.0 76,741.0

m -0.50 -0.50

⌧
↵
cut(MPa) 4.80 6.30

⌧
↵
pass-init(MPa) 5.20 7.10

h
�
0 (MPa) 3,000.0 20,000.0

To illustrate the capabilities of the developed models in generic perspectives, sequential modeling

steps from an actual metallic nano-layer image to a three-dimensional Cu/Nb nano-layer unit cell

discretized into hexahedral elements are demonstrated in Fig. 3.2. The simulation is performed

utilizing the parameters in Table 3.2.
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Figure 3.2: (a) A high resolution scanning electron microscopy image of a metallic nano-layer.
(b) A generalized representative structure of a metallic nano-layer with n elements/layers. (c) A

3-dimensional Cu/Nb nano-layer unit cell discretized into (d) hexahedral elements.
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The responses of the specimens in the form of true stress-strain curves are compared with the ex-

perimental results in [8, 1], Fig. 3.3, having entirely di↵erent setups than those of the calibrations

in [6, 69]. The engineering stress-strain curves in [8] are obtained for the average layer thicknesses

of 16 nm, 34 nm, and 63 nm under the constant strain rate of 10�3
/sec while a true stress-strain

curve is achieved in [1] involving the average layer thickness of 40 nm with 2 ⇥ 10�4
/sec strain

rate. The experimental and simulations are performed with the Kurdjumov-Sachs (KS) orientation

relationships, {111}Cu||{110}Nb.

Figure 3.3: The verification of the size-dependent constitutive model and deep-learning SLC
results plotted by ”SIM” and solid lines with the experimental data [8, 1] designated by ”EXP”

and symbolic points.

Since the developed models yield true stress-strain responses, an excellent agreement with 40 nm

experimental data is observed due to the similarity of formats. Small divergences between the

rest of the curves are related to the nature of the reported results, being engineering stress-strain,
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which naturally placed them in the lower positions than the true ones. The general trend of the

computationally predicted properties is in agreement with the experimental data, however, the

amount of deviation from 16 nm is related to the softening phenomenon at the sizes lower than

about 20 nm [70, 71] due to which this work is appointed its nano-scale size range from 20 nm to

1 µm.

3.5 Nano-scale Results and Discussions

In this section, further analyses are performed on Cu/Nb nano-layers under the strain rate of

10�3
/sec and the KS orientation relationships.

Emphasizing the size and geometrical e↵ects, four thickness combinations of 34 nm and 63 nm along

with their uniform average thickness of 48.5 nm are simulated with otherwise identical settings.

The outcomes are presented in Fig. 3.4a.

As noted, the strongest pattern is the one with the smallest similar thicknesses signifying the

predominant influence of size over the other traits. Among the rest, with a total thickness of

97 nm, the samples with the lower and higher thickness of niobium exhibit the strongest and

weakest response, respectively. The curve with the equal average thickness reveals a trend between

the upper and lower bound, however, close to the latter. It is inferred that in cases of bilayers

with two di↵erent crystal structures, one of the constituents has more influence on the overall

mechanical properties than the other. Here, the e↵ect of the body-centered cubic niobium with

lower activation volumes is more decisive and almost twice as of the face-centered cubic copper on

the whole responses either in the reduction or promotion of thicknesses. These e↵ects are better

recognized through the equivalent plastic strain defined as

E
p
eq =

r
2

3
(Ep : Ep) , (3.5.1)

where

E
p =

1

2
(FpT

F
p
� I) , (3.5.2)
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and plotted in Fig. 3.4b for each case. In the general trends and magnified region, the equivalent

strain curves demonstrate the inverse relation with the layer strengths captured in Fig. 3.4a and

indicate the largest values for the weakest and smallest ones for the strongest case.

(a) (b)

(c)

Figure 3.4: (a) True stress-strain curves for 4 thickness combinations of 34 nm and 63 nm as
well as 48.5 nm Cu/Nb multi-layers illustrating the e↵ect of layer combinations on the plastic
deformation and flow strength. (b) Equivalent plastic strain versus true strain curves for the

cases in (a) clarifying the size and layer geometrical order e↵ects. (c) True stress-strain curves of
34 nm, 40 nm, and 63 nm Cu/Nb multi-layers demonstrating the e↵ects of transverse (TRANS)
and longitudinal (LONGL) loading directions plotted with solid and dash lines, respectively.
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To investigate the load or layer direction e↵ects, the simulations are performed for laminates of

34 nm, 40 nm, and 63 nm under both longitudinal and transverse loading directions, displayed in

Fig. 3.4c. Slight di↵erences at the beginning stages of the plasticity are detected increasing with

subsidence in layer spacing. However, the identical results in the extended plastic region demon-

strate the inconsequential impacts of variations in the loading or layer orientation especially for

detecting the flow strength of bilayers.

Figure 3.5: The variation of flow and yield strength (left vertical axis) as well as transition
strain (right vertical axis), respectively, with respect to layer thickness in the range of 25 nm to
400 nm. The true stress-strain curves in this range is attached to the top right corner to clarify

the overall constitutive behavior.

The significance of size e↵ects is delineated in Fig. 3.5 where the flow and yield strength as well as

the transition strain in a wide nano-scale interval, 25 nm to 400 nm, are plotted. Considering the
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transition strain as the strain sustained from the yield to the onset of flow, a nonlinear descending

trend of flow and yield strength is noted as layer spacings decline. The increase in strain transition

is primarily due to mechanical thresholds and dislocation structure evolutions aligned with low

strain hardening and dynamic annihilation-recovery mechanisms. A small variation in thickness

results a dramatic change in the flow and yield strength at the thicknesses of /100 nm.

This bias has a descending followed by an asymptotic trend whilst the thickness approaches 1 µm.

The similar trajectory in transition strain is indicative of an extended prehardening phenomenon

pronounced especially at this range that continues to shrink and assume a higher curvature nearing

1 µm.

Considering the demonstrated tends, it is noteworthy to have a comparison between the acquired

results from the size-dependent constitutive model and Hall-Petch predictions. Fig. 3.6 illustrates

the change of yield strength obtained from the size-dependent constitutive model with respect

to 1p
d
, where d is layer thickness. A straight line is plotted near the data points for the trend

distinction. As observed, the nonlinear trend of the plotted data displays the inadequacy of the

Hall-Petch relation in predicting the yield responses of metallic multi-layers at nano-scale.

Figure 3.6: The variation of yield strength with respect to 1p
d
, where d is layer thickness, in the

range of 25 nm to 400 nm. A straight line is plotted near the points for the trend distinction.
Nonlinear trend of the plotted data demonstrate inadequacy of the Hall-Petch relation in

predicting the yield responses of metallic multi-layers at nano-scale.
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Although the developed models satisfyingly capture metallic nano-layers responses over a broad

length scale, the time- and energy-consuming feature of the analysis is a hurdle to be overcome for

which the multi-scale concept is sought and implemented as discussed in the next section.

3.6 Statistical Analyses and Homogenized Crystal Plasticity Constitutive Model

The notion of multi-scale modeling has been of constant interest in the realm of computational

mechanics and materials. Despite diverse length-scale-dependent methods, hierarchical systems are

able to resolve the geometrical and physical details of the underlying mechanisms in lower-scale

with higher speed of computation, yet, reasonable precision and simplicity. The reliability extent

of acquired responses is evaluated by the adequacy of lower scales assessments, that is, these levels

exhibit momentous complementary e↵ects. Classical thermodynamics relations need to be revised

for homogenized solids due to the fundamental di↵erences in the degrees of freedom with gases

and fluids especially when the goal is eliminating fast atomic degrees of freedom and attaining

a homogenization theory. In the case of crystals, elimination is related to the dynamics of crys-

tal defects, particularly dislocations, leading to an additional coarse-graining with the system of

governing equations that is no longer Hamiltonian, but dissipative. Unlike ergodic systems char-

acterized by macrovariables and energy parameters, dissipative systems are extremely diverse [72]

for which developing frameworks is possible with specific considerations.

Here, the statistical mechanics of the microcanonical ensemble [73] are utilized for the lower scale

since the upper scale kinematics are to be characterized considering dissipative transport and non-

linear geometrical models of dislocations [33] along with the independent point-wise temperature.

The Clausius-Duhem inequality is incorporated to link the scales through entropy flux where the

probability of a phase-space invariant measure with probability density function is assumed plau-

sible.

