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ABSTRACT

Li, Yuerong MS, Purdue University, Dec 2020. Integration of Active Control and
Passive Compliance for Peg-and-Hole Assembly. Major Professor: Bin Yao, School
of Mechanical Engineering.

This thesis provides a brief intro to the peg-and-hole problem and goes through

two active and passive compliance strategies as well as the cases that the compliance

center position is not ideal. A specific scenario of peg being gripped at an error angle

due to large vision uncertainties is raised and studied. Such setup can lead to an

off compliance center position relative to the peg and can happen in real life but

has not been solved by previous approaches. A potential solution to it by combining

active control and passive compliance is provided and analyzed. By using the force

and torque feedback and the robot joint angle information, the compliance center

for the above scenario could be estimated without vision feedback to by-pass the

potential accuracy limitation of vision sensors. And a position control with reference

determined in real-time by these sensors would be able to cancel out the majority

of the effect caused by an off compliance center. Additional recommendations to

future work on integration of active and passive compliance strategies and utilization

of arbitrary compliance center positions are provided as well.
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1. INTRODUCTION

This chapter will first talk about why the peg-and-hole problem is worth studying

and discuss how some other researchers have approached the problem. It then com-

pares the pros and cons of commonly used passive compliance and active compliance

assembly strategies. After that, the purpose and motivation behind this thesis are

explained. Lastly, an assumption to simplify the analysis is brought out, but the

resulting problem is still difficult to solve. Chapter 2 will go over some traditional

peg-and-hole problem analyses. The peg-and-hole problem with off compliance center

as well as the potential solution to it are discussed in chapter 3. Quantitative analysis

and simulation results are presented in chapter 4. Finally, chapter 5 concludes the

thesis and chapter 6 gives recommendations for future work.

1.1 Peg-and-hole Problem

Peg-and-hole assembly problems have been widely studied over the last 70 years

as they represent tasks that are commonly required in industry and daily life and yet

difficult to perform by industrial robots. The non-linearity of reaction forces during

different contact states based on the geometry and orientation and position freedom of

the peg and the hole made the problem require certain devices and control strategies

to avoid jamming. In the meantime, with the rapid advancement in robotics, more

and more repetitive assembly tasks in industrial factories have been done by robotic

arms, including from putting tiny capacitors on electronics boards to mounting vehicle

bodies to chassis. Nowadays even more complicated real life services provided by

robots contain assembly problems, such as plugging in charging cables.

Most commonly seen strategies for a peg-and-hole problem can be divided into the

group focusing on using a passive compliance device and the one focusing on using
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active controls. The Remote Compliance Center [1], introduced by Whitney and his

colleagues in reference [2] around 1980s, is a passive compliance device that places the

compliance center near the end of the peg to help avoid jamming. Later on there are

also papers about designing and analyzing practical passive compliance devices based

on material deformation such as reference [3] and square peg-and-hole problem using a

passive compliance device [4]. On the other hand, more research has been done around

active compliance force control due to the fast progress of chip calculation ability,

sensor accuracy and machine learning models. The active control can be further

divided into model based and model free [5]. Model free assembly utilizes a general

force control strategy throughout the process, which is commonly seen in early works

[6], multi-peg problems when contact states are complicated [7], and new learning

approaches like reference [8]. And model based strategies consist of categorization

into contact states from sensor information and active control algorithms in each

specific state [9] [10]. There are also many additional papers related to the peg-and-

hole problem that did not focus on the inserting phase, but on other aspects such

as how to locate the hole by active searching using various approaches [11] or by

analyzing force and torque sensor results [12].

1.2 Active versus Passive Compliance

Although there is already so much research in this area, how active control and

passive compliance device approaches can be combined is less studied. Reference

[13] provides a detailed comparison between the two. The pros and cons can be

summarized as follows.

The biggest advantage of passive compliance devices is that they can overcome

the lack of accuracy and dexterity of the actuators. So the cost is usually lower due to

the lower requirement of the control unit. Also the response speed and reliability of a

working passive compliance device is usually much better. However, general passive
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compliance devices require specific design for each case and cannot adjust when the

initial error is really large.

Active compliance, on the other hand, can have dynamic compliance configuration

and move the compliance center easily. So simply changing some parameter values

might allow active compliance to be used on a whole different setup. And active

compliance can deal with large errors when paying additional attention to those cases.

