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PREFACE  

The overarching goal of this dissertation is to highlight how genetics and genomics are important 

tools with immediate applicability in wildlife conservation and a source to understand the 

evolutionary history of a species and its current risks for better management planning. This thesis 

is divided into three chapters. Each chapter is an independent publication unit. Chapter one of this 

dissertation has been published in peer-reviewed journal and chapter two has gone through peer 

review and is currently under revisions. The last chapter is currently under preparation for 

submission. Chapter 1 focuses on creating genetic assessment tools (genotyping arrays) using 

whole genome sequence data and their application to estimate population genetic metrics for 

different populations. Chapter 2 focuses on using low coverage whole genome data from multiple 

individuals to further validate the findings from Chapter 1 and compare genetic diversity between 

genic and inter-genic regions. From these two chapters, I establish that isolated populations suffer 

from loss of genetic diversity at a genome-wide scale, are significantly more inbred and are 

possibly locally adapted to its microhabitat. Moreover, initial whole genome analysis from 

multiple populations suggest that small populations survive at low genetic diversity and avoid 

inbreeding depression by purging the load of highly deleterious mutations (Chapter 2). These 

findings are further examined using deeper sequences from even more samples and populations in 

Chapter 3. Chapter 3 focuses on creating demographic models that shape the contemporary 

genomic diversity patterns first observed in Chapter 1 and Chapter 2. Additionally, I compare the 

distributions of deleterious mutations in small versus large populations to show that small 

populations are less efficient in purging newly rising deleterious mutations and thus, more likely 

to suffer from inbreeding depression. 
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ABSTRACT 

Humans have altered natural landscape since the agricultural revolution, but it has been most 

destructive since human globalization and rampant industrialization in the last two centuries. These 

activities deteriorate and fragments natural habitat of many wild species that creates small isolated 

populations that lose genetic diversity over time. Loss of genetic diversity reduces the adaptive 

capacity of a population to respond to future environmental change and increases their extinction 

risks. Implementing strategies for wildlife conservation is a challenge primarily because of our 

lack of understanding of the biology of many wild species, the risks they are currently facing, and 

their evolutionary histories. With the advent of genomic and computational techniques, it is now 

possible to address these concerns. In my research, I used genomics to study the evolutionary 

history of the Montezuma Quail (Cyrtonyx montezumae) and created monitoring tools that can be 

readily applied by wildlife managers for its conservation. Montezuma Quail is a small gamebird 

found mostly in Mexico with peripheral populations existing in Arizona, New Mexico, and Texas. 

Montezuma Quail are going through species wide decline in the United States and are listed as 

vulnerable in the state of Texas due to their small population sizes and geographic isolation from 

rest of the range. My results show that Texas quail are genetically distinct and significantly less 

diverse than Arizona quail. Analysis of whole genome sequences from multiple individuals show 

that due to small population sizes and isolation, Texas quail are significantly more inbred and 

genetic drift is the major contributor for loss of genetic diversity we see today. Inbreeding is 

negatively impacting Texas quail as they carry more deleterious alleles within their genome that 

reduce fitness of the individuals. Demographic models predict that both Arizona and Texas 

populations were formed via founding bottlenecks around 20,000 years ago. Texas populations 

have maintained small population sizes since its split from the ancestral populations and are less 

efficient in purging new deleterious mutations that arise post-bottleneck. The inferences from my 

research not only carries direct implications for Montezuma Quail conservationists, but also 

illustrate the power of evolutionary genomics in implementing targeted management strategies for 

any species that face existential threats in today’s waning world.  
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 THE GENOME AND POPULATION STRUCTURE OF 

MONTEZUMA QUAIL 

The first chapter of this dissertation had three main goals: (i) to characterizing the Montezuma 

Quail genome which can be used as reference for future Montezuma Quail studies, (ii) to create a 

genotyping panel that can be used for individual identification of field collections and monitor 

genetic health of populations, and (iii) use the panel to study the population variation and structure 

of the all Montezuma Quail populations in the U.S: Arizona, New Mexico, and Texas. The results 

from our genotypic array showed that Texas quail are genetically distinct and less diverse at key 

fitness genes. This chapter contains published content from the journal Conservation Genetics 

entitled, “Evidence of genetic erosion in a peripheral population of a North American game bird: 

the Montezuma quail (Cyrtonyx montezumae)”. 

The published version of this chapter available at  https://doi.org/10.1007/s10592-019-01218-9  

1.1 Abstract 

Population extirpations are often precursors to species extinctions. Anthropogenic activities often 

lead to smaller populations that are more prone to extirpations and advocates for active 

conservation management have recently called for the preservation and monitoring of genetic 

diversity, particularly with regard to the adaptive potential of vulnerable populations. We used 

genomics and curated arrays of molecular markers, including those expected to impact key fitness 

traits, to quantify evidence of genomic erosion in core and peripheral populations of a gallinaceous 

bird. The Montezuma quail (Cyrtonyx montezumae) is a game species considered vulnerable to 

extirpation in Texas, but core populations in Arizona and New Mexico are robust and have the 

potential to serve as genetic reservoirs. We sequenced the Montezuma quail genome then 

developed a single nucleotide polymorphism (SNP) assay to quantify genetic variation, effective 

population sizes, signatures of natural selection, and population structure. We genotyped SNPs 

from gene deserts and from genes associated with fitness traits and found the isolated Texas 

population exhibits an extremely small effective population size, is genetically distinct from our 

Arizona and New Mexico samples, and has reduced heterozygosity at the fitness-related markers. 

Thus, our samples from Texas exhibit symptoms of genetic erosion that could exacerbate future 

https://doi.org/10.1007/s10592-019-01218-9


 

 

16 

risk of local extirpation. Management agencies must decide if active conservation efforts such as 

assisted gene flow or genetic rescue are now warranted. This decision may not be straightforward 

because the current conservation status of the Texas population reflects its isolated geographic 

locale on the periphery of the species’ range. 

1.2 Introduction 

Peripheral populations often arise due to natural processes such as irregular dispersal and 

landscape heterogeneity, but they can also be due to anthropogenic activities (e.g. van der Valk et 

al. (2018)).  Peripheral populations are often prone to extinction due to natural metapopulation 

dynamics (Hampe and Petit 2005), but they are biologically important because geographic range 

margins often harbor populations that will presumably be the source for future range expansion 

under climate change. Phylogeographic studies have shown that such peripheral populations are 

mostly constrained to specific habitats within unsuitable and heterogeneous landscapes (Hampe 

and Petit 2005). Populations  on the edge of a species’ range can suffer from long standing isolation 

from the core populations and thus, can exhibit high levels of genetic differentiation (Martin and 

McKay 2004). These populations may contain important genetic variants that are not present in 

the core of the range(Garner, Pearman, & Angelone, 2004; Hunter & Hutchinson, 1994; Lesica & 

Allendorf, 1995). If these polymorphisms include adaptive variation, then they contribute to the 

evolutionary potential of the species' gene pool(Barbosa et al., 2018; Lesica & Allendorf, 1995). 

Population declines are often associated with the loss of genetic diversity that can lead to a 

feedback loop or vortex (Li et al., 2016; Spielman, Brook, & Frankham, 2004).  Some authors 

have argued that the detection, monitoring, and preservation of genetic diversity in small isolated 

populations should be a primary goal of conservation (Hampe & Jump, 2011) because they are at 

extreme risk of extirpation and a lack of genetic information thwarts effective conservation efforts 

(Ralls et al., 2018).  Conservation efforts usually target non-game species, but legally hunted 

species also warrant monitoring, especially peripheral or isolated populations (e.g., Epps, 

Crowhurst, and Nickerson (2018)). 

The Montezuma quail (Cyrtonyx montezumae), sometimes called Mearns’ quail, is a small, 

social, gallinaceous bird that mostly inhabits the oak-grassland landscapes in mountain ranges and 

sky islands of Mexico and the southwestern United States (Leopold and McCabe (1957); Figure 

1.1) from 1500 to 1800 meters above sea level (Albers & Gehlbach, 1990). Like many 
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Figure 1.1: Map showing the contemporary geographic range of Montezuma Quail (shaded) and 

all collection sites, with an inset of Arizona (the source of most samples). Montezuma Quail 

samples were collected from hunter harvested wings in Arizona (red dots), voucher specimens 

from New Mexico (blue triangle), and road-kills in Texas (green square). The locations of 

samples used for genome sequencing are indicated with black arrows. The range data were 

collected from IUCN Red List of Threatened Species Data (IUCN 2018) and the map was 

generated using ArcGIS® Pro.
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galliformes, their foraging habits and population dynamics are greatly influenced by stochastic 

environmental factors such as precipitation (Heffelfinger & Olding, 2000). Montezuma quail in 

the U.S. are considered a game bird in some states, subject to legal sport hunting (e.g., in Arizona 

and New Mexico), but there has been no open hunting season in Texas for more than a decade due 

to conservation concerns. The Montezuma quail is categorized as Vulnerable by the Texas Parks 

and Wildlife Department  due to its restricted geographic range and recent widespread population 

declines that have been attributed to habitat degradation, habitat fragmentation, and overgrazing 

(Albers & Gehlbach, 1990; Brown, 1982; Rollins, 2002).  Although relatively common in large 

portions of its range, this bird is extremely difficult to trap and monitor due to its tuberiferous diet 

(i.e., trapping with grain as bait is ineffective) and thus its biology is relatively unknown. A 28 

August 2018 search of ISI's Web of Science using "Montezuma quail" or "Cyrtonyx montezumae" 

as the search terms yielded a total of only 9 published scientific papers on the species. 

In this study, we aimed to create genetic resources that a) are robust enough for monitoring 

using opportunistically collected samples (e.g., roadkill, remains collected from hunters, etc.); and 

b) would enable us to identify populations that exhibit signatures of genomic erosion (Leroy et al., 

2018).  Herein, we characterized the genome of the Montezuma quail and then estimated its genetic 

diversity and population structure by genotyping individuals from different geographic regions 

within the United States.  We queried a SNP panel that includes genetic markers from both 

annotated genes and gene deserts (i.e., intergenic regions) and subsequently genotyped 

Montezuma quail samples from Arizona, New Mexico, and Texas to characterize their genetic 

diversity and genetic structure. We frame our study in light of the degree of fragmentation within 

each state. The Arizona habitat is generally contiguous with the Mexican range of the species and 

supports a large, robust population of Montezuma quail.  The Texas habitat is highly fragmented 

and peripheral populations are small, whereas in New Mexico the habitat is more disjunct and 

populations are likely intermediate in size (Figure 1.1). Finally, we interpret these data in light of 

the geographical distribution of functional genetic diversity (i.e., in genic SNPs) and the 

conservation status of the Texas birds.  
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1.3 Materials and methods 

1.3.1 Sampling, DNA extraction, and genome sequencing 

Montezuma quail tissue samples were collected from sites in Arizona, New Mexico, and Texas 

(Figure 1.1).  This species is notoriously difficult to live trap (Hernandez, Garza, Harveson, & 

Brewer, 2009), so our sampling was largely opportunistic.  Arizona samples were acquired from 

hunter harvested wings collected between November 2007 to February 2008.  In contrast, New 

Mexico samples were collected from voucher specimens and Texas samples were collected as 

road-killed carcasses.  All acquired samples had associated geographic co-ordinates of capture 

locations. Muscle tissues were isolated from each sample and were subsequently frozen at -80˚C 

until DNA was extracted. 

Genomic DNA was extracted using a potassium acetate protocol (Nicholls, Double, 

Rowell, & Magrath, 2000), then purified using the Zymo® Genomic DNA Clean and Concentrator 

Kit. For genome sequencing, two Arizona samples (1 female E8452 and 1 male E8454) were 

individually barcoded, then both paired-end (2 x 100bp read lengths) and mate-pair libraries were 

constructed from each using Illumina® PCR free prep kits.  Mate-pair libraries were constructed 

from 2-4kb fragments excised from an agarose gel.  Samples were sequenced using 2 lanes of 

Illumina® HiSeq2500 platform, with one lane each for paired-end and mate pair libraries.  

Illumina® adapter sequences and low-quality bases (Phred < 20) were trimmed using Trimmomatic 

v.036 (Bolger, Lohse, & Usadel, 2014) prior to genome assembly and subsequent bioinformatics 

analyses.  The quality of the reads was inferred by generating summary statistics using FastQC 

v0.11.7 (Andrews & others, 2010). 

1.3.2 Genome assemblies, filtering, and annotation 

The mitochondrial genome was assembled using MITObim 1.6 (Hahn, Bachmann, & Chevreux, 

2013), using a baiting and iterative mapping approach.  A draft mitochondrial assembly was 

created using the Cyrtonyx montezumae cytochrome b (cytb) gene (AF068192.1) as bait and was 

annotated using MITOS (Bernt et al., 2013). 

The genome size was estimated with the Jellyfish (Marçais & Kingsford, 2011) k-mer 

counting method using the optimal k-mer of 60. Nuclear genome assemblies were constructed for 

both male and female individuals using multiple de novo assemblers (Supplementary Methods). 
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The most comprehensive assembly was chosen for downstream analyses by comparing assembly 

completeness using BUSCO (Simão, Waterhouse, Ioannidis, Kriventseva, & Zdobnov, 2015) and 

assembly statistics such as N50 using Quast (Gurevich, Saveliev, Vyahhi, & Tesler, 2013). 

Only the male nuclear assembly was used for gene annotation.  Prior to annotation, the 

assembly was filtered for xenobiotic sequences (i.e., exogenous sequences not of avian origin from 

pathogens, parasites, commensals, etc.) according to Antonides, Ricklefs, and DeWoody (2017) 

(Appendix A) and repetitive elements were masked. The assembly was annotated using the 

iterative MAKER 2.31 (Holt & Yandell, 2011) pipeline (Appendix A). 

1.3.3 SNP identification and assay design 

SNPs were identified using the assembly with contigs greater than 500bp using Genome Analysis 

Toolkit (GATK) pipeline following the “best practices protocol” (McKenna et al. (2010); 

Appendix A).  Genomic nucleotide diversity was estimated from the SNPs identified using 

VCFtools v0.1.14 (Danecek et al., 2011).  Suites of markers from protein coding genes (i.e. 

putatively “non-neutral” SNPs) and from non-coding gene deserts (putatively “neutral” SNPs) 

were chosen to help partition genetic differentiation into variance due to selection and to drift, 

respectively.  Leveraging variation at potentially neutral and non-neutral markers, we can better 

assess the evolutionary histories of different populations (Barbosa et al. 2018; Funk et al. 2012). 

By analyzing variation at only neutral loci, we can determine the populations that are 

demographically independent as variations at those loci would be due to demographic stochasticity 

(Funk et al. 2012). On the other hand, variation at putative non-neutral markers, we can elucidate 

the adaptive distinctiveness and potential of the different populations (Barbosa et al. 2018). We 

had no a priori evidence that the putatively non-neutral markers are under strong selection, but as 

a group they are much more likely to be targets of selection than our putatively neutral markers.  

Hereafter, we implicitly assume “putatively” when referring to the two panels of markers as future 

studies will be required to validate this initial characterization.  Ultimately, a SNP panel was 

designed with 192 SNPs partitioned into 96 SNPs from the non-neutral sites, 94 SNPs from the 

neutral sites, and 2 SNPs from the mitochondrial genome (see “mtDNA markers”; Appendix A).  

For the non-neutral SNPs, a manually curated list of candidate genes with potential roles 

in fitness related traits was generated from published Galliform literature (Table A4). These 

include genes associated with reproduction, growth and development, immune and stress response, 
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behavior, and other aspects of avian life that might provide insights into adaptive variation across 

the geographic range we sampled (Table A4).  Predicted amino acid changes and their effects from 

exonic SNPs were determined using SnpEff 4.2 (Cingolani et al., 2012). 

The presumptively neutral SNPs were identified by generating a distribution of all nearest-

neighbor intergenic distances using BEDOPS 2.0 (Neph et al., 2012) and choosing SNPs from the 

largest intergenic regions to maximize the distance between any marker and its nearest gene (Doyle 

et al., 2016). For neutral SNPs, the average distance between a SNP and nearest annotated gene 

was 1.4  0.88Mb. IGV v2.3 (Thorvaldsdottir, Robinson, & Mesirov, 2013) was used to identify 

targeted SNPs with at least 60 nucleotides of flanking sequence upstream and downstream, GC 

content less than 65%, and no other variable sites within 20 nucleotides.  Linkage disequilibrium 

was minimized by choosing a single SNP per annotated scaffold.  

1.3.4 SNP genotyping and genetic variation 

We genotyped 188 Montezuma quail samples (Arizona, N=165; Texas, N=18; New Mexico, N=5; 

Table 2) using the panel of 192 SNP markers.  Our sampling was heavily skewed towards Arizona 

where samples were hunter harvested, whereas Texas samples were opportunisitically collected as 

roadkill. Samples were genotyped using a Fluidigm® BioMarkTM platform (Fluidigm, South San 

Francisco, CA).  This platform works well with low quantity and/or low quality of DNA (e.g. 

DeWoody et al. (2017)), such as our road-killed samples or hunter harvested wings. To assess the 

repeatability and genotyping error of the assay, two individuals were included in replicates, 

resulting in total of 190 DNA samples (Appendix A).  We edited individual SNP calls using the 

Fluidigm® Genotyping Analysis Software using a confidence threshold of 0.65 for assigning 

genotypes for a particular SNP assay. Markers were removed from downstream analyses if they 

failed to cluster into distinct homozygous and heterozygous states or if a given marker had minor 

allele frequency less than 0.025.  Samples that failed to amplify at fewer than 164 loci (i.e., 97% 

of our useful markers; see Results) were removed from further analysis.  Allele frequencies were 

calculated using GENEPOP v4.2 (Rousset, 2008). GenAlEx 6.501 (Peakall & Smouse, 2012) was 

used to estimate the probability of identity (PI), which quantifies the robustness of the SNP assay 

to correctly assign genotypes to randomly collected samples by quantifying the probability of the 

likelihood of two individuals from a population having the same genotype at all loci (Waits, 

Luikart, & Taberlet, 2001). 
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Observed and expected heterozygosity was measured for all the sampling regions using 

GENEPOP.  Deviations from Hardy-Weinberg equilibrium (HWE) and LD between loci pair were 

evaluated using exact tests with Markov Chain approximation.  P-values for each of these tests 

were corrected by applying a sequential Bonferroni correction to adjust for multiple tests (Holm, 

1979). 

1.3.5 Population structure, effective population sizes, and selection tests 

We first performed a principle component analysis (PCA) using dudi.pca function in ADE4 

package in R (Dray and Dufour 2007), a model free approach to assess the distribution of genetic 

variation in the different populations. Next, a Bayesian clustering analysis was performed using 

two complementary approaches:  sparse non-negative matrix factorization algorithms (sNMF, 

Frichot, Mathieu, Trouillon, Bouchard, and François (2014)) implemented in the LEA package 

(Frichot & François, 2015) using program R, and the program STRUCTURE (Pritchard, Stephens, 

and Donnelly (2000); Appendix A). Unlike STRUCTURE, the sNMF algorithms in LEA are 

flexible approaches that do not rely on oversimplified population genetic hypotheses such as no 

genetic drift, no deviations from Hardy–Weinberg equilibrium, and no linkage disequilibrium in 

ancestral populations (Frichot et al., 2014).  The algorithm requires a parameter α (regularization 

parameter) that controls the regularity of ancestry estimates over geographic space.  Large values 

of α indicate the geographically closer samples having similar ancestry coefficients, whereas small 

values ignore spatial autocorrelation in observed allele frequencies (Caye, Jay, Michel, & François, 

2018). The number of ancestral gene pools (K) and α are chosen to minimize the cross-entropy 

criterion as it indicates better algorithm outputs and estimates (Frichot et al. (2014); Appendix A).  

NeEstimator v2.1 (Do et al., 2014) was used to provide comparative estimates of 

contemporary effective population size (Ne) of the Montezuma quail populations among the 

different geographic regions.  The linkage disequilibrium method with random mating and 

molecular co-ancestry method were used.  Pcrit values were explicitly provided (0.02 for Arizona, 

0.05 for Texas, 0.15 for New Mexico) due to significant difference in sample sizes for each region, 

as recommended by Waples and Do (2010).  

 Pairwise population differentiation was analyzed by calculating locus-specific and global 

pairwise FST values for individuals sampled in each geographic region using Genodive v2.0b27 

(Meirmans & Van Tienderen, 2004). A 95% confidence interval was generated by bootstrapping 
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over loci of pairwise FST values 1000 times using hierfstat (Goudet, 2005). Even though we 

specifically targeted loci associated with fitness and more likely to be under selection, FST outlier 

tests were performed to identify explicit signatures of selection using an FDIST approach 

(Beaumont & Nichols, 1996) implemented in both LOSITAN (Antao, Lopes, Lopes, Beja-Pereira, 

& Luikart, 2008) and Arlequin v3.5 (Excoffier & Lischer, 2010), and a Bayesian approach in 

BAYESCAN 2.1 (Foll and Gaggiotti (2008); Supplementary Methods). 

1.4 Results 

1.4.1 Genome sequencing, assembly, and annotation 

The whole genome sequencing of the female individual (E8452) resulted in a total of 515,110,758 

raw reads from the combined PE and MP libraries and spanned 40.65 Gb. Adapter trimming and 

quality control resulted in 0.6% and 34% loss in reads from PE and MP libraries, respectively 

(Table 1.1). For the male individual (E8454), a total of 492,547,194 raw reads (49.75 Gb) were 

generated. Trimming and quality filtering removed 1.0% PE and 33% MP reads (Table 1.1). 

The K-mer counting method from both individuals estimated the mean genome size of 

Montezuma quail to be 1.23 Gbp with an overall mean coverage depth of 32.1X. The most 

comprehensive assemblies were generated from AbySS at a k-mer size of 60 for both individuals. 

The female assembly was 1.03 Gb in size with 2544 scaffolds greater than 5000 bp and N50 of 

1,289,626. The male draft assembly was 1.01 Gb in size with 2479 scaffolds greater than 5000 bp 

and N50 of 1,179,040 (Table 1.1). BUSCO estimated both assemblies to be 94% complete relative 

to other avian genomes (aves_odb9; number of species: 40, number of BUSCOs: 4915) (Figure 

A1). The Montezuma quail mitochondrial genome assembly was 16,977 bp long and contained 13 

protein coding genes, 2 ribosomal subunit genes, and 33 tRNA genes (Figure 1.2). 

Only the scaffolds greater than 5000 bp (n = 2479) from the male genome assembly were 

used for the annotation pipeline. The final annotation set consisted 17,573 genes with a gene 

density of 1.86 genes per 100 kb. The mean gene length was 18,046 bp with 95% of genes 

containing multiple exons. Out of all annotated genes, 14,680 genes (84%) had a true Pfam domain 

hit (Table A1). 
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Table 1.1: Summary statistics for the whole genome sequencing and assembly of two Montezuma quail individuals, E8452 (female) 

and E8454 (male) 

The mean genome coverage depth was calculated from the estimated Montezuma quail genome size of 1.23 Gb. Sequences were 

assembled de novo using ABySS with a k-mer of 60 with paired-end reads used to assemble the contigs whereas mate pair reads were 

used for scaffolding. N50 is the median value where more than half of the assembly is contained in larger contiguous regions. Assembly 

completeness was assessed using BUSCO with the avian database (aves_odb9) which contained 4915 BUSC

Genome sequencing 

 Female (E8452) Male (E8454) 

 Filtered reads Read length (total bp) Filtered reads Read length (total bp) 

Paired-end library 259,148,992 26,019,844,111 234,806,556 23,570,217,596 

Mate-paired library 168,399,062 14,621,365,037 169,984,720 14,820,360,988 

Total 426,719,784 40,572,256,797 404,791,276 38,390,578,584 

Mean coverage 32.9X 31.2X 

Genome assembly (scaffolds > 5000 bp) 

No. of scaffolds 2,544 2,479 

Total Scaffold length (bp) 940,660,442 940,567,648 

Max. scaffold length (bp) 6,720,811 6,032,256 

N50 1,289,626 1,179,040 

Assembly Completeness (%) 93.9 93.6 
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Figure 1.2: Montezuma quail (Cyrtonyx montezumae) mitochondrial genome map. The 

mitochondrial genome was assembled from the female individual’s filtered paired-end reads 

using MITObim and annotated using MITOS. The Montezuma quail mitochondrial genome is 

highly similar to other avian genomes in size (16,977 bp) and content (13 protein coding genes, 2 

ribosomal subunit genes, and 33 tRNA genes) 
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1.4.2 SNP identification and assay development 

The variant calling pipeline resulted in over 3.2 million genome wide SNPs that passed quality-

control filtering within the two sequenced individuals with an average rate of 1 variant per 289 

bases (~ 3.5 per kb). Of the total SNPs discovered, 43% were found in annotated genes and of 

these, 41,990 SNPs were in exonic regions (i.e., the remainder were in introns or untranslated 

regions). Of those SNPs in coding genes, 33% were predicted to result in missense substitutions 

and 66% in silent substitutions (Missense / Silent ratio: 0.51).  The transition to transversion 

(Ts/Tv) atio based on observed SNPs in coding genes was 2.37 and the nucleotide diversity across 

the genome was 0.55 ± 0.08 (mean ± SD).   