Dislocation positions are not statistically independent and a↵ect the overall energy of a nano-

structure, however, since the precise instantaneous locations associated with the initially considered

dislocations can not be identified as deformation evolves, energy is considered as an independent

additional characteristic of a dislocation geometrical network [74]. Thereby, the total number of
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the dislocations, Nd, and associated energy, Ed, are the independent features of the dislocation

network with the priori of equal probability of the ensemble sub-states.

If x denotes the position of a material point in a system at time t with the continuum mass den-

sity, ⇢(x, t), divided into Nns, total sub-nano-systems, with identical masses, mns, and individual

volumes, V i
ns, in the total spatial volume, ⇤, the system average velocity is defined as

hvi =
1

Nns

NnsX

i=1

v
i
ns . (3.6.1)

Velocity fluctuation is determined through

ṽ
i
ns = hvi � v

i
ns , (3.6.2)

where v
i
ns is the velocity of each sub-system. The dissipative nature of a system is characterized

via the velocity fluctuation of each sub-system, hence, the system disorder manifests itself in the

total energy of a system from the lower-scale standpoint as

S =
mns

2

 
hvi · hvi+

NnsX

i=1

ṽ
i
ns · ṽ

i
ns

!
+ U

����
U i
ns ; "i

, (3.6.3)

where U is the total potential energy acquired from the subsystems. The internal energy, U i
ns,

is determined over a surrounding volume, V i
ns, such that the deviation at each infinitesimal part

of the volume surface, "i, depends on the long- and short-range interactions considered among

dislocations therein, thus, varies by time evolution, heat flux, and active deformation mechanisms.

This relation is associated with the total energy of an ensemble stated by

Z

⇤
⇢(x, t)

✓
1

2
v̌ · v̌ + e

◆
dv , (3.6.4)

with v̌ as the velocity and e the internal energy density of the system. Consequently, the Helmholtz

free energy,

H = Us

����
U i
ns ; "i

+
mns

2

NnsX

i=1

ṽ
i
ns · ṽ

i
ns = U � TS , (3.6.5)
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is obtained in which the entropy, S, is associated with the subsystems velocity fluctuations.

Figure 3.7: Schematic representation of a microcanonical ensemble with equal probability of
state, pi and energy, Ei of each subsystem in the total volume, ⇤, with the average velocity of

hvi and energy U .

In order to link the lower and upper scale, the statistical Boltzmann entropy principle is utilized as

S = �kB

X

i

pi ln pi , (3.6.6)

in which

pi =
exp(�

Ei

kBT
)

X

i

exp(�
Ei

kBT
)
, (3.6.7)

where pi is the probability of the ith subsystem with Ei energy as displayed in Fig. 3.7. The

hypothesis of an ensemble with a uniform probability distribution in phase-space necessitates the

confinement of a subsystem in a particular volume with constant total energy, hence, the system

entropy has the format of

S = �kB

X

i

exp(� Ei
kBT )P

i exp(�
Ei
kBT )

ln

 
exp(� Ei

kBT )P
i exp(�

Ei
kBT )

!
, (3.6.8)
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which results in

S = �kB

X

i

exp(� Ei
kBT )P

i exp(�
Ei
kBT )

✓
�

Ei

kBT

◆
+ kB

X

i

exp(� Ei
kBT )P

i exp(�
Ei
kBT )

ln
X

i

exp(�
Ei

kBT
) . (3.6.9)

Comparing Eq. 3.6.9 with Eq. 3.6.5 results

U =
X

i

Ei pi = hEi , (3.6.10)

where hEi corresponds to the average energy of the subsystems. Here, boundary conditions of the

homogenized medium presume no relative fluctuations, thus, the extensive variables in the upper

scale follow the average principles whose the plausibility is proven.

The homogenized crystal plasticity-based model is founded upon the continuum slip theory of

generalized Taylor scale-transition [75, 76]. It contains parameterized representation of the nano-

structure features with embedded rate-dependence and latent hardening e↵ects accounting for ther-

momechanical properties in both elastic and plastic responses. The concept of the representative

volume element (RVE) statistically representing the nano-system is incorporated based on retain-

ing the relative dimensions between the homogenized ensemble and nano-structures as well as the

underlying deformation mechanisms and dominant features. The hierarchical homogenization anal-

ysis follows the Hill-Mandel principle of macro-homogeneity [77, 78] where the volume average of

the work increment applied on an RVE is considered equal to the variation of the work on the

homogenized system. In the absence of body forces and inertia, the energy consistency is stated in

terms of the Eulerian strain rate, ė, and Cauchy stress with

1

Vn

Z

⇤
�n : ėn dVn = �H : ėH , (3.6.11)

where Vn is the volume of the RVE and subscripts n and H correspond to nano and homogenized

systems, respectively. Considering the quasi-static applied strain rates, the self-equilibrated spatial

stress field is achieved by

r · � = 0 , (3.6.12)
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In order to solve the boundary value problem in Eq. 3.6.11 and equilibrium equations, a homog-

enized crystal plasticity-based constitutive model with the identical nano-scale model backbone,

yet, a simplified structure is developed as

�̇
↵ = �̇

↵
0 exp


�
Qactive

kBT

✓
1�

⌧
↵
e↵

⌧
↵
cut

◆�
sgn(⌧↵) . (3.6.13)

Considering previously defined parameters, the CPFE approach is utilized to solve the equilibrium

equation as described in appendices A and B. The constitutive parameters are formulated in terms

of structural variables and calibrated through the computational homogenization of the lower scale

model and the RVE that consists of layer thicknesses of stacked nano-layers.

Prior to plasticity, the elastic responses of a homogenized system must be realized, thus, the

equivalent elastic constants, Čij , are attained as a combination of the constituents elastic constants,

Cij , with respect to their thicknesses, dk, in a multi-nano-layer as

Čij =
NmatX

k=0

Cij
dk

d
, (3.6.14)

where d is the total thickness of the specimen and Nmat the number of constituents. The rate

dependence feature is modified for the homogenized ensemble with the total Nl layers by

l
p =

NlX

i=1

�
i
�̇
i (mi

0 ⌦ n
i
0) , (3.6.15)

in which �i = Vi
Vtotal

signifies the layer volume fraction.

3.6.1 Parameters in The Homogenized Constitutive Model

Sensitivity analyses detect two influential constitutive functionals to be calibrated from the

lower scale; saturation shear stress, ⌧sat, and initial hardening, h0. These are functions of each

constituent layer thickness, e.g., ⌧sat(dCu, dNb) and h0(dCu, dNb) for Cu/Nb nano-layers. In order

to obtain the relations of the e↵ective functionals in terms of each material, several cases with

di↵erent layer thicknesses of Cu and Nb are made. Two sets of nano-layers are considered in which

the thickness of one material is fixed at 34 nm, 63 nm, and 100 nm while the other one varied

71



from 25 nm to 400 nm and vice versa. Then, the simulations are performed based on the size-

dependent constitutive model at nano-scale regime, Eq. 3.3.23. The ⌧sat and h0 calibration plots

are demonstrated in Fig. 3.8. The variation of ⌧sat with constant dCu and varying dNb is plotted in

Fig. 3.8a where the best fitted function for simulated data has the form of

↵1 +
↵2

p
dNb

. (3.6.16)

The same process for Nb yields the similar functional structure with

↵3 +
↵4

p
dCu

, (3.6.17)

plotted in Fig. 3.8b. However, the best fitted functions for h0 is di↵erent and has the format of

�1 +
�2

3
p
dCu

, (3.6.18)

when dNb is fixed and

�3 +
�4

3
p
dNb

, (3.6.19)

while dCu is constant as illustrated in Figs. 3.8c, 3.8d, respectively. Consequently, the final formu-

lations of the e↵ective functionals are derived as

⌧sat =

✓
↵1 +

↵2
p
dCu

◆✓
↵3 +

↵4
p
dNb

◆
, (3.6.20)

and

h0 =

✓
�1 +

�2
3
p
dCu

◆✓
�3 +

�4
3
p
dNb

◆
, (3.6.21)

for generalized circumstances when both dCu and dNb are changing. These equations have four

unknowns to be calibrated. Due to the high nonlinearity of the acquired equations, determining

↵i , �i necessitates a thorough, compatible optimization scheme. Thus, a metaheuristic genetic
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algorithm approach is utilized to attain the parameters which results in the following equations as

⌧sat =

✓
12.6169 +

0.0028

dCu

◆✓
9.0473 +

0.0032

dNb

◆
(3.6.22)

h0 =

✓
48.3222 +

0.4358
3
p
dCu

◆✓
23.4275 +

0.7791
3
p
dNb

◆
(3.6.23)

(a) (b)

(c) (d)

Figure 3.8: Variations of e↵ective parameters in homogenized constitutive model with layer
thicknesses where one layer thickness is fixed while the other one changes. Symbolic points

signify simulation (SIM) results and solid lines the best fitted equivalent curves (EQ). Variations
of ⌧sat, for (a) fixed Cu layer spacing, d Cu, and (b) fixed Nb layer spacing, d Nb. Variations of

h0, for (c) fixed Cu layer spacing, d Cu, and (d) fixed Nb layer spacing, d Nb.
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The homogenized constitutive model enhances the e�cacy of computational processes in diverse as-

pects. Hereby, five random microstructures with di↵erent layer thicknesses are simulated; first, with

the size-dependent constitutive model at nano-scale develped in Eq. 3.3.23, and second, through

the homogenized constitutive model established in Eq. 3.6.13.

