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ABSTRACT

Tumbalam Gooty, Radhakrishna PhD, Purdue University, December 2020. Advances
in MINLP for Optimal Distillation Column Sequencing. Major Professors: Rakesh
Agrawal and Mohit Tawarmalani.

Designing configurations for multicomponent distillation, a ubiquitous process in
chemical and petrochemical industries, is often challenging. This is because, as the
number of components increases, the number of admissible distillation configurations
grows rapidly and these configurations vary substantially in their energy needs. Con-
sequently, if a method could identify a few energy-efficient choices from this large set
of alternatives, it would be extremely attractive to process designers. Towards this, we
develop the first mixed-integer nonlinear programming (MINLP) based solution ap-
proach that successfully identifies the most energy-efficient distillation configuration
for a given separation. Current sequence design strategies are largely heuristic. The
rigorous approach presented here can help reduce the significant energy consumption
and consequent greenhouse gas emissions by separation processes.

In addition to the combinatorial complexity, the challenge in solving this problem
arises from the nonconvex fractional terms contained in the governing equations. We
make several advances to enable solution of these problems.

1. We propose a novel search space formulation by embedding convex hulls of

various important substructures. We prove that the resulting formulation dom-

inates all the prior formulations in the literature.

2. We derive valid cuts to the problem by exploiting the monotonic nature of the

governing equations.
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3. We adapt the classical Reformulation-Linearization Technique (RLT) for frac-
tional terms. Our RLT variant exploits the underlying mathematical structure

of the governing equation, and yields a provably tighter convex relaxation.

4. We construct the simultaneous hull of multiple nonlinear terms that are con-
strained over a polytope obtained by intersecting a hypercube with mass bal-
ance constraints. This yields a tighter convex relaxation than the conventional

approach where the nonlinear terms are convexified individually over a box.

5. A key challenge in constructing a valid convex relaxation has been that the
denominator of certain fractions in the governing equation can approach ar-
bitrarily close to zero. Using our RLT variant, we construct the first valid

relaxation.

6. We leverage powerful mixed-integer programming (MIP) solvers by implement-
ing a discretization-based solution procedure with an adaptive partitioning

scheme.

With extensive computational experiments, we demonstrate that the proposed ap-
proach outperforms the state-of-the-art in the literature. The formulation can be
tailored to other objectives by appending the relevant constraints. Here, we present
an extension that identifies the distillation configuration that has the highest thermo-
dynamic efficiency. Finally, we illustrate the practicality of the developed approaches

with case studies on crude fractionation and natural gas liquid recovery.



1. INTRODUCTION

Separations are ubiquitous in all chemical, petrochemical and biochemical industries.
Separations are required to meet product purity, to reduce the concentration of pollu-
tants below their threshold limits, to separate unreacted reactants from the product
stream for recycling and so forth. A plethora of unit operations are available for sep-
aration of mixtures. Well-known examples include distillation, permeation through
membranes, absorption, adsorption, liquid-liquid extraction, etc. All of the foregoing
molecular separations are energy intensive, and it is estimated that they can account
for 40 — 60% of the total plant costs [1]. The ever increasing push to reduce the
environmental impact makes process designers to strive for innovative solutions that
improve the overall efficiency of chemical plants.

Of all the available unit operations, distillation has been the predominant choice
in industry. The use of distillation can be traced back to as early as 3000 BC. Even
today, distillation impacts directly our day to day lives; from gasoline in automo-
biles to roads on which they are driven, from breweries/wineries to plastic cups in
which they are served, and so forth. It is estimated that 90 — 95% [1] of the lig-
uid separations in industry are carried out using distillation. A few well-known and
high throughput applications in chemical industry include crude fractionation, natu-
ral gas liquid recovery, air separation, etc. With the increased potential to harness
shale reserves [2, 3], the use of distillation is projected to increase further. Like every
other molecular separation, distillation is energy intensive. To put it into perspective,
just in the US, distillation consumes 2.4 Quads/year!, which is roughly 2.5% of the
overall energy consumption of the US. Even a 10% reduction in energy consumption

would reduce CO5 emissions by ~18 million tons/year. Given the ubiquity of appli-

11 Quad = 1 quadrillion (10'%) BTU



cations and its energy-intensive nature, improving the efficiency of distillation-based
separation units is a promising direction towards making chemical industries more

sustainable.

1.1 Intricacies of Designing Distillation-based Separation Units

Even after practicing continuous distillation for over a century, designing energy-
efficient distillation-based separation units continues to be a challenging task. This is
especially true for the separation of multicomponent mixtures. To better understand
the reasons, consider the separation of a four-component mixture ABCD. Here, A
and D correspond to the most and the least volatile components, respectively, and
the components are arranged in decreasing order of relative volatilities. Separation
of a multicomponent mixture requires a sequence of distillation columns referred as
a configuration (see Figure 1.1). The energy requirement of a configuration depends
on the operating conditions. For example, Figure 1.1(a) shows a set of operating con-
ditions that permit the separation of a given four-component feed (refer the caption
for the properties of the feed). The numbers in red correspond to the molar flowrate
of the vapor in different sections of the configuration per mole of the feed. By opti-
mizing the operating conditions (see Figure 1.1(b)), the energy consumption of the
configuration can be reduced by 14%. However, identifying the optimal operating
conditions is challenging, since it requires the solution of a nonconvex mathematical
program.

In addition, multiple distillation configurations exist for the separation of a multi-
component mixture. For example, Figure 1.2 shows the so-called basic column config-
urations for the separation of a four-component mixture. Even though all configura-
tions perform the same separation, their energy consumption can differ substantially,
as evident from the figure. This is due to the differences in mixing losses within
each configuration. Moreover, one can derive additional configurations by replacing

condensers and reboilers by two-way vapor-liquid transfer streams, known as thermal



couplings (compare Figure 1.2(c) and Figure 1.1). Thermal couplings provide a way
to share vapor flows between two or more columns, which can help in reducing the
energy consumption. A configuration with one or more thermal couplings is referred
as a thermally coupled configuration. Therefore, a process designer needs to optimize
the separation sequence, condensers and reboilers, and the operating conditions.
Even though powerful process simulators are available at our disposal, they are
not suitable for the purpose. This is because, process simulators tend to get trapped
in a local solution due to the nonconvex nature of the problem. The only way to
ascertain the optimality is to perform an exhaustive sensitivity analysis, which is
computationally intensive. Moreover, the computational time and effort needed to
identify the optimal configuration can be prohibitive [4]. This is because, the number
of admissible configurations (basic and thermally coupled configurations combined)
explodes combinatorially with increase in number of components in the feed (see

Table 1.1).

(a) NEC = 1 (b) NEC = 0.86

Fig. 1.1. Energy consumption of a configuration depends on the oper-
ating conditions. Here, NEC stands for normalized energy consump-
tion. The energy consumption of (a) is used for the normalization.
The composition (mole fraction) of the given four-component mixture
is {z4, 2B, 20, 2p} = {0.45,0.05,0.05,0.45}, and the relative volatili-
ties of the constituent components w.r.t to the heaviest component
are {4, ap, a0, apt = {3.025,2.75,1.1, 1}
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For example, more than half a million and 85 million configurations are avail-
able for the separation of six and seven component mixtures. Such mixtures are
quite common in petrochemical industries. Owing to this combinatorial complexity,
industrial practitioners have always relied on heuristics, past experience and trail-
and-error methods for designing distillation units. Quite often, the chosen configura-
tion consumes much more energy than needed to perform the task at hand, but the
practitioner has no way to assess this energy penalty because some configurations,
inevitably, always remain unexplored. It is, therefore, essential to systematically

identify the configuration that is most appropriate for an application.

Table 1.1.
Combinatorial explosion of the choice set. From [5].

Number of Number of Admissible

Components Configurations
4 152
5 6128
6 506,912
7 85,216,192

1.2 Literature Review

Figure 1.3 shows a brief time-line. There are two aspects to the design of distillation-
based separation units: (1) Generate the search space: the space of admissible distilla-
tion configurations (2) Identify the configuration from the search space that optimizes
the chosen objective. The enumeration of the entire search space remained an un-
solved problem until early 2000s. Sargent and Gaminibandara [6] formulated an initial
superstructure (see Figure 1.3) with the intent of capturing the entire search space.

However, Agrawal [7] showed that the superstructure did not admit satellite-column



configurations (see Figure 1.3). Instead, the author proposed an alternate super-
structure to capture all the configurations. Next, Agrawal [8] proposed a rule-based
approach to generate the search space. Later, several formulations based on logical
expressions in terms of split variables [9], top-product/bottom-product variables [10]
and stream variables [5], have been proposed for enumerating these configurations.
However, no clear dominance of the formulations has been established in the litera-
ture. Here, we use the tightness of the relaxed problem as the metric to determine
the dominance. In this work, we propose two new formulations to generate the search
space. The first formulation uses fewer variables, compared to the prior formula-
tions [9, 10], to model the search space. The second formulation dominates every
other formulation in the literature, including our first formulation. We prove that
this is the best in a well-defined sense.

After modeling the search space, a systematic method is needed to identify the
best distillation configuration along with its optimal operating conditions. Until the
mid-1980’s almost all column sequencing research was confined to sharp-split config-
urations due to the interest in industry. This makes the problem relatively easier to
solve, since distillation calculations can be performed a priori. The design specifica-
tions, such as reflux ratio, condenser/reboiler duty and so forth, enter only as param-
eters in the optimization problem [11]. Tt is only after the successful demonstration of
the energy saving potential of sloppy-splits and thermal couplings [12], that the need
for inclusion of configurations with these arrangements in the search space became
apparent. However, unlike sharp-split configurations, distillation calculations need to
be performed online while solving the optimization problem. To make the problem
computationally tractable, researchers replaced rigorous tray-by-tray models (also re-
ferred to as the MESH equations) involving hundreds of highly nonlinear-nonconvex
equations with simplified models that serve as a surrogate. These simplified mod-
els provide reasonably accurate estimates of design specifications, but require only a
handful of algebraic equations. Optimization problems using these simplified models

were first developed for specific configurations [12-14] and later extended to spe-
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cific groups of configurations. For example, in [15], the authors considered a three-
component Petlyuk-type configuration and formulated an optimization problem to
determine optimal flows using Underwood’s method. They were able to derive an
analytical solution for the vapor duty, and found that the optimal region was flat
over a range of flows. Later, researchers have extended the approach to some non-
FTC (non-Fully Thermally Coupled) configurations, especially the side-stripper and
the side-rectifier configurations [12, 16]. Nevertheless, these studies either focused
on specific configurations or considered certain regions of search space, leaving the
structured search of the entire search space an open problem.

To the best of our knowledge, Caballero and Grossmann [17] were the first to
perform a structured search over the entire search space. The authors proposed a
new superstructure, where the component, vapor and liquid flows are bypassed when
the corresponding pseudo-column is absent. This superstructure forms the building
block in their subsequent contributions. The authors used a combination of State
Task Network (STN) and State Equipment Network (SEN) to formulate an MINLP
to identify the configuration that minimizes the total cost [17]. Unfortunately, the
resulting MINLP could not be solved to global optimality. Moreover, even the local
NLP solvers often failed to converge to a feasible solution due to singularities that
arise in the model when certain splits are no longer a part of the configuration.
When the local solvers found a feasible point, it was often a local optimum that was
significantly inferior relative to the global solution [17]. To circumvent these issues,
the authors architected an algorithm by suitably modifying the logic-based outer-
approximation scheme. Although the resulting algorithm successfully found feasible
configurations, it could still not guarantee that a global optimum was found. Later, [9]
introduced a two-step method, where first they determined a completely thermally
coupled configuration and then located the heat exchangers optimally. Clearly, this
hierarchical approach does not guarantee global optimality either. In subsequent
works, the authors proceeded to explore possible heat integration [9], rearrangement

of column sections [18], and dividing wall columns [19]. More recently, inspired by



[11], [20] formulated a Mixed-Integer Linear Program, where they used FUG method
to, a priori, optimize vapor traffic and heat loads for each split.

In the meanwhile, [10] introduced a new MINLP formulation to determine the
configuration with the lowest vapor duty. They have succeeded in solving three and
four component test cases to global optimality using BARON [21]. Although, their
formulation was not able to solve a five-component MINLP directly, it was able to
globally optimize the vapor flow for certain configurations, once their structure was
specified by fixing the binary variables. This observation led to the enumeration-
based approach of [22]. Here, the authors formulated a Nonlinear Program (NLP)
for each configuration in the search space that was then solved using the global
solver, BARON. The proposed approach is amenable to parallelization, but it remains

computationally inefficient for six and more number of components in the process feed.

1.2.1 State-of-the-art

Here, we show that the state-of-the-art approaches cannot reliably identify the
optimal distillation configuration. To the best of our knowledge, the MINLP for-
mulation in [9] remains the state-of-the-art. To test the efficacy of their model, we
considered a test set of 496 cases (see §A) that are representative of different types of
separations. We solve their model for all the 496 test cases using BARON. The results
are shown in the performance profile in Figure 1.4(a). Here, we plot the cumulative
percentage of cases that have been solved to 1%-optimality gap as a function of time.
We observe that only 10% of the cases could be solved within five hours. A large
duality gap, defined as

(1.1)

% Gap = (1 B Best known lower bound) < 100,

Best known upper bound

remain in several unsolved cases (see Figure 1.4(b)). This demonstrates that the
problem is challenging, since only 10% of the cases can be solved with the best

formulation in the literature and with a state-of-the-art global solver. While this
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work made substantial contribution towards developing a systematic approach, more

work is needed to reliably solve this hard problem.
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Next, we show that the state-of-the-art cannot reliably identify the optimal op-
erating conditions even for a given configuration. We consider the formulation in
Nallasivam et al. [22]. Here, the authors formulate a nonlinear program for each con-
figuration in the search space. Their approach overcomes the challenge due to the
nonconvexity associated with discrete variables. Nevertheless, the problem remains
challenging due to the presence of nonconvex fractional terms. Indeed, they [22]
showed that local solvers can get trapped in a sub-optimal solution that requires a
much higher energy than the global optimum. Therefore, we use the global solver
BARON to solve the nonlinear program. We consider the five-component fully ther-
mally coupled configuration (the five-component analog of Figure 1.2(r)). We deter-
mine the optimal operating conditions of this configuration for each of the 496 cases
in the test set (see §A), by solving the nonlinear program. The results are shown in
the performance profile in Figure 1.5. As before, we plot the cumulative percentage
of cases that have been solved to 1%-optimality gap as a function of time. We ob-
serve that, even for a given configuration, the current approach can solve only 57%
of the cases in the test in one hour. Clearly, there is a need to develop better formu-
lations and solution procedures to reliably identify the best distillation configuration
for a given application. This thesis develops such a formulation and solution proce-
dure. The rigorous approach presented here can reduce the energy consumption and

consequent greenhouse gas emissions by the separation process.

1.3 Key Contributions

The main contributions are organized as chapters, and the highlights of each

chapter are summarized below.

1.3.1 Chapter 3

This chapter is based on [23]. Here, we propose a novel MINLP that is formulated
to identify the distillation configuration requiring least vapor duty. The highlights of
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Fig. 1.5. Performance profile for the nonlinear program proposed in [22]

this chapter are as follows. First, we introduce a new notation to represent streams
and heat exchangers, which allows for a more succinct and cleaner presentation. Using
this notation, we describe a new formulation for the search space of configurations
detailed in Shah and Agrawal [5]. Second, our formulation restricts the composition of
distillate and residue to more closely represent the reality. For example, consider the
model presented in [9] and, in particular, the example in the MINLP library [24]. In
the optimal solution for this example, the recovery of component B in the distillate
of split ABCD/BCDE is higher than that of the heavier components, C' and D,
while, in reality, the recovery of a lighter component in the distillate must be at least
as much as that of a heavier component. To address this issue, we propose a new
formulation of Underwood constraints to avoid such occurrences. Third, we derive
additional cuts by exploiting properties of Underwood equations. These cuts play a
vital role yielding tighter relaxations, which help expedite the convergence of branch-
and-bound. Finally, we demonstrate the efficacy of our approach by presenting various

four, five, and six component examples.
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1.3.2 Chapter 4

This chapter is based on [25]. Here, we describe a novel formulation, relaxation and
discretization based solution procedure to reliably solve the MINLP. The highlights of
this chapter are as follows. First, we introduce a new formulation, to model the space
of admissible configurations. We show that this formulation is provably tighter than
previous formulations in the literature [9, 10, 23]. More importantly, we show that
our formulation is contained in the convex hull of various important substructures.
Second, we adapt the classical Reformulation-Linearization Technique (RLT) [26] to
obtain a family of cuts for fractional terms. These cuts are especially useful, as they
exploit the mathematical structure of the governing equations. The techniques we
propose are general, and can be used to relax other optimization problems involving
fractional terms. Third, we employ simultaneous convexification techniques to con-
struct convex hull of multiple nonlinear terms that are constrained over a polytope
obtained by intersecting a hyperrectangle with material balance equations. This ap-
proach results in relaxations that are strictly tighter than conventional relaxations,
which are obtained by relaxing nonconvex terms individually over a box. Fourth, a key
challenge in deriving valid relaxations for the distillation configuration design prob-
lem has been that certain terms that appear in the denominator cannot be away from
zero. Prior works have imposed arbitrary lower bounds on this denominator [23,24].
The cuts derived using our RLT variant enable us to infer finite upper bounds on
fractions, which allow us to construct provably valid relaxations. Fifth, we lever-
age powerful Mixed-Integer Linear/Second-order Cone Programming (MIL/SOCP)
solvers by replacing convex relaxations with piecewise relaxations, obtained by adap-
tively discretizing the domain of specific decision variables and constructing convex
relaxation within each partition using disjunctive programming techniques. Lastly,
through computational experiments, we demonstrate the efficacy of our approach by

comparing its performance with other state-of-the-art techniques.
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1.3.3 Chapter 5

This chapter is based on [27]. Here, we propose a novel MINLP that is formu-
lated to identify the distillation configuration that has the highest thermodynamic
efficiency. The highlights of this chapter are listed in the following. First, we describe
a formulation to model the space of admissible configurations that is tighter than
the prior formulations in the literature. This formulation is obtained by projecting
the formulation proposed in Chapter 4 onto a lower dimensional space. Second, we
use the ideas introduced by [28] and [29] to formulate the model in a way that it
does not depend on temperature of streams explicitly. This way, the results obtained
from the model hold for any mixture, irrespective of sub-ambient or above-ambient
operation, provided the mixture has the same composition and relative volatilities
for constituent components. However, the model in its default form has several non-
linear nonconvex equations. To simplify the model, we reformulate it using a simple
variable elimination technique. The reformulated model simplifies exergy loss calcu-
lations substantially by reducing a system of nonlinear equations that model material
balance and vapor-liquid equilibrium to a single equation, which we refer as exergy
constraint. Third, we describe the properties satisfied by exergy constraints, and ex-
ploit them in deriving additional cuts to the problem. Fourth, we use the MINLP
formulation to identify attractive configurations for recovery of Natural Gas Liquids
(NGLs) from shale gas. Finally, we investigate the efficacy of the model to changes
in process parameters on several four and five component mixtures taken from the

literature.
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2. PRELIMINARIES

2.1 The Distillation Process

When a mixture of components with different volatilities is boiled, the vapor
produced is rich in more volatile (or light) components, while the residual liquid is
enriched in less volatile (or heavy) components. Distillation exploits this characteristic
to separate mixtures of two or more components. Industrial distillation is carried out
in a staged-tower /column (see Figure 2.1), where each stage establishes liquid-vapor
contact for mass transfer. The feed (mixture of components) is introduced at an
intermediate location of the column. The sections above and below the feed stream
are known as rectifying and stripping sections, respectively. Conventional columns
have a condenser (resp. reboiler) at the top (resp. bottom) which condenses (resp.
vaporizes) the vapor (resp. liquid), and feeds a portion of it back to the column,
known as liquid (resp.  wvapor) reflur. The liquid flowing from the top to bottom
strips away heavy components from the vapor, while the vapor flowing from bottom
to top gets enriched with lighter components. The net outflow from the rectifying
and stripping sections, respectively, are known as distillate and residue. In short,
distillation enriches the distillate with light components, and the residue with heavy

components.

Remark 2.1. The recovery of a lighter component in distillate (ratio of component
flowrate in distillate to flowrate in feed) is higher than the recovery of a heavier

component, and the converse is true for residue [30].

Finally, for a given product composition, there is a threshold vapor flow in each
section, below which the products do not reach the desired composition. To deter-
mine this threshold vapor flow, we use the classic Underwood method [31], which is

described in the next section.
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Fig. 2.1. Schematic of a distillation column

2.2 A Note on Underwood Constraints

In his seminal paper, [31] derived a shortcut method to compute the minimum
vapor requirement of a distillation column. Before we describe the constraints, we
emphasize a few key concepts like the definition of key components and the degrees
of freedom. These concepts are crucial for the problem formulation. The optimiza-
tion problem can yield physically infeasible solutions when modeled flexibility exceeds
actual flexibility in how a system operates. For example, recovery of a heavier com-
ponent in the distillate cannot be higher than that of a lighter component. A solution
that does not satisfy this property violates the physics of the distillation process.

A light key (resp. heavy key) is defined as the lightest (resp. heaviest) component
that distributes, or would distribute between distillate and residue if vapor flow was
decreased slightly. Components lighter (resp. heavier) than the light key (resp. heavy
key) are completely recovered in the distillate (resp. residue), with an insignificant
amount in the residue (resp. distillate). Regardless of how many components are in
the feed stream or which product streams are produced by the split, a distillation
column has exactly two degrees of freedom. Therefore, the operation of the column
is completely determined by specifying two values, often the recovery of light and

heavy keys in one of the product streams. Specifying these quantities fixes the other
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process variables such as minimum vapor requirement, and recoveries of remaining
components in the product streams. Alternatively, the vapor flow and recovery of
either of the keys can be specified to completely describe the system. In either case,
no more than two values may be specified independently. We refer the reader to [32]
for a detailed discussion on the degrees of freedom.

We now describe the Underwood method that can be used to limit the degrees
of freedom to two and, thus, remove excess degrees of freedom from the model. The
first step in Underwood method determines Underwood roots (6,) by solving the feed

equation.

"oy fin ,
3 oy iy <g<n—1 (2.1)
1%~ 0

where o, is the relative volatility of component p with respect to the heaviest compo-
nent in the process feed and, it can be shown that the ¢ Underwood root 6, satisfies
agi1 < 0, < . Here, f;” and V" correspond to the net inflow of component p
and vapor, respectively. In the second step, the roots that lie between the relative
volatilities of the key components, called active roots, are determined. These roots are
then used to compute minimum vapor requirement. The remaining roots are called
1nactive roots.

Halvorsen and Skogestad [33,34] introduced a V},;, diagram to visualize the min-
imum vapor requirement. In Figure 2.2 we show such a V,,;, diagram for feed con-
ditions detailed in the figure’s caption. The horizontal axis graphs the net distillate
flowrate, while the vertical axis graphs the minimum vapor required in the rectifying
section Y8, for various splits. Note that, as long as a point is in or on the boundary
of the curve (i) 0 — Pap — 1, 61 is active (ii) 0 — Ppc — 1, 65 is active (iii) 0 — Pep — 1,
05 is active and (iv) 0 — Ppg — 1, 0, is active. As an example, we consider the split
ABCD/BCDE. The region shaded in Figure 2.2 shows the feasible region for the
split. Clearly, 6, and 63 are active throughout the shaded region, while 6, (resp. 6,)
is active only along the line joining Pap — Pag (resp. Pag — Ppg). When 6; (resp.

0,) is active, component A (resp. FE) is the light (resp. heavy) key for the split.
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Everywhere else, components B and C' are the light and heavy keys. Therefore, the

recoveries of the distributing components are constrained by the following relation:

4 rs 4 s
> Ooly => Oly (2.2)

Oép—92 :10413—93

p=1

or, given the vapor balance, in terms of component flows in the stripping section

o FS8 5 ay ss
—Z 2l - Ty = s (2.3)

ap—02 p20zp—(93

where rs

>>, T, and T* denote, respectively, the net flow rate of component p in
the rectifying and stripping sections, minimum vapor requirement in the rectifying
and stripping sections. Observe that, altogether there are four unknowns: three
unknown recoveries, namely those for B, C, and D and the minimum vapor flow in
the rectifying section. The two equalities in (2.2) or (2.3) ensure that, as desired, the
system has only two degrees of freedom. If these are relaxed, as in [9], the system
has more flexibility than allowable and the optimal solution may not be physically

feasible. Finally, we mention that the minimum vapor constraints can also be imposed

for inactive roots, albeit after relaxing the equality to inequality as below:

4 TS
a
Z L < Y™ ¢ = Inactive root
! o (2.4)
_ Z —LF_ < T ¢ = Inactive root

Validity of these constraints can be shown mathematically. They can also be inferred

from the V,,;, diagram (cf. Figure 2.2).

2.3 Alternative Interpretation of Relative Volatilities

Shortcut models, such as Underwood method, require relative volatilities of all
components for computing minimum vapor reflux and recoveries of distributing com-
ponents in distillate/residue. Conventionally, relative volatilities are defined as the

ratio of equilibrium constants (K-values), or alternatively as the ratio of saturation
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Fig. 2.2. V., diagram showing the feasible region (shaded re-
gion) for the split ABCD/BCDE. Here, the feed composition is
{0.2,0.2,0.2,0.2, 0.2}, relative volatilities are {9, 6, 3.5,2, 1}, and ther-
mal quality = 1. The values are taken from [32]

pressures, of a more volatile component w.r.t a less volatile component. In a distilla-
tion column, the temperature varies substantially from top to bottom, in particular,
for easy separations. Consequently, K-values, and in turn relative volatilities, vary
substantially across the column. This behavior challenges the assumption of constant
relative volatility inherent in Underwood method [31]. Nevertheless, our experience
suggests that the minimum vapor reflux and pinch compositions predicted by Under-
wood method agrees well with those from solving MESH equations on Aspen Plus.
This arises two questions: (i) why and when does the constant relative volatility

assumption hold? (ii) how to choose relative volatilities required for Underwood
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method? We propose a plausible explanation to the first question, and suggest a few
ways to choose relative volatilities.

To answer the first question, we describe an alternative interpretation for relative
volatilities {a,})";. In his seminal paper, [31] considered the following model for
vapor-liquid equilibrium (VLE):

QpTp

= =2y 1,...,N 2.5
yp Zr&rxr’ pe{’ ? } ( )

where z, and y,, denote the molar fraction of component p in liquid and vapor phases,
and «,, is the relative volatility of component p w.r.t to the least volatile component.
Note that, by definition, oy = 1. The VLE model in (2.5) is derived from the

conventional definition of relative volatility

K, Yp/Tp
a, = =2 = Jeltp 2.6
P Ky  yn/zy (2:6)

We interpret (2.5) as a surrogate model for the true VLE, and {ap},_, as parameters

N

=15 which will be discussed

for the surrogate model. The choice of parameters {a,}
shortly, must be such that the surrogate is as close to the true VLE as possible.
In such cases, the estimates of vapor composition provided by the surrogate model
agree well with the true vapor composition. As a result, for a given reflux ratio
and distillate flowrate, the simplified tray-by-tray calculations considered by [31] will
lead to a closer approximation of rigorous MESH equations. This is a plausible
explanation why Underwood method is reliable despite the assumption of constant
relative volatility. In contrast, when the surrogate model in (2.5) fails to capture the
true VLE accurately, like in azeotropic systems, the estimates from the Underwood
method will not be reliable, especially when the range of compositions fall in the
region where there is a substantial deviation between the surrogate and the true
VLE.

Now, we address the second question concerning the choice of {ozp}i,v:l. We deter-
mine {Ozp}évzl such that the surrogate in (2.5) closely approximates the true VLE in

least-square error sense. Towards this, we consider a sample of points M spanning
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the entire liquid composition space. We determine the respective vapor composition

using the true VLE. Then, we formulate a least-squares error problem shown below

IM| N-1 o 2
Min. A N-1 (y mo #) (27)
{ p}p=1 mz=:1 ; P Zr:l Oy Ty m

Note that we did not include o as a decision variable, since ay = 1. After computing
the optimal {a,}7_;, it is necessary to check if the surrogate closely approximates the
true VLE. In some cases, it is possible that the unconstrained optimization might lead
to a solution which gives a closer approximation in some regions of the composition
space, while a poorer approximation in some other regions. In such cases, constraints
restricting the relative error in vapor composition to not exceed a specified value may

be added to the optimization problem in (2.7).
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3. MINIMIZATION OF VAPOR DUTY

In this chapter, we formulate a novel Mixed-Integer Nonlinear Program (MINLP) to
identify the top K configurations that require least total vapor duty for the separation
of a given non-azeotropic mixture. The vapor duty, defined as the sum of vapor flows
generated by all the reboilers, serves as a proxy for energy consumption. Thus, by
minimizing the vapor duty, we find the configuration that requires the least amount
of utilities, and thus the operating cost. In addition, the vapor duty indirectly af-
fects the capital cost, as the column diameter depends on the internal vapor flows.
Given our focus on non-azeotropic mixtures, we use Underwood’s method to obtain
a reasonable estimate of the minimum vapor requirement for each split. Despite the
resulting simplifications relative to a detailed tray-by-tray calculation, the MINLP
remains challenging to solve to global optimality because of the nonconvexities in the
Underwood equations and combinatorial complexity of the search space. The current
state-of-the-art in this area is the explicit enumeration based algorithm of Nallasivam
et al. [22]. However, compared to implicit enumeration employed in this work, the
former approach is computationally inefficient and does not scale well with increase
in number of components in the mixture. The existing implicit enumeration based
implementations [17] do not guarantee global optimality due to problem decompo-
sition. The approach presented in this chapter can be used to solve the problem to
e-global optimality with off-the-shelf solvers.

The rest of the chapter is organized as follows: In §3.1, we present our MINLP
formulation for identifying the configuration with minimum overall vapor duty. The
optimal solution of the MINLP may be hard to implement for reasons that are not
modeled and, although optimal to the model, the solution may not even be truly
optimal once the simplifying assumptions that were made to derive a tractable for-

mulation are relaxed. Moreover, the designers often have other considerations in mind
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Fig. 3.1. Five-component system. Here, filled and unfilled circles
denote condensers and reboilers, red and blue colored arrows denote
the rectifying and stripping sections.

such as heat-integration with the remaining plant and environmental impact. There-
fore, it is desirable to have a handful of configurations, on which rigorous tray-by-tray
calculations are performed before the appropriate configuration is identified. To pro-
vide sufficiently many alternatives for downstream evaluation, in §3.2, we describe
a simple method to systematically determine the top K solutions for the problem.
Further,in §3.2, we consider a few case studies and solve them to global optimality.
We conclude the chapter with a few remarks on the applicability and extensibility of

the model in §3.3.
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3.1 Problem Formulation

Before formulating the problem, we give a few definitions and discuss the notation
we use to describe our constructions. To allow for a general zeotropic mixture, we
denote streams as ABC'DFE, where each letter denotes a component. Alternatively,
we will also use numbers to denote components: A =1, B =2,..., FE =5 In
a stream, components are arranged in a decreasing order of relative volatility with
the first and the last components being, respectively, the most and the least volatile
components. It is these extreme components that we use to denote a stream. In
particular, if the most (resp. least) volatile component is component 7 (resp. j), then
the stream is denoted as the couplet [i,j]. We remark that Shah and Agrawal [5]
introduced a similar, albeit sightly different, notation, where they placed each stream
in an upper triangular matrix, and used the coordinates of this position to refer to
the stream. Since this placement depends on the number of components of the feed
stream, the translation from their notation to stream labels requires this number.
Instead, the translation with our notation is clearly independent of this number and
can be done in a straightforward fashion. For example, [2,3] always represents the
stream BC, regardless of the number of components n in the process feed [1,n]. In
a similar manner, we denote heat exchangers by a couplet (i,j) whose coordinates
are obtained from the extreme components in the associated stream. For example,
the condenser and the reboiler of the column that splits [1, 5] into submixtures [1, 4]
and [2,5] are respectively associated with these product streams (see Figure 3.1).
Therefore, by condenser (i,7) (resp. reboiler (i,7)), we mean the heat exchanger
through which stream [, j] is withdrawn as distillate (resp. residue). Splits will be
represented as ABC'D/BC DFE which signifies that ABC'D and BCDE are produced
as distillate and residue from ABCDE.

A submixture is defined as any intermediate stream that arises during the separa-
tion of the process feed into pure components/desired products. As an example, we

refer to the five component system shown in Figure 3.1. Here, all the streams except
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{ABCDE, A, B, C, D, E} are submixtures. Further, we define top parents (resp.
bottom parents) of a submixture as the streams, which if fed to a column could pro-
duce this submixture through the rectifying (resp. stripping) section. Analogously,
we define top children (resp. bottom children) of a submixture as the streams which
could be produced from the rectifying (resp. stripping) section of a column with this
submixture feed. For any submixture, the top (resp. bottom) parents can be identified
by traversing horizontally to the left (resp. vertically upwards) from this submixture,
and the top (resp. bottom) children can be identified by traversing horizontally to the
right (resp. vertically downwards). For any stream [i, j], the top parents are obtained
by increasing j: {[i,j + 1],[¢,j + 2],...,[¢,n]}, while the top children are obtained
by reducing j: {[i,j 1], [¢,5—=2],. .., [i, z]} Similarly, the bottom parents of [i, j]
are obtained by reducing i: {[z 1,41, [ —2,4],---, [1,]’]}, while the bottom children
are obtained increasing i: {[z + L4, e+ 2,4],. .., [j,j]}. As an example, the top
(resp. bottom) parents of [3,4] are {[3,5]} (resp. {[1,4], [2,4]}), and the top (resp.
bottom) children are {[3,3]} (resp. {[4,4]}) (see Figure 3.1).