But active compliance also suffers from singularity, dexterity and accuracy limits of

the robot arms and response speed limits of the control loop.

1.3 Arbitrary Compliance Center

It is also noticed that for most compliance strategy analysis, the compliance center

is assumed to be sitting on the middle line of the peg. However, if the peg is picked up

by a robot arm instead of mounted on it, especially when vision is used to locate the

item in a complicated environment, uncertainties can lead to the actual compliance

center relative to the peg not at the ideal position. And to utilize the advantages

from both active and passive compliance, it would be expected that the same passive

compliance device needs to be used on various peg-and-hole assemblies. Since the

compliance center from passive devices needs to be designed beforehand, even with

the Variable Remote Compliance Center [14], the pegs would probably encounter

cases in which the compliance center is not at the tip of the peg as planned. And no

matter how the peg is connected to the robot, in the real world, compliance exists.

Therefore, studying the effect that an arbitrary compliance center has on the peg-

and-hole assembly problem is meaningful. Also it would be shown later how potential

integration of active control and passive compliance strategy could be used to have

an arbitrary compliance center case behave as if the compliance center is ideal.
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1.4 Simplified 2-D Peg-and-hole Problem

Peg-and-hole problem is about robots mating two parts together. The part being

inserted, the peg, is usually a small long object while the other part, the hole, is a

bigger piece containing a concave space that has a similar cross section shape as the

peg. Sometimes a chamfer, a tilted surface around the hole entrance, is present to

help guide the peg into the hole. Some unusual shape peg-and-hole problems [15],

multi-pin peg-and-hole problems [16] and chamferless peg-and-hole problems [17] also

see a lot of research. But the simplest case would be a perfect cylinder shape peg and

a straight round hole with chamfer. Due to the symmetric property of this design,

the problem can then be simplified to be set in a 2-D scenario. Thus the degrees of

freedom would be smaller, the contact cases would be fewer and the equations would

be more straightforward to analyze to reach certain conclusions. And just like many

other papers, this thesis assumes only two degrees of translation and one degree of

rotation freedom in 2-D.

(a) Approach (b) Chamfer Crossing (c) One Point Contact

(d) Two Point Contact (e) One Point Contact (f) Surface Contact

Figure 1.1. : The Contact States for Peg-and-hole Problems in 2-D
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A full peg-and-hole assembly process usually includes the following four steps:

approach, hole location, one point contact and two point contact, which are catego-

rized depending on the contact states. As shown in Figure 1.1, there are also two

more contact states that can happen during the process: the other side one point

contact and surface contact. There is also one additional possibility, that is when

the peg is not touching the hole once already inside. But after it moves, it might

jump to any other cases. In the following chapters, the different relationship between

force and torque response and kinematics in each state would be derived in detail.

Many assembly strategies utilize some technique by approaching from one side and

maintaining contact with the edge of hole throughout the operation. Such a guided

movement can reduce the possibility of losing track of contact states. So the forces

and reactions can be easily analyzed within the same case.
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2. BACKGROUND

This chapter will follow the analysis done by Simunovic [18] and Whitney [2] to

provide some background knowledge about the peg-and-hole problem that is crucial

to the problem this thesis is trying to solve, including the geometry and force analysis

for each contact state, prediction of the position and rotation behavior during the peg-

and-hole assembly, and why a passive compliance device like RCC would work. The

major difference is that in this thesis an arbitrary compliance center position is used

instead of a compliance center assumed to be on the center axis of the peg. Also

similar to the work from Yamshita [6], how a simple active compliance approach can

avoid jamming is discussed at the end.

2.1 Coordinates and Initial Error

To start the analysis, suppose a coordinate system CP attached to the peg and

another coordinate system CH attached to the hole in Figure 2.1. The origin OP is at

the center of the end of the peg and the origin OH is at the center of the top surface

of the hole. Here, the x− z plane of the CP and the x− z plane of CH are co-aligned

with the only rotational freedom allowed. Thus, in this case, the rotational error θy

is defined as the angle from zH to zP . The radius of the peg is noted as r and the

radius of the hole is noted as R.