 Post-genotyping, we removed 23 SNPs from downstream analysis as they either did not 

consistently yield robust genotypes or had an overall minor allele frequency (MAF) < 0.025 (i.e., 

the marker conversion rate was 88%; only 12% of the designed markers failed in empirical tests).  

Two DNA samples from Texas were removed due to poor amplification and missing data.  

Ultimately, genotypes from 169 markers (87 non-neutral, 80 neutral, and 2 mtDNA) were 

successfully assigned to 186 individuals (Arizona, N=165; Texas, N=16; New Mexico, N=5).  An 

overall genotyping error rate of 0.45% was calculated based on 4 DNA samples from 2 replicate 

individuals.  The overall mean probability of identity (PI) for the SNP array was estimated at 7.3E-

47.  

1.4.3 SNP genotyping and genetic variation 

When all samples were considered together, the mean expected (HE) and observed (HO) 

heterozygosity at all SNP markers was 0.35 ± 0.14 and 0.32 ± 0.17, respectively.  Between the two 

marker sets, observed heterozygosity at non-neutral markers (HO = 0.38 ± 0.16) was significantly 

higher than observed heterozygosity at neutral markers (HO = 0.28 ± 0.15; Mann–Whitney Rank 

Sum Test: W = 4326.5, p-value < 0.01; Figure A2).  At non-neutral markers that presumably assess 

adaptive variation, mean HO for both New Mexico and Arizona samples was significantly higher 

than for Texas samples (p < 0.05; Figure 1.3A; Table 1.2).  At presumably neutral markers, there 

was no significant difference between mean HO for Arizona and Texas samples (p = 0.7), whereas 

New Mexico samples had significantly higher mean HO than either Arizona (p = 0.02) or Texas  
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Table 1.2: Number of samples, heterozygosity (HE = expected; HO = observed), and effective population size (Ne) estimates based 

on the Fluidigm SNP Array of 169 loci (87 non-neutral, 80 neutral, 2 mtDNA markers).  Mean HO for Texas was significantly lower 

than Arizona (p < 0.05) at non-neutral loci but not at neutral loci (p = 0.7).  Mean Ne for the Texas samples was 20 and 6.7 times 

lower than in Arizona and New Mexico samples, respectively. 

 

 

 # Samples Males Females 

Non-neutral markers Neutral markers 
NE  

(95% CI) 
He 

 (mean  SD) 

HO 

 (mean  SD) 

He 

 (mean  SD) 

HO 

 (mean  SD) 

Arizona 165 85 80 0.36  0.12 0.36  0.16 0.33  0.15 0.28  0.16 260.6 (188.4 – 399.0) 

New Mexico 5 1 4 0.44  0.12 0.48  0.26 0.42  0.12 0.37  0.23 87.7 (23.7 - ∞) 

Texas 16 7 9 0.31  0.18 0.31  0.25 0.30  0.17 0.29  0.21 12.6 (5.9-35.7) 
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Figure 1.3: Mean observed heterozygosity for Montezuma quail samples among different sites 

at a non-neutral and b neutral markers. (A) At non-neutral markers, the mean observed 

heterozygosity in TX samples was significantly less than in AZ samples (p < 0.05) or in NM 

samples (p < 0.001). (B) At presumptively neutral markers, the mean observed heterozygosity in 

TX samples was not significantly different than from AZ samples (p = 0.7) but was significantly 

(p < 0.05) lower than in NM samples. *p < 0.05; **p < 0.01; ***p < 0.001 

 

samples (p = 0.03; Fig.3B; Table 1.2).  After sequential Bonferroni correction, 28 out of 169 SNPs 

in the array were found to significantly deviate from HWE (13 from non-neutral, and 15 from 

neutral).  No markers in the SNP array were found to be in significant pairwise LD after the p-

value correction.  A total of four mtDNA haplotypes were detected with our SNP assay, but there 

were no fixed differences among geographic sampling sites and very limited signal in the data so 

they are not discussed further. 
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1.4.4 Population structure, effective population sizes, and selection tests 

Global pairwise FST values ranged from 0.08 to 0.14 (Table A2).  Both sNMF and STRUCTURE 

analyses produced similar results indicating that when all loci were analysed together, all 

individuals clustered into two genetically distinct populations:  Arizona-New Mexico and Texas 

(Figure 1.4; Figure A3).  However, when only using the non-neutral loci (N= 87), all the three 

populations were found to be genetically distinct (Figure A4). These results were similar to the 

results obtained from the PCA analyses (Figure A6). We found no significant difference in genetic 

differentiation (FST) between non-neutral and neutral marker sets (p = 0.8; Figure A7). 

 We generated estimates of Ne to compare among sampling sites, not as absolutes.  

Estimates based on our SNP array show that Ne was highest in Arizona (261) and lowest in Texas 

(13), a 20-fold difference.  We only had 5 samples from New Mexico but estimated an intermediate 

Ne there of 88 individuals (Table 1.2).  

BAYESCAN failed to detect any locus under selection.  In contrast, LOSITAN identified 

5 non-neutral markers under significant positive selection and Arlequin found 1 non-neutral locus 

under positive selection (Table A3).  We found no locus that was common to both analyses, but 

all identified markers exhibit high levels of differentiation between Arizona and Texas populations 

(Table A3; Figure A5). 

1.5 Discussion 

Adaptive genetic variation is critical to long-term population persistence and is often maintained 

in peripheral populations outside the core of a species’ range (Lesica & Allendorf, 1995).  Herein, 

we assessed putatively adaptive genetic variation in a peripheral population of Montezuma quail 

that is of conservation concern according to the Texas Parks and Wildlife Department.  We 

sequenced the Montezuma quail genome and then genotyped a curated panel of SNPs associated 

with fitness related genes (Table A4) as well as a SNP panel not associated with any known gene.  

We were interested in the number and distinctiveness of extant populations represented in our 

samples, and whether signatures of genetic erosion correspond to the available habitat.  Our results 

indicate the Arizona and New Mexico populations cluster together and contain similar levels of 

genetic diversity.  In contrast, the small Texas population we sampled appears to be genetically 
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isolated, exhibits signs of genetic erosion (e.g., reduced heterozygosity at key genes), and has an 

alarmingly small effective population size relative to the samples from the other states.   

 

 Figure 1.4: Results from Bayesian clustering analysis (K = 2–5) to determine population 

structure for all 186 Montezuma quail samples (AZ = 165, TX = 16, NM = 5) that were 

genotyped at 169 loci containing 87 non-neutral, 80 neutral, and 2 mitochondrial markers. A 

Samples from the Texas collection site form an independent genetic cluster as compared to 

Arizona and New Mexico. (B) The most parsimonious number of gene pools is estimated to be K 

= 3, but K = 2 is nearly as likely (See Methods for details) 

1.5.1 Genome sequencing, assembly, and annotation 

We sequenced the Montezuma quail genome to provide the infrastructure necessary to survey 

genetic variation at (in theory) both neutral and adaptive loci.  Overall, the genome is unremarkably 

relative to other sequenced galliform genomes in terms of size and gene content. The genome 

assembly was comparable to scaled quail (Callipepla squamata, 1.08 Gb; Oldeschulte et al. 

(2017)), Japanese quail (1.04Gb; Wu et al. (2018)) and chicken (Gallus gallus, 1.05 Gb; Hillier et 

al. (2004)).  Our assemblies were likely > 93% complete (Table 1.1, Figure A1) and we annotated 

17,573 genes, similar to other birds (Zhang et al., 2014) including scaled quail (17,131 genes; 
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Oldeschulte et al. (2017)).  The Montezuma quail mitochondrial genome assembly was also 

comparable to other birds (Figure 1.2; Doyle et al. (2018); Halley et al. (2014)).  

1.5.2 SNP identification and assay development 

We used single nucleotide variants (SNVs) within the genome assembly to a) compare diversity 

within the Montezuma quail genome to related species; and b) to serve as targets for a SNP 

genotyping array.  The SNV density in the Montezuma quail genome (~ 3.5 SNVs per kb) is similar 

to other quail genomes (2.5 SNVs per kb in scaled quail and 4.2 SNVs per kb in Northern 

Bobwhite; Oldeschulte et al. (2017)).  Furthermore, the ratio of non-synonymous to synonymous 

substitutions (DN/DS; 0.51 in Montezuma quail) was similar to Japanese quail (0.45; Wu et al. 

(2018)).  Thus, at least on the surface, the Montezuma quail genome seems representative of other 

galliforms in terms of nucleotide diversity. 

Our curated SNP assay was designed to capture variation due to neutral (e.g., drift) and to 

non-neutral processes (e.g., selection).  The collective evidence (Figure 1.3 and A2; Table 1.2) 

suggests these markers generally behave as expected (e.g., the least variation at the neutral markers 

in the smallest population; Table 1.2).  Furthermore, our array appears robust to DNA quantity and 

quality limitations, and has a low genotyping error rate and a low probability of identity.  

1.5.3 Genetic variation revealed by the SNP assay 

Our data reveal that a) overall, Montezuma quail have levels of HO similar to other birds that have 

been surveyed with comparable SNP panels (Doyle et al., 2018; Doyle et al., 2016); b) in our 

samples, HO was consistently higher in our array of presumptively non-neutral SNP markers than 

in neutral markers; and c) HO at non-neutral markers was significantly lower in Texas individuals 

as compared to Arizona or New Mexico individuals.   

We and others (e.g., Barbosa et al. (2018)) argue that the putatively non-neutral SNPs better 

reflect adaptive potential than do the neutral SNPs whereas neutral loci are better indicators of 

standing genetic variation due to historic demographic events.  In our study, the mean overall HO 

at the non-neutral SNPs was significantly higher than the neutral SNPs (Mann–Whitney Rank Sum 

Test: U = 2633.5, p-value < 0.05; Figure A2). We found no significant difference between HO in 

Arizona and Texas at neutral markers (p=0.7) but a significant difference at non-neutral markers 
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(p < 0.05; Fig. 3). This pattern could be due to balancing selection maintaining multiple alleles in 

the gene pool(s) or an indirect signal of over-dominance (Mitton (2000). Balancing selection 

should be more effective in Arizona populations due to their presumed larger size, but the small 

Texas population sampled still maintains some genetic diversity that may be maintained by 

associative overdominance (Frydenberg 1963; Schou et al. 2017). If true, these findings also 

indicate that the geographically isolated Texas population has reduced adaptive potential relative 

to the populations sampled from New Mexico and Arizona.  This is less than ideal given a) the 

demographic vulnerability of Texas populations and b) the genetic isolation exhibited by the Texas 

population. 

1.5.4 Population structure and effective population sizes 

Limited vagility and small home ranges are one of the primary reasons for population isolation in 

Montezuma quail.  Radiotelemetry studies show that Montezuma quail are consistently found 

within 50m2 area of their original capture (Hernandez et al., 2009; Stromberg, 1990) and thus gene 

flow among populations is expected to be limited.  This is exactly the trend we found with our 

Bayesian population clustering analyses.  When all sampled individuals were analyzed together, 

Texas individuals show evidence of a separate genetic population with no recent admixture (Figure 

1.4; Figure A4).  In contrast, the New Mexico samples clustered together with the Arizona samples.  

A more detailed analysis of spatial genetic and landscape structure in the Arizona-New Mexico 

population will be interesting, but our primary emphasis here is the need for local in situ 

conservation planning in Texas.  

 Long term conservation strategies require the mitigation of both extrinsic (e.g., habitat 

fragmentation) and intrinsic (e.g., genomic erosion) threats (Mussmann et al., 2017). Productive 

grasslands, savannas, and woodlands that are native habitat for Montezuma quail in Texas have 

been negatively affected by European settlements and practices (e.g., overgrazing) over the last 

150 years.  Consequently, the environment has been subject to erosion and species composition 

shifts such that their habitat is now relatively depauperate of a) tall native grasses required for 

escape cover and b) preferred open spaces due to brush encroachment on mid-elevation slopes 

(Albers & Gehlbach, 1990; Harveson et al., 2007b). The lack of contiguous contemporary habitat 

is likely a major barrier to dispersal and gene flow in Montezuma quail in West Texas. The Texas 

population that we sampled is on the periphery of the species’ current range and is one of only a 



 

 

33 

few remaining small, isolated populations in the state (Figure 1.1). It seems as though substantive 

natural gene flow among Texas populations is unlikely in the foreseeable future.  

An emerging paradigm is that conservation efforts require proactive, rather than reactive, 

genetic management strategies (Ralls et al., 2018). We generally agree, but think it is premature to 

recommend active population management (e.g., translocations) of Montezuma quail by state 

agencies until more strategic genetic sampling is conducted in light of the contemporary landscape 

(see e.g. Hoffman and Blouin 2004).  Unfortunately, if conservation management is ultimately 

required, it may prove difficult for both intrinsic (e.g., low survival rates of translocated galliforms) 

and extrinsic (habitat degradation and fragmentation) reasons (Mussmann et al., 2017).  

 Our estimate of contemporary NE using the SNP data was small in Texas (mean NE = 13 

individuals).  In theory, an NE = 50 is required to minimize the impacts of inbreeding and at least 

NE = 500 to maintain evolutionary potential (Franklin & Frankham, 1998; Palstra & Ruzzante, 

2008).  These numbers suggest the Texas population is small enough that inbreeding is a real 

concern and that adaptive variation may be at risk due to drift.  Beyond the absolute value of NE 

per se, we note that despite a 3-fold greater sampling effort in Texas relative to New Mexico, our 

NE estimate in Texas was 6.7X larger in New Mexico (mean NE = 88) and 20-fold higher in 

Arizona (mean NE = 261).  Note there is only a 3-fold difference between estimates in Arizona and 

New Mexico despite large differences in sample sizes.  Thus, Texas is the clear outlier with respect 

to relative NE.  Our data provide the first snapshot of population metrics in Montezuma quail from 

Texas and they emphasize the need for future monitoring and conservation given the multiple signs 

of genetic erosion there, including small NE relative to the other states, reduced HO relative to other 

states, reduced nonneutral Ho relative to other states, and the genetic isolation revealed in our 

population structure analyses.   

 We designed our SNP array with markers associated with putatively non-neutral genes 

(Table A3) mostly because such loci more quickly register signals of genetic differentiation 

relative to neutral loci (Freamo, O’Reilly, Berg, Lien, & Boulding, 2011; Helyar et al., 2011), but 

also because we wanted to leverage the genome sequence and previously published studies which 

have identified fitness-related genes in galliformes. Our global estimates of genetic differentiation 

indicate that there is a moderate level of differentiation between the Arizona and Texas populations 

(Table A3) and some markers which exhibit substantially higher FST values. (Figure A7).  These 

could be indicative of local adaptation, but targeted research is required to address this question.  
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1.5.5 Caveats 

Our characterization of the genome is probably representative of the species as a whole, but our 

population genetic analyses may not be, because all the samples analyzed in this study were 

opportunistically collected.  For example, wings from Arizona hunters are not random samples 

from the landscape (e.g., quail coveys are often composed of relatives and hunters often take >1 

bird per covey).  This limitation also means that we did not attempt to critically assess inbreeding 

because our opportunistic sampling could produce substantial biases in within- and between-

population estimates of identity-by-descent (e.g., FIS or FIT).  Similarly, the road-killed samples 

from Texas are not randomly distributed across the available habitat and thus we did not account 

for within-population environmental variation.  It is possible there is an ascertainment bias in our 

SNP data (due to marker selection from Arizona genome sequences), but we find this unlikely 

given that diversity at neutral loci did not differ between Arizona and Texas whereas functional 

diversity did.  If present, such a bias would affect the allele frequency spectrum (Nielsen et al. 

2004) and thus skew demographic inferences like estimates of divergence times and migration 

rates (Wakeley et al. 2001) so we have not considered such analyses herein. 

1.6 Conclusions   

We sequenced, assembled, and annotated the Montezuma quail genome to develop a SNP panel 

that could be used to demarcate genetic structure, estimate NE, identify candidate genes, and detect 

genetic erosion.  We found the genome size and content to be similar to related species, and we 

genotyped birds from across their U.S. range at unlinked adaptive and neutral SNP loci.  Our 

results indicate that the Arizona-New Mexico populations are relatively homogenous (at least at 

the spatial scale considered herein) whereas the Texas population is differentiated and shows 

evidence of genetic erosion, including a very small NE, genetic isolation, and reduced 

heterozygosity at fitness-related markers.  Extirpations can lead to extinctions, and the signs of 

genetic erosion in Texas populations of Montezuma quail should be worrisome given their official 

(TPWD) status as demographically Vulnerable and the known importance of peripheral 

populations as evolutionary reservoirs for adaptive alleles.  This study illustrates how modern 

genomic techniques can be used to proactively inform conservation efforts, especially for 

understudied and at-risk species.  
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 THE GENOMIC IMPACT OF ISOLATION AND SMALL 

SIZE IN TEXAS MONTEZUMA QUAIL 

The results from the genotyping panel showed that Texas quail carry the signatures of genetic 

erosion i.e. small effective sizes, less diversity, and lack of admixture with rest of the quail. These 

inferences were drawn from a handful of a priori chosen markers and needed a genome-wide 

assessment of diversity and differentiation. In this chapter, we sequenced whole genomes of 

multiple individuals at a low depth of coverage and compared the patterns of heterozygosity, 

relatedness, inbreeding, and genetic load. Our results indicate that isolated Texas population is 

significantly more inbred and have differentiated gene pool due to higher impact of drift. Our 

results suggest that small populations have lower number of deleterious mutations, but drift and 

inbreeding is reducing the fitness by homogenizing those mutations within individuals. This 

chapter has gone through peer review and is currently under revision. The revised manuscript will 

be published in the journal Evolutionary Applications upon acceptance. An earlier draft of this 

chapter is available as a pre-print and can be accessed at: 

https://www.authorea.com/doi/full/10.22541/au.158941448.85174067 

2.1 Abstract 

Populations with higher genetic diversity and larger effective sizes have greater evolutionary 

capacity (i.e., higher adaptive potential) to respond to ecological stressors. We are interested in 

how the variation captured in protein-coding genes fluctuates relative to overall genomic diversity 

and whether smaller populations suffer greater genetic loads of deleterious mutations compared to 

larger populations. To this end, we analyzed individual whole genome sequences from different 

populations of Montezuma Quail (Cyrtonyx montezumae), a small ground-dwelling bird that is 

sustainably harvested in some portions of its range but is of conservation concern elsewhere. Our 

historical demographic results indicate that overall, Montezuma Quail populations in the U.S. 

exhibit low levels of genomic diversity due in large part to long-term declines in effective 

population sizes over nearly a million years. The smaller and more isolated Texas population is 

significantly more inbred and homozygous than the large Arizona and the intermediate-sized New 

Mexico populations. The Texas gene pool has a significantly lower proportion of deleterious 
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alleles than the Arizona gene pool, but Texas birds carry those deleterious alleles at higher 

frequencies. These results demonstrate that even in small populations, purifying selection 

effectively purges highly deleterious mutations that have a large effect on fitness. However, we 

also find that many slightly deleterious mutations rise in frequency due to drift and then become 

homozygous due to inbreeding in small populations, thereby elevating the overall genetic load 

realized in populations of conservation concern. Overall, our study illustrates how population 

genomics can be used to proactively assess both neutral and adaptive aspects of contemporary 

genetic diversity in a conservation framework while simultaneously considering deeper 

demographic histories. 

2.2 Introduction 

Many species and populations world-wide are declining at an alarming rate (Barnosky et al., 2011; 

Ceballos et al., 2015; Dirzo et al., 2014), mainly driven by human-mediated habitat loss and 

climate change (Loarie et al., 2009). Active prevention of population declines and extirpations is 

a priority for conservation (Cardinale et al., 2012; Thompson, Koshkina, Burgman, Butchart, & 

Stone, 2017) because reduction in population size is often followed by reduction in genetic 

diversity (Allendorf, Luikart, & Aitken, 2013; Soulé, 1985). The loss of genetic diversity has 

negative consequences on the future persistence of a species as it impedes its ability to adapt to 

environmental change (Bijlsma & Loeschcke, 2005; Bürger & Lynch, 1995; Reed & Frankham, 

2003). Smaller and/or isolated populations exhibit a more rapid loss of within-population genetic 

variation as compared to their larger counterparts (Willi, Van Buskirk, & Hoffmann, 2006). The 

combined effects of drift, inbreeding, weak selection, and lack of gene flow in small, isolated 

populations may lead to “genetic erosion” (Bijlsma & Loeschcke, 2012). Genetic erosion is 

expected to reduce the mean fitness of a population and thus increase extinction risks (Bijlsma & 

Loeschcke, 2012; Leroy et al., 2018).  

In theory, mean fitness is expected to progressively decrease in small isolated populations 

because of the accumulation of deleterious mutations that are ineffectively purged by selection. In 

large populations and/or when selection intensity is very strong (i.e., when Ne(s)>1 where Ne is 

effective population size and s is the selection coefficient), natural selection is an effective 

determinant of allelic fate (Kimura & Ohta, 1969). However, in small populations and/or when 

selection is weak (e.g., on small effect mutant alleles), genetic drift is more pronounced and allelic 
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fate is more stochastic (Lynch, Conery, & Burger, 1995). Thus, highly deleterious mutations are 

more likely to be purged by selection than to drift to high frequencies, whereas slightly deleterious 

mutations can actually increase in frequency in small populations (Hedrick & Garcia-Dorado, 

2016). Because most of the genes underlying adaptation represent complex polygenic traits and 

most genetic load is probably due to small effect (i.e., only slightly deleterious) alleles 

(Charlesworth & Charlesworth, 1987), collectively this means that genetic erosion can impede 

future adaptive potential in small inbred populations (Keller, 2002) if small effect recessive 

deleterious alleles rise in frequency due to drift (Charlesworth, Morgan, & Charlesworth, 1993; 

Lynch, 2007). 

In practice, empirical evidence for the purging of deleterious mutations is mostly 

experimental and there is far less evidence from natural populations, especially with respect to 

genomic sequence data (Bersabé & García-Dorado, 2013; Bijlsma, Bundgaard, & Putten, 1999; 

Crnokrak & Barrett, 2002; Grossen, Guillaume, Keller, & Croll, 2020; Rettelbach, Nater, & 

Ellegren, 2019). Economic and technical breakthroughs in whole genome resequencing now make 

such assessments in wild populations far more tractable. Beyond the basic evolutionary interest in 

allelic fates, the genetic erosion of adaptive potential is increasingly recognized as a major threat 

to modern conservation efforts (Holderegger et al., 2019; Ralls et al., 2018) 

Much of the vertebrate genome is thought to evolve in a neutral or nearly-neutral fashion (Ohta, 

1992) and is shaped by genome-wide processes such as inbreeding, migration, and demographic 

stochasticity (Pool & Nielsen, 2007). For example, contemporary genomic patterns of neutral 

diversity may be affected by the recent lack of gene flow due to anthropogenic habitat 

fragmentation (Lino, Fonseca, Rojas, Fischer, & Ramos Pereira, 2019) and historic demographic 

responses to glaciations (Nadachowska-Brzyska, Li, Smeds, Zhang, & Ellegren, 2015).  Beyond 

neutrality, variants in genic regions often underlie evolutionary adaptations subject to natural 

selection, and the mode and strength of selection largely determines the phenotypic response 

(Ellegren & Sheldon, 2008). Hence, explicitly comparing whole genomes with defined genic 

regions should help with identifying the major contributors to overall genomic architecture and 

also gauge the adaptive potential of populations. In this study, we use whole genome sequences to 

quantify genic and whole genome variation from different sized populations of Montezuma Quail 

(Cyrtonyx montezumae), then estimate the degree of genetic erosion and its impact on adaptive 
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potential by investigating the genic load via biochemical predictions as inferred from coding 

regions throughout the genome.  

The Montezuma Quail is a small gamebird that is hunted in portions of Mexico, New 

Mexico, and Arizona but of conservation concern in Texas (Figure 2.1). It is one of the least-

studied avian species in North America (Gonzalez, Harveson, & Luna, 2015) due to its cryptic 

nature as well as difficulties associated with live trapping and monitoring (Hernandez, Harveson, 

& Brewer, 2006). Montezuma Quail are currently experiencing species-wide declines within the 

U.S. (Harveson et al., 2007b), and Texas populations are listed as Vulnerable by Texas Parks and 

Wildlife Department (TPWD) with no open hunting season due to growing concerns about 

extirpations (Harveson, 2009). Unlike other North American quails, Montezuma Quail are diet 

(Albers & Gehlbach, 1990) and habitat specialists (Brown, 1979) that heavily rely on grass cover 

for predator evasion (Bristow & Ockenfels, 2004). Their demography is strongly impacted by 

seasonal rainfall (Chavarria, Montoya, Silvy, & Lopez, 2012) and adequate grass cover (Brown, 

1979) making habitat degradation and fragmentation major threats to Montezuma quail survival 

(Luna, Oaster, Cork, & O'Shaughnessy, 2017). Populations in Arizona are more genetically 

diverse than those from Texas or New Mexico (Mathur, Tomeček, Heniff, Luna, & DeWoody, 

2019) and are expected to be the least impacted by genetic erosion due to larger sizes and more 

contiguous habitat (Figure 2.1). In contrast, the Texas population is expected to have the highest 

signature of genetic erosion due to a restricted geographic range and associated demographic 

isolation.  

