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ABSTRACT

Tumbalam Gooty, Radhakrishna PhD, Purdue University, December 2020. Advances
in MINLP for Optimal Distillation Column Sequencing. Major Professors: Rakesh
Agrawal and Mohit Tawarmalani.

Designing configurations for multicomponent distillation, a ubiquitous process in

chemical and petrochemical industries, is often challenging. This is because, as the

number of components increases, the number of admissible distillation configurations

grows rapidly and these configurations vary substantially in their energy needs. Con-

sequently, if a method could identify a few energy-efficient choices from this large set

of alternatives, it would be extremely attractive to process designers. Towards this, we

develop the first mixed-integer nonlinear programming (MINLP) based solution ap-

proach that successfully identifies the most energy-efficient distillation configuration

for a given separation. Current sequence design strategies are largely heuristic. The

rigorous approach presented here can help reduce the significant energy consumption

and consequent greenhouse gas emissions by separation processes.

In addition to the combinatorial complexity, the challenge in solving this problem

arises from the nonconvex fractional terms contained in the governing equations. We

make several advances to enable solution of these problems.

1. We propose a novel search space formulation by embedding convex hulls of

various important substructures. We prove that the resulting formulation dom-

inates all the prior formulations in the literature.

2. We derive valid cuts to the problem by exploiting the monotonic nature of the

governing equations.
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3. We adapt the classical Reformulation-Linearization Technique (RLT) for frac-

tional terms. Our RLT variant exploits the underlying mathematical structure

of the governing equation, and yields a provably tighter convex relaxation.

4. We construct the simultaneous hull of multiple nonlinear terms that are con-

strained over a polytope obtained by intersecting a hypercube with mass bal-

ance constraints. This yields a tighter convex relaxation than the conventional

approach where the nonlinear terms are convexified individually over a box.

5. A key challenge in constructing a valid convex relaxation has been that the

denominator of certain fractions in the governing equation can approach ar-

bitrarily close to zero. Using our RLT variant, we construct the first valid

relaxation.

6. We leverage powerful mixed-integer programming (MIP) solvers by implement-

ing a discretization-based solution procedure with an adaptive partitioning

scheme.

With extensive computational experiments, we demonstrate that the proposed ap-

proach outperforms the state-of-the-art in the literature. The formulation can be

tailored to other objectives by appending the relevant constraints. Here, we present

an extension that identifies the distillation configuration that has the highest thermo-

dynamic efficiency. Finally, we illustrate the practicality of the developed approaches

with case studies on crude fractionation and natural gas liquid recovery.
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1. INTRODUCTION

Separations are ubiquitous in all chemical, petrochemical and biochemical industries.

Separations are required to meet product purity, to reduce the concentration of pollu-

tants below their threshold limits, to separate unreacted reactants from the product

stream for recycling and so forth. A plethora of unit operations are available for sep-

aration of mixtures. Well-known examples include distillation, permeation through

membranes, absorption, adsorption, liquid-liquid extraction, etc. All of the foregoing

molecular separations are energy intensive, and it is estimated that they can account

for 40 – 60% of the total plant costs [1]. The ever increasing push to reduce the

environmental impact makes process designers to strive for innovative solutions that

improve the overall efficiency of chemical plants.

Of all the available unit operations, distillation has been the predominant choice

in industry. The use of distillation can be traced back to as early as 3000 BC. Even

today, distillation impacts directly our day to day lives; from gasoline in automo-

biles to roads on which they are driven, from breweries/wineries to plastic cups in

which they are served, and so forth. It is estimated that 90 – 95% [1] of the liq-

uid separations in industry are carried out using distillation. A few well-known and

high throughput applications in chemical industry include crude fractionation, natu-

ral gas liquid recovery, air separation, etc. With the increased potential to harness

shale reserves [2,3], the use of distillation is projected to increase further. Like every

other molecular separation, distillation is energy intensive. To put it into perspective,

just in the US, distillation consumes 2.4 Quads/year1, which is roughly 2.5% of the

overall energy consumption of the US. Even a 10% reduction in energy consumption

would reduce CO2 emissions by �18 million tons/year. Given the ubiquity of appli-

11 Quad = 1 quadrillion (1015) BTU
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cations and its energy-intensive nature, improving the efficiency of distillation-based

separation units is a promising direction towards making chemical industries more

sustainable.

1.1 Intricacies of Designing Distillation-based Separation Units

Even after practicing continuous distillation for over a century, designing energy-

efficient distillation-based separation units continues to be a challenging task. This is

especially true for the separation of multicomponent mixtures. To better understand

the reasons, consider the separation of a four-component mixture ABCD. Here, A

and D correspond to the most and the least volatile components, respectively, and

the components are arranged in decreasing order of relative volatilities. Separation

of a multicomponent mixture requires a sequence of distillation columns referred as

a configuration (see Figure 1.1). The energy requirement of a configuration depends

on the operating conditions. For example, Figure 1.1(a) shows a set of operating con-

ditions that permit the separation of a given four-component feed (refer the caption

for the properties of the feed). The numbers in red correspond to the molar flowrate

of the vapor in different sections of the configuration per mole of the feed. By opti-

mizing the operating conditions (see Figure 1.1(b)), the energy consumption of the

configuration can be reduced by 14%. However, identifying the optimal operating

conditions is challenging, since it requires the solution of a nonconvex mathematical

program.

In addition, multiple distillation configurations exist for the separation of a multi-

component mixture. For example, Figure 1.2 shows the so-called basic column config-

urations for the separation of a four-component mixture. Even though all configura-

tions perform the same separation, their energy consumption can differ substantially,

as evident from the figure. This is due to the differences in mixing losses within

each configuration. Moreover, one can derive additional configurations by replacing

condensers and reboilers by two-way vapor-liquid transfer streams, known as thermal
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couplings (compare Figure 1.2(c) and Figure 1.1). Thermal couplings provide a way

to share vapor flows between two or more columns, which can help in reducing the

energy consumption. A configuration with one or more thermal couplings is referred

as a thermally coupled configuration. Therefore, a process designer needs to optimize

the separation sequence, condensers and reboilers, and the operating conditions.

Even though powerful process simulators are available at our disposal, they are

not suitable for the purpose. This is because, process simulators tend to get trapped

in a local solution due to the nonconvex nature of the problem. The only way to

ascertain the optimality is to perform an exhaustive sensitivity analysis, which is

computationally intensive. Moreover, the computational time and effort needed to

identify the optimal configuration can be prohibitive [4]. This is because, the number

of admissible configurations (basic and thermally coupled configurations combined)

explodes combinatorially with increase in number of components in the feed (see

Table 1.1).

ABCD

AB

CD

A

B

C

D

1

5.18

4.55

1.01

1.01

4.17

5.56

32

(a) NEC = 1

ABCD

AB

CD

A

B

C

D

1

6.20

2.20

4.20

4.20

2.0

6.40

33

(b) NEC = 0.86

Fig. 1.1. Energy consumption of a configuration depends on the oper-
ating conditions. Here, NEC stands for normalized energy consump-
tion. The energy consumption of (a) is used for the normalization.
The composition (mole fraction) of the given four-component mixture
is tzA, zB, zC , zDu � t0.45, 0.05, 0.05, 0.45u, and the relative volatili-
ties of the constituent components w.r.t to the heaviest component
are tαA, αB, αC , αDu � t3.025, 2.75, 1.1, 1u

.
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For example, more than half a million and 85 million configurations are avail-

able for the separation of six and seven component mixtures. Such mixtures are

quite common in petrochemical industries. Owing to this combinatorial complexity,

industrial practitioners have always relied on heuristics, past experience and trail-

and-error methods for designing distillation units. Quite often, the chosen configura-

tion consumes much more energy than needed to perform the task at hand, but the

practitioner has no way to assess this energy penalty because some configurations,

inevitably, always remain unexplored. It is, therefore, essential to systematically

identify the configuration that is most appropriate for an application.

Table 1.1.
Combinatorial explosion of the choice set. From [5].

Number of

Components

Number of Admissible

Configurations

4 152

5 6128

6 506,912

7 85,216,192

1.2 Literature Review

Figure 1.3 shows a brief time-line. There are two aspects to the design of distillation-

based separation units: (1) Generate the search space: the space of admissible distilla-

tion configurations (2) Identify the configuration from the search space that optimizes

the chosen objective. The enumeration of the entire search space remained an un-

solved problem until early 2000s. Sargent and Gaminibandara [6] formulated an initial

superstructure (see Figure 1.3) with the intent of capturing the entire search space.

However, Agrawal [7] showed that the superstructure did not admit satellite-column



6

configurations (see Figure 1.3). Instead, the author proposed an alternate super-

structure to capture all the configurations. Next, Agrawal [8] proposed a rule-based

approach to generate the search space. Later, several formulations based on logical

expressions in terms of split variables [9], top-product/bottom-product variables [10]

and stream variables [5], have been proposed for enumerating these configurations.

However, no clear dominance of the formulations has been established in the litera-

ture. Here, we use the tightness of the relaxed problem as the metric to determine

the dominance. In this work, we propose two new formulations to generate the search

space. The first formulation uses fewer variables, compared to the prior formula-

tions [9, 10], to model the search space. The second formulation dominates every

other formulation in the literature, including our first formulation. We prove that

this is the best in a well-defined sense.

After modeling the search space, a systematic method is needed to identify the

best distillation configuration along with its optimal operating conditions. Until the

mid-1980’s almost all column sequencing research was confined to sharp-split config-

urations due to the interest in industry. This makes the problem relatively easier to

solve, since distillation calculations can be performed a priori. The design specifica-

tions, such as reflux ratio, condenser/reboiler duty and so forth, enter only as param-

eters in the optimization problem [11]. It is only after the successful demonstration of

the energy saving potential of sloppy-splits and thermal couplings [12], that the need

for inclusion of configurations with these arrangements in the search space became

apparent. However, unlike sharp-split configurations, distillation calculations need to

be performed online while solving the optimization problem. To make the problem

computationally tractable, researchers replaced rigorous tray-by-tray models (also re-

ferred to as the MESH equations) involving hundreds of highly nonlinear-nonconvex

equations with simplified models that serve as a surrogate. These simplified mod-

els provide reasonably accurate estimates of design specifications, but require only a

handful of algebraic equations. Optimization problems using these simplified models

were first developed for specific configurations [12–14] and later extended to spe-
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cific groups of configurations. For example, in [15], the authors considered a three-

component Petlyuk-type configuration and formulated an optimization problem to

determine optimal flows using Underwood’s method. They were able to derive an

analytical solution for the vapor duty, and found that the optimal region was flat

over a range of flows. Later, researchers have extended the approach to some non-

FTC (non-Fully Thermally Coupled) configurations, especially the side-stripper and

the side-rectifier configurations [12, 16]. Nevertheless, these studies either focused

on specific configurations or considered certain regions of search space, leaving the

structured search of the entire search space an open problem.

To the best of our knowledge, Caballero and Grossmann [17] were the first to

perform a structured search over the entire search space. The authors proposed a

new superstructure, where the component, vapor and liquid flows are bypassed when

the corresponding pseudo-column is absent. This superstructure forms the building

block in their subsequent contributions. The authors used a combination of State

Task Network (STN) and State Equipment Network (SEN) to formulate an MINLP

to identify the configuration that minimizes the total cost [17]. Unfortunately, the

resulting MINLP could not be solved to global optimality. Moreover, even the local

NLP solvers often failed to converge to a feasible solution due to singularities that

arise in the model when certain splits are no longer a part of the configuration.

When the local solvers found a feasible point, it was often a local optimum that was

significantly inferior relative to the global solution [17]. To circumvent these issues,

the authors architected an algorithm by suitably modifying the logic-based outer-

approximation scheme. Although the resulting algorithm successfully found feasible

configurations, it could still not guarantee that a global optimum was found. Later, [9]

introduced a two-step method, where first they determined a completely thermally

coupled configuration and then located the heat exchangers optimally. Clearly, this

hierarchical approach does not guarantee global optimality either. In subsequent

works, the authors proceeded to explore possible heat integration [9], rearrangement

of column sections [18], and dividing wall columns [19]. More recently, inspired by
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[11], [20] formulated a Mixed-Integer Linear Program, where they used FUG method

to, a priori, optimize vapor traffic and heat loads for each split.

In the meanwhile, [10] introduced a new MINLP formulation to determine the

configuration with the lowest vapor duty. They have succeeded in solving three and

four component test cases to global optimality using BARON [21]. Although, their

formulation was not able to solve a five-component MINLP directly, it was able to

globally optimize the vapor flow for certain configurations, once their structure was

specified by fixing the binary variables. This observation led to the enumeration-

based approach of [22]. Here, the authors formulated a Nonlinear Program (NLP)

for each configuration in the search space that was then solved using the global

solver, BARON. The proposed approach is amenable to parallelization, but it remains

computationally inefficient for six and more number of components in the process feed.

1.2.1 State-of-the-art

Here, we show that the state-of-the-art approaches cannot reliably identify the

optimal distillation configuration. To the best of our knowledge, the MINLP for-

mulation in [9] remains the state-of-the-art. To test the efficacy of their model, we

considered a test set of 496 cases (see §A) that are representative of different types of

separations. We solve their model for all the 496 test cases using BARON. The results

are shown in the performance profile in Figure 1.4(a). Here, we plot the cumulative

percentage of cases that have been solved to 1%-optimality gap as a function of time.

We observe that only 10% of the cases could be solved within five hours. A large

duality gap, defined as

% Gap �
�

1� Best known lower bound

Best known upper bound



� 100, (1.1)

remain in several unsolved cases (see Figure 1.4(b)). This demonstrates that the

problem is challenging, since only 10% of the cases can be solved with the best

formulation in the literature and with a state-of-the-art global solver. While this
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Fig. 1.4. (a) Performance profile for the MINLP model in [9] (b) Plot
illustrating the remaining duality gap at the end of five hours.

work made substantial contribution towards developing a systematic approach, more

work is needed to reliably solve this hard problem.
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Next, we show that the state-of-the-art cannot reliably identify the optimal op-

erating conditions even for a given configuration. We consider the formulation in

Nallasivam et al. [22]. Here, the authors formulate a nonlinear program for each con-

figuration in the search space. Their approach overcomes the challenge due to the

nonconvexity associated with discrete variables. Nevertheless, the problem remains

challenging due to the presence of nonconvex fractional terms. Indeed, they [22]

showed that local solvers can get trapped in a sub-optimal solution that requires a

much higher energy than the global optimum. Therefore, we use the global solver

BARON to solve the nonlinear program. We consider the five-component fully ther-

mally coupled configuration (the five-component analog of Figure 1.2(r)). We deter-

mine the optimal operating conditions of this configuration for each of the 496 cases

in the test set (see §A), by solving the nonlinear program. The results are shown in

the performance profile in Figure 1.5. As before, we plot the cumulative percentage

of cases that have been solved to 1%-optimality gap as a function of time. We ob-

serve that, even for a given configuration, the current approach can solve only 57%

of the cases in the test in one hour. Clearly, there is a need to develop better formu-

lations and solution procedures to reliably identify the best distillation configuration

for a given application. This thesis develops such a formulation and solution proce-

dure. The rigorous approach presented here can reduce the energy consumption and

consequent greenhouse gas emissions by the separation process.

1.3 Key Contributions

The main contributions are organized as chapters, and the highlights of each

chapter are summarized below.

1.3.1 Chapter 3

This chapter is based on [23]. Here, we propose a novel MINLP that is formulated

to identify the distillation configuration requiring least vapor duty. The highlights of
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Fig. 1.5. Performance profile for the nonlinear program proposed in [22]

this chapter are as follows. First, we introduce a new notation to represent streams

and heat exchangers, which allows for a more succinct and cleaner presentation. Using

this notation, we describe a new formulation for the search space of configurations

detailed in Shah and Agrawal [5]. Second, our formulation restricts the composition of

distillate and residue to more closely represent the reality. For example, consider the

model presented in [9] and, in particular, the example in the MINLP library [24]. In

the optimal solution for this example, the recovery of component B in the distillate

of split ABCD{BCDE is higher than that of the heavier components, C and D,

while, in reality, the recovery of a lighter component in the distillate must be at least

as much as that of a heavier component. To address this issue, we propose a new

formulation of Underwood constraints to avoid such occurrences. Third, we derive

additional cuts by exploiting properties of Underwood equations. These cuts play a

vital role yielding tighter relaxations, which help expedite the convergence of branch-

and-bound. Finally, we demonstrate the efficacy of our approach by presenting various

four, five, and six component examples.
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1.3.2 Chapter 4

This chapter is based on [25]. Here, we describe a novel formulation, relaxation and

discretization based solution procedure to reliably solve the MINLP. The highlights of

this chapter are as follows. First, we introduce a new formulation, to model the space

of admissible configurations. We show that this formulation is provably tighter than

previous formulations in the literature [9, 10, 23]. More importantly, we show that

our formulation is contained in the convex hull of various important substructures.

Second, we adapt the classical Reformulation-Linearization Technique (RLT) [26] to

obtain a family of cuts for fractional terms. These cuts are especially useful, as they

exploit the mathematical structure of the governing equations. The techniques we

propose are general, and can be used to relax other optimization problems involving

fractional terms. Third, we employ simultaneous convexification techniques to con-

struct convex hull of multiple nonlinear terms that are constrained over a polytope

obtained by intersecting a hyperrectangle with material balance equations. This ap-

proach results in relaxations that are strictly tighter than conventional relaxations,

which are obtained by relaxing nonconvex terms individually over a box. Fourth, a key

challenge in deriving valid relaxations for the distillation configuration design prob-

lem has been that certain terms that appear in the denominator cannot be away from

zero. Prior works have imposed arbitrary lower bounds on this denominator [23, 24].

The cuts derived using our RLT variant enable us to infer finite upper bounds on

fractions, which allow us to construct provably valid relaxations. Fifth, we lever-

age powerful Mixed-Integer Linear/Second-order Cone Programming (MIL/SOCP)

solvers by replacing convex relaxations with piecewise relaxations, obtained by adap-

tively discretizing the domain of specific decision variables and constructing convex

relaxation within each partition using disjunctive programming techniques. Lastly,

through computational experiments, we demonstrate the efficacy of our approach by

comparing its performance with other state-of-the-art techniques.
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1.3.3 Chapter 5

This chapter is based on [27]. Here, we propose a novel MINLP that is formu-

lated to identify the distillation configuration that has the highest thermodynamic

efficiency. The highlights of this chapter are listed in the following. First, we describe

a formulation to model the space of admissible configurations that is tighter than

the prior formulations in the literature. This formulation is obtained by projecting

the formulation proposed in Chapter 4 onto a lower dimensional space. Second, we

use the ideas introduced by [28] and [29] to formulate the model in a way that it

does not depend on temperature of streams explicitly. This way, the results obtained

from the model hold for any mixture, irrespective of sub-ambient or above-ambient

operation, provided the mixture has the same composition and relative volatilities

for constituent components. However, the model in its default form has several non-

linear nonconvex equations. To simplify the model, we reformulate it using a simple

variable elimination technique. The reformulated model simplifies exergy loss calcu-

lations substantially by reducing a system of nonlinear equations that model material

balance and vapor-liquid equilibrium to a single equation, which we refer as exergy

constraint. Third, we describe the properties satisfied by exergy constraints, and ex-

ploit them in deriving additional cuts to the problem. Fourth, we use the MINLP

formulation to identify attractive configurations for recovery of Natural Gas Liquids

(NGLs) from shale gas. Finally, we investigate the efficacy of the model to changes

in process parameters on several four and five component mixtures taken from the

literature.
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2. PRELIMINARIES

2.1 The Distillation Process

When a mixture of components with different volatilities is boiled, the vapor

produced is rich in more volatile (or light) components, while the residual liquid is

enriched in less volatile (or heavy) components. Distillation exploits this characteristic

to separate mixtures of two or more components. Industrial distillation is carried out

in a staged-tower/column (see Figure 2.1), where each stage establishes liquid-vapor

contact for mass transfer. The feed (mixture of components) is introduced at an

intermediate location of the column. The sections above and below the feed stream

are known as rectifying and stripping sections, respectively. Conventional columns

have a condenser (resp. reboiler) at the top (resp. bottom) which condenses (resp.

vaporizes) the vapor (resp. liquid), and feeds a portion of it back to the column,

known as liquid (resp. vapor) reflux. The liquid flowing from the top to bottom

strips away heavy components from the vapor, while the vapor flowing from bottom

to top gets enriched with lighter components. The net outflow from the rectifying

and stripping sections, respectively, are known as distillate and residue. In short,

distillation enriches the distillate with light components, and the residue with heavy

components.

Remark 2.1. The recovery of a lighter component in distillate (ratio of component

flowrate in distillate to flowrate in feed) is higher than the recovery of a heavier

component, and the converse is true for residue [30].

Finally, for a given product composition, there is a threshold vapor flow in each

section, below which the products do not reach the desired composition. To deter-

mine this threshold vapor flow, we use the classic Underwood method [31], which is

described in the next section.
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Fig. 2.1. Schematic of a distillation column

2.2 A Note on Underwood Constraints

In his seminal paper, [31] derived a shortcut method to compute the minimum

vapor requirement of a distillation column. Before we describe the constraints, we

emphasize a few key concepts like the definition of key components and the degrees

of freedom. These concepts are crucial for the problem formulation. The optimiza-

tion problem can yield physically infeasible solutions when modeled flexibility exceeds

actual flexibility in how a system operates. For example, recovery of a heavier com-

ponent in the distillate cannot be higher than that of a lighter component. A solution

that does not satisfy this property violates the physics of the distillation process.

A light key (resp. heavy key) is defined as the lightest (resp. heaviest) component

that distributes, or would distribute between distillate and residue if vapor flow was

decreased slightly. Components lighter (resp. heavier) than the light key (resp. heavy

key) are completely recovered in the distillate (resp. residue), with an insignificant

amount in the residue (resp. distillate). Regardless of how many components are in

the feed stream or which product streams are produced by the split, a distillation

column has exactly two degrees of freedom. Therefore, the operation of the column

is completely determined by specifying two values, often the recovery of light and

heavy keys in one of the product streams. Specifying these quantities fixes the other
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process variables such as minimum vapor requirement, and recoveries of remaining

components in the product streams. Alternatively, the vapor flow and recovery of

either of the keys can be specified to completely describe the system. In either case,

no more than two values may be specified independently. We refer the reader to [32]

for a detailed discussion on the degrees of freedom.

We now describe the Underwood method that can be used to limit the degrees

of freedom to two and, thus, remove excess degrees of freedom from the model. The

first step in Underwood method determines Underwood roots (θq) by solving the feed

equation.

ņ

p�1

αpf
in
p

αp � θq
� V in 1 ¤ q ¤ n� 1 (2.1)

where αp is the relative volatility of component p with respect to the heaviest compo-

nent in the process feed and, it can be shown that the qth Underwood root θq satisfies

αq�1   θq   αq. Here, f inp and V in correspond to the net inflow of component p

and vapor, respectively. In the second step, the roots that lie between the relative

volatilities of the key components, called active roots, are determined. These roots are

then used to compute minimum vapor requirement. The remaining roots are called

inactive roots.

Halvorsen and Skogestad [33,34] introduced a Vmin diagram to visualize the min-

imum vapor requirement. In Figure 2.2 we show such a Vmin diagram for feed con-

ditions detailed in the figure’s caption. The horizontal axis graphs the net distillate

flowrate, while the vertical axis graphs the minimum vapor required in the rectifying

section Υrs, for various splits. Note that, as long as a point is in or on the boundary

of the curve (i) 0�PAB � 1, θ1 is active (ii) 0�PBC � 1, θ2 is active (iii) 0�PCD� 1,

θ3 is active and (iv) 0 � PDE � 1, θ4 is active. As an example, we consider the split

ABCD{BCDE. The region shaded in Figure 2.2 shows the feasible region for the

split. Clearly, θ2 and θ3 are active throughout the shaded region, while θ1 (resp. θ4)

is active only along the line joining PAD � PAE (resp. PAE � PBE). When θ1 (resp.

θ4) is active, component A (resp. E) is the light (resp. heavy) key for the split.
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Everywhere else, components B and C are the light and heavy keys. Therefore, the

recoveries of the distributing components are constrained by the following relation:

4̧

p�1

αpf
rs
p

αp � θ2

�
4̧

p�1

αpf
rs
p

αp � θ3

� Υrs (2.2)

or, given the vapor balance, in terms of component flows in the stripping section

�
5̧

p�2

αpf
ss
p

αp � θ2

� �
5̧

p�2

αpf
ss
p

αp � θ3

� Υss (2.3)

where f rs
p , f

ss
p ,Υ

rs, and Υss denote, respectively, the net flow rate of component p in

the rectifying and stripping sections, minimum vapor requirement in the rectifying

and stripping sections. Observe that, altogether there are four unknowns: three

unknown recoveries, namely those for B,C, and D and the minimum vapor flow in

the rectifying section. The two equalities in (2.2) or (2.3) ensure that, as desired, the

system has only two degrees of freedom. If these are relaxed, as in [9], the system

has more flexibility than allowable and the optimal solution may not be physically

feasible. Finally, we mention that the minimum vapor constraints can also be imposed

for inactive roots, albeit after relaxing the equality to inequality as below:

4̧

p�1

αpf
rs
p

αp � θq
¤ Υrs q � Inactive root

�
5̧

p�2

αpf
ss
p

αp � θq
¤ Υss q � Inactive root

(2.4)

Validity of these constraints can be shown mathematically. They can also be inferred

from the Vmin diagram (cf. Figure 2.2).

2.3 Alternative Interpretation of Relative Volatilities

Shortcut models, such as Underwood method, require relative volatilities of all

components for computing minimum vapor reflux and recoveries of distributing com-

ponents in distillate/residue. Conventionally, relative volatilities are defined as the

ratio of equilibrium constants (K-values), or alternatively as the ratio of saturation
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Figure 2: Vmin diagram showing the feasible region (shaded region) for the split
ABCD/BCDE. Here, the feed composition is {}, relative volatilities are {},
and thermal quality = 1. The values are taken from Halvorsen.

6

Fig. 2.2. Vmin diagram showing the feasible region (shaded re-
gion) for the split ABCD{BCDE. Here, the feed composition is
t0.2, 0.2, 0.2, 0.2, 0.2u, relative volatilities are t9, 6, 3.5, 2, 1u, and ther-
mal quality = 1. The values are taken from [32]

pressures, of a more volatile component w.r.t a less volatile component. In a distilla-

tion column, the temperature varies substantially from top to bottom, in particular,

for easy separations. Consequently, K-values, and in turn relative volatilities, vary

substantially across the column. This behavior challenges the assumption of constant

relative volatility inherent in Underwood method [31]. Nevertheless, our experience

suggests that the minimum vapor reflux and pinch compositions predicted by Under-

wood method agrees well with those from solving MESH equations on Aspen Plus.

This arises two questions: (i) why and when does the constant relative volatility

assumption hold? (ii) how to choose relative volatilities required for Underwood
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method? We propose a plausible explanation to the first question, and suggest a few

ways to choose relative volatilities.

To answer the first question, we describe an alternative interpretation for relative

volatilities tαpuNp�1. In his seminal paper, [31] considered the following model for

vapor-liquid equilibrium (VLE):

yp � αpxp°
r αrxr

, @ p P t1, . . . , Nu (2.5)

where xp and yp denote the molar fraction of component p in liquid and vapor phases,

and αp is the relative volatility of component p w.r.t to the least volatile component.

Note that, by definition, αN � 1. The VLE model in (2.5) is derived from the

conventional definition of relative volatility

αp � Kp

KN

� yp{xp
yN{xN (2.6)

We interpret (2.5) as a surrogate model for the true VLE, and tαpuNp�1 as parameters

for the surrogate model. The choice of parameters tαpuNp�1, which will be discussed

shortly, must be such that the surrogate is as close to the true VLE as possible.

In such cases, the estimates of vapor composition provided by the surrogate model

agree well with the true vapor composition. As a result, for a given reflux ratio

and distillate flowrate, the simplified tray-by-tray calculations considered by [31] will

lead to a closer approximation of rigorous MESH equations. This is a plausible

explanation why Underwood method is reliable despite the assumption of constant

relative volatility. In contrast, when the surrogate model in (2.5) fails to capture the

true VLE accurately, like in azeotropic systems, the estimates from the Underwood

method will not be reliable, especially when the range of compositions fall in the

region where there is a substantial deviation between the surrogate and the true

VLE.

Now, we address the second question concerning the choice of tαpuNp�1. We deter-

mine tαpuNp�1 such that the surrogate in (2.5) closely approximates the true VLE in

least-square error sense. Towards this, we consider a sample of points M spanning
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the entire liquid composition space. We determine the respective vapor composition

using the true VLE. Then, we formulate a least-squares error problem shown below

Min.tαpu
N�1
p�1

|M|̧

m�1

N�1̧

p�1

�
yp,m � αpxp,m°n

r�1 αrxr,m


2

(2.7)

Note that we did not include αN as a decision variable, since αN � 1. After computing

the optimal tαpunp�1, it is necessary to check if the surrogate closely approximates the

true VLE. In some cases, it is possible that the unconstrained optimization might lead

to a solution which gives a closer approximation in some regions of the composition

space, while a poorer approximation in some other regions. In such cases, constraints

restricting the relative error in vapor composition to not exceed a specified value may

be added to the optimization problem in (2.7).
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3. MINIMIZATION OF VAPOR DUTY

In this chapter, we formulate a novel Mixed-Integer Nonlinear Program (MINLP) to

identify the top K configurations that require least total vapor duty for the separation

of a given non-azeotropic mixture. The vapor duty, defined as the sum of vapor flows

generated by all the reboilers, serves as a proxy for energy consumption. Thus, by

minimizing the vapor duty, we find the configuration that requires the least amount

of utilities, and thus the operating cost. In addition, the vapor duty indirectly af-

fects the capital cost, as the column diameter depends on the internal vapor flows.

Given our focus on non-azeotropic mixtures, we use Underwood’s method to obtain

a reasonable estimate of the minimum vapor requirement for each split. Despite the

resulting simplifications relative to a detailed tray-by-tray calculation, the MINLP

remains challenging to solve to global optimality because of the nonconvexities in the

Underwood equations and combinatorial complexity of the search space. The current

state-of-the-art in this area is the explicit enumeration based algorithm of Nallasivam

et al. [22]. However, compared to implicit enumeration employed in this work, the

former approach is computationally inefficient and does not scale well with increase

in number of components in the mixture. The existing implicit enumeration based

implementations [17] do not guarantee global optimality due to problem decompo-

sition. The approach presented in this chapter can be used to solve the problem to

ε-global optimality with off-the-shelf solvers.

The rest of the chapter is organized as follows: In §3.1, we present our MINLP

formulation for identifying the configuration with minimum overall vapor duty. The

optimal solution of the MINLP may be hard to implement for reasons that are not

modeled and, although optimal to the model, the solution may not even be truly

optimal once the simplifying assumptions that were made to derive a tractable for-

mulation are relaxed. Moreover, the designers often have other considerations in mind
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Fig. 3.1. Five-component system. Here, filled and unfilled circles
denote condensers and reboilers, red and blue colored arrows denote
the rectifying and stripping sections.

such as heat-integration with the remaining plant and environmental impact. There-

fore, it is desirable to have a handful of configurations, on which rigorous tray-by-tray

calculations are performed before the appropriate configuration is identified. To pro-

vide sufficiently many alternatives for downstream evaluation, in §3.2, we describe

a simple method to systematically determine the top K solutions for the problem.

Further,in §3.2, we consider a few case studies and solve them to global optimality.

We conclude the chapter with a few remarks on the applicability and extensibility of

the model in §3.3.
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3.1 Problem Formulation

Before formulating the problem, we give a few definitions and discuss the notation

we use to describe our constructions. To allow for a general zeotropic mixture, we

denote streams as ABCDE, where each letter denotes a component. Alternatively,

we will also use numbers to denote components: A � 1, B � 2, . . . , E � 5. In

a stream, components are arranged in a decreasing order of relative volatility with

the first and the last components being, respectively, the most and the least volatile

components. It is these extreme components that we use to denote a stream. In

particular, if the most (resp. least) volatile component is component i (resp. j), then

the stream is denoted as the couplet ri, js. We remark that Shah and Agrawal [5]

introduced a similar, albeit sightly different, notation, where they placed each stream

in an upper triangular matrix, and used the coordinates of this position to refer to

the stream. Since this placement depends on the number of components of the feed

stream, the translation from their notation to stream labels requires this number.

Instead, the translation with our notation is clearly independent of this number and

can be done in a straightforward fashion. For example, r2, 3s always represents the

stream BC, regardless of the number of components n in the process feed r1, ns. In

a similar manner, we denote heat exchangers by a couplet pi, jq whose coordinates

are obtained from the extreme components in the associated stream. For example,

the condenser and the reboiler of the column that splits r1, 5s into submixtures r1, 4s
and r2, 5s are respectively associated with these product streams (see Figure 3.1).

Therefore, by condenser pi, jq (resp. reboiler pi, jq), we mean the heat exchanger

through which stream ri, js is withdrawn as distillate (resp. residue). Splits will be

represented as ABCD{BCDE which signifies that ABCD and BCDE are produced

as distillate and residue from ABCDE.

A submixture is defined as any intermediate stream that arises during the separa-

tion of the process feed into pure components/desired products. As an example, we

refer to the five component system shown in Figure 3.1. Here, all the streams except
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tABCDE, A, B, C, D, Eu are submixtures. Further, we define top parents (resp.

bottom parents) of a submixture as the streams, which if fed to a column could pro-

duce this submixture through the rectifying (resp. stripping) section. Analogously,

we define top children (resp. bottom children) of a submixture as the streams which

could be produced from the rectifying (resp. stripping) section of a column with this

submixture feed. For any submixture, the top (resp. bottom) parents can be identified

by traversing horizontally to the left (resp. vertically upwards) from this submixture,

and the top (resp. bottom) children can be identified by traversing horizontally to the

right (resp. vertically downwards). For any stream ri, js, the top parents are obtained

by increasing j:
 ri, j � 1s, ri, j � 2s, . . . , ri, ns(, while the top children are obtained

by reducing j:
 ri, j � 1s, ri, j � 2s, . . . , ri, is(. Similarly, the bottom parents of ri, js

are obtained by reducing i:
 ri� 1, js, ri� 2, js, . . . , r1, js(, while the bottom children

are obtained increasing i:
 ri � 1, js, ri � 2, js, . . . , rj, js(. As an example, the top

(resp. bottom) parents of r3, 4s are
 r3, 5s( (resp.

 r1, 4s, r2, 4s(), and the top (resp.

bottom) children are
 r3, 3s( (resp.

 r4, 4s() (see Figure 3.1).

We assume that the final products, which are the pure components, are drawn

in saturated liquid state. Nevertheless, by slightly modifying the superstructure (see

Figure 3.2), we may withdraw final products in any desired state. We also assume that

the molar overflows, the latent heat of vaporization, and the relative volatility remain

constant throughout each column section of the configuration. These assumptions

are implicit in our use of the Underwood method. The definition of the sets and

variables used in the formulation are summarized in Tables 3.1 and 3.2, respectively.

We split the set of submixtures into three sets, where S1 (resp. S3) denote the set of

submixtures in the top row (resp. first column) of the superstructure representation

in Figure 3.1, while S2 denotes the set of remaining submixtures. We represent each

split using its feed stream, which is either a submixture or the process feed.
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Table 3.1.
Definition of sets

Set Symbol Definition 5-component example

S1

 r1, js(n�1

j�2

 r1, 2s, r1, 3s, r1, 4s(
S2

 ri, js(i�n�2, j�n�1

i�2, j�i�1

 r2, 3s, r2, 4s, r3, 4s(
S3

 ri, ns(n�1

i�2

 r2, 5s, r3, 5s, r4, 5s(
Submixtures U S1 Y S2 Y S3

 r1, 2s, r1, 3s, r1, 4s, r2, 3s, r2, 4s,
r2, 5s, r3, 4s, r3, 5s, r4, 5s(

Splits P
 r1, ns Y U(  r1, 5s(Y U

Streams T P Y  ri, is(n
i�1

P Y  r1, 1s, r2, 2s, r3, 3s, r4, 4s, r5, 5s(
Condensers C

 pi, jq : 1 ¤ i ¤ j ¤ n� 1
(  p1, 1q, p1, 2q, p1, 3q, p1, 4q, p2, 2q,

p2, 3q, p2, 4q, p3, 3q, p3, 4q, p4, 4q(
Reboilers R

 pi, jq : 2 ¤ i ¤ j ¤ n
(  p2, 2q, p2, 3q, p2, 4q, p2, 5q, p3, 3q,

p3, 4q, p3, 5q, p4, 4q, p4, 5q, p5, 5q(

Table 3.2.: Domain of indices for the variables. For ζi,j,

ri, js P T ; For χi,j and FC i,j, pi, jq P C; For ρi,j and FRi,j,

pi, jq P R; For U rs
i,j�1 and Krs

i,j�1, ri, js P S1YS2; For U ss
i�1,j

and Kss
i�1,j, ri, js P S2 Y S3. For the remaining decision

variables, ri, js P P .

Parameters

n Number of components in the feed

αp Relative volatility of component p w.r.t the heaviest component

continued on next page
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Table 3.2.: continued

Fp Flowrate of component p in the feed

Φ Liquid fraction in the process feed (thermal quality)

V U Upper bound on vapor flow rate

Notation

ri, js Submixture with i and j as the lightest and heaviest components ri, ls(n
l�j�1

Top parents of submixture ri, js rk, js(i�1

k�1
Bottom parents of submixture ri, js ri, rs(j�1

r�i
Top children of submixture ri, js rs, js(j

s�i�1
Bottom children of submixture ri, js

Qi,j Pseudocolumn performing the separation of stream ri, js

Decision Variables

ζi,j Binary variable indicating the presence/absence of stream ri, js
χi,j Binary variable indicating the presence/absence of condenser pi, jq
ρi,j Binary variable indicating the presence/absence of reboiler pi, jq 
f rs
i,j,p

(j�1

p�i
Net molar flow of component p in the rectifying section of Qi,j 

f ss
i,j,p

(j
p�i�1

Net molar flow of component p in the stripping section of Qi,j

V rs
i,j Vapor flowrate in the rectifying section of Qi,j

V ss
i,j Vapor flowrate in the stripping section of Qi,j

Lrs
i,j Liquid flowrate in the rectifying section of Qi,j

Lss
i,j Liquid flowrate in the stripping section of Qi,j

FC i,j Molar flowrate in condenser pi, jq
FRi,j Molar flowrate in reboiler pi, jq
U rs
i,j�1 Vapor in-flow into Qi,j from Qi,j�1

Krs
i,j�1 Liquid out-flow from Qi,j to Qi,j�1

U ss
i�1,j Vapor out-flow from Qi,j to Qi�1,j

continued on next page
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Table 3.2.: continued

Kss
i�1,j Liquid in-flow into Qi,j from Qi�1,j 
θi,j,q

(j�1

q�i
Underwood root of Qi,j satisfying αq�1   θi,j,q   αq

Υrsz
i,j Minimum vapor flow required in the rectifying section of Qi,j

Υssz
i,j Minimum vapor flow required in the stripping section of Qi,j 
Szi,j,q

(j�2

q�i�1
Slack variable associated with θi,j,q

3.1.1 Objective Function

The objective is to minimize the net vapor generated by all the reboilers that

leads to the following formulation:

(H): Minimize
ņ

i�2

ņ

j�i

FRi,j, (H1)

where FRi,j denotes the vapor flow generated by reboiler pi, jq. The minimization in

(H) is subject to constraints that enforce mass-balance, compute vapor flows using

Underwood equations, and define the search-space of configurations.

3.1.2 Search Space Formulation

We begin by describing the constraints that define the space of regular-column

configurations. For this, we rely on the method proposed by Shah and Agrawal [5]

(SA method) and adapt it to our notation. We will describe these constraints in two

sets; constraints that (i) govern the presence/absence of streams and (ii) govern the

presence/absence of heat exchangers.

Constraints on stream variables

We use binary variables ζi,j, ri, js P T to denote the presence/absence of a stream

ri, js, i.e., ζi,j � 1 denotes stream ri, js is present while zero denotes its absence. SA
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method requires three checks to ensure correct streams are present in the formulation.

These ensure (i) the presence of process feed and final products (pure components),

(ii) the presence of a parent, and (iii) that components do not vanish during a split.

We now translate these checks into logical expressions.

Presence of feed and products constraint: The process feed (r1, ns) and the

final products (pure components) must be present in every feasible configuration.

ζ1,n � 1

ζ1,1 � ζ2,2 � � � � � ζn,n � 1

,.- (H2)

In addition, specific submixtures are forced to be present (resp. absent) by requiring

that the corresponding ζi,j � 1 (resp. ζi,j � 0).

Presence of parent constraint: A submixture must be absent when all of its top�tri, lsunl�j�1

�
and bottom

�trk, jsui�1
k�1

�
parents are absent. Mathematically,

ζi,j ¤
ņ

l�j�1

ζi,l �
i�1̧

k�1

ζk,j @ ri, js P S2 (H3)

Note that this constraint is not imposed for submixtures of the form r1, js, which

belong to S1, and ri, ns, which belong to S3, since it would be redundant given that

process feed r1, ns is always present.