When the peg is mounted on the robot arm, the force torque and position rotation

relationship between these two can be represented by a compliance matrix. And such

a matrix can be transformed to be a diagonal matrix or close to be a diagonal matrix,

which is when the other terms are much smaller compared to diagonal terms, at a

specific point, compliance center. In other words, force and torques passing through

the compliance center will only result in translation or rotation movement in the
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~rcc

xP

zP

(a) Coordinate CP

xH

zH

(b) Coordinate CH

Figure 2.1. : The Coordinate Systems for the Peg and the Hole

same direction. Here suppose the compliance center of the support on the peg is also

in the x − z plane for simplicity. This compliance center is noted as ~rcc from OP ,

corresponding to rccx along xp and rccz along zp. Here the rccx term is brought in to

represent arbitrary compliance center location, while in most other compliance center

analysis rccx is always assumed to be zero. The lateral stiffness along xp is Kx and

stiffness along zp is Kz and the angular stiffness around yp would be KRy . Therefore,

the peg can be considered as connected to the end of the actuator by two springs and

a torsion spring.

Figure 2.2 shows the initial condition for a general peg-and-hole problem. Due

to hole location errors, for example from visions, and robot control accuracy limits,

position and rotation error is unavoidable. Here the distance from the zH axis to

OP along xH direction is noted as εx, the distance from the zH to the compliance

center along xH direction is noted as Dx and the distance from the xH axis to the

compliance center along zH is noted as Dz. The initial values are noted as εx0, Dx0

and Dz0 accordingly. And the initial angle error θy is noted as θy0.
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~rcc

εx0

Dx0

θy0

xH

zH

Figure 2.2. : Peg and Hole at Initial Position

So the relationship between Dx and εx is:

Dx = εx + rccx cos θy + rccz sin θy (2.1)

Dx0 = εx0 + rccx cos θy0 + rccz sin θy0 (2.2)

For a peg-and-hole problem, the error angle is usually small, so it is reasonable to

use small angle approximation for θy. Therefore:

Dx = εx + rccx + rcczθy (2.3)

Dx0 = εx0 + rccx + rcczθy0 (2.4)
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Under quasi-static assumption,the force and torque the peg experienced can relate

to the position and rotation changes as the following:

Dx = Dx0 + Tx +
Fx
Kx

cos θy +
Fz
Kz

sin θy (2.5)

Dz = Dz0 + Tz +
Fz
Kz

cos θy −
Fx
Kx

sin θy (2.6)

θy = θy0 +Ry +
My

KRy

(2.7)

Tx is the total displacement from the gripper relative to its initial position along

xH . Tz and Ry are the similar position and rotation caused by the robot end factor

in CH . In other words, Tx, Tz and Ry can be treated as position control reference

inputs. Thus for a straight downwards movement using RCC, Tx = Ry = 0. And Fx,

Fz and My are contact forces and corresponding torque about the compliance center

caused by the hole under coordinates CP in equilibrium state.

2.2 Chamfer Crossing

If the initial error for the peg isn’t small enough for the peg to be inserted into

the hole directly and isn’t too large for the peg to completely miss the hole area, the

peg would first make contact with the hole at the chamfer area. For the contact state

of chamfer crossing, the tip of the peg would make contact with the chamfer surface

and then be pushed towards the hole. There would be a normal reaction force f1

from the chamfer and also a friction along the chamfer surface as shown in Figure

2.3. µ is the friction coefficient between the peg and the chamfer, α is the chamfer

angle and s is the distance from the peg and chamfer contact point to the entrance

of the hole. s0 is used to denote s when the peg first touches the chamfer. So when

there is no contact forces yet:

Dx0 + Tx = (r + rccx) cos θy0 + rccz sin θy0 −R− s0 cosα (2.8)
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s
f1

µf1

α

Figure 2.3. : Chamfer Crossing

During chamfer crossing, the resulted force and moment in coordinate CP are:

Fx = f1(sin(α + θy)− µ cos(α + θy)) (2.9)

Fz = −f1(cos(α + θy) + µ sin(α + θy)) (2.10)

Myj = ((−r − rccx)i− rcczk)× (Fxi + Fzk) (2.11)

With small angle approximation of θy:

Fx = f1(B + Aθy) (2.12)

Fz = −f1(A−Bθy) (2.13)