Figure 3.9: Verifications of the homogenized with nano-scale constitutive models through 25
nm, 40 nm, 48.5 nm, 75 nm, and 300 nm Cu/Nb laminates. Symbolic points denote homogenized

(HM) and solid lines the nano-scale (NS) model results.

The lower scale simulations proceed through the model with the explicit representation of layer

thickness while the homogenized model is executed by the implicit impact of size given in Eqs. 3.6.22

and 3.6.23. The results and comparisons shown in Fig. 3.10 exhibit cogent agreements between two

models, albeit, the homogenized constitutive model significantly reduces the computational time

and cost by several (> 4) orders of magnitude.
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3.7 Temperature-Dependent Homogenized Constitutive Model

In general, the elevated temperature induces relative di↵usive mass flux due to energy gradi-

ents. Di↵usional creep is considered the main deformation mechanism at the vicinity of the melting

point, Tm, in metallic nano-layers [79] where the stress-driven di↵usion of vacancies along grain

boundaries compels atomic di↵usion of the grain interiors in the opposite direction. This e↵ect is

alleviated by atomic di↵usion along grain boundaries at lower temperature [80] while the dislocation

glide along grain boundaries becomes the dominant mechanism at intermediate and low homolo-

gous temperatures. Cu/Nb cases, at temperatures up to 800�C, exhibit dislocation-based plastic

deformation where di↵usion creep can be ignored due to generated thermally stable structures [9].

Being cognizant of the experimental di�culties mentioned in Sec. 3.1 for obtaining mechanical

responses of metallic nano-layers at elevated temperatures, a temperature-dependent homogenized

model is developed with the advantages of acquiring responses through fast and cost-e↵ective per-

formances. Behaviors of metallic nano-layers at elevated temperatures are experimentally observed

in multiple fields such as radiation tolerance [52], morphology evolution, and high thermal stability

up to 700�C and 800�C [81, 82], respectively, in sputtered and ARB Cu/Nb nano-layers in which

morphological deformations are observed identical at room temperature and about 400�C.

Table 3.3: Elastic parameters of copper and niobium acquired from the calibration process.

Cu Nb

�11(GPa) 184.13 !11(GPa/K) �0.05 �11(GPa) 262.70 !11(GPa/K) �0.06

�12(GPa) 133.32 !12(GPa/K) �0.04 �12(GPa) 143.33 !12(GPa/K) �0.03

�44(GPa) 88.15 !44(GPa/K) �0.04 �44(GPa) 40.18 !44(GPa/K) �0.01

m1(GPa) 52.95 m2(GPa/K) �0.02 m1(GPa) 30.88 m2(GPa/K) �0.01

The homogenized constitutive model in Eq. 3.6.13 works with a mild variation of ambient temper-

ature; however, generic temperature variations require additional changes in some of the material

constants and constitutive parameters. The elastic constants can be written as a function of abso-

lute temperature [83] by

Cij = �ij + !ijT , (3.7.1)
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and shear modulus with

µ = m1 +m2T , (3.7.2)

where the constants, �ij , !ij , m1 , m2 are designated in Table 3.3 for Cu/Nb nano-layers.

Figure 3.10: Verifications of the homogenized with nano-scale constitutive models through 25
nm, 40 nm, 48.5 nm, 75 nm, and 300 nm Cu/Nb laminates. Symbolic points denote homogenized

(HM) and solid lines the nano-scale (NS) model results.

The e↵ective parameters, saturation shear resistance and initial hardening, also change in terms of

temperature. To achieve the general format of these functionals and obtain the associated parame-

ters, experimental data in [8, 9] are incorporated through the deep-learning SLC and metaheuristic
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genetic algorithms. Thus, e↵ective temperature-dependent functionals are obtained as

⌧sat =


 0 exp

✓
⇣

T � Tc

◆
+  1

�✓
12.6169 +

0.0028

dCu

◆✓
9.0473 +

0.0032

dNb

◆
, (3.7.3)

along with

h0 = (⌘0 + ⌘1T )

✓
48.3222 +

0.4358
3
p
dCu

◆✓
23.4275 +

0.7791
3
p
dNb

◆
, (3.7.4)

and the associated parameters of  0 ,  1 , ⇣ , Tc , ⌘0 , ⌘1 are calibrated as shown in Table 3.4.

Table 3.4: Saturation shear resistance and initial hardening parameters.

 0  1 ⇣ Tc ⌘0 ⌘1

7.31 �5.72 100.00 1450.00 1.42 �0.0014

For verification, simulations are performed for Cu/Nb multi-layers with thicknesses of 34 nm, 60

nm, and 63 nm at 25�C, 400�C, and 500�C as demonstrated in Fig. 3.11a. As observed, the

simulations and experimental results exhibit solid agreements in which dramatic decline in flow

stresses by increasing temperature is plainly detected.

Further illuminating this phenomenon, Cu/Nb multi-layers with 25 nm, 50 nm, 75 nm, and 100 nm

thicknesses are modeled from room temperature up to 700�C where the variation of flow strengths

in terms of temperature is displayed in Fig. 3.11b. Each curve is indicative of slight variation in flow

stress at initial stages while revealing an appreciable drop as temperature grows. For instance, in

25 nm specimen, the flow stress notably, about 80%, drops from room temperature to 700�C. From

another angle, the increase of temperature degrades the mechanical responses of a thin metallic

nano-layer to a thicker one at room temperature; this can be clearly perceived in Fig. 3.11a where

a 34 nm Cu/Nb at 400�C exhibits the strength of a 63 nm Cu/Nb at 25�C.
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(a)

(b)

Figure 3.11: (a) The validation of the temperature-dependent homogenized constitutive model
with 34 nm 60 nm, and 63 nm Cu/Nb laminates at 25�C, 400�C, and 500�C. Symbolic points
are the experimental (EXP) [8, 9] and solid lines the simulation (SIM) data. (b) Flow strength
versus temperature curves of 25 nm, 50 nm, 75 nm, and 100 nm Cu/Nb laminates at 25�C up to

700�C demonstrating the nonlinear e↵ects of temperature growth on flow strength.

78



4. SENSITIVITY ANALYSIS

4.1 Background

Sensitivity analysis (SA) determines the uncertainty levels in the outputs of a model in relation

to the variation of the model inputs [84]. It is utilized to recognize the input variables that con-

tribute the most to an output behavior, the non-influential ones, and to learn interaction e↵ects

among them. A related practice is uncertainty analysis (UA), which focuses rather on quantifying

uncertainty in model output and commonly incorporated along SA to acquire su�cient information

about the e↵ects of inputs on the model properties. The main di↵erence between uncertainty and

sensitivity analysis is that the former focuses on just quantifying the uncertainty in a model output

while the latter is the study of the relative importance of di↵erent input factors on the model

output.

The SA process involves the analysis of the sensitivity or importance indices of the input variables

with respect to a given quantity of interest in the model results. Importance measures of each

uncertain input variable on the response variability provide a deeper understanding of the mod-

eling in order to reduce the response uncertainties in the most e↵ective way [85]. For instance,

putting more e↵ort into the knowledge of influential inputs, parameters whose specific value can

significantly influence the behavior mode of the system such as exponential growth, asymptotic

growth, S-shaped growth, oscillation, etc., will reduce their uncertainties. The underlying goals for

SA are model calibration, validation, and assisting with the decision-making process.