Constraint for feasibility of split: Components must be conserved during a split

i.e., every component must be recovered either in distillate or in residue or both. For

example, feasible splits of ABC are tA{BC, AB{C, AB{BCu. However, split A{C is

infeasible since component B is absent from both distillate and residue. To impose

this constraint, SA method identifies the distillate and residue from each split, and

verifies that the sum of number of components in the products is at least as high

as the number of components in the feed. To impose the constraint in this form,

additional variables would be needed to identify unique components in the product

streams. Instead, we formulate this constraint in an alternate way.
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Consider the split of submixture ri, js. The top and bottom children of ri, js are

tri, rsuj�1
r�i and trs, jsujs�i�1. Let ri, rs, where i ¤ r ¤ j � 1, be produced as the

distillate from ri, js, i.e., ζi,jp1 � ζi,j�1q . . . p1 � ζi,r�1qζi,r � 1. Here, we use the fact

that, for regular-column configurations [5,9,10], submixtures tri, j� 1s, . . . , ri, r� 1su
are absent if ri, rs is produced as the distillate from ri, js. In this case, for conservation

of components, the bottom product must be one of tri�1, js, ri�2, js, . . . , rr�1, jsu.
This constraint is imposed as:

ζi,jp1� ζi,j�1q . . . p1� ζi,r�1qζi,r ¤
r�1̧

s�i�1

ζs,j (3.1)

The LHS of (3.1) involves a product of binary variables, which can be relaxed to the

LHS of (H4) below:

ζi,j � ζi,j�1 � � � � � ζi,r�1 � ζi,r � 1 ¤
r�1̧

s�i�1

ζs,j @ i ¤ r ¤ j � 2, ri, js P P (H4)

Equivalently to (3.1), (H4) is activated only if ri, rs is produced as the distillate

from ri, js and is trivially satisfied otherwise. Further, (H4) would be redundant if

imposed for r � j � 1, since the RHS would be
°j
s�i�1 ζs,j ¥ ζj,j � 1, where the

equality is from (H2). Physically, when ri, j � 1s is produced as the distillate from

ri, js, any of the bottom children trs, jsujs�i�1 can be withdrawn as residue. Thus, it is

sufficient to impose (H4) for top children tri, rsuj�2
r�i . In a similar manner, component

conservation constraints can be derived based on the bottom children. Let rs, js,
where i � 1 ¤ s ¤ j, be produced as the residue from ri, js, then one of tri, rsuj�1

r�s�1

must be produced as the distillate for components to be conserved. For a regular-

column configuration, rs, js is a residue only if the submixtures tri�1, js, . . . , rs�1, jsu
are absent. The constraint in nonlinear form, and its relaxed version are given below:

ζi,jp1� ζi�1,jq . . . p1� ζs�1,jqζs,j ¤
j�1̧

r�s�1

ζi,r

ζi,j � ζi�1,j � � � � � ζs�1,j � ζs,j � 1 ¤
j�1̧

r�s�1

ζi,r @ i� 2 ¤ s ¤ j; ri, js P P (H5)

As before, (H5) is redundant for s � i � 1 and it suffices to impose (H5) for bottom

children trs, jsujs�i�2.
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Constraints on heat exchanger variables

We use binary variables χi,j, pi, jq P C and ρi,j, pi, jq P R to model whether

condensers and reboilers are present or absent. When a heat exchanger is absent, the

material flow between two consecutive columns takes place via two-way vapor-liquid

transfers (see Figure 3.2). Thus, when a heat exchanger is absent, we automatically

assume that a thermal coupling is present instead. We now describe the constraints

that govern the presence/absence of heat exchangers:

1. From the definition, heat exchangers must be absent when the associated sub-

mixtures are absent in the configuration. This constraint can be expressed in

linear form as

χi,j � ρi,j ¤ ζi,j @ ri, js P U (H6)

Submixtures in S1 (resp. S3) are only associated with condensers (resp. reboil-

ers). Thus, (H6) must be modified to χ1,j ¤ ζ1,j (resp. ρi,n ¤ ζi,n) for the

corresponding submixtures.

2. Condenser (resp. reboiler) associated with a stream must be absent if all the

top (resp. bottom) parents of the stream are absent. This constraint is modeled

as

χi,j ¤
ņ

l�j�1

ζi,l

ρi,j ¤
i�1̧

k�1

ζk,j

,////.////- @ ri, js P S2 Y trm,msn�1
m�2u (H7)

and is redundant if imposed for submixtures in S1 and S3, as they can always

be produced from the process feed stream (r1, ns).

3. Heat exchangers must be absent if the associated stream is withdrawn as a

sidedraw. For a stream to be withdrawn as sidedraw, it must have at least one
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of the top parents (i.e., mintp1� ζi,lqunl�j�1 � 0), and one of the bottom parents

(i.e., mintp1� ζk,jqui�1
k�1 � 0). Therefore, for every ri, js P S2 Y trm,msun�1

m�2

χi,j � ρi,j ¤ mintp1� ζi,lqunl�j�1 �mintp1� ζk,jqui�1
k�1 (3.2)

By definition, mintp1 � ζi,lqunl�j�1 ¤ p1 � ζi,lq for j � 1 ¤ l ¤ n, and mintp1 �
ζk,jqui�1

k�1 ¤ p1�ζk,jq for 1 ¤ k ¤ i�1. This allows min function to be linearized

as follows:

χi,j � ρi,j ¤ p1� ζi,lq � p1� ζk,jq @ 1 ¤ k ¤ i� 1, j � 1 ¤ l ¤ n,

ri, js P S2 Y trm,msun�1
m�2

,.- (H8)

The linearized constraints check every top parent-bottom parent combination

to determine if the submixture is withdrawn as sidedraw. This constraint is,

of course, not applicable for the remaining streams, because they can not be

produced as sidedraw.

4. Pure components must be withdrawn through a heat exchanger, when they are

produced by only one parent. Since the lightest and the heaviest components

always have one parent, we have

χ1,1 � 1 & ρn,n � 1 (H9)

For the remaining products (tri, isun�1
i�2 ), if they only have a top parent, they

must be withdrawn through a condenser. In other words, if all the bottom

parents
�trk, jsuj�1

k�1

�
are absent, the condenser associated with the intermediate

product must be present.

χj,j ¥ 1�
j�1̧

k�1

ζk,j @ 2 ¤ j ¤ n� 1 (H10)

Similarly, when all the top parents
�trj, lsunl�j�1

�
are absent, the intermediate

product must be withdrawn from a reboiler.

ρj,j ¥ 1�
ņ

l�j�1

ζj,l @ 2 ¤ j ¤ n� 1 (H11)
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This concludes our discussion of the search-space formulation. The above constraints

are sufficient to eliminate all infeasible regular-column configurations. The formu-

lation does not require all variables to be declared as binary. As it is, the MINLP

has npn � 1q{2 binary variables associated with streams (ζi,j) and npn � 1q binary

variables for heat exchangers (χi,j, ρi,j). However, due to (H2), the binary variables

associated with the process feed and the pure components are already fixed at 1. Fur-

ther, heat exchanger variables associated with pure products tri, isuni�1 automatically

take integral values. This is because if the product i does not have a top parent,

(H7) (resp. (H11)) ensures that χi,i (resp. ρi,i) is zero (resp. one). The case without

bottom parent is similar. On the other hand, when it has both parents, (H8) en-

sures that χi,i and ρi,i are both zero. The total number of binary variables is thus

npn � 1q{2 � npn � 1q � pn � 1q � 2pn � 1q � pn � 2qp3n � 1q{2. For example, the

number of binary variables for four, five, and six component systems are 11, 21, and

34, respectively.

3.1.3 Mass Balance Constraints

Figure 3.2(a) shows the four-component superstructure used for modeling mass

balance constraints. We observe that, by bypassing appropriate component, vapor,

and liquid flows [17], the entire search space is embedded in Figure 3.2(a). We denote

the pseudocolumn performing the split of stream ri, js as Qi,j. We treat the system as

a multicommodity network flow problem where a pseudocolumn, which redistributes

the flow between the rectifying and stripping sections, is akin to a node. Whereas,

the sections carrying the material from one node to the other are akin to edges.

Figure 3.2(b) shows a pseudocolumn that is a representative of every other pseu-

docolumn in the superstructure. Definition of variables used in Figure 3.2(b) are
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CD

A
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Q1,4

Q1,3
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Q2,3

Q3,4
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(a) Four-component superstructure

U ss
i−1,j

Kss
i−1,j

U rs
i,j+1

Krs
i,j+1

FC i,j−1

FRi+1,j

U rs
i,j

Krs
i,j

U ss
i,j

Kss
i,j

V rs
i,j

Lss
i,j

Lrs
i,j

V ss
i,j

Qi,j

Figure 12: Heavy crude example: Distillation configuration with minimum number of submixtures, and maximum heat
exchangers that requires at most 10% more energy than FTC configuration.

14

(b) Representative column

Fig. 3.2. Schematic of four-component superstructure. The blue box
shows a representative column of every other column in the super-
structure. Variables used for vapor and liquid flows are shown in (b).
Definition of the variables are described in Table 3.2
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summarized in Table 3.2. The component and vapor mass balance equations en-

veloping a pseudocolumn Qi,j are given by: 
f rs
i,j�1,p � f ss

i�1,j,p � f rs
i,j,p � f ss

i,j,p

(j
p�i

U rs
i,j�1 � U ss

i�1,j � V rs
i,j � V ss

i,j

,.- @ ri, js P U (H12)

For Q1,n, the following constraints are imposed: 
Fp � f rs

1,n,p � f ss
1,n,p

(n
p�1

p1� Φq
ņ

p�1

Fp � V rs
1,n � V ss

1,n

,//.//- (H13)

Here, Φ is the fraction of the process feed in liquid phase, typically referred to as

thermal quality of the feed. For each column, as is typical, we assume that the

lightest and the heaviest components of the feed appear only in the distillate and

residue respectively. The intermediate components may, however, distribute between

the distillate and the residue. In other words, the components in the distillate belong

to ri, j � 1s (i.e., f rs
i,j,j � 0), while those in residue belong to ri� 1, js (i.e., f ss

i,j,i � 0).

Note that, for submixtures in S1 (resp. S3), U ss
i�1,j and f ss

i�1,j,p (resp. U rs
i,j�1 and f rs

i,j�1,p)

are not defined and are to be regarded as zero in (H12). The difference between the

vapor and liquid flows in the rectifying (resp. stripping) sections is the net distillate

(resp. residue) flow.

V rs
i,j � Lrs

i,j �
j�1̧

p�i

f rs
i,j,p

Lss
i,j � V ss

i,j �
j̧

p�i�1

f ss
i,j,p

,/////./////-
@ ri, js P P (H14)

Mass balance equations around the condenser (H15) and reboiler (H16) are given by

V rs
i,j�1 � FC i,j � U rs

i,j�1

FC i,j �Krs
i,j�1 � Lrs

i,j�1

,.- @ pi, jq P C (H15)

Lss
i�1,j � FRi,j �Kss

i�1,j

FRi,j � U ss
i�1,j � V ss

i�1,j

,.- @ pi, jq P R (H16)
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i,j+1

FCi,j−1

FRi+1,j

Urec
i,j
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(a) (b) (c) (d)

4

Fig. 3.3. Modeling of (a) Condenser, (b) Thermal coupling, (c) Com-
bination of condenser and thermal coupling and (d) a partial con-
denser

see Figure 3.2(b). We point out that the liquid mass balance equation around each

pseudocolumn is implied from (H12) – (H16). To facilitate the production of pure

components in saturated liquid state, we add (see Figure 3.2a)

U rs
i,i�1 � U ss

i�1,i

Kss
i�1,i �Krs

i,i�1 � Fp

,.- 2 ¤ i ¤ n� 1 (H17)

Here, we used the fact that the net outflow of any intermediate pure product is the

same as its flow in the process feed Fp. These constraints ensure vapor and liquid

continuity among pseudocolumns tQi,i�1un�1
i�1 . The superstructure in Figure 3.2 can

model a heat exchanger (Figure 3.3a), a thermal coupling (Figure 3.3b), a combination

of thermal coupling and heat exchanger (Figure 3.3c), which is a plausible alterna-

tive for modeling pump-around, and a partial condenser/reboiler (Figured 3.3d) by

enabling/shunting flow in appropriate branches. In this work, we allow only two of

these options. More specifically, we allow either a heat exchanger or a thermal cou-

pling, but not both (Figure 3.3c). In addition, we will only consider total condenser

and reboiler i.e., two-phase transfer streams are not allowed (Figure 3.3d). When a

condenser (resp. reboiler) is present, we feed the submixture as vapor (resp. liquid)

to the next column [35]. These constraints are modeled as follows:

FC i,j ¤ V Uχi,j

Krs
i,j�1 ¤ V Up1� χi,jq

,.- @ pi, jq P C (H18)
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FRi,j ¤ V Uρi,j

U ss
i�1,j ¤ V Up1� ρi,jq

,.- @ pi, jq P R (H19)

Here, V U is the upper bound on the vapor flow. The choice of V U will be discussed

in section 3.1.6.
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Fig. 3.4. Schematic showing component, vapor and liquid bypass

3.1.4 Underwood Constraints

Here, we describe the constraints that govern the minimum vapor flow required in

each section of the configuration to perform the desired separation. These constraints

also determine the extent to which component flows are distributed between the dis-

tillate and the residue, when a submixture undergoes sloppy split. All the sloppy split
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configurations have at least one instance where two pseudocolumns stacked, one on

top of the other, with the common product stream drawn as sidedraw. As a first-step

approximation, despite the stacking, we model the split in each pseudocolumn inde-

pendently of other pseudocolumns. We compute the minimum vapor requirement for

each pseudocolumn using Underwood method. The minimum vapor flow requirement

of a stacked column is then obtained as the maximum of vapor flow requirements at

each of the sections. This procedure has been used in the literature by [9, 13, 15, 22].

Very recently, it was found that the results obtained with this approximation agree

excellently with rigorous Aspen Plus simulations [4].

When stream ri, js is present, pseudocolumnQi,j separates ri, js so that the compo-

nent distribution and the threshold vapor flow satisfy Underwood constraints. On the

other hand, if stream ri, js is absent in a configuration, pseudocolumn Qi,j bypasses

the flow from the rectifying (resp. stripping) section of the parent pseudocolumn

Qi,j�1 (resp. Qi�1,j) to the rectifying (resp. stripping) section of the pseudocolumn

Qi,j. A schematic of the bypass is shown in Figure 3.4. The relevant constraints are

shown in the disjunction below, which is imposed for all ri, js P P
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�����������������������������������������

ζi,j � 1" j̧

p�i

αppf rs
i,j�1,p � f ss

i�1,j,pq
αp � θi,j,q

� U rs
i,j�1 � U ss

i�1,j

*j�1

q�i

j�1̧

p�i

αpf
rs
i,j,p

αp � θi,j,q
¤ Υrs

i,j for q � ti, j � 1u
" j�1̧

p�i

αpf
rs
i,j,p

αp � θi,j,q
� Si,j,q � Υrs

i,j

*j�2

q�i�1

�
j̧

p�i�1

αpf
ss
i,j,p

αp � θi,j,q
¤ Υss

i,j for q � ti, j � 1u
"
�

j̧

p�i�1

αpf
ss
i,j,p

αp � θi,j,q
� Si,j,q � Υss

i,j

*j�2

q�i�1

Si,j,q ¤ 2V U
�

mintp1� ζi,rquj�1
r�q�1 �mintp1� ζs,jquqs�i�1

�
Υrs
i,j ¤ V rs

i,j

Υss
i,j ¤ V ss

i,j

U rs
i,j�1 � U ss

i�1,j � Υrs
i,j �Υss

i,j

�����������������������������������������

ª
�������������

ζi,j � 0

tf rs
i,j�1,p � f rs

i,j,puj�1
p�i

tf ss
i�1,j,p � f ss

i,j,pujp�i�1

U rs
i,j�1 � V rs

i,j

U ss
i�1,j � V ss

i,j

�������������

(3.3)

Consider the set corresponding to ζi,j � 1. The second constraint is the Underwood

feed equation that ensures that the Underwood roots satisfy αq�1 ¤ θi,j,q ¤ αq for

i ¤ q ¤ j � 1. The next four constraints determine the minimum vapor requirement

of the rectifying and stripping sections Υrs
i,j and Υss

i,j, respectively. The fourth con-

straint, which applies to q P ti�1, . . . , j�2u, is converted into an equality constraint

by introducing a slack variable Si,j,q. Since the nonlinear term on the LHS of this

constraint is bounded from below by �V U [25] and the RHS is bounded from above

by V U , we can bound this variable from above by 2V U , as in the seventh constraint.

Moreover, if the product streams of Qi,j, ri, rs and rs, js, are such that i   s   r   j

i.e., at least two components distribute between the distillate and residue, then the

Underwood roots satisfying s ¤ q   r are active (see Appendix A). The seventh

constraint ensures that the slack in the fourth constraint is zero, as desired. The
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min function is linearized just as it was for (H8). Similarly, the sixth constraint is

converted into an equality by adding a slack variable. From the feed equation and

the minimum vapor constraint in the rectifying section, it can be readily shown that

the slack variable for the constraint in stripping section is also Si,j,q. Although the

constraints in stripping section are implied from that for the rectifying section and

the feed equation, we have retained so they help strengthen the linear relaxation.

These constraints, thus ensure that the solutions that are physically infeasible (see

Chapter 1) are not admissible to our formulation. The eighth and ninth constraints

ensure that the actual vapor flow is at least as high as the threshold vapor flow. It

holds at equality when the column is operated at pinch, while a strict inequality holds

when the column is operated above pinch. An inherent assumption for sloppy-splits

is that, it is always possible to achieve the desired distribution by adjusting the trays

in the column, when it is operated above pinch. Finally, the last constraint ensures

vapor balance, requiring that the minimum vapor flow in the rectifying section differs

from that in stripping section by the net vapor inflow.

On the other hand, the constraints corresponding to ζi,j � 0 model component

and vapor bypass. The liquid bypass constraints can be derived using linear argu-

ments from vapor and component bypass constraints using (H14), (H15), and (H16).

Thus, they are not included in the disjunction. Besides Underwood constraints, the

disjunction in (3.3) differs from that in [9] in the following way. Overall mass balance

equations across each pseudocolumn are part of the disjunction in [9]. These con-

straints hold regardless of the presence/absence of the pseudocolumn. However, the

authors impose these constraints in BigM form, which relaxes them in the absence of

pseudocolumn. On the contrary, we do not include the mass balance constraints in

the disjunction and, therefore, are not relaxed in the absence of pseudocolumn. Com-

putational evidence suggests that the current approach leads to linear relaxations

that are significantly tighter.

As mentioned in the Introduction, for tightness, we rely on reformulation based

techniques for the treatment of disjunctions. Inspired from disjunctive programming
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techniques in [36], we transform (3.3), for ri, js P P , into the following set of equalities

and inequalities.

" j̧

p�i

αppf rsI
i,j�1,p � f ssI

i�1,j,pq
αp � θi,j,q

� U rsz
i,j�1 � U ssz

i�1,j

*j�1

q�i

(H20)

j�1̧

p�i

αpf
rsO
i,j,p

αp � θi,j,q
¤ Υrsz

i,j for q � ti, j � 1u
" j�1̧

p�i

αpf
rsO
i,j,p

αp � θi,j,q
� Sζi,j,q � Υrsz

i,j

*j�2

q�i�1

,/////./////-
(H21)

�
j̧

p�i�1

αpf
ssO
i,j,p

αp � θi,j,q
¤ Υssz

i,j for q � ti, j � 1u
"
�

j̧

p�i�1

αpf
ssO
i,j,p

αp � θi,j,q
� Sζi,j,q � Υssz

i,j

*j�2

q�i�1

,/////./////-
(H22)

Sζi,j,q ¤ 2V U
�

mintp1� ζi,rquj�1
r�q�1 �mintp1� ζs,jquqs�i�1

�
(H23)

Υrsz
i,j ¤ V rsz

i,j

Υssz
i,j ¤ V ssz

i,j

,.- (H24)

U rsz
i,j�1 � U ssz

i�1,j � Υrsz
i,j �Υssz

i,j (H25)

tf rs
i,j�1,p � f rsI

i,j�1,p � f rs
i,j,p � f rsO

i,j,p � 0uj�1
p�i

tf ss
i�1,j,p � f ssI

i�1,j,p � f ss
i,j,p � f ssO

i,j,p � 0ujp�i�1

U rs
i,j�1 � U rsz

i,j�1 � V rs
i,j � V rsz

i,j � 0

U ss
i�1,j � U ssz

i�1,j � V ss
i,j � V ssz

i,j � 0

,///////.///////-
(H26)

The above constraints are derived by multiplying the constraints corresponding to

ζi,j � 1 (resp. ζi,j � 0) by ζi,j (resp. p1 � ζi,jq), expanding the product and lineariz-

ing the bilinear terms by introducing auxiliary variables aijp � bijp � ζi,j, where aijp ��
f rsI
i,j�1,p, f

ssI
i�1,j,p, f

rsO
i,j,p, f

ssO
i,j,p, U

rsz
i,j�1, U

ssz
i�1,j, V

rsz
i,j , V

ssz
i,j

�
and bijp �

�
f rs
i,j�1,p, f

ss
i�1,j,p, f

rs
i,j,p,
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f ss
i,j,p, U

rs
i,j�1, U

ss
i�1,j, V

rs
i,j , V

ss
i,j

�
. The bilinear equality constraints are relaxed using Mc-

Cormick constraints [37].

aijp ¤ mintbijp, ζi,jbUijpu
aijp ¥ maxt0, bijp � bUijppζi,j � 1qu

,.- p � ti, . . . , ju @ ri, js P P (H27)

Because ζi,j is binary, it is always at its bound: either 0 or 1 and, as such, Mc-

Cormick constraints exactly model the bilinear product. As before, undefined terms

are dropped for submixtures in S1 and S3. This concludes the discussion on minimum

vapor constraints, completing the formulation of the problem. In the next subsection,

we exploit monotonicity of Underwood equations to derive additional valid cuts that

strengthen the relaxation.

3.1.5 Flow of Underwood Roots

Carlberg and Westerberg [38] observed that if two columns are thermally coupled,

the Underwood roots carry from one to another. This would, for example, be the

case for the pseudocolumns Q1,4 and Q1,3 in Figure 3.2 if their interconnection is a

thermal coupling. The flow of roots is because the minimum vapor constraint for

the rectifying section of Q1,4 becomes the feed equation for the next column Q1,3.

Mathematically, (H21), (H24), (H15), and (H20), in the specified order, lead to:

3̧

p�1

αpf
rs
1,4,p

αp � θ1,4,q

¤ Υrs
1,4 ¤ V rs

1,4 � U rs
1,4 �

3̧

p�1

αpf
rs
1,4,p

αp � θ1,3,q

; q � t1, 2u (3.4)

In deriving (3.4), we used FC 1,3 � 0, as the columns are thermally coupled. Since

Υrs
1,4 dominates the nonlinear expression in (H21) for both active and inactive roots

(see Appendix A), (3.4) holds for all the Underwood roots. Moreover, by recognizing

that the nonlinear expressions in (3.4) are monotonically increasing functions of Un-

derwood roots, [38] showed that θ1,4,q ¤ θ1,3,q for q � t1, 2u. Using similar arguments,

it can be shown that θ1,4,q ¥ θ2,4,q for q � t2, 3u, when the pseudocolumns Q1,4 and

Q2,4 are thermally coupled. This concept was used in the derivation of an analytical

solution for the vapor duty of an n component FTC by [34].
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Although these constraints are implicit and redundant in the presence of Un-

derwood equations, imposing the constraints explicitly helps improve the LP/MIP

relaxation, where Underwood equations only appear in relaxed form. We impose

these constraints as:

tθi,j�1,q � θi,j,q ¤Mqχi,juj�1
q�i @ ri, js P S1$'''''&'''''%

#
θi,l,q � θi,j,q ¤Mq

�
χi,j � p1� ζi,jq �

i�1̧

k�1

ζk,j �
l�1̧

m�j�1

ζi,m

�+n

l�j�1#
θi,j,q � θk,j,q ¤Mq

�
ρi,j � p1� ζi,jq �

ņ

l�j�1

ζi,l �
i�1̧

m�k�1

ζm,j

�+i�1

k�1

,/////./////-

j�1

q�i

@ ri, js P S2

tθi,j,q � θi�1,j,q ¤Mqρi,juj�1
q�i @ ri, js P S3

(H28)

where the upper bound on the difference between the roots Mq � αq�αq�1. For ri, js P
S1 (resp. ri, js P S3), the constraints flow the roots from the parent pseudocolumn

Qi,j�1 (resp. Qi�1,j) to Qi,j, when the associated condenser (resp. reboiler) is absent.

Furthermore, when the submixture is absent, implies χi,j � 0 (resp. ρi,j � 0) from

(H6), these constraints bypass the roots. Whereas, for ri, js P S2, the constraints

are modified for two reasons. First, the roots may not flow when the submixture

is withdrawn as sidedraw and its parent pseudocolumns are operated above pinch.

(H28) ensures that the flow constraints are deactivated if ri, js P S2 has both top and

bottom parents. The second reason is better explained with an example. Consider

the completely thermally coupled configuration shown in Figure 3.5. Here, r2, 3s (resp.

r3, 4s) is produced by a single parent r2, 5s (resp. r1, 4s). Since their interconnection is

a thermal coupling, the roots are allowed to flow to Q2,3 (resp. Q3,4) from Q2,5 (resp.

Q1,4). However, without introducing additional variables, the flow cannot take place

via Q2,4, since the roots received from its parents (Q2,5 and Q1,4) can be different.

(H28) resolves this issues by directly flowing the root from the parent pseudocolumn.

The second constraint in (H28) flows the root to Qi,j from its parent Qi,l for j � 1 ¤
l ¤ n, when ri, js is present and the associated condenser, all of its bottom parents

trk, jsui�1
k�1 and the submixtures tri,msul�1

m�j�1 are absent. This constraint enables
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Fig. 3.5. A five-component completely thermally coupled configuration

the root to flow from Q2,5 to Q2,3 in the example under consideration. The third

constraint is interpreted in a similar way, and it enables the root to flow from Q1,4 to

Q3,4. To summarize, provided a stream is not drawn as a sidedraw, (H28) flows the

roots to Qi,j from its parent if their interconnection is a thermal coupling.

We remark that the Underwood roots of the pseudocolumn Q1,n can be calculated

a priori, thus, fixing tθ1,n,qun�1
q�1 . Then (H28) propagates these roots to the subsequent

pseudocolumns in the configuration when they are thermally coupled. Whenever

the global solver decides to choose thermal coupling, it can use (H28) to improve

bounds on Underwood roots using optimality and feasibility based range reduction

techniques, thus improving the quality of relaxations and consequently converging to

the optimal solution faster. We demonstrate the improvement in relaxation due to

(H28) with a numerical example. We consider a mixture of alcohols (Case 9 in Table

5): n � 5, Φ � 1, F � t20, 30, 20, 20, 10u and α � t4.1, 3.6, 2.1, 1.42, 1u. We fix

the binary variables associated with streams and heat excangers to Fully Thermally

Coupled (FTC) configuration. For this case, the optimal objective function value is

402.703 kmol/hr. The root node relaxation reported by BARON without (H28) is

283.842 (42% gap w.r.t lower bound). Whereas, when (H28) is included in the model,

BARON inferred a lower bound of 402.703 in the preprocessing step, thereby solving

the problem to global optimum.
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Inclusion of (H28) in optimization models is an important contribution of this

Chapter. Before proceeding further, we comment on how the state-of-the-art explicit

enumeration algorithm [22] fares in the absence of these cuts. As an example, we

considered a five-component mixture of aromatics (see Case 10 in Table 3.5). Without

(H28), the explicit enumeration based algorithm could not solve a few configurations

to 1% gap within 1200 seconds. However, when (H28) is included in the model,

BARON could solve all the unconverged configurations in less than five seconds! This

example demonstrates the importance of these cuts, and how they improve the state-

of-the-art. It will be even more evident when we discuss case studies in subsection

3.3.

3.1.6 Bounds on Variables

The bounds on binary variables are obtained by definition. Clearly, the net com-

ponent flow in any column section cannot exceed the component flow rate in the feed.

Thus, 0 ¤ f rs
i,j,p, f

ss
i,j,p ¤ Fp. The bounds on the Underwood roots are chosen to be

αq�1 � 10�4 ¤ θi,j,q ¤ αq � 10�4. A small portion is chopped at both the ends of the

interval to prevent singularity issues. Although we show rigorous ways of avoiding

this issue in [25], when using off-the-shelf solvers, the assumed strict separation is the

simplest way to avoid numerical difficulties.

An arbitrarily large value can be chosen for the bounds on vapor and liquids flows.

This, however, leads to weaker LP/MIP relaxations. To overcome this challenge we

propose a heuristic. We have observed on a test set which spans over a wide range of

feed cases [35,39], that 3.5 times the FTC vapor duty is always higher than the total

vapor duty of all configurations in the search space. Thus, 3.5 times the FTC vapor

duty is chosen to be the upper bound on all vapor flow variables. Observe that using

such a bound is reasonable, since we are only interested in configurations with low
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vapor duty. To implement this bound, we calculate vapor duty of the FTC (VDFTC )

analytically (see [15, 34]) as follows:

VDFTC � max

" q̧

p�1

αpFp
αp � θ1,n,q

*n�1

q�1

(3.5)

The bounds on liquid flows are computed using mass balance equations, and bounds

on vapor and component flows. All variables except tKi,i�1un�1
i�1 are positive. The

lower bound on these liquid flows is set to �V U to withdraw products in liquid state

(see Figure 3.2a).

Altogether, the binary network, mass balances, Underwood constraints and bounds

constitute the MINLP model (H), which can be solved using standard MINLP solvers

such as BARON [21,40] or SCIP [41].

3.2 Case Studies

In this section, we present a few case studies from literature that were solved to

ε-global optimality. First, we study the five-component heavy crude example from [5].

Using this example, we illustrate how additional constraints can be added to customize

the search space of configurations. Later, we will present four, five and six component

instances from the literature.

3.2.1 Heavy Crude Distillation

Crude oil distillation is an important separation process that helps meet various

energy and transportation needs of society. As mentioned in the introduction, the

crude separation consumes energy equivalent of � 1.8 million bbl of crude oil per day.

Clearly, a small reduction in the energy consumption for this process can save a lot

of energy over time.

In our example, crude oil is regarded as a mixture of naphtha (A), kerosene (B),

diesel (C), gas oil (D) and residue (E). The composition of components in the feed

and the relative volatility of the components is borrowed from [5] and summarized in



47

Table 3.3.
Feed composition and relative volatility information for heavy crude
mixture. Data is taken from [5]

Component Feed Composition Relative Volatility

A Naphtha 0.144 45.3

B Kerosene 0.093 14.4

C Diesel 0.101 4.7

D Gas Oil 0.039 2

E Residue 0.623 1

Table 3.3. We assume the flowrate of crude to be 100 kmol/h. Further, we assume

that 90% of E in the process feed is in liquid phase, while the rest is in vapor phase.

To prevent fouling, we require that the residue (E) be separated from the rest of the

components in the first column. In other words, none of the submixtures will contain

E i.e., BCDE, CDE and DE are absent from the configuration. To ensure that

these submixtures are absent, we add

ζ2,5 � ζ3,5 � ζ4,5 � 0 (3.6)

Before solving the MINLP over the entire search space, we limit the search to

sharp-split configurations.

Sharp-split configurations: Due to their simplicity and ease of operation,

sharp-split configurations were preferred historically. This preference sustains and,

even today many chemical plants employ sharp-split configurations. Sharp-split con-

figurations are those regular-column configurations that have exactly n � 2 submix-

tures. This is because for sharp-split configurations a submixture is not produced at

two different locations. Therefore, splits can be rearranged as binary trees that have

n�1 internal nodes, one of them corresponds to the feed and the rest to submixtures.

When a sloppy-split is introduced, the trees following each product stream grow by

the number of overlapping components, c, and at most c�1 of these internal internal
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nodes can be pruned, which happens when both product streams separate to produce

a product downstream that consists of just the c overlapping components. Therefore,

sloppy-split configurations have at least n�1 submixtures. Thus, for the heavy crude

example, we add

¸
ri,jsPU

ζi,j � pn� 2q (3.7)

We solve the MINLP (H) with (3.6) and (3.7) added. The optimal solution is shown

in Figure 3.6(a). This configuration is known in the literature as indirect split con-

figuration, and for decades, has been the configuration of choice for crude oil sepa-

ration! Our model, despite several simplifying assumptions, identifies this optimal

configuration in a few seconds among several sharp-split configurations. This result

reaffirms that our simplifying assumptions are reasonable and our algorithms gen-

erate worthwhile results. However, is the optimal sharp-split configuration the best

configuration? To determine the answer to this question, we compare the total vapor

duty of FTC, obtained analytically as 69.96 kmol/h, with that of the optimal sharp-

split configuration. The indirect split configuration has a vapor duty requirement of

84.402 kmol/hr, which is 20.6% higher than that for FTC. Thus, there is a substantial

potential to reduce the total vapor duty. Since FTC is hard to implement, we will

expand our search space to include sloppy-split configurations to see if a similar vapor

duty is also achievable by a configuration that is easy to implement.

Sloppy-split configurations: Every-sloppy split configuration has at least two

columns stacked one on top of the other. By construction, sloppy-split configurations

withdraw at least one sidedraw by stacking columns, that produce the same streams

one from the stripping section and the other from the rectifying section. There are

four possible arrangements for a sidedraw: vapor-only-transfer, liquid-only-transfer,

two-way vapor-liquid transfer and two-phase sidedraw. The formulation described

in the previous section, captures all the four arrangements. Nevertheless, industrial
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Figure 2: Candidate configurations for the heavy crude example: (a) Optimal sharp split configuration
(b) Optimal sloppy split configuration (C) Second best family of sloppy split configuration (d) Third
best family of sloppy split configuration

3

Fig. 3.6. Candidate configurations for the heavy crude example
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practitioners prefer that the sidedraw is a liquid-only-transfer because such transfers

are easier to operate. To maintain sidedraws as liquid transfer, we add

�V U rp1� ζi,jq � p1� ζi,lq � p1� ζk,jqs ¤ U rs
i,j�1 � U ss

i�1,j ¤
V U rp1� ζi,jq � p1� ζi,lq � p1� ζk,jqs,

@ j � 1 ¤ l ¤ n; 1 ¤ k ¤ i� 1; ri, js P S2

(3.8)

Here, pU rs
i,j�1 � U ss

i�1,jq denotes the net vapor inflow into the pseudocolumn Qi,j. The

constraint forces the net vapor inflow to zero when three streams are present, namely

stream ri, js, one of the top parents tri, lsunl�j�1, and one of the bottom parents

trk, jsui�1
k�1. We now solve the MINLP (H), restricted to also satisfy (3.6) and (3.8)

in order to determine the optimal sloppy-split configuration that produces E as the

residue from the first column and draws sidedraws as liquid-only transfers. The opti-

mal configuration has been drawn in an operable form in Figure 3.6(b). The optimal

vapor duty of the configuration is 76.76 kmol/h, which is 9% lower than that of

indirect split configuration.

If the optimal solution turns out to not be desirable for a reason not captured

by the model, the practitioner would like to generate alternative solutions. Towards

this end, we organize configurations into families, where configurations from each

family have same structural arrangement of columns, but differ with each other in

whether the connection between adjacent columns is a thermal coupling or via a heat

exchanger. Although thermal couplings are known to benefit by conserving energy,

such benefits are not always realized [42]. In other words, various configurations

within a family have identical vapor duty. Moreover, a given configuration may

perform optimally over a wide range of operating conditions. For these reasons,

we find that the ‘Numsol’ option of BARON is not reliable in determining K-best

families. BARON often finds the same configuration, among the best solutions, albeit

with different operating conditions. Instead, we use binary cuts to systematically

determine the K-best families.

Configurations from different families have a different set of submixtures. Using

binary cuts on submixtures, we eliminate previously seen families of configurations.
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There are various ways of achieving this result. One way is to consider each ζ vector as

a binary encoding of a number and eliminate those solutions where ζi,j for ri, js P Bζ1

are at one and ζi,j for ri, js P Bζ0 are at zero. This is achieved by adding¸
ri,jsPBζ0

p1� ζi,jq �
¸

ri,jsPBζ1

ζi,j ¤ |Bζ0| � |Bζ1| � 1 (3.9)

We refer the reader to [43] for an alternative approach. Solving the MINLP after

adding this cut gives a configuration from the second-best family. The operable

version of the solution is shown in Figure 3.6(c). The optimal vapor duty of the

configuration is 77.39 kmol/h, which is slightly higher than that for the configuration

in Figure 3.6(b), but requires one less transfer stream and two less column sections.

To determine the third best configuration, we add a cut similar to the one described

in (3.9). The operable version of the third best configuration is shown in Figure

3.6(d). The optimal vapor duty is 1.86% higher than the second best configuration.

Interestingly, all the three configurations in Figure 3.6(b)-(d) exhibit similarities with

the indirect-split configuration, and are thus amenable to retrofitting. A similar

analysis has been performed on the light crude example from [5], and the results can

be found in our recent publication [44].

3.2.2 A Pseudocost Model

We have illustrated that energy can be saved using sloppy-splits. In fact, the

configuration with the maximum number of sloppy-splits (FTC) is known to require

the least vapor duty [13, 34]. However, the energy savings come at a price. The

introduction of sloppy-splits increases the number of column sections, which in turn

may increase the capital cost. For example, Figure 3.6(b) requires six more column

sections compared to Figure 3.6(a). Thus, the sloppy-split configuration may not

be more economical since the increase in capital cost outweighs the reduction in

operating cost (vapor duty). It is often desirable to identify configurations which

reduce vapor duty (measure of operating cost) while keeping the number of column

sections reasonably close to that of sharp-split configurations. Although a detailed
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cost model can also be formulated, we describe two simple heuristics for identifying

cost-effective configurations.

Procedure 1

To identify such configurations, we propose the use of the following objective

function:

Minimize
¸

ri,jsPT
ζi,j �

¸
pi,jqPC

χi,j �
¸

pi,jqPR
ρi,j (3.10)

This objective minimizes the total number of streams (a measure of the number of

column sections), and for better controllability maximizes the heat exchangers. Dif-

ferent weights may be used to tilt the emphasis between the two objectives. When

two solutions have the same objective, we choose the configuration with least number

of streams. Clearly, solving the MINLP (H) with (3.10) as the objective could yield

any basic sharp split configuration as the optimal solution since, for these configura-

tions, each submixture stream is associated with a heat exchanger. However, such a

solution would be unattractive in terms of vapor duty. To eliminate such solutions,

we also require that the vapor duty does not exceed that of FTC by more than a

specified percentage, say 10%.

¸
pi,jqPR

FRi,j ¤ 1.1 VDFTC (3.11)

where VDFTC is the optimal vapor duty of FTC (refer (3.5)). Thus, we propose to

solve (H) after appending (3.11) and modifying the objective to (3.10). The K-best

families are determined as before, by iteratively adding binary cuts (3.9).

Procedure 2

We now suggest an alternative procedure to find attractive configurations, which

is summarized in Algorithm 1.
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Figure 4: Heavy crude example: Distillation configuration with minimum
number of submixtures, and maximum heat exchangers that requires at most
10% more energy than FTC configuration.
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(a) Operable version of the configuration before

heat integration
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Figure 5: Heavy crude example: Distillation configuration with minimum
number of submixtures, and maximum heat exchangers that requires at most
10% more energy than FTC configuration.
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(b) Operable version of the configuration after

heat integration

Fig. 3.7. Configuration that minimizes the sloppy splits, maximizes
the heat exchangers while being attractive from the perspective of
vapor duty. (b) shows the heat integrated version of (a) where the
reboiler associated with the side-stripper is replaced with a heat ex-
changer (thick square)

We now use Procedure 1 on the heavy crude example and describe the results.

For illustration, we will also include submixtures BCDE, CDE, and DE in the

search space. It turns out that the resulting MINLP has multiple solutions with the

same objective function value. One of the solutions is shown in Figure 3.7. The

vapor duty requirement for this configuration is 10% less than that of indirect split

configuration, and is within 10% of that of FTC. This solution has other attractive

features as well. First, the configuration has only one sloppy split and just two extra

column sections relative to indirect split configuration. As a result, the capital cost is

expected to be not too far off from that of indirect split configuration (Figure 3.6(a)).

Second, each column has at least one heat exchanger. This allows for better control

of reflux in each column and make the startup as well as shut down process easier.

Third, heat-integration of side-stripper and side-rectifier is possible because boiling

point of C is higher than that of B. The reboiler associated with the side-stripper
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Step 1: Formulate MINLP (H), and initialize number of submixtures

NS � n� 2

Step 2: Append
°

ri,jsPU ζi,j � NS to (H), and solve the MINLP with (H1) as

the objective

if Vapor duty   1.1VDFTC then

go to Step 3;

else

NS � NS � 1;

go to Step 2;

end

Step 3: A configuration which minimizes number of column sections is

found. If the next best solution is desired, append binary cut (3.9) to (H)

and go to Step 2 else, stop.
Algorithm 1: Algorithm for identifying cost-effective distillation configurations

generates vapor reflux that contains B, whereas the condenser associated with the

side-rectifier generates liquid reflux that contains C. The latent heat released during

the condensation of C can be used to supply the latent heat required to vaporize

B. We have assumed while using Underwood method that the latent of vaporization

is about the same for all components. Under this assumption, the condenser and

reboiler duties are directly proportional to their vapor flows. In the current example,

it turns out that the vapor flow in the condenser is much higher than the liquid flow

in the reboiler. This means that, the reboiler associated with the side-stripper can be

replaced with a heat exchanger. Since we withdraw products as liquids, the condenser

associated with the side-rectifier was anyway required to condense C. Fortuitously,

the vapor duty of the heat integrated configuration (Figure 3.7(b)) matches that of

FTC, and hence at the lowest possible value! We emphasize that the maximum benefit

could be attained with just one sloppy-split. For all these reasons, the proposed
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configuration may be preferable over the conventional indirect split configuration,

even though it introduces the submixture stream DE.

Procedure 2 can also be used to arrive at the same solution. It has been used

in our recent work [44] to separate a mixture of alcohols, an example we borrowed

from [17]. We had found that this approach also results in configurations that seem

attractive from the perspective of both capital and operating costs.