Herein, we report the data from whole genome sequencing (WGS) of 90 Montezuma Quail 

from Arizona, New Mexico, and Texas. We used these WGS data to quantify the levels of overall 

genomic diversity, genic variation, differentiation, individual inbreeding, and the inferred genetic 

load in each population. We do so in a conservation context by comparing populations of different 

sizes. Our results indicate that Montezuma Quail effective population sizes have decreased over 

much of the last million years, and their similar trajectories over time indicate that now-disjunct 

populations in the U.S. were long connected demographically. Furthermore, we find that the small 

Texas population is isolated, genetically depauperate, and that its genetic load is mostly due to 

small impact deleterious mutations that have drifted to higher frequencies. Because inbreeding is 

also more pronounced in the small Texas population compared to the larger populations, these 
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deleterious mutations are more likely to occur in homozygotes and thus contribute to declines in 

overall population fitness. 

 

 

Figure 2.1: Montezuma Quail species range and sampling sites (from Mathur et al. 2019). 

Samples were collected from the larger and most contiguous Arizona sites (N=60), from an 

intermediate-sized population in New Mexico (N=13), and from a relatively isolated and small 

population in Texas (N=15). 
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2.3 Materials and methods 

2.3.1 Samples, DNA extraction, and sequencing 

Montezuma Quail samples were opportunistically collected from three representative geographic 

populations in the United States: Arizona (AZ), New Mexico (NM), and Texas (TX) as described 

earlier (Mathur et al. 2019; Figure 2.1). Based on the size of their geographic range in each state, 

on assessments by each state game agency, on eBird sightings, and on previous genetic analyses, 

we explicitly assume that AZ samples come from a large population, NM from a medium-sized 

population, and TX from a small population relative to each other (Mathur et al. 2019). Arizona 

samples were acquired from hunter harvested wings initially collected by Randel et al. (2019). 

New Mexico samples were acquired as voucher specimens by R. Luna, whereas Texas samples 

were collected as road-kill carcasses by L. Harveson. Sample handling and DNA extraction 

protocols are described in Mathur et al. (2019). 

 We sequenced whole genomes of 90 Montezuma quail samples (AZ=60, TX=17, NM=13) 

by creating individually barcoded dual-index libraries using Illumina® NexteraTM reagents 

following the manufacturer’s protocol. The libraries were sequenced in 8 lanes of paired-end 

150bp reads (2x150bp) on one S4 flow cell using Illumina® NovaSeqTM 6000 sequencing system 

in Purdue University’s Genomics Core Facility. We removed any sample if they failed to generate 

more than 8 million reads (i.e. less than 1x mean read depth). 

2.3.2 Sequencing filtering, alignment, and read preprocessing 

We used FastQC v0.11.7 (Andrews & others, 2010) to quality check our raw reads and removed 

adapter sequences from trailing and leading edges of each read using Trimmomatic v.036 (Bolger 

et al., 2014). We also used Trimmomatic to remove low quality sequences (Phred < 20) and any 

read smaller than 30bp after clipping and quality filtering, prior to any further downstream analysis.  

 The filtered reads were mapped to a Montezuma quail draft genome assembly (Mathur et 

al. 2019) with BWA v.0.7.17 (Li & Durbin, 2009) using the mem algorithm. Samples with less 

than 50% mapped reads were removed from further analysis. Our final dataset contained 74 

individuals (AZ=52, TX=15, NM=7). We used the Genome Analysis ToolKit (GATK) “Best 

Practice Workflow” (Auwera et al., 2018) to pre-process our mapped reads. We first sorted the 

reads by their co-ordinates and marked duplicates using PicardTools 
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(http://picard.sourceforge.net). We then used GATK v3.6.0 (McKenna et al., 2010) to realign our 

reads around indels to minimize misaligning with mismatches. We identified the regions to be 

realigned using RealignerTargetCreator and aligned bam files using IndelRealigner. The base 

quality score was recalibrated for all the reads using known variant sites discovered from high 

coverage genome reads (Mathur et al., 2019) using BaseRecalibrator. We finally used these 

filtered-realigned-recalibrated reads to get coverage statistics using samtools depth (Li et al., 2009), 

and for further downstream analyses.  

In cases where we needed to polarize genomic variants as ancestral or derived (see below), 

we used the high-quality and contiguous chicken genome (Gallus gallus GRCg6a) as reference. 

Both Galliformes, Montezuma Quail belong to the New World quail Family Odontophoridae that 

diverged from junglefowl (Gallus spp.; Family: Phasianidae) approximately 30-40 million years 

ago (Cox, Kimball, & Braun, 2007; Hosner, Braun, & Kimball, 2015). Read mapping and 

preprocessing steps were same as above. 

2.3.3 Mitogenome assembly and diversity  

We mapped genomic reads to the previously published Montezuma Quail mitogenome (Mathur et 

al., 2019) and extracted the uniquely mapped reads (mito-reads) using BBMap v37.93 (Bushnell, 

2014). Since nuclear copies of mitochondrial DNA (NUMTs) exist in nearly all eukaryotic 

genomes (Bensasson, 2001; Lopez, Yuhki, Masuda, Modi, & O'Brien, 1994), we tried to first 

identify the NUMTs in the nuclear genome assembly of the Montezuma Quail. We used a BLAST-

based approach to query the Montezuma Quail reference mitogenome against a custom blast 

database of Montezuma Quail nuclear genome scaffolds. We extracted the NUMT sequences from 

genome assembly as fasta files using faSomeRecords (Kent et al., 2002). Any mito-read that also 

uniquely matched to the NUMT fasta sequences were removed using BBMap. This helped ensure 

that final mito-specific reads we retained belonged to the mitogenome and not NUMTs. We used 

samtools mpileup to align mito-specific reads to the reference mitogenome and used bcftools (Li 

et al., 2009) to call variants. We filtered the variants with a minimum base depth of 10 using vcflib 

(Garrison, 2012) and used bcftools consensus to create consensus mitogenomes for every 

individual. To avoid mismapping and errors introduced at the artificial ends created in the 

linearized mitogenome, we trimmed 40bp from either end of the mitochondrial sequence prior to 

analysis.  

http://picard.sourceforge.net/
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 All mitogenomes were aligned as multiple sequence alignment using Clustalw v.2.1 

(Thompson, Higgins, & Gibson, 1994) using default parameters. We calculated mitochondrial 

nucleotide diversity indices and haplotype statistics using Arlequin v3.5 (Excoffier & Lischer, 

2010). We accounted for unequal sample sizes for each population by randomly subsampling 

mitochondrial genomes from each population (N=7) and recalculated nucleotide diversity indices 

using 100 independent permutations. 

2.3.4 Genotype likelihood estimation, subsampling, and genotype calling 

For the nuclear reads, we used the samtools model in ANGSD v0.929 (Korneliussen, Albrechtsen, 

& Nielsen, 2014) to estimate genotype likelihoods (GL) and call single nucleotide polymorphisms 

(SNPs). We filtered bam files to only include unique reads with a minimum mapping quality of 

20. We excluded bases with a base quality score < 20 and only retained only proper pairs. Major 

and minor allele was inferred from the GL and triallelic sites were removed. Per-site allele 

frequencies (AF) were estimated using a combination of estimators i.e. first estimating allele 

frequency from GL assuming both major and minor alleles are known and then re-estimating AF 

by summing over the three possible minor alleles weighted by their probabilities.  We used a p-

value cut off of 10-6 to call a site polymorphic and a minimum minor allele frequency (MAF) of 

0.05. We also used a maximum depth threshold of 500 to avoid calling SNPs from repetitive 

regions (Clucas, Lou, Therkildsen, & Kovach, 2019). Deviations from Hardy-Weinberg 

equilibrium were tested and sites with p-value < 0.01 were filtered out to remove potential 

paralogous sequences with an excess of heterozygotes due to erroneous mapping (Meisner & 

Albrechtsen, 2019).  

When estimating GL across all samples (N=74), we used a threshold of minimum 60 

individuals to ensure including segregating sites from more than one population, in other words, 

to prevent retaining sites from only the Arizona population (N=52) (“population dataset”). To 

avoid biases introduced due to uneven sample sizes, we re-estimated GL and discovered SNPs 

from an equal subset of Arizona and Texas samples (N=21; AZ=7, TX=7, NM=7). For our 

subsamples, we chose samples with the highest depth and breadth of coverage to maximize the 

genomic spread of our variants (“genomic dataset”). For the subset, we used a minimum individual 

threshold of 15 and maximum depth threshold of 100.  
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In the end, we analyzed our genotype likelihood data two ways: (a) retaining maximum 

individual information at the cost of markers per individual (“population dataset”) and (b) retaining 

maximum genomic information on each population at the cost of individuals analyzed per 

population (“genomic dataset”). The population dataset was used for the estimation of inbreeding 

and genetic structure, both of which can be inferred from a smaller set of widespread markers from 

more individuals (McLennan, Wright, Belov, Hogg, & Grueber, 2019), whereas the genomic 

dataset with higher SNP density was used to estimate genome-wide diversity and for detecting 

signatures of selection (Benjelloun et al., 2019). 

2.3.5 Relatedness, inbreeding coefficient, and population structure estimation 

Assumptions of many population genetic estimators are violated if family members and closely 

related individuals are analyzed simultaneously. Related individuals among a sample set should 

thus be identified and removed prior to population structure analysis (Meisner & Albrechtsen, 

2018, 2019). We estimated relatedness among our samples using IBSrelate (Waples, Albrechtsen, 

& Moltke, 2019).  IBSrelate uses GL estimates to categorize a pair of individuals as either parent-

offspring, full-siblings, half-siblings, first-cousins, or unrelated based on whether the pair share 

the same genotype or exhibit dissimilar genotypes at a particular site (Manichaikul et al., 2010). 

We compared all individual pairs (total of 2701 comparisons) and removed any pairwise 

comparison from relatedness estimates if the number of sites compared were less than 100,000.   

 We estimated individual inbreeding coefficients (F) using PCAngsd v.0.982 (Meisner & 

Albrechtsen, 2018) from inferred GL. This allows F-values at a site to vary between -1 and 1 where 

a negative value indicates an excess of heterozygotes and a positive value indicates an excess of 

homozygotes at a site. Since inbred individuals would have an excess of homozygous sites, they 

should have an overall F > 0. We used extremely low tolerance values (1 x 10-9) and 5000 

maximum iterations for estimation to assure a stricter stopping criterion and avoid convergence at 

a local minimum (Figure B11).  

To identify genetic structure in our Montezuma Quail samples, we used two approaches.  

First, we used PCAngsd to calculate a covariance matrix and performed individual level PCA 

using princomp function in R (Team & others, 2013). Second, we used NGSAdmix (Skotte, 

Korneliussen, & Albrechtsen, 2013) to estimate individual admixture proportions. For PCAngsd, 

we used a minimum tolerance value for population AF estimation of 1e-9, a tolerance threshold 
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for updating individual AF of 1e-9 for 1000 iterations. For NGSAdmix, we ran 10 independent 

runs for each K from 1-10 with minimum MAF 0.05, 1e-9 tolerance for convergence, 1e-9 

tolerance for log likelihood difference in 50 iterations, and maximum 50,000 iterations. The most 

likely number of subpopulations were determined based on first and second order rate of change 

of the likelihood distribution from the 10 runs (Evanno, Regnaut, & Goudet, 2005). 

2.3.6 Nucleotide diversity, heterozygosity, and contemporary effective population size 

estimation 

For nucleotide diversity estimates, we only used the genomic dataset to avoid biases in estimating 

site frequency spectrum (SFS) due to uneven sample sizes and heavy data pruning, which was the 

case for our population dataset. We used ANGSD to generate a folded SFS by using the 

Montezuma Quail reference genome and a minimum base quality of 20 and minimum mapping 

quality of 20 (Figure B12). Next, we obtained a maximum likelihood estimate of the SFS using 

realSFS by bootstrapping it 100 times and using the mean SFS for each population to estimate per-

site Watterson’s theta (W). We estimated heterozygosity for each individual as the total proportion 

of heterozygous sites from its SFS. 

 To obtain an estimate of contemporary effective population sizes (Ne) from mean genomic 

W, we first estimated the whole-genomic mutation rate (µ) for Montezuma Quail (W = 4Neµ). 

Since no linkage map exists for Montezuma Quail, we estimated µ following Zhan et al. (2013).  

The Montezuma Quail reference assembly was mapped to the Chicken genome (Gallus gallus 

GRCg6a) using LASTZ (Harris, 2007). The mean divergence time (t) between chicken and 

Montezuma Quail was derived from www.timetree.org and polymorphic loci were identified only 

if neither target nor query nucleotide was N/n and the locus was not in an alignment gap. The final 

µ per nt per year was calculated with the following formula: µ = (counts of mutated loci / sequence 

length) / 2t (Zhan et al., 2013).  

2.3.7 Genetic differentiation and selection scans 

Small populations in isolation can become genetically differentiated due to drift at neutral loci as 

well as positive selection at non-neutral loci (e.g., in response to local adaptation). Both processes 

lead to nucleotide divergence (DXY) and divergence in allele frequencies (FST) (Matthey‐Doret & 

Whitlock, 2019; Puzey, Willis, & Kelly, 2017; Rousset, 1997). We investigated genomic patterns 

http://www.timetree.org/
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of genetic differentiation by estimating pairwise FST using a sliding window approach (window 

size=100kb, step=50kb) for each population pair (AZ-TX, TX-NM, AZ-NM). We used ANGSD 

to calculate the 2D SFS for each population pair using the chicken genome (GRCg6a) as reference 

to polarize alleles as derived or ancestral. We quantified the levels of nucleotide divergence (DXY) 

using the calcDxy.R (https://github.com/mfumagalli/ngsPopGen/blob/master/scripts/calcDxy.R). 

In this case, we estimated GL for each population individually, but only retained sites that were 

shown to be segregating in all populations. This ensured that sites with a fixed allele in one 

population is still included in our per population DXY calculations.  

 To identify candidate regions under putative selection due to local adaptation, we Z-

transformed FST around the mean for each sliding window and examined the outliers that had Z(FST) 

values outside 5 standard deviations from the mean (Willoughby, Harder, Tennessen, Scribner, & 

Christie, 2018). After removing false positives that showed higher deviations due to lack of data, 

the remaining outlier windows were inspected for nearby genes. We blasted the 100-kb outlier 

window to the chicken genome using default parameters and only retained windows that contained 

annotated genes with known function. 

2.3.8 Population trends and historic demographic sizes  

Neutral alleles with rare initial frequencies are more likely to be lost during bottlenecks whereas 

more common alleles tend to increase in frequencies more than expected under an equilibrium 

demographic model. This shift from rarity in the allele frequency spectrum results in an overall 

positive value of Fu’s F statistic (Fu, 1997). On the other hand, new mutants tend to increase in 

frequency in expanding populations and thus produce an excess of rare variants and a negative 

mean value of Fu’s F. Fu’s F is more sensitive to demographic changes than Tajima’s D (Ramos-

Onsins & Rozas, 2002) but requires ancestral sequences for unbiased estimations. Thus, we 

estimated mean Fu’s F statistic for every population over a sliding window in ANGSD using the 

chicken genome as an ancestral reference with 100kb window size and 50kb step.  

 We reconstructed ancestral demographic histories using SMC++ v.1.15.2 (Terhorst, Kamm, 

& Song, 2017) which uses unphased whole genome data to infer population size histories using 

sequential Markov coalescent (SMCs) simulations. The reads that mapped to the first 10 chicken 

chromosomes (NC_006088.5- NC_006097.5) comprising ~750 Mbp were used to create 

composite likelihoods for each population individually by varying the identity of the distinguished 
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individual while keep other individuals within the population as undistinguished. We used cross-

validation to estimate population size changes using the Powell algorithm with a tolerance of 1x 

10-5 and a mutation rate of 3.14x10-09 (estimated as above). We ran our model using 5000 iterations 

and used different parameter values for thinning and regularization penalty to avoid degeneracy in 

the likelihood and overfitting (Terhorst et al., 2017) with final model generated using thinning 

parameter of 1300 and regularization penalty of 6. A generation time of 1.5 was used to convert 

generations into years. 

2.3.9 Genic diversity and estimation of genetic load  

The Montezuma Quail genome consists of ~17,500 genes (Mathur et al., 2019), and here we 

compared levels of nucleotide variation across the entire genome to levels of variation in just the 

genic regions in order to help partition the effects of drift and selection. We used BEDOPS (Neph 

et al., 2012) to convert the gene annotation file (.gff) to a BED file and filtered BAM files to only 

include reads that overlapped with the genic co-ordinates using samtools view. The genotype 

likelihoods and diversity indices were estimated for the genic regions following the same methods 

and parameters as above.  

We quantified the potential genetic load of a population as the proportion of deleterious 

variants of different impact classes across all annotated protein-coding genes. We did so by 

predicting the effect of each nucleotide variant on the resulting amino acid sequence, then 

quantifying its putative deleterious impact using SnpEff 4.2 (Cingolani et al., 2012) where we 

analyzed only those variants the algorithm considered high-quality. A variant was classified as 

either high, moderate, low, or modifier based on its inferred effect on protein translation. High 

impact variants should have the most disruptive (i.e., deleterious) effect on protein structure such 

as premature termination or other loss of function mutations, whereas low impact mutations were 

mostly synonymous substitutions with little to no impact on protein sequences. Individuals and 

populations that bear the highest ratio of highly deleterious mutations to total genic variants have 

the highest potential genetic load. We compared the among-population differences in impact 

proportions using chi-squared tests with Yates’ continuity correction (Newcombe, 1998; Yates, 

1934). We note, however, that the proportion of potential load that is actually realized in 

individuals also depends on the mode of dominance and on zygosity. To test whether individuals 

in different populations have inferred differences in genetic load, we compared the average number 
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of deleterious alleles per individual relative to the reference genome sequence. We computed the 

per-individual proportion of deleterious variants of each impact class as the total number of 

deleterious alleles present within an individual divided by twice the number of segregating sites 

(Simons, Turchin, Pritchard, & Sella, 2014) and for convenience generally refer to this quantity as 

the realized load of an individual, recognizing that dominance, zygosity, and other factors also 

impact genetic load. To assess the impact of a mutation in genic regions and its zygosity, we called 

genotypes at SNPs within the genes from GL estimates. Genotypes were only called at sites with 

minimum individual depth of 5X to minimize technical biases (Benjelloun et al., 2019). Allele 

frequencies from the genotype calls at each of the genic variants were calculated using vcftools 

v.0.1.16 (Danecek et al., 2011).  

2.4 Results 

In this study, we collected WGS data from 90 Montezuma Quail (AZ=60, TX=17, NM=13; Figure 

2.1). We generated more than 1.65 billion reads (mean = 18.5 million reads per individual) 

corresponding to approximately 250 billion bases (mean = 2.8 billion bases per individual; >2x 

individual coverage). Since these samples were opportunistically collected (i.e. either hunter-

harvested wing tissues or roadkill carcasses), we found significant variability in the quality and 

quantity of DNA sequenced. This stochasticity was evident from sequences generated per 

individual (Table B1) and their depth and breadth of coverage (Table B1, Figure B1). We removed 

samples that failed to generate the threshold of 8 million bases (N=10) or where less than 50% of 

the total reads mapped to the Montezuma Quail assembly (N=6). However, we achieved a high 

level of read mapping for the remainder of the samples (84.4%  18.1%; Table S1). Ultimately, 

we analyzed genomic information from 74 individuals (AZ=52, TX=15, NM=7) that covered 65.1 

 22.1% (mean  SD) of the Montezuma Quail genome at 2.1  1.3X depth (Table 2.1).  

 Our complete mitogenome analysis detected 39 unique haplotypes in the Arizona 

population with 239 parsimony-informative sites shared among them. There were 11 unique Texas 

haplotypes sharing 171 parsimony-informative sites, and we found only 3 unique haplotypes for 

the New Mexico population with 167 such sites. We found per-site nucleotide diversity () and 

Kimura 2-P pairwise distances to be smaller in the Texas and New Mexico mitogenomes (p=0.03 

and p=0.04 respectively) as compared to Arizona. Haplotype diversity (Hd) did not significantly 



 

 

49 

differ between Texas and Arizona mitogenomes (p = 0.70) but was significantly smaller in New 

Mexico as compared to Arizona (p=0.02; Figure B2).   

 For the nuclear genome analysis, we partitioned our data into two datasets: population and 

genomic. The population dataset consisted of genotype likelihoods from 456,373 SNPs retained 

from all individuals (N=74). The genomic dataset contained genotype likelihood information from 

6,696,145 SNPs sampled across an equal subset of each representative population (N=21). Using 

the population dataset, we first estimated the relatedness among our samples to determine if we 

had close relatives in the study. Pairwise relatedness was measured for 2,341 individual pairs. 

Almost all the pairs analyzed were either unrelated (99.5%) or 3rd-degree relatives (0.21%). We 

found no full-sibling or parent-offspring relationships (1st-degree) in our samples; however, 5 pairs 

from Arizona, 1 pair from Texas, and 1 pair from New Mexico had 2nd degree or half-sibling 

relationship (Figure 2.2A). Overall, our kinship analysis indicates that, consistent with our 

opportunistic field sampling and broad survey range, close relatives were only rarely sampled and 

thus, should not impact our population structure results. Inbreeding coefficient estimates (Table 

2.1) showed significantly higher levels of mean inbreeding in Texas birds as compared to Arizona 

birds (Figure 2.2B; Table B2) whereas inbreeding in Texas was only slightly elevated relative to 

New Mexico birds. Both PCA and admixture analyses produced similar results indicating that the 

Arizona, Texas, New Mexico populations are genetically distinct (Figure 2.2C, D). However, 

based on the ∆K method (Evanno et al., 2005), the most likely number of ancestral populations is 

K=4 (Figure B3), splitting Arizona populations into two subpopulations (Figure 2.2C). The 

population-level trends for relatedness, inbreeding and genetic differentiation were concordant 

between the two datasets (Fig. B4) and thus it seems clear that sampling issues have not biased our 

interpretations. 

We used genomic dataset to quantify the levels of genome-wide nucleotide diversity as 

estimated by per-site Watterson’s theta (W). Mean genome-wide W was significantly lower for 

the Texas population (W = 4.05 x 10-4; SE = 1.67 x 10-7) as compared to both Arizona (W = 

5.37 x 10-4; SE = 1.93 x 10-7) and New Mexico (W = 4.57 x 10-4; SE = 1.80 x 10-7) (Table 2.1; 

Table B3). The genome-wide distribution of per scaffold diversity had higher a mean in the 

Arizona population than in Texas or New Mexico (Fig. B5).  
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Table 2.1: Summary statistics for sequence coverage, inbreeding coefficients (F), per-site Watterson’s theta (w), heterozygosity (H) 

and effective population sizes (Ne for Montezuma quail populations analyzed in this study. The diversity indices were calculated for 

either the whole genome or just the genic regions. Long-term (evolutionary) Ne was calculated using an estimated mutation rate of 

3.14x10-9 with 95% CI calculated using standard error in w estimates. Sequence depth is measured in fold-coverage and breadth is 

measured as percentage of Montezuma quail assembly mapped by the reads. 

 

 N 

Sequence 

depth (X) 

(mean  SD) 

Sequence 

breadth (%) 

(mean  SD) 

F 

(mean  SD) 

Whole genome Genic regions 
Ne  

(95% CI) 
W 

 

H 

 

W 

 

H 

 

Arizona 52 2.14  0.78 69.45  14.51 0.05  0.08 5.37x10-4 0.0014 5.23 x 10-4 0.0012 
42,795  

(42,764 - 42,825) 

Texas 15 1.45  1.82 42.69  30.17 0.33  0.28 4.05x10-4 0.0009 3.94 x 10-4 0.0007 
32,208  

(32,182 - 32,234) 

New 

Mexico 
7 3.48  1.78 84.16  11.51 0.07  0.08 5.57x10-4 0.0013 4.47 x 10-4 0.0011 

36,417  

(36,390 - 36,446) 
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Figure 2.2: Inbreeding and population structure in Montezuma Quail. Samples analyzed in this 

study were mostly unrelated based on (A) kinship analysis. (B) Mean individual inbreeding 

coefficients (F) were significantly higher in the Texas population with no significant difference 

between Arizona and New Mexico populations. Results from both (C) admixture and (D) PCA 

analysis clearly demarcate samples from the three collecting sites into independent genetic 

clusters. However, likelihood estimates indicate the most likely number of ancestral populations 

in our data is K=4 (indicated with asterisk), where Arizona is sundered into two subpopulations. 
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Contemporary estimates of Ne were quantified using whole-genomic µ of 3.14 x 10-9 bp-1year-1 (CI: 

2.59 x 10-9 - 3.34 x 10-9) (Table 2.1). Thus, Texas quail show a ~30% reduction in their overall 

genomic diversity with a mean, long-term evolutionary Ne reduction of ~25% relative to Arizona. 

The genomic heterozygosity was also significantly reduced for Texas birds (Table 2.1) as 

compared to either Arizona or New Mexico birds (Figure 2.3A; Table B4). This indicates that 

smaller Montezuma Quail population in Texas  

is more severely impacted by genetic erosion with contemporary diversity equivalent to those 

reported in endangered and vulnerable avian species, whereas the larger Arizona population has 

heterozygosity estimates similar to other more common avian species (Figure 2.3B). 