SA processes involve the main concepts of model, input, and output which need to be well under-

stood. Fig. 4.1 demonstrates the role of SA in a scientific procedure. The area on the left display a

problem field that exists with assumingly governing equations and rules which if harvested the left

region is constructed as a model with the acquired rules and hypothesis. The model, now, accepts

some data to show how it can yield results identical to the real problem as input and output,

respectively.
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Figure 4.1: The visualization of real field, model, input, and output concepts.

Thereby, as long as any model outputs are compatible with the real field observation provided

their governing equations are physics and/or phenomenological based, those can be considered as

the models representing a mathematical interpretation of the real problem. In fact, the idea of the

world into models is conditionally a true statement, however, the most applicable models are the

ones with the least possible complexities and intractabilities.

Another concept to deal with is uncertainty, an obstacle to creating a proper model [86]. Philosoph-

ically speaking, models are not to be validated but proved through numerous tests to be defensible

and corroborated, that is, the models can explain and predict the real problem behavior consistent

with the observed properties, albeit up to the capacities of the models. Since models are part

of a scientific interpretation of real phenomena, thus, subjected to epistemological debate with

post-normal science (PNS) as demonstrated in Fig. 4.2.
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Figure 4.2: The uncertainty-stakes diagram for categorizing scientific models [10].

Based on the system’s uncertainties and the stakes involved, three types of modeling are realized.

� Applied science, when a model is created and used by scientists as the sole users of the model;

� Professional consultancy, when the model is utilized for scientific and industrial projects;

� PNS, when the model is incorporated to provide evidence under circumstances of conflicting

stakes and beliefs.

The nature of models is also another factor in classifying them. Models can be diagnostic and/or

prognostic, that is, understands and/or predicts a real field behavior, respectively. Also, models

can be data-driven and/or law-driven, meaning, functions based on statistical observed data and/or

combines the applicable rules on the modeled system, respectively. Each of said models has its

benefits and disadvantages which, commonly, optimized in terms of the system delicacy to be

simulated.
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4.2 Theory and Application of Sensitivity Analysis

In order to describe the practical usage of these assessments, the method itself needs to be

divided into specific classes in terms of the sensitivity and volatility of data and the employed

approach to deal with them.

4.2.1 Local and Global Sensitivity Analysis

In terms of output variations, SA can be categorized into two major groups, namely, local and

global.

1. Local SA investigates small input perturbations that occur around nominal values, the mean

of a random variable, for instance, on the model output [11]. This method assesses the partial

derivatives of the model at a specific point of the input variable space in a deterministic way,

that is, there are linearity and normality assumptions along with using local variations. These

defaults, however, are limitations of these types of methods.

2. Global SA overcomes the limitations of local SA for studying the e↵ects of small variations

in inputs around a given value on the outputs. It does not distinguish any initial set of

model input values but considers the numerical model in the entire domain of possible input

parameter variations [87]. Thus, the global SA is utilized to study a mathematical model as

a whole rather than one of its solution around parameters specific values [88].

4.2.2 Sensitivity Analysis Objective

The main step at the beginning is clearly specifying the objectives before performing an SA

[89] including:

1. Preliminary assessments of variables and outputs, such as real output observations, con-

straints, etc.

2. The factor prioritization setting to identify the significant factors. The ones, if subjected to

slight perturbations, instigate the utmost uncertainty of outputs.
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3. The factor fixing setting to reduce the number of uncertain inputs by fixing unimportant fac-

tors. The ones, if subjected to slight or medium perturbations, do not initiate the significant

uncertainty of outputs.

4. The variance cutting setting as a part of a risk assessment study to reduce the output un-

certainty from its initial value to a lower pre-established threshold value.

5. The factor mapping setting, to identify the main inputs in a specific domain of the outputs

specifying the combination of factors that generate output values above or below a given

threshold.

4.3 Sensitivity Analysis in Practice

Two frameworks are utilized when analyzing a model, deterministic and probabilistic. In a

deterministic framework, specific inputs are considered to analyze the model where statistical ap-

proaches are utilized in order to ascertain the uncertain inputs. In a probabilistic framework, the

inputs are considered as random variables x = xi ; i = 1, 2, ..., n for which the model, G(xi), outputs

are assessed. If a scalar value, y, is appointed to each variable vector x, it is assumed random as

well, however, with unknown distribution. SA statistical methods involve designing inputs and

outputs through approaches such as the Monte Carlo techniques and modern statistical learning

methods.

As an example, a local SA is utilized through a graphical tool that can be applied on an initial

sample with three inputs and one output, (x1, y), (x2, y), (x3, y). Simple scatterplots lead to the

initial assessments between input/output variables as illustrated in Fig. 4.3.
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Figure 4.3: Scatterplots of 200 simulations on a numerical model with three inputs in horizon-
tal axes and one output in the vertical axes. Dotted curves are local-polynomial-based smoothers
[11].

As it is noted, the interactions between inputs cannot be inferred from these plots, thus, the

cobweb or parallel coordinate plots [90] can be used. These plots, as shown in Fig. 4.4, link the

variable and associated outcome common among the inputs together. As observed, the smallest

values of the model output are highlighted in red corresponding to the combinations of small and

large values of the inputs.

A global SA can also be incorporated for these types of problems via sampling-based sensitivity

analysis methods; however, the number of sample sizes must be adequately large, greater than the

input variables.
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Figure 4.4: Cobweb plot of 200 simulations of a numerical model with three inputs, first three
columns, and one output, last column [11].

In these approaches, a linear model explaining the behavior of output is obtained and the

standard regression coe�cients are defined as

SRCj = �j

s
var(xj)

var(y)
, (4.3.1)

where �j is the linear regression coe�cient of xj .

Most SA methods introduce a trade-o↵ between the number of computational sensitivity analysis

and the model complexity, that is, selecting an SA method and the number of computations is con-

tingent on the complexity of the target model and the number of inputs, albeit, the computational

costs, most of the time, are controlling factors in this matter. In summary, the selection of an SA

approach follows the subsequent trajectory:

• General assessments related to the model complexity and regularity;

• Distinguishing the type of information provided by each SA method, global, local, and their

derivatives;

• Identifying SA methods through prior knowledge about the model behavior.
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The most adaptable SA method chosen accordingly is the most practical one, which means for

a costly computational approach a complicated detailed based SA technique is not necessarily a

proper choice.

4.4 Sensitivity Analysis in Size-Dependent Constitutive Model

The crystal plasticity size-dependent constitutive model has as many as ten parameters to be

calibrated and validated based on the experimental data. The model is considered as diagnostic-

prognostic since it has the ability to signify the underlying mechanisms in deformation processes

and predict the associated behavior.

The model exhibits several nonlinear convoluted equations in each time step requiring hundreds of

iteration for each one to be solved, thereby, due to the complexity of the model and the compu-

tational workload, local sensitivity analysis is performed on the model where for each calibrated

parameter slight tolerances of ±10& are considered and accordingly the model responses are cap-

tured. Subsequently, factor prioritization setting is performed in order to identify the significant

parameters which can create a clear insight of the extent of sensitivity to the arranged parameters

as well.

The chart in Fig. 4.5 demonstrates the e↵ects of the variation of all parameters on the overall

behavior of the model due to the said tolerances averaged over the main features including yield

and flow strength, transition strain, and hardening. Each deviation percentage specifies the share

of each parameter in the total deviation from the exact response of the model.
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Figure 4.5: Sensitivity analysis of the crystal plasticity size-dependent constitutive model for
ten parameters. Each deviation percentage specifies the share of each parameter in the total de-
viation from the exact response of the model.

As it is observed, not all parameters are identically influential. In order to optimize the number

of inputs for further computational processes, the factor prioritization setting is executed where

six parameters are recognized as prominent factors for additional analysis. To categorize the pa-

rameters in more detail, the model response is divided into four main sections, namely, yield,

transition, hardening, and flow with the same concepts discussed in previous chapters. With this

arrangement, the e↵ect of individual parameter indicated as the deviation percentage, d %, from

the precise response of that section on each part, is assessed in the three-dimensional plot, Fig. 4.6,

for comparison purposes.
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Figure 4.6: Sensitivity analysis performed on the prioritized parameters, indicated as the devia-
tion percentage, d %, from the precise response of yield, transition, hardening, and flow sections.