We assume that the final products, which are the pure components, are drawn
in saturated liquid state. Nevertheless, by slightly modifying the superstructure (see
Figure 3.2), we may withdraw final products in any desired state. We also assume that
the molar overflows, the latent heat of vaporization, and the relative volatility remain
constant throughout each column section of the configuration. These assumptions
are implicit in our use of the Underwood method. The definition of the sets and
variables used in the formulation are summarized in Tables 3.1 and 3.2, respectively.
We split the set of submixtures into three sets, where S; (resp. S3) denote the set of
submixtures in the top row (resp. first column) of the superstructure representation
in Figure 3.1, while S, denotes the set of remaining submixtures. We represent each

split using its feed stream, which is either a submixture or the process feed.
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Set Symbol Definition 5-component example
n—1
Sl {[17]]} {[1a2]a[173]7[1a4]}
. i=n—2,j=n—1
82 {[Zuj]}z 2,j= ZJ+1 {[273]7[274]7[374]}
n—1
83 {[Zvn]}z 2 {[275]7 [37 5]7 [47 5]}
Submixtures U S1uUSuUS; {[1,2],[1,3],[1,4], [2,3],[2. 4],
[2,5],[3,4], 3,5, [4.5]}
Splits P {[1,n] v} {[1,5]} v
Streams T Po{li,i},_, P u{[1,1],[2,2].[3,3].[4,4],[5,5]}
Condensers C {(i,7): 1<i<j<n—1} {(1,1),(1,2),(1,3),(1,4),(2,2),
(2,3),(2,4),(3,3).(3,4), (4,4)}
Reboilers R {(i,j): 2<i<j<n} {(2,2),(2,3),(2,4),(2,5),(3,3),
(3,4), (3,5), (4,4), (4,5), (5,5)}
Table 3.2.: Domain of indices for the variables. For ¢ ;,
[Z,]] € T, For Xi,j and FC'ij, (’L,j) € C, For Pij and FRZ‘J',
(4,7) € R; For UfS,, and K%, 4, [4, ] € S10Sy; For U
and K3*, ;, [i,j] € S U S3. For the remaining decision
variables, [i, j] € P.
Parameters
n Number of components in the feed
ayp Relative volatility of component p w.r.t the heaviest component

continued on next page
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Table 3.2.: continued

VU

Flowrate of component p in the feed
Liquid fraction in the process feed (thermal quality)

Upper bound on vapor flow rate

Notation

[i, J]
{0}
{Ik, 1},
{li.r]}
{[S’j] Z:i+1
Qi,j

Submixture with ¢ and j as the lightest and heaviest components
Top parents of submixture [i, j]

Bottom parents of submixture [i, j]

Top children of submixture |7, j]

Bottom children of submixture [z, j]

Pseudocolumn performing the separation of stream [i, j]

Decision Variables

Gij
Xi,j
Pij
Usah

(£},

4,00 S p=i+1
v

Vs

L

L

FGZ,]

FRZ,]

US

Kp

1,7+1

SS
Uy

Binary variable indicating the presence/absence of stream [i, j]
Binary variable indicating the presence/absence of condenser (i, j)
Binary variable indicating the presence/absence of reboiler (i, j)
Net molar flow of component p in the rectifying section of @); ;
Net molar flow of component p in the stripping section of Q) ;
Vapor flowrate in the rectifying section of @); ;

Vapor flowrate in the stripping section of @);

Liquid flowrate in the rectifying section of @); ;

Liquid flowrate in the stripping section of @); ;

Molar flowrate in condenser (i, ;)

Molar flowrate in reboiler (i, 7)

Vapor in-flow into Q; ; from @Q; ;1

Liquid out-flow from @Q; ; to @ j+1

Vapor out-flow from @Q); ; to Qi1 ;

continued on next page
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Table 3.2.: continued

K5 Liquid in-flow into @Q;; from Q;_ 1 ;

{9i7j7q}2;; Underwood root of Q); ; satisfying a,41 < 6,4 <

T Minimum vapor flow required in the rectifying section of @); ;
e Minimum vapor flow required in the stripping section of @); ;
{574 ;;?H Slack variable associated with 6; ; ,

3.1.1 Objective Function

The objective is to minimize the net vapor generated by all the reboilers that
leads to the following formulation:
(H): Minimize ii FR; ;, (H1)
i=2 j=i
where FR;; denotes the vapor flow generated by reboiler (¢, j). The minimization in
(H) is subject to constraints that enforce mass-balance, compute vapor flows using

Underwood equations, and define the search-space of configurations.

3.1.2 Search Space Formulation

We begin by describing the constraints that define the space of regular-column
configurations. For this, we rely on the method proposed by Shah and Agrawal [5]
(SA method) and adapt it to our notation. We will describe these constraints in two
sets; constraints that (i) govern the presence/absence of streams and (ii) govern the

presence/absence of heat exchangers.

Constraints on stream variables

We use binary variables (; ;, [¢,j] € T to denote the presence/absence of a stream

[7,7], i.e., ;; = 1 denotes stream [7, j] is present while zero denotes its absence. SA
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method requires three checks to ensure correct streams are present in the formulation.
These ensure (i) the presence of process feed and final products (pure components),
(ii) the presence of a parent, and (iii) that components do not vanish during a split.

We now translate these checks into logical expressions.

Presence of feed and products constraint: The process feed ([1,n]) and the

final products (pure components) must be present in every feasible configuration.

Cl,n =1

Cl,lZCZ,QZ"':Cn,nzl

(H2)

In addition, specific submixtures are forced to be present (resp. absent) by requiring

that the corresponding (;; = 1 (resp. (;; = 0).

Presence of parent constraint: A submixture must be absent when all of its top

({[¢,1]}-,,1) and bottom ({[k,j]};_}) parents are absent. Mathematically,

n i—1
Gi< D, Gt D G YV [,7]1€S: (H3)
k=1

I=j+1
Note that this constraint is not imposed for submixtures of the form [1, 7], which
belong to Sy, and [i,n], which belong to Ss, since it would be redundant given that

process feed [1,n] is always present.

Constraint for feasibility of split: Components must be conserved during a split
i.e., every component must be recovered either in distillate or in residue or both. For
example, feasible splits of ABC are {A/BC, AB/C, AB/BC}. However, split A/C is
infeasible since component B is absent from both distillate and residue. To impose
this constraint, SA method identifies the distillate and residue from each split, and
verifies that the sum of number of components in the products is at least as high
as the number of components in the feed. To impose the constraint in this form,
additional variables would be needed to identify unique components in the product

streams. Instead, we formulate this constraint in an alternate way.
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Consider the split of submixture [i,j]. The top and bottom children of [i, j] are
{[i, 7 1}/=} and {[s,j]¥_;.,. Let [i,r], where i < 7 < j — 1, be produced as the
distillate from [i, j], i.e., G (1 — Gj—1) ... (1 = Girs1)Gir = 1. Here, we use the fact
that, for regular-column configurations [5,9,10], submixtures {[i,j —1],..., [i,7 + 1]}
are absent if [, r] is produced as the distillate from [7, j]. In this case, for conservation
of components, the bottom product must be one of {[i + 1, j]|,[i +2,j],...,[r+1,7]}

This constraint is imposed as:

r+1

Ci,j(l - Ci,jfl) . ( C’L r+1 ClT ~ Z CS] (31>

s=i+1
The LHS of (3.1) involves a product of binary variables, which can be relaxed to the
LHS of (H4) below:

r+1

Gj—Gj1— " —GCr1t+Gr—1< Z Gy ¥V i<r<j—2, [i,j]eP (H4)

s=it+1
Equivalently to (3.1), (H4) is activated only if [i,7] is produced as the distillate
from [i, 7] and is trivially satisfied otherwise. Further, (H4) would be redundant if
imposed for r = j — 1, since the RHS would be i=i+1<&j > (j; = 1, where the
equality is from (H2). Physically, when [i, 7 — 1] is produced as the distillate from

[i, 7], any of the bottom children {[s, j]}/_.,, can be withdrawn as residue. Thus, it is

s=i+
sufficient to impose (H4) for top children {[#,7]}’Z%. In a similar manner, component
conservation constraints can be derived based on the bottom children. Let [s, j],
where i + 1 < s < j, be produced as the residue from [i, 7], then one of {[i,7]}/_!_,
must be produced as the distillate for components to be conserved. For a regular-
column configuration, [s, j] is a residue only if the submixtures {[i+1, j], ..., [s—1, j]|}
are absent. The constraint in nonlinear form, and its relaxed version are given below:

(1= Gisrg) - (1= Comr )y < Z Gir

r=s—1

e
Gij—Gi+1j— = G1j+ G — 1< Z Gr ¥V it2<s<y; [i,j]eP (H5)

r=s—1

As before, (H5) is redundant for s = ¢ + 1 and it suffices to impose (H5) for bottom
children {[s, ]}/

s=i+2°
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Constraints on heat exchanger variables

We use binary variables x;;, (i,7) € C and p;;, (i,j) € R to model whether
condensers and reboilers are present or absent. When a heat exchanger is absent, the
material flow between two consecutive columns takes place via two-way vapor-liquid
transfers (see Figure 3.2). Thus, when a heat exchanger is absent, we automatically
assume that a thermal coupling is present instead. We now describe the constraints

that govern the presence/absence of heat exchangers:

1. From the definition, heat exchangers must be absent when the associated sub-
mixtures are absent in the configuration. This constraint can be expressed in

linear form as
Xij+pig <G, ¥V [i,jlelU (H6)

Submixtures in &; (resp. S3) are only associated with condensers (resp. reboil-
ers). Thus, (H6) must be modified to x1; < (1; (resp. pin < () for the

corresponding submixtures.

2. Condenser (resp. reboiler) associated with a stream must be absent if all the
top (resp. bottom) parents of the stream are absent. This constraint is modeled
as

n
Xij < Z Git

I=j+1

e V [i,j] € Sy v {[m,m]}_ (HT7)
Pij < Z Ck,j
k=1

m=2

and is redundant if imposed for submixtures in &) and Ss, as they can always

be produced from the process feed stream ([1,n]).

3. Heat exchangers must be absent if the associated stream is withdrawn as a

sidedraw. For a stream to be withdrawn as sidedraw, it must have at least one
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of the top parents (i.e., min{(1—¢;;)}i_;,, = 0), and one of the bottom parents

n—1
m=2

(i.e., min{(1 — ¢ ;)i = 0). Therefore, for every [i,j] € So U {[m, m]

Xig + pij <min{(1 — G}y + min{(1 — ) }ih (3.2)

By definition, min{(1 — )} ;1 < (1 = Gy) for j+1 <1 < n, and min{(1 -
Gty < (1= ) for 1 < k < i—1. This allows min function to be linearized

as follows:

Xij+pi; <A0—=CG)+(1—Gy) V I<k<i—1,j+1<1<n,

(H8)
n—1
m=2

[7, 7] € So U {[m,m]
The linearized constraints check every top parent-bottom parent combination
to determine if the submixture is withdrawn as sidedraw. This constraint is,
of course, not applicable for the remaining streams, because they can not be

produced as sidedraw.

. Pure components must be withdrawn through a heat exchanger, when they are
produced by only one parent. Since the lightest and the heaviest components

always have one parent, we have
Xl,l =1 & Pn,n =1 (Hg)

For the remaining products ({[i,7]}/—,), if they only have a top parent, they
must be withdrawn through a condenser. In other words, if all the bottom
parents ({[k, j] }ij) are absent, the condenser associated with the intermediate

product must be present.
j—1
Xj,j>1—ZCk,j V 2<j<n-1 (H10)
k=1

Similarly, when all the top parents ({[j, My, +1) are absent, the intermediate

product must be withdrawn from a reboiler.

pig=l— > Gu ¥V 2<j<n-—1 (H11)

I=j+1
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This concludes our discussion of the search-space formulation. The above constraints
are sufficient to eliminate all infeasible regular-column configurations. The formu-
lation does not require all variables to be declared as binary. As it is, the MINLP
has n(n + 1)/2 binary variables associated with streams ((; ;) and n(n — 1) binary
variables for heat exchangers (x;;, pi ;). However, due to (H2), the binary variables
associated with the process feed and the pure components are already fixed at 1. Fur-
ther, heat exchanger variables associated with pure products {[7, ]}, automatically
take integral values. This is because if the product ¢ does not have a top parent,
(H7) (resp. (H11)) ensures that x;, (resp. p;;) is zero (resp. one). The case without
bottom parent is similar. On the other hand, when it has both parents, (H8) en-
sures that x;, and p;; are both zero. The total number of binary variables is thus
nn+1)24+nn—-1)—mn+1)—2(n—1) = (n—2)(3n — 1)/2. For example, the
number of binary variables for four, five, and six component systems are 11, 21, and

34, respectively.

3.1.3 Mass Balance Constraints

Figure 3.2(a) shows the four-component superstructure used for modeling mass
balance constraints. We observe that, by bypassing appropriate component, vapor,
and liquid flows [17], the entire search space is embedded in Figure 3.2(a). We denote
the pseudocolumn performing the split of stream [4, j] as (); ;. We treat the system as
a multicommodity network flow problem where a pseudocolumn, which redistributes
the flow between the rectifying and stripping sections, is akin to a node. Whereas,
the sections carrying the material from one node to the other are akin to edges.

Figure 3.2(b) shows a pseudocolumn that is a representative of every other pseu-

docolumn in the superstructure. Definition of variables used in Figure 3.2(b) are
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(a) Four-component superstructure
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(b) Representative column

Fig. 3.2. Schematic of four-component superstructure. The blue box

shows a representative column of

every other column in the super-

structure. Variables used for vapor and liquid flows are shown in (b).
Definition of the variables are described in Table 3.2
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summarized in Table 3.2. The component and vapor mass balance equations en-

veloping a pseudocolumn @); ; are given by:

s ss 18 ss J
{Fieip T [0 = figp + z',j,p}p=i

Vo [i,j]eld (H12)
ir,j'Jrl - isil,j = V;rgs - V;SJS
For (1., the following constraints are imposed:
{FP = f{,sn,p + fls,sn,p}zzl
(H13)

(1—®) Y. F, =V = Vi,
p=1

Here, ® is the fraction of the process feed in liquid phase, typically referred to as
thermal quality of the feed. For each column, as is typical, we assume that the
lightest and the heaviest components of the feed appear only in the distillate and
residue respectively. The intermediate components may, however, distribute between
the distillate and the residue. In other words, the components in the distillate belong
to [i,5 — 1] (i.e., fi%; = 0), while those in residue belong to [i + 1, 5] (i.e., fi%; = 0).
Note that, for submixtures in S; (resp. S3), Uj®, j and fi®, ; , (vesp. U5, and f5,, )
are not defined and are to be regarded as zero in (H12). The difference between the

vapor and liquid flows in the rectifying (resp. stripping) sections is the net distillate

(resp. residue) flow.

i-1 )
Vi~ L = 2 F
r sV i, j]eP (H14)

j
ss ss ss
L5 -VE= > I3,

p=i+1 )

Mass balance equations around the condenser (H15) and reboiler (H16) are given by

s __ o rs
Vg =FCi; + U7,

Y (i,]) eC (H15)
FCZ}J' + K;,S}'Jrl = L;Sjﬂ
L2, = FR, + K=, .
b ’ YUy ) eR (H16)

FRIJ + > = ‘/iS_SLj

i—1,7
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T
(a) (b) () ()

Fig. 3.3. Modeling of (a) Condenser, (b) Thermal coupling, (¢) Com-
bination of condenser and thermal coupling and (d) a partial con-
denser

see Figure 3.2(b). We point out that the liquid mass balance equation around each
pseudocolumn is implied from (H12) — (H16). To facilitate the production of pure

components in saturated liquid state, we add (see Figure 3.2a)

rs SS

i+l = Vi1

K®, ,—K®., =F

1—1, 4,041 p

2<i<n—1 (H17)

Here, we used the fact that the net outflow of any intermediate pure product is the
same as its flow in the process feed Fj,. These constraints ensure vapor and liquid
continuity among pseudocolumns {Q;;y1}7~'. The superstructure in Figure 3.2 can
model a heat exchanger (Figure 3.3a), a thermal coupling (Figure 3.3b), a combination
of thermal coupling and heat exchanger (Figure 3.3¢), which is a plausible alterna-
tive for modeling pump-around, and a partial condenser/reboiler (Figured 3.3d) by
enabling/shunting flow in appropriate branches. In this work, we allow only two of
these options. More specifically, we allow either a heat exchanger or a thermal cou-
pling, but not both (Figure 3.3¢). In addition, we will only consider total condenser
and reboiler i.e., two-phase transfer streams are not allowed (Figure 3.3d). When a
condenser (resp. reboiler) is present, we feed the submixture as vapor (resp. liquid)
to the next column [35]. These constraints are modeled as follows:

FC;; < VUXi,j

¥ (i,j)eC (H18)
KP 0 < VU1 —=xiy)
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FRZ'J' < VUpZ'J‘

V (i,j)ER (H19)
z‘sil,j < VU(l - Pz‘,j)

Here, VY is the upper bound on the vapor flow. The choice of VY will be discussed

in section 3.1.6.

fstrip f§trip

i—=1,5,p i—=1,5,p
[i — 1, ] [i — 1, ]
l [7’7j - 1] [21.7 - 1]
rec rec
4,5,p PR 4,5,p
" \ \| L.
—CD T
[i,5 + 1] ig+1 TeepeeT
1.3+1p L+1p
Y
[i +1, 7] [i +1, 7]
tri tri
Ffiiw Fiiw
[Z7j - 1] [21.7 - 1]
Ve Ve
[rec < ree
— 1,] ]
i—1,7) -1,
Uz
Kl
e
K15 <]
g + 1]
tri tri
v v
stri stri
LiJ ! Livj !
[i +1, ] [i + 1, j]

Fig. 3.4. Schematic showing component, vapor and liquid bypass

3.1.4 Underwood Constraints

Here, we describe the constraints that govern the minimum vapor flow required in
each section of the configuration to perform the desired separation. These constraints
also determine the extent to which component flows are distributed between the dis-

tillate and the residue, when a submixture undergoes sloppy split. All the sloppy split
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configurations have at least one instance where two pseudocolumns stacked, one on
top of the other, with the common product stream drawn as sidedraw. As a first-step
approximation, despite the stacking, we model the split in each pseudocolumn inde-
pendently of other pseudocolumns. We compute the minimum vapor requirement for
each pseudocolumn using Underwood method. The minimum vapor flow requirement
of a stacked column is then obtained as the maximum of vapor flow requirements at
each of the sections. This procedure has been used in the literature by [9,13,15,22].
Very recently, it was found that the results obtained with this approximation agree
excellently with rigorous Aspen Plus simulations [4].

When stream |4, j] is present, pseudocolumn @); ; separates |4, j| so that the compo-
nent distribution and the threshold vapor flow satisfy Underwood constraints. On the
other hand, if stream [4, j] is absent in a configuration, pseudocolumn @;; bypasses
the flow from the rectifying (resp. stripping) section of the parent pseudocolumn
Qij1 (resp. @Q;_1;) to the rectifying (resp. stripping) section of the pseudocolumn
Qi;- A schematic of the bypass is shown in Figure 3.4. The relevant constraints are

shown in the disjunction below, which is imposed for all [4, j| € P
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Gj =1
J s ss j—1
([5G40 T [2150) s s
-0, . tj+1 i—1,j
p:@ ap ,7,9 q:z
Jj—1 . 1S
p A7 ‘7
Z¢ <Y forg={i,j — 1}
p—’L ap - 97‘7]7q B
j—1 Jj—2 R
apfvjvp s Q’] 0
+ Sija = Ti,
o 9 ’ . s
pei ¥ e it { ij+lp ,J,p}
j
7 ss _ pss J
- Z ”) < Y7 for g = {i,j — 1} V0 = 15, p=it1
0i.4.q
p= H_l = Vs
J a j—2 ,]+1 1,j
— M +8. =
o — 0 iga = Lij L=V
p=i+l1 P 4,J,4 q=i+1 i—1,j 2y
U
Sije < 2VY [min{(1 — Cin) Yo q+1 +min{(1 = ()} ]
rs rs
i < Vij
SS SS
T <V
IS IS SS
| Y+l T Yie 1] T Ti,j _
(3.3)

Consider the set corresponding to ¢; ; = 1. The second constraint is the Underwood
feed equation that ensures that the Underwood roots satisfy ag,41 < 0;,, < aq for
1 < ¢ < j— 1. The next four constraints determine the minimum vapor requirement
of the rectifying and stripping sections T7% and T3, respectively. The fourth con-
straint, which applies to g € {i+1,...,j— 2}, is converted into an equality constraint
by introducing a slack variable S;;,. Since the nonlinear term on the LHS of this
constraint is bounded from below by —VV [25] and the RHS is bounded from above
by VY, we can bound this variable from above by 2VV, as in the seventh constraint.
Moreover, if the product streams of @ j, [¢,7] and [s, j], are such that i <s <r < j
i.e., at least two components distribute between the distillate and residue, then the

Underwood roots satisfying s < g < r are active (see Appendix A). The seventh

constraint ensures that the slack in the fourth constraint is zero, as desired. The
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min function is linearized just as it was for (H8). Similarly, the sixth constraint is
converted into an equality by adding a slack variable. From the feed equation and
the minimum vapor constraint in the rectifying section, it can be readily shown that
the slack variable for the constraint in stripping section is also .S; ;. Although the
constraints in stripping section are implied from that for the rectifying section and
the feed equation, we have retained so they help strengthen the linear relaxation.
These constraints, thus ensure that the solutions that are physically infeasible (see
Chapter 1) are not admissible to our formulation. The eighth and ninth constraints
ensure that the actual vapor flow is at least as high as the threshold vapor flow. It
holds at equality when the column is operated at pinch, while a strict inequality holds
when the column is operated above pinch. An inherent assumption for sloppy-splits
is that, it is always possible to achieve the desired distribution by adjusting the trays
in the column, when it is operated above pinch. Finally, the last constraint ensures
vapor balance, requiring that the minimum vapor flow in the rectifying section differs
from that in stripping section by the net vapor inflow.

On the other hand, the constraints corresponding to (;; = 0 model component
and vapor bypass. The liquid bypass constraints can be derived using linear argu-
ments from vapor and component bypass constraints using (H14), (H15), and (H16).
Thus, they are not included in the disjunction. Besides Underwood constraints, the
disjunction in (3.3) differs from that in [9] in the following way. Overall mass balance
equations across each pseudocolumn are part of the disjunction in [9]. These con-
straints hold regardless of the presence/absence of the pseudocolumn. However, the
authors impose these constraints in BigM form, which relaxes them in the absence of
pseudocolumn. On the contrary, we do not include the mass balance constraints in
the disjunction and, therefore, are not relaxed in the absence of pseudocolumn. Com-
putational evidence suggests that the current approach leads to linear relaxations
that are significantly tighter.

As mentioned in the Introduction, for tightness, we rely on reformulation based

techniques for the treatment of disjunctions. Inspired from disjunctive programming
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techniques in [36], we transform (3.3), for [i, j] € P, into the following set of equalities

and inequalities.
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The above constraints are derived by multiplying the constraints corresponding to

Gj =1 (resp. ¢;j =0) by ¢; (resp. (1 — ¢ )), expanding the product and lineariz-

ing the bilinear terms by introducing auxiliary variables a;;, = byjp - (; j, where a;;, =
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Ss s s SS 13 i 1 1
S Ul Uy 5, VIRV J] The bilinear equality constraints are relaxed using Mc-

Cormick constraints [37].

aijp < min{b;; ,Q it
" e p={i,....j} ¥ [i.jleP (H27)
aijp Z maX{O, bi]p + bU (Ci,j — 1)}

ijp

Because (; ; is binary, it is always at its bound: either 0 or 1 and, as such, Mc-
Cormick constraints exactly model the bilinear product. As before, undefined terms
are dropped for submixtures in §; and S;. This concludes the discussion on minimum
vapor constraints, completing the formulation of the problem. In the next subsection,

we exploit monotonicity of Underwood equations to derive additional valid cuts that

strengthen the relaxation.

3.1.5 Flow of Underwood Roots

Carlberg and Westerberg [38] observed that if two columns are thermally coupled,
the Underwood roots carry from one to another. This would, for example, be the
case for the pseudocolumns ()4 and @) 3 in Figure 3.2 if their interconnection is a
thermal coupling. The flow of roots is because the minimum vapor constraint for
the rectifying section of ()14 becomes the feed equation for the next column ) 3.

Mathematically, (H21), (H24), (H15), and (H20), in the specified order, lead to:
3 3 rs

) A <Y, < V= U - Yo g=0y o4
In deriving (3.4), we used FCy3 = 0, as the columns are thermally coupled. Since
17, dominates the nonlinear expression in (H21) for both active and inactive roots
(see Appendix A), (3.4) holds for all the Underwood roots. Moreover, by recognizing
that the nonlinear expressions in (3.4) are monotonically increasing functions of Un-
derwood roots, [38] showed that 6, 4, < 613, for ¢ = {1,2}. Using similar arguments,
it can be shown that 6,4, = 624, for ¢ = {2,3}, when the pseudocolumns (), 4 and

(02,4 are thermally coupled. This concept was used in the derivation of an analytical

solution for the vapor duty of an n component FTC by [34].
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Although these constraints are implicit and redundant in the presence of Un-
derwood equations, imposing the constraints explicitly helps improve the LP/MIP
relaxation, where Underwood equations only appear in relaxed form. We impose

these constraints as:

{0i 114 = 0ijq < qu} vV [i,j]eS

( i—1 -1 n s
{ez-,l,q 0i g < M[xm L=C)+ D Gi+ Y, cm]}
k=1

m=j+1

< l:zjjll V [’L, j] € 82
{ei,j,q — brjqg < Mg [pi,j = Gig) + Z Gig + Z Cm]] }
\ l=j+1 m=k+1 k=17 g—i
{ei,j,q 91 1,7, < qu,]} V [Za]] € 53
(H28)

where the upper bound on the difference between the roots M, = a,—a,+1. For [i,j] €
S (resp. [i,7j] € S3), the constraints flow the roots from the parent pseudocolumn
Qi j+1 (resp. Qi—1;) to Q;j, when the associated condenser (resp. reboiler) is absent.
Furthermore, when the submixture is absent, implies y; ; = 0 (resp. p;; = 0) from
(H6), these constraints bypass the roots. Whereas, for [i,j] € Ss, the constraints
are modified for two reasons. First, the roots may not flow when the submixture
is withdrawn as sidedraw and its parent pseudocolumns are operated above pinch.
(H28) ensures that the flow constraints are deactivated if |7, j] € Sy has both top and
bottom parents. The second reason is better explained with an example. Consider
the completely thermally coupled configuration shown in Figure 3.5. Here, [2, 3] (resp.
[3,4]) is produced by a single parent [2, 5] (resp. [1,4]). Since their interconnection is
a thermal coupling, the roots are allowed to flow to Q23 (resp. (QQ34) from Q25 (resp.
()1.4). However, without introducing additional variables, the flow cannot take place
via ()24, since the roots received from its parents (Q25 and (14) can be different.
(H28) resolves this issues by directly flowing the root from the parent pseudocolumn.
The second constraint in (H28) flows the root to @); ; from its parent @;; for j +1 <
[ < n, when [i, 7] is present and the associated condenser, all of its bottom parents

{[k,7]}i=} and the submixtures {[i,m]}"? _j+1 are absent. This constraint enables
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[1,5] — [1,4] —————> [1,2] —> [1, 1]

| |

(2, 5] [2,3] — [2,2]
3,4] — [3,l3]

[4,5] —> [4,l4]

[5,l5]

Fig. 3.5. A five-component completely thermally coupled configuration

the root to flow from Q25 to (23 in the example under consideration. The third
constraint is interpreted in a similar way, and it enables the root to flow from @); 4 to
()34. To summarize, provided a stream is not drawn as a sidedraw, (H28) flows the
roots to @); ; from its parent if their interconnection is a thermal coupling.

We remark that the Underwood roots of the pseudocolumn ), ,, can be calculated
a priori, thus, fixing {01,n7q};‘;11. Then (H28) propagates these roots to the subsequent
pseudocolumns in the configuration when they are thermally coupled. Whenever
the global solver decides to choose thermal coupling, it can use (H28) to improve
bounds on Underwood roots using optimality and feasibility based range reduction
techniques, thus improving the quality of relaxations and consequently converging to
the optimal solution faster. We demonstrate the improvement in relaxation due to
(H28) with a numerical example. We consider a mixture of alcohols (Case 9 in Table
5: n =25 & =1, F = {20,30,20,20,10} and o = {4.1,3.6,2.1,1.42,1}. We fix
the binary variables associated with streams and heat excangers to Fully Thermally
Coupled (FTC) configuration. For this case, the optimal objective function value is
402.703 kmol/hr. The root node relaxation reported by BARON without (H28) is
283.842 (42% gap w.r.t lower bound). Whereas, when (H28) is included in the model,
BARON inferred a lower bound of 402.703 in the preprocessing step, thereby solving
the problem to global optimum.
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Inclusion of (H28) in optimization models is an important contribution of this
Chapter. Before proceeding further, we comment on how the state-of-the-art explicit
enumeration algorithm [22] fares in the absence of these cuts. As an example, we
considered a five-component mixture of aromatics (see Case 10 in Table 3.5). Without
(H28), the explicit enumeration based algorithm could not solve a few configurations
to 1% gap within 1200 seconds. However, when (H28) is included in the model,
BARON could solve all the unconverged configurations in less than five seconds! This
example demonstrates the importance of these cuts, and how they improve the state-
of-the-art. It will be even more evident when we discuss case studies in subsection

3.3.

3.1.6 Bounds on Variables

The bounds on binary variables are obtained by definition. Clearly, the net com-
ponent flow in any column section cannot exceed the component flow rate in the feed.
Thus, 0 < f}5,, /15, < Fp. The bounds on the Underwood roots are chosen to be
Qg1 +107* <6, 5, < a, — 107*. A small portion is chopped at both the ends of the
interval to prevent singularity issues. Although we show rigorous ways of avoiding
this issue in [25], when using off-the-shelf solvers, the assumed strict separation is the
simplest way to avoid numerical difficulties.

An arbitrarily large value can be chosen for the bounds on vapor and liquids flows.
This, however, leads to weaker LP/MIP relaxations. To overcome this challenge we
propose a heuristic. We have observed on a test set which spans over a wide range of
feed cases [35,39], that 3.5 times the FTC vapor duty is always higher than the total
vapor duty of all configurations in the search space. Thus, 3.5 times the FTC vapor

duty is chosen to be the upper bound on all vapor flow variables. Observe that using

such a bound is reasonable, since we are only interested in configurations with low
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vapor duty. To implement this bound, we calculate vapor duty of the FTC (VD prc)
analytically (see [15,34]) as follows:
VD pre = max { Zq] O"’—F”}n 1 (3.5)
=1 %~ 01,4 q=1
The bounds on liquid flows are computed using mass balance equations, and bounds
on vapor and component flows. All variables except {K;; 1}/~] are positive. The
lower bound on these liquid flows is set to —VV to withdraw products in liquid state
(see Figure 3.2a).
Altogether, the binary network, mass balances, Underwood constraints and bounds

constitute the MINLP model (H), which can be solved using standard MINLP solvers
such as BARON [21,40] or SCIP [41].

3.2 Case Studies

In this section, we present a few case studies from literature that were solved to
e-global optimality. First, we study the five-component heavy crude example from [5].
Using this example, we illustrate how additional constraints can be added to customize
the search space of configurations. Later, we will present four, five and six component

instances from the literature.

3.2.1 Heavy Crude Distillation

Crude oil distillation is an important separation process that helps meet various
energy and transportation needs of society. As mentioned in the introduction, the
crude separation consumes energy equivalent of ~ 1.8 million bbl of crude oil per day.
Clearly, a small reduction in the energy consumption for this process can save a lot
of energy over time.

In our example, crude oil is regarded as a mixture of naphtha (A), kerosene (B),
diesel (C'), gas oil (D) and residue (£). The composition of components in the feed

and the relative volatility of the components is borrowed from [5] and summarized in
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Table 3.3.
Feed composition and relative volatility information for heavy crude
mixture. Data is taken from [5]

Component Feed Composition Relative Volatility

A Naphtha 0.144 45.3
B Kerosene 0.093 14.4
C Diesel 0.101 4.7
D Gas Oil 0.039 2
E Residue 0.623 1

Table 3.3. We assume the flowrate of crude to be 100 kmol/h. Further, we assume
that 90% of E in the process feed is in liquid phase, while the rest is in vapor phase.
To prevent fouling, we require that the residue (£) be separated from the rest of the
components in the first column. In other words, none of the submixtures will contain
Eie, BCDE, CDFE and DFE are absent from the configuration. To ensure that

these submixtures are absent, we add

Co5 = (35 = (5 =0 (3.6)

Before solving the MINLP over the entire search space, we limit the search to
sharp-split configurations.

Sharp-split configurations: Due to their simplicity and ease of operation,
sharp-split configurations were preferred historically. This preference sustains and,
even today many chemical plants employ sharp-split configurations. Sharp-split con-
figurations are those regular-column configurations that have exactly n — 2 submix-
tures. This is because for sharp-split configurations a submixture is not produced at
two different locations. Therefore, splits can be rearranged as binary trees that have
n — 1 internal nodes, one of them corresponds to the feed and the rest to submixtures.
When a sloppy-split is introduced, the trees following each product stream grow by

the number of overlapping components, ¢, and at most ¢ — 1 of these internal internal
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nodes can be pruned, which happens when both product streams separate to produce
a product downstream that consists of just the ¢ overlapping components. Therefore,
sloppy-split configurations have at least n — 1 submixtures. Thus, for the heavy crude

example, we add

D Gy=(n—2) (3.7)

li.jleu

We solve the MINLP (H) with (3.6) and (3.7) added. The optimal solution is shown
in Figure 3.6(a). This configuration is known in the literature as indirect split con-
figuration, and for decades, has been the configuration of choice for crude oil sepa-
ration! Our model, despite several simplifying assumptions, identifies this optimal
configuration in a few seconds among several sharp-split configurations. This result
reaffirms that our simplifying assumptions are reasonable and our algorithms gen-
erate worthwhile results. However, is the optimal sharp-split configuration the best
configuration? To determine the answer to this question, we compare the total vapor
duty of FTC, obtained analytically as 69.96 kmol/h, with that of the optimal sharp-
split configuration. The indirect split configuration has a vapor duty requirement of
84.402 kmol/hr, which is 20.6% higher than that for FTC. Thus, there is a substantial
potential to reduce the total vapor duty. Since FTC is hard to implement, we will
expand our search space to include sloppy-split configurations to see if a similar vapor
duty is also achievable by a configuration that is easy to implement.

Sloppy-split configurations: Every-sloppy split configuration has at least two
columns stacked one on top of the other. By construction, sloppy-split configurations
withdraw at least one sidedraw by stacking columns, that produce the same streams
one from the stripping section and the other from the rectifying section. There are
four possible arrangements for a sidedraw: vapor-only-transfer, liquid-only-transfer,
two-way vapor-liquid transfer and two-phase sidedraw. The formulation described

in the previous section, captures all the four arrangements. Nevertheless, industrial
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practitioners prefer that the sidedraw is a liquid-only-transfer because such transfers

are easier to operate. To maintain sidedraws as liquid transfer, we add
_VU[(l - Czy) + (1 - Czl) + (1 - éka)] < irj'+1 - z'sil,j <
VI = Gig) + (1= Ga) + (1= Gy, (3.8)
Vi+l<i<n 1<k<i—1; [i,jleS

Here, (U5, — U

g1 i*1.;) denotes the net vapor inflow into the pseudocolumn Q; ;. The

constraint forces the net vapor inflow to zero when three streams are present, namely
stream [, j], one of the top parents {[i,[]};_;,,, and one of the bottom parents
{[k, j]}:_}. We now solve the MINLP (H), restricted to also satisfy (3.6) and (3.8)
in order to determine the optimal sloppy-split configuration that produces E as the
residue from the first column and draws sidedraws as liquid-only transfers. The opti-
mal configuration has been drawn in an operable form in Figure 3.6(b). The optimal
vapor duty of the configuration is 76.76 kmol/h, which is 9% lower than that of
indirect split configuration.

If the optimal solution turns out to not be desirable for a reason not captured
by the model, the practitioner would like to generate alternative solutions. Towards
this end, we organize configurations into families, where configurations from each
family have same structural arrangement of columns, but differ with each other in
whether the connection between adjacent columns is a thermal coupling or via a heat
exchanger. Although thermal couplings are known to benefit by conserving energy,
such benefits are not always realized [42]. In other words, various configurations
within a family have identical vapor duty. Moreover, a given configuration may
perform optimally over a wide range of operating conditions. For these reasons,
we find that the ‘Numsol’ option of BARON is not reliable in determining K-best
families. BARON often finds the same configuration, among the best solutions, albeit
with different operating conditions. Instead, we use binary cuts to systematically
determine the K-best families.

Configurations from different families have a different set of submixtures. Using

binary cuts on submixtures, we eliminate previously seen families of configurations.
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There are various ways of achieving this result. One way is to consider each ( vector as
a binary encoding of a number and eliminate those solutions where (; ; for [i, j] € B(;
are at one and ¢; ; for [i, j| € B(y are at zero. This is achieved by adding

2 (1 —Gij)+ Z Gj < |BGl + [BG| -1 (3.9)

[i7j]EBC0 [7’7]]€B<1

We refer the reader to [43] for an alternative approach. Solving the MINLP after
adding this cut gives a configuration from the second-best family. The operable
version of the solution is shown in Figure 3.6(c). The optimal vapor duty of the
configuration is 77.39 kmol/h, which is slightly higher than that for the configuration
in Figure 3.6(b), but requires one less transfer stream and two less column sections.
To determine the third best configuration, we add a cut similar to the one described
in (3.9). The operable version of the third best configuration is shown in Figure
3.6(d). The optimal vapor duty is 1.86% higher than the second best configuration.
Interestingly, all the three configurations in Figure 3.6(b)-(d) exhibit similarities with
the indirect-split configuration, and are thus amenable to retrofitting. A similar
analysis has been performed on the light crude example from [5], and the results can

be found in our recent publication [44].