My = −(rccz(B + Aθy) + (rccx + r)(A−Bθy))f1 (2.14)

A = cosα + µ sinα (2.15)

B = sinα− µ cosα (2.16)

During chamfer crossing, the kinematics also give:

Dx = r + rccx + rcczθy −R− s cosα (2.17)
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Plugging 2.12 & 2.13 into equation 2.5 and 2.14 into 2.7 would give:

Dx −Dx0 − Tx = (
B + Aθy
Kx

− (A−Bθy)θy
Kz

)f1 (2.18)

θy − θy0 +Ry = −rccz(B + Aθy) + (rccx + r)(A−Bθy)

KRy

f1 (2.19)

Combining them yields the relation between θy and s during chamfer crossing:

KxKz(Dx −Dx0 − Tx)
Kz(B + Aθy)−Kx(A−Bθy)θy

= −
KRy(θy − θy0 −Ry)

rccz(B + Aθy) + (rccx + r)(A−Bθy)
(2.20)

It can be transformed into a cubic equation of θy about s, but the expression would

make analysis too complicated for any good results. So this would only be used in

numerically theoretical value prediction later on. For analysis, the small rotational

difference between CP and CH would be neglected because θy is small. This is also

the same assumption Whitney and Simunovic made in their papers. Later plots

of the theoretical predictions would be presented to show how big a difference this

assumption would cause.

Now if Fx and Fz are considered to be align with xH and zH , then:

Fx = f1B (2.21)

Fz = −f1A (2.22)

Myj = ((−r − rccx)i− rcczk)× (Fxi + Fzk) (2.23)

Where A and B are the same as equations 2.15 and 2.16. Then My would be:

My = −(rcczB + (rccx + r)A)f1 (2.24)

And since the rotational difference between CP and CH is ignored, the quasi-static

equilibrium equations from 2.5 and 2.6 become:

Dx = Dx0 + Tx +
Fx
Kx

(2.25)

Dz = Dz0 + Tz +
Fz
Kz

(2.26)

Combination of equations 2.21, 2.17 and 2.25 gives:

f1 =
Kx

B
(r + rccx + rcczθy −R− s cosα−Dx0 − Tx) (2.27)
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Plug it and 2.7 into equation 2.24 and yield the relation between θy and s during

chamfer crossing:

θy =
KRy(θy0 +Ry)B− (rcczB + (rccx + r)A)Kx(r −R + rccx −Dx0 − Tx − s cosα)

(rcczB + (rccx + r)A)Kxrccz +KRyB
(2.28)

So θy is considered to be linear to s during chamfer crossing.

Now with equation 2.4, note ε′x = εx +R− r:

r −R + rccx −Dx0 − Tx =r −R + rccx − Tx − εx0 − rccx cos θy0 − rccz sin θy0 (2.29)

=− ε′x0 − Tx − rcczθy0 (2.30)

So for the case of s = 0 in equation 2.28, θyc, the angle that chamfer crossing

ends, would be:

θyc = θy0 +
KRyRyB + (rcczB + (rccx + r)A)Kx(ε

′
x0 + Tx)

(rcczB + (rccx + r)A)Kxrccz +KRyB
(2.31)

And the Fx, Fz and My force and torque sensor would detect if the peg maintains

quasi-static movement in equilibrium state would be:

Fx = Kx(rcczθy − rcczθy0 − s cosα− ε′x0 − Tx) (2.32)

Fz = −cosα + µ sinα

sinα− µ cosα
Fx (2.33)

My = −rcczFx + (rccx + r)Fz (2.34)

2.3 One Point Contact

After the peg slides across the chamfer and into the hole, the contact point would

then shift to between the side of the peg and the edge of the hole at the entrance like

in Figure 2.4. There would be a reaction force f1 that is normal to the peg side and

a friction force along the peg. µ here is the friction coefficient between the peg the

hole. l is the length from the tip of the peg to the contact point along the peg. So

l would indicate how deep the peg has already been inserted into the hole. Again, if
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lf1

µf1

Figure 2.4. : One Point Contact

Fx and Fz can be considered as aligning with xH and zH , at one point contact, the

resultant force and moment are:

Fx = f1 (2.35)

Fz = −µf1 (2.36)