3.2.3 Case Studies from Literature

We have only shown a few ways, out of many, to tailor the MINLP model as per

the need of the process designer. Besides heavy crude example, we have tested our

model on a few other cases that have been previously reported in the literature. Table

3.4 shows how the problem size varies with the number of components in the process

feed. Table 3.5 summarizes the problem data and the results obtained. In all the

examples, optimization was performed over the entire search space of regular-column

configurations. The computations were done on Dell Optiplex 5040 with 16 GB RAM

Intel Core i7-6700 3.4 GHz processor.

The case studies demonstrate that flow of roots constraints, (H28), help expedite

the branch-and-bound algorithm. In particular, we bring the attention of the reader to

Cases 9 – 14. Flow of roots cuts have an enormous impact on these cases, as is evident

from the drastic reduction in the number of iterations and the overall computational

time to solve these cases when (H28) was included in the model. Moreover, without

these cuts, Cases 10 and 11 could not converge to within 1% optimality gap in the

1200 seconds alloted to the optimization algorithm. We observed that for these cases,

the lower bound improved at a rather slow pace.

To further test the effectiveness of our model, we tested it on the 120 four-

component cases and 496 five-component cases reported in [35]. For these runs,

the relative tolerance for convergence was set to 1% and the time-limit was set at

1200 seconds. The model was solved to ε-global optimality by BARON for all the 120
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Table 3.4.
Problem size for different systems

n � 3 n � 4 n � 5 n � 6

Binary variables 4 11 21 34

Continuous variables 70 158 292 480

Linear constraints 122 311 617 1073

Nonlinear constraints 10 27 56 100

four-component cases, and for 72.3% of the 496 five-component cases. A few cases

that did not converge had a duality gap as high as 82%. Although the model gives

insights and worthy configuration alternatives, there is still scope for improvement.

3.3 Concluding Remarks

In this chapter, we introduced a new MINLP formulation to identify energy-

efficient distillation configurations. The key contributions are as follows. First, we

introduced a new notation that is more natural and easy to work with. Second,

we identified that previous MINLP formulations relax the feasible region admitting

physically infeasible solutions. We identified the source of the problem to be that

Underwood constraints associated with active roots were insufficiently constrained.

We showed how to modify these constraints to more accurately model the feasi-

ble space. Third, we added valid cuts to model flow of roots, which expedite the

branch-and-bound convergence. The effectiveness of the cuts was illustrated with a

few examples. Fourth, we proposed a new approach to obtain configurations that

reduce operating cost, while being aware that increasing number of sections increases

the capital cost, and increasing thermal couplings reduces operability. Finally, we

tested our model on a wide-range of cases reported in the literature. While the model

could be solved to ε-global optimality for a majority of cases, we identified various
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challenges that guide enhancements reported elsewhere [25]. The proposed method

can also be used to identify configurations that are amenable for retrofitting. We

have shown that attractive configurations for non-azeotropic mixtures mixtures can

be systematically determined by solving mathematical models, instead of relying on

heuristic procedures. We expect many novel and energy-efficient distillation config-

urations will result from the application of these techniques to practical distillation

problems.
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4. IMPROVED FORMULATION AND SOLUTION

APPROACH

The computational experiments in the previous chapter show that the state-of-the-art

global solvers either fail to converge, or do so very slowly, on several hard instances.

Here, we make several enhancements to the formulation and the solution procedure

which pave a way towards a reliable solution methodology. The chapter is organized

as follows. In §4.1, we define the problem statement and introduce the notation.

We formulate the MINLP in §4.2, and outline the overall relaxation and solution

procedure in §4.3. We present numerical examples in §4.4 that illustrate the value

of our cuts in strengthening the overall relaxation, and report on our computational

experiments in §4.5. Finally, we make concluding remarks in §4.6.

4.1 Problem Definition

Figure 4.1 shows all possible streams and heat exchangers in a distillation configu-

ration that separates a four-component mixture into pure components. We represent

streams as squares, condensers as filled circles and reboilers as open circles. Each

condenser/reboiler is associated with a process stream, that is not the process feed.

Throughout the formulation, we denote a stream as ri, js, and heat exchangers as

pi, jq, so that condenser pi, jq (resp. reboiler pi, jq) represents the heat exchanger

through which ri, js is withdrawn as distillate (resp. residue). By Remark 2.1, a

configuration cannot contain streams of the form ri . . . k k � l . . . js, where l ¡ 1.

We denote the set of streams as T , the set of condensers as C, and the set of

reboilers as R (see Table 4.1 for definition). For convenience, we create a set con-

taining streams that are mixtures P � T ztr1, 1s, . . . , rN,N su, and a set containing
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Figure 3: Definition of section variables {τi,k,j}j−1k=i and {βi,l,j}jl=i+1 ∀ [i, j] ∈ P for a four-component
system

5

Fig. 4.1. Figure depicting streams (ζi,j), reboilers (ρi,j) and condensers
(χi,j) present in a four-component system. Section variables τi,k,j and
βi,l,j are defined in (4.1).

submixtures S � Pztr1, N su. Note that every stream in P is a mixture, and must

undergo a split in order to produce products.

The required input to the problem consists of (1) composition of the process feed

tFpuNp�1 either in terms of mole fractions or molar flowrates of the components in the

stream, (2) relative volatilities tαpuNp�1 (such that αN   � � �   α1) of its constituent

components; and (3) liquid fraction (fraction of the total flow in liquid phase) of

the process feed Φ1,N and that of the pure components tΦi,iuNi�1. We write tpuNp�1 or

tpu1¤p¤n to denote the set t1, 2, . . . , Nu, and JpKN1 to denote @ p P t1, . . . , Nu. Given a

process feed, the problem is then to identify the best distillation configuration, along

with its optimal operating conditions, that requires least vapor duty.
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Table 4.1.
Definition of sets.

Set Symbol Definition

Streams T tri, js : 1 ¤ i ¤ j ¤ Nu
Splits P T ztri, isuNi�1

Submixtures S Pztr1, N su
Condensers C tpi, jq : 1 ¤ i ¤ j ¤ N � 1u
Reboilers R tpi, jq : 2 ¤ i ¤ j ¤ Nu

4.2 Problem Formulation

We formulate the MINLP in this section. Before proceeding further, we introduce

the definition of parents and children of a stream. By top (resp. bottom) parents of

ri, js: we refer to streams tri, nsuNn�j�1 (resp. trm, jsui�1
m�1) which can produce ri, js

as distillate (resp. residue). Analogously, by top (resp. bottom) children of ri, js,
we refer to streams tri, ksuj�1

k�i (resp. trl, jsujl�i�1) which can be produced as distillate

(resp. residue) from ri, js. For conciseness, we write ri, js Ò ri, ks (resp. ri, js Ó rl, js)
to denote stream ri, ks (resp. rl, js) is produced as the distillate (resp. residue) from

ri, js, and ri, ks{rl, js to denote ri, ks and rl, js are produced as the distillate and

residue from ri, js.

4.2.1 Objective Function

The objective is to determine the configuration(s) which minimizes the total vapor

duty:

(A): Minimize
¸

pi,jqPR
FRi,j, (A1)

where FRi,j is the vapor flow generated in reboiler pi, jq. The MINLP we develop will

be denoted as MINLP (A), and the constraints will be numbered as (A#).
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4.2.2 Space of Admissible Configurations

We define column/stream binary variables so that @ ri, js P T , ζi,j � 1 if ri, js
is present and 0 otherwise. Further, we define binary variables associated with the

presence/absence of condensers and reboilers so that @ pi, jq P C (resp. @ pi, jq P R),

χi,j � 1 (resp. ρi,j � 1) if condenser (resp. reboiler) pi, jq is present and 0 otherwise

(See Table 4.1 for set definitions). Although these variables suffice [23], we introduce

auxiliary variables to derive a tighter representation.

For every ri, js P P , we define section variables tτi,k,juj�1
k�i and tβi,l,jujl�i�1, such that

τi,k,j � t1, if ri, js Ò ri, ks; 0, otherwiseu and βi,l,j � t1, if ri, js Ó rl, js; 0, otherwiseu.
In other words, section variables model distillate and residue streams from a mixture.

Figure 4.1 shows all the section variables for a four-component mixture. We now relate

column and section variables. Consider the split of stream ri, js. In configurations

of interest, known as regular-column configurations, if ri, js Ò ri, ks, for any i ¤ k ¤
j � 1, then ri, js and ri, ks must be present and tri, nsuj�1

n�k�1 must be absent [9, 10].

Analogously, if ri, js Ó rl, js, for any i � 1 ¤ l ¤ j, ri, js and rl, js must be present,

while trm, jsul�1
m�i�1 must be absent. Therefore, section variables are defined as

τi,k,j � ζi,jp1� ζi,j�1q . . . p1� ζi,k�1qζi,k

�
j�1¹

n�k�1

p1� ζi,nq �
j�1¹
n�k

p1� ζi,nq �
j¹

n�k�1

p1� ζi,nq �
j¹

n�k

p1� ζi,nq,

βi,l,j � ζi,jp1� ζi�1,jq . . . p1� ζl�1,jqζl,j

�
l�1¹

m�i�1

p1� ζm,jq �
l�1¹
m�i

p1� ζm,jq �
l¹

m�i�1

p1� ζm,jq �
l¹

m�i

p1� ζm,jq.

(4.1)

We introduce variables tνi,k,j : 1 ¤ i ¤ k ¤ j ¤ Nu and tωi,l,j : 1 ¤ i ¤ l ¤ j ¤ Nu
to linearize (4.1):

for ri, js P P
$&%τi,k,j � νi,k�1,j�1 � νi,k,j�1 � νi,k�1,j � νi,k,j, JkKj�1

i

βi,l,j � ωi�1,l�1,j � ωi,l�1,j � ωi�1,l,j � ωi,l,j, JlKji�1,
(A2)

where νi,k,j �
±j

n�kp1 � ζi,nq and ωi,l,j �
±l

m�ip1 � ζm,jq. Note that νi,k�1,j�1 (resp.

ωi�1,l�1,j) are defined as one if k�1 � j (resp. i�1 � l). Clearly, νi,k,j � ωi,l,j � 1�ζi,j
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if k � j and l � i. Besides this relationship, the introduced variables νi,k,j and ωi,l,j

are linearly independent. To see this, note that
±

jPJ xj, where J � t1, . . . , nu are

linearly independent and, therefore, so are
±

jPJp1 � yjq, where yj � 1 � xj. Since

νi,k,j and ωi,l,j are of the latter form, they are linear independent.

We now relax νi,k,j and ωi,l,j variables for k � j and l � i as follows. Since ζi,j is

binary, p1 � ζi,jq2 � p1 � ζi,jq. We use the definition of νi,k,j and ωi,l,j, to derive the

following:

for ri, js P P
$&%νi,k,j � νi,k,mνi,n,j, JnKm�1

k�1 , JmKj�1
k , JkKj�1

i

ωi,l,j � ωi,m,jωn,l,j, JnKm�1
i�1 , JmKl�1

i , JlKji�1.
(4.2)

In the above, for n ¤ m�1, νi,n,m (resp. ωn,m,j) is a common factor for both νi,k,m and

νi,n,j (resp. ωi,m,j and ωn,l,j). we regard νi,n,m and ωn,m,j as one if n � m � 1. Thus,

0 ¤ νi,k,m ¤ νi,n,m, 0 ¤ νi,n,j ¤ νi,n,m, 0 ¤ ωi,m,j ¤ ωn,m,j, and 0 ¤ ωn,l,j ¤ ωn,m,j.

Using these bounds, we relax (4.2) as:

for ri, js P P

$'''''''''''&'''''''''''%

νi,j,j � ωi,i,j � 1� ζi,j

maxt0, νi,k,m � νi,n,j � νi,n,mu ¤ νi,k,j ¤ mintνi,k,m, νi,n,ju,
JnKm�1

k�1 , JmKj�1
k , JkKj�1

i

maxt0, ωi,m,j � ωn,l,j � ωn,m,ju ¤ ωi,l,j ¤ mintωi,m,j, ωn,l,ju,
JnKm�1

i�1 , JmKl�1
i , JlKji�1,

(A3)

where we used νi,k,m � νi,k,mνi,n,m, νi,n,j � νi,n,jνi,n,m, ωi,m,j � ωi,m,jωn,m,j, and ωn,l,j �
ωn,l,jωn,m,j.

Proposition 4.1. Let S � tpx, zq P r0, 1s2n | zj �
±j

k�1 xk, JjKn1u. The convex hull

of S, ConvpSq, is the intersection of convex hulls of zj � zj�1 � xj, JjKn2 over r0, 1s2

(McCormick relaxation).

Proof. See §B.1 in the appendix.

We remark that the result in Proposition 4.1 also follows from Theorem 10 in [48].

Our proof is, however, different and elementary. We mention that this proof shows a
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previously unobserved connection to the recursive McCormick procedure. Our proof

can be used to show that the recursive McCormick procedure, with a few additional

linearization variables, yields the convex hull of the multilinear polytopes for γ-acyclic

hypergraphs, as obtained in [48].

Remark 4.1. Proposition 4.1 shows that the set of ν (resp. ω) variables satisfying

(A3) belong to the intersection of simultaneous convex hulls of pνi,j,j�1, . . . , νi,j,N ,

νi,j,j, . . . , νi,N,Nq for all ri, js P T ztrk,N suNk�1 (resp. pω1,2,j, . . . , ω1,i,j, ω1,1,j, . . . , ωi,i,jq
for all ri, js P T ztr1, lsuNl�1).

Remark 4.2. For every ri, js P P , JkKj�1
i (resp. JlKji�1), the convex hull of τi,k,j (resp.

βi,l,j) over pζi,k, . . . , ζi,jq P r0, 1sj�k�1 (resp. pζi,j, . . . , ζl,jq P r0, 1sl�i�1) is implied by

(A2) and (A3). (see §B.2 for the proof).

We now describe the constraints to model the space of admissible distillation

configurations.

Presence of process feed and products

Every admissible configuration has the process feed (r1, N s) and the pure compo-

nents (tri, isuNi�1), i.e.,

ζ1,N � ζ1,1 � . . . ζN,N � 1. (A4)

To restrict the search to a subset of configurations, for example, in order to retrofit

an existing design, we may explicitly include (resp. eliminate) a specific submixture

ri, js by setting ζi,j � 1 (resp. ζi,j � 0). We show next that ζi,j variables are affinely

related to τi,k,j and βi,l,j variables.

Proposition 4.2. Let, x P r0, 1sn, yi,j � p1�xiqxi�1 . . . xj�1p1�xjq for 1 ¤ i   j ¤ n,

zi,j �
±j

r�i xr for 1 ¤ i ¤ j ¤ n, and xn � 0, which in turn implies that zi,n � 0 for

1 ¤ i ¤ n. Then, there is an invertible affine transformation between tyi,ju1¤i j¤n

and tzi,ju1¤i¤j¤n, given by

yi,j � zi�1,j�1 � zi�1,j � zi,j�1 � zi,j,
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zp,q � 1�
q̧

r�p

ņ

s�q�1

yr,s.

Proof. First, we show that yi,j can be written as an affine transformation of zi,j. By

definition, yi,j � p1 � xiqxi�1 . . . xj�1p1 � xjq �
±j�1

r�i�1 xr �
±j

r�i�1 xr �
±j�1

r�i xr �±j
r�i xr �

±j�1
r�i�1 xr � zi�1,j � zi,j�1 � zi,j. Substituting the first term in the last

equality,
±j�1

r�i�1 xr, with 1 if i � 1 � j, and zi�1,j�1 if i � 1   j, yields the required

affine transformation.

Next, to obtain the inverse affine transformation, we define wk,l � p1�xkqxk�1 . . . xl

for 1 ¤ k ¤ l ¤ n. We show the affine transformation between twk,lu1¤k¤l¤n and

tyi,ju1¤i j¤n variables to be

wk,l �
ņ

r�l�1

yk,r, (4.3)

using induction on n � l. For l � n, (4.3) is trivially satisfied because wk,n � 0

as xn � 0. Now, assuming that (4.3) holds for l � 1, i.e., wk,l�1 �
°n
r�l�2 yk,r, we

show that it holds for wk,l as well: wk,l � p1 � xkqxk�1 . . . xlp1 � xl�1 � xl�1q �
yk,l�1 � wk,l�1 � yk,l�1 �

°n
r�l�2 yk,r �

°n
r�l�1 yk,r.

In a similar vein, we show for 1 ¤ p ¤ q ¤ n, the affine transformation between

tzp,qu and twk,lu variables to be

zp,q � 1�
q̧

r�p

wr,q, (4.4)

using induction on q � p. For q � p, (4.4) follows because zq,q � xq � 1� p1� xqq �
1� wq,q. Next, assuming (4.4) holds for p� 1 i.e., zp�1,q � 1�°q

r�p�1wr,q, we show

that it holds for zp,q as well: zp,q �
±q

r�p xr � r1�p1�xpqs
±q

r�p�1 xr � zp�1,q�wp,q �
1�°q

r�p�1wr,q�wp,q � 1�°q
r�pwp,q. Finally, substituting (4.3) in (4.4) leads to the

required inverse affine transformation given below:

zp,q � 1�
q̧

r�p

ņ

s�q�1

yr,s. (4.5)

Indeed, the correctness of (4.5) can be checked via direct verification using yr,s �
zr�1,s�1 � zr�1,s� zr,s�1 � zr,s, zi,n � 0 for 1 ¤ i ¤ n, and zi�1,i � 1 for 1 ¤ i ¤ n.
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We note that Proposition 4.2 shows, by defining n � N � i� 1 (resp. n � j) and

xr � 1 � ζi,N�r�1 (resp. xr � 1 � ζr,j), there is an invertible linear transformation

between tτi,k,jui¤k j¤N and tνi,k,jui¤k¤j¤N (resp. tβi,l,ju1¤i l¤j and tωi,l,ju1¤i l¤j).

We expressed τ (resp. β) as an affine function of ν (resp. ω) in (A2). The inverse

transformation is:

for ri, js P T , νi,k,j �

$''&''%
0, for k � i

1�
j°

s�k

k�1°
r�i

τi,r,s, for i� 1 ¤ k ¤ j
, (4.6)

for ri, js P T , ωi,l,j �

$''&''%
1�

l°
r�i

j°
s�l�1

βr,s,j, for i ¤ l ¤ j � 1

0, for l � j.

(4.7)

Since νi,j,j � ωi,i,j � 1� ζi,j, Corollary 4.1 follows directly from (4.6) and (4.7).

Corollary 4.1. (A2)–(A4) imply that
°j�1
k�i τi,k,j �

°j
l�i�1 βi,l,j � ζi,j for all ri, js P

P .

Conservation of components

Corollary 4.1 has the physical interpretation that the stream ri, js, when present,

produces exactly one stream as distillate and one stream as residue. However, the

distillate and residue streams cannot be chosen arbitrarily. They must be chosen such

that, all components are conserved when ri, js undergoes a split. In other words, for

JkKj�1
i (resp. JlKji�1), if ri, js Ò ri, ks (resp. ri, js Ó rl, js), then for conservation of

components, the residue (resp. distillate) from ri, js must be one of trl, jsuk�1
l�i�1 (resp.

tri, ksuj�1
k�l�1). Consider the digraph shown in Figure 4.2 for stream ri, js.

We partition the nodes into four sets D1 through D4, where D1 � tiu (resp.

D4 � tju), and D2 � tkuj�1
k�i (resp. D3 � tlujl�i�1) contains the heaviest (resp.

lightest) component in the top (resp. bottom) children of ri, js. The edges in D1�D2

(resp. D3 � D4) correspond to all plausible distillate (resp. residue) streams from

ri, js. Edges in D2 � D3 correspond to feasible splits of ri, js, i.e., each node k P
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Fig. 4.2. Digraph for deriving conservation of components constraint in §4.2.2

D2 connects to ti � 1, . . . , k � 1u P D3. We associate these edges with auxiliary

variables
�j�1
k�i tσi,k,l,juk�1

l�i�1, referred as split variables hereafter (see Figure 4.2).

We let σi,k,l,j � t1, if ri, ks{rl, js; 0, otherwiseu, and write mass balances on the

network by interpreting stream, section and split variables as material flows along

the respective edges of the graph.

For ri, js P P

$'''&'''%
k�1̧

l�i�1

σi,k,l,j � τi,k,j, JkKj�1
i ;

j�1̧

k�l�1

σi,k,l,j � βi,l,j, JlKji�1;

σi,k,l,j ¥ 0, JlKk�1
i�1 , JkKj�1

i .

(A5)

Mass balances around the nodes in D1 and D4, and non-negativity constraint on

section variables are implied from (A2)– (A4) (see Corollary 4.1 and Remark 4.2), so

it is not required to impose them explicitly. We show below that, for any ri, js P P ,

the relaxation (A2)–(A5) is the best possible for the substructure represented by the

digraph in Figure 4.2.
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Proposition 4.3. The constraints (A2)–(A5), and 0 ¤ ζi,j ¤ 1 define a set such

that, for any ri, js P P, pσ, τ, β, ζq is contained in the convex hull of

Si,j �

$''''''''''&''''''''''%
pσ, τ, β, ζq

����������������

σi,k,l,j � τi,k,jβi,l,j, JlKk�1
i�1 ; JkKj�1

i

τi,k,jβi,l,j � 0, JlKjk�2; JkKj�2
i

j�1̧

k�i

τi,k,j �
j̧

l�i�1

βi,l,j � ζi,j,

τi,k,j, βi,l,j, ζi,j P t0, 1u JlKji�1; JkKj�1
i

,//////////.//////////-
. (4.8)

Proof. First, note that (A5), equations in Corollary 4.1, 0 ¤ ζi,j ¤ 1 and non-

negativity of section variables together constitute a network flow polytope (see Figure

4.2) in pτ, β, σ, ζq space. The extreme points of the polytope are integral, and are given

by

ζi,j � τi,k,j � βi,l,j � σi,k,l,j � 1,

τi,k1,j � βi,l1,j � 0, for k1 � k, l1 � l

,.- JlKk�1
i�1 ; JkKj�1

i , (4.9a)

ζi,j � τi,k,j � βi,l,j � σi,k,l,j � 0. (4.9b)

We show that the only solutions to Si,j are those in (4.9a) and (4.9b). Assume ζi,j � 0.

Then, τi,k,j � 0 for JkKj�1
i , βi,l,j � 0 for JlKji�1 and σi,k,l,j � 0 for JlKk�1

i�1 ; JkKj�1
i . Now,

assume ζi,j � 1. Then, there exists k and l satisfying i   l ¤ k � 1 ¤ j such that

τi,k,j � βi,l,j � σi,k,l,j � 1 and for k1 � k, l1 � l; τi,k1,j � βi,l1,j � σi,k1,l1,j � 0.

Presence of a parent

Stream ri, js P T ztr1, N su is present in a configuration, only if it is produced as

a distillate from one of its top parents and/or as a residue from one of its bottom

parents. To derive the required constraints, we consider the digraph shown in Figure

4.3.

The graph is inspired from the observation that
°N�1
n�j�1 τi,j,n � ζi,j and

°i�1
m�0 βm,i,j �

ζi,j, where we define τi,j,N�1 � νi,j�1,N � νi,j,N and β0,i,j � ω1,i�1,j �ω1,i,j. From (A3),
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Fig. 4.3. Digraph for deriving presence of parent constraint in §4.2.2

it can be verified that 0 ¤ τi,j,N�1 ¤ 1 and 0 ¤ β0,i,j ¤ 1. Physically, τi,j,N�1 � 1

(resp. β0,i,j � 1) indicates that ri, js is not produced as distillate (resp. residue),

because τi,j,N�1 � 1 (resp. β0,i,j � 1) iff ri, js is present (ζi,j � 1) and all its top

(resp. bottom) parents are absent i.e., νi,j�1,N � 1 (resp. ω1,i�1,j � 1).

As in §4.2.2, we partition the nodes into four sets D5 through D8 (see Figure 4.3),

where D5 � tiu (resp. D8 � tju), and D6 � tnuN�1
n�j�1 (resp. D7 � tmui�1

m�0) contains

the heaviest (resp. lightest) component in the top (resp. bottom) parents of ri, js.
Recall that m � 0 and n � N �1 have a special meaning as described in the previous

paragraph. The edges in D5 �D6 (resp. D7 �D8) correspond to all plausible ways

ri, js can be produced as distillate (resp. residue), and the edges in D6 �D7 indicate

whether ri, js is produced only as distillate or only as residue or both. We introduce

variables for edges in D6�D7 such that ψi,n,m,j � 1 iff ri, ns Ò ri, js and rm, js Ó ri, js.
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We require that ψi,N�1,0,j � 0, which, otherwise, would mean that ri, js can be

present even if it is neither produced as distillate nor as residue. Now, we write mass

balances on the network.

for ri, js P T ztr1, N su

$'''&'''%
i�1̧

m�0

ψi,n,m,j � τi,j,n, JnKN�1
j�1 ;

N�1̧

n�j�1

ψi,n,m,j � βm,i,j, JmKi�1
0 ;

ψi,n,m,j ¥ 0, JnKN�1
j�1 , JmKi�1

0 ; ψi,N�1,0,j � 0.

(4.10)

Mass balances around the nodes in D5 and D8, and non-negativity constraint on

section variables are implied from (A2) and (A3), so it is not required to impose them

explicitly.

Proposition 4.4. The constraints (A2), (A3), (4.10) and 0 ¤ ζi,j ¤ 1 define a set

such that, for every ri, js P T ztr1, N su, pτ, β, ζ, ψq is contained in the convex hull of

Si,j �

$''''''&''''''%
pτ, β, ζ, ψq

������������

ψi,n,m,j � τi,j,nβm,i,j, JmKi�1
0 ; JnKN�1

j�1

N�1̧

n�j�1

τi,j,n �
i�1̧

m�0

βm,i,j � ζi,j, ψi,N�1,0,j � 0,

τi,j,n, βm,i,j, ζi,j P t0, 1u JmKi�1
0 ; JnKN�1

j�1

,//////.//////-
.

(4.11)

Proof. We use a similar argument as the one used to prove Proposition 4.3. We rec-

ognize that (4.10),
°N�1
n�j�1 τi,j,n �

°i�1
m�0 βm,i,j � ζi,j, 0 ¤ ζi,j ¤ 1 and non-negativity

requirement on section variables together constitute a network flow polytope, whose

extreme points are integral and precisely those in Si,j.

Constraints on Heat Exchanger Variables

For every pi, jq P C, condenser pi, jq is present only if the stream ri, js is not

produced as residue, i.e., β0,i,j � 1 [23]. Similarly, for every pi, jq P R, reboiler pi, jq
is present only if the stream ri, js is not produced as distillate, i.e., τi,j,N�1 � 1.
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Further, a condenser (resp. reboiler) must be present with a pure component ri, is, if

ri, is is not produced as residue (resp. distillate) i.e. β0,i,i � 1 (resp. τi,i,N�1 � 1).

χi,j ¤ β0,i,j, @ pi, jq P C; ρi,j ¤ τi,j,N�1, @ pi, jq P R (A6)

χi,i ¥ β0,i,i, @ pi, iq P C; ρi,i ¥ τi,i,N�1, @ pi, iq P R. (A7)

Proposition 4.5. The constraints (A2)–(A7), (4.10), 0 ¤ ζi,j ¤ 1, χi,j ¥ 0 and

ρi,j ¥ 0 define a set that, for every ri, js P S, is contained in the convex hull of

solutions that satisfy at least one of the following conditions, where unspecified τi,�,j,

βi,�,j, σi,�,�,j, ψi,�,�,j, χi,j, and ρi,j variables are zero:

1. for some 1 ¤ m ¤ i � 1, j � 1 ¤ n ¤ N , and i   l ¤ k � 1 ¤ j, we have

ζi,j � τi,k,j � βi,l,j � σi,k,l,j � τi,j,n � βm,i,j � ψi,n,m,j � 1,

2. for some j � 1 ¤ n ¤ N , and i   l ¤ k � 1 ¤ j, we have ζi,j � τi,k,j � βi,l,j �
σi,k,l,j � τi,j,n � β0,i,j � ψi,n,0,j � 1; χi,j � 1 or 0,

3. for some 1 ¤ m ¤ m � 1, and i   l ¤ k � 1 ¤ j, we have ζi,j � τi,k,j � βi,l,j �
σi,k,l,j � τi,j,N�1 � βm,i,j � ψi,N�1,m,j � 1; ρi,j � 1 or 0,

4. all the variables are zero.

Proof. We modify the graph in Figure 4.3 to accommodate (A6) and (A7), and com-

bine it with the graph in Figure 4.2. The resulting graph is shown in Figure 4.4. Next,

observe that (A5), (4.10),
°j�1
k�i τi,k,j �

°j
l�i�1 βi,l,j �

°N�1
n�j�1 τi,j,n �

°i�1
m�0 βm,i,j �

ζi,j, 0 ¤ ζi,j ¤ 1 (which are implied from (A2)–(A4)), and non-negative constraint

on all variables together constitute a network flow polytope. The extreme points this

polytope are integral, and are precisely those mentioned in the Proposition.

Since ψ variables are not used elsewhere, we project (4.10) to the space of section

variables (τ, β).
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Fig. 4.4. Digraph for the proof of Proposition 4.5

Proposition 4.6. For every ri, js P T ztr1, N su, let Si,j � tpτ, β, ψq | (4.10);
°i�1
m�0 βm,i,j �°N�1

n�j�1 τi,j,n; τi,j,n ¥ 0, JnKN�1
j�1 ; βm,i,j ¥ 0, JmKi�1

0 u. Then, the projection of Si,j in

pτ, βq space is

projpτ,βqpSi,jq �

$'''&'''%pτ, βq
���������
β0,i,j ¤

Ņ

n�j�1

τi,j,n;
i�1̧

m�0

βm,i,j �
N�1̧

n�j�1

τi,j,n

τi,j,n ¥ 0, JnKN�1
j�1 ; βm,i,j ¥ 0, JmKi�1

0

,///.///- . (4.12)

Proof. See §B.3 in the Appendix.

Apart from the following, the remaining constraints in (4.12) follow from (A2)

and (A3):

for ri, js P T ztr1, N su, β0,i,j ¤
Ņ

n�j�1

τi,j,n. (A8)
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Remark 4.3. Using (A5), (4.6) and (4.7), τ , β, ν and ω variables can be substituted

out. (The resulting model in the lower dimensional space can be found in the chapter).

Constraints (A4)–(A8) model the space of admissible configurations. We compare

this formulation with CG06, GA10, and TAT19, which refer to the formulations of

Caballero and Grossmann [9], Giridhar and Agrawal [10], and Tumbalam Gooty et

al. [23], respectively.

Proposition 4.7. The feasible region defined using constraints (A4)–(A8) is tighter

than the set by imposing the constraints in the formulations of CG06, GA10, and

TAT19.

Proof. In addition to the binary variables associated with the presence/absence con-

densers and reboilers, CG06 has variables for the presence of heat exchanger, which

we denote as ηi,j. To our model, we add

ηi,j � χi,j � ρi,j. (4.13)

Further, we remark that for i ¤ k ¤ j � 1, ri, js P P ,

ķ

m�i

τi,m,j
(A5)�

ķ

m�i

m�1̧

l�i�1

σi,m,l,j
Fig. 4.2�

k�1̧

l�i�1

ķ

m�l�1

σi,m,l,j
k¤j�1¤

k�1̧

l�i�1

j�1̧

m�l�1

σi,m,l,j
(A5)�

k�1̧

l�i�1

βi,l,j.

(4.14)

In Tables 4.3, 4.2 and 4.4, we prove that the set defined by (A2)–(A8), ζi,j P r0, 1s, @ ri, js P
T , ρi,j P r0, 1s, @ pi, jq P R and χi,j P r0, 1s, @ pi, jq P C is tighter than CG06, GA10

and TAT19, respectively. We point out that, in GA06, the authors did not consider

thermally coupled configurations. Thus, we show the proof only for the constraints

they reported.

The fact that our formulation is strictly tighter will follow the numerical example

below. Consider N � 4:

1. When restricted to ζ1,2 � ζ1,3 � 0, ζ1,1 � ζ1,4 � ζ2,2 � ζ3,3 � ζ4,4 � 1 and

ζ2,3 � ζ2,4 � ζ3,4 � 1{2, CG06 is feasible, while (A) is infeasible.
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2. The point τ1,1,3 � τ1,2,3 � τ1,1,4 � τ1,3,4 � τ2,2,4 � β1,2,3 � β1,3,3 � β1,3,4 �
β2,4,4 � 0; τ1,1,2 � τ1,2,4 � β1,2,2 � 1 and τ2,2,3 � τ2,3,4 � τ3,3,4 � β1,2,4 � β1,4,4 �
β2,3,3 � β2,3,4 � β3,4,4 � 1{2 is an extreme point to GA10, and infeasible to (A).

3. When restricted to ζ3,4 � 0, ζ1,1 � ζ1,2 � ζ1,4 � ζ2,2 � ζ3,3 � ζ4,4 � 1 and

ζ1,3 � ζ2,3 � ζ2,4 � 1{2, TAT19 is feasible, while (A) is infeasible.

Table 4.2.: CG06 for the space of admissible configura-

tions. The first column indicates the constraint number

in Table 1 of [9]. ‘Co.’, ‘Re.’ and ‘Pr.’ stand for Corol-

lary, Remark and Proposition, respectively.

# Proof

r1s
j�1̧

k�i

k�1̧

l�i�1

σi,k,l,j
(A5), Co.4.1� ζi,j ¤ 1

r2s

Ņ

n�j�1

j�1̧

m�i�1

σi,j,m,n
(A5)�

Ņ

n�j�1

τi,j,n
Pr.4.5¤ ζi,j ¤ 1

i�1̧

m�1

j�1̧

n�i�1

σm,n,i,j
(A5)�

i�1̧

m�1

βm,i,j
Pr.4.5¤ ζi,j ¤ 1

r3s

i�1̧

m�1

σm,i�1,i,i �
Ņ

n�i�1

σi,i,i�1,n
(A5)�

i�1̧

m�1

βm,i,i �
Ņ

n�i�1

τi,i,n
(A8)¥ ζi,i

(A4)¥ 1,

for ri, is P T

r6s
σi,j,m,n

(A5)¤ τi,j,n
Re.4.2¤ ζi,j

Co.4.1, (A5)�
j�1̧

k�i

k�1̧

l�i�1

σi,k,l,j

+
for JmKj�1

i�1 ; JnKNj�1

σm,n,i,j
(A5)¤ βm,i,j

Re.4.2¤ ζi,j
Co.4.1, (A5)�

j�1̧

k�i

k�1̧

l�i�1

σi,k,l,j

+
for JnKj�1

i�1 ; JmKi�1
1

continued on next page
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Table 4.2.: continued

r6s
σi,k,l,j

Pr.4.3¤ ζi,j
(A8)¤

Ņ

n�i�1

τi,j,n �
i�1̧

m�1

βm,i,j

(A5)�
Ņ

n�j�1

j�1̧

m�i�1

σi,j,m,n �
i�1̧

m�1

j�1̧

n�i�1

σm,n,i,j

,////.////- for JlKk�1
i�1 ; JkKj�1

i

r12s σi,k,l,j
Pr.4.3¤ ζi,j, for JlKk�1

i�1 ; JkKj�1
i

r13s
j�1̧

k�i

k�1̧

l�i�1

σi,k,l,j
(A5), Co.4.1¥ ζi,j

r4s

1� ηi,i
(4.13)¤
ρi,i¥0

1� χi,i
(A7)¤ 1� β0,i,i

(A4), Pr.4.4�
i�1̧

m�1

βm,i,i
(A5)�

i�1̧

m�1

σm,i�1,i,i, for pi, iq P C

1� ηi,i
(4.13)¤
χi,i¥0

1� ρi,i
(A7)¤ 1� τi,i,N�1

(A4), Pr.4.4�
Ņ

n�i�1

τi,i,n
(A5)�

Ņ

n�i�1

σi,i,i�1,N , for pi, iq P R

r5s

ηi,i
(4.13)� χi,j � ρi,j

(A6), Pr.4.4¤ ζi,j �
i�1̧

m�1

βm,i,j � ζi,j �
Ņ

n�j�1

τi,j,n

β,τ¥0¤
ζi,j¤1

p1� βm,i,jq � p1� τi,j,n1q
Pr.4.3¤ p1� σm,n,i,jq � p1� σi,j,m1,n1q

for Jm1Kj�1
i�1 ; Jn1KNj�1; JmKi�1

1 ; JnKj�1
i�1

r7s ηi,j
(4.13)� χi,j � ρi,j

(A6), Pr.4.4, (A8)¤ ζi,j
(A8), (A5)¤

Ņ

n�j�1

j�1̧

m�i�1

σi,j,m,n �
i�1̧

m�1

j�1̧

n�i�1

σm,n,i,j
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Table 4.3.
GA10 for space of admissible configurations. The first column indi-
cates the section number in [10]. ‘Co.’, ‘Re.’ and ‘Pr.’ stand for
Corollary, Remark and Proposition, respectively.

§ Proof

3.1
j̧

l�i�1

βi,l,j �
j�1̧

k�i

τi,k,j
Co.4.1� ζi,j ¤ 1

3.1

Ņ

n�j�1

τi,j,n
Pr.4.5¤ ζi,j

Co.4.1�
j�1̧

k�i

τi,k,j

i�1̧

m�1

βm,i,j
Pr.4.5¤ ζi,j

Co.4.1�
j�1̧

k�i

τi,k,j

3.1

j�1̧

k�i

τi,k,j
Co.4.1� ζi,j

(A8)¤
Ņ

n�j�1

τi,j,n �
i�1̧

m�1

βm,i,j

3.2

max

#
pj � i� 1q

i�1̧

m�1

βm,i,j, pj � i� 1q
Ņ

n�j�1

τi,j,n

+
Pr.4.5¤ pj � i� 1qζi,j Co.4.1�

pj � i� 1q
j�1̧

k�i

τi,k,j �
j�1̧

k�i

pj � kqτi,k,j �
j�1̧

k�i

pk � i� 1qτi,k,j �
j�1̧

k�i

ķ

m�i

τi,m,j�
j�1̧

k�i

pk � i� 1qτi,k,j
(4.14)¤

j�1̧

k�i

k�1̧

l�i�1

βi,l,j �
j�1̧

k�i

pk � i� 1qτi,k,j �
j̧

l�i�1

j�1̧

k�l�1

βi,l,j�
j�1̧

k�i

pk � i� 1qτi,k,j �
j̧

l�i�1

pj � l � 1qβi,l,j �
j�1̧

k�i

pk � i� 1qτi,k,j

3.3

Ņ

n�j�1

τi,j,n
Pr.4.5¤ ζi,j ¤ 1

i�1̧

m�1

βm,i,j
Pr.4.5¤ ζi,j ¤ 1

3.3
Ņ

n�i�1

τi,i,n �
i�1̧

m�1

βm,i,i
(A8)¥ ζi,i

(A4)� 1



77

Table 4.4.
TAT19 for the space of admissible configurations. The first column
indicates the constraint number in [23]. ‘Re.’ and ‘Pr.’ stand for
Remark and Proposition, respectively.

# Proof

(H2) ζ1,N
(A4)� ζi,i

(A4)� 1

(H3) ζi,j
(A8)¤

Ņ

n�j�1

τi,j,n �
i�1̧

m�1

βm,i,j
Pr.4.3¤

Ņ

n�j�1

ζi,n �
i�1̧

m�1

ζm,j

(H4) ζi,k �
j�1̧

n�k�1

ζi,n � ζi,j � 1
Re.4.2¤ τi,k,j

Pr.4.3¤
k�1̧

l�i�1

βi,l,j
Re.4.2¤

k�1̧

l�i�1

ζl,j

+
for JkKj�1

i

(H5) ζi,j �
l�1̧

m�i�1

ζm,j � ζl,j � 1
Re.4.2¤ βi,l,j

Pr.4.3¤
j�1̧

k�l�1

τi,k,j
Re.4.2¤

j�1̧

k�l�1

ζi,k

+
for JlKji�1

(H6) χi,j � ρi,j
(A6), Pr. 4.4¤ ζi,j �

i�1̧

m�1

βm,i,j � ζi,j �
Ņ

n�j�1

τi,j,n
(A8)¤ ζi,j

(H7)

χi,j
(A6), Pr. 4.4¤ ζi,j �

i�1̧

m�1

βm,i,j
(A8)¤

Ņ

n�j�1

τi,j,n
Re.4.2¤

Ņ

n�j�1

ζi,n

ρi,j
(A6), Pr. 4.4¤ ζi,j �

Ņ

n�j�1

τi,j,n
(A8)¤

i�1̧

m�1

βm,i,j
Re.4.2¤

i�1̧

m�1

ζm,j

(H8)
χi,j � ρi,j

(A6)¤ νi,j�1,N � νi,j,N � ω1,i�1,j � ω1,i,j

(A3)¤ p1� ζi,nq � p1� ζm,jq,
for JmKi�1

1 ; JnKNj�1

(H9)

&

(H10)

χi,i
(A7), Pr. 4.4¥ ζi,i �

i�1̧

m�1

βm,i,i
Re.4.2, (A4)¥ 1�

i�1̧

m�1

ζm,i

+
for pi, iq P C

ρi,i
(A7), Pr. 4.4¥ ζi,i �

Ņ

n�i�1

τi,i,n
Re.4.2, (A4)¥ 1�

Ņ

n�i�1

ζi,n

+
for pi, iq P R

4.2.3 Mass Balance Constraints

We model the problem as a network flow problem. Figure 4.5 shows the repre-

sentative nodes and arcs in the network, and variable definitions are in Table 4.5.
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Each split ri, ks{rl, js is performed in a distillation column Qiklj (see Figures 4.5(a)

and 4.5(b)). Material flows to and from the column Qiklj only when σiklj � 1. The

material balances across each column Qiklj are as follows

for ri, js P S, JkKj�1
i , JlKk�1

i�1 :

f in
ikljp � f rs

ikljpδp¤k � f ss
ikljpδp¥l, JpKji ; U rs

ikljδj N � U ss
ikljδ1 i � V rs

iklj � V ss
iklj

Kss
ikljδ1 i �Krs

ikljδj N � Lss
iklj � Lrs

iklj

0 ¤ p�q ¤ σiklj p�qup, @ p�q P tAll component, liquid and vapor flowsu

,////.////- , (A9)

for ri, js P tr1, N su, JkKj�1
i , JlKk�1

i�1 :

Fpσiklj � f rs
ikljpδp¤k � f ss

ikljpδp¥l, JpKji ;
�¸N

p�1
Fp

	
p1� Φ1,Nqσiklj � V rs

iklj � V ss
iklj�¸N

p�1
Fp

	
Φ1,Nσiklj � Lss

iklj � Lrs
iklj

0 ¤ p�q ¤ σiklj p�qup, @ p�q P tAll component, liquid and vapor flowsu

,////.////- ,

(A10)

for ri, js P P , JkKj�1
i , JlKk�1

i�1 :

V rs
iklj � Lrs

iklj �
¸k

p�i
f rs
ikljp; Lss

iklj � V ss
iklj �

¸j

p�l
f ss
ikljp. (A11)

The constraints in (A9) model component, vapor, and liquid mass balances across

column Qiklj. In the above δp�q is 1 if p�q is true and 0 otherwise. (A10) handles the

case where the feed stream is the process feed, r1, N s. Fp and Φ1,N are as defined in

§4.1. The last constraint in both (A9) and (A10) suppresses material flows to column

Qiklj when σiklj � 0. We use p�qup to denote the upper bound on p�q, and discuss how

these are obtained later. The first (resp. second) constraint in (A11) models that the

net distillate (resp. residue) flow Qiklj as the difference between the vapor and liquid

(resp. liquid and vapor) flows in the rectifying (resp. stripping) section.