3.2.2 A Pseudocost Model

We have illustrated that energy can be saved using sloppy-splits. In fact, the
configuration with the maximum number of sloppy-splits (FTC) is known to require
the least vapor duty [13,34]. However, the energy savings come at a price. The
introduction of sloppy-splits increases the number of column sections, which in turn
may increase the capital cost. For example, Figure 3.6(b) requires six more column
sections compared to Figure 3.6(a). Thus, the sloppy-split configuration may not
be more economical since the increase in capital cost outweighs the reduction in
operating cost (vapor duty). It is often desirable to identify configurations which
reduce vapor duty (measure of operating cost) while keeping the number of column

sections reasonably close to that of sharp-split configurations. Although a detailed
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cost model can also be formulated, we describe two simple heuristics for identifying

cost-effective configurations.

Procedure 1

To identify such configurations, we propose the use of the following objective

function:

Minimize . Gj— > Xij— D, Pis (3.10)

[i,7]eT (i.9)eC (i.5)ER
This objective minimizes the total number of streams (a measure of the number of
column sections), and for better controllability maximizes the heat exchangers. Dif-
ferent weights may be used to tilt the emphasis between the two objectives. When
two solutions have the same objective, we choose the configuration with least number
of streams. Clearly, solving the MINLP (H) with (3.10) as the objective could yield
any basic sharp split configuration as the optimal solution since, for these configura-
tions, each submixture stream is associated with a heat exchanger. However, such a
solution would be unattractive in terms of vapor duty. To eliminate such solutions,
we also require that the vapor duty does not exceed that of FTC by more than a

specified percentage, say 10%.

> FRi; < 1.1 VDprc (3.11)

(1,5)€R
where VD pre is the optimal vapor duty of FTC (refer (3.5)). Thus, we propose to
solve (H) after appending (3.11) and modifying the objective to (3.10). The K-best

families are determined as before, by iteratively adding binary cuts (3.9).

Procedure 2

We now suggest an alternative procedure to find attractive configurations, which

is summarized in Algorithm 1.
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Fig. 3.7. Configuration that minimizes the sloppy splits, maximizes
the heat exchangers while being attractive from the perspective of
vapor duty. (b) shows the heat integrated version of (a) where the
reboiler associated with the side-stripper is replaced with a heat ex-
changer (thick square)

We now use Procedure 1 on the heavy crude example and describe the results.
For illustration, we will also include submixtures BCDE, CDFE, and DFE in the
search space. It turns out that the resulting MINLP has multiple solutions with the
same objective function value. One of the solutions is shown in Figure 3.7. The
vapor duty requirement for this configuration is 10% less than that of indirect split
configuration, and is within 10% of that of FTC. This solution has other attractive
features as well. First, the configuration has only one sloppy split and just two extra
column sections relative to indirect split configuration. As a result, the capital cost is
expected to be not too far off from that of indirect split configuration (Figure 3.6(a)).
Second, each column has at least one heat exchanger. This allows for better control
of reflux in each column and make the startup as well as shut down process easier.
Third, heat-integration of side-stripper and side-rectifier is possible because boiling

point of C' is higher than that of B. The reboiler associated with the side-stripper



54

Step 1: Formulate MINLP (H), and initialize number of submixtures
NS =n—2

Step 2: Append >}, ;1 Gi,j = NS to (H), and solve the MINLP with (H1) as
the objective

if Vapor duty < 1.1VD ppe then

go to Step 3;

else

NS = NS + 1;

go to Step 2;

end

Step 3: A configuration which minimizes number of column sections is
found. If the next best solution is desired, append binary cut (3.9) to (H)

and go to Step 2 else, stop.
Algorithm 1: Algorithm for identifying cost-effective distillation configurations

generates vapor reflux that contains B, whereas the condenser associated with the
side-rectifier generates liquid reflux that contains C'. The latent heat released during
the condensation of C' can be used to supply the latent heat required to vaporize
B. We have assumed while using Underwood method that the latent of vaporization
is about the same for all components. Under this assumption, the condenser and
reboiler duties are directly proportional to their vapor flows. In the current example,
it turns out that the vapor flow in the condenser is much higher than the liquid flow
in the reboiler. This means that, the reboiler associated with the side-stripper can be
replaced with a heat exchanger. Since we withdraw products as liquids, the condenser
associated with the side-rectifier was anyway required to condense C. Fortuitously,
the vapor duty of the heat integrated configuration (Figure 3.7(b)) matches that of
FTC, and hence at the lowest possible value! We emphasize that the maximum benefit

could be attained with just one sloppy-split. For all these reasons, the proposed
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configuration may be preferable over the conventional indirect split configuration,
even though it introduces the submixture stream DFE.

Procedure 2 can also be used to arrive at the same solution. It has been used
in our recent work [44] to separate a mixture of alcohols, an example we borrowed
from [17]. We had found that this approach also results in configurations that seem

attractive from the perspective of both capital and operating costs.

3.2.3 Case Studies from Literature

We have only shown a few ways, out of many, to tailor the MINLP model as per
the need of the process designer. Besides heavy crude example, we have tested our
model on a few other cases that have been previously reported in the literature. Table
3.4 shows how the problem size varies with the number of components in the process
feed. Table 3.5 summarizes the problem data and the results obtained. In all the
examples, optimization was performed over the entire search space of regular-column
configurations. The computations were done on Dell Optiplex 5040 with 16 GB RAM
Intel Core i7-6700 3.4 GHz processor.

The case studies demonstrate that flow of roots constraints, (H28), help expedite
the branch-and-bound algorithm. In particular, we bring the attention of the reader to
Cases 9 — 14. Flow of roots cuts have an enormous impact on these cases, as is evident
from the drastic reduction in the number of iterations and the overall computational
time to solve these cases when (H28) was included in the model. Moreover, without
these cuts, Cases 10 and 11 could not converge to within 1% optimality gap in the
1200 seconds alloted to the optimization algorithm. We observed that for these cases,
the lower bound improved at a rather slow pace.

To further test the effectiveness of our model, we tested it on the 120 four-
component cases and 496 five-component cases reported in [35]. For these runs,
the relative tolerance for convergence was set to 1% and the time-limit was set at

1200 seconds. The model was solved to e-global optimality by BARON for all the 120
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Table 3.4.
Problem size for different systems

n=3 n=4 n=5 n==6

Binary variables 4 11 21 34
Continuous variables 70 158 292 480
Linear constraints 122 311 617 1073

Nonlinear constraints 10 27 56 100

four-component cases, and for 72.3% of the 496 five-component cases. A few cases
that did not converge had a duality gap as high as 82%. Although the model gives

insights and worthy configuration alternatives, there is still scope for improvement.

3.3 Concluding Remarks

In this chapter, we introduced a new MINLP formulation to identify energy-
efficient distillation configurations. The key contributions are as follows. First, we
introduced a new notation that is more natural and easy to work with. Second,
we identified that previous MINLP formulations relax the feasible region admitting
physically infeasible solutions. We identified the source of the problem to be that
Underwood constraints associated with active roots were insufficiently constrained.
We showed how to modify these constraints to more accurately model the feasi-
ble space. Third, we added valid cuts to model flow of roots, which expedite the
branch-and-bound convergence. The effectiveness of the cuts was illustrated with a
few examples. Fourth, we proposed a new approach to obtain configurations that
reduce operating cost, while being aware that increasing number of sections increases
the capital cost, and increasing thermal couplings reduces operability. Finally, we
tested our model on a wide-range of cases reported in the literature. While the model

could be solved to e-global optimality for a majority of cases, we identified various
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challenges that guide enhancements reported elsewhere [25]. The proposed method
can also be used to identify configurations that are amenable for retrofitting. We
have shown that attractive configurations for non-azeotropic mixtures mixtures can
be systematically determined by solving mathematical models, instead of relying on
heuristic procedures. We expect many novel and energy-efficient distillation config-
urations will result from the application of these techniques to practical distillation

problems.
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4. IMPROVED FORMULATION AND SOLUTION
APPROACH

The computational experiments in the previous chapter show that the state-of-the-art
global solvers either fail to converge, or do so very slowly, on several hard instances.
Here, we make several enhancements to the formulation and the solution procedure
which pave a way towards a reliable solution methodology. The chapter is organized
as follows. In §4.1, we define the problem statement and introduce the notation.
We formulate the MINLP in §4.2, and outline the overall relaxation and solution
procedure in §4.3. We present numerical examples in §4.4 that illustrate the value
of our cuts in strengthening the overall relaxation, and report on our computational

experiments in §4.5. Finally, we make concluding remarks in §4.6.

4.1 Problem Definition

Figure 4.1 shows all possible streams and heat exchangers in a distillation configu-
ration that separates a four-component mixture into pure components. We represent
streams as squares, condensers as filled circles and reboilers as open circles. Each
condenser /reboiler is associated with a process stream, that is not the process feed.
Throughout the formulation, we denote a stream as [7,j], and heat exchangers as
(,7), so that condenser (i,j) (resp. reboiler (i,j)) represents the heat exchanger
through which [7, j] is withdrawn as distillate (resp. residue). By Remark 2.1, a
configuration cannot contain streams of the form [i...kk +1...j], where [ > 1.

We denote the set of streams as 7, the set of condensers as C, and the set of
reboilers as R (see Table 4.1 for definition). For convenience, we create a set con-

taining streams that are mixtures P = T\{[1,1],...,[V, N]}, and a set containing
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Ca,4

Fig. 4.1. Figure depicting streams (; j), reboilers (p; ;) and condensers
(Xij) present in a four-component system. Section variables 7 ; ; and
Bi1; are defined in (4.1).

submixtures S = P\{[1, N]}. Note that every stream in P is a mixture, and must
undergo a split in order to produce products.

The required input to the problem consists of (1) composition of the process feed
{F,}]_, either in terms of mole fractions or molar flowrates of the components in the
stream, (2) relative volatilities {a,}), (such that ay < --- < ay) of its constituent
components; and (3) liquid fraction (fraction of the total flow in liquid phase) of
the process feed ®; x and that of the pure components {®;;};L,. We write {p},*, or
{p}1<p<n to denote the set {1,2,..., N}, and [p] to denote Vp e {1,..., N}. Given a
process feed, the problem is then to identify the best distillation configuration, along

with its optimal operating conditions, that requires least vapor duty.



61

Table 4.1.
Definition of sets.

Set Symbol Definition

Streams T {li,j]: 1<i<j< N}
Splits P T\{[7,i]}Y,

Submixtures S P\{[1, N}

Condensers C {(4,7): 1<i<j<N-1}
Reboilers R {(4,j): 2<i<j <N}

4.2 Problem Formulation

We formulate the MINLP in this section. Before proceeding further, we introduce
the definition of parents and children of a stream. By top (resp. bottom) parents of
[i,j]: we refer to streams {[i,n]})_;,; (resp. {[m,j]},2;) which can produce [i, j]
as distillate (resp. residue). Analogously, by top (resp. bottom) children of [i, j],
we refer to streams {[, k]}Y._} (resp. {[l, 7]}, +1) which can be produced as distillate
(resp. residue) from [i, j]. For conciseness, we write [i,j] 1 [¢, k]| (resp. [i,4] | [L,])
to denote stream [i, k] (resp. [l, j]) is produced as the distillate (resp. residue) from

[7,7], and [i, k]|/[l, 7] to denote [i,k] and [I,j] are produced as the distillate and

residue from [i, j].

4.2.1 Objective Function

The objective is to determine the configuration(s) which minimizes the total vapor
duty:
(A): Minimize Y FR;;, (A1)
(i,5)ER
where FR,; ; is the vapor flow generated in reboiler (7, 7). The MINLP we develop will
be denoted as MINLP (A), and the constraints will be numbered as (A#).
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4.2.2 Space of Admissible Configurations

We define column/stream binary variables so that V [i,j] € T, ¢;; = 1 if [4,J]
is present and 0 otherwise. Further, we define binary variables associated with the
presence/absence of condensers and reboilers so that V (i,j) € C (resp. V (i,5) € R),
Xij = 1 (resp. p;; = 1) if condenser (resp. reboiler) (i, j) is present and 0 otherwise
(See Table 4.1 for set definitions). Although these variables suffice [23], we introduce
auxiliary variables to derive a tighter representation.

For every [4, j] € P, we define section variables {; ;. ;}1_; and {8, ;}7_..,, such that
Tik; = 11, if [¢,7] 1[4, k]; O, otherwise} and 3;,; = {1, if [¢,7] | [, 7]; O, otherwise}.
In other words, section variables model distillate and residue streams from a mixture.
Figure 4.1 shows all the section variables for a four-component mixture. We now relate
column and section variables. Consider the split of stream [, j]. In configurations
of interest, known as regular-column configurations, if [i, j] 1 [i, k], for any i < k <
j — 1, then [4,j] and [4, k] must be present and {[i,n]}?_, ,, must be absent [9,10].
Analogously, if [i,7] | [I,7], for any i + 1 < [ < j, [4, 7] and [, j] must be present,

while {[m, j]}!>%,,, must be absent. Therefore, section variables are defined as

Tikyj = ng 1— Ci,jfl) e (1 - Czk+1)<zk

j—1 j—1 J J
= (1= Gim) — H(l — Gim) — n (1 —Gin) + H(l — Gim)s
n=k+1 n=~k n=k+1 n==k (41)

Bi,l,j = Ci,j(l - Ci+1,j) s (1 - lel,j)Cl,j

-1 -1 l l

= [T 0-G) =[]0 =G = T @ =Gua) + ][~ Cuy).

m=i+1 m=i m=i+1 m=i
We introduce variables {v;;;: 1 <i<k<j< N}and{w,,: 1<i<I<j<N}

to linearize (4.1):

_ 7j—1
Tikj = Vikt1j-1 — Vikj 1 — Vikrig + Vikg, K]

for [i,j]e P (A2)

_ i
Bitg = Wir1i-15 — Wig—1j — Wiyrnj + wirg, 71,

where Vikj = H‘Zl=k(]' — <’L7'fl) and Wil = Hin:z(]‘ — Cm,j)‘ Note that Vik+1,j-1 (7’68]).

Wi+1,1-1,;) are defined as one if k+1 = j (resp. i+1 =1). Clearly, v;4; = wi;; = 1—G;
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if £ = j and [ = 7. Besides this relationship, the introduced variables v; ;. ; and w; ;

are linearly independent. To see this, note that [[..; z;, where J < {1,...,n} are

jeJ
linearly independent and, therefore, so are || e (1 —vy;), where y; = 1 —z;. Since
Vik; and w;; ; are of the latter form, they are linear independent.

We now relax v;;, ; and w;; ; variables for & # j and [ # ¢ as follows. Since ¢; ; is
binary, (1 —¢;;)* = (1 — (i ;). We use the definition of v, ; and w;; ;, to derive the
following:

Vigj = VigmVing, [0l [l [k]7

for [i,jle P (4.2)

_ m—+1 -1 7
witg = Wimgwnt, [l [mli [
In the above, for n < m+1, v; .1, (7€Sp. Wy m ;) is @ common factor for both v, ,,, and
Vinj (resp. wim; and wy; ;). we regard v, and wy, ; as one if n = m + 1. Thus,
0 < Vi7k7m < I/i:nvm’ 0 < I/i:nvj < Vi)nzm7 O < wivmuj < wn7m7j7 and 0 < wn)luj < wn)m)j'
Using these bounds, we relax (4.2) as:

)
Vijj = Wiij =1 =Gy

max{0, Vikm + Ving — me} S Vikj S min{l/i,k,mu Vi,n,j};
for [i,j]€P 4 [nlihts Il TR (A3)
maX{O, Wi,m,j + wn,l,j - wn7m7j} < Wi,l,j < min{wi,m,ja wn,l,j}a

[ i ) P L Y

\
where we used Vikm = VikmVinm, Vin,g = VinjiVinm, Wim,j = Wim,jWnm,j, and Wnt,j =

Wn,l,j%n,m,j-

Proposition 4.1. Let S = {(z,2) € [0,11*" | z; = [The, @k, [i]7}. The convex hull
of S, Conv(S), is the intersection of convex hulls of z; = zj_1 - x;, [i]5 over [0,1]?

(McCormick relazation).
Proof. See §B.1 in the appendix. O

We remark that the result in Proposition 4.1 also follows from Theorem 10 in [48].

Our proof is, however, different and elementary. We mention that this proof shows a
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previously unobserved connection to the recursive McCormick procedure. Our proof
can be used to show that the recursive McCormick procedure, with a few additional
linearization variables, yields the convex hull of the multilinear polytopes for y-acyclic
hypergraphs, as obtained in [48].

Remark 4.1. Proposition 4.1 shows that the set of v (resp. w) variables satisfying
(A3) belong to the intersection of simultaneous convex hulls of (v; 41, .., VijnN,
Viijs s vinn) for all [i,5] € T\{[k, N[}, (resp. (wio,- -, WiijsWi1s--->Wiij)
for all [4, 7] € T\{[1, ]} ,). O
Remark 4.2. For every [i,j] € P, [k]] " (resp. [1]1,,), the convex hull of 7, ; (resp.
Biri) over (Cigy .., Cij) € [0, 1R+ (resp. (Cijy-- ., Gy) € [0,1]77F1) is implied by
(A2) and (A3). (see §B.2 for the proof). O

We now describe the constraints to model the space of admissible distillation

configurations.

Presence of process feed and products

Every admissible configuration has the process feed (|1, N]) and the pure compo-

nents ({[7,i]}Y,), i.e.,

QN =GC1=...Cvn =1 (A4)

To restrict the search to a subset of configurations, for example, in order to retrofit
an existing design, we may explicitly include (resp. eliminate) a specific submixture
[7,7] by setting (; ; = 1 (resp. (;; = 0). We show next that ¢, ; variables are affinely

related to 7, ; and 3;;; variables.

Proposition 4.2. Let, x € [0,1]", y;j = (1—x;) i1 ... vjo1(1—x;) for 1 <i < j < mn,
Zij = Hi:z x, for 1 <i<j<n, and x,, =0, which in turn implies that z;,, = 0 for
1 < i < n. Then, there is an invertible affine transformation between {y; ;}1<i<j<n

and {zi,j}léiéjém given by

Yij = Zit1j-1 — Zi+lj — Zij-1 T Zij,
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=ZZ

s=q+
Proof. First, we show that y; ; can be written as an affine transformation of z; ;. By
definition, y;; = (1 — z))wi1 ... 25 (1 —x;) = [[1] i1 Ty — 1T i1 T — |-
HT io1Tr = Ziy1j — Zij—1 + Zij. Substituting the first term in the last
equahty, T 3+1 xp, with 1if ¢ +1 = j, and 2411 if ¢ +1 < j, yields the required
affine transformation.
Next, to obtain the inverse affine transformation, we define wy,; = (1—zy)Tg11 . . . 2
for 1 < k <1 < n. We show the affine transformation between {wy;}1<r<i<n and

{yi j}1<i<j<n variables to be
Wk, = Z Yi.r, (43)
r=l+1

using induction on n —[. For | = n, (4.3) is trivially satisfied because wy, = 0
as x, = 0. Now, assuming that (4.3) holds for I + 1, i.e., wyip1 = Do Yk, WE
show that it holds for wy,; as well: wy; = (1 — xp)zpsr ... 2 (1 — 2101 + Ty41) =

n n
Yrie1 + Whit1 = Ykirr + Doeypo Uk = Doip1 Yhor-

In a similar vein, we show for 1 < p < ¢ < n, the affine transformation between

{z,,} and {wy,} variables to be
q
Zpg=1— Z Wy g, (4.4)
r=p

using induction on ¢ — p. For ¢ = p, (4.4) follows because z,, =z, =1— (1 —x,) =

q

1 —wyq. Next, assuming (4.4) holds for p + 1 d.e., zp110=1-2 |

| Wrq, We show

Z:p Ly = [1_(1_'7;1))] z =p+1 Ty = Zpy1,g— Wpgq =

L= i Wrg—Wpg = 1= wp,. Finally, substituting (4.3) in (4.4) leads to the

that it holds for 2, , as well: z,, =

required inverse affine transformation given below:
q n
Zpq = 1— Z Z Yr,s- (45)
r=ps=q+1

Indeed, the correctness of (4.5) can be checked via direct verification using v, s =

Zr41s—1 = Zr+1s — Zrs—1 + Zrs, 2in = 0for 1 <7< n,and 241, =1lfor1 <i<n. O
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We note that Proposition 4.2 shows, by defining n = N —i+ 1 (resp. n = j) and
xr =1 —=(nors1 (resp. x, = 1 — (), there is an invertible linear transformation
between {Ti,k,j}i<k<j<N and {Vi,k,j}igk:gjsN (resp. {5i,l,j}1<i<l<j and {Wi,l,j}1<i<l<j)'
We expressed 7 (resp. ) as an affine function of v (resp. w) in (A2). The inverse

transformation 1is:

.
0, for k =1
for [i,jleT, vik; = < ik , (4.6)
ZZ Tirs, fori+1<k<j
L a—k i
( l ]
— 2 2 By fori<i<j-—1
for [Z,j] € T, Wilj = < r=is=l+1 (47)
0, for [ = j.

\

Since v; j; = w;;j = 1 — (; j, Corollary 4.1 follows directly from (4.6) and (4.7).

Corollary 4.1. (A2)-(A4) imply that Y7 7., = Z{Ziﬂ Birj = Cj for all [i,j] €
P, 0

Conservation of components

Corollary 4.1 has the physical interpretation that the stream [, j|, when present,
produces exactly one stream as distillate and one stream as residue. However, the
distillate and residue streams cannot be chosen arbitrarily. They must be chosen such

that, all components are conserved when [i, j] undergoes a split. In other words, for

k)" (resp. [1]2,1), if [i,4] 1 [3,k] (resp. [i,4] | [I,4]), then for conservation of
components, the residue (resp. distillate) from [4, j] must be one of {[1, j]};1}, (resp.
{[i,k]}.=;_,). Consider the digraph shown in Figure 4.2 for stream [, j].

We partition the nodes into four sets D; through Dy, where D; = {i} (resp.
Dy = {j}), and Dy, = {k},_} (resp. D3 = {I}/_,,,) contains the heaviest (resp.
lightest) component in the top (resp. bottom) children of [i, j]. The edges in Dy x Dy

(resp. D3 x Dy) correspond to all plausible distillate (resp. residue) streams from

[7,7]. Edges in Dy x D3 correspond to feasible splits of [i, j], i.e., each node k €
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Oiyiit1,5

A J

giit

Tiit1,i+2,

O'iv.jflvj’j

Gij

Fig. 4.2. Digraph for deriving conservation of components constraint in §4.2.2

Dy connects to {i + 1,...,k + 1} € D3. We associate these edges with auxiliary
variables | JI_; {045}, referred as split variables hereafter (see Figure 4.2).
We let 0;r,; = {1, if [, k]/[l,j]; 0, otherwise}, and write mass balances on the
network by interpreting stream, section and split variables as material flows along

the respective edges of the graph.

k+1 ‘ Jj—1 }
Z Tinig = Timgs [KI Z Tikg = Birg, U1
For [i,jleP I=i+1 k=l—1 (A5)

0i7k7l>j 2 07 [[l 5:117 [I:k]]zil

Mass balances around the nodes in D; and D,, and non-negativity constraint on
section variables are implied from (A2)— (A4) (see Corollary 4.1 and Remark 4.2), so
it is not required to impose them explicitly. We show below that, for any [i, j] € P,
the relaxation (A2)—(Ab) is the best possible for the substructure represented by the
digraph in Figure 4.2.
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Proposition 4.3. The constraints (A2)-(A5), and 0 < (;; < 1 define a set such
that, for any [i,j] € P, (o,7,5,() is contained in the convex hull of

( )
Oiklj = Ti,k,jﬁz‘,l,jy [[l]]f:f% [[k]]fil
Tid,jBin; = 0, Miu? [[k]]f2
Sij =13 (0.7, 8,0 i > (4.8)
Z Tik,j = Z 5¢,z,j = Cz‘,j7
k=i l=i+1
\ Tikjs Bitjs Gy € {0,1} AR 13 P )

Proof. First, note that (A5), equations in Corollary 4.1, 0 < (;; < 1 and non-
negativity of section variables together constitute a network flow polytope (see Figure

4.2)in (7, 5, 0, () space. The extreme points of the polytope are integral, and are given

by

Gij = Tiky = Bitj = Oikrj =1, a
[t L it (4.92)

Ti,k’,j = Bi,l’,j = 0, for k/ #* k’, l, # [
Gij = Tikj = Bit;=0igij =0. (4.9b)

We show that the only solutions to S; ; are those in (4.9a) and (4.9b). Assume ¢; ; = 0.
Then, 74, = 0 for [k]7™", Biy; = 0 for [IJ],, and 6,4, = 0 for [IJ¥}; [K]/~". Now
assume (; ; = 1. Then, there exists k and [ satisfying ¢ < { < k + 1 < j such that
Tikg = Birj=0ikr;=1landfor ¥ £k, U' #l; 7 j = Bivj = 0w rj =0. O

Presence of a parent

Stream [i,j] € T\{[1, N]} is present in a configuration, only if it is produced as
a distillate from one of its top parents and/or as a residue from one of its bottom
parents. To derive the required constraints, we consider the digraph shown in Figure
4.3.

The graph is inspired from the observation that Zf:”;ﬂrl Tijn = Gij and Zm 0 Bmij =

Ci,jv where we define Tij,N+1 = Vij+1, N —VijN and /8071‘,]‘ = W1,i-1,5 — Wi,i,j- From (Ag),
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Complete bipartite graph with 1; y410; =0

Fig. 4.3. Digraph for deriving presence of parent constraint in §4.2.2

it can be verified that 0 < 7, ;541 < 1 and 0 < fy,;; < 1. Physically, 7, jy+1 = 1

(resp. Bos,; = 1) indicates that [i,j] is not produced as distillate (resp. residue),

because 7;jn+1 = 1 (resp. Bo,i; = 1) iff [i,7] is present ((;; = 1) and all its top
=1).

As in §4.2.2, we partition the nodes into four sets D5 through Dg (see Figure 4.3),

(resp. bottom) parents are absent i.e., v; j11n = 1 (resp. wy_1
where Dy = {i} (resp. Ds = {j}), and Dg = {n ;V;ng (resp. Dy = {m}"1,) contains
the heaviest (resp. lightest) component in the top (resp. bottom) parents of [, j].
Recall that m = 0 and n = N + 1 have a special meaning as described in the previous
paragraph. The edges in D5 x Dg (resp. D7 x Dg) correspond to all plausible ways
[7,j] can be produced as distillate (resp. residue), and the edges in Dg x Dy indicate
whether [, j] is produced only as distillate or only as residue or both. We introduce

variables for edges in Dg x D7 such that ¢; ,,.m; = 1 iff [¢,n] T [¢, 7] and [m, 5] | [2, 5]
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We require that ¢; y.10,; = 0, which, otherwise, would mean that [, j] can be
present even if it is neither produced as distillate nor as residue. Now, we write mass

balances on the network.

i—1 N+1 A
Z Vinmg = Tijm> [N]N1 Z Vinmg = B> [m]G
for [i,j]e T{[LN]}  { m=0 n=j+1

wi’nvmvj 2 07 [[n]]j\-[‘:’i17 [I:m]]é)il; wl,NJrl,O,_] = O.
(4.10)
Mass balances around the nodes in D5 and Dg, and non-negativity constraint on

section variables are implied from (A2) and (A3), so it is not required to impose them

explicitly.

Proposition 4.4. The constraints (A2), (A3), (4.10) and 0 < (;; < 1 define a set
such that, for every [i,j] € T\{[1, N1}, (7,5, (,¢) is contained in the convex hull of

r .
wi,n,m,j = Ti,j,nﬂm,i,j, [[m]]%)—l; [[TL ;\:__El
N+1 i—1
Sij =4 (TBCU)| 25 Tign = 2, Bmig = Gisr Yinveros =0, .
n=j+1 m=0
\ Ti,jms Bm,i,j, Cm‘ € {O, 1} [[m]]éﬁl; [[n ;\{Sl )
(4.11)

Proof. We use a similar argument as the one used to prove Proposition 4.3. We rec-
ognize that (4.10), Zg:ﬂil Tijm = o Lo Bmij = Gijs 0 < ¢ < 1 and non-negativity

requirement on section variables together constitute a network flow polytope, whose

extreme points are integral and precisely those in S; ;. O

Constraints on Heat Exchanger Variables

For every (i,j) € C, condenser (i,j) is present only if the stream [i,j] is not
produced as residue, i.e., Sy, ; = 1 [23]. Similarly, for every (i, ) € R, reboiler (4, j)

is present only if the stream [7,j] is not produced as distillate, i.e., 7 ;nv+1 = 1.
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Further, a condenser (resp. reboiler) must be present with a pure component [i, ], if

[7,7] is not produced as residue (resp. distillate) i.e. Bp;; =1 (resp. Tiin41 = 1).

Xij < Boij, ¥V (4,7)€C; pij <Tijnt1,V (,J) €R (AG)

Xii 2 B0V (1,0) €C pii =2 Tiine1, V (i,0) € R. (A7)

Proposition 4.5. The constraints (A2)—-(AT7), (4.10), 0 < ¢;; < 1, x;; = 0 and
pi; = 0 define a set that, for every [i,j] € S, is contained in the conver hull of
solutions that satisfy at least one of the following conditions, where unspecified ;. ;,

Biris Tivejis iy Xij, and p; j variables are zero:

1. for somel <m<i1—1,7+1<n<N,andi <l < k+1<j, we have

Gig = Tikg = Bitg = Oiklj = Tign = Bmij = Vinms =1,

2. for somej+1<n<N,andi<l<k+1<j, wehave G; = Tir; = Bisj =

Tikij = Tijm = Boij = Yinoy = 1; Xij = 1lor 0,

3. forsomel<m<m-—1,andi <l <k+1<j, we have (;; = Tp; = Bit; =

Oiklj = TijN+1 = Pmij = Yintimy = 1; pig =1or 0,
4. all the variables are zero.

Proof. We modify the graph in Figure 4.3 to accommodate (A6) and (A7), and com-
bine it with the graph in Figure 4.2. The resulting graph is shown in Figure 4.4. Next,
observe that (A5), (4.10), Zij Tikj = Z{=i+1ﬁi,l7j = ij:]iln]n = 2;;0 Bmij =
G, 0 < (j < 1 (which are implied from (A2)-(A4)), and non-negative constraint
on all variables together constitute a network flow polytope. The extreme points this

polytope are integral, and are precisely those mentioned in the Proposition. O]

Since 9 variables are not used elsewhere, we project (4.10) to the space of section

variables (7, 3).
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Fig. 4.4. Digraph for the proof of Proposition 4.5

Proposition 4.6. For every [i, 5] € T\{[1, N|}, let S;; = {(7, B,v) | (4.10); Z:;:lo Bmij =
ZQIIJL Tijm; Tijn = 0, [n ﬁﬁl; Bmij = 0, [m]g '}, Then, the projection of S;; in

(1,8) space is

N i—1 N+1
. Bo,ij < Z Ti jns Z Bimij = Z Tijn
proj., 5 (Si;) = { (7, 8) n=j+1 m=0 n=j+1 . (4.12)

Tijn = 0, [[n]]évﬂl, Bmij =0, [m]™
Proof. See §B.3 in the Appendix. m

Apart from the following, the remaining constraints in (4.12) follow from (A2)

and (A3):

for [i,j]e€ T\{[1, N1}, Boi; < Z Tijn- (A8)

n=j+1
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Remark 4.3. Using (A5), (4.6) and (4.7), 7, 8, v and w variables can be substituted
out. (The resulting model in the lower dimensional space can be found in the chapter).

]

Constraints (A4)—(A8) model the space of admissible configurations. We compare
this formulation with CG06, GA10, and TAT19, which refer to the formulations of
Caballero and Grossmann [9], Giridhar and Agrawal [10], and Tumbalam Gooty et
al. [23], respectively.

Proposition 4.7. The feasible region defined using constraints (A4)—(AS8) is tighter
than the set by imposing the constraints in the formulations of CG06, GA10, and
TAT19.

Proof. In addition to the binary variables associated with the presence/absence con-
densers and reboilers, CG06 has variables for the presence of heat exchanger, which

we denote as 7, ;. To our model, we add

Nij = Xij + Pij- (4.13)

Further, we remark that for i < k < j—1, [i,j] € P,

k k. m+1 k+1 k+1  j—1 k+1
(A5) Fig. 4.2 k<J 1 (A5)
IRITECD 3 SRS S B YRTTEE S S I YR J
m=i m=1tl=i+1 l=i+1m=Il-1 l=i+1m=Il-1 l=i+1
(4.14)

In Tables 4.3, 4.2 and 4.4, we prove that the set defined by (A2)—(A8), ¢;; € [0,1], ¥ [, j] €
T, pi;e[0,1], V (i,5) € R and x;; € [0,1], ¥V (¢,7) € C is tighter than CG06, GA10
and TAT19, respectively. We point out that, in GA06, the authors did not consider
thermally coupled configurations. Thus, we show the proof only for the constraints
they reported.

The fact that our formulation is strictly tighter will follow the numerical example

below. Consider N = 4:

1. When restricted to CLQ = <1’3 = 0, 41’1 = <1,4 = <272 = C373 = <4?4 = 1 and
(o3 = Coa = (34 = 1/2, CGOG is feasible, while (A) is infeasible.
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2. The point 71,13 = T1,23 = T1,14 = T134 = T224 = 51,2,3 = 51,3,3 = 51,3,4 =
Boaa=0;Ti12="Tioa= Pr22=1and 723 = To34 = T334 = Pi124 = Praa =

Ba33 = Posa = P344 = 1/2 is an extreme point to GA10, and infeasible to (A).

3. When restricted to CSA = O, C171 = CLQ = <174 = C272 = C373 = C4,4 = 1 and
C3 = (o3 = (o4 = 1/2, TAT19 is feasible, while (A) is infeasible.

Table 4.2.: CGO06 for the space of admissible configura-
tions. The first column indicates the constraint number
in Table 1 of [9]. ‘Co.”; ‘Re.” and ‘Pr.” stand for Corol-

lary, Remark and Proposition, respectively.