The plot displays that even among the prioritized parameters some of those are more influential

on a specific repose section than the others which serves the purpose of reducing the analysis inputs,

albeit for a particular output section. In order to clarify this trend, the deviation percentage for

each response section is separated in terms of the arranged parameters.

As noted in Fig. 4.7, for the yield section, parameters m and cs, in Fig. 4.8, for the transition

section, parameters m, csat, h0, and r, in Fig. 4.9, for the hardening section, parameters m, csat,

and in Fig. 4.10, for the flow section, m, csat, and cs are the dominant factors.
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Figure 4.7: The deviation percentage of the prioritized parameters on the yield strength.

Figure 4.8: The deviation percentage of the prioritized parameters on the transition strain.
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Figure 4.9: The deviation percentage of the prioritized parameters on the hardening.

Figure 4.10: The deviation percentage of the prioritized parameters on the flow strength.
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5. MICRO-SCALE CRYSTAL PLASTICITY ANALYSIS

5.1 Micro-scale Constitutive model

In general, the significant e↵ects of size on responses of metallic lamellars at micro-scale, especially

on yield strengths, �y, follow the Hall–Petch relation [91, 19], �y = �0 + kd
�n, where �0 is the

friction stress and k a constant. The exponent n varies from 0.3 to 0.7 depending on the constituents

microstructure. In this study, the Hall-Petch relation is considered as an auxiliary correspondence

to represent the governing equations in metallic thin films. By utilizing the same backbone of

the size-dependent constitutive model developed in the nano-scale, retaining the consistency of

the models, the continuity of acquiring responses in metallic nano- and micro-layers are assured.

Thereby, with the congruent logics in the micro range of entropic kinetics and the assessments for

obtaining the level of influence for each prime features, the constitutive model in micro-scale is

proposed as
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(5.1.3)

where the parameters have the same descriptions as in the nano-scale.

The size e↵ect is considered through an implicit impact by defining the thermal shear resistance as
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a function of size through

⌧
↵
cut = ⌧

↵
cut-init + kHP d

�0.5
, (5.1.4)

where ⌧cut-init denotes the initial values of the cutting stress.

5.2 Constitutive Parameters

As observed in the developed micro-scale constitutive model and auxiliary relations, nine pa-

rameters, as demonstrated in Table 5.1, must be calibrated for each material prior to any further

analyses.

Table 5.1: Constitutive parameters to be calibrated for the micro-scale constitutive model.

Constitutive Parameters in Micro-Scale

�̇
↵
0 p q r kHP ⌧sat ⌧cut-init ⌧pass-init h

�
0

As an instance, Cu/Nb multi-layers are considered in subsequent evaluations for which elastic con-

stants are obtained through analytical processes and databases displayed in Table 5.2.

Table 5.2: Material elastic constants of copper and niobium acquired from analytical processes
and databases.

Material Elastic Constants Cu Nb

C11(GPa) 168.4 246.0

C12(GPa) 121.4 134.0

C44(GPa) 75.4 28.7

µ(GPa) 48.0 38.0

Qactive(J) 8.05e�19 8.9e�19

b(m) 2.56e�10 2.86e�10
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Subsequently, the developed micro-scale constitutive model and the deep-learning SLC method are

employed to calibrate and validate the parameters via experimental data.

5.2.1 Copper Parameter Calibration and Validation

For copper, the experimental results from [12] are utilized where two curves are considered for

calibration and the other one for validation processes. Each calibration process needs about five to

ten runs and each run takes approximately eighty to one hundred and fifty hours with the current

(2020) computational accommodations.

Figure 5.1: Scanning electron microscopy images of micro-pillar compression tests performed on
single crystalline copper samples with di↵erent sizes. Slip morphologies of the SC1 pillars with
(a) 1 µm, (b) 5 µm and (c) 10 µm and the SC2 pillars with (d) 1 µm, (e) 5 µm and (f) 10 µm

sizes. The scale bars are the same as each specimen size [12].

The experimental data include the stress-strain curves of two monocrystal copper pillars named

SC1 and SC2 with the orientations of h345i and h136i, respectively, under compression loading with

strain rates of 3 to 5 /sec and the sizes of 1 µm, 5 µm and 10 µm as illustrated in Fig. 5.1.

Representative compressive stress-strain curves indicating the growth of flow stress with size are
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demonstrated in Fig. 5.2. The compression test is performed for two specimens with similar thick-

nesses as ”size of the sample – number of the sample”, e.g., 1-1 and 1-2 specify 2 samples with 1

µm thicknesses.

(a)

(b)

Figure 5.2: (a) Stress-strain curves of two copper single crystalline samples, SC1 and SC2, with
two orientations of (a) h345i and (b) h136i [12]. These curves along with the developed

micro-scale constitutive model and the deep-learning SLC method are employed to calibrate and
validate the constitutive parameters.

94



The exhibited curves are utilized in calibration process for which two curves of each orientation is

considered and the results are displayed in Fig. 5.3.

(a)

(b)

Figure 5.3: Calibration curves with the developed micro-scale constitutive model and the
deep-learning SLC by the experimental data [12] for (a) SC1 and (b) SC2 specimens.
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Accordingly, the calibrated parameters are shown in Table 5.3.

Table 5.3: Calibrated parameters of copper through the developed micro-scale constitutive
model, deep-learning SLC, and experimental data.

Copper Calibrated Constitutive Parameters

�̇
↵
0 5.0e6

p 1.0

q 1.0

r 1.115

kHP 60,000.0

⌧sat(MPa) 50.0

⌧cut-init(MPa) 15.0

⌧pass-init(MPa) 15.0

h
�
0 50.0

At this point, the parameters are validated by the rest of the curves in SC1 and SC2 specimens as

illustrated in Fig. 5.4 with favorable agreements.
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(a)

(b)

Figure 5.4: Validation curves of the calibrated parameters in Table 5.3 with the rest of the
curves in (a) SC1 and (b) SC2 with solid agreements.
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5.2.2 Niobium Parameter Calibration and Validation

For niobium, the experimental results from [13] are utilized where two curves of 1800 µm and

5000 µm are considered for calibration and 2300 µm for validation processes. Each calibration

process needs about five to ten runs and each run takes approximately eighty to one hundred and

fifty hours with the current (2020) computational accommodations.

The experimental data include the stress-strain curves of single-crystalline niobium pillars with the

orientation of h001i under compression loading with stress rates of 33± 23 MPa/sec as illustrated

in Fig. 5.5.

Figure 5.5: Scanning electron microscopy images of micro-pillar compression tests performed on
a single crystalline niobium sample with (a) 5000 µm size generating (b) inclined slip

morphologies [13].

Representative compressive stress-strain curves indicating the growth of flow stress with size are

displayed in Fig. 5.6 specifying the higher extent of size e↵ects on the overall responses of niobium

at lower length spectrum as discussed in the nano-scale regime.
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Figure 5.6: Stress-strain curves of micro-pillar compression tests performed over
single-crystalline niobium samples [13].

The micro curves, 1800 µm, and 5000 µm are utilized for the calibration process through the de-

veloped micro-scale constitutive model and deep-learning SLC where the result plots are displayed

in Fig. 5.7.

Figure 5.7: Calibration curves with the developed micro-scale constitutive model, the
deep-learning SLC, and experimental data [13] of 1800 µm and 5000 µm specimens.
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Consequently, the calibrated parameters are shown in Table 5.4.

Table 5.4: Calibrated parameters of niobium through the developed micro-scale constitutive
model, deep-learning SLC, and experimental data.

Niobium Calibrated Constitutive Parameters

�̇
↵
0 5.0e6

p 1.0

q 1.0

r 1.115

kHP 125,000.0

⌧sat(MPa) 200.0

⌧cut-init(MPa) 10.0

⌧pass-init(MPa) 70.0

h
�
0 50.0

At this point, the parameters are validated by a 2300 nm curve as illustrated in Fig. 5.8 with

favorable agreements.
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Figure 5.8: Validation curves with the calibrated parameters demonstrated in Table 5.4 with
the 2300 nm curve.
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6. PRECIPITATE STRENGTHENING

6.1 Introduction

Precipitates are dispersed second-phase particles within the original phase matrix of metals or

metallic alloys enhancing associated mechanical responses. Precipitates are generally spread inside

a lattice by several volume fractions through synthetic positioning, powder pressing and sintering,

heat treatments, and so forth.