Myj = ((−r − rccx)i + (−l − rccz)k)× (Fxi + Fzk) (2.37)

So My would be:

My = −(µr + µrccx + l + rccz)f1 (2.38)

At one point contact, the kinematics also indicates:

Dx = lθy + r −R + rccx + rcczθy (2.39)

Dz = l − rθy − rccxθy + rccz (2.40)

Combination of equations 2.35, 2.39 and 2.25 gives:

f1 = Kx(lθy + r −R + rccx + rcczθy −Dx0 − Tx) (2.41)
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Plug it and equation 2.38 into 2.7 and yield the relation between θy and l during

one point contact:

θy =
KRy(θy0 +Ry)− (µr + µrccx + l + rccz)Kx(r −R + rccx −Dx0 − Tx)

(µr + µrccx + l + rccz)Kx(l + rccz) +KRy

(2.42)

So for the case of l = 0 in equation 2.42, combining with 2.30, θy1, the angle

that one point contact begins, would be:

θy1 = θy0 +
KRyRy + (µr + µrccx + rccz)Kx(ε

′
x0 + Tx)

(µr + µrccx + rccz)Kxrccz +KRy

(2.43)

And the Fx, Fz and My force and torque sensor would detect if the peg maintains

quasi-static movement in equilibrium state would be:

Fx = Kx(lθy + rcczθy − rcczθy0 − ε′x0 − Tx) (2.44)

Fz = −µFx (2.45)

My = −(l + rccz)Fx + (r + rccx)Fz (2.46)

2.4 Two Point Contact

As the peg slides inwards while maintaining one point contact with the left edge

of the hole, the peg might keep rotating due to initial position and angle error to a

point that the peg will touch the other side of the hole, like in Figure 2.5. In such a

case, there are two normal reaction forces f1 and f2 as well as corresponding friction

forces. l and µ are the same definition as one point contact. The geometry constraints

of two point contact gives:

l sin θy + 2r cos θy = 2R (2.47)

With small angle approximation, the relationship between θy and l during two

point contact should hold as:

lθy = 2R− 2r (2.48)

At the time that two point contact initially occurs or is just about to end, as

the other side of the peg is barely touching the hole, it is safe to assume there is no
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l

f1

µf1

f2

µf2

Figure 2.5. : Two Point Contact

contact force on the other side, that is f2 = 0. So the conclusion for θy and l from

one point contact is also valid at that time. Thus after combining equations 2.48

and 2.42, the solution to the following equation indicates l for the start and the end

of two point contact:

αl2 + βl + γ = 0 (2.49)

Here:

α = Kx(r −R +Dx0 + Tx − rccx) (2.50)

β = KRy(θy0 +Ry) + α(rccz + µr + µrccx) + (2r − 2R)Kxrccz (2.51)

γ = (2r − 2R)(KRy +Kxrccz(rccz + µr + µrccx)) (2.52)

When ∆ = β2− 4αγ > 0, there are two different solutions to equation 2.49. The

smaller one will be noted as l2, the start of two point contact. And the bigger one

will be noted as l′2, the end of two point contact and back to continue as one point

contact. Or in some cases, the θy with respect to the l′2 is very to zero, then with some

compliance center locations and Fx the peg will snap from two point contact to surface
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contact. When ∆ = 0, two point contact barely takes place and the whole process

may be studied as one point contact. Basically, the clearance is just as large as how

far the other side of the tip can reach during one point contact. And when ∆ < 0,

two point contact may not happen. In section 2.5, it will be shown that jamming

and wedging, two major causes of peg-and-hole assembly failure, occur mostly during

two point contact. Here it will be explained how RCC would be able to help avoid

two point contact phase and thus make peg-and-hole assembly trivial.