 Global estimates of FST between each population pair showed low to moderate levels of 

genetic differentiation at the whole genome level (Table 2.2). However, we found significant 

variation in FST values across the genome for each population pair (Figure 2.4; Figure B6). One 

interesting observation was large Z(FST) scores for loci on chromosome 16 (NC_006103.5) for all 

population comparisons (Figure 2.4; Figure B6). This is probably due to low synteny between 

quail and chicken at chromosome 16 (Morris et al., 2020), perhaps due to an inversion (Clucas et 

al., 2019) but this needs further validation using longer sequence scaffolds (Lamichhaney & 

Andersson, 2019). There is a similar discontinuity at one end of chicken chromosome 26 (Figure 

B6). We examined the windows that were highly differentiated in both AZ-TX and TX-NM 

comparisons to look for genes and assess their functionality. Genes or a gene clusters associated 

with the outlier peaks are shown in Figure 2.4 and their known functions are listed in Table B5. 

Per-site FST and DXY values for SNPs located in those genes are in shown in Figure B7. In total, 

we found 12 genes that exhibited very high levels of differentiation (> 5 SD) with known function 

in immunity and/or development related traits (Table B5). These genes are candidates for those 

under strong selection and could underlie local adaptations in Texas quail.  

Demographic analysis indicated that the Arizona population have been expanding with Fu’s F = -

0.23  0.01 (mean  SE) whereas both the Texas and New Mexico populations have been 

declining with Fu’s F = 0.11  0.02 and 0.22  0.02 respectively (Fig. 2.5A). We tracked Ne 

estimates over the last ~1 million years using the pairwise sequentially Markov coalescent 

method (Fig. 2.5B). The three populations display concordant trajectories for most of their 

evolutionary history over that timeframe. We observed a decline in Ne from in the period of 106 - 

105 years before present (YBP) followed by a more stable period. A subsequent re-expansion
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Figure 2.3: Estimated levels of heterozygosity in Montezuma quail. (A) Genic heterozygosity is comparable to genome-wide 

heterozygosity in individuals from all three populations but Texas quail exhibit significantly lower levels of both as compared to 

Arizona quail (B) Comparison of genome-wide heterozygosity with other birds indicates that smaller Montezuma Quail populations in 

Texas and New Mexico have genomic diversity comparable to vulnerable species (Brüniche‐Olsen, Kellner, & DeWoody, 2019; de 

Villemereuil et al., 2019; Li et al., 2014). Heterozygosity was measured as the mean proportion of heterozygous sites per individual 

genome. 
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Figure 2.4: Z-transformed FST estimates for comparisons between Arizona and Texas samples. The reads were mapped to the 

chicken genome and the windows (100 kb width with 50 kb steps) were arranged according to chicken autosomal (1-33) or sex 

(Z, W) chromosomes.  Scaffolds that were not part of the major chicken chromosomes were binned together as unplaced. We 

found windows within each chromosome that had high (>5 SD) levels of differentiation and many of those windows contained 

genes with known function (red arrows). These data illustrate the heterogeneous landscape of genomic differentiation in 

Montezuma quail. 

 

Table 2.2: Estimates of global FST between the different population pairs measured for either the whole genome or just the genic 

regions. 95% CI was calculated using standard error in FST estimates by 100 bootstraps of the 2D-SFS for each population pair. 

Population Pair 
Mean Global FST (95% CI) 

Whole genome Genic regions 

Arizona - Texas 0.1287 (0.1286 - 0.12878) 0.2042 (0.2018 – 0.2065) 

Texas - New Mexico 0.0962 (0.0961 - 0.0962) 0.1762 (0.1744 – 0.1781) 

Arizona - New Mexico 0.0972 (0.0972 - 0.0973) 0.1217 (0.1213 – 0.1220) 
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Figure 2.5: (A) Population trends and (B) demographic histories of Montezuma quail. Population trends indicate that only the 

Arizona population(s) has been expanding (Fu’s F < 0) whereas both Texas and New Mexico populations are declining (Fu’s F > 0). 

Error bars indicate 95% CI around the estimate. The data indicate that Montezuma quail experienced a strong historic bottleneck 

during the last glacial maxima (LGM) followed by re-expansion, and the similar demographic trajectories of each population prior to 

the LGM suggests that genomic differentiation (Figure 2.4) is relatively recent in origin. 
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occurred around 10,000 years ago, then populations began to rebound until growth rates became 

negative around 3000-5000 YBP (Figure 2.5B). 

One of the major emphases of our study was to assess the adaptive potential of Montezuma 

Quail, particularly in the small, isolated Texas population. Variation in protein-coding genes has  

the capacity to accurately gauge adaptive potential (Barbosa et al., 2018). The trend we observed 

for the subset of genic diversity was similar to the whole genome data; in both cases there was a 

~25% reduction of nucleotide diversity in Texas quail (Table 2.1). In particular, the Texas 

population had significantly lower (W = 3.94 x 10-4; SE = 2.87 x 10-7) genic nucleotide diversity 

as compared to both Arizona (W = 5.23 x 10-4; SE = 3.33 x 10-7) and New Mexico (W = 4.47 x 

10-4; SE = 3.09 x 10-7; Table S6). Mean heterozygosity (i.e. proportion of heterozygous sites per 

individual) in the genic regions of Texas quail was significantly reduced relative to Arizona quail 

whereas Texas and New Mexico samples showed similar levels of genic heterozygosity (Figure 

2.3A; Table B7). Our FST estimates from the genic regions show significantly higher levels of 

differentiation among the three populations as compared to the whole genomic background (Table 

2.2) which indicates that selection as well as drift is contributing to population structure.  

 To quantify selection and the potential genetic load associated with the genic variants, we 

compared the deleterious mutations within protein-coding genes (Fig. B8) and their predicted 

change on translation (Figure 2.6A). Most (82.1%) of the genic variation was due to non-coding 

intronic sites upstream and downstream of the transcription unit; both of these sources of variation 

can impact gene expression levels and thus serve as sources of regulatory variation.  Exonic sites 

harbored about 4.5% of the genic variation. Within the exonic SNPs, the Arizona population had 

a significantly higher proportions of high, moderate, and low impact deleterious mutations, and 

lower proportions of non-coding variants, when compared to either the Texas or New Mexico 

populations (Figure 2.6A; Table B8). Our estimates of realized genetic load showed that Texas 

quail had no significant difference in the mean observed heterozygosity (Fig. B9) or frequencies 

of highly deleterious mutations per individual (p>0.05) as compared to Arizona quail. Most exonic 

variants were classified as moderate or low impact deleterious mutations, and we found them more 

homozygous and at higher frequencies in Texas quail as compared to Arizona quail (p=0.04 and 

p=0.03; Figure 2.6B; Figure B9; Table B9,10). We realize that frequency estimates based on called 

genotypes may be biased due to low coverage and sample size (Benjelloun et al., 2019), but we 
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note that the trends we observe here among different impact classes have also been observed in 

other natural populations (Grossen et al., 2020). 

 

Figure 2.6: Larger populations have higher potential genetic load, but load is more realized in 

smaller, inbred populations. (A) Potential genetic load was estimated for each population as the 

proportion of deleterious mutations within annotated protein-coding genes. The Arizona samples 

had the highest proportions of high impact, moderate impact, and low impact variants. The 

number of variants in each impact class for each population are noted at the bottom. Note the 

difference in scales on y-axis. (B) Realized load was measured as the mean frequency of 

deleterious alleles found within individual genomes for each impact class. No significant 

difference was found in the frequency of highly deleterious mutations between Texas and 

Arizona quail, but the small Texas population has a higher frequency of weakly deleterious and 

non-coding variants coupled with more inbreeding and more homozygosity (Figs. 2, 3, and S9) 

than the larger outbred Arizona populations. Error bars indicate 95% CI around the estimates.  
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2.5 Discussion 

In this study, we analyzed whole genome sequences from three natural populations of 

Montezuma Quail that vary in size and habitat continuity (Figure 2.1) to understand how drivers 

of genetic erosion (e.g., small sizes and isolation) can affect genomic diversity and reservoirs of 

future adaptive potential. Small populations are predicted to have lower levels of diversity 

(Soulé, 1985) and recessive deleterious alleles should have a more pronounced impact on fitness 

than in large populations due to inbreeding (Charlesworth & Charlesworth, 1999). Populations 

that have experienced declines and are restricted to smaller habitats tend to have lower levels of 

overall genomic heterozygosity (Brüniche‐Olsen et al., 2019; Palkopoulou et al., 2015; Rogers & 

Slatkin, 2017), but how these factors affect the adaptive potential is far less explored. By 

comparing levels of genome-wide diversity, genic (i.e., potentially adaptive) diversity, and 

quantifying genetic load in different populations, our aim was to gain a better understanding of 

how the adaptive potential of a species is affected by genetic erosion. 

2.5.1 Genetic erosion reduces genomic diversity 

Our genomic diversity estimates are consistent with predictions for small declining populations 

that are expected to be most impacted by genetic erosion (Bijlsma & Loeschcke, 2012; Leroy et 

al., 2018). Species with small populations sizes have lower diversity (Frankham, 1996) and less 

adaptive potential (Hedrick, Robinson, Peterson, & Vucetich, 2019) than larger populations, and 

our population genomic data are consistent with these expectations. Montezuma Quail exhibit 

lower levels of whole genomic heterozygosity than many other avian species (Figure 2.3). The 

reduction of genomic diversity in Montezuma Quail is reflective of long-term declines in Ne over 

the last million years (Figure 2.5B). More specifically, Montezuma Quail from Texas are the most 

genetically depauperate of the populations we surveyed, with genomic diversity similar to 

vulnerable and endangered birds (Figure 2.3B).  Our Texas samples had genome-wide 

heterozygosity similar to raptors and other large birds (Table 2.1, Figure 2.3B) even though small 

birds typically have more genetic diversity (Eo, Doyle, & DeWoody, 2011). Overall, we think the 

data reveal that genomic erosion has likely reduced the evolutionary potential of Montezuma Quail 

in Texas and that this reduction is unlikely to abate in the absence of gene flow through assisted 

translocation or other means. 
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2.5.2 Isolation leads to more inbreeding  

A lack of migration among populations limits gene flow and accelerates inbreeding (Frankham, 

1996; Gong, Gu, & Zhang, 2010; Hedrick & Garcia-Dorado, 2016; Keller, 2002; Madsen, Stille, 

& Shine, 1996; Pulanić et al., 2008). Our samples from Montezuma quail populations in the U.S. 

form independent genetic clusters (Figure 2.2C,D), which is unsurprising given the geographic 

distances among sampling sites and the limited dispersal capacity of this ground-dwelling bird 

(Stromberg, 1990). These results are in general accordance with our previous findings based on a 

small SNP panel (Mathur et al. 2019), but the divide in Arizona (Figure 2.2C; Figure B3) was 

undetected with that same SNP panel. Our kinship analysis suggests that very few of our samples 

were derived from related individuals (Figure 2.2A), and our inbreeding estimates show that the 

Texas population is highly inbred as compared to Arizona and New Mexico (Figure 2.2B). Our 

samples were acquired opportunistically and that likely reduced the probability of collecting 

related individuals. However, inbreeding itself can reduce estimates of kinship as inbred 

individuals may have elevated number of alternate homozygous genotypes and a reduced number 

of shared heterozygous genotypes (Waples et al., 2019). We observed an elevated incidence of 

alternative homozygotes for within-Texas comparisons (Figure B10) and we think the collective 

evidence shows that the small, isolated population of Montezuma quail in West Texas is relatively 

inbred. This is key, as elevated inbreeding means more of the potential genetic load will be realized 

(see below). 

2.5.3 Impact of genetic drift on population divergence 

One of the major drivers of genetic erosion in small populations is genetic drift. In the absence of 

migration, genetic drift can fix common alleles or lose rare alleles from the gene pool. Isolated 

populations with historically low sizes can become phenotypically distinct over time (Holycross 

& Douglas, 2007; Van Belleghem et al., 2018) due to differences in nucleotide composition (DXY) 

(Wakeley, 1996) or allele frequencies (FST) (Beaumont, 2005). The intensity of genetic 

differentiation due to drift is generally expected to be the same for all neutral loci in the nuclear 

genome due to lack of selection pressures, but it is complicated by linked selection (Cai, 

Macpherson, Sella, & Petrov, 2009; Rettelbach et al., 2019). Recent population genomic studies 

have shown that different populations exhibit a heterogeneous differentiation landscape 
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(“differentiation islands”) across the genome (Burri et al., 2015; Ellegren et al., 2012). We observe 

similar results in Montezuma Quail populations (Figure 2.4; Figure B6) where many regions show 

highly significant values of FST even though global estimates seem biologically insignificant 

(Table 2.2). Some of these high- FST windows no doubt represent statistical artefacts, but many of 

these highly differentiated regions contain functional genes (Figure 2.4) that could impact various 

fitness traits (Table B5) and could be signatures of local adaptation (Willoughby et al., 2018). This 

idea is bolstered by our global estimates of genic differentiation which suggest that coding genes 

are more diverged than the genome overall (Table 2.2). These analyses suggest that local 

adaptation could constrain genetic rescue due to the possible reduction in fitness of interpopulation 

hybrids (Bell et al., 2019; Whiteley, Fitzpatrick, Funk, & Tallmon, 2015). On the other hand, such 

analyses have the potential to identify source populations that have adaptive genetic signatures 

most similar to the recipient population and thus the greatest likelihood of success from a long-

term, evolutionary perspective. 

2.5.4 The adaptive potential of small populations 

Understanding the adaptive response of a species to future environmental changes is a high priority 

for conservation (Holderegger et al., 2019) as this response impacts the long-term probability of 

persistence (Hedrick et al., 2019), but such an assessment is not straightforward. Genetic erosion 

is expected to affect adaptive potential by either reducing the overall standing variation in genic 

regions or by the accumulation of deleterious mutations (Lynch, Conery, & Burger, 1995; Ohta, 

1992). We evaluated these two detractors of adaptive capacity by considering variation contained 

exclusively in genic regions and assessing their possible phenotypic impact. Montezuma Quail 

have over 17,000 genes and our results show that both nucleotide diversity and heterozygosity in 

genic regions is lower relative to the whole genomic background (Table 2.1; Figure 2.3A). This is 

not entirely unexpected as many genes might be evolving neutrally or nearly so, but some are 

highly conserved and mutations arising at these genes will be deleterious and subject to purifying 

selection (Rettelbach et al., 2019). Our study thus documents a reduction in both the “nearly neutral” 

(all) and “adaptive” (genic) fractions of genomic diversity in progressively smaller wild quail 

populations. These reductions in genomic diversity, including both nucleotide diversity and 

heterozygosity, are likely to diminish the evolutionary potential of the small, isolated Texas 

population. 
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 The proportion of deleterious mutations present in the genic regions should reflect the 

potential genetic load (Charlesworth et al., 1993; Ellegren & Sheldon, 2008; Hedrick & Garcia-

Dorado, 2016).  Our results show Arizona quail carry significantly more high impact deleterious 

variants as compared to Texas quail and this difference tends to diminish with variant impact 

(Figure 2.6A). Most of the genic variants are non-coding (Figure B8) and thus do not impact amino 

acid sequences but we expect that many serve as regulatory variants that impact expression levels 

(Harder, Willoughby, Ardren, & Christie, 2020). Recent population genomics studies have shown 

via simulations (Balick, Do, Cassa, Reich, & Sunyaev, 2015) and empirical data (Ávila, Amador, 

& García-Dorado, 2010; Do et al., 2015; Rettelbach et al., 2019) that most deleterious genic 

variants are eventually culled by strong purifying selection, but small effect recessive mutations 

can persist as seen in our Texas quail. Overall, population genomics data are revealing that most 

populations can efficiently purge highly deleterious mutations, but small effect deleterious mutants 

are difficult to purge in small populations where drift predominates (i.e., when Ne(s) < 1). In 

addition to drift, individuals from smaller inbred populations tend to carry these small effect 

deleterious mutants as homozygotes whereas they tend to be heterozygous in larger outbred 

populations (Figure B9). It seems clear that large effect deleterious mutations (e.g., FOXQ1; 

(Rogers & Slatkin, 2017)) can have a major impact on fitness. However, most adaptive traits are 

polygenic and based on many small effect mutations, so small effect deleterious alleles in 

homozygotes may disproportionately contribute to the overall genetic load of small and declining 

populations like in Montezuma quail from West Texas.  

2.5.5 Conservation considerations 

Our results indicate that Montezuma quail populations in the U.S. exhibit low genomic diversity 

comparable to a number of threatened and endangered species ((Brüniche‐Olsen et al., 2019; de 

Villemereuil et al., 2019; Zhan et al., 2013); Figure 2.3B). Our genomic diversity estimates are 

consistent with predictions for small declining populations, and we argue that our estimates of 

genic diversity serve as a reasonable proxy for the evolutionary potential of the species. This study 

adds to the growing body of literature urging conservation organizations like IUCN to add genetic 

diversity estimates as a consideration in the listing process (Allendorf, Hohenlohe, & Luikart, 2010; 

Brüniche-Olsen, Kellner, Anderson, & DeWoody, 2018; Ralls et al., 2018; Willoughby et al., 

2015)). Theory suggests that deleterious mutations should be more abundant in small populations 
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and empirical data support this prediction for species like wooly mammoths (Rogers & Slatkin, 

2017) and Iberian lynx (Abascal et al., 2016), with critically low population sizes and ineffective 

purifying selection. However, most of the species that are declining due to recent anthropogenic 

activities (like Montezuma quail; Fig. 5B) have maintained relatively large Ne with previous cycles 

of bottlenecks and re-expansions (Nadachowska-Brzyska et al., 2015). This study and a recent 

overview of mammals (van der Valk, de Manuel, Marques-Bonet, & Guschanski, 2019) suggest 

that smaller populations have significantly lower proportions of deleterious mutations as compared 

to larger, more genetically diverse populations. These deleterious variants are maintained at lower 

frequencies and presumably represent a major fraction of the potential genetic load. This pattern 

exists in part because purifying selection against partially recessive deleterious recessive alleles is 

relaxed in large populations where higher heterozygosity effectively hides these alleles from 

selection. In contrast, small populations are only likely to purge strongly deleterious mutations, 

but the collective genetic load of mildly deleterious mutations still impacts individual fitness when 

these variants are homogenized due to inbreeding and/or drift. Thus, our genomic data illustrate 

and quantify the incidence of potential genetic load in large populations (Arizona) relative to the 

realized genetic load in small, inbred populations like Texas. 

2.6 Conclusions 

We analyzed whole genome sequences from different populations of Montezuma Quail in the U.S 

and compared the relative impact of genetic erosion between populations of various sizes. Our 

results indicate that Montezuma Quail populations in the U.S. have mean genome-wide 

heterozygosity comparable to other avian taxa of conservation concern. We found that inbreeding 

and random drift due to isolation are the major driving force behind these observed patterns of 

reduced genomic diversity, but we also identified highly differentiated (candidate) genes that may 

underlie local adaptations. More interestingly, we find that larger populations carry a larger 

proportion of deleterious mutations (potential genetic load) than small populations. However, 

small populations are most susceptible to reduced adaptive potential because small effect 

deleterious alleles are homogenized due to drift and inbreeding (realized genetic load). Overall, 

we think these data will be useful to those interested in the conservation of Montezuma Quail, and 

that they illustrate the power of population genomics in evaluating adaptive potential in light of 

fragmented landscapes and rapid environmental change. 
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 EVOLUTIONARY HISTORY AND PRESENT LOAD IN 

THE MONTEZUMA QUAIL 

The final chapter of this dissertation will highlight the application of genomics in reconstructing 

evolutionary history and describing how demography shapes the contemporary genomic diversity 

and the load of deleterious mutations. In this chapter, we analyzed genome-wide data with higher 

coverage depth from previous chapter and new samples including individuals from Mexico and 

Central Texas. The aims of this study are to:  i) evaluate how different demographic histories shape 

the levels of overall GD and shared ancestry among different populations; ii) empirically 

characterize the distribution of deleterious mutations in small and large populations; iii) determine 

how these mutations arise and segregate over evolutionary time. The contents of this chapter are 

currently under preparation for publication. Feedback from the committee members will be used 

to modify the manuscript prior to publication submission. 

3.1 Abstract 

The implementation of effective conservation strategies is a challenge due to our limited 

understanding of how natural populations evolve. Contemporary gene pools and distribution of 

adaptive mutations with individual genomes depend on past demographic events, effective 

population sizes, and the history of gene flow. In this study, we analyzed whole genome 

resequencing data from 98 Montezuma Quail (Cyrtonyx montezumae) representing three major 

populations across the species’ range, including locally threatened and isolated populations in 

Texas. We evaluated the genomic imprint of evolutionary history in different populations and the 

current distribution of deleterious mutations in small and large populations from assessment of 

genome-wide variants. We estimated the age of deleterious mutations that are present in 

populations of different sizes to understand when such mutations arise in evolutionary time and 

how demographic history shapes their segregation in small versus large populations. We show that 

Texas quail are significantly more inbred and have maintained low genomic diversity and 

population sizes after they went through a strong bottleneck ~20,000 years ago. Using empirical 

data, we demonstrate that when populations undergo a bottleneck, they lose genetic load from the 

ancestral population and the mutations that survive tend to segregate at higher frequencies in 
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smaller populations due to the combined effects of drift and ineffective purifying selection. We 

demonstrate that due to these factors, mutations that arise post-bottleneck (including deleterious) 

are likely to become fixed at a faster rate in smaller populations. We also highlight that even though 

smaller populations have fewer deleterious mutations (“potential load”) in the gene pool, those 

mutations still accumulate within individual genomes as homozygotes (“realized load”) and can 

contribute to overall loss of individual fitness. This study illustrates how genetic load in a 

population is a dynamic characteristic varying over time and thus needs an evolutionary context, 

and why conservation efforts like assisted gene flow could be beneficial to small populations in 

alleviating the risks of inbreeding depression. 

3.2 Introduction  

Humans have altered natural landscapes since the agricultural revolution, but it has been most 

rapid and at a global scale since industrialization and urbanization (Li et al., 2016). Anthropogenic 

activities reduce and subdivide suitable habitat for wild species (Fahrig, 2003), creating isolated 

populations that become smaller with time due in large part to lower mean fitness as 

genetic/genomic diversity (GD) is lost due to drift and inbreeding (Frankham, 2005). Many 

modern conservation efforts are targeted towards increasing GD of small populations by 

introducing individuals from larger and genetically diverse populations to provide additional 

variation necessary for future adaptation (Whiteley, Fitzpatrick, Funk, & Tallmon, 2015). 

Successful examples of genetic rescue exist (Frankham, 2015; Ralls et al., 2018; Ralls, Sunnucks, 

Lacy, & Frankham, 2020), but conservation efforts are complicated by the choice of appropriate 

source population that maximizes the benefits of genetic rescue but also minimizes the risks 

associated with migration (Bell et al., 2019). Some recent studies claim that isolated populations 

could potentially be robust to the loss of GD or that choosing small populations as source 

population would more likely be more beneficial as they have purged themselves of deleterious 

alleles (Robinson, Brown, Kim, Lohmueller, & Wayne, 2018; Robinson et al., 2019). Such claims 

and uncertainties with genetic rescue call for a more critical understanding of the evolutionary 

histories of natural populations in diverse systems as each species has its own unique evolutionary 

history shaping contemporary load and vulnerabilities to future extinctions.  

The distribution of deleterious mutations within different populations is key to conservation 

genetics as it contributes to the mean fitness of a population (Barrett & Charlesworth, 1991; 
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Kimura, Maruyama, & Crow, 1963; Muller, 1950). Genetic load can be defined as the loss of mean 

fitness due to the accumulation of deleterious mutations (Henn, Botigué, Bustamante, Clark, & 

Gravel, 2015). By comparing the genetic load, we can categorize population fitness and prioritize 

efforts towards populations that are most vulnerable to extinction risks. Genetic load depends on 

the number of deleterious alleles, the magnitude of their effect, their frequency in the population, 

and zygosity (a function of the breeding system) (Lohmueller, 2014). The genetic load can be 

estimated at a population level or individual level (i.e. the number of deleterious alleles present in 

a population vs in an individual genome). Population genetic load could be similar between 

expanding populations and a population that went through a bottleneck (Do et al., 2015; Simons, 

Turchin, Pritchard, & Sella, 2014); however, many highly deleterious mutations are recessive 

(Agrawal & Whitlock, 2011; Mukai, Chigusa, Mettler, & Crow, 1972), so the diploid genotype 

composition will determine how much of the overall genetic load is realized within individuals 

(Fu, Gittelman, Bamshad, & Akey, 2014; Lohmueller, 2014). Individuals in a population with 

significant load may still be relatively more fit if recessive deleterious mutations exist as 

heterozygotes as compared to a population where recessive alleles are homozygous in individuals 

due to drift and inbreeding. Thus, the difference between potential genetic load harbored by 

populations and the reduction in individual fitness due to realized load is an important distinction 

as it dictates the impact of inbreeding depression. 