Proof
g (A5), Cod.1
o.
[1] Z Z Tik,l,j Gij <
k=1 l=1+1
j+1
(A5)
)IEDIETPLID J P
n=j+1m=i+1 n=j+1
[2] =J A J
A5 Pr.4.5
55 o Zﬂmw < Gysl
m=1n=i—1
A5 (A4)
Zamz 1,7,,z+ Z Oiii+ln = Zﬂmﬂ,z"" Z Tiin > <z7, = 1
[3] n=i+1 n=i+1
for [i,i]eT
-1 k+1
(A5) Re.4.2 Co41 (A5) .
J+1.
Tijmm S Tign S G Z > oiwag for [ml [0
[6] k=il= Z+1
=1 k+1
(A5) Re.4.2 co41 (A5) i—1
Omnij S Pmij S Gig Z Z ik for [[n]]z i [y
k=i l=i+1

continued on next page
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Pr.d.s3 as) Y 1
Tiklj S Gij < Tign + D, Bmi
n=i+1 m=1 k+1. j—1
[6] (A5) N j+1 i-1 j—1 for [[l]]iJrl’ Hk]]z
= 2 2 Tigmat 2, 2, Omnij
n=j+1m=i+1 m=1n=i—1
Pr.4.3 ,
k+1. Jj—1
(121 oipay < Gyo for [EH5 [KD
Il ksl (A5), Co.4.1
(18] D> > oikes = Gy
k=i l=it1
(4.13) (AT)
L—mi; < 1= < 1= B
pi,i=0
(A4), Pr.d.4 a9 (A5) “
, Pr.4. ..
= Z Brmii = Z Omi-t4i, for (i,0)€C
m=1 m=1
4] (4.13) (AT)
l=my; < 1=pii < 1—Tiinm
Xi,i=0

(Ad), Pr.4.4 ol (A5) o
, Pr.4. ..
= Z Tijn = Z Oigi+1,n, for (i,1)e R

n=i+1 n=i+1
-1 N
(413) (AG), Pr.4.4 :
Wi = Xig+Pis S Gig— D, Bmig+Gii— D, Tijn
m=1 n=j+1
[5] B0 Pra3
oS (1= Bmig) + (1 =Tigw) < (1 =0mpnij) + (1= 0ijm )
1, =%
j+1, N . i—1, j—
for [[ml]]ngl’ [’ J+1 [m]7  [nli=
413) (AG), Prad4, (A8)  (A8), (A5) &, 11 i1 -l

(4.1
Nij = Xij T Pij < Gi < D, DL Gigmat D, DL Omnig

m=1n=i—1

n=j+1m=i+1




Table 4.3.
GA10 for space of admissible configurations. The first column indi-
cates the section number in [10]. ‘Co.’; ‘Re.” and ‘Pr.” stand for
Corollary, Remark and Proposition, respectively.
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g Proof
J 0.4.1
3.1 Z /Bi,l,] Z Tzk] = i,j <1
l=i+1
Pr.4.5 041 =
Z Tijm < Czy = Tik.,j
n=j+1 k=i
o ‘ Pr.4.5 g
= Co.4.1
Z Brij < Gij = Tik,j
= k=i
i1 Codl (A8
3.1 ZTi,k,j = i,j Z Tijn + Z Bm 0,7
k=1 n=j+1
N Pr.4.5 C
- . . 4.1
max{ J—i+1 Z@mzm Z Ti,j,n} < (-i+ )Gy =
n=j+1
7j—1 j—1 j—1 Jj—
(j—i—i—l)ZTi,k,j = Z(] — k)Tigj —1—2 — i+ 1)Tig; = Z Z Tim,j+
3.2 k=i k=i k i k=i m=1
) j_l (4 14 ] 1 k+1
(kf-@-{- Tik,j ZZB@L]"’_Z _Z+1Tzk]_ Z Z BZ,Z,]
k=i k=il=i+1 l=i+1 k=l-1
i1 J j—1
(k—i+Drpy= > (= 1+ DBy + D (k—i+ gy
k=i I=i+1 k=i
N Pr.4.5
Z Ti,j,n < C’Lj < 1
3.3 n=j+1
1 Pr.4.5
Z Bm,i,j < Cz,] < 1
m=1
3.3 Z Tzzn+26mzz > sz :

n=t+1
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Table 4.4.
TAT19 for the space of admissible configurations. The first column
indicates the constraint number in [23]. ‘Re.” and ‘Pr.” stand for
Remark and Proposition, respectively.

# Proof

(H2) N (Ad) ’ (Ad) 1

(A8) N i—1 Pras N i—1
(H3) Gy < Tign+ D, Bmig < ), Gim T ). Gy
n=j+1 m=1 n=j+1 m=
i Re.4.2 prag Rt Re.2 kil i1
(H4)  Gx— D, GnFGyi—1 < 7Ting < ) By < Y, Gy for [KE
n=k+1 I=i+1 I=it+1
7j—1 7j—1
Re.4.2 Pr.4.3 Re.4.2 j
(H5)  Gij— D, Cmg+Gi—1 < Buy < Tikj S Q,k} for  [I]7,4
m=i+1 k=1 k=1
(A6), Pr. 4.4 izl N (A8)
(H6)  xij+pij < Gij— D, Bmig+Gi— 2, Togm < Gij
m=1 n=j+1
(A6), (ag) X Red2 &
Xij S - Z Omij < Tign < D) Gin
+1 =7+1
(H7) n= j+ n 7+
(A6), Pr. 4.4 iz Red2 ‘=1
Pi.j < Gij — Z Tijn < Z Bm,iji < Cm.j
n=j+1 m=1
(A6) (A3)

Xij + Pij < VigranN —Vign T Wi —wiij < (1= Ga) + (1= Gny)s

for [mli s [nl

Re.4.2,

AT),
(Hg) X i ( - Z ﬁm,z,z 2 1 - Z sz} for (Z, Z) eC

(A7) Pr 44 Re.d. 2 A4)

(HlO) Pii - Z Tijin = Z Qn} for (i,i)ER

n=1+1 n=i+1

4.2.3 Mass Balance Constraints

We model the problem as a network flow problem. Figure 4.5 shows the repre-

sentative nodes and arcs in the network, and variable definitions are in Table 4.5.
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Each split [z, k]/[l, j] is performed in a distillation column Q;z; (see Figures 4.5(a)
and 4.5(b)). Material flows to and from the column @);x;; only when o;; = 1. The

material balances across each column @;x;; are as follows

for [i,j] € S, [[k]]gil, Il fjll :

in _ _ TS SS
fz‘kljp = zkl]p p<k + fzkljp p=l) [[p]]w Uzkl35 zkl]61<z = Vikly — Viklj

SS s _ SS rs
Kiklj51<i - Kiklj5j<N - Liklj - Liklj ’ (A9)

0< () <oy ()™, V () € {All component, liquid and vapor flows}

for [i,5] € {[1, N1}, [KD ", D5
, N
Fyoiriy = fimgpOp<k + fimjpOp=t, [P17; (szl Fp) (1= @y n)oir; = Vigy — Ving
N
(ZL:EJ®MWMj:L%f_M% ,
0 < () <oy ()™, V () € {All component, liquid and vapor flows}
(A10)

- J=1 pk+l
for [¢, 5] € P, [k]] ™, [T -
Lrs k s . Lss _ ss J Ss (A]_]_)
Zk)l] ikly — p=i ikljpr ikly ikly — p=1 ikljp*

The constraints in (A9) model component, vapor, and liquid mass balances across
column Q;i;. In the above 4. is 1 if (-) is true and 0 otherwise. (A10) handles the
case where the feed stream is the process feed, [1, N]. F, and ®; y are as defined in
§4.1. The last constraint in both (A9) and (A10) suppresses material flows to column
Qirj when o5 = 0. We use (+)"P to denote the upper bound on (), and discuss how
these are obtained later. The first (resp. second) constraint in (A11) models that the
net distillate (resp. residue) flow Q1 as the difference between the vapor and liquid
(resp. liquid and vapor) flows in the rectifying (resp. stripping) section.

Column Q1 receives feed from the associated condenser (i,7) and/or reboiler
(,7) (see Figures 4.5(c) and 4.5(d)). Further, condenser (resp. reboiler) (i,j) regu-
lates vapor-liquid traffic from all the splits producing [, j] as distillate (resp. residue),
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- V;kz]‘j| = I V;klj =
T v Tn
5, |5 - 7z, S
ikl SS et ikl
> Fr®Pin ’ F A Uik J F
el ” ~.
i  — . SS
z L 32 Kiklj
— .
& Qiklj oz Qikij
— g3 1S ——
g e 2 Ui 5~
P Fp(l - (I>17N) s = Krs  —— Vs —~
<« Vinj | 53 =ikl <« Virg | =3
T ss g T ss g
szz]' S~ Liklj o~
(a) (b)
—~ —_ =
< q pal
w,g =3 w S
S Tw  pE
N &
—— o
g =%
RS =7 af
~ = ~
—— — ——
(c) (d)
ss ss '
{Lm/n’ii} { m’n’ii}
I eo o LI | oo 1
L ss
i Ui
- S -
>.s I'S'
- Uiiii
”2 —
- g b
g Kzrzsu Fpéiz _E EE'
IS < Y_ 23 &
a2 - [y =
~ N~ ——
—
(e) (f)

Fig. 4.5. (a) Representative column for splits of process feed i.e.,
[, 7] € {[1, N1}, [k)~", [1%) (b) Representative column for the re-
maining splits [i,7] € S, [k, [[]5 (c) Representative condenser
for (i,7) € C\{[4,7]}X7" (see (A12) for domain of indices m, n, k,1) (d)
Representative reboiler for (i, j) € R\{[7, 1]};=, (see (A13) for domain
of indices m,n, k,l) (e) Representative arrangement for pure prod-
uct withdrawals (see (A14) for domain of indices m,n, and (A15) for
domain of indices m/,n’) (f) Representative arrangement for overall
component mass balance for [i, j] € S (see (A17) for domain of indices
m,n,m',n' k1)

b

79
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Table 4.5.
Definition of continuous decision variables.

Variable Definition

{ TkLip }p ; Net molar flow of component p in the rectifying section of Qi

{ Thlip ;:l Net molar flow of component p in the stripping section of Q;;
{ iii?sz f}=i Net molar flow of component p in the feed to Qi

ikl Vapor flowrate in the rectifying section of Q;xi;

ikl Vapor flowrate in the stripping section of Qj;

ikl Liquid flowrate in the rectifying section of Q;;
L, Liquid flowrate in the stripping section of Q;x;

ikl Vapor in-flow into Q;x;; from condenser (3, j)

Tkl Vapor out-flow from Q;; to reboiler (i, 7)
Ky Liquid out-flow from Q;1; to condenser (i, j)
K Liquid in-flow into Q;x; from reboiler (3, j)
{Gijq f}; Underwood root of Q;i; satisfying ag1 < 6,54 < oy

ikl Minimum vapor flow required in the rectifying section of Q;;
Yok Minimum vapor flow required in the stripping section of Qix;
FC; Molar flowrate in condenser (i, j)
FR;; Molar flowrate in reboiler (i, j)

and distributes flows to all the splits of [i,j]. Material balances across these con-

densers and reboilers are given below:

j+1 J—1 k+1 )
Z Z %;Smn = FC@] + Z Z zkl];
n= ]+1m i+1 k=il=i+1
j+1 —1 k+1
For (i, ) € C\{[i,i]}¥7" : 2 2 Lo = FCWZ 2 KR U Ay
n=j+1m=i+1 k=il=i+1

0< FCyij < (FCij)"™ X

0< z‘rlilj < ( ;Elj)up( ij) ﬂl]]fifa [[k]]g_IJ
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i-1 j—1 J—1 k+1 A
D1 ) Vi =FRiy+ >, > Usys
m=1n=i—1 k=i l=i+1
i—1 j—1 -1 k+1
For (i, 7) € R\{[4, 1]}, : Zl ZlLfmu = IR +kZlZl Wi b (A13)
m=1n=1— 1 l=1+

0 < FRi; < (FRij)™ pij;

0 < isljlj < ( isl:lj)up( — Pij); [[l]]fjlla [[k]]i'*l-)

We are interested in configurations that either have heat exchangers or thermal cou-
plings, but not both. The last two constraints in (A12) and (A13) suppress flows in
appropriate arcs if the heat exchangers are absent. The above constraints are written
only for heat exchangers associated with mixtures. For heat exchangers associated
with pure component products, the vapor and liquid flows are further constrained to
produce ®; ;F; and (1—®;;)F; of component 7 in liquid and vapor phases, respectively

(see Figure 4.5(e)). Mass balances around these heat exchangers are given below.
i+l \

Z 2 Viewn = FCui + Ui

n=i+1 m=i+1
1+1

For (i,7) e C: 2 Z Liimn = FC + Ky

n=1+1 m=i+1

"

(A14)

0< UZy:

2212

(KG)" < Kigy < (Ki5)"™ (1 — )

2373

0< FCy < (FCy#)™xu;

i—1 -1

Z Z V;LSTL'L'L = FR”L”L + Uzszs';z’

m=1n=1—1

7
—
~/

3
I

For (i,i) € R : Z Lonmis = PR + Ky | (A15)

n=1—1

0< K3,

2221)

(Usii)® < Upis < (Ugg) (1 = pic) )

0 < FR;; < (FRy)™ pus;

For (i,i)e CnR: UE, — U, = F,(1— ®,,); K, — K5, = F,®;;.  (Al6)

12773 211 1148 K234
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where () denotes the lower bound on (). From (A16) and (A15) (resp. (Al4)),
(KE,)° = —F,®;; (resp. (US,;)'° = —F,(1 — ®;;)). For each submixture [i,j] € P,
the net inflow of component p equals the sum of component flows from all the splits
that produce [, j] as distillate or residue. The net inflow is distributed among all

splits of [7, j] (see Figure 4.5(f)).

-1 k+1 J+1 j ‘
FOI' Z -] € S Z Z Zkljp Z Z l]mnp + Z Z mnz]p? [[p]]g (A17)
k=il=i+1 n=j+1m=i+1 m=1n=i—1

Finally, modeling the problem in the above manner requires rigorous bounds on all
material flows. The net component inflow to and outflow from any column cannot
exceed in steady-state the component flow in the process feed. Therefore, the upper
bound on all flows of component p is chosen to be F, i.e., (fif;,)™ = (fit)™ =
(fikjp)™® = Fp. However, although required for deriving rigorous relaxations, there is
no simple upper bound on vapor and liquid flows in the columns and heat exchangers.
For deriving a bound, we use optimality-based bound tightening, where we find fea-
sible flows for an admissible configuration using the technique of [35]. This technique

can also be replaced with a local nonlinear programming solver. Let this upper bound

be VD*. Then, we solve the following linear programs (LP) to derive bounds:

max Vi, st (Ad) — (A17), Z FR;; < ¢ VD* (4.15)
(i,5)eR

We choose ¢ = 1, if only the optimal solution is desired. Since the model does
not capture all operability concerns, such as controllability and suitability w.r.t heat
integration with the rest of the plant, and vapor flow predictions are based on shortcut
methods rather than rigorous simulations, industrial practitioners are often interested
in identifying a ranklist of a few best solutions for this MINLP. Such a ranklist allows
them to a posteriori incorporate such considerations. Therefore, to allow construction
of such a ranklist, we choose ¢ = 1.5. With this choice, any configuration that
consumes at most 50% more energy than the feasible solution remains in the search
space. Our numerical experiments show that each LP can be solved in a fraction of a
second using solvers such as Gurobi [49], and the computational time taken to solve

all the LPs for a five-component mixture is typically negligible.
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4.2.4 Underwood Constraints

As mentioned in §2, for a given split, there is a minimum threshold vapor require-
ment in each section of a column, below which the products are not produced with the
desired purity. A column can, however, carry more vapor than the threshold, and the
excess vapor can, if transferred to other columns, be utilized in those columns. The
threshold vapor requirement can be computed using Underwood constraints included

below:

For [i,j]eP, K] D4

J in
o, fi
pJikljp  7rrs ss k
Z 0. wii0i<n — U<, laliq, (A18)
i P ijq
k rs J ss
Oy 775 oy T505
pJikljp rs pJikljp ss k
2 . — 0. < ik Za 0. > =Ty, a1, (A19)
p=i P 174 p=l P ijq
k rs J ss
Ay [ 075 o T,
pJikljp rs pJikljp ss k—1
Z — 0. Z Lk Z 0. < —Tou [al; =, (A20)
i P ijq ot P ijq
g1 < Oijg < 0, (A21)
rs SS _ rs SS
ieti<N — Utzin; = Ling — Lorg (A22)
s TS SS Ss
0< T < Vigjs 0= T < Vigps (A23)

where T35, and T3, denote the threshold vapor flow in rectifying and stripping
sections, respectively. Note that, for the process feed [1, V], fz-i,‘;ljp and Ujg:0j<n —
U2 it 01<i in (A18) and (A22) are replaced by F,o;; and (Zﬁ;l Fp) (1—P1 N)0i k1)
respectively. (A18) is commonly known in the literature as the Underwood feed equa-
tion, and it computes Underwood roots {;jq}i_;_,, which satisfy a1 < 0554 < g [31].
(A19) governs the minimum vapor requirement in rectifying and stripping sections
as a function of the distillate and residue compositions. (A20) ensures that the min-
imum vapor constraints are binding for {6, ’;;ll. These constraints are required for
the model to have the correct degrees of freedom as described in [23]. (A22) models

vapor balance at the feed location in terms of minimum vapor flows. (A23) ensures

that the actual vapor in each section is at least as high as the threshold vapor flow.
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Remark 4.4. Since the process feed is always present i.e., (; y = 1, and the net
component and vapor inflow to columns Qqy where 1 <! < k+ 1 < N are known,
we solve the Underwood feed equation (A18) a priori to determine the Underwood

roots {#1x,}. ", and fix these variables to the calculated values. O

ql7

Remark 4.5. Recognizing that fkljp 0, Oij, < o < g < -+- < 0y, eip = 0

and O <o <<y < 0ijl—17 we have

J
; (67
for [i,j]eP, [k, [EH { < Z a” i | < —Z”—Z’“”’. (4.16)

p — ka Pl Qap — 6@]171

Next, using (4.16), component mass balance fi. = fie;,0p<k + fix;p0p=1, and (A18),

it can be shown that

s 8. _ ) Zkl]P
ikljVI<N zk:l] 1< < CY — 0. -
. P )
. j—1 k+1
for [i,j]e P, [T, [0 4 ] (4.17)
«Q

Ss s P zkl]p

Uiklj51<i - iklj5j<N < _Z 0.

\ p=1 Op T Vigk

Since the vapor flows are bounded, we have finite upper and lower bounds on all

nonlinear expressions in (A18)-(A20). O

4.2.5 Exploiting Monotonicity of Underwood Equations

These cuts are inspired from [50] and [34]. Although these relations are implicit
in the model, they are not implied in the relaxation, when Underwood constraints
are relaxed. We refer to [23] for a derivation.

When [, j] is produced as distillate from one of its top parent [i, n] where j+ 1 <
n < N i.e., 7;;, = 1, but not produced as residue from any of its bottom parents i.e.,
Boi; = 1, and the associated condenser (i,7) is absent, then 6;,, lower bounds 6,;,
for [¢]~". Similarly, when [4, j] is produced as residue from one of its bottom parent

[m, j] where 1 <m <i—11i.e., Bn;; =1, but not produced as distillate from any of
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its top parents i.e., 7; j n+1 = 1, and the associated reboiler (i, j) is absent, then 6,,j,

upper bounds 6, for [[q]]i ~!. These constraints are imposed as follows:

qu 1jq

—0
for [i,5]€e S
-0

Oijq

My [xij+ (U= Tijm) + (L= Foip)], [l Tall™
Mgy pij+ (1= Brij) + (1= Tijne1)] [[m]]ilila [[Q]]gily
(A24)

<
mjq S

where M, = (g — ag11) corresponds to the upper bound on the difference of Under-
wood roots (see (A21)). Numerical examples in [23] illustrate that these cuts help
branch & bound converge faster. Given that our formulation has been developed in a
lifted space, we use 7 and [ variables to give a tighter representation of the constraint
in (A24). Moreover, if the variables 91, ; are not eliminated using Proposition 4.6,
they can be used to further tighten the above constraints. For example, in the first
constraint, (1 —7;;,) + (1 — Bo, ;) can be replaced with (1 —1);,0,,). This concludes
the formulation of MINLP (A).

4.3 Relaxation and Solution Procedure

Apart from integrality requirements on stream (¢; ;) and heat exchanger variables
(pi; and x; ;), the remaining source of nonconvexity in the MINLP is the Underwood
constraints. In this section, we describe the construction of a convex relaxation of
Underwood constraints ((A18)-(A21)), referred to hereafter as the relaxation, de-
fined using convex constraints that admits all feasible solutions. One of the chal-
lenges in constructing a valid relaxation is that the denominator of certain fractions
in Underwood constraints can approach arbitrarily close to zero (see (A18)—(A21)).
Consequently, off-the-shelf global solvers, such as BARON [21], report an error and
are not able to solve the problem. The common strategy used in the literature is to
add/subtract € (typically 1072 — 10~%) from the bounds of 6;;, to prevent it from
approaching either a1 or «a, (see (A21)). However, this ad-hoc strategy has been
adopted without a rigorous proof. Our numerical experiments suggest that the choice

of this €4 is not straightforward, and varies from one instance to another. In the follow-
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ing, we show that a rigorous relaxation for the fraction can be constructed although
the denominator may approach close to zero.

In the following, we drop indices iklj. This is because, Underwood equations apply
to a column, say Qix;;, and these indices are easily gleaned from the column speci-
fication or the associated split [i, k]/[l, 7]. Moreover, for notational convenience, we
describe the relaxation using U = {(f, U, T,0) | (4.18); (fi*, f>. f°) € [0, F,]%, p =
1,2, 0<(-) < ()", V() e {U™, U>, 1", T}}, where

afi aoff

a1 — 0 60— (0%)]
TS TS
a1f1 a2f2 < Trs

U — U, (4.184)

B < -~ < T, 4.18b
a1 — 0 0 — (6) ( )
afit | afy
S < — < T, 4.1
] — 0 + 0 — (6] ( 8C)
ap < 0° <0 <O <ay, (4.18d)
U™ — U™ = 1™ — 7, (4.18¢)
=rr+r p=12 (4.18f)

Here, we assume that column @;x;; performs the split of a binary mixture. Observe
that (4.18a), the second inequality in (4.18b) and (4.18c) are simplified versions of
(A18) and (A19) for binary mixtures. We ensure that all fractions are non-negative
by factoring out a negative sign from the fractions whose denominator is negative (see
(4.18)). Next, E™ and E* denote lower bounds on nonlinear expressions in (4.18b)
and (4.18c¢), respectively. We choose E™ (resp. E**) to be T™ (resp. T) if the second
inequality in (4.18b) (resp. (4.18c)) needs to be binding, as in (A20). Else, we choose
the lower bound derived in (4.16) and (4.17). (4.18d), (4.18¢), and (4.18f) correspond
to (A21), (A22), and (A9), repectively. Lastly, we remark that, in (A19) and (A20),

5> = fi® = 0 for a split of a binary mixture. Since our purpose in restricting to
the binary case is to illustrate the mathematical structure of relaxations, we do not

consider this restriction. In general splits, one or more components may distribute

between the distillate and residue.
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The first step in standard approaches to relax U is to linearize Underwood con-
straints by introducing an auxiliary variable representing the graph of each fraction.
Then, the restriction that this variable take the value of the fraction is replaced with
the less stringent restriction that the variable lies in a convex set containing the graph
of fraction. Instead, we reformulate ¢ as described in §4.3.1 before linearizing the

Underwood constraints.

4.3.1 Reformulation

We adapt classical Reformulation-Linearization Technique (RLT') [26] to fractions,
and reformulate & by appending RLT cuts derived using Underwood constraints.
For clarity, we present the derivation of RLT cuts with Underwood minimum vapor
constraint in the rectifying section (second inequality in (4.18b)), and describe the
entire reformulated set towards the end. We multiply each Underwood constraint
with the bound factors of 6, (6 — 6"°), and (#"P — ). A naive approach would then
disaggregate the product, leading to

o fi°0 o Tsglo C fl a gl
ap — 0 ap — 0 0 — oy 0 — oy

a [0 fi°0 o f0 s fy0

041—9 061—9_ 0—042 0-0[2

<Y ™S.0—7T".6°, (4.19a)

<Y 0 — 1., (4.19D)

following which auxiliary variables are introduced to linearize each nonlinear term:
HpP = f3/|loy, — 0|, HO = f;°0/|a, — 0], for p = 1,2, and X6 = T - ¢. Here, and in
the rest of the chapter, the variables introduced to linearize a product will be written
by underlining the concatenation of symbols, as in T6™ = 1™ . §. Instead, we use
polynomial long division prior to linearization, which transforms (4.19) to

(03] (Ckl — 0910) fs 062(610 — 042) 58

ap —0 —afi” + 0 — ay —apfy KT —T™- 6, (4.20a)
— Qup) frs guwp — IS
_alan ZONRT e 020 a0 e e gw g (4.900)
a1 — 9 8 — Q9

Next, we introduce auxiliary variables to linearize nonlinear terms: H® = f3*/|cy, —0),

for p = 1,2, and Y0" = T™ - 6. We shall refer to the proposed variant as the
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Reformulation-Division-Linearization Technique (RDLT) of fractional terms, in order
to easily distinguish and emphasize the use of polynomial division as an intermediate
step. Clearly, RDLT cuts require fewer variables than those derived by naive applica-
tion of RLT as described above. In addition, RDLT cuts lead to a tighter relaxation

of U, which we demonstrate below.

Proposition 4.8. Let B = [fl°, fi*] x [f, 7] x [T, 1] x [6°,6"], and S =
{(f,T 9) e B| ol o2l <V Lot YO, H;, HO, be linearizations of Y - 0

a;—0 00— ’ \a 9|
and ‘ | respectively. Define Sgq = {(f, 1,0, H) € BxR? | a;Hy —aoHy < T, H, <

H; < H;, i = 1,2}, Spur = {(f.T,0,H,HO,T0) € C | (4.21)}, where C = B x R®

and

oy (HO, — 0°H,) — oo (HO, — 0°Hy) < YO— T -6, (4.21a)
a1(9“pH1 - H_@l) - OKQ(QHPHQ - ﬂg) < T.6" — E (421b)

Let Sgrprr = {(f7 T,0,H,Y0) e’ ‘ (4.22)}, where C' < B x R® and

(1/1(041]‘.[1 — f1 — HloHl) — O[Q(O{QHQ + fg — QIOHQ) < E -7 ‘910, (422&)
Oél(ellle — OélHl + fl) - O[Q(&upHQ — f2 — OéHQ) < T.0" — E (422b)

Assume that C 2 {(f,T,Q,H,H_G,E) ‘ (f,Y,0,H,X0) € C'", HI, = anH; —
fi, HO, = asHy + fQ} and projy, g, C < [ﬁl,ﬁh] X [.E[Q,.E[Q], Then, Sgq =2
Projsvg.m)(Srur) and Spur 2 {(f,T,H,H,H_Q,E) € Srprr X R?* | HO, = o Hy —
fi,H, = asHy + fg}, where the right hand side is an affine lifting of Srprr.

Proof. The first part of the statement follows easily because ayH; — apHy < T s
obtained by adding (4.21a) and (4.21b), and the bounds on H; in Ssq4 are implied by
our assumption projy, p, C' S [F[ 1, H 1] x [.E[Q, ﬁ[g] The second part follows similarly
because (4.21a) is derived by adding (4.22a) with a1(H0, — a;Hy + f1) = 0 and
as(HO, — asHy — f3) = 0, and affine lifting of any point in C” that satisfies this

equation is assumed to be contained in C. O
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The sets C' and C” in Proposition 4.8 are typically created by relaxing the nonlinear
expressions. We illustrate, via an example, that the relations in Proposition 4.8 can

be strict.

Example 4.1. Let, a1 = 15, ap = 9, fi° = fi? = 0.6, fl° = f3¥ = 0.4, T = 10,
TWw = 10, '° = 9.1, "° = 14.9. The sets C and C’ are constructed by under-
and over-estimating the nonlinear terms with their respective convex and concave
envelopes. Figure 4.6(a) depicts the projection of sets S, Sgq, Srrr and Srprr in T—60
space. It is clear that proj(fmg)(SStd) - proj(f’y,(,)(SRLT) - proj(fm(,)(SRDLT) > S.
Besides improving the quality of relaxation by introducing fewer auxiliary variables,

RDLT has another benefit in our context that we describe next.

a1f1 _ aafr

5 — 7-n Is nonconvex (see Figure

Even when f; and f; are fixed, the function
4.6(b)), because it is a difference of two convex functions. When this function is
multiplied by (6 — 6°) (resp. (0" — #)), it becomes convex (resp. concave) (see
4.6(b)). In the naive RLT approach, where each fraction is relaxed independently,
the product (f1/(a; —0)) - (6 — 6°) is disaggregated and relaxed as a difference of the
convex envelope of f10/(cy — ) with the concave envelope of f;/(a; — 6). Whereas,

the polynomial division step makes the convexity apparent revealing better ways to

construct the relaxation. ]

We use RDLT to obtain a reformulation of U, denoted as U, in higher di-
mensional space as Uer = {(f,U,Y,0,H,U0,Y0) | (4.23);(f,,0,H,) € Fp, p =
1,2; (U,Y1,0,U60,Y0) € V}, where

Zizl (aplay — 910|H1i?n B apfli)n) = (U™ — §°U™) — (UG — §°U™), (4.234)
ST (i = oyl — 9P[HI) = (07U — UG™) — (97U — U6™),  (4.23b)
EX0—0°) < (aplay — 0°[HT — oy f) < 167 — 1™, (4.23¢)
ES (0% — §) < Zi (O = aplay, — 0P [HE) < 0T — X0, (4.23d)
50— 6°) < Z,, (o~ aylay, — 0P| HE) < X% — g1, (4.23¢)

B (6 — ZZ (oo, — 091 H — a, fi7) < 0T — X6, (4.23f)
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-100

-150
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Fig. 4.6. (a) Projection of sets S, Sgq, Srur and Sgprr in Example
4.1 in T — 0 space. (b) Plots of nonlinear expression in Underwood
constraint
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In the above, |- | denotes absolute value function, and the sets F,, p = 1,2, and V

are defined as

HY = [i* - T,(0), HY = [i*-T,(0), Hy = - T,(6)
Fp=1(fo. 0. Hp) | fi* = fr + f . (4.24)
( 1n fss) [ p]37 910 < 0 < fup

and

U_Qrs = U _07 U_ess —Us. 4
Ers — s 07 Ess =T%.0
U™S — [JSS = 7™ — T8

V=< (UT,0,U6,70) > (4.25)
910 < 9 < eup

O < Urs < ((]rs)up7 O < Uss < (Uss)up

O < TI‘S < (Trs)up7 O g TSS < (Tss)up

where T1(0) = 1/(ag — 0), and To(0) = 1/(0 — ).

Generalizations

We remark that RDLT can be used for problems with constraints that have the
form Y7 | ;ng W < Zo, {gi(y)};l and {hi(y)};l are some polynomials of y. We

follow the steps below to derive RDLT cuts.

1. We multiply the constraint by some ratio of polynomials of y, n(y)/d(y), such
that the sign of the ratio does not change over the domain of y. Here, we

assume, w.l.o.g, that n(y)/d(y) = 0 over the domain of y.

2. We use polynomial long division to express each gl o) dEZ% m;(y) + 1;((5)) such

that deg(k;) < deg(l;), where deg(k;) denotes degree of polynomial k;(y).

3. We factorize [;(y) and express it as a product of polynomials {g;;(y)};_, that

are non-factorizable over real numbers (e.g., y + 2 or y* +y + 1).
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4. We use the general theorem of partial fraction decomposition to express each
fraction k:(y)/li(y) as 2552, pij(y)/aij(y), where deg(p;;) < deg(gi;). This trans-
forms the constraint to >7;_, (3:1 mi(y) + 250 i pig(Y)/ (y)) zon(y)/d(y).

5. We linearize the constraint by introducing auxiliary variables for each nonlinear

term.

The reformulation described earlier is a specific case, where we chose to multiply each
Underwood constraint by (6 — 6'°) and (6"* — ). By changing the factor used in
the reformulation step, we can derive alternative RDLT cuts by following the steps
described above. As an illustration, we derive two types of additional RDLT cuts
for reformulation of &. While we do not use these cuts for our extensive computa-
tional experiments, we demonstrate with numerical examples in §4.4 that they further
improve the relaxation for some instances.

RDLT cuts with quadratic polynomials: Here, we choose the product of bound
factors of 6, viz. (6 —6°)2, (—60")-(6"* —0) and (0" —0)?2, for reformulation. As an
illustration, we derive the RDLT cut by multiplying the second inequality in (4.18b)
with (6 — 0°) - (6"P — 6). The remaining RDLT cuts are derived in a similar fashion.
Steps 1 and 2 lead to

2 __plo __pup) £rs
Z < frs 9 + oy — plo — eup) _ Oép( 0 )(_059 0 )f ) < Y. (0 . 910) . (eup _ 9)

(4.26)

Since (4.26) is already in the form attained in Step 4, we do not need Steps 3 and

4. Finally, we disaggregate the products of f}* and T™ with polynomials of 6, and

linearize (4.26) by introducing auxiliary variables for f¥/(cy, —6), fr*- 0, T™ - 6% and

T-0.

RDLT cuts with inverse bound factors: Here, we use inverse bound factors
1_ 1 1_ 1 9r—0

1 . . _ .
(5 — ng) and ( 75 — 5) for reformulation. Since (5 — 91_1P) = g, inverse bound

factors are essentially ratios of first-degree polynomial to another first-degree polyno-

mial. As before, for illustration, we derive the RDLT cut obtained by multiplying the
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second inequality in (4.18b) with (% — 9%,) The remaining RDLT cuts are obtained

2 apfp® ap fp° < xre yrs

p=1 (ap—0)0  (ap—0)0P = "§ ~ gup> which is

in a similar fashion. Step 1 leads to )
already in the form described in Step 2. Further, the denominator of each fraction is
already expressed as product of non-factorizable polynomials. Next, we use partial
fraction decomposition (Step 4) to obtain

2 rs — Qup) frs rs rs
ME Bl 0¥/ P S (4.27)
—\ 0 0w (a,—0) 0 ow

p=1

Finally, we linearize (4.27) by introducing auxiliary variables for f;*/|a;, — 0|, f}°/0
and Y*5/6.

4.3.2 Relaxation for ay < #° and 0" < ay

The nonconvexity in U, is due to Fi, Fa, and V. We convexify these sets to
construct a convex relaxation of U,;. However, we first assume that o, < 6° and
0"P < o, and relax this assumption later in §4.3.3. This assumption prevents the de-
nominator of fractions in F; and J, from becoming zero. This discussion is needed for
two reasons: (i) it will guide us in deriving additional valid cuts needed to strengthen
the relaxation when 6 = ay and § = oy are admissible (ii) it is needed to construct
a piecewise relaxation in §4.3.4, where we discretize the domain of 8 such that every
partition excluding the extreme partitions satisfy as < 0'° < 60 < 0% < qy.

The standard approach to create a relaxation is to replace each equality H, =
fp-T,(0) in F, (resp. X6 =T -0 in V) with a less stringent restriction that H, (resp.
X0) lies in the convex hull of f, - T,(8) (resp. T - 6) over a rectangle defined by the
ranges of f, (resp. T) and §. However, this approach does not take advantage of the
fact that the component (resp. vapor) flows are constrained by mass balances (see
(4.18e),(4.18f)) and, thus, results in a weaker relaxation. Instead, we use Proposition
4.9, which describes the construction of simultaneous hull of multiple nonlinear terms
over a polytope (not necessarily a hyperrectangle), to construct a tighter relaxation

of Z/[ref.
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Proposition 4.9. Let X = {x € R"} | Bx < b} be a polytope, g(y) be continuous and
convez for y € [y°,yP] < R, D = X x [y y"] x R"™" and S = {mr € D | z; =
z;j - g9(y), Ty, =iy, 717}, where m = (2,3, z,xy) denotes an element of S. Then,
Conv(S) = proj {(m y', ..., y™ wh, ..., w™ w, A, ... A™) | (4.28)}, where

w' = g*(\', ), i=1,...,m (4.28a)
i i (1o 9(y™) — 9(y') i i, lo :

w' < Ng(y°) + prr—— (v = XNy°), i=1,...,m (4.28Db)

Niglo <yt < NigP, i=1,...,m (4.28c¢)

p=) vl wy =0 Wy w=) (4.28d)

y = Zi:l y', T = Zi:l Mot (A ™) e A™ (4.28¢)

Here, proj.{-} represents projection of {-} onto the space of (m,y,z,xy) variables,
{v'}™ | are the extreme points of X, A™ = {(A',...,A™) e R | ™ X = 1}, and
positively homogeneous function g*(\*,y*) related to g(y) : [y, y"?] — R is defined
as:
GO ) = Atg(() 1), i ()l e [y yP] A* >0 (4.20)
0, if A =0, y* = 0.