The associated strengthening mechanism as an increase in the stress required to cause plasticity

due to previous inelastic deformation is originated by dislocations interacting with barriers that

impede their motion through the crystal lattice via creating back-stresses [92].

The most important contribution to the interaction between a point or volume defect and dislocation

is usually due to hindrance of dislocation glide [93] and a distortion produced in the surrounding

crystal which interacts with the stress field of the dislocation to raise or lower the elastic strain

energy of the crystal.

6.2 Ellipsoidal Inclusion

A generic model of an inclusion is illustrated in Fig. 6.1 [94] based on Eshelby’s method [95].

If S is the surface separating the matrix and inclusion, and ni its outward normal, Eshelby suggested

to solve the problem which is summarized by the following steps.

1. Remove the inclusion and let it undergo the strain of "Tij without altering its elastic constants.

The stress for small kinematics will be

�
T
ij = �̌"

T
kk�ij + 2µ̌"Tij , (6.2.1)

where �̌ and µ̌ are Lame’s constants and �ij is the Kronecker delta function. At this stage,

the stress in the inclusion and matrix is zero.

2. Apply surface tractions �Tijnj to the inclusion. This brings it back to the shape and size it

had before the transformation. Put it back in the matrix and reweld across S. The surface

forces have now become a layer of body force spread over S.
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3. Let these body forces relax, or, what comes to the same thing, apply a further distribution

�
T
ijnj over S. The body is now free of external force but in a state of self-stress because of

the inclusion transformation.

Figure 6.1: General Inclusion theory based on Eshelby’s Method.

Since the displacement at a distance, r, due to a point-force Fi is [96]

Uj(r� r0) =
1

4⇡µ̌

Fj

|r� r0|
�

1

16⇡µ̌(1� ⌫)
Fl

@
2

@xl@xj
|r� r0| , (6.2.2)
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the displacement impressed on the material in stage 3 will be

u
C
i (r) =

Z

S
�
T
jkUj(r� r0)dSk , (6.2.3)

where ⌫ is the Poisson’s ratio. Assuming the end of the stage II as a state of zero displacement since

the stress and strain in the matrix are zero and the inclusion has the original geometrical form, uCi

is the actual displacement in the matrix and inclusion. Thus, the strain in matrix or inclusion can

be determined with

"
C
ij =

1

2

�
u
C
i,j + u

C
j,i

�
. (6.2.4)

Considering that the inclusion had the stress of ��Tij before stage 3, the net inclusion stress is

�
I
ij = �

C
ij � �

T
ij = �̌("Ckk � "

T
kk)�ij + 2µ̌("Cij � "

T
ij) . (6.2.5)

At this point, by incorporating Gauss theorem, the displacement in the matrix can be rewritten as

u
C
i (r) =

1

16⇡µ̌(1� ⌫)
�
T
jk ,ijk �

1

4⇡µ̌
�
T
ik�,k , (6.2.6)

where for the volume boundary, V ,

 =

Z

V

dV

|r� r0|
, � =

Z

V
|r� r0|dV . (6.2.7)

For a pure dilatation when "Cij =
1
3"�ij , the strain becomes

"
C
il =

1

4⇡

(1 + ⌫)

3(1� ⌫)
"�il . (6.2.8)

In a special case when a uniform inclusion misfit is considered, as shown in Fig. 6.2, the point

defect is assumed an elastic sphere of natural radius ra(1+ �) and volume Vs, which is inserted into

a spherical hole of radius ra and volume Vh in an elastic matrix.
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Figure 6.2: (a) Elastic model for a defect of natural radius ra(1 + �) inserted in a hole of radius
ra. The final radius is ra(1 + "). (b) Geometry for the interaction of a defect with a dislocation

lying along the z axis [14].

The sphere and matrix are isotropic with the same shear modulus, µ, and Poisson’s ratio, ⌫. The

di↵erence between the defect and hole volumes can be defined as

Vmis = Vs � Vh =
4

3
⇡r

3
a(1 + �)3 �

4

3
⇡r

3
a , (6.2.9)

which in the case of infinitesimal misfit (� << 1), it can be approximated by

Vmis ⇡ 4⇡r3a� . (6.2.10)

The misfit parameter � is positive for oversized defects and negative for under-sized ones. On

inserting the sphere in the hole, a final defect radius of ra(1 + ") is generated that changes Vh by

�Vh as

�Vh =
4

3
⇡r

3
a(1 + ")3 �

4

3
⇡r

3
a , (6.2.11)

which in the case of infinitesimal strain (" << 1), it can be approximated by

�Vh ⇡ 4⇡r3a" . (6.2.12)
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Comparing Eqs. 6.2.8,6.2.10, and 6.2.12, the relation between misfit strain and parameter can be

specified with

" =
1 + ⌫

3(1� ⌫)
� (6.2.13)

and

�Vh =
1 + ⌫

3(1� ⌫)
Vmis . (6.2.14)

6.3 Orowan Mechanism

The degree of precipitate strengthening depends on the distribution and shape of particles in a

matrix. The second-phase dispersion can be described by specifying the volume fraction, average

particle diameter, and mean inter-particle spacing. These factors are all interrelated so that one

factor cannot be changed without a↵ecting the others. For example, for a given volume fraction of

the second phase, reducing the particle size decreases the average distance between particles and

for a given size particle, the distance between particles decreases with an increase in the volume

fraction.

The precipitates, in general, intersect slip planes in a random fashion and can appear as dense,

impenetrable particles where dislocations can move around them by sharp changes in their line

curvature, or as coherent ones through which dislocations can pass at stress levels higher than

those required to move in the matrix phase. A dislocation will adopt the mechanism o↵ering the

lowest resistance. Therefore, dislocations motions are opposed by the precipitates in two distinct

ways, cutting and bypassing.

This study centers on the bypassing dislocation mechanism, where cutting particles becomes un-

favorable, and instead dislocations move around them. This phenomenon is commonly associated

with non-coherent particles with larger numbers of constituent atoms, N > 105. In these cases, the

Orowan mechanism [97] is the dominant governing relation as displayed in Fig. 6.3. Stage 1 shows

a straight dislocation line approaching two particles. At stage 2 the line is beginning to bend, and

at stage 3 it has reached the critical curvature. Now the dislocation can move forward without

further decreasing its radius of curvature.
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Figure 6.3: Stages in precipitate strengthening through dislocation motion between widely
separated obstacles based on Orowan’s mechanism of dispersion hardening.

When a uniform shear stress, ⌧ , acts on a dislocation line, moves it forward as demonstrated in

Fig. 6.4. Here, the dislocation line travel in the direction of its Burgers vector, b, and a line element

of the dislocation, ds, displaces by dl distance along the slip direction. The area swept out by the

line element is ds dl corresponding to an average displacement of the crystal above to the crystal

below the slip plane, i.e., (dsdl/A)b, where A is the area of the slip plane.

Figure 6.4: The motion of a dislocation line under applied forces.
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The applied force creating the shear stress is ⌧A, thus, the work done when the increment of slip

occurs is

dW = ⌧A

✓
dsdl

A

◆
b . (6.3.1)

Thereby, the force per unit length of a dislocation line will be

F =
dW

dsdl
= ⌧b . (6.3.2)

This force is normal to the dislocation line at every point along its length toward the unslipped

part of the glide plane. Since the Burgers vector is constant along a curved dislocation line, if ⌧

is constant, the value of F will be the same at any point along while its direction is normal to

the dislocation line. As a result, the force on a dislocation is not necessarily in the same direction

as the applied stress. Since the strain energy of a dislocation line is proportional to its length,

increasing dislocation line is opposed by a line tension, �, to minimize its energy via shortening

and straighten out its length. Thus, in order for a dislocation line to remain at a radius of curvature,

R, the following relation according to Fig. 6.4 must be satisfied.