Herein, our major goals were to:  i) evaluate how different demographic histories shape the 

levels of overall GD and shared ancestry among different populations; ii) empirically characterize 

the distribution of deleterious mutations in small and large populations; iii) determine how these 

mutations arise and segregate over evolutionary time. Thus, we analyzed whole genome sequence 

data for 98 Montezuma Quail (Cyrtonyx montezumae) from four wild populations that exist in 

varying degrees of habitat contiguity across the entire species range (Figure 3.1A). Montezuma 

Quail are small Galliform birds in the New World Family Odontophoridae; they are mostly found 

in Mexico along the Sierra Madre Occidental Mountain Range and their range extends into the 

United States (Leopold & McCabe, 1957). Unlike other North American quail, Montezuma Quail 

are habitat and diet specialists that rely on underground bulbs and tubers in the climatic belt 

generally associated with pine-oak forest (Albers & Gehlbach, 1990; Stromberg, 1990). The 

Montezuma Quail is one of the least studied North American birds and little is known about their 

biology relative to many other avian species (Hernandez, Garza, Harveson, & Brewer, 2009). In 
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the U.S., they are found in Arizona, New Mexico, and Texas. Two isolated populations exist within 

Texas, one Western population in the Trans-Pecos ecoregion and the other population in Central 

Texas on the Edwards Plateau (Figure 3.1A). Like many montane species, Montezuma Quail 

populations are declining (Harveson et al., 2007), and local extirpation are major concerns in Texas 

as their habitat has dramatically reduced in the last century due in large part to land use practices 

(e.g., domestic livestock grazing)(Brown, 1979; Harveson, 2009; Harveson et al., 2007). 

Conservation efforts like translocations (e.g., from Arizona or Mexico to Texas) are possible in 

theory, but there is little information about interpopulation dynamics, and an assessment of genetic 

load (as a measure of loss of fitness) is desirable. Our aim here is to elucidate how genomics can 

recover recent evolutionary histories of different populations and to determine how past 

demographic changes help shape the distribution of contemporary genetic load. We frame our 

hypotheses in light of recent evidence suggesting that small populations purge the load of high 

impact mutations (Grossen, Guillaume, Keller, & Croll, 2020; Robinson et al., 2018). Using 

empirical data, we critically evaluate these competing ideas in a wild non-migratory avian species 

and discuss the implications of translocations for wildlife conservation. We specifically test 

whether: (a) larger populations have more deleterious mutations and if they are more abundant as 

compared to overall functional mutations (i.e. potential load); (b) small populations effectively 

purge their load of deleterious mutations or if small populations are more vulnerable to loss of 

fitness due to inbreeding depression. The results from our study not only carry direct implications 

for the conservation of Montezuma Quail, but also demonstrate how evolutionary principles can 

be used to winnow competing conservation strategies for at-risk species. 
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Figure 3.1: Genomic diversity and inbreeding in Montezuma Quail. (A) For this study, we analyzed 66 whole genomes from Arizona 

(AZ=28, pink circle), West Texas (WTX=31, purple arrow), Central Texas (CTX=3, orange arrow), and Mexico (MX=4, light pink 

circle). (B) Mean genomic heterozygosity estimates indicate isolated population in WTX are significantly less heterozygous than AZ 

population and CTX has the lowest mean. (C) Sliding window analysis of heterozygosity across non-overlapping 1kb windows along 

chicken chromosome 1 show overall reduction in genomic heterozygosity in WTX population (break represents centromere position; 

see Fig. S2 for all chromosomes). (D) Genome wide estimates of runs of homozygosity (ROH) show that WTX individuals have 

significantly greater proportion of their genome in ROHs with CTX individuals having highest inbreeding coefficient (FROH). (E) 

The distribution of ROHs across the genome shows individuals (each column along the x-axis) in WTX and CTX populations have 

longer ROHs as compared to AZ or MX individuals. Montezuma Quail image courtesy: Bob Gress, BirdsInFocus 
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3.3 Materials and Methods 

3.3.1 Samples & sequencing 

DNA was extracted from 98 Montezuma Quail samples from Arizona (AZ; N=60), West Texas 

(WTX; N=31), Central Texas (CTX; N=3), and Mexico (MX; N=4). Paired end libraries (2x150 

bp) were created using a hyper Library construction kit from Kapa biosystems (Roche) and 

sequenced using an Illumina NovaSeq 6000. The genomes were sequenced at a mean depth of 

11.7x +/- 3.3x (mean +/- SD) coverage. See Supplementary materials and methods for sampling 

and sequencing details (Table C1).  

3.3.2 Read alignment, preprocessing, and variant discovery 

Raw sequences were trimmed to remove adapter sequences & low-quality bases (Phred < 20) using 

Trimmomatic v.0.36 (Bolger et al., 2014). Filtered reads were mapped to the chicken genome 

(Gallus gallus assembly GRCg6a) with BWA v.0.7.17 using the mem algorithm (Li & Durbin, 

2009). We used the Genome Analysis ToolKit (GATK) “Best Practice Workflow” (Auwera et al., 

2013) to pre-process our mapped reads (Appendix C). We used both GATK and ANGSD Samtools 

model (Korneliussen et al., 2014) to discover variants and only retained sites that were concordant 

between the two methods. For GATK, we used HaplotypeCaller and GenotypeGVCF and only 

retained Single Nucleotide Polymorphisms (SNPs) using hard filters (QD < 2.0 || FS > 60.0 || MQ 

< 20.0 || MQRankSum <-3.0 || MQRankSum > 3 || ReadPosRankSum < -4.0 || ReadPosRankSum 

> 4.0 || SOR > 3.0). For ANGSD, we identified SNPs with minQ = 20 and pval = 1e-6. Our initial 

combined SNP calling and filtering pipeline identified 32,745,572 SNPs in 98 individuals but there 

was a high variance in the fraction of genotypes missing for AZ individuals (Table C1), possibly 

due to degraded DNA and over-representation of GC-rich sequences (Appendix C). To minimize 

biases in downstream analyses, we removed any individual with >= 20% missing genotypes. We 

also only retained variants identified in major chicken autosomes and removed any variants from 

the sex chromosomes, mitogenome, and unplaced scaffolds. We also removed singletons and 

private doubletons to avoid biases due to genotyping errors. Ultimately, we analyzed genotypes at 

12,943,838 SNPs in 66 individuals (AZ=28, WTX=31, ETX=3, MX=4) placed in chicken auto-

chromosomes 1-33. Variant statistics, diversity indices, and heterozygosity measured as the 
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number of heterozygous genotypes per individual were calculated using vcftools (Danecek et al., 

2011). We imputed missing genotypes and phased genotypes into haplotypes using Beagle v.5.1 

(Browning, Zhou, & Browning, 2018). We used the chicken recombination map (Groenen et al., 

2008) to estimate the extent of linkage disequilibrium (LD) between markers and assumed a large 

diverse ancestral population (Ne =100,000). 

3.3.3 Identification of runs of homozygosity (ROHs) 

We used PLINK v.1.9 (Chang et al., 2015) to first identify ROHs of size >100 kb using multiple 

sets of values for parameters associated with scanning window size, SNP density, minimum 

number of homozygous SNPs within a ROH, minimum number of heterozygotesus allowed, and 

maximum internal gap between ROHs. We computed the total proportion of genome within ROH 

(FROH) (total chicken autosomal genome length = 1,042,168,264 bp) for each set of parameters. To 

understand the effect of each parameter on ROH identification, we performed a Standardized 

Regression Coefficients (SRC) analysis to compute the sensitivity indices based on the linear 

model using sensitivity package in R (Supplementary Methods). For final identification, we used 

the parameters --homozyg-window-het 2, --homozyg-snp 50, --homozyg-kb 100, --homozyg-

window-snp 20. We used the detectRUNS package (Biscarini, Cozzi, Gaspa, & Marras, 2018) in 

R to visualize PLINK output files. 

3.3.4 Relatedness, population structure, and shared ancestry  

We examined the degree of relatedness among individual pairs by quantifying R0, R1 and KING-

robust kinship statistics using IBSRelate (Waples et al., 2019). For estimating population structure 

using a model-based approach, we used the genotype likelihood information from all 98 

individuals for NGSadmix (Skotte et al., 2013) and genotype calls from best 66 individuals in 

ADMIXTUREv1.3.0 (Alexander & Lange, 2011). The best value for K was estimated from the 

rate of change of the likelihood distribution from the 10 runs in NGSAdmix and 10 cross validation 

steps in ADMIXTURE. Both analyses estimated that all Montezuma Quail individuals derive from 

k=2 ancestral populations (but higher K also explains the structure between populations; Figure 

C9). We next used fineSTRUCTURE (Copenhaver, Lawson, Hellenthal, Myers, & Falush, 2012) 

to estimate the co-ancestry among individuals using phased haplotypes from 66 individuals 
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(N=132 haplotypes). fineSTRUCTURE implements the chromosome painting algorithm and 

reconstructs each chromosome of a "recipient” individual as a patchwork of genetic material 

inherited from potential donors. Individuals from the same or related populations are expected to 

share more recent common ancestors than are pairs of individuals from historically separated 

groups, so co-ancestry would be smaller in the latter case. We considered all individuals as donor-

recipient pairs and ran the analysis for each chromosome independently using chicken 

recombination maps for the first 28 chromosomes except chromosome 16 because of lack of loci 

(Groenen et al., 2008). For each chromosome, fineSTRUCTURE pipeline was executed in 4 steps: 

the effective population size and mutation rate was first estimated using expectation maximization 

(EM) algorithm with 10 iterations and then optimized values were used to calculate expected 

number and the length of inherited segments. Next, an MCMC scheme was used to assign 

individuals to populations with 105 iterations and 50,000 iterations for burn-in, and finally, 

population trees were built from the converged MCMC runs.  

3.3.5 Functional variant annotation and fitness effect classification 

We first used both Ensembl Variant Effect Predictor (VEP) (v101.0) (McLaren et al., 2016) and 

SNPEff v4.3 (Cingolani et al., 2012) to annotate variant sites. Both software provide a subjective 

impact classification of a SNP (“Modifier”, “Low”, “Moderate”, and “High”) based on predicted 

consequences to protein structure and function. We only retained annotations for protein-coding 

variants where the impact classes were concordant between the two methods and were without 

warnings (either due to lack of data or low prediction score). To further classify non-synonymous 

mutations, we used SIFT (Sorting Intolerant from Tolerant) scores (Ng, 2003) as determined by 

VEP for all possible amino acid changes in the chicken reference genome (assembly GRCg6a). 

SIFT scores are generated from sequence homology and the physical properties of amino acids 

and rank functional i.e. non-synonymous variants based on their deleteriousness. We classified the 

variants into two categories: “Deleterious”, “Weakly deleterious”. Deleterious mutations were 

missense mutations with SIFT score < 0.05, weakly deleterious mutations were missense 

mutations with SIFT score  [0.05, 0.1]. Variants were categorized as synonymous if they if they 

had no predicted effect on protein translation or function. 
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3.3.6 Reconstructing recent demographic history 

To infer a demographic model that best fits the joint distributions of the observed site frequency 

spectra (SFS), we simulated SFS under multiple possible demographic models that could best 

explain the observed SFS. We only considered synonymous mutations for calculating SFS as they 

are expected to segregate purely due to demographic changes and not due to selective changes. 

We used Genetic Algorithm for Demographic Model Analysis (GADMA) (Dobrynin, O’Brien, 

Koepfli, Ulyantsev, & Noskova, 2020) to automatically find the best demographic model for 2 

populations: Arizona and Texas. Here, we combined CTX and WTX samples into a single 

population (TX) due to high co-ancestry between the two populations. We used AZ (N=28) and 

TX (N=34) samples and projected the observed SFS in gridof 25 samples from each population 

[25x25]. To calculate the composite likelihood Akaike information criterion (CLAIC) for 

goodness-of-fit estimations and confidence intervals (CI) for estimated parameters, we 

bootstrapped our SFS 100 times. For each model, we started with a series of simple initial structure 

that includes the number of time intervals that occur before and after each single splitting event 

(Supplementary Methods) and ran forward time simulations using moments within GADMA. The 

demographic parameters were locally optimized using default algorithms and the global 

optimization of the best demographic model was done using 20 iterations. We used a generation 

time of 1 year as Montezuma Quail are best considered as an annual species. We first chose the 

final model based on log likelihood estimates and then performed multiple local optimizations to 

estimate CLAIC scores and CI. 

3.3.7 Estimating genetic load and age of deleterious alleles 

Genetic load can be viewed from a gene pool level or at individual level. To distinguish the two 

perspectives, we introduce the terms potential load and realized load. Potential genetic load is 

defined as the proportion of variants present in the coding sequence that are classified as 

deleterious or weakly deleterious.  

 

𝐿𝑜𝑎𝑑𝑃 =
Total number of mutations of impact class 𝑖 in individual 𝑗𝑘

Total number of non-synonymous mutations in population 𝑘 
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where i  (deleterious, weakly deleterious) and k = (AZ, WTX). LoadP is similar to segregating 

load as described by van Oosterhout (2020) , but instead of comparing the absolute number of 

deleterious SNPs, we defined LoadP as a proportion conditioned on all non-synonymous SNPs 

present in a population to avoid bias due to differences in overall GD and to account for all 

mutations that could possibly be involved in adaptation, directly or indirectly. Thus, population 1 

has a higher potential load than population 2 if a larger proportion of the non-synonymous variants 

in population 1 are deleterious. More diverse populations are expected to have more deleterious 

mutations, but they may or may not have more LoadP depending on whether those mutations 

significantly outnumber other non-neutral mutations that indirectly affect fitness. 

To estimate how LoadP is being expressed and decreasing the absolute fitness of 

individuals, we calculated realized load as the proportion of impactful variants that exist as 

homozygotes within individual genomes. So, 

 

𝐿𝑜𝑎𝑑𝑅 =
Total number of alternate homozygous mutations of class 𝑖 in individual 𝑗𝑘

2 x Total number of sites of impact class 𝑖 in individual 𝑗𝑘
  

 

where i  (deleterious, weakly deleterious, synonymous) and k = (AZ, WTX). Realized load of 

synonymous mutations can be viewed as the impact of drift on neutral variation. An individual 

would have higher LoadR if it carries higher proportion of deleterious alleles in a homozygous state 

(e.g., due to inbreeding) as compared to another individual where most of the deleterious alleles 

are heterozygous. We demarcate load as “potential” and “realized” to incorporate the effect 

dominance plays in the expression of mutational load within individuals and to show that the 

genetic load of deleterious recessive alleles that segregates at the population level may or may not 

be widely realized, depending on zygosity (Fu et al., 2014). The inverse relationship between 

dominance and selection coefficient means that highly deleterious mutations that arise in a 

population are mostly recessive (Agrawal & Whitlock, 2011) and would rarely homogenize in 

large outbred populations whereas inbred individuals in smaller populations would have more of 

the load from those deleterious mutations realized.  

How old are deleterious alleles and how long have they segregated in wild populations? 

We leveraged the phased data from 132 haplotypes to estimate the age of deleterious alleles by 

inferring the time to the most recent common ancestor (TMRCA) of deleterious mutation between 
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a pair of haplotypes using Genealogical Estimation of Variant Age (GEVA; Barton, Albers, and 

McVean (2020)) . GEVA reconstructs genealogical trees of variable sites along each chromosome 

and estimates the age of any mutation by identifying genomic regions that are identical by descent 

(IBD) that are shared among haplotypes and broken via recombination.  The allele is assumed to 

be derived from a mutation event in the genome of the common ancestor and shared by all 

descendent haplotypes. A probabilistic estimate of the time of origin of a mutation is obtained by 

combining the cumulative distributions for pairs of haplotypes that share the mutation 

(“concordant pairs”) and the pairs that do not (“discordant pairs”). A mutation is expected to be 

older than concordant and younger than discordant pairs. We used recombination rate estimates 

from the chicken and an estimated point mutation rate of 3.14x10-9 as estimated in Mathur and 

DeWoody (2020). We used the effective population sizes inferred from EM optimization by 

chromopainter (see above) as a scaling parameter and joint molecular clock to estimate the age of 

deleterious mutations in different Montezuma Quail populations. 

3.4 Results 

3.4.1 Isolated Texas populations exhibit less genomic diversity and lack shared co-ancestry 

The very few studies  that describe the ecology, habitat use, and population dynamics of 

Montezuma Quail highlight the importance of precipitation and grass cover for their survivability 

and their vulnerability to landscape alterations (Albers & Gehlbach, 1990; Bristow & Ockenfels, 

2011; Brown, 1979; Leopold & McCabe, 1957; Luna et al., 2017; Randel et al., 2019; Stromberg, 

1990). Within the US, Montezuma Quail exist in Arizona, New Mexico and Texas (Figure 3.1A) 

but in this study, we focus on contrasting the Arizona and Texas populations. In Arizona, 

Montezuma Quail are thought to be abundant on many federal and state-managed public lands to 

the point where open season for recreational hunting occurs in a sustainable fashion (Heffelfinger 

& Olding, 2000). In contrast, Texas populations are more isolated, exist largely on private lands, 

and though listed as a game animal the state has allowed no legal hunting of Montezuma Quail for 

decades (Harveson, 2009). Since Montezuma Quail are considered habitat specialists with annual 

survivorship strongly correlated with seasonal rainfall and adequate grass cover, isolated 

populations in Texas are also suspected to be locally adapted to their micro-climate (Harveson et 

al., 2007a; Mathur & DeWoody, 2020) Our previous efforts to characterize the population genetics 
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of Montezuma Quail indicated that Texas quail are genetically distinct from Arizona quail and 

have significantly lower GD and effective population sizes (Ne; Mathur et al. (2019)). Here, we 

report whole genome sequences from 98 Montezuma Quail individuals from four distinct 

geographic regions: Arizona (AZ; N=60), Mexico (MX; N=4), West Texas (WTX; N=31), and 

Central Texas (CTX; N=3; Figure 3.1A).  AZ and WTX habitat are the most similar where AZ 

marks the western periphery of the Sierra Madre in the Maderean Sky Island landscape in the 

Sonoran Desert whereas the WTX range is on the eastern periphery in the Trans-Pecos sky island 

landscape in the Chihuahuan Desert (Leopold & McCabe, 1957). The CTX population is the most 

unique of all Montezuma Quail habitats and is characterized by the relatively low elevation and 

less arid Edwards Plateau region (Albers & Gehlbach, 1990). We removed 32 samples from AZ 

due to a high fraction of missing genotypes (see methods and supplementary info for details 

associated with these hunter-harvested samples) and ultimately analyzed 12,943,838 variants in 

the remaining 66 samples. We found a similar pattern of significant reduction in nucleotide 

diversity (Figure C1 and Table C1) and reduced observed heterozygosity across the whole genome 

(Fig. 1B) in the WTX samples (4.2x10-3 ± 2.0x10-4; mean ± SD) as compared to AZ samples 

(4.8x10-3 ± 4.9x10-4). Our MX samples had comparable levels of mean genomic heterozygosity 

(4.2x10-3 ± 1.5x10-4) to WTX whereas CTX samples had the lowest mean heterozygosity (4.0x10-

3 ± 6.7x10-5). Our results show that CTX quail from the Edwards Plateau, the smallest population 

of most concern in Texas, is the least genetically diverse. The lack of statistical power for CTX or 

MX samples is due to low sample sizes, but Montezuma Quail in Central Texas are the most 

isolated with only a few hundred individuals thought to persist. Genomic scans in 100kb non-

overlapping windows show a remarkably similar diversity pattern between AZ and WTX samples 

and consistent reduction of heterozygosity throughout the genome (Figure 3.1C, Figure C2). On 

average, AZ samples have 1 heterozygous site per 5.43 kb of their genome, whereas WTX only 

had 1 heterozygous site per 6.45 kb. In other words, WTX samples had only 85% of the 

heterozygosity found in the AZ samples.  

Our ROH analysis also captured the loss of GD in Texas quail with WTX samples having 

significantly higher proportion of their genome within ROHs (FROH = 0.054 ± 0.008; mean ± SD) 

than Arizona (0.029 ± 0.016) and CTX samples having the highest mean FROH (0.073 ± 0.031; 

Figure 3.1D). Thus, the mean ROH burden is 85% higher in WTX samples than in AZ and 250% 

higher for CTX birds compared to AZ birds.  Longer ROHs are characteristic of recent inbreeding 
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among close relatives whereas shorter ROHs describe more ancestral inbreeding that has been 

decaying over generations of recombination events and recent de novo mutations (Ceballos, Joshi, 

Clark, Ramsay, & Wilson, 2018). Across all individuals, we found no ROH > 1Mb (Figure 3.1E) 

but the average length of ROH (LROH) was significantly higher for WTX (LROH = 138 ± 3 kb) as 

compared to AZ (132 ± 4 kb; Figure C3) and they carry higher number of homozygous SNPs that 

fall within ROHs (Figure C4). Most ROHs in all populations have relatively short sizes (100-200 

kb; Figure C5) and we found only 6 individuals that carry ROHs longer than 500kb (Figure C6) 

and they all belonged to Texas populations (WTX=5, CTX=1). These ROH distributions indicate 

that Montezuma Quail populations carry signature of ancient inbreeding, but recombination over 

time has shortened ROHs and their presumed detrimental effects. The patterns of genome-wide 

reduction in heterozygosity and higher FROH in Texas quail reflects their smaller effective 

population sizes and the impact of drift and inbreeding in reducing diversity over generations.  

Consanguineous mating increases the risks of inbreeding depression and thus, it is 

important to estimate relatedness and shared ancestry among populations as conservation efforts 

are considered. We estimated relatedness by pairwise comparisons of shared regions that are 

identical by descent (IBD).  IBD fragments tend to coalesce in a more recent common ancestor 

and are shared between relatives (Copenhaver et al., 2012). The population level genealogy tree 

for Montezuma Quail shows that Texas quail are more closely related to the ancestors of AZ and 

MX than to the contemporary populations (Figure 3.2A). The CTX samples are more closely 

related to one of the WTX lineages. Population average co-ancestry clearly highlights these results 

demarcating AZ, MX, and TX populations (Figure C7) and are concordant with model-free PCA 

(Figure C8) and Bayesian clustering (Figure C9) methods. We found of few pair of WTX samples 

(N=8 pairs) that share highest co-ancestry than any other pairs (Figure C7) and indicate potentially 

familial relationships. Based on R0-R1-KING kinship analysis (Figure C10), we assigned 1 pair 

as parent-offspring and 7 pairs as full-siblings (Figure C11). Our kinship analysis indicates that 

AZ and TX share the least amount of co-ancestry and the MX population is more closely related 

to AZ population. Additionally, within-population mean co-ancestry is higher and more 

homogeneous for AZ samples than TX population. We think these patterns likely reflect the habitat 

disparity between Arizona and Texas with more intra-population gene flow within AZ, whereas 

extant birds in Texas are more locally isolated and are remnants of more previously diverse 
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Figure 3.2: Genealogy tree and demographic models of Montezuma Quail populations. (A) Genealogical relationships based on 

pairwise analysis of identical-by-descent (IBD) segments show that Texas population are genetically distinct with WTX (purple) and 

CTX (orange) more closely related than AZ (pink) or MX (light pink) populations. (B) The most likely demographic model of 

Montezuma Quail populations show a demographic expansion 90 kya followed by split 17kya. TX populations have maintained small 

sizes since their split from the ancestral population whereas contemporary AZ populations are derived from a larger ancestral 

population formed after a series of bottlenecks. The model also predicts an unequal migration rate between the two populations as 

indicated by different sized arrows. Gridlines indicate ancestral population size (NA0 = 117, 735). (C) The model accuracy was based 

on highest likelihood values and better simulation of the observed SFS.  See Table S2 for model parameters. The SFS was simulated 

using only synonymous mutations to avoid confounding effects of selection. 
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populations that were extirpated as habitat degraded over time. Genetic analyses of museum 

collections from historic TX quail and landscape genetic analyses (Manel, Schwartz, Luikart, & 

Taberlet, 2003) could shed more light into these observations. 

3.4.2 Demographic models predict historic expansion followed by bottlenecks due to 

founder effects 

Previous reconstruction of demographic history using coalescent simulations indicated that 

Montezuma Quail populations went through a long history of bottleneck in the past 1 million years 

and Arizona and Texas populations had similar demographic histories until the Last Glacial 

Maxima (Mathur & DeWoody, 2020). To build the demographic history of the recent past (<100 

kya), we performed forward simulations of the Site Frequency Spectrum (SFS) for the 

synonymous mutations. The most probable demographic model (Figure 3.2B) that most accurately 

simulated the observed SFS (Figure 3.2C) predicts that ancestral Montezuma Quail populations 

(NA0 = 117,735) expanded 90 kya and maintained large population sizes (NA1 = 1,199,304) until 

the AZ and TX populations split about 17 kya (Figure 3.2B; Table C2). Our models estimate that 

AZ and TX split in an ~ 80:20 ratio from the ancestral population (i.e. the TX population underwent 

a more severe bottleneck). Since splitting, the TX populations have maintained smaller population 

sizes (NTX1 = 27,325) until present whereas, larger sized AZ population has been exponentially 

declining to the current population size (NAZ1 = 35,523). The model also predicted an unequal rate 

of gene flow between the two populations with AZ->TX migration rate 10x higher than TX->AZ 

migration rate (Table C2). Our estimates of the contemporary population sizes from the 

demographic model are smaller than previous estimates in Montezuma Quail populations (Mathur 

& DeWoody, 2020) but still indicates a ~30% demographic reduction in TX as compared to AZ. 