With equation 2.4, note ε′′x = εx + r −R:

r −R +Dx0 + Tx − rccx =r −R + εx0 + rccx + rccz sin θy0 + Tx − rccx (2.53)

=ε′′x0 + Tx + rcczθy0 (2.54)

Suppose a passive compliance device, Remote Compliance Center, can have the

compliance center to be roughly at the same point of OP . That is ideally rccx = rccz =

0. And then α would be:

α = Kx(ε
′′
x0 + Tx) (2.55)

And let Tx = Ry = 0, then the discriminant would be:

∆ =β2 − 4αγ (2.56)

=(KRyθy0 +Kxε
′′
x0µr)

2 − 4Kxε
′′
x0(2r − 2R)KRy (2.57)

Now if KRyθy0 >> µKxε
′′
x0r is assumed just like Whitney did in his paper, which

is easily met in common real world RCC devices with small initial errors, then:

∆ ∼= KRy(KRyθ
2
y0 + 8(R− r)Kxε

′′
x0) (2.58)

The hole radius R would need to be bigger than peg radius r for the assembly

to be possible. KRy and Kx are stiffness that would be of a positive value. And

ε′′x0 = εx0 + r − R would be negative if εx0 < 0. In this case, the initial position of

the center of the peg’s end is to the left of the hole. Therefore, ∆ would be negative

when θy0 is small. In other words, two point contact cannot happen with such a RCC
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device when the initial errors are small even without additional control input other

than move downwards along zP .

When ∆ ≥ 0, the starting and ending insert depth l2 and l′2 under a RCC passive

device can be estimated as the following.

At l2 and its corresponding angle θy2, the right side of the peg is barely touching,

so the analysis for f1 under one point contact phase is still valid. And with equation

2.48, equation 2.41 becomes:

f1 =Kx(R− r + rccx + rcczθy −Dx0 − Tx) (2.59)

=Kx(−ε′′x0 − rcczθy0 + rcczθy − Tx) (2.60)

Similar to the process leading to equation 2.42, equations 2.38, 2.7 and 2.60

yield θy2:

θy2 =
KRy(θy0 +Ry) + (µr + µrccx + l2 + rccz)Kx(ε

′′
x0 + rcczθy0 + Tx)

(µr + µrccx + l2 + rccz)Kxrccz +KRy

(2.61)

And for ideal RCC device with control input Tx = Ry = 0:

2R− 2r

l2
=
KRyθy0 + (µr + l2)Kxε

′′
x0

KRy

(2.62)

From previous assumption KRyθy0 >> µKxε
′′
x0r and the common case that l2

should have roughly same or even smaller magnitude of µr, the starting insert depth

of two point contact phase would be:

l2 ∼=
2R− 2r

θy0
(2.63)

And:

l2 + l′2 = −β
α

=
KRy(θy0 +Ry) + α(rccz + µr + µrccx) + (2r − 2R)Kxrccz

Kx(r −R + εx0 + rcczθy0 + Tx)
(2.64)

=
KRyθy0 +Kxε

′′
x0µr

Kxε′′x0
(2.65)

∼=
KRyθy0

Kxε′′x0
(2.66)

So the ending insert depth of two point contact phase would be:

l′2
∼=
KRyθy0

Kxε′′x0
− 2R− 2r

θy0
(2.67)
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2.5 Jamming and Wedging

Jamming is the term used to describe the case that peg is not moving because of

the applied force and torque having the wrong magnitude. In such a scenario, much

bigger force or torque would be required to keep the peg moving, or the proportion

and orientation of the applied force would need to changed due to the previously

applied is causing the peg to jam into the side to the hole, or rotate more inside the

hole instead of move inwards.

A plot of My

Fz
versus Fx

Fz
will be made to show how the combination of the forces

and moments applied to the peg would affect the states of the peg and the hole. The

angle difference of contact forces along the peg and along the hole will be ignored

in all jamming analysis here for a simpler and clearer result. First, the force and

moment the peg would experience during two point contact equilibrium state as in

Figure 2.5 is considered:

Fx =f1 − f2 (2.68)

Fz =− µf1 − µf2 (2.69)

Myj =(−(r + rccx)i− (l + rccz)k))× (f1i− µf1k)

+ ((r − rccx)i− rcczk))× (−f2i− µf1k) (2.70)

So My is:

My = −(µr + µrccx + l + rccz)f1 − (µrccx − rccz − µr)f2 (2.71)

Combining equations 2.68, 2.69 and 2.71 would yield the relationship between

My

Fz
and Fx

Fz
during two point contact equilibrium state:

My

Fz
= (−µr − rccz −

l

2
)
Fx
Fz

+ (rccx +
l

2µ
) (2.72)
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And when the peg and the hole is at one point contact on the left side as in