Proof. Since S is compact, its convex hull is compact and, by Krein-Milman theorem,
is the convex hull of its extreme points. Therefore, we determine the extreme points of
S, and take their convex hull to obtain Conv(S). When y is restricted to 7 € [y, yP],
the set S = {(v,y,2,2y) | 2 = g(H) v, vy =Y, v € X, y =7} can be expressed as
an affine transform of X. Thus, the extreme points of S project to the set of extreme
points of X and we may restrict attention to these points in order to construct
Conv(S). Let S% for i = 1,...,m, denote the set S where z is restricted to v’
e, S" = {(v,y,2,2y) | 2 = v g(y), 2y = 0"y, @ = v', y € [y°,y™]}. Then,
Conv(S) is given as the convex hull of disjunctive union of S i = 1,...,m, ie.,

Conv(S) = Conv(S' U --- U S™) = Conv(Conv(Sh) U - -- U Conv(S™)).
To determine Conv(S"), we reformulate each S* as S* = {(z,y, 2z, 2y, w) | z =

v w, zy =o'y, w=g(y), =0, y° <y < y"™}, which is an affine transform of
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the set {(y,w) € [¥!°,y"] x R | w = g(y)}. This implies that it suffices to convexify
the latter set to obtain Conv(S?) = proj, {(m,w) | (4.30)}, where

w = g(y), (4.30a)
oy, (9W™) —9(y") o
wea)+ (D= - ) (4.300)
y© <y <y", (4.30¢)
z=vw, zy=7vvy z=0v" (4.30d)
The disjunctive union of Conv(S?), i = 1,...,m, leads to (4.28), where w' and y* are
to be regarded as linearization of Aw and Ay, respectively. O]

Remark 4.6. In Proposition 4.9, if Conv(S") (see proof for definition) is bounded,
closed and cone-quadratic representable (CQR), for i = 1,...,m, then Conv(S) is
CQR (see Proposition 3.3.5 in [51]). This result also applies to other conic rep-
resentations. Let Py = {z e R? | 20 - 2170 > |as|} where 0 < § < 1 is the
power-cone, and Ko, = {x1 = 29 - exp(xs/x2), 12 > 0} U {(21,0,23) | 1 = 0,25 < 0}
is the exponential-cone. It is known that various elementary functions have cone
representations [52]. For example, let g(y) = |y|° where 6 > 1 (resp. g(y) = 3°
where 6 < 0). Then, w’ > g¢*(\',y') in Proposition 4.9 can be replaced with
(w', N, yt) € P31/5,1—1/5 (resp. (w',y', \') € P?)l/(l_g)’_é/(l_é)). For this work, we are
interested in § = —1 and 0 = 2 (for reformulation with quadratic polynomials de-
scribed in §4.3.1). Next, let g(y) = —In(y), y > 0 (resp. g(y) = exp(y)), which arises
in formulations for identifying thermodynamically efficient distillation configurations
(see [53]). Here, we replace w' = ¢*(\’, y*) in Proposition 4.9 with (y*, \", —w") € Kexp
(resp. (W N, y") € Keyp). O

Remark 4.7. In Proposition 4.9, when ¢(y) is nonlinear, the convex hull descrip-
tion has nonlinear constraints (see (4.28a)). To capitalize on LP solvers, we de-
rive a polyhedral outer-approximation of Conv(S) by outer-approximating the con-
vex hull of each S° before taking their disjunctive union. Let 7" € [y'°,y"?] for

r = 1,...,R. Then, an outer-approximation of the convex hull of S® is given
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by Convoa (S') = proj{(m,w) | w = max{g(¥y") + '@ )y —¥)}Li; (4.30b) —
(4.30d)}, where ¢'(y) denotes the first derivative of g(y). The disjunctive union

of Convpa (S), i = 1,...,m, yields an outer-approximation of the convex hull of
S, given by Convpa(S) = proj {(m, 4yt ...,y™wh ..., w™ w AL ... ™) | w' =
max{g(7 )N +¢' (7 )(y' — 7 X)L, (4.28D) — (4.28¢)}. O

Now, consider the set F,. We lift F, to a higher dimensional space by appending
bilinear terms of the form f, -0 i.e., F, = {(f,0, H, f0) | (4.24), ﬁ;’“ = fin.9, ﬁ;s —
I -0, ﬁ;s = f>*-0}. Observe that the fractions and bilinear terms in 7, are defined
over the polytope obtained by the intersection of hyperplane f* = f° + f;° with the
hypercube [0, F,]* (see (4.24)). We now use Proposition 4.9 to obtain Conv(F,) =
{(f. 0, Hp,ﬁp) | (4.31)} (see §B.4 for a detailed derivation), where

H)>F, T Ty fers HY > F, T Iy fess 4.31

p = F F p = F F ( . a)
TS rs o T,(0") — T,(0" rs rsplo

Hp < fPT,(0°) + [ ol euz—ei( )] (SO — £70°), (4.31Db)
ss ss o T,(0") — T, (6 ss ssplo

HY < fT,(0°) + [ ol eur)> _91{’)( )] (f0 = f°0"), (4.31c)

(Fp = [,10° < Fpf — [0 < (F, — £,")0", (4.31d)

f;selo < ﬁ;s < f;seup’ f;selo < ﬁ;s < f;seup’ (4316)

S N LR L N (T

and the positively homogeneous function 7)y(A,0) is defined as in (4.29) from 7,,(0).
Note that the convex hull description does not require introduction of auxiliary vari-
ables. This is in contrast to the typical application of disjunctive programming, where
new variables are introduced to derive the convex hull in a lifted space. We remark
that the above yields a tighter relaxation of F, compared to the one obtained by re-

laxing each fraction and bilinear term separately over the bounds of f;n, P

and
6. This is because the first two equations in (4.31f) are not implied in the latter set.
Although, these relations can be obtained using RLT, appending these constraints

does not result in (4.31). This is because, the set described in (4.31) is the simultane-
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ous convex hull of the fraction and bilinear terms. It is known that the simultaneous
hull of these functions is strictly contained in the intersection of their individual hulls
(see Example 3.8 in [54]). In particular, (4.31b) and (4.31c), which are linearizations
(0 —0) - (0 — ') < 0 and - 4 5 (0% —=0)-(0— ') < 0 respectively,

are not 1mphed in the intersection of individual convex hulls.

The convex hull description in (4.31) is cone-quadratic representable (see Remark
4.6), since the constraints in (4.31a) can be expressed as second-order cones. For ex-
ample, HY' > FTE(f'/Fr, f07/F) = (700 = 67), or By [l S — £07) >
|f**| (Note that 0 < @l°f5s — fO7 < anfi® — f07). However, we use the cone-
quadratic representation only in §4.4. For our computational experiments in §4.5,
we use its outer-approximation given by Convoa(F,) = {(fp. 0, Hp, f@ )| H =
max{ [T, (0 )+ 150" ) (07— fi)}Ly Hy = max{ [T, (0 )+T,(0") (670 [},
(4.31b) — (4.31f)} for some 6 € [6°,0™], r = 1,..., R, where T];(H ) denotes the
derivative of T,(6) at 6 ; see Remark 4.7.

Next, consider the set V, which contains bilinear terms defined over a polytope
obtained by the intersection of a hyperrectangle in the positive orthant with the
hyperplane U™ — U* = T™ — T%. Clearly, Proposition 4.9 can be used to construct
the convex hull of V (only (4.28¢c), the equation with zy as the left-hand-side in
(4.28d), and (4.28¢) are needed to construct the hull). However, Proposition 4.9
requires enumeration of the extreme points of X. Instead, in this context, it is more
convenient to directly use Proposition 4.10, which is a special case of Proposition 2.2

in [55], to obtain Conv(V) = {(U,Y,0,U0,Y0) | (4.32)}, where

(U_ers . eloUrs) . (U_ess . eloUss) _ (Ers . eloTrs) . (Ess B QIOTSS)7 (4.32&)
(U™ — UG™) — (0U — UG — (0"1™ — T6%) — (0T — T6*),  (4.32D)
0<()I—0°()< ()™ (0—6°), V()e{U®U>T™ T}, (4.32c)
0<O® ()= (O < ()P (O™ —0), V() e {US U TS T (4.32d)

Finally, we construct the convex relaxation of U as, Ureax = {(f, U, Y, 0, H,U8, Y0, f0) |
(423)7 (fp7 HP7 97ﬁp) € CODV(.FP), p= 17 27 (U7 T7 Q,U_Q, E) € CODV(V)}'
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Proposition 4.10 ( [55]). Let X = {z € R" | Bx < b} be a polytope, D = X x
[y, y**] x R*, and S = {(z,y,2) € D | Ty, =iy, j=1,...,n}. Then, Conv(S) =

{(z,y,2y) | v <y <y™, Blry —y"°z) <bly —y*°), By™z —zy) < b(y™ —y)}.

Proof. When z is restricted to T € X, the set S = {(v,y,2y) € D |2y =7y, * = T}
can be expressed as an affine transformation of y'° < y < y"°, whose extreme points
are y € {y'°, y"P}. Therefore, the extreme points of convex hull of S are contained in
the set of points where y € {y'°,y"?}. Let S* = {(2,y,2y) | zy = y°z, Bx <b, y =
y°} and S? = {(z,y,zy) | 2y = y™x, Bx < b, y = y*°}. Then, by Krein-Milman
theorem, convex hull of S is obtained by taking the disjunctive union of S' and S2,
i.e., Conv(S) = proji, , .1z, y, zy, x', 2%, \LUN?) | Ba! < 0N, 0= 1,2, (4.33), A =
0, A? = 0}, where

z,Y,

Ty = 'y + 2%y x =2+ 2? (4.33a)

y=y°N +yPAZ N AT =1, (4.33b)

Solving the above equations leads to

y"Pr — ry xy — Y Yy —y y—y"°

1 2 1 2 _

r= up _ qlo ? r = up _ oo’ A= up _ 4lo’ AT = up _ 4lo”’ (434>
Y ) Y Y Y ) Y Y

2 Al and )\? to obtain the convex

Using the above relations, we substitute out 2!,
hull description in the proposition.

]

Remark 4.8. We remark that Conv(F,) and Conv(V) in (4.31) and (4.32) imply
_ap(ap_euP) b

L+ Ozpfgs] + 1.0 — 1™ - 6" over bound

constraints on f;°, 0, and T™ (see (4.20b)). This is because, when all f}° and T™ are

2
the convex envelope of >, [ e
fixed, the function is concave in 6. Then, by Theorem 1.4 in [56], it follows that the
convex envelope is obtained by replacing —w for all p and Y™ - 6 by their

convex envelopes. O

We comment on the construction of convex relaxations of &4 when additional

RDLT cuts described in §4.3.1 are appended to U,s. Reformulation of Underwood
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constraints using quadratic polynomials of € introduces nonconvex terms of the form
fp -0, T 6% (see (4.26)), in addition to the existing f, - T,(#) and T - 6 terms in
Urer. We relax f, - T,(0) and f, - 6 using the simultaneous hull description in (4.31).
Although Proposition 4.9 yields the simultaneous hull of T - 6% and T - 6 terms over
the polytope in V, we do not implement this relaxation. This is because the hull
description does not project onto the space of problem variables in a striaghtforward
manner. Instead, we convexify each pair of T - 6% and T - 6 terms over a box using
Corollary 4.2, and append the RLT cuts U™ - 6% — U - 92 = Y™ . §? — 15 .02 and
us-0-U»-0=71"-0-7_1>.46.

On the other hand, reformulation of Underwood constraints using inverse bound
factors introduces nonconvex terms of the form f, -6~ and T - 67! (see (4.27)), in
addition to the existing f, - 7,,(f) and Y0 terms in Us. We relax f, - T,(0) and f, - 6
using the simultaneous hull description in (4.31). We use a similar hull description,
obtained using Proposition 4.9, to relax f, - 6~! and f, - . Finally, for the same
reason mentioned above, we convexify each pair of Y -0 ! and YT - 6 terms using
Corolloary 4.2, and append RLT cuts U™ -0t —U* .0t =7™.01 —T.01 and
us-0-Us-0=7"_"-0—-7_1%.4.

Corollary 4.2. Let B = [z, 2%] x [y, y"P] x R?, where we assume 0 < 2'°, g(y) :
[y'°,y""] — R is convex, and S = {(z,y,z,zy) € B |2y = x -y, 2 = - g(y)}. Then,
Conv(S) = {(z,y,2,7y) | (4.35)}, where

lo lo

zW® —x Py —ay x—x° Ty—1°%

z = alg* , — ) + 2"Pg* , = , (4.35a)
xup _— xlo xup _— 33'10 xup _ $10 xup _ 3310

2 <g(y°) -z + [9(9;2) : Zl(oy 0)] (ﬁ _ ylox) : (4.35b)

(@ —2)y° < 2Py —xy < (¢ —2)y™®, (v —2P)y° < zy — 2Py < (z - 20y,
(4.35¢)
and g*(\*,y*) is defined as in (4.29). Further, the outer-approximation of the convex
hull is Convoa(S) = {(x,y, z, zy) | (4.36), (4.35b) — (4.35c)}, where

zlo —r u —r u u —r
22— max{g(y) (@™ — ) + ¢ (7) @y — 2y — (2" — )7 )+
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TP .
— o maxig(y) (@ - %)+ g'(F )y — 2y — (z — )L, (4.36)
for some ¥ € [y'°,y"], r = 1,..., R, and ¢'(y) denotes the first derivative of g(y)

w.r.t y.

Proof. See §B.5 in the Appendix. m

4.3.3 Valid Relaxation for 0" = ay and/or 6"’ = «;

In the previous subsection, we have assumed that a, < 6° and 6™ < oy. Instead,
if a1 and/or s is an admissible value of 6, we cannot directly use (4.31) to convexify
F,, because T’ (aq) and Th(as) are not well-defined. To construct a valid relaxation,
we first restrict the admissible values of 6 to a subset of the interval [, ] by

recognizing that each fraction in ¢ is bounded.

Proposition 4.11. (i) Valid upper bounds on f (H®)™, and on

—1, (Hrs)u

0 az’
are given by
(Hrs)up _ (Trs)up(al — 0[2) + a1 Fy + aoky
! 041(041 - 042)
F Fy— (E™- — 6))l
(e = rfrvoals = (B (on Z0))7) (4.37h)

az(ar — az))

, (4.37a)

(ii) the admissible region of 0 in the interval [ag, aq] is given by

Is rs

2_ << — . (4.38)

Qg + rs\u rs\u
(Hz")ww (Hy)w

Proof. (i) Consider the second inequality in (4.23c). Since this inequality holds for
any 0 less than 6, if we substitute ' with s, the inequality remains valid. Then,
we obtain (4.37a) from ay (o — ) Hi® < (X0 —anT™) +ay f15+ an f55 < (T75)"P (o —
ag) + a1 F1 4+ s Fy, where the last inequality is because fi® < Fy, f3° < Fy, and Y6" —
ap Y™ < (T™)"P(a; — «vp). Similarly, we substitute 8"P = «; in the first inequality in
(4.23d), and rearrange to get as(ag — o) HY < —E™ - (o — 0) + ag f° + afs’. We
maximize the right hand side by substituting fi* = Fy, f3* = Fy, and (E™ - (a; — 0))
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by its lower bound which is computed using the bounds on E™ and #. This leads to
the bound in (4.37Db).

(ii) Every point feasible to U satisfies fi%/(ay — 0) < (H{®)"™ and f3°/(0 — as) <
(H5)"P. Rearranging the inequalities yields (4.38). O

We remark that the bounds on H;?n and H;* for p = 1,2 can be computed in
the same manner as in the proof of (i) in Proposition 4.11. Even when additional
fractions are present in the Underwood constraints, each fraction can be bounded,
since the remaining fractions are strictly bounded in the interval of #. We revisit
the argument on bounds of # in light of Proposition 4.11. As mentioned before, the
common approach used in the literature to overcome the singularity arising due to 6
approaching one of the adjoining relative volatilities has been to restrict 6 to belong
to [ag + €9, a1 — €y]. However, observe that our bounds in (4.38) depend on f}* and

5°. This explains the difficulty we encountered in choosing a value for € in our
computations with prior formulations. We have found that there are instances when
6 is fairly close to one of the relative volatilities, particularly when the corresponding
flow is small. We will provide a rigorous approach to addressing this singularity using
(4.38). Our approach will be to construct a relaxation of F; as the intersection of

simultaneous convex hulls of f; - T1(f) and f; - . For brevity, we only discuss the

relaxation for F; in detail, and remark that a similar result is easily derived for Fs.

Proposition 4.12. Let H, = {(fl,Q,Hl,ﬁl) |0 i< F, 0° <0< o —
fl/Hilp, Hl = fl-Tl(Q), if 0 < Qg H1 € [O,Hilp] if 6= Qaq, ﬁl = f1-9}, where g <
6. Then, Conv(H,) = proj(flﬂ’Hl’ﬁl){(fl,H, Hhﬁljea,eb,eg)\a,)\b,)\c) | (4.39)},
where

Hy = HP\P + R T\ 69

a _ ploya c c _ ploye (439&)
Hy < H{® (m) + PN+ BX g (m)
1

oy — O o — g !

H® ( Hup) (N0 — 0°) + Fy6°
<

f0 < f0 <H p(a 6 — (Qb)Z) + F16°
J7 =47 )\b 1

(4.39D)
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910)\(1 < ea < al)\a

F
(oq— 1)A”<9”<a1x’

P > (4.39¢)
0N < 0° < <a1 — %) A
fi = H®(a A’ — 6°) + F\°
0=0"+6"+06° (4.39d)
AN+ X+ A =1, AN A= 0.
Proof. See §B.6 in the Appendix. m

The convex hull in Proposition 4.12 requires several additional variables. To avoid
the introduction of these additional variables, we use its relaxation, H1 Relax, derived

in §B.7 and shown below:

_ plo
maX{flTl(ar) +T1/(§T)(ﬁl _@T’fl)}iil < Hp < fl + Hilp ( 0—40 ) )

a1 — 910 ap — 910
(4.40a)
max{@lofl, F19 + a1f1 - Oélpl} < min {alfh F19 + Hlofl — 91°F1} s (440b)
0 S
91 < 6 < a1 — H_ilp’ (440C)

where 6 € [, 01), r = 1,..., R. Here, we argue from first principles that (4.40) is a
valid relaxation. To derive the first inequality in (4.40a), observe that H; > f1-T1(0) >
fi-max{Ti(6") + T!(6)(# — 0 )} ,. Disaggregating the product and linearizing the
bilinear term yields (4.40a). To derive the second inequality in (4.40a), we begin
with Hy - (; — 6) < fi1, and replace the bilinear term on the left hand side with its
convex envelope. (4.40b) is the convex hull of f0 = fi -0 over [0, F1] x [0, 1],
and (4.40c) is the same as (4.38). Using (4.40), we obtain a valid relaxation of F;
given by Figaws = (1.0, Hy, £0,) | (F,6, HP, f67) € M. (f1%.0, HE, £07) €

Pt (F520, HE, J07) € Mg HP = HP + HY, f6° = [0 + [67). Tnspired
from (4.31), the last two equations in the relaxation are derived by multiplying the

component mass balance, (4.18f), with 7} (0) and 6, respectively.
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4.3.4 Discretization and Solution Procedure

In this work, instead of using convex relaxations of ¢/ in a spatial branch-and-
bound framework to solve the MINLP, we construct a piecewise relaxation (see Defi-
nition 4.1) that is iteratively improved until we prove €,—optimality. This approach

capitalizes on state-of-the-art MIP solvers, such as Gurobi.

Definition 4.1 (Piecewise Relaxation). Letx = (z1,...,1,), B = [2'°, 2] x[y*°, y*P]
RS = {(z,y) € B | gi(z,y) <0, i = 1,...,m}, and Sreax = {(z,y) €
B | gi(z,y) <0, ¢ = 1,...,m} be its convex relaxation , where {G;}*, denote
convezr underestimators of {g;}™, over B. Let, the domain of y be partitioned as
T ={[YO,v",.. . [YH=LYH with Y? =y, YIH = ¢y and YO < Y! < ... Y
By piecewise relaxation of S, we refer to ULI=‘1 St Relax, Where Sirelax = {(7,y,2) €
By | Gis(z,y) <0, i =1,....,m}, By = [, 2] x [Y=L Y], and §;, is the convex

under-estimator of g; over By. ]

Piecewise relaxation of U can be constructed by partitioning the domain of Un-
derwood root as Z = {[@° 0'],...,[0F ©F1]}, where ©° = a,, OF = a4, and
0" < O < --- < O and taking the union of sets UEI Ut Relax, Where Uy Relax
denotes the convex relaxation of U restricted to § € [© ©']. The set U Relax 18
constructed as outlined in §4.3.2 and §4.3.3. Next, using standard disjunctive pro-
gramming techniques, the piecewise relaxation can be expressed as a Mixed Integer
Program (MIP). While this approach leads to a locally ideal formulation, it leads to
a bigger problem size, because of which the computational time required is higher.
Thus, in favor of smaller problem size, we do the following.

Instead of reformulating ¢ in each partition using the local bound factors of 8, we
reformulate with the overall bound factors of 6: (0 —ay) and («a; —0). Next, we require
that (fp,G,Hp,ﬁp), p=1,2,and (U,Y,0,U6,Y6) lie in piecewise relaxations of F,
and V, respectively. We choose piecewise relaxation of F; to be Ji‘l_l Convou(Fit)u
F1,/7),Relax, Piecewise relaxation of Fy to be Fa 1 Relax U UEQ Convpa(Fay), and piece-

wise relaxation of V' to be El Conv(V;). Here, the additional subscript ¢ denotes
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that the set is restricted to 6 € [©'"!, ©']. Observe that if zero is not an admissible
value to the denominators of the fractions, we use outer-approximation of convex
hulls derived in §4.3.2 to relax F,. Otherwise, we use a relaxation of the convex hull
description, such as the one derived in §4.3.3. We use disjunctive programming to

express the piecewise relaxations as the following mixed-integer sets.

[F, HY = 0007 + T{O)(£67, — 07 13), (4.41a)
[, HE = 100 + Ti(e0)( 107, = O %), (4.41D)
1, g STy (0071 +T1/(@t_1)(ﬁis,t — O R, (4.41c)
1, o T1(6") + T{(O)(f67, — ©' f), (4.41d)

1

Ty (011 — Ty (8Y)
o1 _ ot

|I\
< Y T [ kﬁy@“m)

f17‘z| s Qm — @|I\*1Mt
+ a1 — Q71 (HP)™ [W] (4.41e)
= i1 .
T @ —T @ S8 —1 rss
Z f @t 1 |: l( @tz — @1t( ):| (ﬁl,t . @t 1 Lt)
fl,m . Oz — o1,
0y — O 1 + (H7) [m] (4.41f)

ah II\ (Fupe = 13 = 1S7St>@t_1 < (P — ﬁist N ﬁis ) < (P — fi5 — 1s,st)@t,

(4.41g)
[, S50 < f07, < 10l el < f67, < e, (4411)
HY = HY + HY, f0) = [07 + /0; )

17| |Z] IZ|
ZAH Eﬁﬁ6=2m (4.415)

t=1

] I
D=1 e o1}, [t (4.41k)
and

U_@rs _ U_ess — ﬁrs _ ESS (4423)



105

[, 0< (- i@t s ()0 - “pi@t U, ¥ () € (U, U T, T,
(4.42c)
7, 02 300 (00 < (73] 0 — (999, ¥ () & (U=, 0777 7],
- h (4.42d)
() = 2(% 0< ()< (), Y () e {US U TS T} (4.42¢)
iﬂt =1, me{01), [ (4.42f)

The piecewise relaxation of J5 can be expressed as a mixed-integer set in a similar
manner. The derivation of these sets is provided in §B.8 and §B.9.

In §4.4, we illustrate through numerical examples the impact of various aspects
described in this section in strengthening the overall relaxation of MINLP (A). Fi-
nally, Algorithm 2 outlines our approach to solve the MINLP. We start with a coarse
discretization and use an adaptive partitioning scheme to iteratively refine the par-
titions until €,—optimality is achieved. To avoid numerical issues, we maintain that
each partition, (0, — ©% 1), is at least MinPrtSize in length.

1jq tjq

4.4 Effect of Individual Cuts on Relaxation

This section illustrates, through numerical examples, the impact of of various
aspects described in §4.3 in strengthening the overall relaxation of MINLP (A). We
highlight the individual effect of RDLT cuts derived from Underwood constraints,
simultaneous hulls derived in §4.3.2, and discretization on the overall relaxation. In
all the scenarios below, stream and heat exchanger variables are considered to be

binary.

Scenario 1 : (BARON'’s root node relaxation) Here, we use BARON 18.5.8, on GAMS
25.1, to construct and solve the relaxation of MINLP (A). This is achieved by

specifying BARON option MaxIter = 1, which terminates the branch-and-cut



[y

'y

© 0 9 o O

10
11
12
13
14

15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

106

Input :N,a=(a1,...,an), F=(F,....,FN), 2= (®1,n, P11,...,PN,N)

Output : Vectors y and x containing optimal values of discrete (streams and heat
exchangers present in the configuration), and continuous (material flows in
columns and heat exchangers) variables, respectively

Parameters: Relative tolerance for convergence ¢, = 0.01, Minimum length of each partition
MinPrtSize= 1073

Function [y, 2] = VAPORDUTY(N, «, F, ®)

T . A .o i—1 ‘IZ ‘1 ‘I’L ‘
Initialization: For every [i,j] € S, [q]! ", Zijq ¢ {[@?Jq, @}]q} - [@Z]q“ GWJ" } }, where
0 _ Z:j4] 0 1 1Z:54]
Oijq = Qa+1, @mq]q = ag, O35 < Bjjq < @qu
(VD™ y™ g g7x] RELAXATION(N, a, F, ®, T;j,), (see function for definitions)
[VD'P, 2®P] «+ LocALSOLUTION(N, a, F, ®, y'*, x'™X ") (see function for definitions)
if <%U¥Dlo) < ¢ then
The relative tolerance ¢, is achieved.
y =y and x = P
else
For every [i,j] € S, [K]™", [I0EE, if split [, k]/[1, j] is absent in y™, then Z;jq < Zyjq.
Otherwise, [q]}_, Zijq - REFINEDISCRETIZATION(Z;jq,05)%)
Go to Line 3
end
end

Function [VD"°, y'™ x'™ %] = RELAXATION(N, a, F, ®, Z;;,)

Construct relaxatlon (A)™*: Formulate MINLP (A) described in §4. For [i,j] € S, [[k]}gfl,
[l fjll, [g]¥ ,, reformulate Underwood constraints as described in §5.1, and construct
piecewise relaxations of sets Fixijgp, P = 1,...,J, and Vi as described in §5.4.

Solve the resulting MI(L/SOC)P

VD' « Optimum objective function value

rix Xy decision

[y™*, 2"% 0'X] <~ Optimal values of discrete (y''*) and continuous (z
variables. Vectors "> and 6™ contain optimal values of material flows and Underwood

roots, respectively.
end

Function [VD", 2] = LocALSOLUTION(N, o, F, ®, y™™, ™ 6")
Formulate MINLP (A) described in §4, and fix discrete decisions y = y".
Using (', 8™%) as initial point, solve the resulting NLP using local solvers
VD" + Optimum objective function value

2P « Optimal values of material flows

end

Function REFINEDISCRETIZATION (Z;jq, Gﬂ")

Identify 1 <t < |Z;;,| such that 65X € [@t Lot

ijq ijq > ijq
if (9’{;’; ®f]q1) < MinPrtSize or (©};, — 93’;) <MinPrtSize then
| Zijq < Tijq
else
1 1 X X
‘ Iijq — {Iijq \ {[equ 765](1]}} U {[@f]q 793(]} [92(17 @Zq]}
end

return Z;;,
end

Algorithm 2: Adaptive partitioning scheme to solve MINLP (A)
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algorithm after processing the root node. We let 6;;, € [ag+1 + €9, g — €g], With
eg = 1077, for every [[q]]g_l, [7,7] € S to avoid a possible division by zero. We
use BARON’s root node relaxation as a reference for comparison. We remark
that BARON solves MIP relaxations as needed [40]. We also verified that the

bound obtained is close to solving a factorable MIP relaxation.

: (Simultaneous hull of fractional terms) This scenario illustrates the improve-
ment in relaxation due to the use of simultaneous convexification techniques.
We linearize all Underwood constraints in the MINLP by introducing auxiliary
variables for each fraction. To relax fractional terms, we use (4.31), or (4.40) if
zero is an admissible value for the range of the denominator of fractions. The
nonlinear constraints in (4.31) are expressed as second-order cones, and the re-
sulting Mixed Integer Second-order Cone Program (MISOCP) is solved with
Gurobi 8.0 using Gurobi/MATLAB interface.

: (RDLT with linear polynomials of §) This scenario illustrates the improvement
in relaxation due to reformulation of Underwood constraints using RDLT. We
reformulate Underwood constraints as in (4.23), convexify fractional terms using

(4.31) or (4.40), and convexify bilinear terms of the form Y6 = -6 using (4.32).

(RDLT with quadratic polynomials of ) To the relaxation in Scenario 3,
we add cuts derived by reformulating Underwood constraints with quadratic
polynomials of 6 (see (4.26)), as described in §4.3.1. This introduces additional
nonlinear terms of the form Y - §?, which we relax in the manner described

towards the end of §4.3.2.

: (RDLT with inverse bound factors of §) To the relaxation in Scenario 3, we
add cuts derived by reformulating Underwood constraints with inverse bound
factors (see (4.27)). This introduces additional nonlinear terms of the form f,/6

and V' /0, which we relax in the manner described towards the end of §4.3.2.
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Scenario 6 : (Discretization) Finally, to illustrate the potential of discretization, we con-
struct piecewise relaxation of Scenario 3. We discretize the domain of each

Underwood root into two partitions, and choose the roots of columns perform-

N-1

ing the split of the process feed, {Gqu}q:1 ,

as the partition points. In other
words, we let Z;;, = {[ag+1,01nq]: [O1ng, g} for i < ¢ < j and [i,j] € S. As
pointed out in Remark 4.4, these roots can be computed prior to solving the
optimization problem. We construct the piecewise relaxation of MINLP (A) as

outlined in §4.3.4.

Table 4.6 reports the percentage gap value, defined as

(4.43)

% Gap = 100 x (1 _ Optimal value of relaxation)

Optimal value of (A)

on a set of cases evaluated for all the Scenarios. To compare against BARON, we

also report % gap closed (numbers in parenthesis in Table 4.6), defined as

% Gap Closed = 100 x <1 _ Optimal value of (A) — Optimal value of relaxation)

Optimal value of (A) — Optimal value in Scenario 1
(4.44)

We refer to a particular combination of parameter settings: N, {}*},}IJJ\’:17 {ap}évzl,

®yy and {®,,})_ ), as a case. The parameter settings for the cases considered in
Table 4.6 are listed in the caption. It is worth noting that Case-A [17], Case-B
and Case-C [46] correspond to physical mixtures: mixture of alcohols, mixture of
light paraffins and mixture of light olefins and paraffins. The remaining cases do not
directly correspond to physical mixtures, but are representative of specific classes of
separations (see [39] for more details). Under Scenario 2, we report % Gap value, and
% Gap closed for all cases when simultaneous hulls are used to convexify fractions.
It can be observed that, this approach closes on an average 45.8% of the gap. In
particular, in Case-E, implementation of simultaneous hull completely closes the gap
at root node. Next, under Scenario 3, we report the combined effect of our RDLT

approach and simultaneous hulls. This approach closes on an average 74.1% of the

gap. Under Scenarios 4 and 5, we report further improvement in relaxation due to
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addition RDLT cuts discussed in §4.3.1 to the relaxation in Scenario 3. RDLT cuts
with quadratic polynomials of Underwood roots closes the gap completely in Case-B.
Finally, the gap can be completely closed for all the cases considered in Table 4.6
by discretizing the domain of Underwood root into two partitions, as described in

Scenario 6.

4.5 Computational Results

We conducted computational experiments on a test set of 496 cases, taken from
[35,39], which is a representative of a majority of separations. Parameter settings
for the test set are listed in §A in e-companion. In this section, we demonstrate
that our proposed approach is able to solve MINLP (A) within a relative tolerance of
1%. We also compare the performance of our approach with prior approaches in the
literature [17,22,23]. Since the prior approaches develop an (MI)NLP model, we use
BARON 18.5.8 via GAMS 25.1 to solve these (MI)NLPs, where all BARON options
are set at their default values. For the adpative partitioning scheme described in
Algorithm 1, we use Gurobi 8.0 [49] to solve the resulting MIPs; and use IPOPT [57] as
a local solver. The model is loaded into Gurobi using the MATLAB/Gurobi interface,
while IPOPT is used via MATLAB/GAMS interface and GAMS 25.1. We used single
CPU thread to solve the MIPs so as to keep the comparison with BARON fair. Besides
the setting of number of threads, the remaining options for Gurobi and IPOPT were
left at their defaults. All computations were done on a Dell Optiplex 5040 with Intel
Core i7-6700 3.4 GHz processor and 16 GB RAM, and is running 64-bit Windows 7.
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4.5.1 Comparison with Prior Approaches

Here, we compare the performance of three approaches, namely those of [9,23],
and the one proposed here. For all the computations, we set the relative tolerance

for convergence (€,), defined as

BestLLB
=(1- 4.45
‘ ( BestUB) (4.45)

where BestLLB and BestUB are the best-known relaxation bound and feasible solution,

to 1% i.e., ¢, = 0.01. We impose a CPU time limit of five hours as the termination

criterion.

Approach 1 : We solve MINLP (A) using the adaptive partitioning approach described in
Algorithm 2. We begin with four partitions for each Underwood root i.e., Z;;, =
{log1, (agr + O1nvg) /2], [(ager + O1vg)/2, O1nvgl, [O1nvg: (g + O1vg) /2], [(O1vg +
ag)/2, ]} for every [¢]! ", [4,7] € S. We compute the Underwood roots for
the splits of the process feed {6, Nq}évz_ll prior to solving the MINLP (see Remark
4.4). For all but 4 cases, we set MinPrtSize = 10 2. For the remaining cases,
we reduced MinPrtSize to 10~ in order to achieve the relative tolerance of 1%.
Finally, we point out that the upper bounds on material flows are computed by

solving (4.15), where we choose

q

VD* = max Z

ge{L,,N=1} = ap — O1nyg

F,
el (4.46)
and ¢ = 1.5. We note that (4.46) is the objective function value corresponding
to a feasible point of one of the admissible configurations, commonly known in

literature as Fully Thermally Coupled or Petlyuk configuration (see [14,15]).

Approach 2 : We obtained the GAMS code of the model proposed in [9] from the MINLP
library [24]. There, the authors were interested in identifying the configura-
tion minimizing the total annual cost. For our computations, we modify their
code in the following manner. First, as mentioned in [23], the model of [24]

admits solutions that are physically infeasible. This is because the constraints
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corresponding to (A19) in their model should be tight for certain Underwood
roots, and their model does not impose this requirement. We have added these
missing constraints to their GAMS code. Second, the authors employed the
BigM approach in order to transform certain disjunctions into a set of inequal-
ities. Unfortunately, the BigM value used for vapor and liquid bypass in their
GAMS code made a few test cases infeasible. Therefore, we specified 2.5 VD* as
the BigM value for the vapor and liquid bypasses. This number was found by
choosing the smallest BigM value for which we found a feasible solution. Third,
the authors use a parameter €, and restrict 0,54 € [ 11 + €9, oy — €] for [¢] ",
[7,7] € P in order to avoid the singularity associated with 6;;, approaching «,
or ayy1. Their choice of €y, in some cases, made the optimal solution infeasible.
Empirically, we found that ey = 10~* does not cut off the optimal solution, so
we set e = 107%. Fourth, the cost equations required for the evaluation of the
objective function were removed from the model, and the objective function
was modified to compute the total vapor duty instead. The resulting MINLP
is then solved with BARON.

: Here, we consider the MINLP proposed in [23]. For a consistent comparison,
we set the upper bound on all vapor flows to be 1.5VD*. Further, we restrict
0ijq € [cgr1 + €0, g — 9], Where g = 1074, for [¢]"", [i,j] € S in order to
avoid the singularity associated with 6,;, approaching o, or oy41. The resulting

MINLP is then solved using BARON.