Collectively, based on the genomic patterns of either inferred or simulated demography, our results 

imply that after the core populations in southern Mexico expanded demographically, it split into 

two populations, one ancestral to TX quail and other to AZ-MX quail. The contemporary AZ 

population was formed as Montezuma Quail ranges expanded in Western Mexico. We think that 

these results points towards AZ and TX populations representing the two ends of the species “ring” 

(Mayr, 1999) with the Sierra Madre Occidental Mountain ranges acting as the major landscape 

barrier between the two lineages (Figure 3.1A) resulting in less shared ancestry (Figure 3.2A, C7) 

and limited geneflow (Figure 3.2B; Table C2) between the contemporary populations. Future 
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studies comparing the habitat use between the two populations and a more continuous geographic 

sampling from the core ranges in Mexico could shed further light into the patterns of spatial 

expansions. 

3.4.3 Despite higher potential load in larger populations, individuals in smaller populations 

have higher realized load 

The genetic contributions to overall fitness are a function of beneficial mutations that increase and 

deleterious mutations that decrease fitness. Genetic load is typically evaluated based on three 

metrics: the number of deleterious mutations, their fitness impact, and their frequency within the 

population (Crow, 1958). To evaluate the loss of fitness in Montezuma Quail populations, we 

compared the proportion and frequencies of different impact class variants that are present in AZ 

and WTX populations. One of the arguments against genetic rescue from large populations is the 

higher number of deleterious mutations carried by larger populations could “infect” small 

populations via translocations (Robinson et al., 2019). Our results indicate that this could 

potentially be the case as larger sized AZ population have significantly more non-synonymous 

SNPs than WTX (~1.12x higher; Table C3) and higher number of deleterious variants (Figure 

C12). However, we argue that deleterious mutations are not being over-represented in the genome 

as LoadP (see methods for definitions) is not significantly different between AZ and WTX 

populations (p = 0.06). However, the LoadP of weakly deleterious mutations is significantly higher 

in AZ (p=0.002; Figure 3.3A) possibly because they are less susceptible to purging via purifying 

selection and can segregate more freely in larger populations. The mean minor allele frequency 

(MAF) was significantly higher for all types of mutations in TX population than AZ but the 

difference gets more pronounced for weakly deleterious or synonymous mutations where MAF 

rise even higher as drift gets more influential (Figure 3.3B; Figure C12). This means overall, larger 

populations have higher LoadP as they carry more sites that could potentially be deleterious or 

evade selection, but higher frequencies of deleterious mutations in small populations indicate their 

prevalence in more in smaller populations. 

Population-level productivity, or fitness, is one aspect of genetic health but the other aspect 

is individual-level fitness in terms of individual reproductive success. By comparing the proportion 

of the segregating deleterious mutations that exist in a population accumulate within an individual  
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Figure 3.3: Estimates of potential and realized load in Montezuma Quail populations. (A) Potential load is estimated as the proportion 

of non-synonymous mutations in a gene pool that are categorized as deleterious. We see the potential load of deleterious mutations is 

similar between the larger AZ and smaller WTX population, but AZ has a higher potential load of weakly deleterious mutations. (B) 

As expected, the smaller population harbors all impact class mutations at higher mean frequencies. Error bars indicate standard error 

in the mean estimate. (C) Despite having a lower number of deleterious mutations (Figure C12), individuals in the smaller WTX 

population have more deleterious and weakly deleterious alleles within their genome whereas WTX birds have fewer synonymous 

alternate alleles. (D) Realized load is measured as the proportion of deleterious mutations that exist as homozygotes in individual 

genomes. Smaller WTX individuals have higher Realized load that contributes to inbreeding depression. 
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genome, we can get a better picture of genomic vulnerabilities and possible inbreeding depression 

in individuals of small populations.  We observed that WTX quail not only have a significantly 

higher number of deleterious and weakly deleterious alleles within their genome (Figure 3.3C), 

but also have more detrimental alleles that exist in homozygous states and significantly increases 

their LoadR (Figure 3.3D). 

3.4.4 Populations purge ancestral load during bottlenecks, but smaller populations 

accumulate contemporary load 

Recent studies suggest that strongly deleterious mutations should be purged when wild populations 

undergo strong human-induced bottlenecks (e.g., due to overharvesting or domestication) 

(Bortoluzzi et al., 2019; Grossen et al., 2020; Robinson et al., 2018). Our aim here was to elucidate 

the role of purging (or lack thereof) in shaping the contemporary distribution of deleterious 

mutations segregating in wild populations that underwent historic and natural bottlenecks. We 

estimated the age (i.e. the point in time when a mutation first appeared) of deleterious and weakly 

deleterious mutations carried by both populations and whether they are shared between the two 

populations or are segregating privately. We then created linear regression models to understand 

the relationship between the age of a mutation and its frequency in a population. Our results show 

that almost all the deleterious mutations in Montezuma Quail populations coalesce within the past 

150 kya (Figure C13). Both populations have similar age distributions but with deleterious 

mutation in WTX relatively older (median age = 30,457 years; p-value = 0.012) than the 

deleterious mutations in AZ (median age = 25,987 years; Figure C13). Most of the deleterious 

mutations are shared between the two populations (Figure C14) and are significantly older (median 

age = 50,086; p-value < 2.2e-16) than private mutations (Figure 3.4A). Shared deleterious 

mutations are segregating at similar frequencies in the two populations (Figure C15) and are likely 

to rise at the same rate in the two populations (Figure 3.4B). The higher value observed in the 

smaller WTX population is due to higher starting frequencies (i.e., initial allele frequencies are 

1/2N in diploid populations of size N, as indicated by intercepts in Figure 3.4B).  

When we look at the SNPs that arose in the two populations in the last 100kya (Figure 3.4C), 

AZ had more deleterious mutations (N= 11,102) as compared to WTX (N= 10,308). In both 

populations, most of the deleterious mutations either belong to age class 25kya or older (~50%),  
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Figure 3.4: Small populations have ineffective purging against de novo rising mutations. (A) The age distribution of deleterious 

mutations that are shared between AZ and WTX population or privately segregating in the past 150kya and 25kya (Inset). Deleterious 

mutations that arose during the bottleneck were more efficiently removed in small WTX populations but purging has been inefficient 

against the most recent mutations. (B)  Linear model of mutation age and frequency predict similar trajectories for shared deleterious 

mutations between the two populations but deleterious mutations privately segregating in WTX have higher rate of increase with time. 

Higher intercept for WTX population indicated higher starting frequency in smaller population. (C) The age distribution of 

contemporary deleterious mutations in the two populations in the last 100kya. Much of the contemporary load originated in the large 

pre-bottleneck ancestral population (>50kya) with a smaller proportion of deleterious mutations in the age range corresponding to 

bottlenecks in Montezuma Quail populations (10-25 kya). The smaller WTX population has higher number of deleterious mutations 

that arose in the last 5000 years.  
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or 10 kya or younger (~30%; Fig. S13). Only 20% of the total mutations arose around the 

bottleneck event 10-25 kya (Figure C13). Most of the younger mutations (age <10 kya) are 

privately segregating in both populations (Fig. 4A) and we see a rise in deleterious mutations that 

arose in WTX population in the last 5,000 years (N= 1250) as compared to AZ (N= 1099; Figure 

3.4C). Private deleterious mutations in WTX are significantly younger (median age = 8,328; p = 

8.872e-12) as compared to private deleterious mutations in AZ (median age = 9,743 years) and are 

accumulating at the individual level as part of LoadR (Fig. S15). Private mutations in the smaller 

WTX population also start at higher frequencies (1/2N) but unlike shared mutations, have a ~2.5x 

faster rate of allele frequency increase as compared to larger AZ population (Figure 3.4B). This 

pattern is probably because more recent deleterious mutations (i.e., those that arose since the 

Pleistocene WTX population bottleneck) persist and accumulate because purging is inefficient in 

the small contemporary population of Texas quail. 

3.5 Discussion 

Genetic rescue is a promising conservation strategy as the introduction of new alleles to small 

populations via assisted gene flow can alleviate inbreeding depression in small populations and 

potentially add to their adaptive capacity to future environmental change (Ralls et al., 2018; 

Whiteley et al., 2015). Arguments against genetic rescue are based on the idea that a) small 

populations have likely purged their load of deleterious mutations (Grossen et al., 2020; Robinson 

et al., 2018) and that b) larger populations carry more deleterious mutations (Lohmueller et al., 

2008; Tishkoff & Williams, 2002) so translocations could potentially “infect” recipient 

populations and inadvertently decrease the already diminished fitness of small populations 

(Robinson et al., 2019). We tested these ideas in an avian species with large historic sizes but now 

facing elevated extinction risks due to anthropogenic activities (e.g., human-induced climate 

change)(Ceballos et al., 2015). We first discuss how the demographic histories of different 

populations determine the contemporary levels of overall GD to provide an evolutionary 

background for small populations in need of conservation.  We next discuss why, despite carrying 

more deleterious mutations, deleterious alleles are not overrepresented in larger populations. We 

also discuss the evidence for purging of deleterious mutations during the bottleneck, but inefficient 

purging in smaller populations against deleterious mutations that rise post-bottleneck. We 
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conclude that as deleterious mutations tend to accumulate in genomes of smaller populations, they 

are more at the risk of inbreeding depression that could be alleviated via genetic rescue. 

3.5.1 Evolutionary history shapes contemporary diversity and ancestry among different 

populations 

Peripheral populations are more prone to extinction due to stochastic natural population dynamics 

(Hampe & Petit, 2005), but they are biologically relevant because marginal populations along 

geographic clines are presumably more adapted to future range expansion under climate change 

(Lesica & Allendorf, 1995). Range expansions go hand in hand with demographic bottlenecks as 

new habit is colonized by a small number of founders, creating a genetic gradient with the least 

diversity on the leading edge (Excoffier, Foll, & Petit, 2009). Genome-wide analysis of diversity 

(Figure 3.1), shared ancestry (Figure 3.2A, C7) and the demographic model (Figure 3.2B) suggest 

that contemporary Montezuma Quail populations in AZ and TX are genetically smaller 

populations compared to their ancestral populations and were formed recently (< 20,000 

generations ago) at the end of the Pleistocene. These signatures of founder effects are buttressed 

by the ROH distributions which indicate most of the ROHs are short (Figure C5). The TX quail 

were formed from fewer founders (Table C2) as they went through a stronger bottleneck, whereas 

the AZ is a more genetically diverse population formed by more founders. We think the 

Montezuma Quail evolutionary history mimics the patterns of a “ring species” (Mayr, 1999). Our 

data suggest a larger, relatively diverse ancestral population expanded into the west side of the 

Sierra Madre Occidental and now forms the contemporary AZ population, and a smaller 

population on the east of the mountain range formed the TX populations (Figure 3.1A). The 

relative lack of shared ancestry between AZ and TX populations (Figure 3.2A, C7) and the higher 

divergence in genic regions between the two populations (Mathur & DeWoody, 2020) all suggest 

that Montezuma Quail range expansion and colonization that ultimately formed a ring. Ring 

species are thought to form when populations expand around a geographical barrier and leading 

edges diverge over time due to lack of gene flow and subsequently become reproductively isolated 

(Irwin, 2005). However, if there is limited gene flow between the two terminal populations, as was 

in the case of Montezuma Quail populations (Figure 3.2B; Table C2), such populations are also 

expected to be unstable and more susceptible to extinction due to environmental change (de Brito 

Martins & de Aguiar, 2017). Texas populations are currently more at-risk of extirpations partly 
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due to habitat degradation (Harveson, 2009) and also possibly due to significantly less GD than 

Arizona quail (Figure 3.1B). The overall levels of individual FROH ranged from 0.008 – 0.108 per 

individual, which seems to be comparable to many wild mammalian (Brüniche-Olsen, Kellner, 

Anderson, & DeWoody, 2018) and avian genomes (Kardos, Qvarnström, & Ellegren, 2017). 

However, Texas birds are significantly more inbred than AZ (Figure 3.1D) and have longer 

stretches of autozygous regions (Figure 3.1E, C6). The mean ROH burden is 85% higher in WTX 

samples than in AZ and 250% higher for CTX birds compared to AZ birds.  As longer ROHs are 

enriched for strongly deleterious variants that disproportionally reduce the overall individual 

fitness (Szpiech et al., 2013), we argue that Texas quail genomes are more susceptible to future 

inbreeding depression as they accumulate genetic load (see below).  

3.5.2 Distribution of genetic load in small vs. large populations  

Genetic load is defined as the loss of fitness due to the multiplicative effects of all deleterious 

mutations. Since more deleterious mutations segregate in larger populations, recent studies caution 

against using large, stable populations for genetic rescue. We argue that these studies ignore the 

genomic background in which these mutations arise (i.e. what proportion of the total variants are 

predicted to be deleterious vs. benign). To account for all the coding variants, we introduce the 

term “potential load” (LoadP). Theoretically, a population that has a higher proportion of 

deleterious mutations is more likely to have lower fitness as compared to a population with similar 

overall GD but a smaller proportion of deleterious mutants. We show that the Arizona population 

has a higher LoadP of weakly deleterious mutations, but the LoadP of deleterious mutations is 

comparable between the two populations (Figure 3.3A). This indicates that if Arizona quail were 

outcrossed with Texas quail, deleterious mutations would not overrepresent the total influx of 

alleles but would also bring in other non-synonymous mutations that could directly or indirectly 

increase fitness. Extra functional variants entering the population could decrease the load of 

deleterious mutations that are currently segregating at higher frequencies in Texas quail (Figure 

3.3B).  

Purifying selection plays an important role in maintaining GD and fitness by purging 

deleterious mutations from the populations. We show that when Arizona and Texas populations 

were formed, both populations lost ancestral load (Figure 3.4C) as the fewest currently segregating 

mutations belong to the age range that corresponds to the late Pleistocene bottleneck event (15-25 
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kya; Figure C13). Immediately after the Pleistocene bottleneck (15 kya), the smaller WTX 

populations presumably accrued fewer deleterious mutations than AZ (10-15 kya) but deleterious 

mutations that arose in the last 5kya are now overrepresented in WTX populations (Figure 3.4C). 

These privately segregating mutations are not only significantly younger in the smaller WTX 

population (Figure 3.4A) but are likely to rise in frequency at a faster rate due in part to starting at 

higher frequencies (Figure 3.4B). These results highlight the inefficiency of purifying selection in 

smaller populations to cull “contemporary mutations even though selection might have previously 

culled ancestral load. The evidence of weakened purifying selection in small populations also 

comes from higher LoadR of deleterious mutation (Figure 3.3D) where both standing deleterious 

variants and de novo deleterious variants are homozygous in individual genomes (Figure C15). 

Since deleterious mutations are mostly recessive and detrimental to fitness, their presence in Texas 

genomes is indicative of the potential for inbreeding depression in small populations.  

In conclusion, we argue that genetic rescue remains a promising conservation strategy, but 

it needs an evolutionary context before implementation. Our empirical genomic data show that 

populations tend to purge ancestral deleterious mutations during bottlenecks that occur over 

evolutionary timespans, but recent deleterious mutations persist and add to the genetic load of 

small contemporary populations where purifying selection is ineffective. In principle, translocating 

individuals from a population with less LoadP is less likely to increase overall load and more likely 

to reduce LoadR of vulnerable populations. Besides translocations, habitat restoration and 

proactive genetic monitoring (Leroy et al., 2018) of source and recipient populations should also 

be implemented as a part of overall management plan (Holderegger et al., 2019). Advancements 

in genomic and computational resources provide an excellent opportunity to understand the 

evolution of wild species, assess loss of fitness due to load of deleterious mutations, and the risk 

of future inbreeding. These assessments are necessary to devise a more robust strategy to help 

prevent extinctions in today’s world. 
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APPENDIX A: SUPPLEMENTARY INFORMATION FOR CHAPTER 1 

A.1 Genome assemblies and genome size estimation 

After culling low quality and adapter sequences, both paired-end and mate pair reads were used 

for contig building, whereas mate pair sequences were used for scaffolding and gapfilling.  AbySS 

v2.0.2 (Simpson et al., 2009) was used to assemble the reads with the most optimum k-mer of 60 

estimated using KmerGenie (Chikhi & Medvedev, 2013).  SOAPdenovo2 (Luo et al., 2012) was 

also used to assemble reads using a multi k-mer approach from 35 to 65. GapFiller (Boetzer & 

Pirovano, 2012) was used for filling the gaps in the SOAPdenovo assembly.  A third assembly was 

created by merging the AbySS assembly and the SOAPdenovo assembly into a single assembly 

using GAM-NGS (Vicedomini et al. 2013) with a block size of 50. All the assemblies were then 

assessed for completeness using BUSCO (Simão et al., 2015) and Quast (Gurevich et al. 2013).  

The nuclear genome size was estimated using the K-mer approach by counting all the k-mers of 

length 60 and calculating the mean coverage from the frequency histogram. 

A.2 Xenobiotic removal and repeat masking 

Once the most complete assembly (i.e., with the highest N50) was chosen, the assembly was 

filtered prior annotation and variant calling. Xenobiotics were removed according to Antonides et 

al. (2017) in a two-step process. Firstly, the Montezuma quail assembly was compared to all 

publicly available avian genomes (top-level sequences unmasked) downloaded from Ensemble 

using NCBI BLASTN.  All the sequences that did not significantly match any of the reference 

avian genomes (e < 10-6) were culled.  Next, these filtered sequences were further compared to 

all the vertebrate sequences from GeneBank database. Ultimately, any sequence in the draft 

assembly that did not match with any other avian or vertebrate species was removed as putative 

xenobiotic in origin. Repetitive elements were identified and classified using both homology-based 

and de novo approaches.  For homology-based approach, the repeats were masked by 

RepeatMasker (Smit et al., 2015) using the chicken genome.  RepeatModeler (Smit & Hubley, 

2015) was used as a de novo approach for interspersed repeat discovery, and Tandem Repeats 

Finder (Benson 1999) was used to detect tandem repeats. The results from the two approaches 

were combined and the overlaps were removed using the perl script used by Doyle et al. (2014). 
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A.3 Genome annotation 

The filtered assembly with masked repeats was used for genome annotation using the iterative 

MAKER 2.31 (Holt & Yandell, 2011) pipeline, which includes BLAST for alignment of supplied 

protein and EST sequences to the assembly, and the gene predictors SNAP (Cantarel et al., 2007) 

and Augustus (Stanke & Waack, 2003). First, all the manually annotated and reviewed proteins 

from all avian species found in the Swiss-Prot database of UniProtKB (http://www.uniprot.org) 

were provided for the initial MAKER run to create gene models, along with assembled sequences 

greater than 2Mb.  The ab initio models created from the initial run was used to train the two gene 

predictors:  SNAP and Augustus.  Augustus was run with the “chicken” model.  Subsequently, the 

Montezuma quail assembly consisting of scaffolds greater than 5000 bp was supplied to MAKER 

along with ESTs from the chicken (Gallus gallus) and Japanese quail (Coturnix japonica) for an 

additional source of gene modeling.  The quality metrics Annotation Edit Distance (AED) and 

Quality Index summary (QI) were used to assess the strength of each final gene model (Cantarel 

et al., 2007).  The next step was to functionally annotate the genome with putative protein domain 

and gene functions using Interproscan. InterPro, Pfam, and Gene Ontology (GO) terms were 

assigned to the gene models.  Lastly, the final annotation set consisted of MAKER gene models 

with an AED <1 and/or at least one identified protein domain. 

A.4 SNP identification 

Nuclear SNPs were identified using the male Montezuma quail draft assembly with contigs greater 

than 500bp using Genome Analysis Toolkit (GATK) pipeline (McKenna et al., 2010). The filtered 

paired-end reads from both male and female Montezuma quail were aligned to the male assembly 

with the BWA (Li & Durbin, 2009). Mapped reads were sorted and marked for duplicates using 

PicardTools (http://picard.sourceforge.net).  GATK 3.6 was used to identify and realign reads 

around insertions/deletions (indels). To find sites polymorphic in both male and female, a joint 

genotyping analysis of the genomic VCFs produced for both individuals was performed. Variants 

were called in each sample individually using HaplotypeCaller in genomic VCF (GVCF) mode to 

produce a comprehensive record of genotype likelihoods and annotations for each site in the 

genome.  Target SNPs were filtered for quality (Phred >30) and read depth (>20). 

http://www.uniprot.org)/
http://picard.sourceforge.net)/
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To identify mitochondrial markers, we initially identified mitochondrial sequences by 

mapping paired end reads to the mitochondrial assembly using BBSplit tool in BBMap 

(https://github.com/BioInfoTools/BBMap). We then identified the variants in those sequences 

using the same protocol as described above and retained SNPs with coverage depth of > 200X. 

A.5 SNP panel design and error rate 

Most of our road-killed samples from Texas were degraded and the DNA samples were of low 

quality. Thus, a specific target amplification (STA) step was incorporated to increase template 

material for downstream amplification by using a low molar concentration of each primer and 

limited thermal cycles (e.g., DeWoody et al., 2017).  Genotyping error rate was calculated using 

replicate DNA samples (n = 4 in total) from 2 individuals following the equation 𝑒 =  
𝑚

(𝑑)(𝑠)
, where 

m represents the total number of mismatches between each replicate sample, d represents the total 

number of loci per replicate sample, and s represents the total number of replicate samples (Doyle 

et al., 2016; DeWoody et al., 2017). 

A.6 Population structure analysis  

To estimate population structure using sNMF algorithms in the LEA package, we need to optimize 

the regularization parameter (α) that controls the regularity of ancestry estimates over geographic 

space.  To choose the appropriate value of α, the mean values of the cross-entropy criterion for 

each cluster (K = 1 to 10) were plotted as a function of α and the value of α that had the minimum 

mean cross-entropy was chosen.  Once the regularization parameter was set, the algorithm was run 

again with number of clusters set to K = 1-10 with 10 iterations each. 

For the STRUCTURE analysis of all samples, loci that significantly deviated from Hardy-

Weinberg equilibrium in our (relatively large) Arizona samples were excluded.  Then, the analysis 

was run for K = 1–10, running each value 10 times with an initial burn-in of 100,000 MCMC 

(Markov chain Monte Carlo iterations) and 1,000,000 subsequent iterations.  Due to unbalanced 

sampling for each geographic region, the relative admixture levels between populations parameter 

(α) was a priori set at 0.33 and an individual α for each population with uniform prior and 

maximum value of 10 (Wang 2017).  For the detailed analysis of Arizona samples, all the SNPs 

were analyzed the STRUCTURE parameters were set at default using the admixed ancestry model 

https://github.com/BioInfoTools/BBMap)
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and correlated allele frequencies.  The results of analysis were interpreted using mean likelihood 

values of K and ΔK (Evanno et al., 2005). 

A.7 Outlier tests for selection 

We removed samples from New Mexico (N=5) from analysis for outlier tests due to small samples 

size and only considered Arizona and Texas samples.  To identify signatures of natural selection, 

we used multiple approaches:  an FDIST approach (Beaumont & Nichols, 1996) implemented in 

both LOSITAN (Antao et al., 2008) and Arlequin v3.5 (Excoffier & Lischer, 2010), and a Bayesian 

approach in BAYESCAN 2.1 (Foll & Gaggiotti, 2008).   

FDIST methods estimate the expected distribution of FST vs. expected heterozygosity under 

an island model of migration, and outliers are identified based on significant deviations from 

neutral expectations (Beaumont & Nichols 1996).   

In BAYESCAN, a logistic regression model is used that implements a locus effect and a 

population effect.  A locus is assumed to be under selection when the locus-specific component is 

necessary to explain the observed pattern of diversity (Foll & Gaggiotti, 2008).  

 LOSITAN was run with 1,000,000 simulations assuming an infinite allele mutation model.  

The outliers were identified assuming a confidence interval of 0.995 and a false discovery rate 

(FDR) rate of 0.05. For Arlequin, we ran 20,000 simulations with 100 demes with all samples as 

a single group and minimum and maximum expected heterozygosities of 0 and 0.8, respectively.  

Only the loci beyond the 1% quantile were assumed to be significant. 

BAYESCAN was initialized with 10 pilot runs of 5000 iterations and an additional burn-

in of 50,000 iterations with a thinning factor of 20 (total 150,000 iterations) to identify outlier loci 

by FST amongst the geographically distinct regions.
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Figure A1 BUSCO single-copy vertebrate ortholog detection summary for the female (MQU_female) and male (MQU_male) 

Montezuma quail genome assemblies. The x-axis represents the percentage of BUSCOs relative to the avian dataset (aves_odb9).  