Column Qiklj receives feed from the associated condenser pi, jq and/or reboiler

pi, jq (see Figures 4.5(c) and 4.5(d)). Further, condenser (resp. reboiler) pi, jq regu-

lates vapor-liquid traffic from all the splits producing ri, js as distillate (resp. residue),
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Fig. 4.5. (a) Representative column for splits of process feed i.e.,
ri, js P tr1, N su, JkKj�1

i , JlKk�1
i�1 (b) Representative column for the re-

maining splits ri, js P S, JkKj�1
i , JlKk�1

i�1 (c) Representative condenser
for pi, jq P Cztri, isuN�1

i�1 (see (A12) for domain of indices m,n, k, l) (d)
Representative reboiler for pi, jq P Rztri, isuNi�2 (see (A13) for domain
of indices m,n, k, l) (e) Representative arrangement for pure prod-
uct withdrawals (see (A14) for domain of indices m,n, and (A15) for
domain of indices m1, n1) (f) Representative arrangement for overall
component mass balance for ri, js P S (see (A17) for domain of indices
m,n,m1, n1, k, l)
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Table 4.5.
Definition of continuous decision variables.

Variable Definition 
f rs
ikljp

(k
p�i

Net molar flow of component p in the rectifying section of Qiklj 
f ss
ikljp

(j
p�l

Net molar flow of component p in the stripping section of Qiklj 
f in
ikljp

(j
p�i

Net molar flow of component p in the feed to Qiklj

V rs
iklj Vapor flowrate in the rectifying section of Qiklj

V ss
iklj Vapor flowrate in the stripping section of Qiklj

Lrs
iklj Liquid flowrate in the rectifying section of Qiklj

Lss
iklj Liquid flowrate in the stripping section of Qiklj

U rs
iklj Vapor in-flow into Qiklj from condenser pi, jq

U ss
iklj Vapor out-flow from Qiklj to reboiler pi, jq

Krs
iklj Liquid out-flow from Qiklj to condenser pi, jq

Kss
iklj Liquid in-flow into Qiklj from reboiler pi, jq 
θijq

(j�1

q�i
Underwood root of Qiklj satisfying αq�1 ¤ θi,j,q ¤ αq

Υrs
iklj Minimum vapor flow required in the rectifying section of Qiklj

Υss
iklj Minimum vapor flow required in the stripping section of Qiklj

FC ij Molar flowrate in condenser pi, jq
FRij Molar flowrate in reboiler pi, jq

and distributes flows to all the splits of ri, js. Material balances across these con-

densers and reboilers are given below:

For pi, jq P Cztri, isuN�1
i�1 :

Ņ

n�j�1

j�1̧

m�i�1

V rs
ijmn � FC ij �

j�1̧

k�i

k�1̧

l�i�1

U rs
iklj;

Ņ

n�j�1

j�1̧

m�i�1

Lrs
ijmn � FC ij �

j�1̧

k�i

k�1̧

l�i�1

Krs
iklj

0 ¤ FC ij ¤ pFC ijqupχij;

0 ¤ Krs
iklj ¤ pKrs

ikljqupp1� χijq, JlKk�1
i�1 , JkKj�1

i

,////////////.////////////-
(A12)
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For pi, jq P Rztri, isuNi�2 :

i�1̧

m�1

j�1̧

n�i�1

V ss
mnij � FRij �

j�1̧

k�i

k�1̧

l�i�1

U ss
iklj;

i�1̧

m�1

j�1̧

n�i�1

Lss
mnij � FRij �

j�1̧

k�i

k�1̧

l�i�1

Kss
iklj

0 ¤ FRij ¤ pFRijqupρij;

0 ¤ U ss
iklj ¤ pU ss

ikljqupp1� ρijq, JlKk�1
i�1 , JkKj�1

i .

,////////////.////////////-
(A13)

We are interested in configurations that either have heat exchangers or thermal cou-

plings, but not both. The last two constraints in (A12) and (A13) suppress flows in

appropriate arcs if the heat exchangers are absent. The above constraints are written

only for heat exchangers associated with mixtures. For heat exchangers associated

with pure component products, the vapor and liquid flows are further constrained to

produce Φi,iFi and p1�Φi,iqFi of component i in liquid and vapor phases, respectively

(see Figure 4.5(e)). Mass balances around these heat exchangers are given below.

For pi, iq P C :

Ņ

n�i�1

i�1̧

m�i�1

V rs
iimn � FC ii � U rs

iiii;

Ņ

n�i�1

i�1̧

m�i�1

Lrs
iimn � FC ii �Krs

iiii

0 ¤ U rs
iiii; 0 ¤ FC ii ¤ pFC iiqupχii;

pKrs
iiiiqlo ¤ Krs

iiii ¤ pKrs
iiiiqupp1� χiiq

,///////////.///////////-
, (A14)

For pi, iq P R :

i�1̧

m�1

i�1̧

n�i�1

V ss
mnii � FRii � U ss

iiii;
i�1̧

m�1

i�1̧

n�i�1

Lss
mnii � FRii �Kss

iiii

0 ¤ Kss
iiii; 0 ¤ FRii ¤ pFRiiqupρii;

pU ss
iiiiqlo ¤ U ss

iiii ¤ pU ss
iiiiqupp1� ρiiq

,///////////.///////////-
, (A15)

For pi, iq P C XR : U rs
iiii � U ss

iiii � Fpp1� Φi,iq; Kss
iiii �Krs

iiii � FpΦi,i. (A16)
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where p�qlo denotes the lower bound on p�q. From (A16) and (A15) (resp. (A14)),

pKrs
iiiiqlo � �FpΦi,i (resp. pU ss

iiiiqlo � �Fpp1 � Φi,iq). For each submixture ri, js P P ,

the net inflow of component p equals the sum of component flows from all the splits

that produce ri, js as distillate or residue. The net inflow is distributed among all

splits of ri, js (see Figure 4.5(f)).

For ri, js P S :
j�1̧

k�i

k�1̧

l�i�1

f in
ikljp �

Ņ

n�j�1

j�1̧

m�i�1

f rs
ijmnp �

i�1̧

m�1

j�1̧

n�i�1

f ss
mnijp, JpKji . (A17)

Finally, modeling the problem in the above manner requires rigorous bounds on all

material flows. The net component inflow to and outflow from any column cannot

exceed in steady-state the component flow in the process feed. Therefore, the upper

bound on all flows of component p is chosen to be Fp i.e., pf in
ikljpqup � pf rs

ikljpqup �
pf ss
ikljpqup � Fp. However, although required for deriving rigorous relaxations, there is

no simple upper bound on vapor and liquid flows in the columns and heat exchangers.

For deriving a bound, we use optimality-based bound tightening, where we find fea-

sible flows for an admissible configuration using the technique of [35]. This technique

can also be replaced with a local nonlinear programming solver. Let this upper bound

be VD�. Then, we solve the following linear programs (LP) to derive bounds:

max V rs
iklj, s.t. (A4)� (A17),

¸
pi,jqPR

FRi,j ¤ φVD�
(4.15)

We choose φ � 1, if only the optimal solution is desired. Since the model does

not capture all operability concerns, such as controllability and suitability w.r.t heat

integration with the rest of the plant, and vapor flow predictions are based on shortcut

methods rather than rigorous simulations, industrial practitioners are often interested

in identifying a ranklist of a few best solutions for this MINLP. Such a ranklist allows

them to a posteriori incorporate such considerations. Therefore, to allow construction

of such a ranklist, we choose φ � 1.5. With this choice, any configuration that

consumes at most 50% more energy than the feasible solution remains in the search

space. Our numerical experiments show that each LP can be solved in a fraction of a

second using solvers such as Gurobi [49], and the computational time taken to solve

all the LPs for a five-component mixture is typically negligible.
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4.2.4 Underwood Constraints

As mentioned in §2, for a given split, there is a minimum threshold vapor require-

ment in each section of a column, below which the products are not produced with the

desired purity. A column can, however, carry more vapor than the threshold, and the

excess vapor can, if transferred to other columns, be utilized in those columns. The

threshold vapor requirement can be computed using Underwood constraints included

below:

For ri, js P P , JkKj�1
i , JlKk�1

i�1 :

j̧

p�i

αpf
in
ikljp

αp � θijq
� U rs

ikljδj N � U ss
ikljδ1 i, JqKkl�1, (A18)

ķ

p�i

αpf
rs
ikljp

αp � θijq
¤ Υrs

iklj,
j̧

p�l

αpf
ss
ikljp

αp � θijq
¥ �Υss

iklj, JqKkl�1, (A19)

ķ

p�i

αpf
rs
ikljp

αp � θijq
¥ Υrs

iklj,
j̧

p�l

αpf
ss
ikljp

αp � θijq
¤ �Υss

iklj, JqKk�1
l , (A20)

αq�1 ¤ θijq ¤ αq, (A21)

U rs
iklj N � U ss

1 iklj � Υrs
iklj �Υss

iklj, (A22)

0 ¤ Υrs
iklj ¤ V rs

iklj, 0 ¤ Υss
iklj ¤ V ss

ikljp, (A23)

where Υrs
iklj and Υss

iklj denote the threshold vapor flow in rectifying and stripping

sections, respectively. Note that, for the process feed r1, N s, f in
ikljp and U rs

ikljδj N �
U ss

1 ikljδ1 i in (A18) and (A22) are replaced by Fpσiklj and
�°N

p�1 Fp

	
p1�Φ1,Nqσi,k,l,j,

respectively. (A18) is commonly known in the literature as the Underwood feed equa-

tion, and it computes Underwood roots tθijqukq�l�1, which satisfy αq�1 ¤ θijq ¤ αq [31].

(A19) governs the minimum vapor requirement in rectifying and stripping sections

as a function of the distillate and residue compositions. (A20) ensures that the min-

imum vapor constraints are binding for tθijquk�1
q�l . These constraints are required for

the model to have the correct degrees of freedom as described in [23]. (A22) models

vapor balance at the feed location in terms of minimum vapor flows. (A23) ensures

that the actual vapor in each section is at least as high as the threshold vapor flow.
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Remark 4.4. Since the process feed is always present i.e., ζ1,N � 1, and the net

component and vapor inflow to columns Q1klN where 1   l ¤ k � 1 ¤ N are known,

we solve the Underwood feed equation (A18) a priori to determine the Underwood

roots tθ1NquN�1
q�1 , and fix these variables to the calculated values.

Remark 4.5. Recognizing that f rs
ikljp ¥ 0, θijk ¤ αk   αk�1   � � �   αi, f

ss
ikljp ¥ 0

and αj   αj�1   � � �   αl   θijl�1, we have

for ri, js P P , JkKj�1
i , JlKk�1

i�1

#
0 ¤

ķ

p�i

αpf
rs
ikljp

αp � θijk
; 0 ¤ �

j̧

p�l

αpf
ss
ikljp

αp � θijl�1

. (4.16)

Next, using (4.16), component mass balance f in
ikljp � f rs

ikljpδp¤k�f ss
ikljpδp¥l, and (A18),

it can be shown that

for ri, js P P , JkKj�1
i , JlKk�1

i�1

$'''''&'''''%
U rs
ikljδj N � U ss

ikljδ1 i ¤
ķ

p�i

αpf
rs
ikljp

αp � θijl�1

U ss
ikljδ1 i � U rs

ikljδj N ¤ �
j̧

p�l

αpf
ss
ikljp

αp � θijk
.

(4.17)

Since the vapor flows are bounded, we have finite upper and lower bounds on all

nonlinear expressions in (A18)–(A20).

4.2.5 Exploiting Monotonicity of Underwood Equations

These cuts are inspired from [50] and [34]. Although these relations are implicit

in the model, they are not implied in the relaxation, when Underwood constraints

are relaxed. We refer to [23] for a derivation.

When ri, js is produced as distillate from one of its top parent ri, ns where j�1 ¤
n ¤ N i.e., τi,j,n � 1, but not produced as residue from any of its bottom parents i.e.,

β0,i,j � 1, and the associated condenser pi, jq is absent, then θinq lower bounds θijq

for JqKj�1
i . Similarly, when ri, js is produced as residue from one of its bottom parent

rm, js where 1 ¤ m ¤ i� 1 i.e., βm,i,j � 1, but not produced as distillate from any of
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its top parents i.e., τi,j,N�1 � 1, and the associated reboiler pi, jq is absent, then θmjq

upper bounds θijq for JqKj�1
i . These constraints are imposed as follows:

for ri, js P S
$&%θinq � θijq ¤Mq rχi,j � p1� τi,j,nq � p1� β0,i,jqs , JnKNj�1, JqKj�1

i

θijq � θmjq ¤Mq rρi,j � p1� βm,i,jq � p1� τi,j,N�1qs , JmKi�1
1 , JqKj�1

i ,

(A24)

where Mq � pαq � αq�1q corresponds to the upper bound on the difference of Under-

wood roots (see (A21)). Numerical examples in [23] illustrate that these cuts help

branch & bound converge faster. Given that our formulation has been developed in a

lifted space, we use τ and β variables to give a tighter representation of the constraint

in (A24). Moreover, if the variables ψ1,m,n,j are not eliminated using Proposition 4.6,

they can be used to further tighten the above constraints. For example, in the first

constraint, p1� τi,j,nq � p1� β0,i,jq can be replaced with p1� ψi,n,0,jq. This concludes

the formulation of MINLP (A).

4.3 Relaxation and Solution Procedure

Apart from integrality requirements on stream pζi,jq and heat exchanger variables

(ρi,j and χi,j), the remaining source of nonconvexity in the MINLP is the Underwood

constraints. In this section, we describe the construction of a convex relaxation of

Underwood constraints ((A18)–(A21)), referred to hereafter as the relaxation, de-

fined using convex constraints that admits all feasible solutions. One of the chal-

lenges in constructing a valid relaxation is that the denominator of certain fractions

in Underwood constraints can approach arbitrarily close to zero (see (A18)–(A21)).

Consequently, off-the-shelf global solvers, such as BARON [21], report an error and

are not able to solve the problem. The common strategy used in the literature is to

add/subtract εθ (typically 10�2 � 10�3) from the bounds of θijq to prevent it from

approaching either αq�1 or αq (see (A21)). However, this ad-hoc strategy has been

adopted without a rigorous proof. Our numerical experiments suggest that the choice

of this εθ is not straightforward, and varies from one instance to another. In the follow-
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ing, we show that a rigorous relaxation for the fraction can be constructed although

the denominator may approach close to zero.

In the following, we drop indices iklj. This is because, Underwood equations apply

to a column, say Qiklj, and these indices are easily gleaned from the column speci-

fication or the associated split ri, ks{rl, js. Moreover, for notational convenience, we

describe the relaxation using U � tpf, U,Υ, θq | (4.18); pf in
p , f

rs
p , f

ss
p q P r0, Fps3, p �

1, 2; 0 ¤ p�q ¤ p�qup, @ p�q P tU rs, U ss,Υrs,Υssuu, where

α1f
in
1

α1 � θ
� α2f

in
2

θ � α2

� U rs � U ss, (4.18a)

Ers ¤ α1f
rs
1

α1 � θ
� α2f

rs
2

θ � α2

¤ Υrs, (4.18b)

Ess ¤ � α1f
ss
1

α1 � θ
� α2f

ss
2

θ � α2

¤ Υss, (4.18c)

α2 ¤ θlo ¤ θ ¤ θup ¤ α1, (4.18d)

U rs � U ss � Υrs �Υss, (4.18e)

f in
p � f rs

p � f ss
p , p � 1, 2. (4.18f)

Here, we assume that column Qiklj performs the split of a binary mixture. Observe

that (4.18a), the second inequality in (4.18b) and (4.18c) are simplified versions of

(A18) and (A19) for binary mixtures. We ensure that all fractions are non-negative

by factoring out a negative sign from the fractions whose denominator is negative (see

(4.18)). Next, Ers and Ess denote lower bounds on nonlinear expressions in (4.18b)

and (4.18c), respectively. We choose Ers (resp. Ess) to be Υrs (resp. Υss) if the second

inequality in (4.18b) (resp. (4.18c)) needs to be binding, as in (A20). Else, we choose

the lower bound derived in (4.16) and (4.17). (4.18d), (4.18e), and (4.18f) correspond

to (A21), (A22), and (A9), repectively. Lastly, we remark that, in (A19) and (A20),

f rs
2 � f ss

1 � 0 for a split of a binary mixture. Since our purpose in restricting to

the binary case is to illustrate the mathematical structure of relaxations, we do not

consider this restriction. In general splits, one or more components may distribute

between the distillate and residue.
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The first step in standard approaches to relax U is to linearize Underwood con-

straints by introducing an auxiliary variable representing the graph of each fraction.

Then, the restriction that this variable take the value of the fraction is replaced with

the less stringent restriction that the variable lies in a convex set containing the graph

of fraction. Instead, we reformulate U as described in §4.3.1 before linearizing the

Underwood constraints.

4.3.1 Reformulation

We adapt classical Reformulation-Linearization Technique (RLT) [26] to fractions,

and reformulate U by appending RLT cuts derived using Underwood constraints.

For clarity, we present the derivation of RLT cuts with Underwood minimum vapor

constraint in the rectifying section (second inequality in (4.18b)), and describe the

entire reformulated set towards the end. We multiply each Underwood constraint

with the bound factors of θ, pθ � θloq, and pθup � θq. A naive approach would then

disaggregate the product, leading to

α1f
rs
1 θ

α1 � θ
� α1f

rs
1 θ

lo

α1 � θ
� α2f

rs
2 θ

θ � α2

� α2f
rs
2 θ

lo

θ � α2

¤ Υrs � θ �Υrs � θlo, (4.19a)

α1f
rs
1 θ

up

α1 � θ
� α1f

rs
1 θ

α1 � θ
� α2f

rs
2 θ

up

θ � α2

� α2f
rs
2 θ

θ � α2

¤ Υrs � θup �Υrs � θ, (4.19b)

following which auxiliary variables are introduced to linearize each nonlinear term:

Hrs
p � f rs

p {|αp � θ|, Hθrs
p � f rs

p θ{|αp � θ|, for p � 1, 2, and Υθrs � Υrs � θ. Here, and in

the rest of the chapter, the variables introduced to linearize a product will be written

by underlining the concatenation of symbols, as in Υθrs � Υrs � θ. Instead, we use

polynomial long division prior to linearization, which transforms (4.19) to

α1pα1 � θloqf rs
1

α1 � θ
� α1f

rs
1 � α2pθlo � α2qf rs

2

θ � α2

� α2f
rs
2 ¤ Υrs � θ �Υrs � θlo, (4.20a)

� α1pα1 � θupqf rs
1

α1 � θ
� α1f

rs
1 � α2pθup � α2qf rs

2

θ � α2

� α2f
rs
2 ¤ Υrs � θup �Υrs � θ. (4.20b)

Next, we introduce auxiliary variables to linearize nonlinear terms: Hrs
p � f rs

p {|αp�θ|,
for p � 1, 2, and Υθrs � Υrs � θ. We shall refer to the proposed variant as the
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Reformulation-Division-Linearization Technique (RDLT) of fractional terms, in order

to easily distinguish and emphasize the use of polynomial division as an intermediate

step. Clearly, RDLT cuts require fewer variables than those derived by naive applica-

tion of RLT as described above. In addition, RDLT cuts lead to a tighter relaxation

of U , which we demonstrate below.

Proposition 4.8. Let B � rf lo
1 , f

up
1 s � rf lo

2 , f
up
2 s � rΥlo,Υups � rθlo, θups, and S �

tpf,Υ, θq P B | α1f1
α1�θ

� α2f2
θ�α2

¤ Υu. Let Υθ, Hi, Hθi be linearizations of Υ � θ, fi
|αi�θ|

,

and fiθ
|αi�θ|

respectively. Define Sstd � tpf,Υ, θ,Hq P B�R2 | α1H1�α2H2 ¤ Υ, qHi ¤
Hi ¤ pHi, i � 1, 2u, SRLT �  pf,Υ, θ,H,Hθ,Υθq P C �� (4.21)

(
, where C � B � R5

and

α1pHθ1 � θloH1q � α2pHθ2 � θloH2q ¤ Υθ �Υ � θlo, (4.21a)

α1pθupH1 �Hθ1q � α2pθupH2 �Hθ2q ¤ Υ � θup �Υθ. (4.21b)

Let SRDLT �
 pf,Υ, θ,H,Υθq P C 1

�� (4.22)
(

, where C 1 � B � R5 and

α1pα1H1 � f1 � θloH1q � α2pα2H2 � f2 � θloH2q ¤ Υθ �Υ � θlo, (4.22a)

α1pθupH1 � α1H1 � f1q � α2pθupH2 � f2 � αH2q ¤ Υ � θup �Υθ. (4.22b)

Assume that C �  pf,Υ, θ,H,Hθ,Υθq �� pf,Υ, θ,H,Υθq P C 1, Hθ1 � α1H1 �
f1, Hθ2 � α2H2 � f2

(
and projH1,H2

C � r qH1, pH1s � r qH2, pH2s. Then, Sstd �
projpf,Υ,θ,HqpSRLTq and SRLT �  pf,Υ, θ,H,Hθ,Υθq P SRDLT � R2 | Hθ1 � α1H1 �
f1, Hθ2 � α2H2 � f2

(
, where the right hand side is an affine lifting of SRDLT.

Proof. The first part of the statement follows easily because α1H1 � α2H2 ¤ Υ is

obtained by adding (4.21a) and (4.21b), and the bounds on Hi in Sstd are implied by

our assumption projH1,H2
C � r qH1, pH1s � r qH2, pH2s. The second part follows similarly

because (4.21a) is derived by adding (4.22a) with α1pHθ1 � α1H1 � f1q � 0 and

α2pHθ2 � α2H2 � f2q � 0, and affine lifting of any point in C 1 that satisfies this

equation is assumed to be contained in C.



89

The sets C and C 1 in Proposition 4.8 are typically created by relaxing the nonlinear

expressions. We illustrate, via an example, that the relations in Proposition 4.8 can

be strict.

Example 4.1. Let, α1 � 15, α2 � 9, f lo
1 � fup

1 � 0.6, f lo
2 � fup

2 � 0.4, Υlo � �10,

Υup � 10, θlo � 9.1, θup � 14.9. The sets C and C 1 are constructed by under-

and over-estimating the nonlinear terms with their respective convex and concave

envelopes. Figure 4.6(a) depicts the projection of sets S, Sstd, SRLT and SRDLT in Υ�θ
space. It is clear that projpf,Υ,θqpSstdq � projpf,Υ,θqpSRLTq � projpf,Υ,θqpSRDLTq � S.

Besides improving the quality of relaxation by introducing fewer auxiliary variables,

RDLT has another benefit in our context that we describe next.

Even when f1 and f2 are fixed, the function α1f1
α1�θ

� α2f2
θ�α2

is nonconvex (see Figure

4.6(b)), because it is a difference of two convex functions. When this function is

multiplied by pθ � θloq (resp. (θup � θ)), it becomes convex (resp. concave) (see

4.6(b)). In the naive RLT approach, where each fraction is relaxed independently,

the product pf1{pα1 � θqq � pθ� θloq is disaggregated and relaxed as a difference of the

convex envelope of f1θ{pα1 � θq with the concave envelope of f1{pα1 � θq. Whereas,

the polynomial division step makes the convexity apparent revealing better ways to

construct the relaxation.

We use RDLT to obtain a reformulation of U , denoted as Uref, in higher di-

mensional space as Uref � tpf, U,Υ, θ,H, Uθ,Υθq | (4.23); pfp, θ,Hpq P Fp, p �
1, 2; pU,Υ, θ, Uθ,Υθq P Vu, where¸2

p�1

�
αp|αp � θlo|H in

p � αpf
in
p

� � pUθrs � θloU rsq � pUθss � θloU ssq, (4.23a)¸2

p�1

�
αpf

in
p � αp|αp � θup|H in

p

� � pθupU rs � Uθrsq � pθupU ss � Uθssq, (4.23b)

Erspθ � θloq ¤
¸2

p�1

�
αp|αp � θlo|Hrs

p � αpf
rs
p

� ¤ Υθrs � θloΥrs, (4.23c)

Erspθup � θq ¤
¸2

p�1

�
αpf

rs
p � αp|αp � θup|Hrs

p

� ¤ θupΥrs �Υθrs, (4.23d)

Esspθ � θloq ¤
¸2

p�1

�
αpf

ss
p � αp|αp � θup|Hss

p

� ¤ Υθss � θloΥss, (4.23e)

Esspθup � θq ¤
¸2

p�1

�
αp|αp � θlo|Hss

p � αpf
ss
p

� ¤ θupΥss �Υθss. (4.23f)
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Fig. 4.6. (a) Projection of sets S, Sstd, SRLT and SRDLT in Example
4.1 in Υ � θ space. (b) Plots of nonlinear expression in Underwood
constraint
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In the above, | � | denotes absolute value function, and the sets Fp, p � 1, 2, and V
are defined as

Fp �

$''''&''''%pfp, θ,Hpq

����������
H in
p � f in

p � Tppθq, Hrs
p � f rs

p � Tppθq, Hss
p � f ss

p � Tppθq
f in
p � f rs

p � f ss
p

pf in
p , f

rs
p , f

ss
p q P r0, Fps3, θlo ¤ θ ¤ θup

,////.////- , (4.24)

and

V �

$''''''''''''''&''''''''''''''%

pU,Υ, θ, Uθ,Υθq

��������������������

Uθrs � U rs � θ, Uθss � U ss � θ
Υθrs � Υrs � θ, Υθss � Υss � θ
U rs � U ss � Υrs �Υss

θlo ¤ θ ¤ θup

0 ¤ U rs ¤ pU rsqup, 0 ¤ U ss ¤ pU ssqup

0 ¤ Υrs ¤ pΥrsqup, 0 ¤ Υss ¤ pΥssqup

,//////////////.//////////////-

, (4.25)

where T1pθq � 1{pα1 � θq, and T2pθq � 1{pθ � α2q.

Generalizations

We remark that RDLT can be used for problems with constraints that have the

form
°r
i�1

xigipyq
hipyq

¤ x0,
 
gipyq

(r
i�1

and
 
hipyq

(r
i�1

are some polynomials of y. We

follow the steps below to derive RDLT cuts.

1. We multiply the constraint by some ratio of polynomials of y, npyq{dpyq, such

that the sign of the ratio does not change over the domain of y. Here, we

assume, w.l.o.g, that npyq{dpyq ¥ 0 over the domain of y.

2. We use polynomial long division to express each gipyq�npyq
hipyq�dpyq

� mipyq � kipyq
lipyq

such

that degpkiq   degpliq, where degpkiq denotes degree of polynomial kipyq.

3. We factorize lipyq and express it as a product of polynomials tqijpyqusij�1 that

are non-factorizable over real numbers (e.g., y � 2 or y2 � y � 1).
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4. We use the general theorem of partial fraction decomposition to express each

fraction kipyq{lipyq as
°si
j�1 pijpyq{qijpyq, where degppijq   degpqijq. This trans-

forms the constraint to
°r
i�1

�
xi �mipyq �

°si
j�1 xi � pijpyq{qijpyq

	
¤ x0�npyq{dpyq.

5. We linearize the constraint by introducing auxiliary variables for each nonlinear

term.

The reformulation described earlier is a specific case, where we chose to multiply each

Underwood constraint by pθ � θloq and pθup � θq. By changing the factor used in

the reformulation step, we can derive alternative RDLT cuts by following the steps

described above. As an illustration, we derive two types of additional RDLT cuts

for reformulation of U . While we do not use these cuts for our extensive computa-

tional experiments, we demonstrate with numerical examples in §4.4 that they further

improve the relaxation for some instances.

RDLT cuts with quadratic polynomials: Here, we choose the product of bound

factors of θ, viz. pθ� θloq2, pθ� θloq � pθup� θq and pθup� θq2, for reformulation. As an

illustration, we derive the RDLT cut by multiplying the second inequality in (4.18b)

with pθ � θloq � pθup � θq. The remaining RDLT cuts are derived in a similar fashion.

Steps 1 and 2 lead to

2̧

p�1

�
αpf

rs
p � pθ � αp � θlo � θupq � αppαp � θloqpαp � θupqf rs

p

αp � θ

�
¤ Υrs � pθ � θloq � pθup � θq.

(4.26)

Since (4.26) is already in the form attained in Step 4, we do not need Steps 3 and

4. Finally, we disaggregate the products of f rs
p and Υrs with polynomials of θ, and

linearize (4.26) by introducing auxiliary variables for f rs
p {pαp � θq, f rs

p � θ, Υrs � θ2 and

Υ � θ.
RDLT cuts with inverse bound factors: Here, we use inverse bound factors�

1
θ
� 1

θup

�
and

�
1
θlo
� 1

θ

�
for reformulation. Since

�
1
θ
� 1

θup

� � θup�θ
θup�θ

, inverse bound

factors are essentially ratios of first-degree polynomial to another first-degree polyno-

mial. As before, for illustration, we derive the RDLT cut obtained by multiplying the
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second inequality in (4.18b) with
�

1
θ
� 1

θup

�
. The remaining RDLT cuts are obtained

in a similar fashion. Step 1 leads to
°2
p�1

αpf rsp
pαp�θqθ

� αpf rsp
pαp�θqθup

¤ Υrs

θ
� Υrs

θup
, which is

already in the form described in Step 2. Further, the denominator of each fraction is

already expressed as product of non-factorizable polynomials. Next, we use partial

fraction decomposition (Step 4) to obtain

2̧

p�1

�
f rs
p

θ
� pαp � θupqf rs

p

θuppαp � θq


¤ Υrs

θ
� Υrs

θup
. (4.27)

Finally, we linearize (4.27) by introducing auxiliary variables for f rs
p {|αp � θ|, f rs

p {θ
and Υrs{θ.

4.3.2 Relaxation for α2   θlo and θup   α1

The nonconvexity in Uref is due to F1, F2, and V . We convexify these sets to

construct a convex relaxation of Uref. However, we first assume that α2   θlo and

θup   α1, and relax this assumption later in §4.3.3. This assumption prevents the de-

nominator of fractions in F1 and F2 from becoming zero. This discussion is needed for

two reasons: (i) it will guide us in deriving additional valid cuts needed to strengthen

the relaxation when θ � α2 and θ � α1 are admissible (ii) it is needed to construct

a piecewise relaxation in §4.3.4, where we discretize the domain of θ such that every

partition excluding the extreme partitions satisfy α2   θlo ¤ θ ¤ θup   α1.

The standard approach to create a relaxation is to replace each equality Hp �
fp �Tppθq in Fp (resp. Υθ � Υ � θ in V) with a less stringent restriction that Hp (resp.

Υθ) lies in the convex hull of fp � Tppθq (resp. Υ � θ) over a rectangle defined by the

ranges of fp (resp. Υ) and θ. However, this approach does not take advantage of the

fact that the component (resp. vapor) flows are constrained by mass balances (see

(4.18e),(4.18f)) and, thus, results in a weaker relaxation. Instead, we use Proposition

4.9, which describes the construction of simultaneous hull of multiple nonlinear terms

over a polytope (not necessarily a hyperrectangle), to construct a tighter relaxation

of Uref.
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Proposition 4.9. Let X � tx P Rn
� | Bx ¤ bu be a polytope, gpyq be continuous and

convex for y P rylo, yups � R, D � X � rylo, yups � Rn�n, and S � tπ P D | zj �
xj � gpyq, xyj � xj � y, JjKn1u, where π � px, y, z, xyq denotes an element of S. Then,

ConvpSq � projπtpπ, y1, . . . , ym, w1, . . . , wm, w, λ1, . . . , λmq | (4.28)u, where

wi ¥ g�pλi, yiq, i � 1, . . . ,m (4.28a)

wi ¤ λigpyloq �
�
gpyupq � gpyloq
yup � ylo



pyi � λiyloq, i � 1, . . . ,m (4.28b)

λiylo ¤ yi ¤ λiyup, i � 1, . . . ,m (4.28c)

z �
¸m

i�1
viwi, xy �

¸m

i�1
viyi, w �

¸m

i�1
wi, (4.28d)

y �
¸m

i�1
yi, x �

¸m

i�1
λivi, pλ1, . . . , λmq P ∆m. (4.28e)

Here, projπt�u represents projection of t�u onto the space of px, y, z, xyq variables,

tviumi�1 are the extreme points of X, ∆m � tpλ1, . . . , λmq P Rm
� | °m

i�1 λ
i � 1u, and

positively homogeneous function g�pλ�, y�q related to gpyq : rylo, yups Ñ R is defined

as:

g�pλ�, y�q �

$'&'%λ
�gppλ�q�1y�q, if pλ�q�1y� P rylo, yups, λ� ¡ 0

0, if λ� � 0, y� � 0.

(4.29)

Proof. Since S is compact, its convex hull is compact and, by Krein-Milman theorem,

is the convex hull of its extreme points. Therefore, we determine the extreme points of

S, and take their convex hull to obtain ConvpSq. When y is restricted to y P rylo, yups,
the set S � tpx, y, z, xyq | z � gpyq x, xy � y x, x P X, y � yu can be expressed as

an affine transform of X. Thus, the extreme points of S project to the set of extreme

points of X and we may restrict attention to these points in order to construct

ConvpSq. Let Si, for i � 1, . . . ,m, denote the set S where x is restricted to vi

i.e., Si � tpx, y, z, xyq | z � vi gpyq, xy � vi y, x � vi, y P rylo, yupsu. Then,

ConvpSq is given as the convex hull of disjunctive union of Si, i � 1, . . . ,m, i.e.,

ConvpSq � ConvpS1 Y � � � Y Smq � ConvpConvpS1q Y � � � Y ConvpSmqq.
To determine ConvpSiq, we reformulate each Si as Si � tpx, y, z, xy, wq | z �

vi w, xy � vi y, w � gpyq, x � vi, ylo ¤ y ¤ yupu, which is an affine transform of
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the set tpy, wq P rylo, yups � R | w � gpyqu. This implies that it suffices to convexify

the latter set to obtain ConvpSiq � projπtpπ,wq | (4.30)u, where

w ¥ gpyq, (4.30a)

w ¤ gpyloq �
�
gpyupq � gpyloq
yup � ylo



py � yloq, (4.30b)

ylo ¤ y ¤ yup, (4.30c)

z � vi w, xy � vi y, x � vi. (4.30d)

The disjunctive union of ConvpSiq, i � 1, . . . ,m, leads to (4.28), where wi and yi are

to be regarded as linearization of λiw and λiy, respectively.

Remark 4.6. In Proposition 4.9, if ConvpSiq (see proof for definition) is bounded,

closed and cone-quadratic representable (CQR), for i � 1, . . . ,m, then ConvpSq is

CQR (see Proposition 3.3.5 in [51]). This result also applies to other conic rep-

resentations. Let P δ,1�δ
3 :� tx P R3 | xδ1 � x1�δ

2 ¥ |x3|u where 0   δ   1 is the

power-cone, and Kexp � tx1 ¥ x2 � exppx3{x2q, x2 ¡ 0u Y tpx1, 0, x3q | x1 ¥ 0, x3 ¤ 0u
is the exponential-cone. It is known that various elementary functions have cone

representations [52]. For example, let gpyq � |y|δ where δ ¡ 1 (resp. gpyq � yδ

where δ   0). Then, wi ¥ g�pλi, yiq in Proposition 4.9 can be replaced with

pwi, λi, yiq P P
1{δ,1�1{δ
3 (resp. pwi, yi, λiq P P

1{p1�δq,�δ{p1�δq
3 ). For this work, we are

interested in δ � �1 and δ � 2 (for reformulation with quadratic polynomials de-

scribed in §4.3.1). Next, let gpyq � � lnpyq, y ¡ 0 (resp. gpyq � exppyq), which arises

in formulations for identifying thermodynamically efficient distillation configurations

(see [53]). Here, we replace wi ¥ g�pλi, yiq in Proposition 4.9 with pyi, λi,�wiq P Kexp

(resp. pwi, λi, yiq P Kexp).

Remark 4.7. In Proposition 4.9, when gpyq is nonlinear, the convex hull descrip-

tion has nonlinear constraints (see (4.28a)). To capitalize on LP solvers, we de-

rive a polyhedral outer-approximation of ConvpSq by outer-approximating the con-

vex hull of each Si before taking their disjunctive union. Let yr P rylo, yups for

r � 1, . . . , R. Then, an outer-approximation of the convex hull of Si is given
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by ConvOA pSiq � projπtpπ,wq | w ¥ maxtgpyrq � g1pyrqpy � yrquRr�1; (4.30b) �
(4.30d)u, where g1pyq denotes the first derivative of gpyq. The disjunctive union

of ConvOA pSiq, i � 1, . . . ,m, yields an outer-approximation of the convex hull of

S, given by ConvOApSq � projπtpπ, y1, . . . , ym, w1, . . . , wm, w, λ1, . . . , λmq | wi ¥
maxtgpyrqλi � g1pyrqpyi � yrλiquRr�1; (4.28b)� (4.28e)u.

Now, consider the set Fp. We lift Fp to a higher dimensional space by appending

bilinear terms of the form fp � θ i.e., Fp � tpf, θ,H, fθq | (4.24), fθin

p
� f in

p � θ, fθrs

p
�

f rs
p � θ, fθss

p
� f ss

p � θu. Observe that the fractions and bilinear terms in Fp are defined

over the polytope obtained by the intersection of hyperplane f in
p � f rs

p � f ss
p with the

hypercube r0, Fps3 (see (4.24)). We now use Proposition 4.9 to obtain ConvpFpq �
tpfp, θ,Hp, fθpq | (4.31)u (see §B.4 for a detailed derivation), where

Hrs
p ¥ Fp T

�
p

�
f rs
p

Fp
,
fθrs

p

Fp

�
, Hss

p ¥ Fp T
�
p

�
f ss
p

Fp
,
fθss

p

Fp

�
, (4.31a)

Hrs
p ¤ f rs

p Tppθloq �
�
Tppθupq � Tppθloq

θup � θlo

�
pfθrs

p
� f rs

p θ
loq, (4.31b)

Hss
p ¤ f ss

p Tppθloq �
�
Tppθupq � Tppθloq

θup � θlo

�
pfθss

p
� f ss

p θ
loq, (4.31c)

pFp � f in
p qθlo ¤ Fpθ � fθin

p
¤ pFp � f in

p qθup, (4.31d)

f rs
p θ

lo ¤ fθrs

p
¤ f rs

p θ
up, f ss

p θ
lo ¤ fθss

p
¤ f ss

p θ
up, (4.31e)

H in
p � Hrs

p �Hss
p , fθin

p
� fθrs

p
� fθss

p
, f in

p � f rs
p � f ss

p . (4.31f)

and the positively homogeneous function T �
p pλ, θq is defined as in (4.29) from Tppθq.

Note that the convex hull description does not require introduction of auxiliary vari-

ables. This is in contrast to the typical application of disjunctive programming, where

new variables are introduced to derive the convex hull in a lifted space. We remark

that the above yields a tighter relaxation of Fp compared to the one obtained by re-

laxing each fraction and bilinear term separately over the bounds of f in
p , f rs

p , f ss
p , and

θ. This is because the first two equations in (4.31f) are not implied in the latter set.

Although, these relations can be obtained using RLT, appending these constraints

does not result in (4.31). This is because, the set described in (4.31) is the simultane-
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ous convex hull of the fraction and bilinear terms. It is known that the simultaneous

hull of these functions is strictly contained in the intersection of their individual hulls

(see Example 3.8 in [54]). In particular, (4.31b) and (4.31c), which are linearizations

of � f rsp
|αp�θ|

� pθup � θq � pθ � θloq ¤ 0 and � f ssp
|αp�θ|

� pθup � θq � pθ � θloq ¤ 0 respectively,

are not implied in the intersection of individual convex hulls.