�d✓ = ⌧bds , (6.3.3)

which yields

⌧ =
�

bR
, (6.3.4)

where the angle subtended by the line element, ds, is d✓ = ds
R , the outward force on the dislocation

line is ⌧bds, and the opposing inward force due to the line tension for small values of d✓ is considered

�d✓. Due to the fact that � is an energy per unit length, a good approximation can be made with

� ⇡
µb

2

2
, (6.3.5)
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with µ as the shear modulus. Thereby, the shear stress required to bend a dislocation to radius R

can be specified through

⌧ ⇡
µb

2R
. (6.3.6)

Going back to the Orowan mechanism in Fig. 6.3, at stage 3, the dislocation can then move forward

without further decreasing its radius of curvature. By defining interparticle spacing, �, as

� =
4r(1� f)

3f
, (6.3.7)

where f is the volume fraction of spherical particles of radius r, or

� =
a

f

1
3
a

, (6.3.8)

where a is the interatomic spacing and fa the atomic fraction, the stress required to force the

dislocation between the obstacles is expressed with

⌧Orowan = ↵
µb

�
, (6.3.9)

where ↵ is a constant can approximately be considered in the range of (0.8� 2). If the spacing of

incoherent precipitates is not large in comparison with their size, this relation is modified as

⌧Orowan = ↵
µb

(�� 2r)
, (6.3.10)

This relation can also be modified by introducing more detailed estimates of the dislocation line

tension, the mean free path, and dislocation segments interactions on either side of the particle as

⌧
modified
Orowan =

0.13µb

�
ln

r

b
. (6.3.11)

At stage 4, the segments of the dislocation that meet on the other side of the particle are of opposite

sign, so they can annihilate each other over part of their length, leaving a dislocation loop around
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each particle. Finally, stage 5 displays the original dislocation that is free to move on. Another

expression for the stress required to bow a dislocation between particles is identical to the equation

for the operation of a Frank-Read source [98] that considers � as the mean distance between two

precipitates and postulates the equality between the force on the dislocation, ⌧b� and twice the

line tension, 2µb2, as

⌧ = 2

✓
µb

�

◆
, (6.3.12)

Every dislocation gliding over the slip plane builds up dislocation loops around the particles which

exert a back-stress on dislocation sources to be overcome for the additional slip. The Orowan loop

reduces the e↵ective spacing, (�� 2r) whose impacts can be mathematically observed in modified

Orowan equations. The presence of opposing stress necessitates an increase in shear stress which

is considered the reason that dispersed particles cause the matrix to strain-harden rapidly. In

addition, these repulsive loops e↵ectively decrease the value of particle spacing which also aid the

increase in the required applied stress to pass.

For a given volume fraction, the average precipitates distance decreases with finer particles. An

estimate of the e↵ect of particle size can be made by assuming the particles intersecting the slip

plane are arranged in a square pattern as it is cut on the slip plane. Then the area fraction equals

the volume fraction, f = ⇡r2

d2 or d = r
⇡
f . By substituting this into Eq. 6.3.12 it yields

⌧ = 2

✓
µb

r

◆✓
f

⇡

◆ 1
2

. (6.3.13)

Because the increase of yield strength, �y, caused by the precipitate particles is proportional to the

shear stress, it can be expressed with

�y = �

✓
µb

r

◆
f

1
2 , (6.3.14)

where � is a constant. This predicts that the strength increases with increasing volume fraction

and decreasing particle size.
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6.4 Precipitate Strengthening in Metallic Nano-Layers Case Studies

In this section, the e↵ects of precipitates on the mechanical properties of metallic nano-layers

are studied through Cu/Nb cases with tungsten precipitates where the developed nano-scale con-

stitutive model, SLC method, and back-stresses induced by tungsten precipitates based on the

Orowan mechanism are considered.

Figure 6.5: Information summary of the simulated case studies for precipitate strengthening.
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The results are demonstrated in the forms of stress contours and stress-strain curves where di↵erent

precipitates volume fractions are considered in each and both layers. The Kurdjumov-Sachs (KS)

orientation relationships, {111} Cu || {110} Nb is assumed with the strain rate of 10�3
/sec. The

layers have an identical thickness of 63 nm under transverse loading. Low precipitate (LP) cases

have 2 %, medium precipitate (MP) cases include 5 %, and high precipitate (HP) cases contain 15

% randomly distributed tungsten in volume. The summary of the simulated cases is illustrated in

Fig. 6.5. The stress contours are captured at 10% strain.

6.4.1 Low Precipitate Case Studies

Here, three cases of Cu/Nb nano-layers are shown containing 2 % tungsten particles randomly

distributed in each and both layers. The stress contours displayed in Fig. 6.6, 6.7, and 6.8 represent

the cases where the precipitates are distributed in Cu, Nb, and Cu/Nb, respectively. The rest of

the simulation settings are according to what demonstrated in Fig. 6.5.

Figure 6.6: Stress contour of the simulated Cu/Nb nano-layers with W precipitates randomly
distributed in Cu.
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Figure 6.7: Stress contour of the simulated Cu/Nb nano-layers with W precipitates randomly
distributed in Nb.

Figure 6.8: Stress contour of the simulated Cu/Nb nano-layers with W precipitates randomly
distributed in Cu and Nb.
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As observed, the highest values of stress are carried by the precipitates and their surroundings. The

high intensity of the stress gradient among the particles and matrix is due to the back-stress induced

by the precipitates causing a nonuniform distribution of stress within the layers. The intensity of the

stress concentration declines with distance from isolated precipitates while resonances when other

particles are closed by. Another point to be discerned is the presence of the highest stress magnitude

when precipitates are placed within Nb layers and the lowest one in the case that precipitates are

distributed within Cu layers. The similar impact was observed in thickness variation where Nb

layers have more impacts on the overall behavior of the Cu/Nb nano-layers.

6.4.2 Medium Precipitate Case Studies

Here, three cases of Cu/Nb nano-layers are shown containing 2 % tungsten particles randomly

distributed in each and both layers. The stress contours displayed in Fig. 6.9, 6.10, and 6.11

represent the cases where the precipitates are distributed in Cu, Nb, and Cu/Nb, respectively. The

rest of the simulation settings are according to what demonstrated in Fig. 6.5.

Figure 6.9: Stress contour of the simulated Cu/Nb nano-layers with W precipitates randomly
distributed in Cu.
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Figure 6.10: Stress contour of the simulated Cu/Nb nano-layers with W precipitates randomly
distributed in Nb.

Figure 6.11: Stress contour of the simulated Cu/Nb nano-layers with W precipitates randomly
distributed in Cu and Nb.
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Based on the demonstrated contours, the highest values of stress are carried by the precipitates

and their surroundings. The high intensity of the stress gradient among the particles and matrix

is due to the back-stress induced by the precipitates causing a nonuniform distribution of stress

within the layers. The intensity of the stress concentration declines with distance from isolated

precipitates while resonances when other particles are closed by. Another point to be discerned is

the presence of the highest stress magnitude when precipitates are placed within Nb layers and the

lowest one in the case that precipitates are distributed within Cu layers. The similar impact was

observed in thickness variation where Nb layers have more impacts on the overall behavior of the

Cu/Nb nano-layers.

6.4.3 Medium Precipitate Case Studies

Here, three cases of Cu/Nb nano-layers are shown containing 2 % tungsten particles randomly

distributed in each and both layers. The stress contours displayed in Fig. 6.12, 6.13, and 6.14

represent the cases where the precipitates are distributed in Cu, Nb, and Cu/Nb, respectively. The

rest of the simulation settings are according to what demonstrated in Fig. 6.5.
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Figure 6.12: Stress contour of the simulated Cu/Nb nano-layers with W precipitates randomly
distributed in Cu.

Figure 6.13: Stress contour of the simulated Cu/Nb nano-layers with W precipitates randomly
distributed in Nb.
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Figure 6.14: Stress contour of the simulated Cu/Nb nano-layers with W precipitates randomly
distributed in Cu and Nb.

The results display the highest values of stress are carried by the precipitates and their surroundings.

The high intensity of the stress gradient among the particles and matrix is due to the back-stress

induced by the precipitates causing a nonuniform distribution of stress within the layers. The in-

tensity of the stress concentration declines with distance from isolated precipitates while resonances

when other particles are closed by. Another point to be discerned is the presence of the highest

stress magnitude when precipitates are placed within Nb layers and the lowest one in the case

that precipitates are distributed within Cu layers. The similar impact was observed in thickness

variation where Nb layers have more impacts on the overall behavior of the Cu/Nb nano-layers.

With the distribution of 15% precipitates within the layers, the significant changes in the stress

absorption of particles in comparison with low and medium concentration cases is observed which re-

sults in exponential strengthening e↵ects when the precipitate concentrations among low, medium,

and high precipitates are considered.
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6.4.4 Precipitate E↵ects in Constitutive Behavior Case Studies

In this section the stress-strain curves of the Cu/Nb nano-layers are shown containing 2 %, 5 %,

and 15 % randomly distributed tungsten in volume. The plots demonstrated in Fig. 6.15, 6.16, and

6.17 represent the cases where the precipitates are distributed in Cu, Nb, and Cu/Nb, respectively.