Figure 4.7(a) shows the percentage of cases solved to 1%-optimality against time,

with Approach 1 (solid blue curve), Approach 2 (dotted black curve), and Approach

3 (dashed red curve). Observe that Approach 2 solves about 10% of cases to 1%-

optimality within five hours. This is not surprising because [9, 17] also reported

difficulties in convergence. To overcome the challenges, the authors architected an

algorithm by modifying logic-based outer-approximation. While the method resulted



100
— Approach 1

---------- Approach 2
= = = Approach 3

90

80

70

60

50 - -

40 [

Percentage of Cases
1
1
1
1

30

20

10

_____

10

100
N0 r e
80 [ I

01 4

60
50

40

Percentage of Cases

30t
20

10

P el

— Approach 1
.......... Approach 2
_| - - —Approach 3

Fig. 4.7. (a) Plot showing percentage of cases solved to 1%—optimality
against time. Here, Approach 1 corresponds to the current work,
Approach 2 corresponds to the model proposed in [9] solved with
BARON, after making the changes described in §4.5, and Approach
3 corresponds to the model proposed in [23] solved with BARON (b)
Plot showing the remaining duality Gap at the end of five hours for

all the three approaches.

5 10 15 20 25 30

% Gap

(b)

35 40 45 50

113



114

in good solutions, optimality was not guaranteed. Approach 3 solves 64% of the cases
in the test set.

We remark that [23] introduced a new search-space formulation, derived cuts that
exploit monotonicity of Underwood constraints, and modeled the absence/presence
of a column using disjunctions. Nevertheless, this approach fails to solve the problem
to 1%-optimality for 36% of the cases. The progress of lower bound for a majority
of these cases is either stagnant or very slow. Figure 4.7(b) depicts the cumulative
percentage of cases as a function of the remaining duality gap at the end of five hours.
In contrast, our approach, for the first time, solves all 496 cases from this test set

within an optimality tolerance of 1%.
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Fig. 4.8. Profiles showing remaining % Gap at the end of specific time
instances for Approach 1 (A1) and Approach 3 (A3).

Figure 4.8 depicts cumulative percentage of cases as a function of the remaining
duality gap at specific time instances for Approach 1. This graph demonstrates that
our solution approach, with a CPU time of twenty minutes, already outperforms
the best prior MINLP based approach allowed to run for a CPU time of five hours.
Further, within 1800 s (green curve), 3600s (magenta curve) and 7200s (black curve),
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the proposed approach solves all 496 cases to less than 5.5%, 3.5% and 2.5% gap,
respectively. Since (A) is primarily designed as a screening tool for an otherwise
highly cumbersome search of optimal distillation configuration, practicing engineers
can use Approach 1 to quickly identify near optimal solutions that are worthy of
further exploration. Although we do not provide specific configurations found using
our procedure, the potential benefits are documented in [5,23] for a crude distillation

case study.

4.5.2 Comparison with Nallasivam et al. [22]

Recently, [22] proposed an alternative technique that relies on explicit enumer-
ation for identifying distillation configuration requiring the least vapor duty. After
enumerating all the configurations, an NLP is formulated for each configuration and
solved to 1%—optimality with BARON. We refer to this as Approach 4. We com-
pare the performance of Approach 4, with Approaches 1 and 3 by fixing the discrete
decisions to a specific configuration. We choose Fully Thermally Coupled (FTC) con-
figuration, characterized by ¢;; =1V [i,j] € T, xi; =0V (i,7) e C\{(1, 1)}, x11 = 1,
pi; = 0V (i,7) € R\{(IN,N)}, and pyn = 1, for comparison. This comparison
ignores the advances in the search space formulation discussed in §4.2.2 and other
advances that relate Underwood constraints with stream variables, since we fix the
binary variables a priori. We set the time limit as one hour and a relative gap of 1%
(e, = 0.01) as termination criteria.

Figure 4.9 depicts the percentage of cases solved as a function of computational
time for the three approaches. Clearly, BARON solves more number of cases to
1%—optimality with Approach 3 than with Approach 4. Despite the improvement,
only 82% of the cases are solved to 1%—optimality using Approach 3. In contrast,

our approach solves all cases in this test set within 100 s.
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against time, when discrete variables are fixed to fully thermally cou-
pled configuration (see §4.5.2). Approach 4 corresponds to the model
proposed in [22] solved with BARON.

4.6 Concluding Remarks

This work addressed the optimal design of distillation configurations, which are
widely used in all chemical and petrochemical industries, and are significant con-
sumers of energy in the world economy. We proposed a novel MINLP that identifies
energy-efficient configurations for a given application. Given the complexity from
combinatorial explosion of the choice set and nonconvex Underwood constraints, this
problem has resisted solution approaches. In this paper, we report on the first suc-
cessful approach and solve this problem to global optimality for five-component mix-
tures. The key contributions that make this possible are (i) new formulation for
discrete choices that is strictly tighter than the previous formulations, (i) new valid
cuts to the problem using RDLT, and various other convexification results for special
structures, and (iii) discretization techniques and an adaptive partitioning scheme to
solve the MINLP to e—optimality. On a test set that is a representative of a ma-

jority of five-component separations, we demonstrated that our approach solves all
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the instances in a reasonable amount of time, which was not possible using existing
approaches. In summary, this paper describes the first solution approach that can
reliably and quickly screen several thousands of alternative distillation configurations
and identify solutions that consume less energy and, thereby, lead to less greenhouse
gas emissions. This approach has the potential to reduce the carbon footprint and

energy usage of thermal separation processes.
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5. MINIMIZATION OF EXERGY LOSS

Process designers may use several criteria to filter configurations from the search space.
In the last two chapters, we have shown how to identify the distillation configuration
that requires least vapor vapor duty. In this chapter, we extend the procedure for
identifying the configuration maximizing the thermodynamic efficiency (), defined

as

Minimum work of separation

= 5.1
g Total work of separation (5-1)

Since all configurations in the search space perform the same task of separating a
multicomponent mixture into its constituent components, the minimum work of sep-
aration is the same for all configurations. Thus, configurations with the highest
thermodynamic efficiency require the least total or net work for separation. Ther-
modynamic analysis is crucial for work-driven distillations like cryogenic/sub-ambient
separations and above-ambient distillations employing heat pumps (vapor recompres-
sion cycle, for example). [28] elucidate how thermodynamic analysis provides valuable
insights for synthesis of separation systems. For example, in cases where economic
models optimizing either operating cost (minimization of heat duty as in [22,23]) or
total annualized cost (annualized CAPEX4+OPEX as in [9,58]) yield distinct configu-
rations having comparable objective function values, thermodynamic analysis may be
supplemented to further discriminate such configurations. The other instance where
thermodynamic analysis may be useful is when extensive heat integration is desired,
both within the separation unit and with the rest of the plant. While it is possible
to formulate a model with extensive heat integration, it may prove computationally
challenging to solve the model. Since the method in this article is intended as a
screening step, thermodynamic analysis considered here may be faster and it yields a

model that is relatively easier to solve.
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Now, consider the definition of thermodynamic efficiency in (5.1). The total work

required for separation is obtained as
Total work of separation = Minimum work of separation + Exergy loss. (5.2)

Fxergy of a stream is defined as its work potential i.e.,the maximum work that can
be extracted when a stream is brought from its current state to thermal, mechanical
and chemical equilibrium with the environment via a reversible path. FEzergy loss
of a system corresponds to the loss of work potential due to irreversibilities in the
system. We refer readers to [59] for a lucid description of exergy concepts and ap-
plications. From (5.2), a configuration with higher irreversibilities has higher exergy
losses; thereby requiring higher total work for separation. This makes the overall sep-
aration process less efficient, thermodynamically. In contrast, a configuration with
lower irreversibilities requires lower total work, making it thermodynamically more
efficient. Thus, the problem of identifying thermodynamically efficient configurations
is equivalent to the problem of identifying configurations with least exergy losses.
Since both problems are equivalent, we choose the latter problem as it has a simpler
objective function.

While the formulation in Chapter 3 identifies configurations requiring least heat
duty (first law savings), it does not take into account the temperature levels of
streams. As a result, it may lead to a solution that is attractive in terms of energy
consumption, but may require utilities at extreme temperatures (second law penalty).
Such solutions are not thermodynamically efficient. Therefore, in this work, we build
upon the formulation introduced in Chapter 3 to account for temperature levels of
streams in order to identify exergetically-efficient configurations.

Here, we review the studies which used thermodynamic analysis to obtain insights
on improving the efficiency of the separation process. Use of thermodynamic anal-
ysis in the context of multicomponent distillation may be traced back to as early
as 1960s. [60] introduced a novel configuration, which is now commonly known as
Fully Thermally Coupled (FTC) configuration, and used thermodynamic arguments
to support their design. Subsequent works include [28,29,61-67]. In particular, we
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highlight that [28,63,65] independently derived a relation relating temperature as a
function of liquid mole fraction and relative volatilities of constituent components,
for a multicomponent mixture using the Clausius-Claypeyron equation. Using this
relation, all the aforementioned authors independently derived an expression for net
work /thermodynamic efficiency /exergy loss that does not depend on temperature
explicitly. Such results hold for both sub-ambient and above-ambient operation, pro-
vided the mixture has the same composition and relative volatilities for constituent
components. However, [28] focused only on sharp-split configurations. Though their
equations also hold for sloppy split configurations, a global optimization framework,
such as the one described here, is needed [35]. On the other hand, [29,62-65] consid-
ered only binary and ternary mixtures. To the best of our knowledge, a framework
that screens through all regular-column configurations, and identifies exergetically-
efficient configurations for a general N-component zeotropic mixture was not unavail-
able until recently. [53] developed an explicit enumeration approach that formulates a
Nonlinear Program (NLP), with minimization of exergy loss as the objective function,
for each configuration in the search space. NLPs are then solved to e-global optimal-
ity using BARON [21,40]. The configurations are then ranklisted in ascending order
of the minimum exergy loss, to identify a handful of configurations attractive for the
given application. The contributions in this chapter are closely related to [53], and
they differ from the latter in the following aspects. Explicit enumeration, like the
one proposed by [53], can be computationally intensive for mixtures containing five
or more components. Whereas, the current approach is computationally more effi-
cient as it enumerates implicitly and avoids solving every configuration in the search
space. Further, this work proposes a novel reformulation of equations for exergy loss
calculation. This reformulated model requires fewer number of nonlinear nonconvex
equations compared to the model used in [53].

The rest of the chapter is organized as follows. In §5.1, we formulate the MINLP.
In §5.2, we consider a case study concerning the recovery of Natural Gas Liquids

(NGLs) from shale gas. In addition, we also consider several examples from literature
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Fig. 5.1. A four-component system

to investigate the solution performance to changes in process parameters. Finally, we

conclude the chapter in §5.3.

5.1 Problem Formulation

Figure 5.1 shows a four-component system (N = 4). We use the same notation
introduced in Chapter 4.

The problem definition can be briefly stated as follows. Given an N-component
mixture along with the composition of the process feed {Fp}f,\le and component relative
volatilities {a,}); (measured w.r.t the least volatile component i.e.,a; > -+ > ay),
identify the optimal distillation configuration and its operating conditions minimizing
the total exergy loss (A&ss) for separating the given mixture into its constituent
components. Here, and in the rest of the chapter, {p};j:l is a shorthand notation for

the set {1,...,n}.
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For better readability, we begin the formulation (W) with the problem constraints,
and defer the description of the objective function to the end. Table 5.1 shows the

definition of relevant sets required for the problem formulation.

Table 5.1.
Definition of sets.

Set Symbol Definition

Streams T {li,j]: 1<i<j< N}
Splits P T—A{[i,i]: 1<i< N}
Submixtures S P —{[1,N]}

Condensers C {(4,7): 1<i<j<N-1}
Reboilers R {(4,7): 2<i<j<N}
Quadrature points g {1,2}

5.1.1 Space of Admissible Distillation Configurations

We first describe the constraints to model the space of all regular-column configu-
rations (both basic and thermally coupled configurations). We define binary variables
G; = {1, if [4, j] is present; 0, otherwise} for [7,j] € T, xi; = {1, if condenser (4, j)
is present; 0, otherwise} for (¢, j) € C, and p; ; = {1, if reboiler (i, j) is present; 0, otherwise}
for (4, j) € R. In addition, we define split variables o, j; j, such that o; 5, ; = 1 if |7, k]
and [/, j] are produced as distillate and residue from [é, j|, and o; 4, ; = 0 otherwise.
Hereafter, for conciseness, we write [i,k]/[l, j] to represent that split of stream [i, j]
produces [i, k] and [I, j] as distillate and residue. We note that, for a given distillate
stream [4, k] from [4, j], i < k < j—1, only the splits in {[¢, k]/[I, j]};2,, are feasible.
Whereas, the remaining splits {[i, k]/[l, ]}/_,,, are infeasible, because one or more
components are not conserved in these splits. Similarly, for a given residue stream

|1, 7] from [i, 4], i + 1 < I < j, only the splits in {[i, k]/[l,7]}]_;_, are feasible. We
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define split variables only for feasible splits. Thus, the domain of indices for split
variables is given by | J1_; {oirui itk or Ul isy {oik,bie, o for [i, 5] € P.

We borrow constraints (A2) through (A8) in Chapter 4 for modeling the space
of admissible configurations, and substitute out the auxiliary variables (7, 8, v,w) to
obtain the formulation in the space of ({, 0, p, x) variables. The variable elimination
process is described in the supplementary information. The resulting constraints are

described below.

GQrN=C1=-=Cvn~=1, (W1)
J—1 k4l
Z Z Oiklj = gzg v ['L.aj]e,]jv (WQ)
k=i l=i+1

j+1 ;
Gij < Z > kal+z Z Ok lisj i, j1€ T\{[1, N1}, (W3)

I=j+1 k=i+1 k=11=i—1

-1 j-1 3
Xii <Gg— . Y, ok, ¥ (Lj)eC

k=11=i—1

o | (W4)

Pi,j < Ci,j Z Z O4,4.k,1s (27]) €ER

=741 k=i+1 )

Xii = Gii — 2 Oki—1ii ¥V (4,1)€C

N
Pii = Gii — Z Oiiir1y ¥V (i,i) eR

I=j+1

Z Z Z Oi.rm,s < Z Z Z Oirim,s < 17 [[n]]k+17 Hk ’L+1

s=n r=i m=i+1 s=k r=t m=1+1

j—1 l J J—1 )
Z Z Z Ui,n,s,j < Z Z Z Ui,n,s,j < 17 [[m]]llia [[l]]%il
r=

1 s=m+1n=s—1 r=1s=l+1n=s—1

. (Wo6)

J
Here, [n]}Y,; is a shorthand notation for Vn e {k+1,...,N}. (W1) ensures that the
process feed and the pure components are present in a configuration. (W2) ensures
that if a submixture [4, j] is produced in a configuration, it undergoes a split. (W3)

ensures that every stream except the process feed stream is produced from at least
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one split. (W4) and (W5) model the presence/absence of heat exchangers. (W6)

ensures that only regular column configurations are present in the search space.

Proposition 5.1. Let S = {(¢, 0, x, p, 7, B) € Unit hypercube | (W1) — (W6), 7; 1, =
S Okt Bt = Ya_i 1 Oikigs V [i.4] € P} be an affine lift of (W1) — (W6).
Then, S is tighter than the intersection of the search space formulations in (i) [9],

(ii) [10], and (iii) [23].

Proof. See proof of Proposition 7 in Chapter 4. n

5.1.2 Mass Balance Constraints

Figures 5.2(a) and 5.2(b) show the superstructure for a four-component system
and schematic of a representative column. The mass balances are the same as those

described in Chapter 3:
(H12) — (H17) (WT)

The superstructure enables modeling of single/two phase heat exchangers, thermal
coupling and a combination of thermal coupling and heat exchanger. In this chapter,
we restrict that either a two-phase heat exchanger or a thermal coupling can be
present, but not both. Further, we model two-phase heat exchangers as shown in
Figure 5.3.

For a condenser, we split the inlet vapor stream into two; such that one stream
passes through the condenser to supply the required liquid reflux and the liquid
portion of the feed to the subsequent column, while the other stream supplies the
vapor portion of the feed to the subsequent column. In a similar manner, for a reboiler,
we split the inlet liquid stream into two; such that one stream passes through the
reboiler to supply the required vapor reflux and the vapor portion of the feed to the
subsequent column, while the other stream supplies liquid portion of the feed to the

subsequent column. Note that the vapor and liquid streams will not be in equilibrium
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Fig. 5.2. (a) Four-component superstructure and (b) A representative
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Fig. 5.3. (a) Two-phase condenser (b) Two-phase reboiler

unlike in conventional two-phase heat exchangers. Though this alternate approach
of modeling two-phase heat exchangers does not affect minimum vapor requirement
calculations, it affects exergy calculations. This is because, the temperature variation
in each condenser (resp. reboiler) goes from dew point to all the way to bubble point
(resp. bubble point to dew point). Whereas in a conventional two-phase condenser
(resp. reboiler), the temperature is fixed at the vapor-liquid equilibrium temperature
which is higher (resp. lower) than the bubble point (resp. dew popint). Despite this
limitation, we choose to model two-phase exchangers in this manner to reduce the
complexity (number of nonlinear nonconvex equations) of the model. We believe that
this simplification does not change the ranklist of configurations significantly, and

thus, it can be used for first-step screening. The required constraints are modeled as
0< FC,j < (FC;;)™xi;
(Ki51)" X5 < Ki5in < (K500)™ (1= Xay)
0< FR;; < (FR;;)"pi,;
(Uffm)lopi,j <SUE ;< (UE )™ - piy)

Here, (-)" and ()" represent upper and lower bounds on (-), respectively. Observe

vV (i,5)€C, (W8)

Y (i,j)€R. (W9)

that, when condenser (resp. reboiler) is absent i.e.,x; ; = 0 (resp. p;; = 0), material
flow into the condenser FC;; (resp. reboiler FR; ;) is forced to zero and Kj%,, = 0

resp. U, . = 0). This scenario models thermal coupling. On the other hand, the
i—1,5
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scenario where x; ; = 1 (resp. p;; = 1) models a two-phase condenser (resp. reboiler)
by enforcing K%, < 0 (resp. U, ; < 0). When condenser (3, j) (resp. reboiler (i, 5))
is present, the maximum liquid (resp. vapor) flowrate to the pseudocolumn @; ; from
Qiji1 (resp. Qij-1) is ;:i F,. Therefore, we choose (Kj5,,)"° = — i)=i F, and
(Ufiljj)lo = — ;:i F,. The choice of upper bounds is described in Chapter 3.

5.1.3 Underwood Constraints

Consider a pseudocolumn @); ; in the superstructure. It performs the separation
of stream [z, j], when [i, j] is present. The resulting component distribution, vapor
and liquid flows are governed by Underwood constraints. On the other hand, when
[7,7] is absent, pseudocolumn @); ; bypasses material flows from the rectifying (resp.
stripping) section of the parent pseudocolumn Q); ;11 (resp. @Q;j—1) to the rectifying
(resp. stripping) section of @); ;. The relevant constraints are expressed as a disjunc-
tion, which is transformed to a set of equalities and inequalities using disjunctive
programming techniques. We omit the details for brevity, and refer the reader to

Chapter 3. For every [i, j] € P, we impose the following constraints:

—1
J rsI ssI A
O[5 F2000) e e
— 0. . — Yig+1 i—1,7
p Z Z7‘77q
Jj—1 rsO
p l,J,p < TI‘SZ
J fssO
p 7]7p SSz
1= POt > (W10)
j—1 Q rsO j—1 q
pJi,3,p Tr Z < M
Ly — 0. . + 157 < Miji | Gy — Tikl,j
J o ssO Jj—1 q
p 2,7,D TSSZ M L . .
o — b iy < Mija | Gij — Tkl
L p=i+1l P 0.4 k=q+11=i+1 J qei

TV T <V (wi)

9,7
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I‘iZJrl _ SSZ — TI‘SZ TiSJZ (W12)
1 ) i—1
{fu+17p zr?+1p wp + fr;p - O}i):z

ss ssl ss ssO
Ul p = [ — et ip = O}p i+t {

(W13)
IS ISZ s rsz __
iji1 — Ui — Vi, + V57 =0
SSZ SS SSzZ
(Uit = U2y, = Vi + Vi7" =0 )
14 : _ rs] ss] rsO ssO sz SSZ
The auxiliary variables, defined as a;j, = [ i1 fictip Jige Fogp Uiy U4,
rSZ ssz| _ b, /.. R rs ss rs ss s ss
Vi Vi ] = bijpGi,j, where by, = | it Jictjp Tige Jige Uiger Uy Viss V;]]

are introduced for linearization. The bilinear equalities are relaxed with McCormick

envelopes [37]. The relaxation is exact, because (; ; is always at its bound.

b

aijp < min{b;ip, G ; ijp

V p={i,....j5}, [i,7] e P (W14)

Qjjp = maX{O, bijp b?f;(@,y - 1)}

The first constraint in (W10), commonly referred as Underwood feed equation, gov-
erns Underwood roots (6;;,) satisfying a,+1 < 6;;, < a4 The second and third
constraints in (W10) govern minimum vapor requirement in rectifying and stripping
sections. The fourth and fifth constraints in (W10) enforce that the minimum va-
por constraints are binding in the presence of certain splits [23]. They are imposed
in BigM form with M;;; = (Y7%)" — (U)'° and My, = (T5%)" + (Uj7)"?, where
Ul“} = U;% 1 — U2, ; denotes the net vapor inflow into pseudocolumn Q) ; (see Propo-
sition 5.2). Next, (W11) ensures that the actual vapor flow in both rectifying and
stripping sections is at least as high the threshold vapor flow. (W12) implies that
the difference in minimum vapor flows between the rectifying and stripping sections
equals the net vapor inflow into the pseudocolumn. Finally, (W13) models component

and vapor bypass, when pseudocolumn (); ; is absent. The liquid bypass constraints

are implied from (W13), and hence are not included in the model.

Proposition 5.2. A wvalid lower bound on the nonlinear expression in (i) the sec-
ond constraint in (W10) is min{0, (VI*)°}, and (ii) the third constraint in (W10) is

— max{0, (V")"}, where V™ is the net vapor inflow.
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Proof. (). We denote the net component and vapor inflow into column @);; by
= [, T 2, and VI =UPS, — U, ;. For brevity, we drop indices i and
j. Let, the recovery of component p in distillate be v, = f33/f* = fr* = 4, fi".

The following optimization problem is formulated:

J Qa in
Minimize Lpfp
i Y2 T 0
J in
ayp fp )
s.t. —=y"
oy - 0, (5.3)

Qg1 < by < oy

The first constraint is the Underwood feed equation, and the second constraint is due
to the fact that the recovery a more volatile component in the distillate is always
higher than that for a less volatile component Remark. By inspection, the terms in
the objective function are obtained by multiplying each fraction of the feed equation
with respective recovery variable. Hence, we add the following redundant constraints

to the optimization problem.

C]{fin ‘ '
pp9 (Yp —vg) =0 for pe{i,....j} (5.4)
q

oy —
The constraints are valid, because for p < ¢ (resp. p > ¢q) both the fraction and

the recovery difference is positive (resp. negative). Linear combination of all the

redundant constraints leads to

in J in
Oép’Ypf Z pf Vin,yq (55)

p=t
The equality is due to feed equation in (5.3). Therefore, the optimum of (5.3) is
Vit which is bilinear. As it is not used in the rest of the formulation, we use its
lower bound instead. Since 0 < v, < 1, the lower bound on V", is min{0, (V)%};

0 when (V")l° > 0 and (V") when (Vin)le < 0.



130

Although similar arguments can be used to prove (ii), we describe a simpler al-

ternative. We start with the feed equation

vin 2 O‘pf;on _ i O‘p'Ypf;n n ap(1l — ”Yp)fglan

— oy - 0, —a, — 0, a, — 0, 5.6
_Z]l o (1 7? My _ Z]] G fp' Vit > (] — )
o, — 0, g T

By recognizing that (1 —~,)f;* = f3* and 0 < (1 — ;) < 1, the lower bound
on the nonlinear expression in the third constraint in (W10) can be shown to be

— max{0, (Vn)ur}, O

Before proceeding further, we make a few remarks on the Underwood constraints
for pseudocolumn () . Since the composition of the feed and net vapor inflow to
1,y are known, its Underwood roots ({017N,q}]q\[=’11) can be calculated a priori by
solving the feed equation. Therefore, to reduce the number of nonlinear nonconvex
equations in the model, we fix {f; n4}0 7' to the calculated value, and discard the
feed equation for @1 y. Further, we substitute {6 N7q}q=_1 in Underwood minimum
vapor constraints for ¢); x to make them linear. Furthermore, as we shall see shortly,
Underwood roots {6, N7q}évz ! are required for the computation of upper bounds on

vapor flow variables.

5.1.4 Flow-of-roots Constraints

These cuts are derived by exploiting monotonicity of Underwood constraints, and

are added to expedite the convergence of branch-and-bound. We refer the reader
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to Chapters 3 and 4 for derivation and computational evidence demonstrating the

efficacy of the cuts.

i—1
( j j+1 N K
!
Oitg = 0ijq < Mq Xi,j + Z Z Orsig T 1= Z Ti,jyrl
r=1s=i—1 r=i+1 l=j+1 Lo
A J LY [i,7] €S
Jj+1 L
!
QiJ,q_gk,j,ngq Pij + Z Z Tijrs + 1 — Z Ok,s,i.j
L s=j+1r=i+1 s=i—1 k=1) g=i

(W15)

Here, M, = a — a1 corresponds to the upper bound on the difference between the
roots. This concludes the discussion on model constraints, and we now move on to

the objective function.

5.1.5 Objective Function and Exergy Constraints

The objective is to minimize the overall exergy loss. Consider the superstructure
shown in Figure 5.2(a). The shaded region inside the dashed boundary marks the
control volume. Note that heat exchangers are excluded from the control volume (see
Figure 5.2(a)) to focus only on the separation process. Exergy, either in the form
of heat or work, is neither added nor removed from the control volume. Thus, the
total exergy loss is simply the difference between the inflow and outflow of exergy
via material streams. The inflow is due to the process feed (&£ n), saturated liquid
streams from condensers (€, ; ;) and saturated vapor streams from reboilers (€15, ; ;).
Whereas the outflow is due to pure product streams ({&,,}),), saturated vapor
streams entering condensers (Egyy ; ;) and saturated liquid streams entering reboilers

(Eos. ;). The total exergy loss in the system is given by

N
Agloss = (gl,N - Z gp»P) + Z (gégn i, ggglrfz]) Z ( reb,i,j gfel;)tZJ) (57)
p=1 (i.j)eC (i.7)eR
Each exergy variable (£) in (5.7) consists of chemical exergy associated with mix-

ture (EM), thermal (€7) and pressure (£F) exergy associated with temperature and
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pressure change from a reference state to saturated liquid state, and thermal exergy
associated with phase change (£7¢) from saturated liquid to the current state; i.e.,
E=EM 1L T 1 &P 4+ £PY Note that EM = 0 for pure components, and £°¢ = 0 for
a saturated liquid stream. Following the procedure of [29,63], the terms in (5.7) are
evaluated to

N N 1
T
(51,N - Z 5p7p> =FRT) <Z 2y pIn 2 Np> + SAH <1 — T_U> do
p=1 1,N

p 1 q)l,N

— Z E,AH L (1 — —) do, (5.8a)

(g(lign,z,] - gé)(;lrfz]) = - FCl,jAHJ;) <1 - Tcon)d¢’ (58b)

ou ! Ty
( reb,i,j 8rebt,7j,j) :FRZJAHJ(; ( Treb)d¢’ (580)

Where § = Z;V:l F, is the total flow rate of the process feed, 2"y , = F},/§ is the mole
fraction of component p in the process feed, R is the universal gas constant and Tj
is the reference temperature. The terms on RHS of (5.8a), respectively, correspond
to chemical exergy associated with mixing (5%\,), thermal exergy associated with
phase change from saturated liquid state to the state corresponding to liquid fraction
Dy (Sf () of process feed, and thermal exergy associated with phase change from
saturated liquid state to the state corresponding to liquid fraction @, (ng pc ) of pure
component p. The difference in thermal (£7) and pressure (£7') exergy contributions
arising from process feed and pure products is set to zero z'.e.,Sf: N— Z ET ~ 0 and

p=1"~p,p
Eln =2 Sf , ~ 0. This simplification is found to be valid after rigorous testing on
several systems [29].
The only difference between the inlet and outlet terms in (5.8b) and (5.8¢) is
the phase of the stream. Thus, only thermal exergy corresponding to phase change
(EFC) survives in both the equations. Note that, the temperature varies during

phase change for mixtures, and thus, it is a function of liquid fraction ¢. On the

other hand, for pure components, temperature remains constant during phase change
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Le., Ti" = Tifb = T;;, and it is independent of ¢. Now, we perform a series of
manipulations to eliminate the dependence on temperature.

First, an overall energy balance on the control volume implies that the net con-
denser duty equals the sum of net reboiler duty and the difference between the en-
thalpies of process feed and pure components.

N
> FCi;AH = ) FR;AH +§(1—01,)AH = Y F,(1—®,,)AH.  (5.9)

(i,5)eC (i,5)eR p=1
During the energy balance, it is assumed that the sum of enthalpies of pure products at
saturated liquid state is roughly the same as the enthalpy of process feed at saturated
liquid state. This is also a reasonable approximation that holds for a majority of
cases. Next, we multiply (5.9) with the Carnot efficiency factor measured w.r.t the
boiling point of the least volatile component (7 ), and rewrite the equation as

1 TO 1 TO)
FO, ,AH - dop— N FR,AH - d
3 roust [| (1= )ao= 3 e [ (1= 7 Ja

T
(irj)€C NN (ig)eR N.N

N
>d¢+ZFpAHf (1— To >d¢=o. (5.10)
p=1 Dp,p

Ty N

1
—SAH (1 —

1o
oy I
(5.10) is equivalent to (5.9), because the boiling point of the least volatile component
(Ty n) and the reference temperature (1) are constant. Next, we add (5.10) to (5.7),
substitute (5.8a) — (5.8¢c), and rearrange the expression to obtain

N 1
i | 1 1
Aloss =3RT0( > vy In z}i‘N,p) — 3 AH (_ - _) d

T'y TInn

p=1 Q1,8

N 1 ) .
+ FTAHJ (___) d

1;1 . Pp.p Top INnN ¢
+ ), Fe TAHf( ! 1)d¢+ 3 Fe TAHJl( L1 )dd)

63 =0 con ij10 _

(B)ec J o 155 i (i,5)eC ! o \Li; TInn

>, FR TAHf(—l ! )d¢ >, FR TAHf( L1 )d¢
_ 510 b T — 510 s .

(Li)eR j 0 Ti’jb OF (i,j)ER ’ o \7j; Tnn

(5.11)

In the above equation, we have added and subtracted the inverse of boiling point of

the lightest (resp. heaviest) component in terms associated with condensers (resp.
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reboilers). The reason for this choice will be explained shortly. By combining Dalton’s
law, Raoult’s law and Clausius-Clapeyron equation (both liquid and vapor phases are

assumed to be ideal), [28,29] derived

1 1
AH| — — —— | = Rlna;
(Tj,j TN,N) ’

1 1 7 0Ty ’
AH( _ _) _ Rin [ 2 OTr
Tij  Tj @

where z; ;,, is the liquid composition in equilibrium with vapor at temperature 7; ;.

(5.12)

Substituting (5.12) in (5.11) and dividing by RTj leads to the scaled total exergy loss
in a distillation configuration, solely expressed in terms of relative volatilities and
material flows.

A‘S‘loss al ! ZNzl O[P‘TiII,IN, N
BT, 23( Z leplnzl Np) -5 - In <p—p do + Z Fp(l - (I)np) In ay,

an

j apxg?j?p
+ Z FOZ]J T d¢+ Z FOL]‘IHO@
(i,5)eC (i,9)eC
I ot
- > FR”J =l ZUP ) dg— Y PR jIna.
(i.7)eR J (i,J)ER

(5.13)

Note that, x;;, = i jp(¢) since T;; = T; ;(¢), for i # j. We emphasize that the
temperature independence of (5.13) implies that the total exergy loss for a mizture,

with {a,}N_, is the same irrespective of sub-ambient or above-ambient distillation.

p=1>
This is an astounding result from the foregoing procedure!

The first three terms in (5.13) can be determined prior to solving the MINLP, as
they are functions of problem parameters only. Thus, we will exclude those terms from
the objective function, and add the value to the optimal solution post-optimization
to determine the total exergy loss. Further, we approximate the integral with a
quadrature formula. A two-point quadrature is found to be sufficient in all the cases

we tested. Nevertheless, for higher accuracy three-point or higher order quadrature

formulas can be used. The drawback of using higher order quadrature formulas is
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that the number of variables and nonconvex equations increase rapidly. The objective
function after the aforementioned changes, simplifies to

Minimize A&} ~ Z FC;jlna; — Z FR; ;jIna;
(i.j)eC (i,))€R

— > FCi; Y gn (Zp a (gbg)) (5.14)

(i,9)eC 9€g i YTijpg

reb
) Oépmz, , (¢g)
]

(i,j)ER geG J

where &, are the Gauss weights corresponding to quadrature points ¢, (see §C.2).

con

Ligp.g

is the liquid phase mole fraction in equilibrium with the vapor, when ¢, fraction

reb

iipg 18 the liquid phase mole

of the vapor is condensed in a condenser. Similarly, x
fraction in equilibrium with the vapor, when (1—¢,) fraction of the liquid is vaporized

con g d ol reb

in a reboiler. To determine {7, | Hip.g?

we perform material balance between the
vapor and liquid phases. At equilibrium, total number of moles of component p equals
the sum of number of moles of p in liquid (total moles of liquid times the composition
of p in liquid) and vapor phases (total moles of vapor times the composition of p in
vapor). We divide the material balance equation with the total number of moles, and
replace the ratio of total moles of liquid (resp. vapor) to total moles with ¢, (resp.
1 — ¢,). Further, we make use of vapor-liquid equilibrium equations to express the

composition of vapor phase in terms of the composition of liquid phase. Material

balance equations, after making the aforementioned manipulations, are shown below:

con

Qs
Zi5 = gmffjf‘pg—i-(l—%)—. LJP-9 for i<p<y, geg, (i,5)eC

Jj
QY
= p Z7]7pg
’; ' reb . (5.15)
b b P4,j,p,9g
Zzl",ej,p = gx;j,ej,p,g + (1 - ¢g) fOI’ Z p .77 g € g ( ) € R
o, TP
:v i P,5,p,9

The LHS of the above equations corresponds to the net mole fraction of component
p: moles of p in mixture/total moles of mixture. Since the liquid (resp. vapor)
reflux from a condenser (resp. reboiler) has the same composition as that of the

inlet vapor (resp. liquid) to the condenser (resp. reboiler) (see Figure 5.3), the net

reb
,7,P

COI’I

composition of component p in the inlet vapor {37 (resp. inlet liquid 2;5) is equal
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to its composition in distillate (resp. residue). Thus, in (5.16), we compute the
net composition of component p in the condenser as the ratio of its flowrate in the
distillate of pseudocolumn @; ;1 to the net distillate flowrate, and rearrange it in
bilinear form to prevent singularity issues associated with the denominator going to
zero. In a similar manner, the net composition of component p in reboiler (i,7) is
computed by taking the ratio of its flowrate in the residue of pseudocolumn @);_; ; to

the total residue flowrate.

(Z f,]Jrlm) Cgf}): irj'Jrl,p fOI" Z<p<37 (Zaj)ec

. (5.16)
J
ss reb __ pss : . L
DS | A = [y for i<p < (i) €R
m=q
: : 3 . Jj con __ reb __ eon
Although, summation of mole fraction constraints: > _, 277, = 1, 25, =1 Zp i Tigpg =

1, and 2}, . = 1 are implied from (5.15) and (5.16), adding them explicitly to the
model helps, as they are not implied in the relaxation.