The convex hull description in (4.31) is cone-quadratic representable (see Remark

4.6), since the constraints in (4.31a) can be expressed as second-order cones. For ex-

ample, Hrs
1 ¥ F1T

�
1 pf rs

1 {F1, fθ
rs

1
{F1q � pf rs

1 q2{pα1f
rs
1 �fθrs

1
q, or

?
H1�

b
pα1f rs

1 � fθrs

1
q ¥

|f rs
1 | (Note that 0 ¤ θlof rs

1 � fθrs

1
  α1f

rs
1 � fθrs

1
). However, we use the cone-

quadratic representation only in §4.4. For our computational experiments in §4.5,

we use its outer-approximation given by ConvOApFpq � tpfp, θ,Hp, fθpq | Hrs
p ¥

maxtf rs
p Tppθ

rq�T 1
ppθ

rqpfθrs

p
�θrf rs

p quRr�1, H
ss
p ¥ maxtf ss

p Tppθ
rq�T 1

ppθ
rqpfθss

p
�θrf ss

p quRr�1,

(4.31b) � (4.31f)u for some θ
r P rθlo, θups, r � 1, . . . , R, where T 1

ppθ
rq denotes the

derivative of Tppθq at θ
r
; see Remark 4.7.

Next, consider the set V , which contains bilinear terms defined over a polytope

obtained by the intersection of a hyperrectangle in the positive orthant with the

hyperplane U rs � U ss � Υrs � Υss. Clearly, Proposition 4.9 can be used to construct

the convex hull of V (only (4.28c), the equation with xy as the left-hand-side in

(4.28d), and (4.28e) are needed to construct the hull). However, Proposition 4.9

requires enumeration of the extreme points of X. Instead, in this context, it is more

convenient to directly use Proposition 4.10, which is a special case of Proposition 2.2

in [55], to obtain ConvpVq � tpU,Υ, θ, Uθ,Υθq | (4.32)u, where

pUθrs � θloU rsq � pUθss � θloU ssq � pΥθrs � θloΥrsq � pΥθss � θloΥssq, (4.32a)

pθupU rs � Uθrsq � pθupU ss � Uθssq � pθupΥrs �Υθrsq � pθupΥss �Υθssq, (4.32b)

0 ¤ p�qθ � θlo p�q ¤ p�qup pθ � θloq, @ p�q P tU rs, U ss,Υrs,Υssu, (4.32c)

0 ¤ θup p�q � p�qθ ¤ p�qup pθup � θq, @ p�q P tU rs, U ss,Υrs,Υssu. (4.32d)

Finally, we construct the convex relaxation of U as, URelax � tpf, U,Υ, θ,H, Uθ,Υθ, fθq |
(4.23), pfp, Hp, θ, fθpq P ConvpFpq, p � 1, 2, pU,Υ, θ, Uθ,Υθq P ConvpVqu.
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Proposition 4.10 ( [55]). Let X � tx P Rn | Bx ¤ bu be a polytope, D � X �
rylo, yups �Rn, and S � tpx, y, zq P D | xy

j
� xj � y, j � 1, . . . , nu. Then, ConvpSq �

tpx, y, xyq | ylo ¤ y ¤ yup, Bpxy � yloxq ¤ bpy � yloq, Bpyupx� xyq ¤ bpyup � yqu.

Proof. When x is restricted to x P X, the set S � tpx, y, xyq P D | xy � x � y, x � xu
can be expressed as an affine transformation of ylo ¤ y ¤ yup, whose extreme points

are y P tylo, yupu. Therefore, the extreme points of convex hull of S are contained in

the set of points where y P tylo, yupu. Let S1 � tpx, y, xyq | xy � ylox, Bx ¤ b, y �
ylou and S2 � tpx, y, xyq | xy � yupx, Bx ¤ b, y � ylou. Then, by Krein-Milman

theorem, convex hull of S is obtained by taking the disjunctive union of S1 and S2,

i.e., ConvpSq � projpx,y,xyqtpx, y, xy, x1, x2, λ1, λ2q | Bxi ¤ bλi, i � 1, 2, (4.33), λ1 ¥
0, λ2 ¥ 0u, where

xy � x1ylo � x2yup, x � x1 � x2, (4.33a)

y � yloλ1 � yupλ2, λ1 � λ2 � 1, (4.33b)

Solving the above equations leads to

x1 � yupx� xy

yup � ylo
, x2 � xy � ylox

yup � ylo
, λ1 � yup � y

yup � ylo
, λ2 � y � ylo

yup � ylo
. (4.34)

Using the above relations, we substitute out x1, x2, λ1 and λ2 to obtain the convex

hull description in the proposition.

Remark 4.8. We remark that ConvpFpq and ConvpVq in (4.31) and (4.32) imply

the convex envelope of
°2
p�1

�
�αppαp�θupqf rsp

αp�θ
� αpf

rs
p

�
� Υrs � θ � Υrs � θup over bound

constraints on f rs
p , θ, and Υrs (see (4.20b)). This is because, when all f rs

p and Υrs are

fixed, the function is concave in θ. Then, by Theorem 1.4 in [56], it follows that the

convex envelope is obtained by replacing �αppαp�θupqf rsp
αp�θ

for all p and Υrs � θ by their

convex envelopes.

We comment on the construction of convex relaxations of U when additional

RDLT cuts described in §4.3.1 are appended to Uref. Reformulation of Underwood
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constraints using quadratic polynomials of θ introduces nonconvex terms of the form

fp � θ, Υ � θ2 (see (4.26)), in addition to the existing fp � Tppθq and Υ � θ terms in

Uref. We relax fp � Tppθq and fp � θ using the simultaneous hull description in (4.31).

Although Proposition 4.9 yields the simultaneous hull of Υ � θ2 and Υ � θ terms over

the polytope in V , we do not implement this relaxation. This is because the hull

description does not project onto the space of problem variables in a striaghtforward

manner. Instead, we convexify each pair of Υ � θ2 and Υ � θ terms over a box using

Corollary 4.2, and append the RLT cuts U rs � θ2 � U ss � θ2 � Υrs � θ2 � Υss � θ2 and

U rs � θ � U ss � θ � Υrs � θ �Υss � θ.
On the other hand, reformulation of Underwood constraints using inverse bound

factors introduces nonconvex terms of the form fp � θ�1 and Υ � θ�1 (see (4.27)), in

addition to the existing fp � Tppθq and Υθ terms in Uref. We relax fp � Tppθq and fp � θ
using the simultaneous hull description in (4.31). We use a similar hull description,

obtained using Proposition 4.9, to relax fp � θ�1 and fp � θ. Finally, for the same

reason mentioned above, we convexify each pair of Υ � θ�1 and Υ � θ terms using

Corolloary 4.2, and append RLT cuts U rs � θ�1 � U ss � θ�1 � Υrs � θ�1 �Υss � θ�1 and

U rs � θ � U ss � θ � Υrs � θ �Υss � θ.

Corollary 4.2. Let B � rxlo, xups � rylo, yups � R2, where we assume 0 ¤ xlo, gpyq :

rylo, yups Ñ R is convex, and S � tpx, y, z, xyq P B | xy � x � y, z � x � gpyqu. Then,

ConvpSq � tpx, y, z, xyq | (4.35)u, where

z ¥ xlog�
�
xup � x

xup � xlo
,
xupy � xy

xup � xlo



� xupg�

�
x� xlo

xup � xlo
,
xy � xloy

xup � xlo

�
, (4.35a)

z ¤ gpyloq � x�
�
gpyupq � gpyloq
yup � ylo

� �
xy � ylox

�
, (4.35b)

pxup � xqylo ¤ xupy � xy ¤ pxup � xqyup, px� xloqylo ¤ xy � xloy ¤ px� xloqyup,

(4.35c)

and g�pλ�, y�q is defined as in (4.29). Further, the outer-approximation of the convex

hull is ConvOApSq � tpx, y, z, xyq | (4.36), (4.35b)� (4.35c)u, where

z ¥ xlo

xup � xlo
maxtgpyrqpxup � xq � g1pyrqpxupy � xy � pxup � xqyrquRr�1�
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xup

xup � xlo
maxtgpyrqpx� xloq � g1pyrqpxy � xloy � px� xloqyrquRr�1, (4.36)

for some yr P rylo, yups, r � 1, . . . , R, and g1pyq denotes the first derivative of gpyq
w.r.t y.

Proof. See §B.5 in the Appendix.

4.3.3 Valid Relaxation for θlo � α2 and/or θup � α1

In the previous subsection, we have assumed that α2   θlo and θup   α1. Instead,

if α1 and/or α2 is an admissible value of θ, we cannot directly use (4.31) to convexify

Fp, because T1pα1q and T2pα2q are not well-defined. To construct a valid relaxation,

we first restrict the admissible values of θ to a subset of the interval rα2, α1s by

recognizing that each fraction in U is bounded.

Proposition 4.11. (i) Valid upper bounds on
f rs1
α1�θ

, pHrs
1 qup, and on

f rs2
θ�α2

, pHrs
2 qup,

are given by

pHrs
1 qup � pΥrsquppα1 � α2q � α1F1 � α2F2

α1pα1 � α2q , (4.37a)

pHrs
2 qup � α1F1 � α2F2 � pErs � pα1 � θqqlo

α2pα1 � α2qq . (4.37b)

(ii) the admissible region of θ in the interval rα2, α1s is given by

α2 � f rs
2

pHrs
2 qup

¤ θ ¤ α1 � f rs
1

pHrs
1 qup

. (4.38)

Proof. (i) Consider the second inequality in (4.23c). Since this inequality holds for

any θlo less than θ, if we substitute θlo with α2, the inequality remains valid. Then,

we obtain (4.37a) from α1pα1�α2qHrs
1 ¤ pΥθrs�α2Υrsq�α1f

rs
1 �α2f

rs
2 ¤ pΥrsquppα1�

α2q�α1F1�α2F2, where the last inequality is because f rs
1 ¤ F1, f rs

2 ¤ F2, and Υθrs�
α2Υrs ¤ pΥrsquppα1 � α2q. Similarly, we substitute θup � α1 in the first inequality in

(4.23d), and rearrange to get α2pα1 � α2qHrs
2 ¤ �Ers � pα1 � θq � α1f

rs
1 � αf rs

2 . We

maximize the right hand side by substituting f rs
1 � F1, f rs

2 � F2, and pErs � pα1 � θqq
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by its lower bound which is computed using the bounds on Ers and θ. This leads to

the bound in (4.37b).

(ii) Every point feasible to U satisfies f rs
1 {pα1 � θq ¤ pHrs

1 qup and f rs
2 {pθ � α2q ¤

pHrs
2 qup. Rearranging the inequalities yields (4.38).

We remark that the bounds on H in
p and Hss

p for p � 1, 2 can be computed in

the same manner as in the proof of (i) in Proposition 4.11. Even when additional

fractions are present in the Underwood constraints, each fraction can be bounded,

since the remaining fractions are strictly bounded in the interval of θ. We revisit

the argument on bounds of θ in light of Proposition 4.11. As mentioned before, the

common approach used in the literature to overcome the singularity arising due to θ

approaching one of the adjoining relative volatilities has been to restrict θ to belong

to rα2 � εθ, α1 � εθs. However, observe that our bounds in (4.38) depend on f rs
1 and

f rs
2 . This explains the difficulty we encountered in choosing a value for εθ in our

computations with prior formulations. We have found that there are instances when

θ is fairly close to one of the relative volatilities, particularly when the corresponding

flow is small. We will provide a rigorous approach to addressing this singularity using

(4.38). Our approach will be to construct a relaxation of F1 as the intersection of

simultaneous convex hulls of f1 � T1pθq and f1 � θ. For brevity, we only discuss the

relaxation for F1 in detail, and remark that a similar result is easily derived for F2.

Proposition 4.12. Let H1 � tpf1, θ,H1, fθ1
q | 0 ¤ f1 ¤ F1, θlo ¤ θ ¤ α1 �

f1{Hup
1 , H1 � f1 �T1pθq, if θ   α1; H1 P r0, Hup

1 s if θ � α1, fθ1
� f1 �θu, where α2 ¤

θlo. Then, ConvpH1q � projpf1,θ,H1,fθ1q
tpf1, θ,H1, fθ1

, θa, θb, θc, λa, λb, λcq | (4.39)u,
where

H1 ¥ Hup
1 λb � F1T

�
1 pλc, θcq

H1 ¤ Hup
1

�
θa � θloλa

α1 � θlo



�Hup

1 λb � F1λ
c

α1 � θlo
�Hup

1

�
θc � θloλc

α1 � θlo



,/./- (4.39a)

fθ
1
¥ Hup

1

�
α1 � F1

Hup
1



pα1λ

b � θbq � F1θ
c

fθ
1
¤ fθ

1
¤ Hup

1

�
α1θ

b � pθbq2
λb



� F1θ

c

,//.//- (4.39b)
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θloλa ¤ θa ¤ α1λ
a�

α1 � F1

Hup
1



λb ¤ θb ¤ α1λ

b

θloλc ¤ θc ¤
�
α1 � F1

Hup
1



λc

,//////.//////-
(4.39c)

f1 � Hup
1 pα1λ

b � θbq � F1λ
c

θ � θa � θb � θc

λa � λb � λc � 1, λa, λb, λc ¥ 0.

,////.////- (4.39d)

Proof. See §B.6 in the Appendix.

The convex hull in Proposition 4.12 requires several additional variables. To avoid

the introduction of these additional variables, we use its relaxation, H1,Relax, derived

in §B.7 and shown below:

max
!
f1T1pθrq � T 1

1pθ
rqpfθ

1
� θ

r
f1q

)R
r�1

¤ H1 ¤ f1

α1 � θlo
�Hup

1

�
θ � θlo

α1 � θlo



,

(4.40a)

max
 
θlof1, F1θ � α1f1 � α1F1

( ¤ min
 
α1f1, F1θ � θlof1 � θloF1

(
, (4.40b)

θlo ¤ θ ¤ α1 � f1

Hup
1

, (4.40c)

where θ
r P rθlo, α1q, r � 1, . . . , R. Here, we argue from first principles that (4.40) is a

valid relaxation. To derive the first inequality in (4.40a), observe thatH1 ¥ f1�T1pθq ¥
f1 � maxtT1pθrq � T 1

1pθ
rqpθ � θ

rquRr�1. Disaggregating the product and linearizing the

bilinear term yields (4.40a). To derive the second inequality in (4.40a), we begin

with H1 � pα1 � θq ¤ f1, and replace the bilinear term on the left hand side with its

convex envelope. (4.40b) is the convex hull of fθ
1
� f1 � θ over r0, F1s � rθlo, α1s,

and (4.40c) is the same as (4.38). Using (4.40), we obtain a valid relaxation of F1

given by F1,Relax � tpf1, θ,H1, fθ1
q | pf in

1 , θ,H
in
1 , fθ

in

1
q P Hin

1,Relax, pf rs
1 , θ,H

rs
1 , fθ

rs

1
q P

Hrs
1,Relax, pf rs

1 , θ,H
rs
1 , fθ

rs

1
q P Hss

1,Relax, H
in
1 � Hrs

1 �Hss
1 , fθ

in

1
� fθrs

1
� fθss

1
u. Inspired

from (4.31), the last two equations in the relaxation are derived by multiplying the

component mass balance, (4.18f), with T1pθq and θ, respectively.
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4.3.4 Discretization and Solution Procedure

In this work, instead of using convex relaxations of U in a spatial branch-and-

bound framework to solve the MINLP, we construct a piecewise relaxation (see Defi-

nition 4.1) that is iteratively improved until we prove εr�optimality. This approach

capitalizes on state-of-the-art MIP solvers, such as Gurobi.

Definition 4.1 (Piecewise Relaxation). Let x � px1, . . . , xnq, B � rxlo, xups�rylo, yups �
Rn�1, S � tpx, yq P B | gipx, yq ¤ 0, i � 1, . . . ,mu, and SRelax � tpx, yq P
B | qgipx, yq ¤ 0, i � 1, . . . ,mu be its convex relaxation , where tqgiumi�1 denote

convex underestimators of tgiumi�1 over B. Let, the domain of y be partitioned as

I � trY 0, Y 1s, . . . , rY |I|�1, Y |I|su with Y 0 � ylo, Y |I| � yup and Y 0 ¤ Y 1 ¤ . . . Y |I|.

By piecewise relaxation of S, we refer to
�|I|
t�1 St,Relax, where St,Relax � tpx, y, zq P

Bt | qgi,tpx, yq ¤ 0, i � 1, . . . ,mu, Bt � rxlo, xups � rY t�1, Y ts, and qgi,t is the convex

under-estimator of gi over Bt.

Piecewise relaxation of U can be constructed by partitioning the domain of Un-

derwood root as I � trΘ0,Θ1s, . . . , rΘ|I�1|,Θ|I|su, where Θ0 � α2, Θ|I| � α1, and

Θ0 ¤ Θ1 ¤ � � � ¤ Θ|I|, and taking the union of sets
�|I|
t�1 Ut,Relax, where Ut,Relax

denotes the convex relaxation of U restricted to θ P rΘt�1,Θts. The set Ut,Relax is

constructed as outlined in §4.3.2 and §4.3.3. Next, using standard disjunctive pro-

gramming techniques, the piecewise relaxation can be expressed as a Mixed Integer

Program (MIP). While this approach leads to a locally ideal formulation, it leads to

a bigger problem size, because of which the computational time required is higher.

Thus, in favor of smaller problem size, we do the following.

Instead of reformulating U in each partition using the local bound factors of θ, we

reformulate with the overall bound factors of θ: pθ�α2q and pα1�θq. Next, we require

that pfp, θ,Hp, fθpq, p � 1, 2, and pU,Υ, θ, Uθ,Υθq lie in piecewise relaxations of Fp
and V , respectively. We choose piecewise relaxation of F1 to be

�|I|�1
t�1 ConvOApF1,tqY

F1,|I|,Relax, piecewise relaxation of F2 to be F2,1,Relax Y
�|I|
t�2 ConvOApF2,tq, and piece-

wise relaxation of V to be
�|I|
t�1 ConvpVtq. Here, the additional subscript t denotes
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that the set is restricted to θ P rΘt�1,Θts. Observe that if zero is not an admissible

value to the denominators of the fractions, we use outer-approximation of convex

hulls derived in §4.3.2 to relax Fp. Otherwise, we use a relaxation of the convex hull

description, such as the one derived in §4.3.3. We use disjunctive programming to

express the piecewise relaxations as the following mixed-integer sets.

JtK|I|1 , Hrs
1 ¥ f rs

1,tT1pΘt�1q � T 1
1pΘt�1qpfθrs

1,t
�Θt�1f rs

1,tq, (4.41a)

JtK|I|1 , Hrs
1 ¥ f rs

1,tT1pΘtq � T 1
1pΘtqpfθrs

1,t
�Θtf rs

1,tq, (4.41b)

JtK|I|1 , Hss
1 ¥ f ss

1,tT1pΘt�1q � T 1
1pΘt�1qpfθss

1,t
�Θt�1f ss

1,tq, (4.41c)

JtK|I|1 , Hss
1 ¥ f ss

1,tT1pΘtq � T 1
1pΘtqpfθss

1,t
�Θtf ss

1,tq, (4.41d)

Hrs
1 ¤

|I|�1¸
t�1

f rs
1,tT1pΘt�1q �

�
T1pΘt�1q � T1pΘtq

Θt�1 �Θt

�
pfθrs

1,t
�Θt�1f rs

1,tq

� f rs
1,|I|

α1 �Θ|I|�1
� pHrs

1 qup

�
θ|I| �Θ|I|�1µt

Θ|I| �Θ|I|�1

�
(4.41e)

Hss
1 ¤

|I|�1¸
t�1

f ss
1,tT1pΘt�1q �

�
T1pΘt�1q � T1pΘtq

Θt�1 �Θt

�
pfθss

1,t
�Θt�1f ss

1,tq

� f ss
1,|I|

α1 �Θ|I|�1
� pHss

1 qup

�
θ|I| �Θ|I|�1µt
Θ|I| �Θ|I|�1

�
(4.41f)

JtK|I|1 , pF1µt � f rs
1,t � f ss

1,tqΘt�1 ¤ pF1θt � fθrs

1,t
� fθss

1,t
q ¤ pF1µt � f rs

1,t � f ss
1,tqΘt,

(4.41g)

JtK|I|1 , f rs
1,tΘ

t�1 ¤ fθrs

1,t
¤ f rs

1,tΘ
t, f ss

1,tΘ
t�1 ¤ fθss

1,t
¤ f ss

1,tΘ
t, (4.41h)

H in
1 � Hrs

1 �Hss
1 , fθin

1
� fθrs

1
� fθss

1
(4.41i)

f rs
1 �

|I |̧

t�1

f rs
1,t, f ss

1 �
|I |̧

t�1

f ss
1,t, θ �

|I |̧

t�1

θt (4.41j)

|I |̧

t�1

µt � 1, µt P t0, 1u, JtK|I|1 (4.41k)

and

Uθrs � Uθss � Υθrs �Υθss (4.42a)

JtK|I|1 , U rs
t � U ss

t � Υrs
t �Υss

t , (4.42b)
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JtK|I|1 , 0 ¤ p�qθ �
|I |̧

t�1

Θt�1p�qt ¤ p�qupθ � p�qup

|I |̧

t�1

Θt�1µt, @ p�q P tU rs, U ss,Υrs,Υssu,

(4.42c)

JtK|I|1 , 0 ¤
|I |̧

t�1

Θtp�qt � p�qθ ¤ p�qup

|I |̧

t�1

Θtµt � p�qupθ, @ p�q P tU rs, U ss,Υrs,Υssu,

(4.42d)

p�q �
|I |̧

t�1

p�qt, 0 ¤ p�q ¤ p�qupµt, ; @ p�q P tU rs, U ss,Υrs,Υssu (4.42e)

|I |̧

t�1

µt � 1, µt P t0, 1u, JtK|I|1 . (4.42f)

The piecewise relaxation of F2 can be expressed as a mixed-integer set in a similar

manner. The derivation of these sets is provided in §B.8 and §B.9.

In §4.4, we illustrate through numerical examples the impact of various aspects

described in this section in strengthening the overall relaxation of MINLP (A). Fi-

nally, Algorithm 2 outlines our approach to solve the MINLP. We start with a coarse

discretization and use an adaptive partitioning scheme to iteratively refine the par-

titions until εr�optimality is achieved. To avoid numerical issues, we maintain that

each partition, pΘt
ijq �Θt�1

ijq q, is at least MinPrtSize in length.

4.4 Effect of Individual Cuts on Relaxation

This section illustrates, through numerical examples, the impact of of various

aspects described in §4.3 in strengthening the overall relaxation of MINLP (A). We

highlight the individual effect of RDLT cuts derived from Underwood constraints,

simultaneous hulls derived in §4.3.2, and discretization on the overall relaxation. In

all the scenarios below, stream and heat exchanger variables are considered to be

binary.

Scenario 1 : (BARON’s root node relaxation) Here, we use BARON 18.5.8, on GAMS

25.1, to construct and solve the relaxation of MINLP (A). This is achieved by

specifying BARON option MaxIter = 1, which terminates the branch-and-cut
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Input : N , α = (α1, . . . , αN ), F = (F1, . . . , FN ), Φ = (Φ1,N ,Φ1,1, . . . ,ΦN,N )
Output : Vectors y and x containing optimal values of discrete (streams and heat

exchangers present in the configuration), and continuous (material flows in
columns and heat exchangers) variables, respectively

Parameters: Relative tolerance for convergence εr = 0.01, Minimum length of each partition
MinPrtSize= 10−3.

1 Function [y,x] = VaporDuty(N , α, F , Φ)

2 Initialization: For every [i, j] ∈ S, JqKj−1i , Iijq ←
{[

Θ0
ijq,Θ

1
ijq

]
, . . . ,

[
Θ
|Iijq |−1
ijq ,Θ

|Iijq |
ijq

]}
, where

Θ0
ijq = αq+1, Θ

|Iijq |
ijq = αq, Θ0

ijq < Θ1
ijq < · · · < Θ

|Iijq |
ijq .

3 [VD lo,yrlx,xrlx,θrlx] ← Relaxation(N , α, F , Φ, Iijq), (see function for definitions)

4 [VDup,xfsp] ← LocalSolution(N , α, F , Φ, yrlx, xrlx,θrlx), (see function for definitions)

5 if
(
VDup−VD lo

VDup

)
< εr then

6 The relative tolerance εr is achieved.

7 y = yrlx and x = xfsp

8 else

9 For every [i, j] ∈ S, JkKj−1i , JlKk+1
i+1 , if split [i, k]/[l, j] is absent in yrlx, then Iijq ← Iijq.

Otherwise, JqKkl−1, Iijq ←RefineDiscretization(Iijq,θrlxijq)
10 Go to Line 3

11 end

12 end

13 Function [VD lo,yrlx,xrlx,θrlx] = Relaxation(N , α, F , Φ, Iijq)
14 Construct relaxation (A)rlx: Formulate MINLP (A) described in §4. For [i, j] ∈ S, JkKj−1i ,

JlKk+1
i+1 , JqKkl−1, reformulate Underwood constraints as described in §5.1, and construct

piecewise relaxations of sets Fikljqp, p = i, . . . , j, and Vikljq as described in §5.4.
15 Solve the resulting MI(L/SOC)P

16 VD lo ← Optimum objective function value

17 [yrlx,xrlx,θrlx]← Optimal values of discrete (yrlx) and continuous (xrlx,θrlx) decision

variables. Vectors xrlx and θrlx contain optimal values of material flows and Underwood
roots, respectively.

18 end

19 Function [VDup,xfsp] = LocalSolution(N , α, F , Φ, yrlx, xrlx,θrlx)
20 Formulate MINLP (A) described in §4, and fix discrete decisions y = yrlx.

21 Using (xrlx,θrlx) as initial point, solve the resulting NLP using local solvers
22 VDup ← Optimum objective function value

23 xfsp ← Optimal values of material flows

24 end

25 Function RefineDiscretization(Iijq, θrlxijq)
26 Identify 1 ≤ t ≤ |Iijq| such that θrlxijq ∈ [Θt−1

ijq ,Θ
t
ijq]

27 if (θrlxijq −Θt−1
ijq ) < MinPrtSize or (Θt

ijq − θrlxijq) <MinPrtSize then

28 Iijq ← Iijq
29 else

30 Iijq ← {Iijq \ {[Θt−1
ijq ,Θ

t
ijq]}} ∪ {[Θt−1

ijq , θ
rlx
ijq], [θ

rlx
ijq,Θ

t
ijq]}

31 end
32 return Iijq
33 end

Algorithm 1: Algorithm to solve MINLP using an adaptive discretization scheme

1
Algorithm 2: Adaptive partitioning scheme to solve MINLP (A)
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algorithm after processing the root node. We let θijq P rαq�1 � εθ, αq � εθs, with

εθ � 10�7, for every JqKj�1
i , ri, js P S to avoid a possible division by zero. We

use BARON’s root node relaxation as a reference for comparison. We remark

that BARON solves MIP relaxations as needed [40]. We also verified that the

bound obtained is close to solving a factorable MIP relaxation.

Scenario 2 : (Simultaneous hull of fractional terms) This scenario illustrates the improve-

ment in relaxation due to the use of simultaneous convexification techniques.

We linearize all Underwood constraints in the MINLP by introducing auxiliary

variables for each fraction. To relax fractional terms, we use (4.31), or (4.40) if

zero is an admissible value for the range of the denominator of fractions. The

nonlinear constraints in (4.31) are expressed as second-order cones, and the re-

sulting Mixed Integer Second-order Cone Program (MISOCP) is solved with

Gurobi 8.0 using Gurobi/MATLAB interface.

Scenario 3 : (RDLT with linear polynomials of θ) This scenario illustrates the improvement

in relaxation due to reformulation of Underwood constraints using RDLT. We

reformulate Underwood constraints as in (4.23), convexify fractional terms using

(4.31) or (4.40), and convexify bilinear terms of the form Υθ � Υ�θ using (4.32).

Scenario 4 : (RDLT with quadratic polynomials of θ) To the relaxation in Scenario 3,

we add cuts derived by reformulating Underwood constraints with quadratic

polynomials of θ (see (4.26)), as described in §4.3.1. This introduces additional

nonlinear terms of the form Υ � θ2, which we relax in the manner described

towards the end of §4.3.2.

Scenario 5 : (RDLT with inverse bound factors of θ) To the relaxation in Scenario 3, we

add cuts derived by reformulating Underwood constraints with inverse bound

factors (see (4.27)). This introduces additional nonlinear terms of the form f1{θ
and V {θ, which we relax in the manner described towards the end of §4.3.2.
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Scenario 6 : (Discretization) Finally, to illustrate the potential of discretization, we con-

struct piecewise relaxation of Scenario 3. We discretize the domain of each

Underwood root into two partitions, and choose the roots of columns perform-

ing the split of the process feed, tθ1NquN�1
q�1 , as the partition points. In other

words, we let Iijq � trαq�1, θ1Nqs, rθ1Nq, αqsu for i ¤ q   j and ri, js P S. As

pointed out in Remark 4.4, these roots can be computed prior to solving the

optimization problem. We construct the piecewise relaxation of MINLP (A) as

outlined in §4.3.4.

Table 4.6 reports the percentage gap value, defined as

% Gap � 100�
�

1� Optimal value of relaxation

Optimal value of (A)



(4.43)

on a set of cases evaluated for all the Scenarios. To compare against BARON, we

also report % gap closed (numbers in parenthesis in Table 4.6), defined as

% Gap Closed � 100�
�

1� Optimal value of (A)�Optimal value of relaxation

Optimal value of (A)�Optimal value in Scenario 1



(4.44)

We refer to a particular combination of parameter settings: N , tFpuNp�1, tαpuNp�1,

Φ1,N and tΦp,puNp�1, as a case. The parameter settings for the cases considered in

Table 4.6 are listed in the caption. It is worth noting that Case-A [17], Case-B

and Case-C [46] correspond to physical mixtures: mixture of alcohols, mixture of

light paraffins and mixture of light olefins and paraffins. The remaining cases do not

directly correspond to physical mixtures, but are representative of specific classes of

separations (see [39] for more details). Under Scenario 2, we report % Gap value, and

% Gap closed for all cases when simultaneous hulls are used to convexify fractions.

It can be observed that, this approach closes on an average 45.8% of the gap. In

particular, in Case-E, implementation of simultaneous hull completely closes the gap

at root node. Next, under Scenario 3, we report the combined effect of our RDLT

approach and simultaneous hulls. This approach closes on an average 74.1% of the

gap. Under Scenarios 4 and 5, we report further improvement in relaxation due to
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addition RDLT cuts discussed in §4.3.1 to the relaxation in Scenario 3. RDLT cuts

with quadratic polynomials of Underwood roots closes the gap completely in Case-B.

Finally, the gap can be completely closed for all the cases considered in Table 4.6

by discretizing the domain of Underwood root into two partitions, as described in

Scenario 6.

4.5 Computational Results

We conducted computational experiments on a test set of 496 cases, taken from

[35, 39], which is a representative of a majority of separations. Parameter settings

for the test set are listed in §A in e-companion. In this section, we demonstrate

that our proposed approach is able to solve MINLP (A) within a relative tolerance of

1%. We also compare the performance of our approach with prior approaches in the

literature [17,22,23]. Since the prior approaches develop an (MI)NLP model, we use

BARON 18.5.8 via GAMS 25.1 to solve these (MI)NLPs, where all BARON options

are set at their default values. For the adpative partitioning scheme described in

Algorithm 1, we use Gurobi 8.0 [49] to solve the resulting MIPs, and use IPOPT [57] as

a local solver. The model is loaded into Gurobi using the MATLAB/Gurobi interface,

while IPOPT is used via MATLAB/GAMS interface and GAMS 25.1. We used single

CPU thread to solve the MIPs so as to keep the comparison with BARON fair. Besides

the setting of number of threads, the remaining options for Gurobi and IPOPT were

left at their defaults. All computations were done on a Dell Optiplex 5040 with Intel

Core i7-6700 3.4 GHz processor and 16 GB RAM, and is running 64-bit Windows 7.
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4.5.1 Comparison with Prior Approaches

Here, we compare the performance of three approaches, namely those of [9, 23],

and the one proposed here. For all the computations, we set the relative tolerance

for convergence (εr), defined as

εr �
�

1� BestLB

BestUB



(4.45)

where BestLB and BestUB are the best-known relaxation bound and feasible solution,

to 1% i.e., εr � 0.01. We impose a CPU time limit of five hours as the termination

criterion.

Approach 1 : We solve MINLP (A) using the adaptive partitioning approach described in

Algorithm 2. We begin with four partitions for each Underwood root i.e., Iijq �
trαq�1, pαq�1 � θ1Nqq{2s, rpαq�1 � θ1Nqq{2, θ1Nqs, rθ1Nq, pαq � θ1Nqq{2s, rpθ1Nq �
αqq{2, αqsu for every JqKj�1

i , ri, js P S. We compute the Underwood roots for

the splits of the process feed tθ1NquN�1
q�1 prior to solving the MINLP (see Remark

4.4). For all but 4 cases, we set MinPrtSize � 10�3. For the remaining cases,

we reduced MinPrtSize to 10�4 in order to achieve the relative tolerance of 1%.

Finally, we point out that the upper bounds on material flows are computed by

solving (4.15), where we choose

VD� � max
qPt1,...,N�1u

q̧

p�1

αpFp
αp � θ1Nq

(4.46)

and φ � 1.5. We note that (4.46) is the objective function value corresponding

to a feasible point of one of the admissible configurations, commonly known in

literature as Fully Thermally Coupled or Petlyuk configuration (see [14, 15]).

Approach 2 : We obtained the GAMS code of the model proposed in [9] from the MINLP

library [24]. There, the authors were interested in identifying the configura-

tion minimizing the total annual cost. For our computations, we modify their

code in the following manner. First, as mentioned in [23], the model of [24]

admits solutions that are physically infeasible. This is because the constraints
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corresponding to (A19) in their model should be tight for certain Underwood

roots, and their model does not impose this requirement. We have added these

missing constraints to their GAMS code. Second, the authors employed the

BigM approach in order to transform certain disjunctions into a set of inequal-

ities. Unfortunately, the BigM value used for vapor and liquid bypass in their

GAMS code made a few test cases infeasible. Therefore, we specified 2.5VD� as

the BigM value for the vapor and liquid bypasses. This number was found by

choosing the smallest BigM value for which we found a feasible solution. Third,

the authors use a parameter εθ and restrict θijq P rαq�1 � εθ, αq � εθs for JqKj�1
i ,

ri, js P P in order to avoid the singularity associated with θijq approaching αq

or αq�1. Their choice of εθ, in some cases, made the optimal solution infeasible.

Empirically, we found that εθ � 10�4 does not cut off the optimal solution, so

we set εθ � 10�4. Fourth, the cost equations required for the evaluation of the

objective function were removed from the model, and the objective function

was modified to compute the total vapor duty instead. The resulting MINLP

is then solved with BARON.

Approach 3 : Here, we consider the MINLP proposed in [23]. For a consistent comparison,

we set the upper bound on all vapor flows to be 1.5VD�. Further, we restrict

θijq P rαq�1 � εθ, αq � εθs, where εθ � 10�4, for JqKj�1
i , ri, js P S in order to

avoid the singularity associated with θijq approaching αq or αq�1. The resulting

MINLP is then solved using BARON.

Figure 4.7(a) shows the percentage of cases solved to 1%-optimality against time,

with Approach 1 (solid blue curve), Approach 2 (dotted black curve), and Approach

3 (dashed red curve). Observe that Approach 2 solves about 10% of cases to 1%-

optimality within five hours. This is not surprising because [9, 17] also reported

difficulties in convergence. To overcome the challenges, the authors architected an

algorithm by modifying logic-based outer-approximation. While the method resulted
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Fig. 4.7. (a) Plot showing percentage of cases solved to 1%–optimality
against time. Here, Approach 1 corresponds to the current work,
Approach 2 corresponds to the model proposed in [9] solved with
BARON, after making the changes described in §4.5, and Approach
3 corresponds to the model proposed in [23] solved with BARON (b)
Plot showing the remaining duality Gap at the end of five hours for
all the three approaches.
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in good solutions, optimality was not guaranteed. Approach 3 solves 64% of the cases

in the test set.

We remark that [23] introduced a new search-space formulation, derived cuts that

exploit monotonicity of Underwood constraints, and modeled the absence/presence

of a column using disjunctions. Nevertheless, this approach fails to solve the problem

to 1%-optimality for 36% of the cases. The progress of lower bound for a majority

of these cases is either stagnant or very slow. Figure 4.7(b) depicts the cumulative

percentage of cases as a function of the remaining duality gap at the end of five hours.

In contrast, our approach, for the first time, solves all 496 cases from this test set

within an optimality tolerance of 1%.
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Fig. 4.8. Profiles showing remaining % Gap at the end of specific time
instances for Approach 1 (A1) and Approach 3 (A3).

Figure 4.8 depicts cumulative percentage of cases as a function of the remaining

duality gap at specific time instances for Approach 1. This graph demonstrates that

our solution approach, with a CPU time of twenty minutes, already outperforms

the best prior MINLP based approach allowed to run for a CPU time of five hours.

Further, within 1800 s (green curve), 3600s (magenta curve) and 7200s (black curve),
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the proposed approach solves all 496 cases to less than 5.5%, 3.5% and 2.5% gap,

respectively. Since (A) is primarily designed as a screening tool for an otherwise

highly cumbersome search of optimal distillation configuration, practicing engineers

can use Approach 1 to quickly identify near optimal solutions that are worthy of

further exploration. Although we do not provide specific configurations found using

our procedure, the potential benefits are documented in [5,23] for a crude distillation

case study.

4.5.2 Comparison with Nallasivam et al. [22]

Recently, [22] proposed an alternative technique that relies on explicit enumer-

ation for identifying distillation configuration requiring the least vapor duty. After

enumerating all the configurations, an NLP is formulated for each configuration and

solved to 1%�optimality with BARON. We refer to this as Approach 4. We com-

pare the performance of Approach 4, with Approaches 1 and 3 by fixing the discrete

decisions to a specific configuration. We choose Fully Thermally Coupled (FTC) con-

figuration, characterized by ζi,j � 1 @ ri, js P T , χi,j � 0 @ pi, jq P Cztp1, 1qu, χ1,1 � 1,

ρi,j � 0 @ pi, jq P RztpN,Nqu, and ρN,N � 1, for comparison. This comparison

ignores the advances in the search space formulation discussed in §4.2.2 and other

advances that relate Underwood constraints with stream variables, since we fix the

binary variables a priori. We set the time limit as one hour and a relative gap of 1%

(εr � 0.01) as termination criteria.

Figure 4.9 depicts the percentage of cases solved as a function of computational

time for the three approaches. Clearly, BARON solves more number of cases to

1%�optimality with Approach 3 than with Approach 4. Despite the improvement,

only 82% of the cases are solved to 1%�optimality using Approach 3. In contrast,

our approach solves all cases in this test set within 100 s.
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Fig. 4.9. Plot showing percentage of cases solved to 1%–optimum
against time, when discrete variables are fixed to fully thermally cou-
pled configuration (see §4.5.2). Approach 4 corresponds to the model
proposed in [22] solved with BARON.

4.6 Concluding Remarks

This work addressed the optimal design of distillation configurations, which are

widely used in all chemical and petrochemical industries, and are significant con-

sumers of energy in the world economy. We proposed a novel MINLP that identifies

energy-efficient configurations for a given application. Given the complexity from

combinatorial explosion of the choice set and nonconvex Underwood constraints, this

problem has resisted solution approaches. In this paper, we report on the first suc-

cessful approach and solve this problem to global optimality for five-component mix-

tures. The key contributions that make this possible are (i) new formulation for

discrete choices that is strictly tighter than the previous formulations, (ii) new valid

cuts to the problem using RDLT, and various other convexification results for special

structures, and (iii) discretization techniques and an adaptive partitioning scheme to

solve the MINLP to ε�optimality. On a test set that is a representative of a ma-

jority of five-component separations, we demonstrated that our approach solves all
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the instances in a reasonable amount of time, which was not possible using existing

approaches. In summary, this paper describes the first solution approach that can

reliably and quickly screen several thousands of alternative distillation configurations

and identify solutions that consume less energy and, thereby, lead to less greenhouse

gas emissions. This approach has the potential to reduce the carbon footprint and

energy usage of thermal separation processes.
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5. MINIMIZATION OF EXERGY LOSS

Process designers may use several criteria to filter configurations from the search space.

In the last two chapters, we have shown how to identify the distillation configuration

that requires least vapor vapor duty. In this chapter, we extend the procedure for

identifying the configuration maximizing the thermodynamic efficiency (η), defined

as

η � Minimum work of separation

Total work of separation
(5.1)

Since all configurations in the search space perform the same task of separating a

multicomponent mixture into its constituent components, the minimum work of sep-

aration is the same for all configurations. Thus, configurations with the highest

thermodynamic efficiency require the least total or net work for separation. Ther-

modynamic analysis is crucial for work-driven distillations like cryogenic/sub-ambient

separations and above-ambient distillations employing heat pumps (vapor recompres-

sion cycle, for example). [28] elucidate how thermodynamic analysis provides valuable

insights for synthesis of separation systems. For example, in cases where economic

models optimizing either operating cost (minimization of heat duty as in [22, 23]) or

total annualized cost (annualized CAPEX+OPEX as in [9,58]) yield distinct configu-

rations having comparable objective function values, thermodynamic analysis may be

supplemented to further discriminate such configurations. The other instance where

thermodynamic analysis may be useful is when extensive heat integration is desired,

both within the separation unit and with the rest of the plant. While it is possible

to formulate a model with extensive heat integration, it may prove computationally

challenging to solve the model. Since the method in this article is intended as a

screening step, thermodynamic analysis considered here may be faster and it yields a

model that is relatively easier to solve.
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Now, consider the definition of thermodynamic efficiency in (5.1). The total work

required for separation is obtained as

Total work of separation � Minimum work of separation� Exergy loss. (5.2)

Exergy of a stream is defined as its work potential i.e.,the maximum work that can

be extracted when a stream is brought from its current state to thermal, mechanical

and chemical equilibrium with the environment via a reversible path. Exergy loss

of a system corresponds to the loss of work potential due to irreversibilities in the

system. We refer readers to [59] for a lucid description of exergy concepts and ap-

plications. From (5.2), a configuration with higher irreversibilities has higher exergy

losses; thereby requiring higher total work for separation. This makes the overall sep-

aration process less efficient, thermodynamically. In contrast, a configuration with

lower irreversibilities requires lower total work, making it thermodynamically more

efficient. Thus, the problem of identifying thermodynamically efficient configurations

is equivalent to the problem of identifying configurations with least exergy losses.