Figure 2.4, the combination of Fx, Fz and My can be deducted from equations 2.45

and 2.46:

Fx
Fz

= − 1

µ
(2.73)

My

Fz
=
µr + µrccx + l + rccz

µ
(2.74)

And when the peg and the hole is at the other side one point contact as shown

in Figure 1.1e, θy > 0 and the force and torque may be considered the same as in

Figure 2.5 except f1 = 0:

Fx = −f2 (2.75)

Fz = −µf2 (2.76)

Myj = ((r − rccx)i− rcczk))× (−f2i− µf1k) (2.77)

So My is:

My = −(µrccx − rccz − µr)f2 (2.78)

Thus the combination of Fx, Fz and My at this state would be:

Fx
Fz

=
1

µ
(2.79)

My

Fz
=
µrccx − rccz − µr

µ
(2.80)

However, for the two point contact while θy < 0, which is the mirror case of two

point contact in Figure 2.5, the force and moment the peg would experience during

two point contact equilibrium state would then be:

Fx =f1 − f2 (2.81)

Fz =− µf1 − µf2 (2.82)

Myj =(−(r + rccx)i− rcczk))× (f1i− µf1k)

+ ((r − rccx)i− (l + rccz)k))× (−f2i− µf2k) (2.83)
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So My is:

My = −(µr + µrccx + rccz)f1 − (µrccx − l − rccz − µr)f2 (2.84)

Combining the above equations yields the relationship during opposite two point

contact equilibrium state:

My

Fz
= (−µr − rccz −

l

2
)
Fx
Fz

+ (rccx −
l

2µ
) (2.85)

Similar to how equations 2.79 and 2.80 are generated from the two point contact

state, by setting f1 = 0 and f2 = 0 separately in the opposite two point contact

equations, the following combinations of Fx, Fz and My are achieved for the rest two

one point contact state while θy < 0:

Fx
Fz

=
1

µ
(2.86)

My

Fz
=
−µr + µrccx − l − rccz

µ
(2.87)

And:

Fx
Fz

= − 1

µ
(2.88)

My

Fz
=
µrccx + rccz + µr

µ
(2.89)

Putting all of the above My

Fz
and Fx

Fz
together generates the jamming diagram shown

in Figure 2.6. The top line indicates the relationship between forces for the peg to

slide in maintaining two point contact when θy is positive. The leftmost circle is

when only the peg body is touching the left edge of the hole and the rightmost circle

is when only the peg tip is touching the right side of the hole. And the bottom

line is the symmetrical which is when θy is negative. The left and right dashed line

indicates when the peg side is having surface contact with the hole side. When the

force and moment applied falls inside this parallelogram, the peg will accelerate and

fall into the hole. However, the force and moment applied outside would result in a

jamming. Which means that the additional applied force or moment is causing the
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Figure 2.6. : Jamming Diagram

peg to hit the wall inside the hole instead of move inwards. This diagram shows that,

as the peg moves in, l gets bigger, the parallelogram will expand vertically and the

allowed region for force and moment without causing a jamming would be bigger. It

also indicates that increasing Fz would help the assembly process. But this is not

always true because My could be also increasing. The diagram is plotted assuming

rccx = 0 and Rccz = 0. The actual slope of the two point contact equilibrium is

−µr − rccz − l
2
, while the axis intercept is rccx ± l

2µ
. Thus, changing rccx will move

the diagram upwards or downwards and changing rccz will cause the top and bottom

line to rotate about their My

Fz
axis intercept.

Wedging is the case that the peg would stop moving inside the hole while building

up internal forces. It is caused by geometry and in some cases cannot be broken out

by applying any proportion of forces and torques without damaging or deforming the

parts. It happens when the insertion depth is small and the friction core tanφ′ = µ is

large enough to allow two reaction forces to be aligned in the exact opposite direction.
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φ′

φ′

Figure 2.7. : Wedging

At such time, if the peg was pushed counterclockwise and would like to be released

from this pose, the forces from the hole would not be able to help achieve that. And

to form this state, the insert depth will need to be:

l

2r
≤ µ (2.90)

And since wedging also requires two point contact, it would mean that wedging

can occur only if:

l2 ≤ 2µr (2.91)