Figure 6.15: Stress-strain curves of contour of the simulated Cu/Nb nano-layers with W
precipitates randomly distributed in Cu.
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Figure 6.16: Stress-strain curves of contour of the simulated Cu/Nb nano-layers with W
precipitates randomly distributed in Nb.

Figure 6.17: Stress-strain curves of contour of the simulated Cu/Nb nano-layers with W
precipitates randomly distributed in Cu/Nb.
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As noted, adding precipitates to the layers results in the increase of the flow strength and hardening.

As demonstrated in Fig. 6.15, 17%, 59%, and 235% increase in flow stress is related to the precipitate

volume fraction of 2%, 5%, and 15%, respectively. Hardening has the same trend and it is vividly

pronounced at 15% precipitate concentration.

Based on the curves in Fig. 6.16, 23%, 83%, and 300% increase in flow stress is related to the

precipitate volume fraction of 2%, 5%, and 15%, respectively. Hardening has the same trend and

it is vividly pronounced at 15% precipitate concentration.

From Fig. 6.17, it can be observed that, 20%, 76%, and 250% increase in flow stress is related to

the precipitate volume fraction of 2%, 5%, and 15%, respectively. Hardening has the same trend

and it is vividly pronounced at 15% precipitate concentration.

Comparing Figs. 6.15, 6.16, and 6.17, shows the significant strengthening occurs by adding

precipitates in higher concentrations especially when placed in Nb layers.
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7. CONCLUSION

In order to account for the inhomogeneous and high plastic deformation, rate dependence, and

anisotropic nature of metallic nano-layers, the crystal plasticity finite element (CPFE) approach

in the large deformation platform was utilized in three-dimensional space to mimic the practical

cases. Other computational methods including molecular dynamics and discrete dislocation dy-

namics were found limited in order to acquire accurate and pragmatic predictions, however, the

concurrent utilization with CPFE is worth to be considered. The constitutive models, either phe-

nomenological or physics-based, must be accommodating and compatible with the main features

of nano-, micro, and homogenized-level, namely, interfaces, dislocation pile-ups, and layers volume

fractions, respectively. Additionally, the models must address size e↵ects at each level either in a

forward or backward fashion along with the consideration of active mechanisms at each size spec-

trum in order to reduce excessive computational workload.

At the nano-scale, the size-dependent constitutive model developed based on entropic kinetics ad-

dressing size e↵ects both explicitly and implicitly was able to accurately predict the responses of

metallic nano-layers under diverse loading conditions at the spatial range of 20 nm to 1 µm below

which softening phenomenon must be dealt with considering di↵erent mechanisms and models. The

associated constitutive parameters were obtained through deep-learning SLC where the behavior

of several Cu/Nb nano-layers was predicted. Loading or layer orientation was found to be incon-

sequential on flow strength at the strain of about 10%. Order combination of Cu/Nb layers with

di↵erent thicknesses demonstrated the highest flow strength associated with the case having the

lowest thickness for both materials while equally increasing the thickness of the layers was under

the influence of Nb layers as the dominated constituent a↵ecting the overall behavior of the system.

The crucial size e↵ects were observed specifically on the main behavioral features including yield

and flow strength as well as transition strain where by decreasing thickness these characteristics

exponentially increased especially at the thickness below ⇡100 nm.

At the micro-scale, the developed constitutive model was able to not only capture Hall-Petch or

similar mechanisms while retaining the backbone of the model in the nano-scale, but could predict

nano-layers responses considering temperature change, activation energy, and so on which are not

possible by simply utilizing the commonly used Hall-Petch relation alone.
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The developed homogenized constitutive model was accurately capable of capturing the properties

of nano-scale multi-layers while expediting computational processes by several orders of magnitude,

e.g., a 25-day running time reduced to a matter of minutes. The deep-learning SLC and genetic

algorithms were utilized for obtaining the e↵ective functionals relations and parameters for both

homogenized and temperature-dependent constitutive models considering that those relations had

di↵erent formats and accordingly parameters for each functional. Accordingly, temperature e↵ects

were realized by adding other functions and constants to those relations through which several

predictive cases of Cu/Nb were presented. Dramatic changes in flow strengths were observed by

increasing temperature, specifically, a drop up to ⇡ 80% in flow strength at about 1000K in 25

nm sample. Moreover, the degradation of a thin nano-layer at high temperature into a thicker one

at a lower temperature was observed, namely, a 34 nm sample at 400�C functioned as a 63 nm

specimen at 25�C.

Sensitivity analysis was performed on the size-dependent constitutive model as a diagnostic-prognostic

field through the factor prioritization in order to capture the influential parameters where the size

e↵ects designed parameters, namely, m, cs, csat, and h0 were found the dominant factors on the

main behavioral features.

Precipitate hardening phenomenon based on Orowan strengthening mechanism and Eshelby’s the-

orem in nano-systems was considered. The results demonstrated the increase of flow, yield, tran-

sition, and hardening at any concentration of precipitates, however, in order to acquire practi-

cal strengthening of about 30%, the precipitate concentration more than about 5% is suggested.

Larger volume fractions of precipitates yielded higher flow strength and hardening, however, the

upper bound must be investigated. For practical cases, Orowan and cutting through mechanisms

must be considered in a specific combination to determine the actual responses of strengthened

metallic nano-layers considering manufacturing setups and conditions. The element e↵ects were

shown with the highest impacts on the overall properties where strengthen Nb demonstrated the

strongest case than Cu/Nb, and finally, Cu specifying the role of stronger crystal structure in the

precipitate strengthening as well similar to the size e↵ects observed in the order combination cases

at nano-scale.
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APPENDIX A

General Steps of Solving Equilibrium Equation–FE

1. Equilibrium Equation
R
v � : �e dv �

R
� t �v d� = 0

2. Finite Element Discretization

�e =
1

2
(�l+ �l

T )

v =
nNodeX

i=1

Niv̂i �l =
@�v

@x
=

nNodeX

i=1

v̂i ⌦rxNi = r(⇠,⌘,⇣)Ni

"
nNodeX

i=1

xi ⌦r(⇠,⌘,⇣)Ni

#
v̂

3. Residual Force

R(v̂) =
R
v(rxNi)T�dv �

R
sNit�d� = 0

4. Newton-Raphson Solver

v̂
n+1 = v̂

n
�

⇣
@R

@v̂

⌘�1

n
Rn

5. Residual Derivative

@R

@v̂
=

Z

v
(rxNi)

T
k(rxNi)dv +

Z

v
(rxNi)

T
� ⌦ (rxNi)dv

6. Material Sti↵ness

KM =
R
v(rxNi)Tk(rxNi)dv =

R
v B

T
DepBdv

7. Geometrical Sti↵ness

K� =
R
v(rxNi)T� ⌦ (rxNi)dv =

R
v B

T
� �B�dv

8. Calculation of � and Dep in Appendix B.
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APPENDIX B

General Steps of Acquiring System Sti↵ness–CP

1. Kinematics

F(⌧) = F
e(⌧) Fp(⌧) , Ḟp(⌧) = l

p(⌧) Fp(⌧)

2. Plastic Deformation Rate Dependence

l
p =

nslipX
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3. Second Piola-Kirccho↵ Stress
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4. Elastoplastic Parts
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5. Nonlinear Solution–Defined Residual Function

G(S) = S(⌧)� Sel �
C
2

nslipX

↵=1
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6. Nonlinear Iteration Obtaining 2nd Piola-Kirccho↵ Stress

S
(i+1) = S
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� Str +
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7. Updated Constitutive Model and Evolving Parameters

�̇
↵ = �̇

↵
0 exp

n
�

Qactive
kBT

h
1�

⇣
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2

⌧↵cut
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⌘piqo
sgn(⌧↵)

⌧̇
↵
pass =

nslipX
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h
↵�

|�̇
�
|

8. Elastic Deformation Gradient

(Converged � , F
p) ! F

e(⌧) = F(⌧)F�p(⌧)

9. Cauchy Stress

�(⌧) =
1

detFe(⌧)
F
eT (⌧)S(⌧)Fe(⌧)

10. Elastoplastic Material Tensor

Dep #= W =
@�

@E
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