Since both problems are equivalent, we choose the latter problem as it has a simpler

objective function.

While the formulation in Chapter 3 identifies configurations requiring least heat

duty (first law savings), it does not take into account the temperature levels of

streams. As a result, it may lead to a solution that is attractive in terms of energy

consumption, but may require utilities at extreme temperatures (second law penalty).

Such solutions are not thermodynamically efficient. Therefore, in this work, we build

upon the formulation introduced in Chapter 3 to account for temperature levels of

streams in order to identify exergetically-efficient configurations.

Here, we review the studies which used thermodynamic analysis to obtain insights

on improving the efficiency of the separation process. Use of thermodynamic anal-

ysis in the context of multicomponent distillation may be traced back to as early

as 1960s. [60] introduced a novel configuration, which is now commonly known as

Fully Thermally Coupled (FTC) configuration, and used thermodynamic arguments

to support their design. Subsequent works include [28, 29, 61–67]. In particular, we
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highlight that [28, 63, 65] independently derived a relation relating temperature as a

function of liquid mole fraction and relative volatilities of constituent components,

for a multicomponent mixture using the Clausius-Claypeyron equation. Using this

relation, all the aforementioned authors independently derived an expression for net

work/thermodynamic efficiency/exergy loss that does not depend on temperature

explicitly. Such results hold for both sub-ambient and above-ambient operation, pro-

vided the mixture has the same composition and relative volatilities for constituent

components. However, [28] focused only on sharp-split configurations. Though their

equations also hold for sloppy split configurations, a global optimization framework,

such as the one described here, is needed [35]. On the other hand, [29,62–65] consid-

ered only binary and ternary mixtures. To the best of our knowledge, a framework

that screens through all regular-column configurations, and identifies exergetically-

efficient configurations for a general N -component zeotropic mixture was not unavail-

able until recently. [53] developed an explicit enumeration approach that formulates a

Nonlinear Program (NLP), with minimization of exergy loss as the objective function,

for each configuration in the search space. NLPs are then solved to ε-global optimal-

ity using BARON [21,40]. The configurations are then ranklisted in ascending order

of the minimum exergy loss, to identify a handful of configurations attractive for the

given application. The contributions in this chapter are closely related to [53], and

they differ from the latter in the following aspects. Explicit enumeration, like the

one proposed by [53], can be computationally intensive for mixtures containing five

or more components. Whereas, the current approach is computationally more effi-

cient as it enumerates implicitly and avoids solving every configuration in the search

space. Further, this work proposes a novel reformulation of equations for exergy loss

calculation. This reformulated model requires fewer number of nonlinear nonconvex

equations compared to the model used in [53].

The rest of the chapter is organized as follows. In §5.1, we formulate the MINLP.

In §5.2, we consider a case study concerning the recovery of Natural Gas Liquids

(NGLs) from shale gas. In addition, we also consider several examples from literature
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Figure 1: Four-component superstructure

1

Fig. 5.1. A four-component system

to investigate the solution performance to changes in process parameters. Finally, we

conclude the chapter in §5.3.

5.1 Problem Formulation

Figure 5.1 shows a four-component system (N � 4). We use the same notation

introduced in Chapter 4.

The problem definition can be briefly stated as follows. Given an N -component

mixture along with the composition of the process feed tFpuNp�1 and component relative

volatilities tαpuNp�1 (measured w.r.t the least volatile component i.e.,α1 ¡ � � � ¡ αn),

identify the optimal distillation configuration and its operating conditions minimizing

the total exergy loss (∆Eloss) for separating the given mixture into its constituent

components. Here, and in the rest of the chapter, tpunp�1 is a shorthand notation for

the set t1, . . . , nu.
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For better readability, we begin the formulation (W) with the problem constraints,

and defer the description of the objective function to the end. Table 5.1 shows the

definition of relevant sets required for the problem formulation.

Table 5.1.
Definition of sets.

Set Symbol Definition

Streams T tri, js : 1 ¤ i ¤ j ¤ Nu
Splits P T � tri, is : 1 ¤ i ¤ Nu
Submixtures S P � tr1, N su
Condensers C tpi, jq : 1 ¤ i ¤ j ¤ N � 1u
Reboilers R tpi, jq : 2 ¤ i ¤ j ¤ Nu
Quadrature points G t1, 2u

5.1.1 Space of Admissible Distillation Configurations

We first describe the constraints to model the space of all regular-column configu-

rations (both basic and thermally coupled configurations). We define binary variables

ζi,j � t1, if ri, js is present; 0, otherwiseu for ri, js P T , χi,j � t1, if condenser pi, jq
is present; 0, otherwiseu for pi, jq P C, and ρi,j � t1, if reboiler pi, jq is present; 0, otherwiseu
for pi, jq P R. In addition, we define split variables σi,k,l,j, such that σi,k,l,j � 1 if ri, ks
and rl, js are produced as distillate and residue from ri, js, and σi,k,l,j � 0 otherwise.

Hereafter, for conciseness, we write ri, ks{rl, js to represent that split of stream ri, js
produces ri, ks and rl, js as distillate and residue. We note that, for a given distillate

stream ri, ks from ri, js, i ¤ k ¤ j� 1, only the splits in tri, ks{rl, jsuk�1
l�i�1 are feasible.

Whereas, the remaining splits tri, ks{rl, jsujl�k�2 are infeasible, because one or more

components are not conserved in these splits. Similarly, for a given residue stream

rl, js from ri, js, i � 1 ¤ l ¤ j, only the splits in tri, ks{rl, jsuj�1
k�l�1 are feasible. We
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define split variables only for feasible splits. Thus, the domain of indices for split

variables is given by
�j�1
k�i tσi,k,l,juk�1

l�i�1 or
�j
l�i�1 tσi,k,l,juj�1

k�l�1 for ri, js P P .

We borrow constraints (A2) through (A8) in Chapter 4 for modeling the space

of admissible configurations, and substitute out the auxiliary variables pτ, β, ν, ωq to

obtain the formulation in the space of pζ, σ, ρ, χq variables. The variable elimination

process is described in the supplementary information. The resulting constraints are

described below.

ζ1,N � ζ1,1 � � � � � ζN,N � 1, (W1)

j�1̧

k�i

k�1̧

l�i�1

σi,k,l,j � ζi,j @ ri, js P P , (W2)

ζi,j ¤
Ņ

l�j�1

j�1̧

k�i�1

σi,j,k,l �
i�1̧

k�1

j�1̧

l�i�1

σk,l,i,j @ ri, js P T ztr1, N su, (W3)

χi,j ¤ ζi,j �
i�1̧

k�1

j�1̧

l�i�1

σk,l,i,j, @ pi, jq P C

ρi,j ¤ ζi,j �
Ņ

l�j�1

j�1̧

k�i�1

σi,j,k,l, @ pi, jq P R

,/////./////-
, (W4)

χi,i ¥ ζi,i �
i�1̧

k�1

σk,i�1,i,i @ pi, iq P C

ρi,i ¥ ζi,i �
Ņ

l�j�1

σi,i,i�1,l @ pi, iq P R

,/////./////-
, (W5)

Ņ

s�n

n�1̧

r�i

r�1̧

m�i�1

σi,r,m,s ¤
Ņ

s�k

k�1̧

r�i

r�1̧

m�i�1

σi,r,m,s ¤ 1, JnKNk�1, JkKN�1
i�1

m̧

r�1

j̧

s�m�1

j�1̧

n�s�1

σi,n,s,j ¤
ļ

r�1

j̧

s�l�1

j�1̧

n�s�1

σi,n,s,j ¤ 1, JmKl�1
1 , JlKj�1

2

,/////./////-
. (W6)

Here, JnKNk�1 is a shorthand notation for @ n P tk� 1, . . . , Nu. (W1) ensures that the

process feed and the pure components are present in a configuration. (W2) ensures

that if a submixture ri, js is produced in a configuration, it undergoes a split. (W3)

ensures that every stream except the process feed stream is produced from at least
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one split. (W4) and (W5) model the presence/absence of heat exchangers. (W6)

ensures that only regular column configurations are present in the search space.

Proposition 5.1. Let S � tpζ, σ, χ, ρ, τ, βq P Unit hypercube | (W1)� (W6), τi,k,j �°k�1
l�i�1 σi,k,l,j, βi,l,j �

°j�1
k�l�1 σi,k,l,j, @ ri, js P Pu be an affine lift of (W1) – (W6).

Then, S is tighter than the intersection of the search space formulations in (i) [9],

(ii) [10], and (iii) [23].

Proof. See proof of Proposition 7 in Chapter 4.

5.1.2 Mass Balance Constraints

Figures 5.2(a) and 5.2(b) show the superstructure for a four-component system

and schematic of a representative column. The mass balances are the same as those

described in Chapter 3:

(H12)� (H17) (W7)

The superstructure enables modeling of single/two phase heat exchangers, thermal

coupling and a combination of thermal coupling and heat exchanger. In this chapter,

we restrict that either a two-phase heat exchanger or a thermal coupling can be

present, but not both. Further, we model two-phase heat exchangers as shown in

Figure 5.3.

For a condenser, we split the inlet vapor stream into two; such that one stream

passes through the condenser to supply the required liquid reflux and the liquid

portion of the feed to the subsequent column, while the other stream supplies the

vapor portion of the feed to the subsequent column. In a similar manner, for a reboiler,

we split the inlet liquid stream into two; such that one stream passes through the

reboiler to supply the required vapor reflux and the vapor portion of the feed to the

subsequent column, while the other stream supplies liquid portion of the feed to the

subsequent column. Note that the vapor and liquid streams will not be in equilibrium
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V ss
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Figure 12: Heavy crude example: Distillation configuration with minimum number of submixtures, and maximum heat
exchangers that requires at most 10% more energy than FTC configuration.

14

(b)

Fig. 5.2. (a) Four-component superstructure and (b) A representative
column in the superstructure. Reproduced from [23].
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Figure 10: Heavy crude example: Distillation configuration with minimum number of submixtures, and maximum heat
exchangers that requires at most 10% more energy than FTC configuration.

(a) (b)

Figure 11: Heavy crude example: Distillation configuration with minimum number of submixtures, and maximum heat
exchangers that requires at most 10% more energy than FTC configuration.

13

Fig. 5.3. (a) Two-phase condenser (b) Two-phase reboiler

unlike in conventional two-phase heat exchangers. Though this alternate approach

of modeling two-phase heat exchangers does not affect minimum vapor requirement

calculations, it affects exergy calculations. This is because, the temperature variation

in each condenser (resp. reboiler) goes from dew point to all the way to bubble point

(resp. bubble point to dew point). Whereas in a conventional two-phase condenser

(resp. reboiler), the temperature is fixed at the vapor-liquid equilibrium temperature

which is higher (resp. lower) than the bubble point (resp. dew popint). Despite this

limitation, we choose to model two-phase exchangers in this manner to reduce the

complexity (number of nonlinear nonconvex equations) of the model. We believe that

this simplification does not change the ranklist of configurations significantly, and

thus, it can be used for first-step screening. The required constraints are modeled as

0 ¤ FC i,j ¤ pFC i,jqupχi,j

pKrs
i,j�1qloχi,j ¤ Krs

i,j�1 ¤ pKrs
i,j�1qupp1� χi,jq

,.- @ pi, jq P C, (W8)

0 ¤ FRi,j ¤ pFRi,jqupρi,j

pU ss
i�1,jqloρi,j ¤ U ss

i�1,j ¤ pU ss
i�1,jqupp1� ρi,jq

,.- @ pi, jq P R. (W9)

Here, p�qup and p�qlo represent upper and lower bounds on p�q, respectively. Observe

that, when condenser (resp. reboiler) is absent i.e.,χi,j � 0 (resp. ρi,j � 0), material

flow into the condenser FC i,j (resp. reboiler FRi,j) is forced to zero and Krs
i,j�1 ¥ 0

(resp. U ss
i�1,j ¥ 0). This scenario models thermal coupling. On the other hand, the
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scenario where χi,j � 1 (resp. ρi,j � 1) models a two-phase condenser (resp. reboiler)

by enforcing Krs
i,j�1 ¤ 0 (resp. U ss

i�1,j ¤ 0). When condenser pi, jq (resp. reboiler pi, jq)
is present, the maximum liquid (resp. vapor) flowrate to the pseudocolumn Qi,j from

Qi,j�1 (resp. Qi,j�1) is
°j
p�i Fp. Therefore, we choose pKrs

i,j�1qlo � �°j
p�i Fp and

pU ss
i�1,jqlo � �°j

p�i Fp. The choice of upper bounds is described in Chapter 3.

5.1.3 Underwood Constraints

Consider a pseudocolumn Qi,j in the superstructure. It performs the separation

of stream ri, js, when ri, js is present. The resulting component distribution, vapor

and liquid flows are governed by Underwood constraints. On the other hand, when

ri, js is absent, pseudocolumn Qi,j bypasses material flows from the rectifying (resp.

stripping) section of the parent pseudocolumn Qi,j�1 (resp. Qi,j�1) to the rectifying

(resp. stripping) section of Qi,j. The relevant constraints are expressed as a disjunc-

tion, which is transformed to a set of equalities and inequalities using disjunctive

programming techniques. We omit the details for brevity, and refer the reader to

Chapter 3. For every ri, js P P , we impose the following constraints:

$''''''''''''''''''''''&''''''''''''''''''''''%

j̧

p�i

αppf rsI
i,j�1,p � f ssI

i�1,j,pq
αp � θi,j,q

� U rsz
i,j�1 � U ssz

i�1,j

j�1̧

p�i

αpf
rsO
i,j,p

αp � θi,j,q
¤ Υrsz

i,j

�
j̧

p�i�1

αpf
ssO
i,j,p

αp � θi,j,q
¤ Υssz

i,j

�
j�1̧

p�i

αpf
rsO
i,j,p

αp � θi,j,q
�Υrsz

i,j ¤Mij1

�
ζi,j �

j�1̧

k�q�1

q̧

l�i�1

σi,k,l,j

�
j̧

p�i�1

αpf
ssO
i,j,p

αp � θi,j,q
�Υssz

i,j ¤Mij2

�
ζi,j �

j�1̧

k�q�1

q̧

l�i�1

σi,k,l,j

�

,//////////////////////.//////////////////////-

j�1

q�i

(W10)

Υrsz
i,j ¤ V rsz

i,j , Υssz
i,j ¤ V ssz

i,j (W11)
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U rsz
i,j�1 � U ssz

i�1,j � Υrsz
i,j �Υssz

i,j (W12)$'''''''&'''''''%

tf rs
i,j�1,p � f rsI

i,j�1,p � f rs
i,j,p � f rsO

i,j,p � 0uj�1
p�i

tf ss
i�1,j,p � f ssI

i�1,j,p � f ss
i,j,p � f ssO

i,j,p � 0ujp�i�1

U rs
i,j�1 � U rsz

i,j�1 � V rs
i,j � V rsz

i,j � 0

U ss
i�1,j � U ssz

i�1,j � V ss
i,j � V ssz

i,j � 0

,///////.///////-
(W13)

The auxiliary variables, defined as aijp �
�
f rsI
i,j�1,p, f

ssI
i�1,j,p, f

rsO
i,j,p, f

ssO
i,j,p, U

rsz
i,j�1, U

ssz
i�1,j,

V rsz
i,j , V

ssz
i,j

�
� bijp�ζi,j, where bijp �

�
f rs
i,j�1,p, f

ss
i�1,j,p, f

rs
i,j,p, f

ss
i,j,p, U

rs
i,j�1, U

ss
i�1,j, V

rs
i,j , V

ss
i,j

�
,

are introduced for linearization. The bilinear equalities are relaxed with McCormick

envelopes [37]. The relaxation is exact, because ζi,j is always at its bound.

aijp ¤ mintbijp, ζi,jbup
ijpu

aijp ¥ maxt0, bijp � bup
ijppζi,j � 1qu

,.- @ p � ti, . . . , ju, ri, js P P (W14)

The first constraint in (W10), commonly referred as Underwood feed equation, gov-

erns Underwood roots (θi,j,q) satisfying αq�1 ¤ θi,j,q ¤ αq. The second and third

constraints in (W10) govern minimum vapor requirement in rectifying and stripping

sections. The fourth and fifth constraints in (W10) enforce that the minimum va-

por constraints are binding in the presence of certain splits [23]. They are imposed

in BigM form with Mij1 � pΥrsz
i,j qup � pU in

i,jqlo and Mij2 � pΥssz
i,j qup � pU in

i,jqup, where

U in
i,j � U rs

i,j�1�U ss
i�1,j denotes the net vapor inflow into pseudocolumn Qi,j (see Propo-

sition 5.2). Next, (W11) ensures that the actual vapor flow in both rectifying and

stripping sections is at least as high the threshold vapor flow. (W12) implies that

the difference in minimum vapor flows between the rectifying and stripping sections

equals the net vapor inflow into the pseudocolumn. Finally, (W13) models component

and vapor bypass, when pseudocolumn Qi,j is absent. The liquid bypass constraints

are implied from (W13), and hence are not included in the model.

Proposition 5.2. A valid lower bound on the nonlinear expression in (i) the sec-

ond constraint in (W10) is mint0, pV inqlou, and (ii) the third constraint in (W10) is

�maxt0, pV inqupu, where V in is the net vapor inflow.



129

Proof. (i). We denote the net component and vapor inflow into column Qi,j by

f in
i,j,p � f rs

i,j�1,p � f ss
i�1,j,p and V in

i,j � U rs
i,j�1 � U ss

i�1,j. For brevity, we drop indices i and

j. Let, the recovery of component p in distillate be γp � f rs
p {f in

p ùñ f rs
p � γpf

in
p .

The following optimization problem is formulated:

Minimize
j̧

p�i

αpγpf
in
p

αp � θq

s.t.
j̧

p�i

αpf
in
p

αp � θq
� V in

1 � γi ¥ γi�1 ¥ � � � ¥ γj � 0

αq�1 ¤ θq ¤ αq

(5.3)

The first constraint is the Underwood feed equation, and the second constraint is due

to the fact that the recovery a more volatile component in the distillate is always

higher than that for a less volatile component Remark. By inspection, the terms in

the objective function are obtained by multiplying each fraction of the feed equation

with respective recovery variable. Hence, we add the following redundant constraints

to the optimization problem.

αpf
in
p

αp � θq
pγp � γqq ¥ 0 for p P ti, . . . , ju (5.4)

The constraints are valid, because for p ¤ q (resp. p ¡ q) both the fraction and

the recovery difference is positive (resp. negative). Linear combination of all the

redundant constraints leads to

j̧

p�i

αpγpf
in
p

αp � θq
¥ γq

j̧

p�i

αpf
in
p

αp � θq
� V inγq (5.5)

The equality is due to feed equation in (5.3). Therefore, the optimum of (5.3) is

V inγq, which is bilinear. As it is not used in the rest of the formulation, we use its

lower bound instead. Since 0 ¤ γq ¤ 1, the lower bound on V inγq is mint0, pV inqlou;
0 when pV inqlo ¡ 0 and pV inqlo when pV inqlo   0.
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Although similar arguments can be used to prove (ii), we describe a simpler al-

ternative. We start with the feed equation

V in �
j̧

p�i

αpf
in
p

αp � θq
�

j̧

p�i

αpγpf
in
p

αp � θq
� αpp1� γpqf in

p

αp � θq

�
j̧

p�i

αpp1� γpqf in
p

αp � θq
�

j̧

p�i

αpγpf
in
p

αp � θq
� V in ¥ �V inp1� γpq

(5.6)

By recognizing that p1 � γpqf in
p � f ss

p and 0 ¤ p1 � γpq ¤ 1, the lower bound

on the nonlinear expression in the third constraint in (W10) can be shown to be

�maxt0, pV inqupu.

Before proceeding further, we make a few remarks on the Underwood constraints

for pseudocolumn Q1,N . Since the composition of the feed and net vapor inflow to

Q1,N are known, its Underwood roots (tθ1,N,quN�1
q�1 ) can be calculated a priori by

solving the feed equation. Therefore, to reduce the number of nonlinear nonconvex

equations in the model, we fix tθ1,N,quN�1
q�1 to the calculated value, and discard the

feed equation for Q1,N . Further, we substitute tθ1,N,quN�1
q�1 in Underwood minimum

vapor constraints for Q1,N to make them linear. Furthermore, as we shall see shortly,

Underwood roots tθ1,N,quN�1
q�1 are required for the computation of upper bounds on

vapor flow variables.

5.1.4 Flow-of-roots Constraints

These cuts are derived by exploiting monotonicity of Underwood constraints, and

are added to expedite the convergence of branch-and-bound. We refer the reader
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to Chapters 3 and 4 for derivation and computational evidence demonstrating the

efficacy of the cuts.$''''''&''''''%

#
θi,l,q � θi,j,q ¤M 1

q

�
χi,j �

i�1̧

r�1

j�1̧

s�i�1

σr,s,i,j � 1�
j�1̧

r�i�1

σi,j,r,l

�+N

l�j�1#
θi,j,q � θk,j,q ¤M 1

q

�
ρi,j �

Ņ

s�j�1

j�1̧

r�i�1

σi,j,r,s � 1�
j�1̧

s�i�1

σk,s,i,j

�+i�1

k�1

,//////.//////-

j�1

q�i

@ ri, js P S

(W15)

Here, M 1
q � αq � αq�1 corresponds to the upper bound on the difference between the

roots. This concludes the discussion on model constraints, and we now move on to

the objective function.

5.1.5 Objective Function and Exergy Constraints

The objective is to minimize the overall exergy loss. Consider the superstructure

shown in Figure 5.2(a). The shaded region inside the dashed boundary marks the

control volume. Note that heat exchangers are excluded from the control volume (see

Figure 5.2(a)) to focus only on the separation process. Exergy, either in the form

of heat or work, is neither added nor removed from the control volume. Thus, the

total exergy loss is simply the difference between the inflow and outflow of exergy

via material streams. The inflow is due to the process feed (E1,N), saturated liquid

streams from condensers (E in
con,i,j) and saturated vapor streams from reboilers (E in

reb,i,j).

Whereas the outflow is due to pure product streams (tEp,puNp�1), saturated vapor

streams entering condensers (Eout
con,i,j) and saturated liquid streams entering reboilers

(Eout
reb,i,j). The total exergy loss in the system is given by

∆Eloss �
�
E1,N �

Ņ

p�1

Ep,p


�

¸
pi,jqPC

�
E in

con,i,j � Eout
con,i,j

�� ¸
pi,jqPR

�
E in

reb,i,j � Eout
reb,i,j

�
. (5.7)

Each exergy variable (E) in (5.7) consists of chemical exergy associated with mix-

ture (EM), thermal (ET ) and pressure (EP ) exergy associated with temperature and
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pressure change from a reference state to saturated liquid state, and thermal exergy

associated with phase change (EPC) from saturated liquid to the current state; i.e.,

E � EM � ET � EP � EPC . Note that EM � 0 for pure components, and EPC � 0 for

a saturated liquid stream. Following the procedure of [29, 63], the terms in (5.7) are

evaluated to�
E1,N �

Ņ

p�1

Ep,p
�
�FRT0

�
Ņ

p�1

zin
1,N,p ln zin

1,N,p

�
� F∆H

» 1

Φ1,N

�
1� T0

T1,N



dφ

�
Ņ

p�1

Fp∆H

» 1

Φp,p

�
1� T0

Tp,p



dφ, (5.8a)

�
E in

con,i,j � Eout
con,i,j

� �� FC i,j∆H

» 1

0

�
1� T0

T con
i,j



dφ, (5.8b)

�
E in

reb,i,j � Eout
reb,i,j

� �FRi,j∆H

» 1

0

�
1� T0

T reb
i,j



dφ, (5.8c)

Where F � °N
p�1 Fp is the total flow rate of the process feed, zin

1,N,p � Fp{F is the mole

fraction of component p in the process feed, R is the universal gas constant and T0

is the reference temperature. The terms on RHS of (5.8a), respectively, correspond

to chemical exergy associated with mixing (EM1,N), thermal exergy associated with

phase change from saturated liquid state to the state corresponding to liquid fraction

Φ1,N (EPC1,N ) of process feed, and thermal exergy associated with phase change from

saturated liquid state to the state corresponding to liquid fraction Φp,p (EPCp,p ) of pure

component p. The difference in thermal (ET ) and pressure (EP ) exergy contributions

arising from process feed and pure products is set to zero i.e.,ET1,N�
°N
p�1 ETp,p � 0 and

EP1,N �
°N
p�1 EPp,p � 0. This simplification is found to be valid after rigorous testing on

several systems [29].

The only difference between the inlet and outlet terms in (5.8b) and (5.8c) is

the phase of the stream. Thus, only thermal exergy corresponding to phase change

pEPCi,j q survives in both the equations. Note that, the temperature varies during

phase change for mixtures, and thus, it is a function of liquid fraction φ. On the

other hand, for pure components, temperature remains constant during phase change
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i.e., T con
i,i � T reb

i,i � Ti,i, and it is independent of φ. Now, we perform a series of

manipulations to eliminate the dependence on temperature.

First, an overall energy balance on the control volume implies that the net con-

denser duty equals the sum of net reboiler duty and the difference between the en-

thalpies of process feed and pure components.¸
pi,jqPC

FC i,j∆H �
¸

pi,jqPR
FRi,j∆H � Fp1� Φ1,nq∆H �

Ņ

p�1

Fpp1� Φp,pq∆H. (5.9)

During the energy balance, it is assumed that the sum of enthalpies of pure products at

saturated liquid state is roughly the same as the enthalpy of process feed at saturated

liquid state. This is also a reasonable approximation that holds for a majority of

cases. Next, we multiply (5.9) with the Carnot efficiency factor measured w.r.t the

boiling point of the least volatile component pTN,Nq, and rewrite the equation as¸
pi,jqPC

FC i,j∆H

» 1

0

�
1� T0

TN,N



dφ�

¸
pi,jqPR

FRi,j∆H

» 1

0

�
1� T0

TN,N



dφ

�F∆H

» 1

Φ1,N

�
1� T0

TN,N



dφ�

Ņ

p�1

Fp∆H

» 1

Φp,p

�
1� T0

TN,N



dφ � 0. (5.10)

(5.10) is equivalent to (5.9), because the boiling point of the least volatile component

(TN,N) and the reference temperature (T0) are constant. Next, we add (5.10) to (5.7),

substitute (5.8a) – (5.8c), and rearrange the expression to obtain

∆Eloss �FRT0

� Ņ

p�1

zin
1,N,p ln zin

1,N,p



� FT0∆H

» 1
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�
1
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� 1
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�
1
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� 1

TN,N



dφ

�
¸
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FC i,jT0∆H
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0

�
1
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� 1

Ti,i



dφ�

¸
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» 1

0

�
1
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� 1
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dφ

�
¸

pi,jqPR
FRi,jT0∆H
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0

�
1

T reb
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� 1
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dφ�

¸
pi,jqPR

FRi,jT0∆H

» 1

0

�
1

Tj,j
� 1

TN,N



dφ.

(5.11)

In the above equation, we have added and subtracted the inverse of boiling point of

the lightest (resp. heaviest) component in terms associated with condensers (resp.
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reboilers). The reason for this choice will be explained shortly. By combining Dalton’s

law, Raoult’s law and Clausius-Clapeyron equation (both liquid and vapor phases are

assumed to be ideal), [28, 29] derived

∆H

�
1

Tj,j
� 1

TN,N



� R lnαj

∆H

�
1

Ti,j
� 1

Tj,j



� R ln

�°j
p�i αpxi,j,p

αj

�
,///.///- , (5.12)

where xi,j,p is the liquid composition in equilibrium with vapor at temperature Ti,j.

Substituting (5.12) in (5.11) and dividing by RT0 leads to the scaled total exergy loss

in a distillation configuration, solely expressed in terms of relative volatilities and

material flows.

∆Eloss

RT0

�F
� Ņ

p�1

zin
1,N,p ln zin

1,N,p



� F

» 1

Φ1,N

ln

�°N
p�1 αpx
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1,N,p

αN

�
dφ�
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p�1

Fpp1� Φp,pq lnαp

�
¸

pi,jqPC
FC i,j

» 1

0

ln

�°j
p�i αpx

con
i,j,p

αi

�
dφ�

¸
pi,jqPC

FC i,j lnαi

�
¸

pi,jqPR
FRi,j

» 1

0

ln

�°j
p�i αpx

reb
i,j,p

αj

�
dφ�

¸
pi,jqPR

FRi,j lnαj.

(5.13)

Note that, xi,j,p � xi,j,ppφq since Ti,j � Ti,jpφq, for i � j. We emphasize that the

temperature independence of (5.13) implies that the total exergy loss for a mixture,

with tαpuNp�1, is the same irrespective of sub-ambient or above-ambient distillation.

This is an astounding result from the foregoing procedure!

The first three terms in (5.13) can be determined prior to solving the MINLP, as

they are functions of problem parameters only. Thus, we will exclude those terms from

the objective function, and add the value to the optimal solution post-optimization

to determine the total exergy loss. Further, we approximate the integral with a

quadrature formula. A two-point quadrature is found to be sufficient in all the cases

we tested. Nevertheless, for higher accuracy three-point or higher order quadrature

formulas can be used. The drawback of using higher order quadrature formulas is
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that the number of variables and nonconvex equations increase rapidly. The objective

function after the aforementioned changes, simplifies to

Minimize ∆E 1loss �
¸

pi,jqPC
FC i,j lnαi �

¸
pi,jqPR

FRi,j lnαj

�
¸

pi,jqPC
FC i,j

¸
gPG

ξg ln

�
αi°j

p�i αpx
con
i,j,p,gpφgq

�

�
¸

pi,jqPR
FRi,j

¸
gPG

ξg ln

�°j
p�i αpx

reb
i,j,p,gpφgq
αj

�
,

(5.14)

where ξg are the Gauss weights corresponding to quadrature points φg (see §C.2).

xcon
i,j,p,g is the liquid phase mole fraction in equilibrium with the vapor, when φg fraction

of the vapor is condensed in a condenser. Similarly, xreb
i,j,p,g is the liquid phase mole

fraction in equilibrium with the vapor, when p1�φgq fraction of the liquid is vaporized

in a reboiler. To determine xcon
i,j,p,g and xreb

i,j,p,g, we perform material balance between the

vapor and liquid phases. At equilibrium, total number of moles of component p equals

the sum of number of moles of p in liquid (total moles of liquid times the composition

of p in liquid) and vapor phases (total moles of vapor times the composition of p in

vapor). We divide the material balance equation with the total number of moles, and

replace the ratio of total moles of liquid (resp. vapor) to total moles with φg (resp.

1 � φg). Further, we make use of vapor-liquid equilibrium equations to express the

composition of vapor phase in terms of the composition of liquid phase. Material

balance equations, after making the aforementioned manipulations, are shown below:

zcon
i,j,p � φgx

con
i,j,p,g � p1� φgq

αpx
con
i,j,p,g°j

p�i αpx
con
i,j,p,g

for i ¤ p ¤ j, g P G, pi, jq P C

zreb
i,j,p � φgx

reb
i,j,p,g � p1� φgq

αpx
reb
i,j,p,g°j

p�i αpx
reb
i,j,p,g

for i ¤ p ¤ j, g P G, pi, jq P R

,////.////- . (5.15)

The LHS of the above equations corresponds to the net mole fraction of component

p: moles of p in mixture/total moles of mixture. Since the liquid (resp. vapor)

reflux from a condenser (resp. reboiler) has the same composition as that of the

inlet vapor (resp. liquid) to the condenser (resp. reboiler) (see Figure 5.3), the net

composition of component p in the inlet vapor zcon
i,j,p (resp. inlet liquid zreb

i,j,p) is equal
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to its composition in distillate (resp. residue). Thus, in (5.16), we compute the

net composition of component p in the condenser as the ratio of its flowrate in the

distillate of pseudocolumn Qi,j�1 to the net distillate flowrate, and rearrange it in

bilinear form to prevent singularity issues associated with the denominator going to

zero. In a similar manner, the net composition of component p in reboiler pi, jq is

computed by taking the ratio of its flowrate in the residue of pseudocolumn Qi�1,j to

the total residue flowrate.�
j̧

m�i

f rs
i,j�1,m

�
zcon
i,j,p � f rs

i,j�1,p for i ¤ p ¤ j, pi, jq P C�
j̧

m�i

f ss
i�1,j,m

�
zreb
i,j,p � f ss

i�1,j,p for i ¤ p ¤ j, pi, jq P R

,////.////- . (5.16)

Although, summation of mole fraction constraints:
°j
p�i z

con
i,j,p � 1, zreb

i,j,p � 1,
°j
p�i x

con
i,j,p,g �

1, and xreb
i,j,p,g � 1 are implied from (5.15) and (5.16), adding them explicitly to the

model helps, as they are not implied in the relaxation.

Observe that, in (5.14), a negative sign is introduced in front of the third term

by changing the argument of ln function accordingly. The advantage of this manip-

ulation will be apparent when we reformulate the problem. Next, we remark that

the argument of all ln functions in (5.14) belong to the interval r1, αi{αjs, because

αj ¤
°j
p�i αpxi,j,p ¤ αi as

°j
p�i xi,j,p � 1. This is the consequence of manipulations

performed in (5.11). Because ln varies steeply in the interval p0, 1s, as a precautionary

measure, we made the arguments of all ln function to lie outside p0, 1s.
The MINLP (W) can be solved with (5.14) as the objective function, and by

appending (5.15) and (5.16) to the constraint set. After determining the optimum

∆E 1loss, the total exergy loss p∆Elossq can be obtained as

∆Eloss � RT0

�
∆E 1loss � F

Ņ

p�1

zin
1,N,p ln zin

1,N,p � F

» 1

Φ1,N

ln

�°N
p�1 αpx

in
1,N,p

αN

�
dφ

�
Ņ

p�1

Fpp1� Φp,pq lnαp

�
. (5.17)

The explicit enumeration-based algorithm introduced by [53] formulates an optimiza-

tion problem for each configuration in the above manner. As is evident from (5.15)
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and (5.16), this approach adds several nonlinear nonconvex equations, which may

make it more challenging to solve the MINLP to ε�optimum. Therefore, we propose

a reformulation to the model to reduce the number of nonconvex terms in the problem

significantly.

The purpose of (5.15) and (5.16) is to determine the values of xi,j,p,g, required for

evaluating
°
p αpxi,j,p,g in objective function. However, we are not interested in the

explicit values of xi,j,p,g and zi,j,p, as they do not appear anywhere else in the problem.

Therefore, if there is a simpler alternative to determine
°
p αpxi,j,p,g without explicitly

computing xi,j,p,g or zi,j,p, it would be attractive. This is achieved by performing the

following manipulations. We modify the objective function by introducing auxiliary

variables Ψi,j,g and Ωi,j,g for the arguments of ln functions

Minimize ∆E 1loss �
¸

pi,jqPC
FC i,j lnαi �

¸
pi,jqPR

FRi,j lnαj

�
¸

pi,jqPC
FC i,j

¸
gPG

ξg ln Ψi,j,g �
¸

pi,jqPR
FRi,j

¸
gPG

ξg ln Ωi,j,g,
(W16)

where

Ψi,j,g � αi°j
p�i αpx

con
i,j,p,g

, (5.18a)

Ωi,j,g �
°j
p�i αpx

reb
i,j,p,g

αj
. (5.18b)

We substitute (5.18) in (5.15), and rearrange to obtain liquid mole fractions in terms

of auxiliary variables:

xcon
i,j,p,g �

zcon
i,j,p

φg � p1� φgqpαp{αiqΨi,j,g

, (5.19a)

xreb
i,j,p,g �

αjΩi,j,gz
reb
i,j,p

φgαjΩi,j,g � p1� φgqαp . (5.19b)

Next, to eliminate xcon
i,j,p,g, we sum (5.19a) over p from i to j. The left hand side equals

one (sum of mole fractions). Further, we eliminate zcon
i,j,p by substituting its definition

from (5.16). The foregoing manipulations lead to

j̧

p�i

f rs
i,j�1,p

φg � p1� φgqpαp{αiqΨi,j,g

�
j̧

p�i

f rs
i,j�1,p g P G; pi, jq P C. (W17)
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To eliminate xreb
i,j,p,g, we multiply (5.19b) by αp, and sum over p (from i to j). The left

hand side is replaced with Ωi,j,gαj (by definition. See (5.18b)). As before, we eliminate

zreb
i,j,p by substituting its definition from (5.16). The foregoing manipulations lead to

j̧

p�i

αpf
ss
i�1,j,p

φgαjΩi,j,g � p1� φgqαp �
j̧

p�i

f ss
i�1,j,p g P G; pi, jq P R. (W18)

We remark that, (W18) can also be derived in a manner similar to (W17) with an

additional partial fraction decomposition step. Because (W17) and (W18) govern

variables Ψi,j,g and Ωi,j,g, which are required for the computation of exergy loss,

we refer them as exergy constraints associated with condensers and reboilers, respec-

tively. Observe that the solution of (W17) (resp. (W18)) directly yields the value of°
p αpx

con
i,j,p (resp.

°
p αpx

reb
i,j,p), without explicitly calculating xcon

i,j,p and zcon
i,j,p (resp. xreb

i,j,p

and zreb
i,j,p). Therefore, by appending (W17) and (W18) to the constraint set, (5.15)

and (5.16) can be eliminated from the model, as well as variables xcon
i,j,p, z

con
i,j,p, x

reb
i,j,p

and zreb
i,j,p. As a result, for each heat exchanger and at each quadrature point, one

exergy constraint replaces pj� i�1q vapor-liquid equilibrium equations in (5.15) and

pj � i� 1q mole fraction computations in (5.16). Clearly, the proposed reformulation

reduces the number of nonlinear nonconvex equations drastically, making the model

cleaner and simple. Finally, exergy constraints associated with condensers and re-

boilers have the following properties, one of which is exploited in the next subsection

to derive additional valid cuts.

Property 1. For a given tf rs
i,j�1,pujp�i (resp. tf ss

i�1,j,pujp�i), there exists a unique Ψi,j,g

(resp. Ωi,j,g) satisfying (W17) (resp. (W18)).

Proof. For φg P r0, 1s (see §C.2), the LHS of (W17) (resp. (W18)) is continuous and

decreases monotonically with Ψi,j,g (resp. Ωi,j,g). Further, it can be shown that,

j̧

p�i

f rs
i,j�1,p

φg � p1� φgqpαp{αiqΨlo
i,j,g

¥
j̧

p�i

f rs
i,j�1,p ¥

j̧

p�i

f rs
i,j�1,p

φg � p1� φgqpαp{αiqΨup
i,j,g

,

j̧

p�i

αpf
ss
i�1,j,p

φgαjΩlo
i,j,g � p1� φgqαp ¥

j̧

p�i

f ss
i�1,j,p ¥

j̧

p�i

αpf
ss
i�1,j,p

φgαjΩ
up
i,j,g � p1� φgqαp ,
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where Ψlo
i,j,g � Ωlo

i,j,g � 1 and Ψup
i,j,g � Ωup

i,j,g � αi{αj (see (5.18)). Application of Inter-

mediate value theorem implies that there exists a solution for (W17) (resp. (W18)) in

the interval rΨlo
i,j,g,Ψ

up
i,j,gs (resp. rΩlo

i,j,g,Ω
up
i,j,gs), and monotonicity guarantees unique-

ness. This property avoids the issues associated with solution multiplicity.

Property 2. Ψi,j (resp. Ωi,j) decreases (resp. increases) monotonically with increase

in φ.

Proof. First, we prove Ψi,j decreases monotonically with φ. For conciseness, we drop

indices ‘i, j�1’ and superscript rs from f rs
i,j�1,p, drop indices ‘i, j’ from Ψi,j, and define

a new variable for the denominator of fractions in (W17): Dp � φ�p1�φqpαp{αiqΨ.

Differentiating (W17) w.r.t φ partially, leads to

�
¸
p

fp

D2
p

"
1� p1� φq

�
αp
αi


 BΨ

Bφ �
�
αp
αi



Ψ

*
� 0.

Multiplying the above equation with p1�φq, and rearranging the resulting expression

yields

BΨ

Bφ �
�
�
¸
p

fp

D2
p

p1� φq2
�
αp
αi


��1 �¸
p

fp

D2
p

"
1� φ� p1� φq

�
αp
αi



Ψ

*�

�
�
�
¸
p

fp

D2
p

p1� φq2
�
αp
αi


��1 �¸
p

fp

D2
p

� fp
Dp

��°
p fm°
p fm

�

�
�
�
¸
p

fp

D2
p

p1� φq2
�
αp
αi


��1
���¸

p

fp

D2
p

��¸
p

fp

�
�
�¸

p

fp
Dp

�2
���

1°
p fm

�
.

(5.20)

In the last line, we used
°
p fp �

°
p fp{Dp (see (W17)). Using the identity

�°
p upwp

	2

�°
p

°
l, l ppup � ulq2wpwl �

�°
pwp

	�°
p u

2
pwp

	
(see §C.3 for proof), with up � 1{Dp

and wp � fp, we express the second term in the last line of (5.20) as

BΨ

Bφ �
�
�
¸
p

fp

D2
p

p1� φq2
�
αp
αi


��1 �¸
p

¸
l, l p

�
1

Dp

� 1

Dl


2

fpfl

��
1°
p fm

�
. (5.21)
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Observe that the first term on RHS of (5.21) is always negative, while the second

and third terms are positive. Therefore, BΨ
Bφ

  0, indicating that Ψi,j,g decreases

monotonically with increase in φ.