Observe that, in (5.14), a negative sign is introduced in front of the third term
by changing the argument of In function accordingly. The advantage of this manip-
ulation will be apparent when we reformulate the problem. Next, we remark that
the argument of all In functions in (5.14) belong to the interval [1,a;/c;], because
a; < Z;:i AT, < Q; as Z;Zi z;jp, = 1. This is the consequence of manipulations
performed in (5.11). Because In varies steeply in the interval (0, 1], as a precautionary
measure, we made the arguments of all In function to lie outside (0, 1].

The MINLP (W) can be solved with (5.14) as the objective function, and by
appending (5.15) and (5.16) to the constraint set. After determining the optimum
AE!

loss?

the total exergy loss (A&OSS) can be obtained as

0133

p=1 aN

—i—ZF o, lnap]. (5.17)

The explicit enumeration-based algorithm introduced by [53] formulates an optimiza-

tion problem for each configuration in the above manner. As is evident from (5.15)
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and (5.16), this approach adds several nonlinear nonconvex equations, which may
make it more challenging to solve the MINLP to e—optimum. Therefore, we propose
a reformulation to the model to reduce the number of nonconvex terms in the problem
significantly.

The purpose of (5.15) and (5.16) is to determine the values of x; ;, 4, required for
evaluating >} a,¥;;p, in objective function. However, we are not interested in the
explicit values of x; ; ,, , and z; ; ,, as they do not appear anywhere else in the problem.
Therefore, if there is a simpler alternative to determine Y a,; j, 4 without explicitly
computing ; ;j, 4 O z; jp, it would be attractive. This is achieved by performing the
following manipulations. We modify the objective function by introducing auxiliary
variables ¥, ; , and €, ; , for the arguments of In functions

Z FCivjlnozi— Z FR,L’JIHOCJ
(i,4)eC (4.)€R

2

Minimize A&},

(W16)
— Y FCii > &IV 50— > FRi; > &0,
(i,.5)eC 9€g (i,5)eR geg
where
Q;
009 T ST o eon (5.18a)
p=i ~P%,J,p,9
J a xlzreb
Qijg = et TR (5.18b)
Q

We substitute (5.18) in (5.15), and rearrange to obtain liquid mole fractions in terms

of auxiliary variables:

con

T L , 5.19a

12 = 5T by an/a) ey (5-1%)
0 reb

s i (5.19b)

PIPT g g + (1= dg)ay

we sum (5.19a) over p from i to j. The left hand side equals

con

Next, to eliminate z{%,

con
4,5,p

one (sum of mole fractions). Further, we eliminate 2{°" by substituting its definition

from (5.16). The foregoing manipulations lead to

] rs
i,j+1,p o
_ geg; (i,j) eC. (W17)
];L (1 —¢g) (/i)W g pZZ P41
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reb

To eliminate 3%, /,

we multiply (5.19b) by a,, and sum over p (from ¢ to j). The left

hand side is replaced with €; ; ;a; (by definition. See (5.18b)). As before, we eliminate

reb

i, by substituting its definition from (5.16). The foregoing manipulations lead to

j SS
apfi—l,j,p

= 99 Qij g+ (1= dg)

J
= f, 9€G (L) eR. (W18)
p=i

We remark that, (W18) can also be derived in a manner similar to (W17) with an
additional partial fraction decomposition step. Because (W17) and (W18) govern
variables W, ; ., and 2;;,, which are required for the computation of exergy loss,
we refer them as exergy constraints associated with condensers and reboilers, respec-

tively. Observe that the solution of (W17) (resp. (W18)) directly yields the value of

reb

con con
and 2 tip

i.j.p i.j.p
and 2" ). Therefore, by appending (W17) and (W18) to the constraint set, (5.15)

%,J,P

> W, (resp. Y5 apx,), without explicitly calculating

%,0,P 2,0,P (resp L

and (5.16) can be eliminated from the model, as well as variables x5, 29, ﬁbp

reb

and 275,

As a result, for each heat exchanger and at each quadrature point, one
exergy constraint replaces (j —i + 1) vapor-liquid equilibrium equations in (5.15) and
(j —i+ 1) mole fraction computations in (5.16). Clearly, the proposed reformulation
reduces the number of nonlinear nonconvex equations drastically, making the model
cleaner and simple. Finally, exergy constraints associated with condensers and re-

boilers have the following properties, one of which is exploited in the next subsection

to derive additional valid cuts.

Property 1. For a given {fJH’p i (resp. {ffslvj,p J _;), there exists a unique ¥, ;

(resp. €2, j4) satisfying (W17) (resp. (W18)).

Proof. For ¢4 € [0,1] (see §C.2), the LHS of (W17) (resp. (W18)) is continuous and

decreases monotonically with U, ; , (resp. € ;,). Further, it can be shown that,

rs rs

J 1,74+1,p 1,7+1,p
S T TaiE >3] ’J“”’/Z%Jr = b ana) BT,

p=1 ©.0,9 p=1 1,J,9
J

Zjl apfzssljp Zfss Z a,pfSS 1,5,p
— Qlo ( = ljp = QW 4 (1 _ ¢g)ap

P i i.7.9 %O‘J 0.9
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where W), = Q% =1and ¥}% = Q" = a;/a; (see (5.18)). Application of Inter-

mediate value theorem implies that there exists a solution for (W17) (resp. (W18)) in
the interval [¥}% , @i% | (resp. [%,, Q% ,]), and monotonicity guarantees unique-

ness. This property avoids the issues associated with solution multiplicity. O

Property 2. U, ; (resp. ;) decreases (resp. increases) monotonically with increase
in ¢.

Proof. First, we prove ¥, ; decreases monotonically with ¢. For conciseness, we drop

s

indices ‘¢, 7+ 17 and superscript rs from f;5 4

drop indices ‘¢, j’ from ¥, ;, and define
a new variable for the denominator of fractions in (W17): D, = ¢ + (1 — ¢)(a,/c;) ¥

Differentiating (W17) w.r.t ¢ partially, leads to

_Z o {1+ 1_¢)( )gz (Z_j)\p}zo.

Multiplying the above equation with (1— ¢), and rearranging the resulting expression

yields
s [sg @] [eb-o o))
[sho-o(2)] [oh-E][22]
[rge @] |E3) () (56 |lox
_ o (5.20)

2
In the last line, we used >} f, = 3. f,/D) (see (W17)). Using the identity (Zp upwp) +
2 2 1p(Up — W) wpwy = (Zp wp) (Zp upwp) (see §C.3 for proof), with u, = 1/D,,

and w, = f,, we express the second term in the last line of (5.20) as

-] [52 a) ll] o

p ll<p
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Observe that the first term on RHS of (5.21) is always negative, while the second

and third terms are positive. Therefore, g—i < 0, indicating that ¥, ,;, decreases
monotonically with increase in ¢.

Although similar arguments can be used to prove €2, ;, increases monotonically
with ¢, we show a simpler alternative. We recognize that QocWU !, by definition (see
(5.18)). Therefore, ¥, ; is a monotonically decreasing function of ¢ implies that €2, ;

increases monotonically with ¢. O]

Remark 5.1. By definition, thermal quality equals zero (¢ = 0) for a saturated
vapor stream and equals one (¢ = 1) for a saturated liquid stream. As a result, ¢
increases monotonically with decrease in temperature i.e.,¢; < ¢y for T(¢1) > T(¢2).
By combining this observation with Property 2, we observe that W, ; (resp. £ ,)

increases (resp. decreases) monotonically with increase in temperature.

5.1.6 Exploiting Monotonicity of Exergy Constraints

In our prior work [23], we presented computational evidence illustrating the im-
portance of (W15), derived by exploiting the monotonicity of Underwood constraints,
in expediting the convergence of branch-and-bound. We have also shown cases where
global solvers fail to converge in a reasonable amount of time, in the absence of (W15).
This was because, the monotonicity constraints, though implicit in Underwood con-
straints, are not implied in the relaxation. Explicitly adding the constraints to the
model aids global solvers to use the information in inferring tighter bounds on Under-
wood roots via feasibility and optimality based bound tightening techniques. Based
on this evidence, we expect that the constraints derived by exploiting monotonicity
of exergy constraints (Property 2) have potential in expediting the convergence of
branch-and-bound, as they will not be implied in the relaxation.

We present the constraints for two-point quadrature formula. The extension to
higher order quadrature formulas is straightforward. Exergy constraint in (W17)

(resp. (W18)) is written at both quadrature points ¢; and ¢o (where ¢1 < ¢o. See
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—
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Fig. 5.4. A five-component configuration motivating the need for con-
straints in section 2.7

§C.2). Because U,  (resp. €, ;,) is a monotonically decreasing (resp. increasing)
function of ¢ (see Property 2), we have
Uijn=Vije, YV (i,j)€eC
’ ’ (W19)
Qiji < Qige, ¥V (i,j)€R
We shall see in the next subsection, that these constraints are not only useful, but

necessary for the model.

5.1.7 Relation Between Temperatures of Condensers and Reboilers

The motivation for the inclusion of the following constraints is better understood
with an example. Consider a five-component mixture of hydrocarbons: A =Propylene
(Fy = 5, a7 = 11.761), B =Propane (Fy = 5, as = 9.801), C' =1-Butene (F3 =
32.5, a3 = 3.63), D =n-Butane (Fy = 25, ay = 3) and E =n-Pentane (F;5 =
32.5, a5 = 1). Flowrate of each component (F},) in the process feed ([1, N]) is given
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in kmol/h, and the relative volatility information is taken from [46]. The remaining
problem parameters are taken to be ®; y = 1 and {®,,})1, = {1,1,1,1,1}. We fix the
discrete variables ((;;, x;,; and p; ;) to configuration shown in Figure 5.4, and solve
the MINLP (W). The optimum objective function value (A&] ) is —84.671 making
the first term on the right hand side of (5.17) negative. Further, the second term of
(5.17) is also negative, the third and fourth terms for the chosen parameters evaluate
to zero; implying that the total exergy loss for the configuration at optimum opera-
tion is negative. Physically, negative exergy loss implies that the exergy is generated
in the system, because of which, the net outflow of exergy from the system is greater
than the net inflow of exergy into the system. In other words, work is produced by
distilling the hydrocarbon mixture with the configuration in Figure 5.4. Obviously,
such solutions are infeasible as they violate physics of the distillation process. To
understand why such solutions are feasible to the model, we examine the optimum
operating conditions (material flows) more closely.

The net component, vapor and liquid flows in the rectifying and stripping sections
of all pseudocolumns at optimum are shown in Table 5.2. In particular, observe the net
component flows in the stripping section of pseudocolumn () 4. The net component
flowrate, and thus, the net flowrate of residue is zero. As a result, exergy constraints
for reboiler (2,4) are satisfied trivially; making variables €25 41 and €549, which are
a measure of temperature, become unrestricted. This makes the optimizer push the
temperature of the reboiler (2,4) to the lowest value possible, by pushing both €254
and €945 to their upper bound (see Remark 1 for dependence of temperature on
€2 ;). In fact, for the configuration in Figure 5.4, the temperature of condenser (1, 3)
at optimum is higher than the temperature of reboiler (2,4), enabling extraction of

work by running a heat engine between the heat exchangers.
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In contrast, when the net distillate and residue flows are nonzero, variables ¥; ; and
(), j are restricted by exergy constraints. Assuch, Underwood method ensures that the
distillate from a column is “lighter” than the residue from the same column; solutions
making the condenser of a pseudocolumn hotter than its reboiler are infeasible to the
model. In the explicit enumeration approach of [53], the authors impose a small, but
nonzero, lower bound on distillate and residue flows. Consequently, the authors never
encountered situations which violated the physics of distillation process. However,
in our model, we optimize over the entire search space of configurations, and thus
nonzero lower bounds on net component flows cannot be imposed. This is the reason
why our model admits the solution in Table 5.2, while it is infeasible to the model
of [53].

We resolve this issue by explicitly imposing constraints which ensure that the
condenser of a pseudocolumn is always colder than its reboiler. These constraints
are redundant when the net distillate and residue flows are nonzero, but are required
otherwise. Consider pseudocolumn @); ;. The hottest (resp. coldest) temperature in
condenser (i,j — 1) (resp. reboiler (i +1,5)) is the dew point (775*,) (resp. bubble

i,7—1

point (T )) of distillate (resp. residue). In any distillation column T, < T

or (1/Tfew ) = (1/T%% ), which we rewrite as

1 1 +(1 1>> 1 1 +<1 1> (522)
Tiw, T T Tan/) \TW%, Ty, Tj; Tnn) '

Using (5.12) and (5.18), we rewrite the above constraint as

—In (\I!d?w )+ Ina; =In (Qb“b )+ Inoy, (5.23)

i,5—1 i+1,5

which is further simplified to

aA
dew bub 7
Q;

(5.24)

Here, Wi, = W, ; (¢ = 0) (resp. Q2% . = Q;11,(¢ = 1)) is determined by solving

i1 i+1,j
an equation of the form (W17) (resp. (W18)) with ¢, substituted to 0 (resp. 1).

Clearly, (5.24) requires introduction of additional variables and nonlinear constraints.
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However, we exploit Property 2, and derive a relaxed version of (5.24) in terms of
problem variables.

Because VU, ;_; decreases monotonically with increase in ¢, and 0 < ¢y, U, ;_1(¢ =
0) > W, ;_1(¢ =¢1) or \Iffswl > W, q4. Similarly, Q;41,;(¢ = 1) > Q41 (¢ = ¢2) or

inblj > 11,52 because 1 > ¢, and (24, ; increases monotonically with increase in
¢. From the foregoing arguments, W; ;11811 ;2 < \IfﬁiﬂleﬂJ, which in conjunction
with (5.24) leads to

Q o
Wi 11152 < o v [i,j]eP. (W20)
J
Obviously, this raises the following question: Does the relaxation of (5.24) add phys-
ically infeasible solutions to the model? The answer is no, and the reason is stated

as a proposition below.

Proposition 5.3. (W20) along with monotonicity constraints in (W19) imply that
the exergy associated with unit heat at reboiler of a pseudocolumn is greater than the

exerqy associated with unit heat at condenser of the same pseudocolumn.

Proof. Consider pseudocolumn @); ;. We need to show

1 1
Ty Ty
1- re d¢>f <1_ con >¢’
L < Tiﬁi,j> o T

As in (5.22) and (5.23), we add and subtract appropriate terms, use (5.12) and (5.18)

to rewrite the above inequality as shown below
1
J (—InQp;—In¥,; 1 +Ino; —Ina;)de > 0.
0
Next, we approximate the integral with two-point Gauss quadrature formula to obtain

2
Q;
Ui Vi12801,5124152 < (—) . (5.25)

27
We show that (W20) and (W19) imply the inequality in (5.25). U, j_11 > U, j_; 9 im-
plies W, 5 1101152 = Vi 1205152, and Q1150 = Qipq51 implies Q4 50W;5 11 =
Qi—i—l,j,l\lli,j—l,l- Combining the arguments leads to Qi—&-l,j,l\lji,j—l,l\Ili,j—l,2Qi+1,j,2 <

(Qr1,2Vi 11)°, which, along with (W20), implies (5.25).

O
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This concludes the formulation (W). It can be readily solved to e-global optimum

with off-the-shelf solvers like BARON.

5.2 Computational Studies

The purpose of this section is twofold. First, with a case study, we present two
ways of using the MINLP formulation (W): identification of simple (requiring fewer
number of column sections) yet exergetically favorable configurations, and determin-
ing good retrofits. Second, with several four and five component examples from
literature, we investigate the solution performance to changes in problem parameters

viz., composition of process feed {F,})", and relative volatilities {oy,})" ;.

5.2.1 Case Study: Shale Gas Separation

Due to advances in technology such as hydraulic fracturing and horizontal drilling,
the production of shale gas has increased rapidly in the United States. Shale gas
contains considerable amount of Natural Gas Liquids (NGLs): mixture of C2, C3,
C4, C57. For example, shale gas from Eagle Ford contains roughly 24 mol % of
NGLs [68,69]. Motivated by applications such as gasoline blending (C5%), produc-
tion of olefins (feedstock for production of several value-added chemicals) etc., it is
desired to recover NGLs from shale gas. For this task, distillation is attractive owing
to (i) the relative ease of separation of consecutive components, (ii) ability to pro-
duce high purity products and (iii) ability to process large quantities of feed. Since
the lighter hydrocarbons boil at sub-ambient temperatures, a sub-ambient distilla-
tion configuration, which uses work rather than heat, is required for the portion of
flowsheet separating lighter hydrocarbons. Minimization of exergy losses is crucial for
such flowsheets, as the work input is proportional to the total exergy losses. There-

fore, the formulation developed in the previous section is useful for this application.
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Table 5.3.
Composition of shale gas from Eagle Ford

Component Composition (mol%) Relative Volatility

A C1 75.52 24
B C2 14 4.21
C C3 5.49 2.08
D C4 2.82 1.32
E C5* 2.17 1

As an example, we consider a shale gas mixture from Eagle Ford, whose com-
position is shown in Table 5.3. We remark that shale gas also contains acid gases
(COy and HyS), Ny and HoO. However, these gases are generally removed prior to
distillation. Therefore, we borrowed the shale gas composition from [68,69], removed
acid gases, Ny and H50O, and normalized the composition of hydrocarbons. We re-
fer the reader to §C.4 for a description on the computation of relative volatilities
reported in Table 5.3. We consider the case, where the process feed is fed as a satu-
rated vapor (®; y = 0) and the pure components are withdrawn as saturated vapors
({®pp}l; = {0,0,0,0,0}). We use BARON 18.5.1 on GAMS 25.1 to solve MINLPs
to e-global optimum, with relative tolerance for convergence (¢,) set to 1%.

First, we determine the best sharp-split configuration for this application. Of
all regular-column configurations, sharp-split configurations have the least number
of column sections and inter-column transfer streams; making them attractive from
operational standpoint. A characteristic of sharp-split configurations is that they
have exactly (N — 2) submixture streams, one process feed stream ([1, N]) and N
pure component product streams ({[p, p| évzl). Therefore, to tailor the search space
to contain only sharp-split configurations, we add

[Z%;TCM =(N=-2)+ (N +1). (5.26)
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Fig. 5.5. (a) Conventional configuration for shale gas separation (b)
A plausible retrofit to reduce exergy loss. Operating conditions at
optimum operation are shown in Table 5.4.

to (W). Solving the MINLP to e-optimality yields the configuration shown in Figure
5.5(a). This configuration, commonly referred as the direct-split configuration, is
currently the preferred choice for shale gas separation in industry. Our model, despite

several simplifying assumptions, determined it to be the best among all 112 sharp-split
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configurations in less than a minute. This illustrates that the simplifying assumptions
are reasonable and the model results in worthwhile solutions.

However, it is well known that sharp-split configurations are not always attractive
in terms of overall energy requirement. Substantial benefits can be obtained by
including sloppy splits in a configuration. Therefore, to assess the penalty from using
a sharp-split configuration, we solve (W) over the entire space of regular-column
configurations, and compare the optimal exergy loss with that of the direct-split
configuration. The optimal configuration among all the regular-column configurations
has an exergy loss of 29.96 RTy kJ/h. On the other hand, the total exergy loss for
the direct-split configuration at optimum operation is 47.73 RT, kJ/h, which is 59.3%
higher than the optimal configuration. This shows that there is a large potential in
reducing the overall exergy losses, and in turn the overall energy requirement, by
introducing sloppy splits in the configuration.

Since ab initio redesign of an existing plant may not be economical, the process
designer would be interested in a plausible retrofit for the direct-split configuration.
For this purpose, we look for configurations that are structurally similar to the direct-

split configuration. We add

Cos = (35 =Cs=1

DG =(N=2)+(N+1)+1
[¢,9]1eT

(5.27)

to (W). The first constraint enforces that the desired configuration contains submix-
tures BCDE, CDFE and DE. Whereas, the second constraint is added to limit the
increase in number of column sections to two. This way, we seek configurations that
may provide substantial benefits with minimal increase in operational complexity.
The optimal solution is shown in Figure 5.5(b), and its exergy loss is 36.45 RTj kJ/h.
Table 5.4 lists the material flows in rectifying and stripping sections of all pseudo-
columns at optimum operation for both configurations in Figure 5.5. In particular,

we point out that the duty of condenser (1, 1) is the same for both the configurations.
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Further, in Figure 5.5(b), the liquid reflux produced at condenser (1,1) is used effi-
ciently between Q1 5, @12 and Q25. On the other hand, in Figure 5.5(a), the required
liquid reflux for the columns )1 5 and )25 is produced independently at condensers
(1,1) and (2,2), respectively; thereby arising the need for additional refrigeration at
condenser (2,2). For this reason, the configuration in Figure 5.5(b) is attractive over
the direct-split configuration. Moreover, it is structurally similar to Figure 5.5(a),
and thus, amenable for retrofitting.

Nonetheless, the configuration in Figure 5.5(b) has 21.66% higher exergy loss
than that of the optimal solution over the entire search space. Alternative solutions
that provide additional benefit may be determined by relaxing the limitation on the
number of column sections and re-solving (W). Figures 5.6(a) and 5.6(b) show the
optimal configurations with four and six additional sections than the direct split
configuration. The optimal exergy loss for Figure 5.6(a) is 35.62 RTy kJ/h (18.9%
higher than the optimal configuration over the entire search space) and Figure 5.6(b)
is 31.4 RTy kJ/h (4.8% higher than the optimal configuration over the entire search
space). Now, the process designer has to assess trade-offs between the benefit from
introducing additional sections in configurations vs. increased operational complexity,

in order to determine the best configuration for the separation of shale gas.

5.2.2 Examples from Literature

In addition to the shale gas example discussed in the previous subsection, we also
tested the model (W) on several four and five component examples taken from the
literature. Problem parameters are reported in the third and fourth columns of Table
5.5. The remaining parameters are taken to be ®;, = 1 and {®,, = 1})°, for all
cases. We chose BARON 18.5.1 on GAMS 25.1 to solve the MINLP (W), with all
options, except pDo, set at their defaults. We observed that BARON can solve (W)
faster, when pDo is set to —1 i.e.,when all variables are probed. Finally, we chose 1%

for relative tolerance for convergence (€,) and 10000 s for time limit as the termination
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Fig. 5.6. (a) Conventional configuration for shale gas separation (b)
A plausible retrofit to reduce exergy loss.

criteria. All computations were done on Dell Optiplex 5040 with 16 GB RAM Intel
Core i7-6700 3.4 GHz processor. The results are summarized in Table 5.5. Evidently,
BARON could solve all the cases considered to 1%-global optimum within the
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specified time limit. This illustrates that model (W) performs well to changes in
problem parameters, and it can be used to quickly identify attractive solutions with

off-the-shelf global solvers.

5.3 Conclusion

In this work, we proposed a novel MINLP formulation for identification of thermo-
dynamically-efficient distillation configurations, for separation of non-azeotropic mul-
ticomponent mixtures. Thermodynamic analysis is crucial, especially for work-driven
systems like heat-pump assisted distillations, which also include cryogenic separations.
The highlights of this work are summarized in the following. First, we proposed a
new model for the space of admissible distillation configurations, and proved it to be
strictly tighter than the intersection of prior formulations. Second, using techniques
described in [28,29], we formulated exergy loss calculations that do not depend on
temperature of mixtures, explicitly. Third, the model in its default form has several
nonlinear nonconvex equations. We proposed a simple variable elimination strategy,
that collapses a system of equations describing material balance and vapor-liquid
equilibrium onto a single equation. The approach reduces the number of nonconvex
equations and simplifies the model significantly. Fourth, we described the properties
satisfied by the derived equations, and exploited them while deriving additional valid
cuts to the problem. Finally, the model was used to identify attractive configura-
tions for shale gas separation. We have also shown through numerical examples from
literature that the model performs well with changes in problem parameters. De-
signing distillation sequences is challenging. This model empowers process designers
to quickly screen through thousands of alternatives, and identify attractive solutions

worthy of further exploration.
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6. FUTURE DIRECTION

In this work, we have developed novel MINLP-based approaches for systematically
identifying the best distillation configuration along with its optimal operating condi-
tion for a given separation. Despite significant energy savings possible, and decades
of work, the problem has continued to resist solution. By performing a careful math-
ematical analysis, we have addressed the key challenges and developed the first valid
formulation. Through extensive computational experiments, we have demonstrated
that the proposed approach improves the state-of-the-art. However, this is simply
the first step towards making industrial distillations more sustainable. Below, we

describe a few possible ways to build up on the current work.

6.1 Heat Integration

For various reasons (e.g., ease of operation), industrial practitioners might con-
tinue to run above-ambient separations using heat. In that case, heat integration is
crucial to minimize the overall heat duty. Here, heat integration refers to utilization
of the heat rejected from the condenser of one distillation column in the reboiler of
another distillation column. For example, consider the configuration in Figure 6.1(a).
Since the boiling point of component C' is greater than that of component B, the
heat duty of the condenser of the column @3 (see Figure caption) can be rejected to
the reboiler of the column (2. This heat integration is always feasible, unless the
column Q2 is operated at a much higher pressure than the column ()3. In general,
whenever the lightest component in the mixture that is being condensed is the same
or heavier than the heaviest component in the mixture that is being boiled, then

the heat integration between the condenser and the reboiler is always feasible. Such
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ABCD B
C BCD C

CD CD

(a) (b)

Fig. 6.1. Four-component configurations. We refer the leftmost col-
umn as (Q1, the middle column as ()2 and the rightmost column as

Q3.

heat integrations can be included in the proposed MINLP approach directly without
additional constraints to check for feasibility.

Next, some heat integrations are feasible only when the composition of certain
streams are favorable. For example, consider the configuration in Figure 6.1(b), In
general, the temperature of the reboiler BC'D will not be less than that of the con-
denser C'. However, when the submixture BC'D is very rich in B, it is possible to
heat integrate the reboiler BC'D and the condenser C. Mathew et al. [70] pointed
out that such heat integrations can reduce the overall heat duty well below that of
the fully thermally coupled configuration. An immediate question that arises is the
following. How do we identify such non-intuitive heat integrations? Of course, if the
temperature of the streams were available, then the feasibility can be inferred from
the temperatures. However, computation of the temperature requires the solution of
complex thermodynamic nonlinear and nonconvex equations. In their presence, solv-
ing the MINLP to the desired optimality gap can be challenging. A more promising
approach is to use the shortcut criteria proposed by Mathew et al. [71]. As demon-
strated therein, off-the-shelf solvers like BARON are able to solve the optimization

problem to the desired optimality gap for specific configurations. Therefore, by incor-
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porating their shortcut criteria, the proposed formulation can be extended to identify

the optimal heat integrated distillation configuration.

6.2 Improvement to the Proposed Algorithm

In Chapter 4, we proposed a simple discretization-based solution procedure to
solve the MINLP. Below, we describe two possible ways to further improve the algo-
rithm.

First, consider the performance profile in Figure 4.7(a). In the beginning, the pro-
posed algorithm solves fewer cases than BARON. The analysis of the results revealed
the following. In some cases, the lower bound has reached the global optimum in the
first two iterations and the algorithm did not find the optimal solution (upper bound).
Nevertheless, the current algorithm solves the computationally expensive MIP relax-
ation again in order to find a new initial point for the local search. This can be
avoided by collecting multiple points, for the local search, in each iteration using the
solution pool feature of Gurobi. This improves the possibility of finding the optimal
solutions very quickly, and reduces the number of iterations (and computational time)
to solve the MINLP.

Second, the main inefficiency of the algorithm is that it solves the MIP relaxation
from scratch at every iteration. This increases the computational time per iteration
substantially beyond the sixth or seventh iteration. Since refinement of discretization
does not worsen the MIP relaxation, it is worthwhile to investigate if there is a way
to utilize the solution from the previous iteration to solve the next iteration more
efficiently. If successful, this can reduce the computational time substantially, given
that the MILP solvers currently need more than one hour per iteration beyond the

sixth iteration.
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6.3 Application to Design and Operation

After identifying an attractive configuration for a given separation, the next step
involves a detailed design. One of the underlying assumptions in the formulation is
that a distillation column is allowed to operate at pinch i.e., at its minimum reflux
ratio. In reality, due to economic considerations, a distillation column is always
operated above the minimum reflux ratio. Because of this, the actual composition
of the distillate and the residue product streams may deviate from that predicted by
the MINLP framework. This is especially true when the column performs a sloppy
split, since the product composition is sensitive to both the number of trays, the feed
location and the actual reflux ratio. The detailed design of a configuration is usually
performed using a process simulator, such as Aspen Plus. However, as described
in Chapter 1, process simulators face convergence issues and often get trapped in a
sub-optimal solution. It would be interesting to develop a method that guides the
process simulators to obtain a detailed design by using the optimal solution obtained
from the MINLP approach. Another potential direction is to explore the practicality

of the proposed approach in designing controllers for optimal operation.
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A. TEST SET

The test set for computational experiments is borrowed from [39]. The current state-
of-the-art methods can handle design problem involving four components. However,
they are often unable to scale to five components, which are practically relevant and
remains challenging. In this study, we focus on five component separations, i.e.,
N =5.

The parameter settings are generated in the following manner. For every a €
{1,...,2Y — 1}, we first construct N—digit binary representation of a, denoted as
bin(a). Let bin(a)(p) deonte the p't digit of bin(a). We define two sets: Dy =
{p : bin(a)(p) = 0} and D; = {p : bin(a)(p) = 1}. bin(a)(p) = 0 indicates that
component p is lean in the mixture, and its composition is set to 5%. On the other
hand, bin(a)(p) = 1 indicates that component p is abundant in the mixture. We
consider the case, where all abundant components are present in equal proportions.

Therefore, for a given a, the feed composition {F; ;\le is obtained as

5} if peE DO
= V pef{l,...,N} (A.1)
o Pelif pe Dy
In a similar manner, for every b € {0,...,2Y "1 — 1}, we first construct (N — 1)—digit

binary representation of b. Here, bin(b)(p) = 0 (resp. bin(b)(p) = 1) indicates that the
separation between component p and p + 1 is easy (resp. difficult). We take relative
volatility value of 2.5 and 1.1 for an easy and difficult separation, respectively. For
a given b, expressing all relative volatilities w.r.t to the heaviest component, we have
ab, =1 and

N—

of =[] [25 (1—Dbin(b)(q) + L1bin(b)(¢)] ¥V pe{l,....N—-1}  (A2)

q=p

fay
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The parameter settings for Case(a,b) are then given by N = 5, {F})\,, {ab}]"
(I>17N = @171 = .= (I)N,N = 1. Since a € {1,...,2N— 1} and b e {O,...,2N71 — 1},

total number of cases in the test set is (2° — 1) x 2% = 496.
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B. MISSING PROOFS AND DERIVATIONS
B.1 Proof of Proposition 4.1

Let, B = [0,1]™ x [0,1]". Since the set S = {(x,2) € B | z; = H;Zl Ty, J =
1,...,n} is compact, Conv(S) is compact and, by Krein-Milman Theorem, is the
convex hull of its extreme points. Therefore, we determine the extreme points of
S, and take their disjunctive union to obtain Conv(S). When (x9,...,x,) in S are
restricted to (Za,...,T,) € [0,1]"!, then the set S is convex and its extreme points
are such that z; € {0,1}. Let S; and gg denote the set S restricted to z; = 0
and x; = 1, respectively, i.e., S1 = {(z,2) e B| 21 =0, z;, =0, j = 1,...,n}
and Sy = {(z,2) e B| a1 =2 =1, 2 = H;:2Ij, Jj = 2,...,n}. Observe that
S, is convex, and S, is nonconvex. Next, when (x3,...,2,) In S, are restricted
to (Ts,...,Tn) € [0,1]"2, then S, is convex and its extreme points are such that
xe € {0,1}. Let Sy and Ss denote the set Sy restricted to x5 = 0 and 2o = 1,
respectively, i.e., So = {(x,2) € B | 21 = 21 =1, 29 = 20 = ...,2, = 0} and

Ss={(z,2)eBlai=2n=m=2n=1,z= H;=3xja j=3,...,n}. As before, S,

is convex and S is nonconvex. Repeating the argument leads to sets S, ..., Sni1,
where S; = {(z,2) e B |x1 =2 = =21 =21 =1, x; = 2z, = ...z, = 0}
for i = 3,...,n and Speq = Speq = {xy = 21 = ...x, = z, = 1}. The sets S

through S, 41 contain the extreme points of convex hull of S. Therefore, Conv(S) =

Conv(S; U Sy U -+ U Spi1), where S; U Sy U -+ U S, is given below

ry=--=r1 =1 2,=0
l'l:O
n 1 = :Zi_lz]_ I = :l'n:]_
Z1 = =z,=0 \/ \/
i=2 | z; = =z,=0 z7 = =z,=1
O0<z;<1,5=2,...,n
0<z; <1, 5=1+1,...,n
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Application of disjunctive programming technique leads to

(2 = X, forj=1,....i—1; i=2....n41)

Tl =0, for 1=1,....n

O<x§.<)\i, forj=1¢+1,...,n; i=1,...,n—1

Conv(S) = < il >
szzizlx;, forj=1,....n
n+1 i .
Zj:zi=j+1)" forj=1,....n
n+l . .
\z;;x=1wv>a for i=1,....n+1
(B.1)

where {:13; "+! are to be regarded as linearization of z; - \'. We eliminate {x }’“rl y

direct substitution (see (B.1)). This leads to 2; = >/} zh + Z?Ijlﬂ A or Y7 :U‘

n+l i J=1 . i1 ; i
Tj— D i A< Do) xf, where {2} )i, are constrained by 0 < x

imit1 < M. Now, using

. . .. ) .. N . 1 .
Fourier-Motzkin elimination, we eliminate {z’}/~} to obtain 0 < z; — Y/ | A <

i=j+1
SIEN or Z:fjlﬂ N<a; <Y IN+ er]lﬂ AY=1— M. This transforms (B.1) to
n+1 . .
Z' N <x; <1 =N, fory=1,....n
i=j+1
n+1 .
Conv(S) =4 =S"" = . B.2
onv(S) 2 Zisz)\, forj=1,...,n (B.2)
n+1l . . .
2,71/\’21, A =0, fori=1,...,n+1
Next, we determine A’ in terms of z;. From z; = Z?jjlﬂ Aofor j = 1,...,n and
SN =1, 2, = A 2 = AN o 2, — 2 = AT 2, 0 = AT AT A
OF Zpeo — Zpo1 = AV 1 21 —20 =XM% and A =1 — Z?:; A =1— 2. Using these

relations, we eliminate A\’ variables from (B.2) to obtain
<<
Zj<l’j<1—2j,1+2j, forj=2,...,n

Conv(S) = < > (B.3)
z2p 20, (1—21) 20,

(2j-1— 2 =0, forj=2,....,n )
Observe that the same set of inequalities result from recursive McCormick relaxation
of zj = zj_y-xz; for j = 2,...,n. Therefore, the convex hull of set S can be constructed

by a recursive application of McCormick procedure on z; = 2z;_1-2;, 7 =2,...,n. U
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B.2 Proof of Remark 4.2

We show the proof for 7; ; ; variables, and the proof for 3, ; variables is similar. By
Remark 4.1, the convex hull of v, 5 ; = [ [L_.(1 = G.n) over (G, -+, Cig) € [0, 1J7F+1,

given by

Viky = max{0,—Cp— - —Gj+ 1} (B.4a)

Vi,k,j < mln{l — (i,k'; ceey 1-— Ci,j}7 (B4b)

is implied from (A3), for every [i,j] € P, [k].'. We use the above inequalities, in
addition to (A2) and (A3), for the proof. We consider two cases: k + 1 < j and
k+1=j. When, k+1 < j, the convex hull of 7 1, ; = G k(1 — Gigs1) - - - (1 —Gij—1)Gij
over (Gik,---,C ) €10,17F+1 is given by [72]

Tikj =0, (B.5a)
Tikj = Gik — Gikr1— +— Gij—1+ Gy — 1, (B.5b)
Tikj < Gk (B.5¢)
Tiks S 1=Cms  [0Di515 (B.5d)
Tikj < Gij- (B.5e)

On the other hand, when k + 1 = j, the convex hull of 75 ; = 7, ;1 = (;j_1(;; over

(Gij—1.c,) € [0, 1]? is given by
Tij—15 = max{0, -1 + G; — 1}, (B.6a)

Tij-1j < min{G -1, Gij}- (B.6b)

In the following, we present the proof only for £+ 1 < j, and point out that the proof

for the case k + 1 = j is similar.