Both assemblies contain the vast majority of genes known in other avian species. The numbers in bars indicate the absolute numbers 

of Complete (C), Fragmented (F), Missing (M) BUSCOs identified in the assembly.  
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Figure A2 Histograms of observed (Ho) heterozygosity for (A) non-neutral markers and (B) neutral markers.  Heterozygosity 

observed at non-neutral loci (mean Ho = 0.36 ± 0.16) was significantly higher than the heterozygosity observed at presumptively 

neutral markers (mean Ho = 0.28 ± 0.15; Mann–Whitney Rank Sum Test: U = 2633.5, p-value < 0.05) (Red dashed lines).  This 

observation of higher heterozygosity at non-neutral markers is consistent with the idea of overdominance in Montezuma quail 

populations. 
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Figure A3 Results from STRUCTURE analyses for all Montezuma quail samples (N=186) genotyped at 141 loci (i.e., using those loci 

consistent with HWE). (A) At K=3 and K=4, the Texas population is genetically divergent from samples collected in Arizona and 

New Mexico. (B) Mean estimated Ln probability of data ± SD.  (C) Delta K values for each K = 1-10 indicates the best estimated 

number of ancestral population is K = 3 based on Evanno et al. (2005).  Based on these data, the Arizona and New Mexico sampling 

sites are genetically more similar to each other than either is to the Texas site. 
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Figure A4 Results from STRUCTURE analyses for Montezuma quail samples from Arizona (N=165) genotyped at 169 loci.  Overall, 

the samples from Arizona are relatively homogenous.  These data suggest that the genetic distinctiveness of the Texas samples (Fig. 

S3, K=3 or K=4) is not an artifact of structure within Arizona
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Figure A5 Pairwise FST values for Arizona versus Texas samples. SNP loci (N=169) are 

ordered on the x-axis with 87 non-neutral markers (black dots) and 80 neutral markers (white 

dots). Red dotted line indicates top 0.5 % (99.5th quantile) of FST values. We found high levels 

of locus specific differentiation between Arizona and Texas samples with no significant 

difference between non-neutral and neutral FST values (p = 0.8) 
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Table A1 Top 50 Pfam domain hits and their counts in the Montezuma quail genome 

Pfam Domain   Counts 

WD domain, G-beta repeat   502 

Cadherin domain   415 

Fibronectin type III domain   403 

Immunoglobulin I-set domain   363 

Protein kinase domain   329 

Leucine rich repeat   277 

7 transmembrane receptor (rhodopsin family)   265 

Ankyrin repeats (3 copies)   259 

Collagen triple helix repeat (20 copies)   249 

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain)   229 

Kelch motif   196 

EGF-like domain   180 

C2 domain   175 

Homeobox domain   172 

PDZ domain (Also known as DHR or GLGF)   172 

Immunoglobulin domain   161 

Calcium-binding EGF domain   159 

BTB/POZ domain   157 

Tetratricopeptide repeat   145 

Ion transport protein   143 

Sushi repeat (SCR repeat)   135 

Spectrin repeat   133 

Ras family   130 

PH domain   128 

Thrombospondin type 1 domain   124 

LIM domain   121 

Low-density lipoprotein receptor domain class A   120 

C2H2-type zinc finger   113 

CUB domain   110 

Protein tyrosine kinase   107 

Immunoglobulin V-set domain   105 

Variant SH3 domain   101 

Leucine Rich repeat   100 

Scavenger receptor cysteine-rich domain   99 

Laminin EGF domain   98 

Mitochondrial carrier protein   92 

Zinc finger, C2H2 type   88 

EF-hand domain pair   87 

Armadillo/beta-catenin-like repeat   87 

Nebulin repeat   81 

SH2 domain   79 

Helicase conserved C-terminal domain   79 

Helix-loop-helix DNA-binding domain   79 

SH3 domain   77 

von Willebrand factor type A domain   77 

SAM domain (Sterile alpha motif)   77 
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Table A2 Candidate loci that appear to be targets of positive selection as inferred by outlier 

analyses in both LOSITAN and Arlequin 

LOSITAN   

Assay ID Gene Gene Name 

Pairwise Fst 

Arizona – 

Texas 

GTA0201149 ACAN Aggrecan core protein 0.03 

GTA0200995 AQP9 Aquaporin-9 0.05 

GTA0200999 MSTN Myostatin 0.11 

GTA0201113 CLOCK Circadian locomoter output cycles protein kaput 0.13 

GTA0201114 FTO Alpha-ketoglutarate-dependent dioxygenase 0.11 

    

Arlequin    

GTA0201098 MECOM MDS1 and EVI1 complex locus protein EVI1 0.45 
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Table A.3 Description of 96 Montezuma quail SNPs associated with genes under selection in other avian species. 

Fluidigm® Assay ID Scaffold Position Gene Gene Name 

GTA0200985 scaffold.2419218_392333 TGFA Protransforming growth factor alpha 

GTA0200986 scaffold.2420599_1685901 MBL Mannose-binding protein 

GTA0200987 scaffold.2419560_292758 TH Tyrosine 3-monooxygenase 

GTA0200991 scaffold.2419672_841757 IGF1R Insulin-like growth factor 1 receptor 

GTA0200992 scaffold.2420575_3714577 SPP1 Osteopontin 

GTA0200995 scaffold.2420503_1541415 AQP9 Aquaporin-9 

GTA0200999 scaffold.2420000_352123 MSTN Myostatin 

GTA0201001 scaffold.2420758_896004 Snap25 Synaptosomal-associated protein 25 

GTA0201003 scaffold.2419915_166790 TRH Pro-thyrotropin-releasing hormone 

GTA0201004 scaffold.2420075_160697 FECH Ferrochelatase, mitochondrial 

GTA0201005 scaffold.2420129_675643 GABRG2 Gamma-aminobutyric acid receptor subunit gamma-2 

GTA0201006 scaffold.2419827_1273517 LEPR Leptin receptor 

GTA0201007 scaffold.2419481_281608 BLNK B-cell linker protein 

GTA0201011 scaffold.2419704_24613 PMEL Melanocyte protein PMEL 

GTA0201018 scaffold.2420934_1575034 CRY2 Cryptochrome-2 

GTA0201019 scaffold.2419691_559449 GHR Growth hormone receptor 

GTA0201022 scaffold.2420813_600376 NOS2 Nitric oxide synthase, inducible 

GTA0201023 scaffold.2419135_70105 KRT6A Keratin type II cytoskeletal 6A 

GTA0201026 scaffold.2420058_94346 HBB Hemoglobin subunit beta/beta' 

GTA0201027 scaffold.2419201_81592 NPY Pro-neuropeptide Y 

GTA0201031 scaffold.2419496_865363 LYZ Lysozyme C 

GTA0201033 scaffold.2421001_1115644 GHRHR Growth hormone-releasing hormone receptor 

GTA0201036 scaffold.2419192_19188 CCK Cholecystokinin 

GTA0201037 scaffold.2420541_3716953 PRKAA2 5'-AMP-activated protein kinase catalytic subunit alpha-2 

GTA0201040 scaffold.2419861_205633 PRL Prolactin 

GTA0201041 scaffold.2419774_409716 ADAM17 Disintegrin and metalloproteinase domain-containing protein 17 

GTA0201042 scaffold.2419870_19178 ARNT Aryl hydrocarbon receptor nuclear translocator 

GTA0201045 scaffold.2419193_19305 Feather Feather keratin 4 

GTA0201046 scaffold.2420736_1062 MC1R Melanocyte-stimulating hormone receptor 

GTA0201049 scaffold.2419236_1490598 PPARG Peroxisome proliferator-activated receptor gamma 

GTA0201051 scaffold.2419889_766209 SLCO1C1 Solute carrier organic anion transporter family member 1C1 

GTA0201052 scaffold.2419821_342438 CTGF Connective tissue growth factor 

GTA0201053 scaffold.2419996_643476 FABP1 Fatty acid-binding protein, liver 

GTA0201054 scaffold.2419904_206589 Muc2 Mucin-2 

GTA0201056 scaffold.2419464_308854 AGRP Agouti-related protein 
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Table A3 continued 

GTA0201057 scaffold.2419794_788999 MMP2 Matrix metallopeptidase 2 

GTA0201059 scaffold.2420270_504235 LHCGR Lutropin-choriogonadotropic hormone receptor 

GTA0201060 scaffold.2419234_102446 PDIA3 Protein disulfide-isomerase A3 

GTA0201064 scaffold.2420711_480278 COCH Cochlin 

GTA0201065 scaffold.2419273_218258 TNC Tenascin 

GTA0201066 scaffold.2419824_65515 STAT3 Signal transducer and activator of transcription 3 

GTA0201068 scaffold.2419563_279544 CALB1 Calbindin 

GTA0201069 scaffold.2419287_935738 VIM Vimentin 

GTA0201076 scaffold.2420484_534110 HSPD1 60 kDa heat shock protein, mitochondrial 

GTA0201078 scaffold.2420267_724729 Cldn1 Claudin-1 

GTA0201079 scaffold.2420920_870248 VEGFA Vascular endothelial growth factor A 

GTA0201082 scaffold.2419542_5611 ABCG2 ATP-binding cassette sub-family G member 2 

GTA0201088 scaffold.2419025_1502396 calm2b Calmodulin-2 B 

GTA0201090 scaffold.2419529_29868 Cd74 H-2 class II histocompatibility antigen gamma chain 

GTA0201091 scaffold.2420222_2234036 PCK1 Phosphoenolpyruvate carboxykinase, cytosolic [GTP] 

GTA0201096 scaffold.2419810_91555 EXFABP Extracellular fatty acid-binding protein 

GTA0201098 scaffold.2419041_41475 MECOM MDS1 and EVI1 complex locus protein EVI1 

GTA0201099 scaffold.2420501_307779 OPN5 Opsin-5 

GTA0201100 scaffold.2372192_495 RPE65 Retinoid isomerohydrolase 

GTA0201102 scaffold.2420615_2539713 ESR1 Estrogen receptor 

GTA0201104 scaffold.2419418_267683 PARP1 Poly [ADP-ribose] polymerase 1 

GTA0201105 scaffold.2420379_209806 SHH Sonic hedgehog protein 

GTA0201107 scaffold.2420084_1087802 GDF9 Growth/differentiation factor 9 

GTA0201108 scaffold.2420963_235259 ACACB Acetyl-CoA carboxylase 2 

GTA0201109 scaffold.2420062_1441996 ASTL Astacin-like metalloendopeptidase 

GTA0201110 scaffold.2419231_1025841 BRCA2 Breast cancer type 2 susceptibility protein 

GTA0201112 scaffold.2419902_1843835 ROBO1 Roundabout homolog 1 

GTA0201113 scaffold.2420361_317748 CLOCK Circadian locomoter output cycles protein kaput 

GTA0201114 scaffold.2419407_242816 FTO Alpha-ketoglutarate-dependent dioxygenase 

GTA0201115 scaffold.2418980_311832 NTS Neurotensin/neuromedin N 

GTA0201118 scaffold.2420740_525483 PGR Progesterone receptor 

GTA0201120 scaffold.2420754_475821 KCNH6 Potassium voltage-gated channel subfamily H member 6 

GTA0201122 scaffold.2419198_948773 NAMPT Nicotinamide phosphoribosyltransferase 

GTA0201124 scaffold.2419962_205525 PRKAA1 5'-AMP-activated protein kinase catalytic subunit alpha-1 

GTA0201125 scaffold.2420081_518670 HMOX1 Heme oxygenase 1 

GTA0201127 scaffold.2420999_36136 CASP1 Caspase-1 

GTA0201129 scaffold.2420326_1103027 BCL2 Apoptosis regulator Bcl-2 
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Table A3 continued 

GTA0201130 scaffold.2420958_614552 FGF2 Fibroblast growth factor 2 

GTA0201135 scaffold.2419292_300168 Edn1 Endothelin-1 

GTA0201137 scaffold.2420264_2300657 NGF Beta-nerve growth factor 

GTA0201138 scaffold.2420928_384544 PPARA Peroxisome proliferator-activated receptor alpha 

GTA0201139 scaffold.2419560_280705 INS Insulin 

GTA0201140 scaffold.2419197_25948 IFNL3 Interferon lambda-3 

GTA0201142 scaffold.2419746_1961703 TYR Tyrosinase 

GTA0201144 scaffold.2419188_2133072 COLEC11 Collectin-11 

GTA0201147 scaffold.2420462_314560 CDH13 Cadherin-13 

GTA0201148 scaffold.2419129_85609 FLRT3 Leucine-rich repeat transmembrane protein 

GTA0201149 scaffold.2419461_158392 ACAN Aggrecan core protein 

GTA0201152 scaffold.2420832_658918 LGALS2 Galectin-2 

GTA0201154 scaffold.2419526_26842 HIF1A Hypoxia-inducible factor 1-alpha 

GTA0201156 scaffold.2419692_601099 AR Androgen receptor 

GTA0201158 scaffold.2419354_183098 Trpm8 Transient receptor potential cation channel subfamily M member 8 

GTA0201159 scaffold.2419429_656029 TNN Tenascin-N 

GTA0201160 scaffold.2420770_1209742 SEMA3A Semaphorin-3A 

GTA0201161 scaffold.2418924_70694 BKJ Beta-keratin-related protein 

GTA0201163 scaffold.2419825_546536 CDH1 Cadherin-1 

GTA0201165 scaffold.2420818_2912542 ABCB1 ATP binding cassette subfamily B member 1 

GTA0201166 scaffold.2420283_7714 CPOX Oxygen-dependent coproporphyrinogen-III oxidase, mitochondrial 

GTA0201197 scaffold.2419443_219448 PTH Parathyroid hormone 

GTA0201201 scaffold.2419408_480576 PAX7 Paired box protein Pax-7 

GTA0201202 scaffold.2419295_783492 GNRH1 Progonadoliberin-1 
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APPENDIX B: SUPPLEMENTARY INFORMATION FOR CHAPTER 2 

Table B1 Whole genome sequence read statistics for each individual (N=74) trimming adapters and low quality sequences Arizona 

samples are highlighted in light blue, Texas samples are highlighted in pink and New Mexico samples are highlighted in green.  

Sample 

ID 
Total Reads Total Bases 

Min 

Len 

Mean 

Len 

Max 

Len 

% seq 

lost 
% bases lost 

Mapping 

% 

Breadth of coverage 

(%) 

Depth of coverage 

(X) 

E6537 33,600,122 4,274,242,469 30 127 151 0 16.43590294 96.429 91.8536 3.99176 

E6538 16,482,094 2,057,428,202 30 124 151 0 18.07030504 95.806 72.4103 1.91611 

E6539 14,528,498 1,786,460,364 30 122 251 1 19.48874053 89.643 47.0595 1.43745 

E6541 20,129,040 2,679,752,197 30 133 251 1 12.82387168 46.580 37.6452 0.81683 

E6543 25,414,610 3,214,919,818 30 126 251 1 17.08177431 81.209 71.3493 2.20447 

E6545 23,589,836 2,717,050,993 30 114 251 1 24.77170793 89.768 63.3578 1.99691 

E6548 18,907,440 2,337,892,781 30 123 151 1 19.07479279 50.670 27.0938 0.682041 

E6566 19,174,870 2,196,258,563 30 114 251 1 25.21643812 95.967 63.7276 1.9232 

E6597 27,394,358 3,403,617,829 30 124 151 0 18.48732046 96.313 84.721 3.12776 

E6598 26,252,348 3,275,918,821 30 124 151 0 18.07011672 96.577 85.7205 3.0762 

E6599 28,926,254 3,868,730,275 30 133 151 0 12.08514672 95.148 91.7807 3.57133 

E6600 23,699,300 2,841,877,036 30 119 151 1 21.44906733 95.889 80.7189 2.63539 

E6609 24,873,758 3,273,051,783 30 131 151 0 13.47750122 94.182 85.6522 2.91976 
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Table B1 continued 

E6705 21,014,564 2,567,496,803 30 122 251 1 20.06150528 89.300 65.6898 1.83042 

E6715 19,342,052 2,329,540,171 30 120 251 1 21.20189571 95.523 64.5881 1.86892 

E6716 15,439,024 1,881,125,334 30 121 151 1 20.14143974 94.915 66.2256 1.69422 

E6718 18,686,522 2,228,796,760 30 119 251 1 22.07742769 86.688 61.0875 1.63069 

E6758 17,096,568 2,224,836,949 30 130 151 0 14.48065886 97.251 76.6621 2.13067 

E6759 28,932,710 3,653,246,481 30 126 251 0 17.00499497 97.061 87.3612 3.37574 

E6762 18,225,844 2,010,931,735 30 110 251 1 27.84035543 97.147 61.7902 1.84956 

E6799 22,244,404 2,823,617,543 30 126 151 0 16.67511558 93.894 80.2249 2.5287 

E6800 18,236,814 2,259,191,138 30 123 251 1 18.85298064 69.118 52.3194 1.26126 

E6801 25,572,556 3,331,496,821 30 130 251 0 14.40190715 87.986 83.0296 2.69863 

E6803 33,241,370 4,407,669,511 30 132 251 0 12.87317077 90.539 89.4336 3.56039 

E6841 18,517,834 2,246,285,149 30 121 251 1 20.55069929 88.430 64.5698 1.77449 

E6843 19,370,072 2,198,511,271 30 113 251 1 25.868553 95.307 56.4973 1.73955 

E6847 18,482,182 2,202,056,693 30 118 151 1 21.92476168 95.860 69.8905 1.99843 

E6963 33,110,208 4,483,974,539 30 135 251 0 10.92455982 94.837 92.3482 3.91862 

E6964 23,792,780 3,065,819,963 30 128 151 0 15.39894896 96.457 84.1642 2.81308 

E6966 17,474,332 2,206,802,478 30 126 151 0 17.11722216 93.732 73.9285 1.98149 

E7010 15,537,242 1,956,164,954 30 125 251 1 17.48555854 81.536 52.2074 1.34422 
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Table B1 continued 

E7011 24,013,338 3,194,700,379 30 132 251 0 12.66704089 75.421 72.0282 1.95008 

E7012 15,047,108 1,916,571,683 30 127 251 0 16.45366863 82.791 56.2622 1.38327 

E7035 21,848,376 2,801,671,533 30 128 151 0 15.77403418 94.806 78.2445 2.46568 

E7048 17,471,158 2,102,506,216 30 120 251 1 21.27985227 87.481 51.9475 1.43534 

E7049 17,993,798 2,657,534,292 30 147 251 0 2.465671319 86.799 80.4312 2.25097 

E7159 15,107,394 1,884,886,783 30 124 251 0 18.13328492 96.354 67.5206 1.70692 

E7161 17,010,834 2,057,255,210 30 120 251 1 20.75178688 96.584 67.2025 1.85173 

E7175 18,742,570 2,197,303,953 30 117 251 1 23.49579741 92.125 49.7387 1.47077 

E7177 30,251,566 3,944,254,228 30 130 251 0 14.31669848 96.274 88.0516 3.53435 

E7219 17,194,322 2,264,874,267 30 131 151 0 13.36150975 67.415 54.9096 1.27549 

E7755 16,995,676 2,147,627,109 30 126 151 0 17.12450629 95.202 73.6911 1.97215 

E7757 25,794,068 3,308,977,700 30 128 151 0 15.68578099 96.425 87.5735 3.13268 

E7879 21,256,178 2,636,978,688 30 123 251 1 18.70614593 82.189 57.7679 1.70622 

E7910 17,971,200 2,171,787,423 30 120 251 1 20.93717563 95.763 62.1332 1.7536 

E7915 17,578,272 2,240,711,607 30 127 251 1 16.58785958 77.516 57.8872 1.37476 

E8002 20,709,886 2,711,406,782 30 130 151 0 13.98346026 94.272 82.1617 2.48988 

E8036 17,775,628 2,289,208,833 30 128 151 0 15.35558051 96.213 76.4024 2.1513 

E8063 23,354,646 2,885,458,056 30 123 251 1 19.03492102 79.793 69.0365 2.01307 
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Table B1 continued 

E8064 18,753,610 2,380,572,322 30 126 251 0 16.74568544 84.285 66.2246 1.78377 

E8065 22,153,744 2,828,033,476 30 127 251 0 16.21585754 83.147 69.8572 2.06117 

E8066 15,503,686 1,875,468,084 30 120 251 1 20.94536433 94.478 57.35 1.52586 

E8429 32,323,714 4,342,013,603 30 134 151 0 11.46613643 44.596 21.3903 0.617508 

E8430 19,245,050 2,505,088,373 30 130 251 0 14.51041762 76.161 62.0729 1.59527 

E8431 15,180,192 2,039,074,782 30 134 251 0 11.65678354 67.267 50.8396 1.13806 

E8434 18,990,972 2,583,733,637 30 135 151 0 10.43850378 39.695 10.6877 0.29867 

E8436 14,149,156 2,114,118,056 30 149 251 0 1.121292552 18.401 6.20641 0.110517 

E8438 21,916,948 2,842,528,190 30 129 151 0 14.80478683 92.805 82.7523 2.5479 

E8440 17,872,270 2,282,899,619 30 127 251 1 16.58721341 48.525 21.1236 0.519821 

E8441 14,925,446 2,040,757,229 30 136 251 0 9.918530559 39.504 5.12778 0.170257 

E8442 22,680,876 2,945,703,537 30 129 251 0 14.76058099 52.957 31.5934 0.803266 

E8444 17,829,658 2,366,276,178 30 132 251 0 12.75230469 85.652 69.0892 1.78475 

E8445 15,107,500 1,853,800,182 30 122 251 1 19.66198845 85.174 51.9213 1.31947 

E8447 15,574,392 2,007,149,772 30 128 251 0 15.31504714 89.384 62.7057 1.57462 

E8448 19,254,870 2,529,861,729 30 131 251 0 13.67618165 38.060 8.75886 0.263198 

E8450 14,767,776 1,898,582,498 30 128 251 0 15.64508845 63.352 36.7484 0.81188 

E8740 59,409,300 7,588,382,444 30 127 151 0 15.99661505 97.302 82.1234 7.2751 
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Table B1 continued 

E8451 29,702,054 4,115,007,059 30 138 251 0 8.657388114 97.563 98.0159 3.91939 

E8452 16,023,926 2,077,335,982 30 129 151 0 14.6884511 97.381 93.023 1.98967 

E8453 49,140,128 6,601,298,792 30 134 251 0 11.53922044 97.796 74.7906 6.20812 

E8454 17,572,070 2,311,277,780 30 131 151 0 13.38441737 97.365 97.3018 2.2415 

E8455 19,539,982 2,562,345,697 30 131 151 0 13.65431739 96.875 79.94 2.44945 

E8741 46,867,732 5,925,996,446 30 126 151 0 16.94725225 97.583 95.3667 5.55919 

E8748 18,800,044 2,227,006,429 30 118 151 1 22.55251279 96.226 66.5808 2.00603 

 

 

Table B2 Test for significant differences in mean individual inbreeding coefficients (F) using Wilcoxon rank sum test with continuity 

correction 

Population Comparison Test Statistic (W) p-value 

AZ- TX 149 <0.0003 

TX-NM 82 0.039 

AZ-NM 149 0.446 
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Table B3 Test for significant differences in mean whole-genomic nucleotide diversity estimates 

(w) using Wilcoxon rank sum test with continuity correction 

Population Comparison Test Statistic (W) p-value 

AZ- TX 185570578  < 2.2e-16 

TX-NM 99585686 < 2.2e-16 

AZ-NM 174571874 < 2.2e-16 
 

 

Table B4 Test for significant differences in mean individual genome-wide heterozygosity using 

Wilcoxon rank sum test with continuity correction 

Population Comparison Test Statistic (W) p-value 

AZ- TX 42 0.02622 

TX-NM 8 0.03788 

AZ-NM 33  0.3176 
 

 

Table B5 Genes annotated within highly differentiated outlier regions with Z(FST) > 5SD and 

their chromosomal location in the chicken genome  

Gene title Gene name Chr Position (bp) Functional description 

ANKRD26 Ankyrin repeat domain 26 1 24435899 - 24484038 Interacts with proteins or protein 

complexes 

NELL1 Neural EGFL like 1 5 2461252 - 2747574 Involved in cell growth 

regulation and differentiation 

CHUK Component of inhibitor of 

nuclear factor kappa B kinase 

complex 

6 9980703 -10003570 Has a role in NF-kappa-B 

signaling pathway which is 

activated in response to cellular 

stresses 

CPS1 Carbamoyl-phosphate 

synthase 1 

7 2842238 - 2944989 Involved in amino acid and 

nitrogen metabolism 

KLHL25 Kelch like family member 25 10 14396164 - 14410877 Related role in innate immune 

system for antigen processing 

and presentation 

AKAP13 A-Kinase Anchoring Protein 

13 

10 14421126 -14487012 Functions as scaffolding proteins 

to coordinate a Rho signaling 

pathway 

HYDIN Axonemal central pair 

apparatus protein 

11 1545049 - 1649225 Required for ciliary motility and 

neural cell development 

VAC14 Component of PIKFYVE 

Complex 

11 1649800 - 1700757 Encodes a scaffold protein for 

components of cellular 

membranes 

NCOR2 Nuclear receptor corepressor 2 15 4857712 - 5022472 Mediates transcriptional 

silencing of certain target genes 
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Table B5 continued 