Although similar arguments can be used to prove Ωi,j,g increases monotonically

with φ, we show a simpler alternative. We recognize that Ω9Ψ�1, by definition (see

(5.18)). Therefore, Ψi,j is a monotonically decreasing function of φ implies that Ωi,j

increases monotonically with φ.

Remark 5.1. By definition, thermal quality equals zero (φ � 0) for a saturated

vapor stream and equals one (φ � 1) for a saturated liquid stream. As a result, φ

increases monotonically with decrease in temperature i.e.,φ1   φ2 for T pφ1q ¡ T pφ2q.
By combining this observation with Property 2, we observe that Ψi,j (resp. Ωi,j)

increases (resp. decreases) monotonically with increase in temperature.

5.1.6 Exploiting Monotonicity of Exergy Constraints

In our prior work [23], we presented computational evidence illustrating the im-

portance of (W15), derived by exploiting the monotonicity of Underwood constraints,

in expediting the convergence of branch-and-bound. We have also shown cases where

global solvers fail to converge in a reasonable amount of time, in the absence of (W15).

This was because, the monotonicity constraints, though implicit in Underwood con-

straints, are not implied in the relaxation. Explicitly adding the constraints to the

model aids global solvers to use the information in inferring tighter bounds on Under-

wood roots via feasibility and optimality based bound tightening techniques. Based

on this evidence, we expect that the constraints derived by exploiting monotonicity

of exergy constraints (Property 2) have potential in expediting the convergence of

branch-and-bound, as they will not be implied in the relaxation.

We present the constraints for two-point quadrature formula. The extension to

higher order quadrature formulas is straightforward. Exergy constraint in (W17)

(resp. (W18)) is written at both quadrature points φ1 and φ2 (where φ1   φ2. See
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Figure 4: Heavy crude example: Distillation configuration with minimum number of submixtures, and maximum heat
exchangers that requires at most 10% more energy than FTC configuration.
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Figure 5: Heavy crude example: Distillation configuration with minimum number of submixtures, and maximum heat
exchangers that requires at most 10% more energy than FTC configuration.

10

Fig. 5.4. A five-component configuration motivating the need for con-
straints in section 2.7

§C.2). Because Ψi,j,g (resp. Ωi,j,g) is a monotonically decreasing (resp. increasing)

function of φ (see Property 2), we have

Ψi,j,1 ¥ Ψi,j,2, @ pi, jq P C
Ωi,j,1 ¤ Ωi,j,2, @ pi, jq P R

,.- (W19)

We shall see in the next subsection, that these constraints are not only useful, but

necessary for the model.

5.1.7 Relation Between Temperatures of Condensers and Reboilers

The motivation for the inclusion of the following constraints is better understood

with an example. Consider a five-component mixture of hydrocarbons: A �Propylene

(F1 � 5, α1 � 11.761), B �Propane (F2 � 5, α2 � 9.801), C �1-Butene (F3 �
32.5, α3 � 3.63), D �n-Butane (F4 � 25, α4 � 3) and E �n-Pentane (F5 �
32.5, α5 � 1). Flowrate of each component pFpq in the process feed pr1, N sq is given
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in kmol/h, and the relative volatility information is taken from [46]. The remaining

problem parameters are taken to be Φ1,N � 1 and tΦp,puNp�1 � t1, 1, 1, 1, 1u. We fix the

discrete variables (ζi,j, χi,j and ρi,j) to configuration shown in Figure 5.4, and solve

the MINLP (W). The optimum objective function value (∆E 1loss) is �84.671 making

the first term on the right hand side of (5.17) negative. Further, the second term of

(5.17) is also negative, the third and fourth terms for the chosen parameters evaluate

to zero; implying that the total exergy loss for the configuration at optimum opera-

tion is negative. Physically, negative exergy loss implies that the exergy is generated

in the system, because of which, the net outflow of exergy from the system is greater

than the net inflow of exergy into the system. In other words, work is produced by

distilling the hydrocarbon mixture with the configuration in Figure 5.4. Obviously,

such solutions are infeasible as they violate physics of the distillation process. To

understand why such solutions are feasible to the model, we examine the optimum

operating conditions (material flows) more closely.

The net component, vapor and liquid flows in the rectifying and stripping sections

of all pseudocolumns at optimum are shown in Table 5.2. In particular, observe the net

component flows in the stripping section of pseudocolumn Q1,4. The net component

flowrate, and thus, the net flowrate of residue is zero. As a result, exergy constraints

for reboiler p2, 4q are satisfied trivially; making variables Ω2,4,1 and Ω2,4,2, which are

a measure of temperature, become unrestricted. This makes the optimizer push the

temperature of the reboiler p2, 4q to the lowest value possible, by pushing both Ω2,4,1

and Ω2,4,2 to their upper bound (see Remark 1 for dependence of temperature on

Ωi,j). In fact, for the configuration in Figure 5.4, the temperature of condenser p1, 3q
at optimum is higher than the temperature of reboiler p2, 4q, enabling extraction of

work by running a heat engine between the heat exchangers.
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In contrast, when the net distillate and residue flows are nonzero, variables Ψi,j and

Ωi,j are restricted by exergy constraints. As such, Underwood method ensures that the

distillate from a column is “lighter” than the residue from the same column; solutions

making the condenser of a pseudocolumn hotter than its reboiler are infeasible to the

model. In the explicit enumeration approach of [53], the authors impose a small, but

nonzero, lower bound on distillate and residue flows. Consequently, the authors never

encountered situations which violated the physics of distillation process. However,

in our model, we optimize over the entire search space of configurations, and thus

nonzero lower bounds on net component flows cannot be imposed. This is the reason

why our model admits the solution in Table 5.2, while it is infeasible to the model

of [53].

We resolve this issue by explicitly imposing constraints which ensure that the

condenser of a pseudocolumn is always colder than its reboiler. These constraints

are redundant when the net distillate and residue flows are nonzero, but are required

otherwise. Consider pseudocolumn Qi,j. The hottest (resp. coldest) temperature in

condenser pi, j � 1q (resp. reboiler pi � 1, jq) is the dew point
�
T dewi,j�1

�
(resp. bubble

point
�
T bubi�1,j

�
) of distillate (resp. residue). In any distillation column T dewi,j�1 ¤ T bubi�1,j

or
�
1{T dewi,j�1

� ¥ �
1{T bubi�1,j

�
, which we rewrite as�

1

T dewi,j�1

� 1

Ti,i

�
�
�

1

Ti,i
� 1

TN,N



¥
�

1

T bubi�1,j

� 1

Tj,j

�
�
�

1

Tj,j
� 1

TN,N



. (5.22)

Using (5.12) and (5.18), we rewrite the above constraint as

� ln
�
Ψdew
i,j�1

�� lnαi ¥ ln
�
Ωbub
i�1,j

�� lnαj, (5.23)

which is further simplified to

Ψdew
i,j�1Ωbub

i�1,j ¤
αi
αj
. (5.24)

Here, Ψdew
i,j�1 � Ψi,j�1pφ � 0q (resp. Ωbub

i�1,j � Ωi�1,jpφ � 1q) is determined by solving

an equation of the form (W17) (resp. (W18)) with φg substituted to 0 (resp. 1).

Clearly, (5.24) requires introduction of additional variables and nonlinear constraints.
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However, we exploit Property 2, and derive a relaxed version of (5.24) in terms of

problem variables.

Because Ψi,j�1 decreases monotonically with increase in φ, and 0   φ1, Ψi,j�1pφ �
0q ¡ Ψi,j�1pφ � φ1q or Ψdew

i,j�1 ¡ Ψi,j�1,1. Similarly, Ωi�1,jpφ � 1q ¡ Ωi�1,jpφ � φ2q or

Ωbub
i�1,j ¡ Ωi�1,j,2 because 1 ¡ φ2 and Ωi�1,j increases monotonically with increase in

φ. From the foregoing arguments, Ψi,j�1,1Ωi�1,j,2   Ψdew
i,j�1Ωbub

i�1,j, which in conjunction

with (5.24) leads to

Ψi,j�1,1Ωi�1,j,2 ¤ αi
αj
, @ ri, js P P . (W20)

Obviously, this raises the following question: Does the relaxation of (5.24) add phys-

ically infeasible solutions to the model? The answer is no, and the reason is stated

as a proposition below.

Proposition 5.3. (W20) along with monotonicity constraints in (W19) imply that

the exergy associated with unit heat at reboiler of a pseudocolumn is greater than the

exergy associated with unit heat at condenser of the same pseudocolumn.

Proof. Consider pseudocolumn Qi,j. We need to show» 1

0

�
1� T0

T reb
i�1,j

�
dφ ¥

» 1

0

�
1� T0

T con
i,j�1



φ,

As in (5.22) and (5.23), we add and subtract appropriate terms, use (5.12) and (5.18)

to rewrite the above inequality as shown below» 1

0

p� ln Ωi�1,j � ln Ψi,j�1 � lnαi � lnαjq dφ ¥ 0.

Next, we approximate the integral with two-point Gauss quadrature formula to obtain

Ψi,j�1,1Ψi,j�1,2Ωi�1,j,1Ωi�1,j,2 ¤
�
αi
αj


2

. (5.25)

We show that (W20) and (W19) imply the inequality in (5.25). Ψi,j�1,1 ¥ Ψi,j�1,2 im-

plies Ψi,j�1,1Ωi�1,j,2 ¥ Ψi,j�1,2Ωi�1,j,2, and Ωi�1,j,2 ¥ Ωi�1,j,1 implies Ωi�1,j,2Ψi,j�1,1 ¥
Ωi�1,j,1Ψi,j�1,1. Combining the arguments leads to Ωi�1,j,1Ψi,j�1,1Ψi,j�1,2Ωi�1,j,2 ¤
pΩi�1,j,2Ψi,j�1,1q2, which, along with (W20), implies (5.25).
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This concludes the formulation (W). It can be readily solved to ε-global optimum

with off-the-shelf solvers like BARON.

5.2 Computational Studies

The purpose of this section is twofold. First, with a case study, we present two

ways of using the MINLP formulation (W): identification of simple (requiring fewer

number of column sections) yet exergetically favorable configurations, and determin-

ing good retrofits. Second, with several four and five component examples from

literature, we investigate the solution performance to changes in problem parameters

viz., composition of process feed tFpuNp�1 and relative volatilities tαpuNp�1.

5.2.1 Case Study: Shale Gas Separation

Due to advances in technology such as hydraulic fracturing and horizontal drilling,

the production of shale gas has increased rapidly in the United States. Shale gas

contains considerable amount of Natural Gas Liquids (NGLs): mixture of C2, C3,

C4, C5�. For example, shale gas from Eagle Ford contains roughly 24 mol % of

NGLs [68, 69]. Motivated by applications such as gasoline blending (C5�), produc-

tion of olefins (feedstock for production of several value-added chemicals) etc., it is

desired to recover NGLs from shale gas. For this task, distillation is attractive owing

to (i) the relative ease of separation of consecutive components, (ii) ability to pro-

duce high purity products and (iii) ability to process large quantities of feed. Since

the lighter hydrocarbons boil at sub-ambient temperatures, a sub-ambient distilla-

tion configuration, which uses work rather than heat, is required for the portion of

flowsheet separating lighter hydrocarbons. Minimization of exergy losses is crucial for

such flowsheets, as the work input is proportional to the total exergy losses. There-

fore, the formulation developed in the previous section is useful for this application.
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Table 5.3.
Composition of shale gas from Eagle Ford

Component Composition (mol%) Relative Volatility

A C1 75.52 24

B C2 14 4.21

C C3 5.49 2.08

D C4 2.82 1.32

E C5� 2.17 1

As an example, we consider a shale gas mixture from Eagle Ford, whose com-

position is shown in Table 5.3. We remark that shale gas also contains acid gases

(CO2 and H2S), N2 and H2O. However, these gases are generally removed prior to

distillation. Therefore, we borrowed the shale gas composition from [68,69], removed

acid gases, N2 and H2O, and normalized the composition of hydrocarbons. We re-

fer the reader to §C.4 for a description on the computation of relative volatilities

reported in Table 5.3. We consider the case, where the process feed is fed as a satu-

rated vapor (Φ1,N � 0) and the pure components are withdrawn as saturated vapors

(tΦp,puNp�1 � t0, 0, 0, 0, 0u). We use BARON 18.5.1 on GAMS 25.1 to solve MINLPs

to ε-global optimum, with relative tolerance for convergence (εr) set to 1%.

First, we determine the best sharp-split configuration for this application. Of

all regular-column configurations, sharp-split configurations have the least number

of column sections and inter-column transfer streams; making them attractive from

operational standpoint. A characteristic of sharp-split configurations is that they

have exactly pN � 2q submixture streams, one process feed stream (r1, N s) and N

pure component product streams (trp, psuNp�1). Therefore, to tailor the search space

to contain only sharp-split configurations, we add¸
ri,jsPT

ζi,j � pN � 2q � pN � 1q. (5.26)
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Q1,5

Q4,5

Q1,3

Q1,2

Figure 6: Heavy crude example: Distillation configuration with minimum number of submixtures, and maximum heat
exchangers that requires at most 10% more energy than FTC configuration.
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Figure 7: Heavy crude example: Distillation configuration with minimum number of submixtures, and maximum heat
exchangers that requires at most 10% more energy than FTC configuration.
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Figure 8: Heavy crude example: Distillation configuration with minimum number of submixtures, and maximum heat
exchangers that requires at most 10% more energy than FTC configuration.
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(b)

Fig. 5.5. (a) Conventional configuration for shale gas separation (b)
A plausible retrofit to reduce exergy loss. Operating conditions at
optimum operation are shown in Table 5.4.

to (W). Solving the MINLP to ε-optimality yields the configuration shown in Figure

5.5(a). This configuration, commonly referred as the direct-split configuration, is

currently the preferred choice for shale gas separation in industry. Our model, despite

several simplifying assumptions, determined it to be the best among all 112 sharp-split
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configurations in less than a minute. This illustrates that the simplifying assumptions

are reasonable and the model results in worthwhile solutions.

However, it is well known that sharp-split configurations are not always attractive

in terms of overall energy requirement. Substantial benefits can be obtained by

including sloppy splits in a configuration. Therefore, to assess the penalty from using

a sharp-split configuration, we solve (W) over the entire space of regular-column

configurations, and compare the optimal exergy loss with that of the direct-split

configuration. The optimal configuration among all the regular-column configurations

has an exergy loss of 29.96RT0 kJ/h. On the other hand, the total exergy loss for

the direct-split configuration at optimum operation is 47.73RT0 kJ/h, which is 59.3%

higher than the optimal configuration. This shows that there is a large potential in

reducing the overall exergy losses, and in turn the overall energy requirement, by

introducing sloppy splits in the configuration.

Since ab initio redesign of an existing plant may not be economical, the process

designer would be interested in a plausible retrofit for the direct-split configuration.

For this purpose, we look for configurations that are structurally similar to the direct-

split configuration. We add

ζ2,5 � ζ3,5 � ζ4,5 � 1¸
ri,jsPT

ζi,j � pN � 2q � pN � 1q � 1
(5.27)

to (W). The first constraint enforces that the desired configuration contains submix-

tures BCDE, CDE and DE. Whereas, the second constraint is added to limit the

increase in number of column sections to two. This way, we seek configurations that

may provide substantial benefits with minimal increase in operational complexity.

The optimal solution is shown in Figure 5.5(b), and its exergy loss is 36.45RT0 kJ/h.

Table 5.4 lists the material flows in rectifying and stripping sections of all pseudo-

columns at optimum operation for both configurations in Figure 5.5. In particular,

we point out that the duty of condenser p1, 1q is the same for both the configurations.
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Further, in Figure 5.5(b), the liquid reflux produced at condenser p1, 1q is used effi-

ciently between Q1,5, Q1,2 and Q2,5. On the other hand, in Figure 5.5(a), the required

liquid reflux for the columns Q1,5 and Q2,5 is produced independently at condensers

p1, 1q and p2, 2q, respectively; thereby arising the need for additional refrigeration at

condenser p2, 2q. For this reason, the configuration in Figure 5.5(b) is attractive over

the direct-split configuration. Moreover, it is structurally similar to Figure 5.5(a),

and thus, amenable for retrofitting.

Nonetheless, the configuration in Figure 5.5(b) has 21.66% higher exergy loss

than that of the optimal solution over the entire search space. Alternative solutions

that provide additional benefit may be determined by relaxing the limitation on the

number of column sections and re-solving (W). Figures 5.6(a) and 5.6(b) show the

optimal configurations with four and six additional sections than the direct split

configuration. The optimal exergy loss for Figure 5.6(a) is 35.62RT0 kJ/h (18.9%

higher than the optimal configuration over the entire search space) and Figure 5.6(b)

is 31.4RT0 kJ/h (4.8% higher than the optimal configuration over the entire search

space). Now, the process designer has to assess trade-offs between the benefit from

introducing additional sections in configurations vs. increased operational complexity,

in order to determine the best configuration for the separation of shale gas.

5.2.2 Examples from Literature

In addition to the shale gas example discussed in the previous subsection, we also

tested the model (W) on several four and five component examples taken from the

literature. Problem parameters are reported in the third and fourth columns of Table

5.5. The remaining parameters are taken to be Φ1,n � 1 and tΦp,p � 1uNp�1 for all

cases. We chose BARON 18.5.1 on GAMS 25.1 to solve the MINLP (W), with all

options, except pDo, set at their defaults. We observed that BARON can solve (W)

faster, when pDo is set to �1 i.e.,when all variables are probed. Finally, we chose 1%

for relative tolerance for convergence (εr) and 10000 s for time limit as the termination



152

ABCDE

A

BCDE

B

CDE

C

DE

D

E

AB

Q1,5

Q1,2

Q2,5

Q3,5

Q4,5

Figure 8: Heavy crude example: Distillation configuration with minimum number of submixtures, and maximum heat
exchangers that requires at most 10% more energy than FTC configuration.
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Figure 9: Heavy crude example: Distillation configuration with minimum number of submixtures, and maximum heat
exchangers that requires at most 10% more energy than FTC configuration.
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Figure 10: Heavy crude example: Distillation configuration with minimum number of submixtures, and maximum heat
exchangers that requires at most 10% more energy than FTC configuration.
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(b)

Fig. 5.6. (a) Conventional configuration for shale gas separation (b)
A plausible retrofit to reduce exergy loss.

criteria. All computations were done on Dell Optiplex 5040 with 16 GB RAM Intel

Core i7-6700 3.4 GHz processor. The results are summarized in Table 5.5. Evidently,

BARON could solve all the cases considered to 1%-global optimum within the
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specified time limit. This illustrates that model (W) performs well to changes in

problem parameters, and it can be used to quickly identify attractive solutions with

off-the-shelf global solvers.

5.3 Conclusion

In this work, we proposed a novel MINLP formulation for identification of thermo-

dynamically-efficient distillation configurations, for separation of non-azeotropic mul-

ticomponent mixtures. Thermodynamic analysis is crucial, especially for work-driven

systems like heat-pump assisted distillations, which also include cryogenic separations.

The highlights of this work are summarized in the following. First, we proposed a

new model for the space of admissible distillation configurations, and proved it to be

strictly tighter than the intersection of prior formulations. Second, using techniques

described in [28, 29], we formulated exergy loss calculations that do not depend on

temperature of mixtures, explicitly. Third, the model in its default form has several

nonlinear nonconvex equations. We proposed a simple variable elimination strategy,

that collapses a system of equations describing material balance and vapor-liquid

equilibrium onto a single equation. The approach reduces the number of nonconvex

equations and simplifies the model significantly. Fourth, we described the properties

satisfied by the derived equations, and exploited them while deriving additional valid

cuts to the problem. Finally, the model was used to identify attractive configura-

tions for shale gas separation. We have also shown through numerical examples from

literature that the model performs well with changes in problem parameters. De-

signing distillation sequences is challenging. This model empowers process designers

to quickly screen through thousands of alternatives, and identify attractive solutions

worthy of further exploration.
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6. FUTURE DIRECTION

In this work, we have developed novel MINLP-based approaches for systematically

identifying the best distillation configuration along with its optimal operating condi-

tion for a given separation. Despite significant energy savings possible, and decades

of work, the problem has continued to resist solution. By performing a careful math-

ematical analysis, we have addressed the key challenges and developed the first valid

formulation. Through extensive computational experiments, we have demonstrated

that the proposed approach improves the state-of-the-art. However, this is simply

the first step towards making industrial distillations more sustainable. Below, we

describe a few possible ways to build up on the current work.

6.1 Heat Integration

For various reasons (e.g., ease of operation), industrial practitioners might con-

tinue to run above-ambient separations using heat. In that case, heat integration is

crucial to minimize the overall heat duty. Here, heat integration refers to utilization

of the heat rejected from the condenser of one distillation column in the reboiler of

another distillation column. For example, consider the configuration in Figure 6.1(a).

Since the boiling point of component C is greater than that of component B, the

heat duty of the condenser of the column Q3 (see Figure caption) can be rejected to

the reboiler of the column Q2. This heat integration is always feasible, unless the

column Q2 is operated at a much higher pressure than the column Q3. In general,

whenever the lightest component in the mixture that is being condensed is the same

or heavier than the heaviest component in the mixture that is being boiled, then

the heat integration between the condenser and the reboiler is always feasible. Such
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Fig. 6.1. Four-component configurations. We refer the leftmost col-
umn as Q1, the middle column as Q2 and the rightmost column as
Q3.

heat integrations can be included in the proposed MINLP approach directly without

additional constraints to check for feasibility.

Next, some heat integrations are feasible only when the composition of certain

streams are favorable. For example, consider the configuration in Figure 6.1(b), In

general, the temperature of the reboiler BCD will not be less than that of the con-

denser C. However, when the submixture BCD is very rich in B, it is possible to

heat integrate the reboiler BCD and the condenser C. Mathew et al. [70] pointed

out that such heat integrations can reduce the overall heat duty well below that of

the fully thermally coupled configuration. An immediate question that arises is the

following. How do we identify such non-intuitive heat integrations? Of course, if the

temperature of the streams were available, then the feasibility can be inferred from

the temperatures. However, computation of the temperature requires the solution of

complex thermodynamic nonlinear and nonconvex equations. In their presence, solv-

ing the MINLP to the desired optimality gap can be challenging. A more promising

approach is to use the shortcut criteria proposed by Mathew et al. [71]. As demon-

strated therein, off-the-shelf solvers like BARON are able to solve the optimization

problem to the desired optimality gap for specific configurations. Therefore, by incor-
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porating their shortcut criteria, the proposed formulation can be extended to identify

the optimal heat integrated distillation configuration.

6.2 Improvement to the Proposed Algorithm

In Chapter 4, we proposed a simple discretization-based solution procedure to

solve the MINLP. Below, we describe two possible ways to further improve the algo-

rithm.

First, consider the performance profile in Figure 4.7(a). In the beginning, the pro-

posed algorithm solves fewer cases than BARON. The analysis of the results revealed

the following. In some cases, the lower bound has reached the global optimum in the

first two iterations and the algorithm did not find the optimal solution (upper bound).

Nevertheless, the current algorithm solves the computationally expensive MIP relax-

ation again in order to find a new initial point for the local search. This can be

avoided by collecting multiple points, for the local search, in each iteration using the

solution pool feature of Gurobi. This improves the possibility of finding the optimal

solutions very quickly, and reduces the number of iterations (and computational time)

to solve the MINLP.

Second, the main inefficiency of the algorithm is that it solves the MIP relaxation

from scratch at every iteration. This increases the computational time per iteration

substantially beyond the sixth or seventh iteration. Since refinement of discretization

does not worsen the MIP relaxation, it is worthwhile to investigate if there is a way

to utilize the solution from the previous iteration to solve the next iteration more

efficiently. If successful, this can reduce the computational time substantially, given

that the MILP solvers currently need more than one hour per iteration beyond the

sixth iteration.
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6.3 Application to Design and Operation

After identifying an attractive configuration for a given separation, the next step

involves a detailed design. One of the underlying assumptions in the formulation is

that a distillation column is allowed to operate at pinch i.e., at its minimum reflux

ratio. In reality, due to economic considerations, a distillation column is always

operated above the minimum reflux ratio. Because of this, the actual composition

of the distillate and the residue product streams may deviate from that predicted by

the MINLP framework. This is especially true when the column performs a sloppy

split, since the product composition is sensitive to both the number of trays, the feed

location and the actual reflux ratio. The detailed design of a configuration is usually

performed using a process simulator, such as Aspen Plus. However, as described

in Chapter 1, process simulators face convergence issues and often get trapped in a

sub-optimal solution. It would be interesting to develop a method that guides the

process simulators to obtain a detailed design by using the optimal solution obtained

from the MINLP approach. Another potential direction is to explore the practicality

of the proposed approach in designing controllers for optimal operation.



REFERENCES



159

REFERENCES

[1] J. L. Humphrey, Separation process technology. McGraw-Hill (canada), 1997.

[2] J. J. Siirola, “The impact of shale gas in the chemical industry,” AIChE Journal,
vol. 60, no. 3, pp. 810–819, 2014.
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A. TEST SET

The test set for computational experiments is borrowed from [39]. The current state-

of-the-art methods can handle design problem involving four components. However,

they are often unable to scale to five components, which are practically relevant and

remains challenging. In this study, we focus on five component separations, i.e.,

N � 5.

The parameter settings are generated in the following manner. For every a P
t1, . . . , 2N � 1u, we first construct N�digit binary representation of a, denoted as

binpaq. Let binpaqppq deonte the pth digit of binpaq. We define two sets: D0 �
tp : binpaqppq � 0u and D1 � tp : binpaqppq � 1u. binpaqppq � 0 indicates that

component p is lean in the mixture, and its composition is set to 5%. On the other

hand, binpaqppq � 1 indicates that component p is abundant in the mixture. We

consider the case, where all abundant components are present in equal proportions.

Therefore, for a given a, the feed composition tF a
p uNp�1 is obtained as

F a
p �

$'&'%5 if p P D0

100�5�|D0|
|D1|

if p P D1

@ p P t1, . . . , Nu (A.1)

In a similar manner, for every b P t0, . . . , 2N�1 � 1u, we first construct pN � 1q�digit

binary representation of b. Here, binpbqppq � 0 (resp. binpbqppq � 1) indicates that the

separation between component p and p� 1 is easy (resp. difficult). We take relative

volatility value of 2.5 and 1.1 for an easy and difficult separation, respectively. For

a given b, expressing all relative volatilities w.r.t to the heaviest component, we have

αbN � 1 and

αbp �
N�1¹
q�p

r2.5 p1� binpbqpqqq � 1.1 binpbqpqqs @ p P t1, . . . , N � 1u (A.2)
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The parameter settings for Case(a,b) are then given by N � 5, tF a
p uNp�1, tαbpuNp�1,

Φ1,N � Φ1,1 � � � � � ΦN,N � 1. Since a P t1, . . . , 2N � 1u and b P t0, . . . , 2N�1 � 1u,
total number of cases in the test set is p25 � 1q � 24 � 496.
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B. MISSING PROOFS AND DERIVATIONS

B.1 Proof of Proposition 4.1

Let, B � r0, 1sn � r0, 1sn. Since the set S � tpx, zq P B | zj �
±j

p�1 xp, j �
1, . . . , nu is compact, ConvpSq is compact and, by Krein-Milman Theorem, is the

convex hull of its extreme points. Therefore, we determine the extreme points of

S, and take their disjunctive union to obtain ConvpSq. When px2, . . . , xnq in S are

restricted to px2, . . . , xnq P r0, 1sn�1, then the set S is convex and its extreme points

are such that x1 P t0, 1u. Let S1 and S̃2 denote the set S restricted to x1 � 0

and x1 � 1, respectively, i.e., S1 � tpx, zq P B | x1 � 0, zj � 0, j � 1, . . . , nu
and S̃2 � tpx, zq P B | x1 � z1 � 1, zj �

±j
p�2 xj, j � 2, . . . , nu. Observe that

S1 is convex, and S̃2 is nonconvex. Next, when px3, . . . , xnq in S̃2 are restricted

to px3, . . . , xnq P r0, 1sn�2, then S̃2 is convex and its extreme points are such that

x2 P t0, 1u. Let S2 and S̃3 denote the set S̃2 restricted to x2 � 0 and x2 � 1,

respectively, i.e., S2 � tpx, zq P B | x1 � z1 � 1, x2 � z2 � . . . , zn � 0u and

S̃3 � tpx, zq P B | x1 � z1 � x2 � z2 � 1, zj �
±j

p�3 xj, j � 3, . . . , nu. As before, S2

is convex and S̃3 is nonconvex. Repeating the argument leads to sets S3, . . . , Sn�1,

where Si � tpx, zq P B | x1 � z1 � � � � � xi�1 � zi�1 � 1, xi � zi � . . . zn � 0u
for i � 3, . . . , n and Sn�1 � S̃n�1 � tx1 � z1 � . . . xn � zn � 1u. The sets S1

through Sn�1 contain the extreme points of convex hull of S. Therefore, ConvpSq �
ConvpS1 Y S2 Y � � � Y Sn�1q, where S1 Y S2 Y � � � Y Sn�1 is given below

������
x1 � 0

z1 � � � � � zn � 0

0 ¤ xj ¤ 1, j � 2, . . . , n

������
nª
i�2

���������

x1 � � � � � xi�1 � 1, xi � 0

z1 � � � � � zi�1 � 1

zi � � � � � zn � 0

0 ¤ xj ¤ 1, j � i� 1, . . . , n

���������
ª��x1 � � � � � xn � 1

z1 � � � � � zn � 1

�� .
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Application of disjunctive programming technique leads to

ConvpSq �

$''''''''''''''&''''''''''''''%

xij � λi, for j � 1, . . . , i� 1; i � 2, . . . , n� 1

xii � 0, for i � 1, . . . , n

0 ¤ xij ¤ λi, for j � i� 1, . . . , n; i � 1, . . . , n� 1

xj �
¸n�1

i�1
xij, for j � 1, . . . , n

zj �
¸n�1

i�j�1
λi, for j � 1, . . . , n¸n�1

i�1
λi � 1, λi ¥ 0, for i � 1, . . . , n� 1

,//////////////.//////////////-

,

(B.1)

where txijun�1
i�1 are to be regarded as linearization of xj � λi. We eliminate txijun�1

i�j by

direct substitution (see (B.1)). This leads to xj �
°j�1
i�1 x

i
j �

°n�1
i�j�1 λ

i, or
°j�1
i�1 x

i
j ¤

xj �
°n�1
i�j�1 λ

i ¤ °j�1
i�1 x

i
j, where txijuj�1

i�1 are constrained by 0 ¤ xij ¤ λi. Now, using

Fourier-Motzkin elimination, we eliminate txijuj�1
i�1 to obtain 0 ¤ xj �

°n�1
i�j�1 λ

i ¤°j�1
i�1 λ

i, or
°n�1
i�j�1 λ

i ¤ xj ¤
°j�1
i�1 λ

i �°n�1
i�j�1 λ

i � 1� λj. This transforms (B.1) to

ConvpSq �

$''''&''''%

¸n�1

i�j�1
λi ¤ xj ¤ 1� λj, for j � 1, . . . , n

zj �
¸n�1

i�j�1
λi, for j � 1, . . . , n¸n�1

i�1
λi � 1, λi ¥ 0, for i � 1, . . . , n� 1

,////.////- . (B.2)

Next, we determine λi in terms of zj. From zj �
°n�1
i�j�1 λ

i for j � 1, . . . , n and°n�1
i�1 λ

i � 1, zn � λn�1, zn�1 � λn�λn�1 or zn�1� zn � λn, zn�2 � λn�1�λn�λn�1

or zn�2 � zn�1 � λn�1, . . . , z1 � z2 � λ2, and λ1 � 1�°n�1
i�2 λ

i � 1� z1. Using these

relations, we eliminate λi variables from (B.2) to obtain

ConvpSq �

$'''''''&'''''''%

z1 ¤ x1 ¤ z1

zj ¤ xj ¤ 1� zj�1 � zj, for j � 2, . . . , n

zn ¥ 0, p1� z1q ¥ 0,

zj�1 � zj ¥ 0, for j � 2, . . . , n

,///////.///////-
. (B.3)

Observe that the same set of inequalities result from recursive McCormick relaxation

of zj � zj�1 �xj for j � 2, . . . , n. Therefore, the convex hull of set S can be constructed

by a recursive application of McCormick procedure on zj � zj�1 �xj, j � 2, . . . , n.
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B.2 Proof of Remark 4.2

We show the proof for τi,k,j variables, and the proof for βi,l,j variables is similar. By

Remark 4.1, the convex hull of νi,k,j �
±j

n�kp1� ζi,nq over pζi,k, . . . , ζi,jq P r0, 1sj�k�1,

given by

νi,k,j ¥ maxt0,�ζi,k � � � � � ζi,j � 1u (B.4a)

νi,k,j ¤ mint1� ζi,k, . . . , 1� ζi,ju, (B.4b)

is implied from (A3), for every ri, js P P , JkKj�1
i . We use the above inequalities, in

addition to (A2) and (A3), for the proof. We consider two cases: k � 1   j and

k� 1 � j. When, k� 1   j, the convex hull of τi,k,j � ζi,kp1� ζi,k�1q . . . p1� ζi,j�1qζi,j
over pζi,k, . . . , ζi,jq P r0, 1sj�k�1 is given by [72]

τi,k,j ¥ 0, (B.5a)

τi,k,j ¥ ζi,k � ζi,k�1 � � � � � ζi,j�1 � ζi,j � 1, (B.5b)

τi,k,j ¤ ζi,k, (B.5c)

τi,k,j ¤ 1� ζi,n, JnKj�1
k�1, (B.5d)

τi,k,j ¤ ζi,j. (B.5e)

On the other hand, when k � 1 � j, the convex hull of τi,k,j � τi,j�1,j � ζi,j�1ζi,j over

pζi,j�1,ζi,jq P r0, 1s2 is given by

τi,j�1,j ¥ maxt0, ζi,j�1 � ζi,j � 1u, (B.6a)

τi,j�1,j ¤ mintζi,j�1, ζi,ju. (B.6b)

In the following, we present the proof only for k�1   j, and point out that the proof

for the case k � 1 � j is similar.

(B.5a): From (A3), νi,k,j�1 � νi,k�1,j � νi,k�1,j�1 ¤ νi,k,j ùñ 0 ¤ νi,k�1,j�1 � νi,k,j�1 �
νi,k�1,j � νi,k,j

(A2)� τi,k,j.
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(B.5b): τi,k,j
(A2)� νi,k�1,j�1 � νi,k,j�1 � νi,k�1,j � νi,k,j

(B.4a)¥ �ζi,k�1 � � � � � ζi,j�1 �
1 � νi,k,j�1 � νi,k�1,j

(B.4b)¥ �ζi,k�1 � � � � � ζi,j�1 � 1 � p1 � ζi,kq � p1 � ζi,j�1q �
ζi,k � ζi,k�1 � � � � � ζi,j�1 � ζi,j � 1.

(B.5c): τi,k,j
(A2)� νi,k�1,j�1 � νi,k,j�1 � νi,k�1,j � νi,k,j

(A3)¤
νi,k,j¤νi,k�1,j

νi,k�1,j�1 � νi,k,j�1

(A3)¤
νi,k,j�1¥νi,k�1,j�1�νi,k,k�1

1� νi,k,k
(A3)� ζi,k.

(B.5d): τi,k,j
(A2)� νi,k�1,j�1�νi,k,j�1�νi,k�1,j�νi,k,j

(A3)¤
νi,k,j¤νi,k�1,j

νi,k�1,j�1�νi,k,j�1

(B.4a)¤

νi,k�1,j�1

(B.4b)¤ 1� ζi,n, for k � 1 ¤ n ¤ j � 1.

(B.5e): τi,k,j
(A2)� νi,k�1,j�1 � νi,k,j�1 � νi,k�1,j � νi,k,j

(A3)¤
νi,k,j¤νi,k,j�1

νi,k�1,j�1 � νi,k�1,j

(A3)¤
νi,k�1,j¥νi,k�1,j�1�νi,j,j�1

1� νi,j,j
(A3)� ζi,j.

B.3 Proof of Proposition 4.6

Definition B.1. Let, D � pV,Aq be a digraph and b P R|V |. A function f : AÑ R is

called as b�transshipment if excessf pviq :� f xδinpviqy � f xδoutpviqy � bpviq @ vi P V ,

where δinpviq � A (resp. δoutpviq � A) is the set of all arcs entering (resp. leaving)

the vertex vi, and f xδpviqy :� °
aPδpviq

fpaq. In our case, the function fpaq evaluates the

flow along the arc a.

Lemma B.1 ( [73]). Let D � pV,Aq be a digraph, and let b : V Ñ R with b xV y � 0.

Then there exists a b-transshipment f ¥ 0 if and only if b xUy ¤ 0 for each U � V

with δinpUq � H.

We now use Lemma B.1 to prove Proposition 4.6.

Consider the digraph D � pV,Aq, where V � D6 YD7 and A � pD6 �D7qztpN �
1, 0qu (see §4.2.2 and Figure 4.3 for definition of D6 and D7). We have discarded the

arc from N � 1 P D6 to 0 P D7, because the flow along that arc is zero (see (4.10)).
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Observe that, for every n P D6, bpnq � excessψpnq � �°
mPD7

ψi,n,m,j � �τi,j,n (see

Figure 4.3). Similarly, for every m P D7, bpmq � excessψpmq �
°
nPD6

ψi,n,m,j � βm,i,j.

Then, b xV y � °N�1
n�j�1 bpnq �

°i�1
m�0 bpmq � �°N�1

n�j�1 τi,j,n �
°i�1
m�0 βm,i,j � 0 (from

definition of Si,j). From Lemma B.1, a b�transshipment ψ ¥ 0 exists if and only

if b xUy ¤ 0 for each U � V with δinpUq � H. For every U � D6 � V , b xUy ¤ 0

is satisfied trivially. On the other hand, U cannot be chosen to be a subset of D7,

because for every U � D7, δinpUq � H. Therefore, in order to derive non-trivial

inequalities, we must choose subsets of V containing vertices of both D6 and D7.

Let U � pD6ztN � 1uq Y t0u. Note that δinpUq � H. Then, a b�transshipment

ψ ¥ 0 exists if and only if b xUy � �°N
n�j�1 τi,j,n � β0,i,j ¤ 0, or

β0,i,j ¤
Ņ

n�j�1

τi,j,n. (B.7)

It can be verified that for every other subset U � V satisfying δinpUq � H, the

inequality ensuring b xUy ¤ 0 is implied from
°i�1
m�0 βm,i,j �

°N�1
n�j�1 τi,j,n. Therefore,

projpτ,βqpSi,jq �
#

(B.7);
i�1̧

m�0

βm,i,j �
N�1̧

n�j�1

τi,j,n; τi,j,n ¥ 0, JnKN�1
j�1 ; βm,i,j ¥ 0, JmKi�1

0

+
.

(B.8)

Indeed, ψi,n,m,j can be defined to verify that (B.8) is the projection of Si,j.

Def1: Define ψi,N�1,0,j � 0.

Def2: For 1 ¤ m ¤ i� 1, define

ψi,N�1,m,j �

$'&'%τi,j,N�1 � βm,i,j
°i�1

m�1 βm,i,j
, if

°i�1
m�1 βm,i,j ¡ 0

0, if
°i�1
m�1 βm,i,j � 0.

Since
°i�1
m�0 βm,i,j �

°N�1
n�j�1 τi,j,n, (B.7) implies τi,j,N�1 ¤

°i�1
m�1 βm,i,j. Then, the

above definition guarantees that ψi,N�1,m,j ¤ βm,i,j for every 1 ¤ m ¤ i� 1, and°i�1
m�1 ψi,N�1,m,j � τi,j,N�1.

Def3: For j � 1 ¤ n ¤ N , define

ψi,n,0,j �

$'&'%
β0,i,j � τi,j,n

°N
n�j�1 τi,j,n

, if
°N
n�j�1 τi,j,n ¡ 0

0, if
°N
n�j�1 τi,j,n � 0.
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Because β0,i,j ¤
°N
n�j�1 τi,j,n (see (B.7)), the above definition guarantees that

ψi,n,0,j ¤ τi,j,n for every j � 1 ¤ n ¤ N , and
°N
n�j�1 ψi,n,0,j � β0,i,j.

Def4: For every 1 ¤ m ¤ i� 1 and j � 1 ¤ n ¤ N , define

ψi,n,m,j �

$'&'%
pτi,j,n�ψi,n,0,jq�pβm,i,j�ψi,N�1,m,jq

°N
n�j�1pτi,j,n�ψi,n,0,jq

, if
°N
n�j�1pτi,j,n � ψi,n,0,jq

0, if
°N
n�j�1pτi,j,n � ψi,n,0,jq � 0.

Since pβm,i,j�ψi,N�1,m,jq ¥ 0 (see Def2) and pτi,j,n�ψi,n,0,jq ¥ 0 (see Def3), the

above definition guarantees ψi,n,m,j ¥ 0 for every 1 ¤ m ¤ i� 1 and j� 1 ¤ n ¤
N . Next, it can be shown that

°N
n�j�1pτi,j,n�ψi,n,0,jq �

°i�1
m�1pβm,i,j�ψi,N�1,m,jq

from
°N�1
n�j�1 τi,j,n � °i�1

m�0 βm,i,j,
°i�1
m�1 ψi,N�1,m,j � τi,j,N�1 (see Def2), and°N

n�j�1 ψi,n,0,j � β0,i,j (see Def3). Then, the above definition guarantees that°N
n�j�1 ψi,n,m,j � βm,i,j � ψi,N�1,m,j and

°i�1
m�1 � τi,j,n � ψi,n,0,j.