(B.5a): From (A3), vigj1 4 Viks1,j — Viks1j-1 < Vig; = 0 < Vpi1-1 — Vigj1—

(A2)
Vik+1,j T Vikj = Tik;j-
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(A2) (B.4a)
(B:Bb): Tikj = Vik+1j-1 — Vikj—1 — Vik+1j + Viks = —Gik+1 — == — Gij1 +
(B.4b)
L= Vigg1 = Vikry = —Grtr — =G+ 1—(1=Gr) =1 =G 1) =
Gk = Gigr1 — -+ — Gij—1 + Gy — L.
(A2) (A3)
(B.5¢): Tikj = Vikt1j-1 — Vikjo1 — Viks1lj + Viky < Vik+1,j—1 — Vik,j—1
Vi k,j SVik+1,5
(A3) (A3)
< I —Vigr = Gk

Vi k,j—12Vi k+1,j—1FVi kg k—1

(A2) (A3) (B.4a)
(B-5d)3 Tikj = Vik+1,j—1"Vikj—1—Vik+1,j T Vik;j < Vikt1,j-1"Vikj—1 <
Vi k,jS<Vik+1,j
(B.4b)
Vik+1,j-1 < 1-— Ci,na for &k +1 <n< j — 1.

(A2) (A3)
(B.5e): Tik; = Vikt1j—1 — Vikj—1 — Vik+1; + Vik < Vik+1,j—-1 = Vik+1,j
Vik,j SVik,j—1
(A3) (A3)
< L—wvij; = Gy O

Vik+1,j ZVik+1,j—11Vij,;—1

B.3 Proof of Proposition 4.6

Definition B.1. Let, D = (V, A) be a digraph and be RV!. A function f: A — R is
called as b—transshipment if excess;(v;) = f{6"™(v;)y — f {0 (v;)) = b(v;) YV v; € V,
where §™(v;) € A (resp. §°“(v;) € A) is the set of all arcs entering (resp. leaving)
the vertez vy, and f{5(v;)y = >, f(a). In our case, the function f(a) evaluates the
flow along the arc a. e

Lemma B.1 ( [73]). Let D = (V, A) be a digraph, and let b : V' — R with (V") = 0.
Then there exists a b-transshipment f > 0 if and only if 5{(U) < 0 for each U € V

with 6™(U) = .

We now use Lemma B.1 to prove Proposition 4.6.

Consider the digraph D = (V, A), where V = Dg U D7 and A = (Dg x D7)\{(N +
1,0)} (see §4.2.2 and Figure 4.3 for definition of Dg and D7). We have discarded the
arc from N + 1 € Dg to 0 € D7, because the flow along that arc is zero (see (4.10)).
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Observe that, for every n € Dg, b(n) = excessy(n) = =, p Vinmj = —Tijn (S€€
Figure 4.3). Similarly, for every m € D7, b(m) = excess,(m) = Dnens Yimmg = Bmij-
Then, b(V = S, b(n) + X3 bm) = =SV 7 + Y By = 0 (from
definition of S; ;). From Lemma B.1, a b—transshipment 1) > 0 exists if and only
if b{U) < 0 for each U < V with §™(U) = ¢J. For every U € Dg < V, b{U) < 0
is satisfied trivially. On the other hand, U cannot be chosen to be a subset of D7,
because for every U < Dy, 6™(U) # . Therefore, in order to derive non-trivial
inequalities, we must choose subsets of V' containing vertices of both Dg and D;.

Let U = (Dg\{N + 1}) u {0}. Note that §*(U) = . Then, a b—transshipment
1 = 0 exists if and only if b{(U) = —Zg:jﬂ Tijm + Boij < 0, or

N
Boij < Z Tijn- (B.7)

n=j+1
It can be verified that for every other subset U < V satisfying 6™(U) = (&, the

inequality ensuring b(U) < 0 is implied from 3'-' B,..; = ij:jil T;jm- Lherefore,

i—1 N+1
Proj(,.5(Si;) = {(3-7); Z B = Z Tijjms Tijm = 0, [[n]]jvﬁl, Bm.ij = 0, [[m]]f)l} :
m=0 n=j+1

(B.8)
Indeed, v; ,m,; can be defined to verify that (B.8) is the projection of .S; ;.
Defl: Define ¢i,N+1,07j = 0.

Def2: For 1 < m <1 — 1, define

Bm,i,j . i—1
TijN+1 - weret—, if D By >0
Zm:l Bmylvj

0, if 30 Bmig = 0.

. i1 N+1 o i1
Since Y, Bmij = Zn=j+1 Tijn, (B.7) implies 7, ; v41 < D, 1 Bm.ij- Then, the

ViN+1mj =

above definition guarantees that v; n11m; < Bm,ij for every 1 <m <i¢—1, and
i—1 _
Zm:1 Vi, N+1,m,j = Tij,N+1-

Def3: For j +1 <n < N, define

o Tijin ; N .
BO,%,] N if Zn:jJrl 7-17]7” >0
,lp' e n=j+1 "'%7:n
4,n,0,7

. N
07 lf Z’n:jJrl Tivjvn - O
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Because fy;; < ij:jﬂ T;.;in (see (B.7)), the above definition guarantees that

. N
Yinoj < Tijn forevery j+1<n <N, and Zn:jH Vino,; = Boij-

Forevery 1<m<i—1and j+1<n <N, define

(Ti,,;n—%i,1,0,5) (Bm,i,j —Vi, N+1,m,5) . N

4y .0, i N+1,m, if T — s ,

(2 _ i1 (Tigm—in,0.) ’ Z”=3+1( b wl’”’od)
Z7n7m7‘7 -

. N
0, if > i1 (Tigin — Vi) = 0.

Since (B — Yin+1,m;) = 0 (see Def2) and (75, —Yin0,;) = 0 (see Def3), the

above definition guarantees ¥; ;,m; = 0forevery l <m<i—landj+1<n <

. N —1
N. Next, it can be shown that X5 (Tijn —%in05) = 21 (Bmig —ViN+1m,)
N+1 i—1 i1
from 300 Tijn = Dio Bmids Dot YiNtimg = Tigna (see Def2), and

er]:f:j_i,_l Yinoj = Poi,; (see Def3). Then, the above definition guarantees that

N i—1
Yoneji1 Yimmg = Bmij — YiNt1my and D1 = Tijn — Yino,-

B.4 Derivation of Conv(F,)

Let X = {(f;", 32, f°) € [0, B[P | £ = £ + f3°}. Then, the extreme points
of the polytope X are v* = (0,0,0), v? = (F}, F),0) and v* = (F,,0,F,). From

Proposition 4.9, the convex hull of F, is obtained as Conv(F,) = proj ;g u o) {(B.9)},

where

w' = THN, 0", i=1,2,3 (B.9a)

T,(0") — T,(6")

wh < N'T,(0°) + T

] (0" — Xig*°), i=1,2,3 (B.9b)

Mgl < 67 < X, i=1,2,3 (B.9c

HY = F? + B, HY = Fu?,  HS = Fu?, (B.9d

f]i)n _ Fp/\2 +Fp)\3’ f;s _ Fp>\2, f;s _ Fp)\?)’

)

)

ﬁp = 0 + F0°,  [0" = F,0°, [0 = F0°, (B.9e)
(B.9f)

w=w'+w+uw, 0=0"+6+6 )
)

(
MEX+XB =1, ALAZ N =0 (B.9h
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We solve linear equations and obtain auxiliary variables in terms of problem variables
as (A%, 0%, w?) = (f;S/Fpaﬁ:/Fpa Hy[F,), (X%, 0°,w?) = (f;S/Fpaﬁ;S/Fm HY[F,),
()\1,91,11)1) = (1 -\ - )‘379 - 0> - 93,’LU —w? — w3) = ((Fp - f]i)n)/Fp’ (Fpe -
ﬁ;n)/Fp,(pr — H)/F,) (from first equation in (B.9d),(B.9¢), and (B.9f)). Us-
ing these relations, all variables can be eliminated from the hull description, except
w, which is constrained by
Faw — H;)“
F,

p

T,(0") — T,(6")

Ty(A\',60') < < MT,(0°) + ( G gio ) (6" — A'6"°).

We eliminate w using Fourier-Motzkin elimination to obtain T*(X',0') < A'T,(6'°) +

[TMUP)%(&“)

T ] (01 —\10"). The resulting constraint is redundant, so we do not impose

it explicitly. This leads to the convex hull description described in §4.3.2.

B.5 Proof of Corollary 4.2

Here, x lies in the polytope z!° < x < 2", whose extreme points are z'° and z"P.
Application of Proposition 4.9 yields Conv(S) = proj,., . ., {(x, ¥, 2, 2y, w,y", y?, w',
w?, A, N%)}

w' = g* (ALY, w? =gt (V) (B.10a)
w' < Ng(y) + lg y;iz — zfoylo)] (' = Niy), i=1,2, (B.10D)
/\1ylo < yl < )\1yup7 )\leo < y2 < )\2yup, (B.lOc)
2 = 2w + 2"Pw?, Ty = 2oyt + 2%y w = w' + w?, (B.10d)
y=y'4+v% r=z°AN+2PX2 A+ A2 =1, AL AZ>0. (B.10e)

We remove the equality w = w! + w? to project out w. Solving the linear equations
yields At = (2" —z) /(2P —2°), \* = (z—2°)/(z"P —2®), y' = (z"Py—zy)/(a"P ')
and y? = (zy — 2'°y) /(2" — 2'°). Using these equations, we substitute out auxiliary
variables 3!, %, A and A2. Finally, eliminating variables w! and w? using Fourier-
Motzkin elimination yields the convex hull description in the Proposition. The outer-

approximation of the convex hull follows directly from Remark 4.7. O]
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B.6 Proof of Proposition 4.12

We assume w.l.o.g that

0° < oy — Fi/H®. (B.11)

Otherwise, we update Fy = H)"(a; — 6°) (See Figure B.1).

We begin by determining the extreme points of the convex hull of ;. When 6 is
restricted to 6 € [6'°, 4], the set H; = {(f1,0,H1, f0)) | 0< fi <min{F, H"(on —
0}, 0 =0, 19, = h 0,H, = {fi/(cn —0), if 0 < ay; Hy € [0, H®], if 0 = ay}}
can be expressed as an affine transform of 0 < f; < min{F,, H;"(a; — 0)} whose
extreme points are fi € {0, min{F;, H;”(a; — 0)}}. Therefore, the extreme points of
Conv(H;) are contained in the set of points where f; = 0, or f; = F} and gl < h <
(ay — Fi/H®), or fi = H®(a; — 0) and (a; — F1/H®) < 0 < oy (see Figure B.1).
Let,

L. S% be H, restricted to fi = 0 i.e., S* = {(f1,0,Hi, f0,) | fr = 0, 0° < 0 <
ar, [0, =0, Hi =0if 0 <ay; Hy€[0,H"], if 0 = a1} (see Figure B.1).

2. S® be H; restricted to f; = H;"(ay — 0) and (o — F1/H®) < 0
S = {(f1,0.Hi, f0) | i = H*(n = 0), (n — FI/H{") < 0 < au, Hy =
H®, [0, = H{"(cn — 0)0} (see Figure B.1).

< oy i.e.,

3. S¢ be H; restricted to f; = F} and 6° < 0 < (ay — Fi/H®) i.e., S¢ =
{(flaeaHlaﬁ1)|f1:Fly 010<0<(a1_F1/Hi1p)’ leFl/(Oél_e)a ﬁlz
Fy -0} (see Figure B.1).

By Krein-Milman theorem, Conv(#;) = Conv (5% u S U §¢) = Conv(Conv(S?) U
Conv(S?) U Conv(S°)), where

( 3
fl Oa ﬁl =0
a u 0_010
Conv(S*) = < (f1,0,Hy, f6,)|0 < Hy < H}® ) (B.12)
Jv o — g
\ 0° <0< a )




Fig. B.1.

g
0=q, — f1
Sb ! [{1up Ia)
N T
S S
0
910
0 i Fy

are contained in points in red.

Conv(S?) =

Conv(S¢) = <

Disjunctive union of Conv(5%), Conv(S?) and Conv(S¢) leads to (4.39).

\ (flaeaHlaﬁl)

(f1,0,Hi, f0))

up
Hl

_ H™(ay — 0), Hy —
Hup( H“p) (01— 0) < f6,
10, < H0(0y - 0)

Fi

o) — Hilp <0<y

fi=F, [0, =F-0
F

< H
051—9 !
ja) o
H < +
1 _910 al_elo
Fi
lo 1
<0 (o= )

G

010)
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(f1,0) domain for §B.6. The extreme points of Conv(H)

¥ (B.13)

- (B.14)

J
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Since (4.39) introduces many variables, we derive a relaxation of Conv(H;) in-

stead. Let, 8 € [0, oq] for r =1,...,
Conv(S°) as shown below:

(

e (

19,

\

COHVOA(S2) = < (flueaHlaﬁl)

<m

~

R. First, we outer approximate Conv(S®) and

(Ozl — 9) H1

Hup) a1 — 0) < ﬁl

up
Hl

in { BP0 (0 ) + HP(0n — 20)(6 —ar)}R

F
H_ilp><0<&1

)
fo=Fy f0, = Fy -0
F F —_
lemax{ L L (9—9)}
3 a1 — 0 (041 —0 )2 r=1
COHVOA(S ) = < (fl,H,Hl,ﬁl) Fl Hup > .
< 1 __plo
Hl ] — 610 + a1 — ‘910(0 8 )
0 3!
# <0< (i)

Next, we take the disjunctive union of

Conv(S?), Convpa(S®) and Convpa(S¢) to

obtain
Fi)e F "
Hy = HP)\ + max{ M_r + (6> -0 /\C)} (B.15a)
ap—0 (g —0)? r=1
e — elon F, \¢ Hup
Hy < HP [ ——= ) + H™X\ ! L__(6°—g°x B.15b
1 1 <a1_910)+ 1 + _910+a1_910( ) ( )
F
ﬁl = Hilp <Cl/1 - H—ip> (al)\b - Qb) + F19C (B15C)
1
T b~ —T T R
/6, < min {pre (ar — 0N + H™(ay — 207)(0" — 8 A”)} +F6° (B.15d)
Ll r=1
fi=HP (X" = 60") + F1X° (B.15e)
0=0"+6"+06° (B.15f)
0N < 0% < g \° (B.15g)
F
(a1 - H—lp) A <0 <\ (B.15h)
1

r=1
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F,

0N < 6° < (a1 —~ —1p) X (B.15i)
Hl

N+ A+ X =1, AN N =0 (B.15j)

In the following, we derive relaxed version of each inequality in terms of problem

variables.
Hy > H™)\' + BX B (60— 0" X% (B.15a)
] — 0 (Oél —0 2
(Oél — 2?)][1 + Hilpgr(al — gr))\b
(o —gr)2
up __on" 2 p"y\b c
4 Hl (Ozl 260 )(9 _ DN ) + F19 (B15e)
(1 —0)?
—20)f, + f6
, (=205 + 16, (B.15d)
(a1 —0)?
J1 1 o
= —— + — 0 —6
-7 s )2(L1 fi)
= AT(0) + T )(f0, — 0 fr),
up/na _ ploya
i < O = 00X
a1 — (910
pr(al)\b — 60"+ 6" — 910)\1’)
+
a1 — 910
c up/nc _ ploye
N i+ H (61 6°\°) (B.15b)
a1 — flo
fl up 0 — 010 .
= — B.1 B.15f), (B.1
oy — Ol + oy — Ol (B.15¢), (B.15f), (B.15)),
F
10, = H® (a1 — H—ljp) (A’ — 6°) + Fr6° (B.15¢)

F
= QIOHIUP(OQ)\Z) - Hb) + Hlup (oq - Hip - 910) (Oél/\b - ‘gb) + Flgc
1

Fy
H?

+ F1(0° — 6°X%) (B.15¢), (B.11)

= 0°fy + H" (ozl — = — 01°> (1A’ —6")

> 0°f (B.15h), (B.15i),



F
ﬁl = Hilp <051 — H—ip> (al)\b - Qb) + F16)c (B15C)
1
= H®(on X’ — 0°) — Fi(an \° — 0°) + Fy6°
= a1(fi — F1X°) — Fy(ay NP — 0°) + F16° (B.15¢)
= fi — o Fi(1 =\ + F1 (6 — 69 (B.15f), (B.15j)
2 Oélfl + F19 - F1041 (B15g),

10, < {H?pgr(&l — )N

FHP (0 =200 -T ) R (Bsd)

0 =aq

= OleFp(Oél/\b - eb) + F10c
= Oélfl — OélFl)\C + Flé’c (B15e)

<aifi (B.151),

[0, < {H?pgr(&l —0)N

+me—ﬁwm—ﬁﬂ} + F6° (B.15d)

F F
= F1 (Oél — ! ) )\b + (Oél — 2—1) [H{lp(OélAb — Qb) - Fl)\b] + Flgc

HP HP
F
:Qh—ﬁ%>w?mghw%—ij+ﬂ¢+ﬂm
1
<O [HP(au X\ = 0°) — BN + F16° + F16° (B.15h), (B.11)
<O°[fi = FIN = FiX] + Fi6° + Fy6° (B.15¢)

<O0°[fi — FiA — BN — B
+ F10° + F0° + F16° (B.15g)

< Ff+0°f — F0° (B.15f), (B.15j),

0 =6"+ 0"+ 6° (B.15¢)

178
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F
<A\ + 0+ (a1 - —1) A° (B.15g), (B.151)

(B.15¢), (B.15j).

B.8 Derivation of MIP Representation of Piecewise Relaxation of F;

Let the domain of Underwood root be partitioned as Z = {[@°, 0], ..., [6F~1 6]},

such that ap = 0° < -+ < O = . We express the piecewise relaxation of Fi,

II\

given by ' Convpa (F1,t) U F17), Relax, as the following disjunction:

> fETHO) + T )10 — 0 f7)
HY > fPT(61) + TH(O)(f67 — 6'1)
HE > fPTi(OY) + TH(O' ) (167 — 0 f7)
> [ETI(O) + THO)(f67 — ©'1:)

Ty (01 — T (6Y)
ot 1_ @t

t—1 t
His < 1ssT1(®t71) + |:T1(@®t2 —o (@ ):| (fess @tflflss)

(Fy— N0 < (R0 — fO7) < (Fy — fi")©

iy < e )+ | o - ety

<?:‘

f{sgtfl <ﬁ;s < flrse)t7 flssgtfl <ﬁi5 < flssgt

Hin _ Hllrs + Hisv ﬁlln _ ﬁ;ﬁ +ﬁis7 in _ {s + flss
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H{S {sT (@t 1) + TI(@t 1)(f0rs @tflf{s)

HE > fET(O) + THO ) (085~ 0 7)

> FIT(O ) + {0 ) (167 — O )
[ 0

1rs _ @tfl T

Y < g + ()™ | g

ss P ss\u [ f—0""! :

t=1 ' in r 91 @tfl E
in 1 inyu B

o s —em T | T

(Fy— /N0~ < (R0 — fO7) < (Fy — fi")©
f{s®t71 <ﬁ;s < f{sgt, flss®t71 <ﬁis < flssgt

H}n _ H{S + HTS, ﬁlln _ ﬁ;s +ﬁisv in _ + fss

In Convp4(Fy,), we choose the extreme points of the partition, § = ©'~! and § = O,
for linearization; and in Fi |7) Relax, We choose only 0 = 6! since T}(-) is not defined
at @ = O, In order to derive an MIP representation that is reasonable in size, we
make the following simplifications to the set J 7| Relax. First, observe that the third
inequality in J 7| Relax 18 implied from the first two inequalities and H In— HS 4+ 1,
so we drop it from the set. Next, if (Hi")" > (H)® + (H5)", we reduce (Hi")'P
to (HIS)'P + (H3®)" because of fourth and fifth inequalities and H® = H{® + H$".
Otherwise, we relax the sixth inequality by letting (Hi")" = (Hi®)"P + (H5%)"P. Then,
the sixth inequality is implied from the fourth and fifth inequalities, so we drop it

from the set. Next, using disjunctive programming techniques, we obtain
Hy, = max { fET1(0171) + THO' ) (167, — 07 1),
B0 + T(01)(£67, - O' 1) [ (BaTa)
HYy = fiyTi (O 1) + TH(O H)(f07, — 67 fi3), t =] (B.17b)
Hy, = max { T (O11) + THO" ([0, — 0 f35),
SO + (O (f07, — ')} [ (B17o)

HYy = [T(O7) + T(O)(f07, — 07 f13), t=|Z| (B.17d)
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o) — et-1 _
O DO oy, o, W e

91& _ @t_l,ut]

HE, < JETL(O) + [

Is

s 17 rsyu
Hyy < al——(i)H + (HP)™ [ o —6r1 t=1|Z] (B.17f)

ss ss - T (Qt) — 1 (@t_l) SS —1 pss -
i< e+ [ MGG E 2 v e m W Bary
ss 1S7St ss\u 0, — @tillut
Hy, < a o1t (H7%)™ [W , t=1|Z| (B.17h)
(Fue — f)0" " < (i, — f07) < (Fuu — f11)6", [ (BT
O fON, < R0l RO < 0T, < 10, [y (B.17)
HY'y, = HY, + Hyy, ﬁllnt = [07, +[07, V=S A [ (B.17K)
| | |
Hin—ZHw H?—Zﬂm HTS—ZHM, (B.171)
\II II\ |
ﬁm Zfelt’ ﬁrs Zf'glt’ ﬁss Zf91t7 (B.17m)
\I| | | |Z|
Zflt? Zfltv Zflt’ ‘9:2915’ (B'17n)
t=1
|
Zﬂt = L 22 = Oa [[t]]‘lz| (Bl?O)
t=1

Here, p; are the convex multipliers in disjunctive progamming, and variables with
subscript ¢ are to be regarded as linearizations of products of the corresponding
variables with ;. For example, Hift linearizes 0" y,;. To control the problem size, we
project out H iflt, ﬁllnt and f{r; variables by substitution. Next, we eliminate H7% and

HY, variables using Fourier-Motzkin. This leads to

IZ]-1
HE > Y max{ [ 71(611) + T1(0 1) (07, — 0" fr),

t=1
BT + TI(ON(f67, — 0T | + T (O + T{(O ) (6T, ~ 6 )
(B.18a)

Z]-1

Hy > Y] max { fi1(07) + T{(O07)(£07, - 07 £33),

o~
Il
—
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SO + T(O)(f67, — O'fio) | + (O ) + THO ) (f67, - 01
(B.18b)

(4.41e) — (4.41k) (B.18c)

Now, we observe that each linear function in (B.18a) and (B.18b) is nonnegative.
For example, consider f{5Ti(0") + T{(0"")(f07, — ©'~'f{%) in (B.18a). Here,

(O =0, T{(O7!) = 0, and (ﬁft — O f1%) = 0 (see (4.41h)). We use this
observation, and relax (B.18a) and (B.18b) to (4.41a)—(4.41d). Finally, we require the

solution to lie in a single partition by imposing integrality constraint on pu, variables.

B.9 Derivation of MIP representation of Piecewise Relaxation of V

For convenience, we replace (4.32a) and (4.32b) in Conv(V) with U™ — U =
T — T and U™ — UB* = T0™ — Y0®. Note that this still captures Conv()),
since the former can be derived by a linear combination of the latter. Next, we

use disjunctive programming to construct the convex hull of piecewise relaxation of

V= Um Conv(V,).

[[t]] ‘I| Utrs _ Utss — T;‘S _ Tis7 (Blga)
Mm 0< (), — 0" () < ()™(0 — O M), V()€ U™, US 1),

(B.19c¢)
[, O'()e — ()0, < (V™0™ — 0), ¥ () € {U™, U™, T, 7=}, (B.19d)
|Z| |Z|
=200, () =20 V()e{U=Us 11} (B.19¢)
|Z| |Z|
DNoi=0, D=1, p=0 [ (B.19f)

Here, p, are disjunctive programming variables, and variables U6°, U are to be
regarded as the linearizations of U™ -y, U™ - pi;, respectively. To the above, we

append the redundant constraint U6™ — U#® = T0™ — Y6>*, which is derived by
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adding all the equations in (B.19a), and using (B.19¢). Then, we relax (B.19) by
discarding all the equations in (B.19b). Next, we eliminate variables of the form U6,
and 6, in the following manner. For notational convenience, we present the elimination

process assuming we have three partitions. Consider

0<Ul -6, <U™0, -0 ), t=1,2,3 (B.20a)
0 < @tUt —U_Qt < Uup(@tlllt — Qt), t= 1, 2,3 (BQOb)
U_QZU_Ql +U_02+U_93, 9:91+92+93 (BQOC)

First, we substitute out U6, by U0 — U8, — UB,. Then, we rearrange the inequalities

governing U6, in the following manner:

—(8°U, — Ul + Ubs) — U™ (6, — ©°u1) < U, < —(0°U; — U + U8,)
—(@1[]1 - U_9 +U_93) < U_92 < UUP(@I,Uq - 91) - (@lUl —U_e + wg)
61U2 < U_92 < Uup(92 — Gl,uz) + @1U2
@2U2 — UUP(@Q}LQ - 02) < U_QQ < @2U2
(B.21)

Now, we eliminate U#f, using Fourier-Motzkin. We write (L1R3) to denote first
inequality from the left hand side, and third inequality from the right hand side.

and (L2R2): @Oul < 91 < @1u1

a L1R2): O < U1 < ,ulUuP

v
a. L4R3 . 0 < U2 < /LQUUP

( ) ( )
( ) and ( )
(L3R3) and (L4R4): O'u, < 0y, < 0%y
( ) and ( )
(L1R3) and (L3R1): — (8°U; + ©'Uy — UB) — U™ (0 + 05 — Oy — O'pu)
<Ub, < —(0°U, + 0'U, — Ud)
(L2R4) and (L4R2): — (©'U; + ©*U, — U0)
< UO, < U™ (O 'y + O%uy — 0, — 0y) — (01U, — 02U, — Ub)

(L1R4) and (L4R1): — (0°U; —Uf) — 02U, — U™ (0, — O°uy)
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< Uf, < —(6°U, — Uf) — O, + U™ (021, — )
(L2R3) and (L3R2) — (@lUl — U_‘g) — @lUQ — UUP(QQ — @l,ug)
< Ul <U™(O'py —6,) —0'U, — (0'U; — UY)

We relax the set by discarding inequalities obtained from (L1R4), (L4R1), (L2R3) and
(L3R2). The inequalities obtained from (L1R3), (L3R1), (L2R4) and (L4R2) have
the same form as the four inequalities in (B.21). As before, we eliminate U6, using
Fourier-Motzkin, and discard inequalities obtained from (L1R4), (L4R1), (L2R3) and
(L3R2). This leads to

3
- Y e < U (9 - @“m> (B.22a)
t=1

0<

|Q
S

t=1

(@)
n
]

3
e, —Uh < U™ (Z Oty — 9) (B.22b)
t=1

-+
Il
—

61&7 @til,ut < et < @tut, 0 < Ut < UuPMt, t= 1, 2, 3 (B22C)

T
I

o~
Il
—

In this manner, we eliminate all variables of the form (-)6 from (B.19). Then, we
eliminate all 6, variables, which are now constrained only by (B.22c), using Fourier-
Motzkin. This leads to Y, €15t < 0 < Y 4. Since it is implied from (B.22a)
and (B.22b), we do not impose it explicitly. Finally, we require the solution to lie in

a single partition by imposing integrality constraint on pu, variables.
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C. MISSING IDENTITIES AND DERIVATIONS

C.1 Derivation of the Search Space Formulation

Constraints (A2) through (A8) in Chapter 4 are described below. Here, we write
{p}y—1 and [p]7 as a shorthand notation for {1,...,n} and V p € {1,...,n}, respec-
tively.

_ j—1
Tikj = Vik+1j-1 — Vikj—1 — Vik+1j + Vikj, [K];

for [i, 7] € P, , (A2)
Bitj = Wil i—1j — Witllj — Wii-1 T Wirg, [
er‘,j,j =wiij =1—(;
Vi = Wax{0, Vigom + Vi = Vinm}, [t Il K]
for [i,j] e P, < Vig; < MIN{V; g m, Vinj by [[n]]zl:ll, [[m]]ifl, [[k]]{f*l

wigy = Max{0, Wimj + Wnij — Wamyg},  [PIEEY Imlt [

kwi,l,j < min{wi,m,jawn,l,j}a [[n]];’i—"l_lv [[m]]i'_17 [[”]ZJA

(A3)
GrN=Car1=--=Cn=1 (A4)
( k+1 '
Z Oik,d,j = Tik,js [[k’]]fl
I=i+1
for [i, ] € P, { o - A5
[ J] Z Oiklj = @',k,l,j, [[l]]iﬂ ( )
k=1—1
ko-i,k,l,j 2 07 [[l 51117 [I:k]]"zil
r i1
Xij < Gij — Z Brij, YV (i,j)€eC
(A6)
pij < Gij— Z Tigi, YV (i,J)€R
\ l=j+1
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Xil/ClZ Z/Bkz“ V Z,Z EC

(A7)
Pii = Gii — Z Tisils (i,i)e R
l=i+1
fOI' [273]67—\1n CZ] Zﬁkl]—i_ Z Tz]l (A8)
l=j+1

In the above, v;; ; and w;; ; are linearizations of Hﬁn:k(l — Gim) and Hin:i(l — Gmj)s
respectively. 7,5; = 1 (resp. fi;; = 1) if and only if stream [i, k] (resp. [l,j]) is
produced as distillate (resp. residue) from stream [, j]. Note that in (A6) and (A7),
we used B = Cij — Sy Briy and Tijni1 = Gy — 2 1 Tijl- For more details,
see [25]. Using (C.1) and (C.2) (see (3) and (4) in [25] for derivation), we substitute

out v; 1 ; and w;; ; variables.

0, for k =1,
for [i,j1€ T, vig; = < J k-1 (C.1)
— > D Tigs, fori+l1<k<y
\ Sik =1
( 1 ]
Z B,«’SJ, fori<i<j—1
for 0,71 €T, wii; = < r=i s=l+ (C.2)
0, forl =3

We substitute (C.1) and (C.2) in (A2) to obtain

. Tik,j = Tik,j
for [i, ] € P, (C.3)

Wi,lj = Wil,j
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Since the above constraints satisfy trivially, we do not include them in the model.

Next, we substitute (C.1) and (C.2) in (A3) to obtain

J

7—1
DiTing = D, Bisi =G
rar

s=1+1

J m k-1 j m n—1
Zznmxm{ Zznmfzznm_zghm}

s=k r=t s=k r=t s=n r=i s=n r=i

[ R ) A 3 i

m k—1 7 n—1
Z Z Tir,s) Z Z Ti,r,s} ) [[”H;cnﬂl? [[m]]] ' [[k]]wrl

s=k r= s=n r=t

m 7 l 7 m J
]-7 Z Z ﬁr,s,j + Z Z 67’,3,3‘ - Z Z 57",3,]’}7

r=i s=m+1 r=n s=[+1 r=n s=m+1

for [i,j] € P,

A

j k-1
3 3 i > mas

s=k r=1

l J
2 2 ey < min

r=is=[+1

<.

[l Il I
33 @,s,j>max{z S 4 YY) 5} P, el D]

r=is=[+1 r=is=m-+1 r=n s=[+1

(C.4)

We express the second constraint in (C.4) as the intersection of two inequalities
er zTMS\landZ kZ TMS\ZS kZ ms+Z n Dire, iT“"S Dien Dire, iTH"S

By noting that £ < m < j and k < n < m + 1 < j, the second inequality can be

simplified as 0 < >7 ., ZT i Tirs- Lhis inequality is trivially satisfied because of

(A5), so we do not include it in the model. Similarly, we express the third constraint

in (C.4) as the intersection of two inequalities _, Z "= S Z ' 7ins and
kZ 7'”5 > Z Z Tims. By recognizing k < m < j, the first inequality

can be simplified to 0 < +1 Zr ; Tirs- Lhis inequality is redundant, because of
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(A5). We repeat the arguments with the last two constraints in (C.4), and discard
the redundant inequalities. This simplifies (C.4) to

(-1 j
Z Tirg = Z Bisi = Gij
r=i s=i+1
7 n—1 7 k-1
for [ij]eP, Y SN rne <Y Y re <1, [l [HY) (C.5)
s=n r=i s=k r=t
m J l J
DD B <) D, Bres <1 [ml Y [0
\ r=1s=m+1 r=i s=[+1

The second constraint in (C.5) for streams of the form [i, N] is given by

N n—1 N k-1
PIDILIIEDIPILFAES N (/N ey (C.6)
s=n r=t s=k r=t

Consider a stream [i, j] such that j < N. Then, we observe that >/ S* 17 &<
SN Sl s This implies that the constraint 37 S "'7 < 1 in (C.5) is
redundant for j < N, since it can be derived from (C.6). Next, we observe that
the first inequality in (C.6) can be expressed as Z ZT : Tirs —i—ZS i1 ZT e Tirs <

k ZT ; Tirs. Oince 7;, s = 0 from (A5), the constraint Z o _Z. Tirs < Z e Zr : Tis
in (C.5) is implied from (C.6) for j < N. In a similar manner, it can be shown that
it suffices to impose the third constraint in (C.5) only for streams of the form [1, j]

i.e., i = 1. Therefore, the projection of (A2) and (A3) in 7 — (3 space is given by

Jj—1 j
Z Tirg = Z Bisj =Gy, VIi,jleP
r=1 s=1+1
N n-1 +N k—1
Y s < DY e <1 [, DN (C.7)
s=n r=t s=k r=1
m J .
PPN <3S At Wl
r=1s=m+ r=1s=l+1

Next, we use (Ab) to project out 7, ; and f;;; variables from (C.7), (A6) — (A8) to
obtain the constraints (W1) — (W6).



189

C.2 Gauss Quadrature Formula

f F(@)do~ 3 €,£(6,) (C8)

9€g
where G = {1,2}, & = & = 1/2, ¢ = 0.211325 and ¢ = 0.788675 for two point

quadrature formula.

C.3 Proof of Identity

(S) + £ 5w - () (Som)

k L l<k 1 k

Consider the left hand side

LHS = (Z ukwk) + Z Z (uk - ul)kawl

k 1 l<k
= Z uiwi + 22 Z UpUWEW; + Z Z (ui + ul — 2upu)wpwy
% k1 1<k k1 1<k
2,02 +
S DL TS
k k 1 l<k k 1 I<k
2,02 +
St 5 X s Y 3]
% kL l<k Ik, k<l
= Z ukwkwl —1—2 Z ukwkwl —1—2 Z ukwkwl
k1 k= k1 k>l k1 k<l
2
= 2.0 ik
kL

(3 (e e

C.4 Relative Volatilities for the Case Study

We remark on the computation of relative volatilities used for the case study in

§5.2. Shale gas is treated as a mixture of five components C1 through C5. For
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this system, large number of data points are required to span the entire composition
space. Therefore, to reduce the computational effort, we chose to fit the surrogate
for each consecutive binary pairs of representative species. Figure C.1 shows the true
VLE (solid blue curve) and the best surrogate (dashed red curve) in least-square
error sense for Methane-Ethane, Ethane-Propane, Propane-Butane, Butane-Pentane
pairs. Next, the required relative volatilities are computed as a; = ajoao3a3404s5,
Qg = Q30i340y5, O3 = 340y, y = ags and as = 1 (see Figure title for aqa, ang, s,

and ays values).
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(x — T+ z™0)/z"0 = fi 9q 0 ULYEY ST [opoW 9)LF0IMS S[)
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