ARID1A AT-rich interaction domain 

1A 

23 142792 - 202595 Involved in transcriptional 

activation and repression of 

select genes 

VPS45 Vacuolar protein sorting 45 

homolog 

25 83517 - 105457 Involved in vesicle transport to 

vacuoles suggesting a role in 

protein trafficking 

ASIC2 Acid sensing ion channel 

subunit 2 

27 4186435 - 4599845 Encodes sodium channels that 

play a role in neurotransmission 

ACLY ATP citrate lyase 27 7520780 - 7549243 Primary enzyme responsible for 

fatty acid synthesis and 

carbohydrate metabolism 

TTC25 Tetratricopeptide repeat 

domain 25 

27 7545735 - 7553230 Localizes to ciliary axonmenes 

and required for cell signaling 

and cell motility 

CNP 2',3'-cyclic nucleotide 3' 

phosphodiesterase 

27 7553422 - 7558601 Expressed exclusively 

by oligodendrocytes in the 

Central Nervous System  

DNAJC7 DnaJ heat shock protein 

family (Hsp40) member C7 

27 7558532 - 7577845 Involved in cellular response to 

heat stress 

 

 

Table B6 Test for significant differences in mean genic nucleotide diversity estimates (w) using 

Welch Two Sample t-test 

Population Comparison Test Statistic (t) Degree of Freedom (df) p-value 

AZ- TX 293.8 605670000 < 2.2e-16 

TX-NM -124.58 614770000 < 2.2e-16 

AZ-NM 168.5 615040000 < 2.2e-16 

 

 

Table B7 Test for significant differences in mean individual genic heterozygosity using 

Wilcoxon rank sum test with continuity correction 

Population Comparison Test Statistic (W) p-value 

AZ- TX 42  0.02622 

TX-NM 9 0.05303 

AZ-NM 32  0.3829 
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Table B8 Test for significant differences in mean proportion of different impact deleterious 

mutations (potential load) and non-coding variants using chi-square test with Yates’ continuity 

correction 

Variant Impact Population 

Comparison 

Test Statistic 

() 

Degree of Freedom 

(df) 

p-value 

High Impact 

(Most deleterious) 

AZ- TX 34.616 1 4.016e-09 

TX-NM 9.6379e-28 1 1 

AZ-NM 42.753 1 6.209e-11 

Moderate Impact 

(Mildly deleterious) 

AZ- TX 95.165 1 < 2.2e-16 

TX-NM 21.274 1 3.981e-06 

AZ-NM 29.46 1 5.709e-08 

Low Impact 

(Least deleterious) 

AZ- TX 49.539 1 1.944e-12 

TX-NM 0.66378 1 0.4152 

AZ-NM 46.714 1 8.215e-12 

Non-coding 

(Non-deleterious) 

AZ- TX 214.56 1 2.2e-16 

TX-NM 18.76 1 1.483e-05 

AZ-NM 124.38 1 2.2e-16 

 

Table B9 Test for significant differences in mean deleterious allele frequency per individual 

(realized load) of different impact deleterious mutations and non-coding variants using Welch 

Two Sample t-test 

Variant Impact Population 

Comparison 

Test Statistic 

(t) 

Degree of Freedom 

(df) 

p-value 

High Impact 

(Most deleterious) 

AZ- TX -2.3947 6.6428 0.06971 

TX-NM 0.96428 11.982 0.354 

AZ-NM -1.0027 6.5956 0.3513 

Moderate Impact 

(Mildly deleterious) 

AZ- TX -2.5349 6.7177 0.04031 

TX-NM 0.9555 11.979 0.3582 

AZ-NM -1.1473 6.6602 0.2908 

Low Impact 

(Least deleterious) 

AZ- TX -2.7997 6.8769 0.02702 

TX-NM 0.95632 11.943 0.3579 

AZ-NM -1.3562 6.7647 0.2186 

Non-coding 

(Non-deleterious) 

AZ- TX -2.5581 6.7285 0.03894 

TX-NM 0.95632 11.943 0.3579 

AZ-NM -1.3562 6.7647 0.2186 
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Table B10 Test for significant differences in mean observed heterozygosity per individual of 

different impact deleterious mutations and non-coding variants using Welch Two Sample t-test 

Variant Impact Population 

Comparison 

Test Statistic 

(t) 

Degree of Freedom 

(df) 

p-value 

High Impact 

(Most deleterious) 

AZ- TX 1.3477 10.321 0.2066 

TX-NM -1.0673 8.7382 0.3145 

AZ-NM 0.01867 11.153 0.9854 

Moderate Impact 

(Mildly deleterious) 

AZ- TX 3.2757 11.728 0.006823 

TX-NM -1.3719 7.5206 0.2096 

AZ-NM 0.087255 7.1271 0.9329 

Low Impact 

(Least deleterious) 

AZ- TX 5.0392 11.134 0.0003646 

TX-NM -1.5721 6.9705 0.1601 

AZ-NM 0.15961 6.5498 0.878 

Non-coding 

(Non-deleterious) 

AZ- TX 3.6726 9.3357 0.004825 

TX-NM -1.518 8.2024 0.1666 

AZ-NM 0.16772 6.6905 0.8718 

 

 

Figure B1 Individual depth of coverage (X) and breadth of coverage (%). Depth of coverage is 

calculated as the mean base coverage covered by the reads and breadth is calculated as the 

percentage of draft Montezuma quail covered by the reads. 
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Figure B2 Mitogenome diversity statistics for each population. (A) Per-site nucleotide (), (B) Within population genetic distances 

calculated using Kimura-2P parameter (K-2P), and (C) Haplotype diversity in Montezuma quail populations in Arizona, Texas, New 

Mexico.  and Kimura 2-P pairwise distances were smaller in the Texas and New Mexico mitogenomes (p=0.034 and p=0.041 

respectively) as compared to Arizona but no significant difference in haplotype diversity between Texas and Arizona mitogenomes 

(Hd ; p = 0.7) but significantly smaller in New Mexico (p=0.02).   
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Figure B3 Delta K values (for each K = 1-10) indicate the best estimated number of ancestral populations is K = 4 based on Evanno et 

al. (2005).  At K=4, the Arizona, Texas, and New Mexico populations form independent clusters with Arizona populations being split 

into two subpopulations. 
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Figure B4 (A) Pairwise Relatedness comparisons, (B) Inbreeding coefficient estimation, (C) PCA, and (D) Admixture, estimates 

using equal subsamples (N=21; AZ=7, TX=7, NM=7). These results are similar to what was estimated using population dataset 

(N=74; AZ=52, TX=15, NM=7) indicating that the results shown in the main text are biologically relevant and not due to our 

sampling scheme. 
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Figure B5 Distribution of Watterson’s theta (W) across the whole genome. W was calculated for every window (100kb size, 50kb 

step 
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Figure B6 Z-transformed FST estimates for comparisons made between (A) Texas and New Mexico Montezuma quail, and (B) 

Arizona and New Mexico Montezuma quail populations for every 100 kb window (50 kb steps). The reads were mapped to the 

chicken genome and the windows were arranged according to chicken autosomal (1-33) or sex (Z, W) chromosomes.  Scaffolds that 

were not part of the major chicken chromosomes were binned together as unplaced. This figure shows a heterogeneous landscape of 

genetic differentiation and drift is the primary evolutionary driver behind the observed patterns. 

 

 



 

 

 

1
1
6
 

Figure B7 Pairwise FST for each polymorphic site in the genes associated with outlier windows in Arizona and Texas populations and 

DXY for the SNPs that were segregating in all three populations. The functional description of each gene is listed in Table S5 
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Figure B7 continued 
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Figure B7 continued 
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Figure B8 Schematic of eukaryotic gene structure and proportion of variants in different genic regions where the colors in each panel 

correspond to one another. Much of the genic variation exists outside the transcription unit 
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Figure B9 Mean observed heterozygosity per individual for different impact class variants 
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Figure B10 Within population comparisons for R0 statistics from kinship analysis. This statistic is estimated from genome-wide 

pattern of two individuals sharing identity by state. R0 is the ratio of alternate homozygous genotype likelihoods to shared 

heterozygotes observed at each polymorphic site between a comparison of two individuals.  A mean higher than 1 indicates that the 

two individuals have more alternate homozygote alleles observed across the genome than shared heterozygote genotypes. Inbreeding 

between individuals elevates the number of alternate homozygous genotypes and reduces number of shared heterozygous genotypes 

and was found to be in case of Texas comparisons. Error bars indicate 95% CI around mean. 
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Figure B11 Root mean square error (RMSE) minimization for inbreeding estimation. One issue with iterative algorithms is the 

stopping criteria. Since we had low coverage WGS data, we used low thresholds (1e-9) and high number of iterations (5000) as 

stopping criteria of maximization (EM) algorithm for estimating population allele frequencies as well as per-site and per-individual 

estimates of inbreeding co-efficient. This ensured that the estimation did not stop at the local minima and the estimates were 

quantified only after the RMSE values were at their global minimum 
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Figure B12 Folded site-frequency spectrum (SFS) of different Montezuma quail populations. We only used the genomic dataset (N=7 

for each population) to avoid biases SFS due to uneven sample sizes and heavy data pruning. We used ANGSD to generate a folded 

SFS by using the Montezuma Quail reference and bootstrapped it 100 times. Barplot shows the mean and error bars represent 1 

standard deviation (SD) from the mean. The figure represents the proportion of polymorphic sites within the population based on 

sampling k-derived alleles. Lower allele count represent rarer mutations vs higher alleles counts represent most common mutations. 

Arizona (AZ) population has higher proportions of rarer mutations as compared to Texas (TX) or New Mexico (NM) populations, 

which is expected in larger increasing populations. Whereas, TX population has been declining which removed rarer mutations while 

maintaining intermediate mutations within the genome.  
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APPENDIX C: SUPPLEMENTARY INFORMATION FOR CHAPTER 3 

Table C1 Whole genome sequence reads, coverage and variant statistics for the best 66 Montezuma Quail samples analyzed 

Sample 

ID 
Population 

Total 

Reads 
Total bases (Bp) 

Depth of 

Coverage 

Total 

SNPs 

SNPs 

identified 

SNP 

Depth 

Missing 

SNPs 

% SNPs 

missing 

E6536 Arizona 185178890 27776833500 22.58279146 12943838 12845978 16.6863 97860 0.75603542 

E6609 Arizona 137110856 20566628400 16.7208361 12943838 12628497 12.7162 315341 2.43622487 

E6628 Arizona 121802426 18270363900 14.85395439 12943838 12323312 11.0769 620526 4.79398769 

E6846 Arizona 98301236 14745185400 11.98795561 12943838 10482670 7.57255 2461168 19.0142058 

E6877 Arizona 114686320 17202948000 13.98613659 12943838 12309848 10.7935 633990 4.8980063 

E7031 Arizona 111478372 16721755800 13.59492341 12943838 12116579 10.1661 827259 6.39114148 

E7125 Arizona 146619834 21992975100 17.88046756 12943838 12697514 13.3485 246324 1.90302135 

E7146 Arizona 161807926 24271188900 19.7326739 12943838 12813019 15.224 130819 1.01066623 

E7208 Arizona 94077838 14111675700 11.47290707 12943838 10354240 7.7236 2589598 20.0064154 

E7220 Arizona 102158574 15323786100 12.45836268 12943838 11679634 9.21478 1264204 9.76684041 

E7563 Arizona 111106904 16666035600 13.54962244 12943838 11867314 9.66863 1076524 8.31688407 

E7746 Arizona 141991628 21298744200 17.3160522 12943838 12054369 10.3234 889469 6.87175628 

E7747 Arizona 137730300 20659545000 16.79637805 12943838 12359471 11.773 584367 4.51463469 

E7751 Arizona 92480368 13872055200 11.27809366 12943838 11020768 8.09017 1923070 14.8570308 

E7752 Arizona 117732082 17659812300 14.35757098 12943838 12421911 11.2764 521927 4.03224299 

E7927 Arizona 98151402 14722710300 11.96968317 12943838 11211484 8.37311 1732354 13.3836193 

E7932 Arizona 130151520 19522728000 15.87213659 12943838 12268329 10.7613 675509 5.21876896 

E7934 Arizona 128517028 19277554200 15.67280829 12943838 12540699 12.131 403139 3.11452446 

E7946 Arizona 155434834 23315225100 18.95546756 12943838 12748027 14.6051 195811 1.51277388 

E7969 Arizona 92190924 13828638600 11.24279561 12943838 -6389739 8.0305 19333577 149.365103 

E8013 Arizona 131934000 19790100000 16.0895122 12943838 12561977 12.1835 381861 2.95013736 

E8017 Arizona 130276824 19541523600 15.88741756 12943838 12535277 11.8789 408561 3.15641311 
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Table C1 continued 

E8024 Arizona 134157622 20123643300 16.36068561 12943838 12660971 12.7602 282867 2.18534101 

E8025 Arizona 132408576 19861286400 16.14738732 12943838 12657681 12.9121 286157 2.21075851 

E8030 Arizona 97433292 14614993800 11.88210878 12943838 11439808 8.92644 1504030 11.6196603 

E8031 Arizona 100730906 15109635900 12.28425683 12943838 11635546 9.16484 1308292 10.1074504 

E8032 Arizona 117371682 17605752300 14.31361976 12943838 12352714 10.8434 591124 4.56683713 

E8142 Arizona 109406486 16410972900 13.34225439 12943838 11470804 9.14819 1473034 11.380195 

E8946 Mexico 122213486 18332022900 14.90408366 12943838 12577002 12.0374 366836 2.83405896 

E8947 Mexico 98253366 14738004900 11.9821178 12943838 12062335 9.75707 881503 6.81021348 

E8948 Mexico 89454674 13418201100 10.90910659 12943838 11829242 9.16661 1114596 8.6110163 

E8949 Mexico 102656188 15398428200 12.51904732 12943838 12164445 10.0568 779393 6.0213439 

E8954 Texas (West) 114815894 17222384100 14.00193829 12943838 12444986 11.3858 498852 3.85397283 

E9030 Texas (West) 79914678 11987201700 9.745692439 12943838 11122809 7.90628 1821029 14.0686943 

E9031 Texas (West) 102525124 15378768600 12.5030639 12943838 12196577 10.1749 747261 5.77310223 

E9032 Texas (West) 101415580 15212337000 12.36775366 12943838 12145689 9.98901 798149 6.16624683 

E9033 Texas (West) 85527246 12829086900 10.43015195 12943838 11581056 8.89278 1362782 10.5284229 

E9034 Texas (West) 95445534 14316830100 11.63969927 12943838 12020281 9.79772 923557 7.13510939 

E9035 Texas (West) 83440134 12516020100 10.1756261 12943838 11422301 8.54267 1521537 11.7549138 

E9036 Texas (West) 92236562 13835484300 11.24836122 12943838 11942350 9.59604 1001488 7.73717965 

E9037 Texas (West) 102644342 15396651300 12.51760268 12943838 12163444 10.1572 780394 6.02907731 

E9038 Texas (West) 87940724 13191108600 10.72447854 12943838 11723980 9.0032 1219858 9.42423723 

E9039 Texas (West) 97522896 14628434400 11.8930361 12943838 12064246 9.79062 879592 6.7954497 

E9040 Texas (West) 94882882 14232432300 11.57108317 12943838 11957626 9.5253 986212 7.61916211 

E9041 Texas (West) 96182136 14427320400 11.72952878 12943838 12059319 9.87183 884519 6.83351414 

E9042 Texas (West) 92566188 13884928200 11.28855951 12943838 11851473 9.2479 1092365 8.43926662 

E9043 Texas (West) 107428744 16114311600 13.10106634 12943838 12359806 10.9296 584032 4.51204658 

E9044 Texas (West) 89193526 13379028900 10.87725927 12943838 11771509 9.24577 1172329 9.05704321 

E9045 Texas (West) 114293712 17144056800 13.93825756 12943838 12379545 10.9222 564293 4.35954931 
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Table C1 continued 

E9046 Texas (West) 84839202 12725880300 10.34624415 12943838 11431827 8.46697 1512011 11.6813189 

E9047 Texas (West) 87207620 13081143000 10.63507561 12943838 11438643 8.3426 1505195 11.6286607 

E9048 Texas (West) 91966144 13794921600 11.21538341 12943838 11940178 9.45948 1003660 7.75395984 

E9049 Texas (West) 110136570 16520485500 13.43128902 12943838 12367914 10.8713 575924 4.44940674 

E9050 Texas (West) 92697098 13904564700 11.30452415 12943838 11875774 9.26797 1068064 8.25152478 

E9051 Texas (West) 114499720 17174958000 13.96338049 12943838 12516441 11.7593 427397 3.30193409 

E9052 Texas (West) 105227944 15784191600 12.8326761 12943838 12342975 10.8717 600863 4.64207757 

E9053 Texas (West) 94642240 14196336000 11.54173659 12943838 11902521 9.39218 1041317 8.04488591 

E9054 Texas (West) 84248368 12637255200 10.27419122 12943838 11370250 8.25921 1573588 12.1570434 

E9055 Texas (West) 77469266 11620389900 9.447471463 12943838 10783375 7.3467 2160463 16.6910541 

E9056 Texas (West) 84581900 12687285000 10.31486585 12943838 11379794 8.25995 1564044 12.0833095 

E9057 Texas (West) 96119376 14417906400 11.72187512 12943838 11944440 9.46599 999398 7.72103297 

E9058 Texas (West) 89158566 13373784900 10.87299585 12943838 11754101 9.04613 1189737 9.19153191 

E9059 Texas (West) 106671248 16000687200 13.00868878 12943838 12221768 10.6294 722070 5.57848453 

E9067 Texas (East) 135368044 20305206600 16.50829805 12943838 12699622 13.2156 244216 1.8867356 

E9569 Texas (East) 114965880 17244882000 14.02022927 12943838 12579503 12.3918 364335 2.81473702 

E9570 Texas (East) 84839998 12725999700 10.34634122 12943838 11747324 9.03245 1196514 9.24388887 
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Table C2 Maximum likelihood parameters inferred from the demographic model (Fig. 2B) for 

the two populations: Arizona (AZ) and Texas (TX). The composite likelihood Akaike 

information criterion (CLAIC) for goodness-of-fit estimations and confidence intervals (CI) for 

estimated parameters were inferred from 100 bootstrapped SFS. 

No. of parameters 8 

Log Likelihood -2569.41 

CLAIC (= 10−4) 454475 

Population size (95% CI)  

NA_0 117,735 (100,691 – 136,727) 

NA_1 1,199,304 (989,482 – 1,341,419) 

AZ_0 951,272 (741,844 – 987,410) 

TX_0 248,032 (247,638 – 354,009) 

AZ_1 35,523 (34,983 – 42,123) 

TX_1 27,325 (26,145 – 32,832) 

Migration rate per generation (95% CI)  

m_AZ-TX 3.99 x10-4 (3.43 x10-4 – 4.53x10-4) 

m_TX-AZ 3.84 x10-5 (2.67 x10-5 – 4.93x10-4) 

T_NA (years) 87,301 (84,435 – 96,134) 

T_AZ-TX (years) 16,539 (15,145 – 26,187) 

 

NA_0: size of ancestral population pre-expansion; NA_1: size of ancestral population after growth; 

AZ_0: size of Arizona population after divergence from ancestral population; TX_0: size of Texas 

population after divergence from ancestral population; AZ_1: current size of Arizona population; 

TX_1: current size of Texas population; m_AZ-TX: migration rate from Arizona to Texas 

population; m_TX-AZ: migration rate from Texas to Arizona population; T_NA: time of ancestral 

population size growth; T_AZ−TX: time of divergence. 
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Table C3 Results from annotations of variants   

Consequence type AZ WTX 

splice_donor_variant 1,876 1,768 

splice_acceptor_variant 2,125 2,011 

stop_gained 6,161 5,541 

stop_lost 3,514 3,229 

start_lost 2,968 2,660 

missense_variant 219,144 199,020 

splice_region_variant 40,144 36,476 

stop_retained_variant 571 526 

synonymous_variant 200,014 177,245 

coding_sequence_variant 12 15 

mature_miRNA_variant 548 522 

5_prime_UTR_variant 439,142 403,741 

3_prime_UTR_variant 424,037 390,316 

non_coding_transcript_exon_variant 212,927 194,770 

intron_variant 1,556,751 1,438,833 

upstream_gene_variant 658,555 606,129 

downstream_gene_variant 318,601 294,344 

intergenic_variant 7,168,265 6,602,812 

TOTAL 11,255,355 10,359,958 

 

Figure S1 Distribution of nucleotide diversity (π) across the whole genome. π was calculated 

for every non-overlapping 1kb windows 
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Figure C2 Sliding window analysis of heterozygosity across non-overlapping 1kb windows along each chicken chromosome for 

Arizona (Pink) and West Texas (purple) populations. In each figure, X-axis represents the genomic coordinates along the chromosome 

and Y-axis represent heterozygosity/kb. Heterozygosity was estimated as proportion of heterozygotes per 1kb of genome. 
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Figure C2 continued 
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Figure C3 Average length of runs of homozygosity (ROHs) regions identified in each 

population. AZ=Arizona; WTX=West Texas; CTX= Central Texas; MX= Mexico. The lack of 

statistical significance is due to small sample sizes for CTX (N=3) and MX (N=4) populations. 

Figure C4 Violin plots showing the distribution of homozygous SNPs identified in ROHs within 

each population. Average length of runs of homozygosity (ROHs) regions identified in each 

population. AZ=Arizona; WTX=West Texas; CTX= Central Texas  
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Figure C5 Violin plots showing the genome wide distribution of all ROHs (> 100kb) in each 

population. For all populations, most of the ROHs were between 100-200kb in size. 

 

Figure C6: 6 individuals that carry ROHs longer than 500kb all belonged to Texas populations 

(WTX=5, CTX=1).  
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Figure C7 Co-ancestry heat map for the Montezuma Quail populations. Genealogical 

relationship based on pairwise analysis of identical by descent (IBD) segments in chicken 

chromosome 1 show that Texas population are genetically distinct with WTX (purple) and CTX 

(orange) more closely related than AZ (pink) or MX (light pink) populations. Co-ancestry matrix 

can be visualized as all individuals as recipients (rows) whose chromosome made up of genomic 

segments contributed by all donor individuals (columns). The heatmap shows the number of IBD 

chunks shared between a pair of individuals. We see that both AZ and MX samples share higher 

within population co-ancestry whereas CTX samples are more related to each other than rest of 

WTX samples. Highest co-ancestry was shared by a few pair of WTX samples with a pair 

identified as parent offspring (black square, Fig. S37). See methods for additional details. We 

saw similar co-ancestry patterns for all chromosomes (Fig. S7-33) and show that AZ samples 

have relatively higher co-ancestry with TX population (upper left diagonal) where TX samples 

share minimum co-ancestry with AZ samples (bottom right diagonal).  
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Figure C8 Principal Component Analysis (PCA) of Montezuma Quail individuals clearly 

demarcates the Arizona (dark pink), Texas (purple + orange), and Mexico populations (light 

pink). Central Texas individuals (orange) cluster with Western Texas populations (purple). The 

four WTX individuals in the bottom right corner belong to the same familial group (Fig. C11)   
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Figure C9 Admixture analysis using genotype likelihoods of all 98 Montezuma Quail 

individuals. Each column represents a single individual and Y-axis represent the admixture 

proportions for each number of ancestral populations (K). The most likely value for the number 

of ancestral populations based on K=2. 
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Figure C10 Relatedness analysis for each pair of Montezuma Quail individuals (N=98; number 

of pairwise comparisons = 4,753) using genotype likelihoods. All CTX and MX and most AZ 

individuals were unrelated whereas most of the WTX samples were either 2nd degree relatives or 

1st degree relatives.  

 

Figure C11 Classifying the 8 pair of WTX individuals that were identified as 1st degree as either 

parent-offspring or full sibling pairs based on R1-KING and R0-R1 relationships. 
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Figure C12 Number of SNPs identified as deleterious, weakly deleterious, and synonymous 

(upper panel) and their frequency (lower panel) within Arizona (AZ) or West Texas (WTX) 

populations. Since AZ is genetically more diverse, they carry more mutations of each impact 

type but since WTX populations are small in size, they carry those mutations at higher 

frequencies. Highest mean frequency for synonymous mutations and lowest mean frequency for 

deleterious mutations indicate the stronger impact of drift acting on neutral and nearly-neutral 

mutations. 
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Figure C13 (A) The proportion of deleterious mutations that rose in the last 100kya that currently segregating in the two populations. 

Much of the contemporary load originated in the large pre-bottleneck ancestral population (>50kya) with a smaller proportion of 

deleterious mutations in the age range corresponding to bottlenecks in Montezuma Quail populations (10-25 kya). The smaller WTX 

population has higher proportion of deleterious mutations that arose in the last 5000 years. The age distribution of (B) deleterious 

mutations and (C) weakly deleterious mutations that are currently segregating in AZ and WTX populations 
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Figure C14 Proportion of contemporary mutations of each impact class that are either shared 

(upper panel) or privately segregating (lower panel) in Arizona (AZ) and West Texas (WTX) 

populations. 
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Figure C15 (A) Small WTX population carry significantly lower number of deleterious, weakly deleterious, and synonymous 

mutations that are shared with larger AZ population. (B) Mutations that are shared between the two populations segregate at 

comparable frequencies. (C) Even though both populations have similar number and frequency of shared mutations, they are 

significantly more homozygous in the small populations and increase the realized load of ancestral mutations. (D) Larger AZ 

population carry significantly higher number of mutations that are privately segregating than WTX populations. (E) The mean 

allele frequencies of private mutations are significantly higher in smaller populations and (F) increase the realized load of private 

mutations. These results show that small populations purge ancestral load but accumulate load of deleterious mutations that arise 

post-bottleneck. 
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