B.4 Derivation of ConvpFpq

Let X :� tpf in
p , f

rs
p , f

ss
p q P r0, Fps3 | f in

p � f rs
p � f ss

p u. Then, the extreme points

of the polytope X are v1 � p0, 0, 0q, v2 � pFp, Fp, 0q and v3 � pFp, 0, Fpq. From

Proposition 4.9, the convex hull of Fp is obtained as ConvpFpq � projpf,θ,H,fθqt(B.9)u,
where

wi ¥ T �
p pλi, θiq, i � 1, 2, 3 (B.9a)

wi ¤ λiTppθloq �
�
Tppθupq � Tppθloq

θup � θlo

�
pθi � λiθloq, i � 1, 2, 3 (B.9b)

λiθlo ¤ θi ¤ λiθup, i � 1, 2, 3 (B.9c)

H in
p � Fpw

2 � Fpw
3, Hrs

p � Fpw
2, Hss

p � Fpw
3, (B.9d)

fθin

p
� Fpθ

2 � Fpθ
3, fθrs

p
� Fpθ

2, fθss

p
� Fpθ

3, (B.9e)

f in
p � Fpλ

2 � Fpλ
3, f rs

p � Fpλ
2, f ss

p � Fpλ
3, (B.9f)

w � w1 � w2 � w3, θ � θ1 � θ2 � θ3, (B.9g)

λ1 � λ2 � λ3 � 1, λ1, λ2, λ3 ¥ 0. (B.9h)
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We solve linear equations and obtain auxiliary variables in terms of problem variables

as pλ2, θ2, w2q � pf rs
p {Fp, fθrs

p
{Fp, Hrs

p {Fpq, pλ3, θ3, w3q � pf ss
p {Fp, fθss

p
{Fp, Hss

p {Fpq,
pλ1, θ1, w1q � p1 � λ2 � λ3, θ � θ2 � θ3, w � w2 � w3q � ppFp � f in

p q{Fp, pFpθ �
fθin

p
q{Fp, pFpw � H in

p q{Fpq (from first equation in (B.9d),(B.9e), and (B.9f)). Us-

ing these relations, all variables can be eliminated from the hull description, except

w, which is constrained by

T �
p pλ1, θ1q ¤ Fpw �H in

p

Fp
¤ λ1Tppθloq �

�
Tppθupq � Tppθloq

θup � θlo



pθ1 � λ1θloq.

We eliminate w using Fourier-Motzkin elimination to obtain T �
p pλ1, θ1q ¤ λ1Tppθloq��

Tppθupq�Tppθloq
θup�θlo

�
pθ1�λ1θloq. The resulting constraint is redundant, so we do not impose

it explicitly. This leads to the convex hull description described in §4.3.2.

B.5 Proof of Corollary 4.2

Here, x lies in the polytope xlo ¤ x ¤ xup, whose extreme points are xlo and xup.

Application of Proposition 4.9 yields ConvpSq � projpx,y,z,xyqtpx, y, z, xy, w, y1, y2, w1,

w2, λ1, λ2qu

w1 ¥ g�pλ1, y1q, w2 ¥ g�pλ2, y2q, (B.10a)

wi ¤ λigpyloq �
�
gpyupq � gpyloq
yup � ylo

�
pyi � λiyloq, i � 1, 2, (B.10b)

λ1ylo ¤ y1 ¤ λ1yup, λ2ylo ¤ y2 ¤ λ2yup, (B.10c)

z � xlow1 � xupw2, xy � xloy1 � xupy2, w � w1 � w2, (B.10d)

y � y1 � y2, x � xloλ1 � xupλ2, λ1 � λ2 � 1, λ1, λ2 ¥ 0. (B.10e)

We remove the equality w � w1 � w2 to project out w. Solving the linear equations

yields λ1 � pxup�xq{pxup�xloq, λ2 � px�xloq{pxup�xloq, y1 � pxupy�xyq{pxup�xloq
and y2 � pxy � xloyq{pxup � xloq. Using these equations, we substitute out auxiliary

variables y1, y2, λ1 and λ2. Finally, eliminating variables w1 and w2 using Fourier-

Motzkin elimination yields the convex hull description in the Proposition. The outer-

approximation of the convex hull follows directly from Remark 4.7.
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B.6 Proof of Proposition 4.12

We assume w.l.o.g that

θlo ¤ α1 � F1{Hup
1 . (B.11)

Otherwise, we update F1 � Hup
1 pα1 � θloq (See Figure B.1).

We begin by determining the extreme points of the convex hull of H1. When θ is

restricted to θ P rθlo, α1s, the set H1 � tpf1, θ,H1, fθ1
q | 0 ¤ f1 ¤ mintF1, H

up
1 pα1 �

θqu, θ � θ, fθ
1
� f1 � θ,H1 � tf1{pα1 � θq, if θ   α1; H1 P r0, Hup

1 s, if θ � α1uu
can be expressed as an affine transform of 0 ¤ f1 ¤ mintF1, H

up
1 pα1 � θqu whose

extreme points are f1 P t0,mintF1, H
up
1 pα1 � θquu. Therefore, the extreme points of

ConvpH1q are contained in the set of points where f1 � 0, or f1 � F1 and θlo ¤ θ ¤
pα1 � F1{Hup

1 q, or f1 � Hup
1 pα1 � θq and pα1 � F1{Hup

1 q ¤ θ ¤ α1 (see Figure B.1).

Let,

1. Sa be H1 restricted to f1 � 0 i.e., Sa � tpf1, θ,H1, fθ1
q | f1 � 0, θlo ¤ θ ¤

α1, fθ1
� 0, H1 � 0 if θ   α1; H1 P r0, Hup

1 s, if θ � α1u (see Figure B.1).

2. Sb be H1 restricted to f1 � Hup
1 pα1 � θq and pα1 � F1{Hup

1 q ¤ θ ¤ α1 i.e.,

Sb � tpf1, θ,H1, fθ1
q | f1 � Hup

1 pα1 � θq, pα1 � F1{Hup
1 q ¤ θ ¤ α1, H1 �

Hup
1 , fθ

1
� Hup

1 pα1 � θqθu (see Figure B.1).

3. Sc be H1 restricted to f1 � F1 and θlo ¤ θ ¤ pα1 � F1{Hup
1 q i.e., Sc �

tpf1, θ,H1, fθ1
q | f1 � F1, θ

lo ¤ θ ¤ pα1 � F1{Hup
1 q, H1 � F1{pα1 � θq, fθ

1
�

F1 � θu (see Figure B.1).

By Krein-Milman theorem, ConvpH1q � ConvpSaYSbYScq � ConvpConvpSaqY
ConvpSbq Y ConvpScqq, where

ConvpSaq �

$'''''&'''''%
pf1, θ,H1, fθ1

q

�����������

f1 � 0, fθ
1
� 0

0 ¤ H1 ¤ Hup
1

�
θ � θlo

α1 � θlo



θlo ¤ θ ¤ α1

,/////./////-
, (B.12)
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[1, 4]

[1, 3]

[2, 4]

[1, 2]

[3, 4]

[1, 1]

[4, 4]

τ1,2,4

τ1,1
,4

τ1,3
,4

β
1,4,4

β1,3,4

β
1,2,4

σ
1
,3
,2
,4

σ 1
,2
,2
,4

σ 1
,1
,2
,4

σ
1,3,3,4

σ
1
,2
,3
,4

σ
1,3,4,4

Figure 4: Definition of split variables {σi,k,l,j}j−1,k+1
k=i,l=i+1 for [i, j] = [1, 4]. Split variables for the remaining

streams are not shown for clarity.

f10 F1

θlo

θ

α1

α1 − F1

Hup
1

Sa

Sb

Sc

θ = α1 − f1
Hup

1

Θq,0 Θq,TqΘq,1 Θq,2 Θq,Tq−1

δq,1 δq,2 δq,Tq

µq,1 µq,Tq−1

· · ·

· · ·
· · ·

6

Fig. B.1. pf1, θq domain for §B.6. The extreme points of ConvpH1q
are contained in points in red.

ConvpSbq �

$''''''''''&''''''''''%
pf1, θ,H1, fθ1

q

����������������

f1 � Hup
1 pα1 � θq, H1 � Hup

1

Hup
1

�
α1 � F1

Hup
1



pα1 � θq ¤ fθ

1

fθ
1
¤ Hup

1 θpα1 � θq�
α1 � F1

Hup
1



¤ θ ¤ α1

,//////////.//////////-
, (B.13)

ConvpScq �

$''''''''''&''''''''''%
pf1, θ,H1, fθ1

q

����������������

f1 � F1, fθ1
� F1 � θ

F1

α1 � θ
¤ H1

H1 ¤ F1

α1 � θlo
� Hup

1

α1 � θlo
pθ � θloq

θlo ¤ θ ¤
�
α1 � F1

Hup
1




,//////////.//////////-
. (B.14)

Disjunctive union of ConvpSaq, ConvpSbq and ConvpScq leads to (4.39).
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B.7 Relaxation of (4.39)

Since (4.39) introduces many variables, we derive a relaxation of ConvpH1q in-

stead. Let, θ
r P rθlo, α1s for r � 1, . . . , R. First, we outer approximate ConvpSbq and

ConvpScq as shown below:

ConvOApS2q �

$''''''''''&''''''''''%
pf1, θ,H1, fθ1

q

����������������

f1 � Hup
1 pα1 � θq, H1 � Hup

1

Hup
1

�
α1 � F1

Hup
1



pα1 � θq ¤ fθ

1

fθ
1
¤ min

!
Hup

1 θ
rpα1 � θ

rq �Hup
1 pα1 � 2θ

rqpθ � θ
rq
)R
r�1�

α1 � F1

Hup
1



¤ θ ¤ α1

,//////////.//////////-
,

ConvOApS3q �

$'''''''''''&'''''''''''%
pf1, θ,H1, fθ1

q

�����������������

f1 � F1, fθ1
� F1 � θ

H1 ¥ max

"
F1

α1 � θ
r � F1

pα1 � θ
rq2 pθ � θ

rq
*R
r�1

H1 ¤ F1

α1 � θlo
� Hup

1

α1 � θlo
pθ � θloq

θlo ¤ θ ¤
�
α1 � F1

Hup
1




,///////////.///////////-
.

Next, we take the disjunctive union of ConvpSaq, ConvOApSbq and ConvOApScq to

obtain

H1 ¥ Hup
1 λb �max

"
F1λ

c

α1 � θ
r � F1

pα1 � θ
rq2 pθ

3 � θ
r
λcq

*R
r�1

(B.15a)

H1 ¤ Hup
1

�
θa � θloλa

α1 � θlo



�Hup

1 λb � F1λ
c

α1 � θlo
� Hup

1

α1 � θlo
pθc � θloλcq (B.15b)

fθ
1
¥ Hup

1

�
α1 � F1

Hup
1



pα1λ

b � θbq � F1θ
c (B.15c)

fθ
1
¤ min

!
Hup

1 θ
rpα1 � θ

rqλb �Hup
1 pα1 � 2θ

rqpθb � θ
r
λbq

)R
r�1

� F1θ
c (B.15d)

f1 � Hup
1 pα1λ

b � θbq � F1λ
c (B.15e)

θ � θa � θb � θc (B.15f)

θloλa ¤ θa ¤ α1λ
a (B.15g)�

α1 � F1

Hup
1



λb ¤ θb ¤ α1λ

b (B.15h)
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θloλc ¤ θc ¤
�
α1 � F1

Hup
1



λc (B.15i)

λa � λb � λc � 1, λa, λb, λc ¥ 0 (B.15j)

In the following, we derive relaxed version of each inequality in terms of problem

variables.

H1 ¥ Hup
1 λb � F1λ

c

α1 � θ
r � F1

pα1 � θ
rq2 pθ

c � θ
r
λcq (B.15a)

� pα1 � 2θ
rqf1 �Hup

1 θ
rpα1 � θ

rqλb
pα1 � θ

rq2

� Hup
1 pα1 � 2θ

rqpθ2 � θ
r
λbq � F1θ

c

pα1 � θ
rq2 (B.15e)

¥ pα1 � 2θ
rqf1 � fθ

1

pα1 � θ
rq2 (B.15d)

� f1

pα1 � θ
rq �

1

pα1 � θ
rq2 pfθ1

� θ
r
f1q

� f1T1pθrq � T 1
1pθ

rqpfθ
1
� θ

r
f1q,

H1 ¤ Hup
1 pθa � θloλaq
α1 � θlo

� Hup
1 pα1λ

b � θb � θb � θloλbq
α1 � θlo

� F1λ
c �Hup

1 pθc � θloλcq
α1 � θlo

(B.15b)

� f1

α1 � θlo
�Hup

1

�
θ � θlo

α1 � θlo



(B.15e), (B.15f), (B.15j),

fθ
1
¥ Hup

1

�
α1 � F1

Hup
1



pα1λ

b � θbq � F1θ
c (B.15c)

� θloHup
1 pα1λ

b � θbq �Hup
1

�
α1 � F1

Hup
1

� θlo



pα1λ

b � θbq � F1θ
c

� θlof1 �Hup
1

�
α1 � F1

Hup
1

� θlo



pα1λ

b � θbq

� F1pθc � θloλcq (B.15e), (B.11)

¥ θlof1 (B.15h), (B.15i),
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fθ
1
¥ Hup

1

�
α1 � F1

Hup
1



pα1λ

b � θbq � F1θ
c (B.15c)

� α1H
up
1 pα1λ

b � θbq � F1pα1λ
b � θbq � F1θ

c

� α1pf1 � F1λ
cq � F1pα1λ

b � θbq � F1θ
c (B.15e)

� α1f1 � α1F1p1� λaq � F1pθ � θaq (B.15f), (B.15j)

¥ α1f1 � F1θ � F1α1 (B.15g),

fθ
1
¤
!
Hup

1 θ
rpα1 � θ

rqλb

�Hup
1 pα1 � 2θ

rqpθb � θ
r
λbq

)
θ
r
�α1

� F1θ
c (B.15d)

� α1H
up
1 pα1λ

b � θbq � F1θ
c

� α1f1 � α1F1λ
c � F1θ

c (B.15e)

¤ α1f1 (B.15i),

fθ
1
¤
!
Hup

1 θ
rpα1 � θ

rqλb

�Hup
1 pα1 � 2θ

rqpθb � θ
r
λbq

)
θ
r
�α�

F1
H

up
1

� F1θ
c (B.15d)

� F1

�
α1 � F1

Hup
1



λb �

�
α1 � 2

F1

Hup
1


�
Hup

1 pα1λ
b � θbq � F1λ

b
�� F1θ

c

�
�
α1 � F1

Hup
1


�
Hup

1 pα1λ
b � θbq � F1λ

b
�� F1θ

b � F1θ
c

¤ θlo
�
Hup

1 pα1λ
b � θbq � F1λ

b
�� F1θ

b � F1θ
c (B.15h), (B.11)

¤ θlo
�
f1 � F1λ

b � F1λ
c
�� F1θ

b � F1θ
c (B.15e)

¤ θlo
�
f1 � F1λ

a � F1λ
b � F1λ

c
�

� F1θ
a � F1θ

b � F1θ
c (B.15g)

¤ F1θ � θlof1 � F1θ
lo (B.15f), (B.15j),

θ � θa � θb � θc (B.15f)
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¤ α1λ
a � θb �

�
α1 � F1

Hup
1



λc (B.15g), (B.15i)

¤ α1 � f1

Hup
1

(B.15e), (B.15j).

B.8 Derivation of MIP Representation of Piecewise Relaxation of F1

Let the domain of Underwood root be partitioned as I � trΘ0,Θ1s, . . . , rΘ|I|�1,Θ|I|su,
such that α2 � Θ0 ¤ � � � ¤ Θ|I| � α1. We express the piecewise relaxation of F1,

given by
�|I|�1
t�1 ConvOApF1,tq Y F1,|I|,Relax, as the following disjunction:

|I|�1ª
t�1

�����������������������������

Hrs
1 ¥ f rs

1 T1pΘt�1q � T 1
1pΘt�1qpfθrs

1
�Θt�1f rs

1 q
Hrs

1 ¥ f rs
1 T1pΘtq � T 1

1pΘtqpfθrs

1
�Θtf rs

1 q
Hss

1 ¥ f ss
1 T1pΘt�1q � T 1

1pΘt�1qpfθss

1
�Θt�1f ss

1 q
Hss

1 ¥ f ss
1 T1pΘtq � T 1

1pΘtqpfθss

1
�Θtf ss

1 q

Hrs
1 ¤ f rs

1 T1pΘt�1q �
�
T1pΘt�1q � T1pΘtq

Θt�1 �Θt

�
pfθrs

1
�Θt�1f rs

1 q

Hss
1 ¤ f ss

1 T1pΘt�1q �
�
T1pΘt�1q � T1pΘtq

Θt�1 �Θt

�
pfθss

1
�Θt�1f ss

1 q

pF1 � f in
1 qΘt�1 ¤ pF1θ � fθin

1
q ¤ pF1 � f in

1 qΘt

f rs
1 Θt�1 ¤ fθrs

1
¤ f rs

1 Θt, f ss
1 Θt�1 ¤ fθss

1
¤ f ss

1 Θt

H in
1 � Hrs

1 �Hss
1 , fθin

1
� fθrs

1
� fθss

1
, f in

1 � f rs
1 � f ss

1

�����������������������������
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ª
t�|I|

������������������������������

Hrs
1 ¥ f rs

1 T1pΘt�1q � T 1
1pΘt�1qpfθrs

1
�Θt�1f rs

1 q
Hss

1 ¥ f ss
1 T1pΘt�1q � T 1

1pΘt�1qpfθss

1
�Θt�1f ss

1 q
H in

1 ¥ f in
1 T1pΘt�1q � T 1

1pΘt�1qpfθin

1
�Θt�1f in

1 q

Hrs
1 ¤ f rs

1

α1 �Θt�1
� pHrs

1 qup

�
θ �Θt�1

α1 �Θt�1

�
Hss

1 ¤ f ss
1

α1 �Θt�1
� pHss

1 qup

�
θ �Θt�1

α1 �Θt�1

�
H in

1 ¤ f in
1

α1 �Θt�1
� pH in

1 qup

�
θ �Θt�1

α1 �Θt�1

�
pF1 � f in

1 qΘt�1 ¤ pF1θ � fθin

1
q ¤ pF1 � f in

1 qΘt

f rs
1 Θt�1 ¤ fθrs

1
¤ f rs

1 Θt, f ss
1 Θt�1 ¤ fθss

1
¤ f ss

1 Θt

H in
1 � Hrs

1 �Hss
1 , fθin

1
� fθrs

1
� fθss

1
, f in

1 � f rs
1 � f ss

1

������������������������������

. (B.16)

In ConvOApF1,tq, we choose the extreme points of the partition, θ � Θt�1 and θ � Θt,

for linearization; and in F1,|I|,Relax, we choose only θ � Θt�1 since T1p�q is not defined

at θ � Θ|I|. In order to derive an MIP representation that is reasonable in size, we

make the following simplifications to the set F1,|I|,Relax. First, observe that the third

inequality in F1,|I|,Relax is implied from the first two inequalities and H in
1 � Hrs

1 �Hss
1 ,

so we drop it from the set. Next, if pH in
1 qup ¡ pHrs

1 qup � pHss
1 qup, we reduce pH in

1 qup

to pHrs
1 qup � pHss

1 qup because of fourth and fifth inequalities and H in
1 � Hrs

1 � Hss
1 .

Otherwise, we relax the sixth inequality by letting pH in
1 qup � pHrs

1 qup�pHss
1 qup. Then,

the sixth inequality is implied from the fourth and fifth inequalities, so we drop it

from the set. Next, using disjunctive programming techniques, we obtain

Hrs
1,t ¥ max

!
f rs

1,tT1pΘt�1q � T 1
1pΘt�1qpfθrs

1,t
�Θt�1f rs

1,tq,

f rs
1,tT1pΘtq � T 1

1pΘtqpfθrs

1,t
�Θtf rs

1,tq
)
, JtK|I|�1

1 (B.17a)

Hrs
1,t ¥ f rs

1,tT1pΘt�1q � T 1
1pΘt�1qpfθrs

1,t
�Θt�1f rs

1,tq, t � |I| (B.17b)

Hss
1,t ¥ max

!
f ss

1,tT1pΘt�1q � T 1
1pΘt�1qpfθss

1,t
�Θt�1f ss

1,tq,

f ss
1,tT1pΘtq � T 1

1pΘtqpfθss

1,t
�Θtf ss

1,tq
)
, JtK|I|�1

1 (B.17c)

Hss
1,t ¥ f ss

1,tT1pΘt�1q � T 1
1pΘt�1qpfθss

1,t
�Θt�1f ss

1,tq, t � |I| (B.17d)
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Hrs
1,t ¤ f rs

1,tT1pΘt�1q �
�
T1pΘtq � T1pΘt�1q

Θt �Θt�1

�
pfθrs

1,t
�Θt�1f rs

1,tq, JtK|I|�1
1 (B.17e)

Hrs
1,t ¤

f rs
1,t

α1 �Θt�1
� pHrs

1 qup

�
θt �Θt�1µt
Θt �Θt�1

�
, t � |I| (B.17f)

Hss
1,t ¤ f ss

1,tT1pΘt�1q �
�
T1pΘtq � T1pΘt�1q

Θt �Θt�1

�
pfθss

1,t
�Θt�1f ss

1,tq, JtK|I|�1
1 (B.17g)

Hss
1,t ¤

f ss
1,t

α1 �Θt�1
� pHss

1 qup

�
θt �Θt�1µt
Θt �Θt�1

�
, t � |I| (B.17h)

pF1µt � f in
1,tqΘt�1 ¤ pF1θt � fθin

1,t
q ¤ pF1µt � f in

1,tqΘt, JtK|I|1 (B.17i)

f rs
1,tΘ

t�1 ¤ fθrs

1,t
¤ f rs

1,tΘ
t, f ss

1,tΘ
t�1 ¤ fθss

1,t
¤ f ss

1,tΘ
t, JtK|I|1 (B.17j)

H in
1,t � Hrs

1,t �Hss
1,t, fθin

1,t
� fθrs

1,t
� fθss

1,t
, f in

1,t � f rs
1,t � f ss

1,t, JtK|I|1 (B.17k)

H in
1 �

|I |̧

t�1

H in
1,t, Hrs

1 �
|I |̧

t�1

Hrs
1,t, Hss

1 �
|I |̧

t�1

Hss
1,t, (B.17l)

fθin

1
�

|I |̧

t�1

fθin

1,t
, fθrs

1
�

|I |̧

t�1

fθrs

1,t
, fθss

1
�

|I |̧

t�1

fθss

1,t
, (B.17m)

f in
1 �

|I |̧

t�1

f in
1,t, f rs

1 �
|I |̧

t�1

f rs
1,t, f ss

1 �
|I |̧

t�1

f ss
1,t, θ �

|I |̧

t�1

θt, (B.17n)

|I |̧

t�1

µt � 1, µt ¥ 0, JtK|I|1 (B.17o)

Here, µt are the convex multipliers in disjunctive progamming, and variables with

subscript t are to be regarded as linearizations of products of the corresponding

variables with µt. For example, θin
1,t linearizes θinµt. To control the problem size, we

project out H in
1,t, fθ

in

1,t
and f in

1,t variables by substitution. Next, we eliminate Hrs
1,t and

Hss
1,t variables using Fourier-Motzkin. This leads to

Hrs
1 ¥

|I|�1¸
t�1

max
!
f rs

1,tT1pΘt�1q � T 1
1pΘt�1qpfθrs

1,t
�Θt�1f rs

1,tq,

f rs
1,tT1pΘtq � T 1

1pΘtqpfθrs

1,t
�Θtf rs

1,tq
)
� f rs

1,tT1pΘt�1q � T 1
1pΘt�1qpfθrs

1,t
�Θt�1f rs

1,tq
(B.18a)

Hss
1 ¥

|I|�1¸
t�1

max
!
f ss

1,tT1pΘt�1q � T 1
1pΘt�1qpfθss

1,t
�Θt�1f ss

1,tq,
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f ss
1,tT1pΘtq � T 1

1pΘtqpfθss

1,t
�Θtf ss

1,tq
)
� f ss

1,tT1pΘt�1q � T 1
1pΘt�1qpfθss

1,t
�Θt�1f ss

1,tq
(B.18b)

(4.41e)� (4.41k) (B.18c)

Now, we observe that each linear function in (B.18a) and (B.18b) is nonnegative.

For example, consider f rs
1,tT1pΘt�1q � T 1

1pΘt�1qpfθrs

1,t
� Θt�1f rs

1,tq in (B.18a). Here,

f rs
1,tT1pΘt�1q ¥ 0, T 1

1pΘt�1q ¥ 0, and pfθrs

1,t
� Θt�1f rs

1,tq ¥ 0 (see (4.41h)). We use this

observation, and relax (B.18a) and (B.18b) to (4.41a)–(4.41d). Finally, we require the

solution to lie in a single partition by imposing integrality constraint on µt variables.

B.9 Derivation of MIP representation of Piecewise Relaxation of V

For convenience, we replace (4.32a) and (4.32b) in ConvpVq with U rs � U ss �
Υrs � Υss and Uθrs � Uθss � Υθrs � Υθss. Note that this still captures ConvpVq,
since the former can be derived by a linear combination of the latter. Next, we

use disjunctive programming to construct the convex hull of piecewise relaxation of

V � �|I|
t�1 ConvpVtq.

JtK|I|1 , U rs
t � U ss

t � Υrs
t �Υss

t , (B.19a)

JtK|I|1 , Uθrs
t � Uθss

t � Υθrs
t �Υθss

t , (B.19b)

JtK|I|1 , 0 ¤ p�qθ
t
�Θt�1p�qt ¤ p�quppθt �Θt�1µtq, @ p�q P tU rs, U ss,Υrs,Υssu,

(B.19c)

JtK|I|1 , 0 ¤ Θtp�qt � p�qθ
t
¤ p�quppθupµt � θtq, @ p�q P tU rs, U ss,Υrs,Υssu, (B.19d)

p�qθ �
|I |̧

t�1

p�qθ
t
, p�q �

|I |̧

t�1

p�qt, @ p�q P tU rs, U ss,Υrs,Υssu (B.19e)

|I |̧

t�1

θt � θ,

|I |̧

t�1

µt � 1, µt ¥ 0, JtK|I|1 (B.19f)

Here, µt are disjunctive programming variables, and variables Uθrs
t , U rs

t are to be

regarded as the linearizations of Uθrs � µt, U rs � µt, respectively. To the above, we

append the redundant constraint Uθrs � Uθss � Υθrs � Υθss, which is derived by
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adding all the equations in (B.19a), and using (B.19e). Then, we relax (B.19) by

discarding all the equations in (B.19b). Next, we eliminate variables of the form Uθt

and θt in the following manner. For notational convenience, we present the elimination

process assuming we have three partitions. Consider

0 ¤ Uθt �Θt�1Ut ¤ Uuppθt �Θt�1µtq, t � 1, 2, 3 (B.20a)

0 ¤ ΘtUt � Uθt ¤ UuppΘtµt � θtq, t � 1, 2, 3 (B.20b)

Uθ � Uθ1 � Uθ2 � Uθ3, θ � θ1 � θ2 � θ3 (B.20c)

First, we substitute out Uθ1 by Uθ�Uθ2 �Uθ3. Then, we rearrange the inequalities

governing Uθ2 in the following manner:

�pΘ0U1 � Uθ � Uθ3q � Uuppθ1 �Θ0µ1q ¤ Uθ2 ¤ �pΘ0U1 � Uθ � Uθ3q
�pΘ1U1 � Uθ � Uθ3q ¤ Uθ2 ¤ UuppΘ1µ1 � θ1q � pΘ1U1 � Uθ � Uθ3q

Θ1U2 ¤ Uθ2 ¤ Uuppθ2 �Θ1µ2q �Θ1U2

Θ2U2 � UuppΘ2µ2 � θ2q ¤ Uθ2 ¤ Θ2U2

,///////.///////-
(B.21)

Now, we eliminate Uθ2 using Fourier-Motzkin. We write (L1R3) to denote first

inequality from the left hand side, and third inequality from the right hand side.

(L1R1) and (L2R2): Θ0µ1 ¤ θ1 ¤ Θ1µ1

(L2R1) and (L1R2): 0 ¤ U1 ¤ µ1U
up

(L3R3) and (L4R4): Θ1µ2 ¤ θ2 ¤ Θ2µ2

(L3R4) and (L4R3): 0 ¤ U2 ¤ µ2U
up

(L1R3) and (L3R1): � pΘ0U1 �Θ1U2 � Uθq � Uuppθ1 � θ2 �Θ0µ1 �Θ1µ2q
¤ Uθ3 ¤ �pΘ0U1 �Θ1U2 � Uθq

(L2R4) and (L4R2): � pΘ1U1 �Θ2U2 � Uθq
¤ Uθ3 ¤ UuppΘ1µ1 �Θ2µ2 � θ1 � θ2q � pΘ1U1 �Θ2U2 � Uθq

(L1R4) and (L4R1): � pΘ0U1 � Uθq �Θ2U2 � Uuppθ1 �Θ0µ1q
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¤ Uθ3 ¤ �pΘ0U1 � Uθq �Θ2U2 � UuppΘ2µ2 � θ2q
(L2R3) and (L3R2): � pΘ1U1 � Uθq �Θ1U2 � Uuppθ2 �Θ1µ2q

¤ Uθ3 ¤ UuppΘ1µ1 � θ1q �Θ1U2 � pΘ1U1 � Uθq

We relax the set by discarding inequalities obtained from (L1R4), (L4R1), (L2R3) and

(L3R2). The inequalities obtained from (L1R3), (L3R1), (L2R4) and (L4R2) have

the same form as the four inequalities in (B.21). As before, we eliminate Uθ3 using

Fourier-Motzkin, and discard inequalities obtained from (L1R4), (L4R1), (L2R3) and

(L3R2). This leads to

0 ¤ Uθ �
3̧

t�1

Θt�1Ut ¤ Uup

�
θ �

3̧

t�1

Θt�1µt

�
(B.22a)

0 ¤
3̧

t�1

ΘtUt � Uθ ¤ Uup

�
3̧

t�1

Θtµt � θ

�
(B.22b)

θ �
3̧

t�1

θt, Θt�1µt ¤ θt ¤ Θtµt, 0 ¤ Ut ¤ Uupµt, t � 1, 2, 3 (B.22c)

In this manner, we eliminate all variables of the form p�qθ
t

from (B.19). Then, we

eliminate all θt variables, which are now constrained only by (B.22c), using Fourier-

Motzkin. This leads to
°|I|
t�1 Θt�1µt ¤ θ ¤ °|I|

t�1 Θtµt. Since it is implied from (B.22a)

and (B.22b), we do not impose it explicitly. Finally, we require the solution to lie in

a single partition by imposing integrality constraint on µt variables.
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C. MISSING IDENTITIES AND DERIVATIONS

C.1 Derivation of the Search Space Formulation

Constraints (A2) through (A8) in Chapter 4 are described below. Here, we write

tpunp�1 and JpKn1 as a shorthand notation for t1, . . . , nu and @ p P t1, . . . , nu, respec-

tively.

for ri, js P P ,
$&%τi,k,j � νi,k�1,j�1 � νi,k,j�1 � νi,k�1,j � νi,k,j, JkKj�1

i

βi,l,j � ωi�1,l�1,j � ωi�1,l,j � ωi,l�1,j � ωi,l,j, JlKji�1

(A2)

for ri, js P P ,

$'''''''''''&'''''''''''%

νi,j,j � ωi,i,j � 1� ζi,j

νi,k,j ¥ maxt0, νi,k,m � νi,n,j � νi,n,mu, JnKm�1
k�1 , JmKj�1

k , JkKj�1
i

νi,k,j ¤ mintνi,k,m, νi,n,ju, JnKm�1
k�1 , JmKj�1

k , JkKj�1
i

ωi,l,j ¥ maxt0, ωi,m,j � ωn,l,j � ωn,m,ju, JnKm�1
i�1 , JmKl�1

i , JlKji�1

ωi,l,j ¤ mintωi,m,j, ωn,l,ju, JnKm�1
i�1 , JmKl�1

i , JlKji�1

(A3)

ζ1,N � ζ1,1 � � � � � ζN,N � 1 (A4)

for ri, js P P ,

$''''''''&''''''''%

k�1̧

l�i�1

σi,k,l,j � τi,k,j, JkKj�1
i

j�1̧

k�l�1

σi,k,l,j � βi,k,l,j, JlKji�1

σi,k,l,j ¥ 0, JlKk�1
i�1 , JkKj�1

i

(A5)

$''''&''''%
χi,j ¤ ζi,j �

i�1̧

k�1

βk,i,j, @ pi, jq P C

ρi,j ¤ ζi,j �
ņ

l�j�1

τi,j,l, @ pi, jq P R
(A6)
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$''''&''''%
χi,i ¥ ζi,i �

i�1̧

k�1

βk,i,i, @ pi, iq P C

ρi,i ¥ ζi,i �
ņ

l�i�1

τi,i,l, @ pi, iq P R
(A7)

for ri, js P T zr1, ns, ζi,j ¤
i�1̧

k�1

βk,i,j �
ņ

l�j�1

τi,j,l (A8)

In the above, νi,k,j and ωi,l,j are linearizations of
±j

m�kp1� ζi,mq and
±l

m�ip1� ζm,jq,
respectively. τi,k,j � 1 (resp. βi,l,j � 1) if and only if stream ri, ks (resp. rl, js) is

produced as distillate (resp. residue) from stream ri, js. Note that in (A6) and (A7),

we used β0,i,j � ζi,j �
°i�1
k�1 βk,i,j and τi,j,n�1 � ζi,j �

°n
l�j�1 τi,j,l. For more details,

see [25]. Using (C.1) and (C.2) (see (3) and (4) in [25] for derivation), we substitute

out νi,k,j and ωi,l,j variables.

for ri, js P T , νi,k,j �

$''&''%
0, for k � i,

1�
j°

s�k

k�1°
r�i

τi,r,s, for i� 1 ¤ k ¤ j
(C.1)

for ri, js P T , ωi,l,j �

$''&''%
1�

l°
r�i

j°
s�l�1

βr,s,j, for i ¤ l ¤ j � 1

0, for l � j

(C.2)

We substitute (C.1) and (C.2) in (A2) to obtain

for ri, js P P ,
$&%τi,k,j � τi,k,j

ωi,l,j � ωi,l,j

(C.3)
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Since the above constraints satisfy trivially, we do not include them in the model.

Next, we substitute (C.1) and (C.2) in (A3) to obtain

for ri, js P P ,

$'''''''''''''''''''''''''''''&'''''''''''''''''''''''''''''%

j�1̧

r�i

τi,r,j �
j̧

s�i�1

βi,s,j � ζi,j

j̧

s�k

k�1̧

r�i

τi,r,s ¤ min

#
1,

m̧

s�k

k�1̧

r�i

τi,r,s �
j̧

s�n

n�1̧

r�i

τi,r,s �
m̧

s�n

n�1̧

r�i

τi,r,s

+
,

JnKm�1
k�1 , JmKj�1

k , JkKj�1
i�1

j̧

s�k

k�1̧

r�i

τi,r,s ¥ max

#
m̧

s�k

k�1̧

r�i

τi,r,s,
j̧

s�n

n�1̧

r�i

τi,r,s

+
, JnKm�1

k�1 , JmKj�1
k , JkKj�1

i�1

ļ

r�i

j̧

s�l�1

βr,s,j ¤ min

#
1,

m̧

r�i

j̧

s�m�1

βr,s,j �
ļ

r�n

j̧

s�l�1

βr,s,j �
m̧

r�n

j̧

s�m�1

βr,s,j

+
,

JnKm�1
i�1 , JmKl�1

i , JlKj�1
i�1

ļ

r�i

j̧

s�l�1

βr,s,j ¥ max

#
m̧

r�i

j̧

s�m�1

βr,s,j,
ļ

r�n

j̧

s�l�1

βr,s,j

+
, JnKm�1

i�1 , JmKl�1
i , JlKj�1

i�1

(C.4)

We express the second constraint in (C.4) as the intersection of two inequalities°j
s�k

°k�1
r�i τi,r,s ¤ 1 and

°j
s�k

°k�1
r�i τi,r,s ¤

°m
s�k

°k�1
r�i τi,r,s�

°j
s�n

°n�1
r�i τi,r,s�

°m
s�n

°n�1
r�i τi,r,s.

By noting that k ¤ m   j and k   n ¤ m � 1 ¤ j, the second inequality can be

simplified as 0 ¤ °j
s�m�1

°n�1
r�k τirs. This inequality is trivially satisfied because of

(A5), so we do not include it in the model. Similarly, we express the third constraint

in (C.4) as the intersection of two inequalities
°j
s�k

°k�1
r�i τi,r,s ¥

°m
s�k

°k�1
r�i τi,r,s and°j

s�k

°k�1
r�i τi,r,s ¥

°j
s�n

°n�1
r�i τi,r,s. By recognizing k ¤ m   j, the first inequality

can be simplified to 0 ¤ °j
m�1

°k�1
r�i τi,r,s. This inequality is redundant, because of
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(A5). We repeat the arguments with the last two constraints in (C.4), and discard

the redundant inequalities. This simplifies (C.4) to

for ri, js P P ,

$''''''''''&''''''''''%

j�1̧

r�i

τi,r,j �
j̧

s�i�1

βi,s,j � ζi,j

j̧

s�n

n�1̧

r�i

τi,r,s ¤
j̧

s�k

k�1̧

r�i

τi,r,s ¤ 1, JnKjk�1, JkKj�1
i�1

m̧

r�i

j̧

s�m�1

βr,s,j ¤
ļ

r�i

j̧

s�l�1

βr,s,j ¤ 1, JmKl�1
i , JlKj�1

i�1

(C.5)

The second constraint in (C.5) for streams of the form ri, N s is given by

Ņ

s�n

n�1̧

r�i

τi,r,s ¤
Ņ

s�k

k�1̧

r�i

τi,r,s ¤ 1, JnKNk�1, JkKN�1
i�1 (C.6)

Consider a stream ri, js such that j   N . Then, we observe that
°j
s�k

°k�1
r�i τi,r,s ¤°N

s�k

°k�1
r�i τi,r,s. This implies that the constraint

°j
s�k

°k�1
r�i τi,r,s ¤ 1 in (C.5) is

redundant for j   N , since it can be derived from (C.6). Next, we observe that

the first inequality in (C.6) can be expressed as
°j
s�n

°n�1
r�i τi,r,s�

°N
s�j�1

°n�1
r�k τi,r,s ¤°j

s�k

°k�1
r�i τi,r,s. Since τi,r,s ¥ 0 from (A5), the constraint

°j
s�n

°n�1
r�i τi,r,s ¤

°j
s�k

°k�1
r�i τi,r,s

in (C.5) is implied from (C.6) for j   N . In a similar manner, it can be shown that

it suffices to impose the third constraint in (C.5) only for streams of the form r1, js
i.e., i � 1. Therefore, the projection of (A2) and (A3) in τ � β space is given by$''''''''''&''''''''''%

j�1̧

r�i

τi,r,j �
j̧

s�i�1

βi,s,j � ζi,j, @ ri, js P P

Ņ

s�n

n�1̧

r�i

τi,r,s ¤
Ņ

s�k

k�1̧

r�i

τi,r,s ¤ 1, JnKNk�1, JkKN�1
i�1

m̧

r�1

j̧

s�m�1

βr,s,j ¤
ļ

r�1

j̧

s�l�1

βr,s,j ¤ 1, JmKl�1
1 , JlKj�1

2

(C.7)

Next, we use (A5) to project out τi,k,j and βi,l,j variables from (C.7), (A6) – (A8) to

obtain the constraints (W1) – (W6).
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C.2 Gauss Quadrature Formula

» 1

0

fpφqdφ �
¸
gPG

ξgfpφgq (C.8)

where G � t1, 2u, ξ1 � ξ2 � 1{2, φ1 � 0.211325 and φ2 � 0.788675 for two point

quadrature formula.

C.3 Proof of Identity

�¸
k

ukwk

�2

�
¸
k

¸
l, l k

puk � ulq2wkwl �
�¸

l

wl

��¸
k

u2
kwk

�
(C.9)

Consider the left hand side

LHS �
�¸

k

ukwk

�2

�
¸
k

¸
l, l k

puk � ulq2wkwl

�
¸
k

u2
kw

2
k � 2

¸
k

¸
l, l k

ukulwkwl �
¸
k

¸
l, l k

pu2
k � u2

l � 2ukulqwkwl

�
¸
k

u2
kw

2
k �

¸
k

¸
l, l k

u2
kwkwl �

¸
k

¸
l, l k

u2
lwkwl

�
¸
k

u2
kw

2
k �

¸
k

¸
l, l k

u2
kwkwl �

¸
l

¸
k, k l

u2
kwlwk

�
¸
k

¸
l, k�l

u2
kwkwl �

¸
k

¸
l, k¡l

u2
kwkwl �

¸
k

¸
l, k l

u2
kwkwl

�
¸
k

¸
l

u2
kwkwl

�
�¸

l

wl

��¸
k

u2
kwk

�
� RHS

C.4 Relative Volatilities for the Case Study

We remark on the computation of relative volatilities used for the case study in

§5.2. Shale gas is treated as a mixture of five components C1 through C5. For
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this system, large number of data points are required to span the entire composition

space. Therefore, to reduce the computational effort, we chose to fit the surrogate

for each consecutive binary pairs of representative species. Figure C.1 shows the true

VLE (solid blue curve) and the best surrogate (dashed red curve) in least-square

error sense for Methane-Ethane, Ethane-Propane, Propane-Butane, Butane-Pentane

pairs. Next, the required relative volatilities are computed as α1 � α12α23α34α45,

α2 � α23α34α45, α3 � α34α45, α4 � α45 and α5 � 1 (see Figure title for α12, α23, α34,

and α45 values).
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