With equation 2.48, the above is equivalent to wedging would not happen if:

|θy2| <
R− r
µr

(2.92)

And from equation 2.61, assume l, µr and µrccx are small:

θy2 =
KRy(θy0 +Ry) + rcczKx(ε

′′
x0 + rcczθy0 + Tx)

Kxr2ccz +KRy

(2.93)

So for Tx = Ry = 0, the initial condition to avoid wedging is:

−R− r
µr

< θy0 +
rcczKx

Kxr2ccz +KRy

ε′′x0 <
R− r
µr

(2.94)
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Figure 2.8. : Geometry Contraints for Initial Error

Also, in order to let the peg cross chamfer area, εx0 needs to be bounded:

−w < εx0 < w (2.95)

Here w is the horizontal width of the chamfer area. And assuming the difference

between ε′′x0 and εx0 is small, the initial error for the peg to be safely inserted can be

plotted as within the parallelogram in Figure 2.8.

2.6 l-θ Plot

Equation 2.42 provides the relationship between θy and l during one point contact,

which shall be valid from l = 0 to θy = 0. Equation 2.48 indicates the relationship

between θy and l during two point contact, which, if the discriminant is positive, shall

be valid from l2 to l′2. And if, during the chamfer crossing phase, the l is defined as

−s tanα, the relationship θy and l can be shown with equation 2.28. Here, Figure



24

Figure 2.9. : l-θ Plot for Peg-and-hole assembly

2.9 shows the typical l versus θ during the whole assembly process for some initial

setups.

In the above plot there is also a theta value jump for l = 0 between one point

contact and chamfer crossing. This is due to the solution of θy when assuming s = 0

in the chamfer crossing phase differs from when assuming l = 0 in one point contact

phase. The first one, θyc shown in equation 2.31, is set under assuming the contact

force to be normal to the chamfer, while the second one, θy1 shown in equation 2.43,

is set under assuming the contact force to be normal to the side of the peg.
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2.7 Passive Compliance

Apart from how RCC devices can avoid two point contact discussed earlier, the

jamming diagram and l-θ plot also help show that the maximum Fz required to insert

the peg would be bounded with the help of RCC. The force and moments that caused

by control input while Tx = 0 and Ry = 0 and assuming Fx and Fz align with xH and

zH would be:

Fx = Kx(Dx0 −Dx) (2.96)

Fz = Kz(Dz0 + Tz −Dz) (2.97)

My = KRy(θy0 − θy) (2.98)

As equations 2.48 and 2.39 indicate, Fx is limited and mostly determined by initial

error Dx0. And as shown in the l-θ plot, the value of θy is pretty limited throughout

the assembly process. At the meantime, increasing Tz can increase Fz, easily leading

to My

Fz
and Fx

Fz
within the jamming parallelogram in the case of rccx = rccz = 0.

2.8 Active Compliance

Apart from algorithms that utilizes the geometry and force information discussed

above to figure out the current contact state of the peg and provide the necessary

force and moment for the peg to slide in, there are also simple force control strategies

by setting a virtual compliance reference point. In Yamashita’s paper, a jamming

condition during two point contact while maintaining constant force pushing down-
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wards is discussed. First, the total force and moment on the peg in CP during two

point contact would be:

Fx =f1 − f2 cos θy + µf2 sin θy (2.99)

Fz =− µf1 − f2 sin θy − µf2 cos θy (2.100)

Myj =(−(r + rccxi− (l + rccz)k))× (f1i− µf1k)

+ ((r − rccx)i− rcczk)× ((−f2 cos θy + µf2 sin θy)i− (f2 sin θy + µf2 cos θy)k)

(2.101)

And if the reference force direction is set in the hole coordinates frame as in

Yamshita’s work, then:

FxREF
=− Fzconstant sin θy (2.102)

FzREF
=Fzconstant cos θy (2.103)

MyREF
=0 (2.104)

If the above force and moment reference are met when θy > 0, the force control

will reach an equilibrium state and stop moving the peg, resulting in a jam. In such

case, the forces are:

Fx =− Fzconstant sin θy (2.105)

Fz =Fzconstant cos θy (2.106)

And combine with equations 3.17 and 3.18 and rearrange:

f2 = (cos θy − µ sin θy)f1 (2.107)

From geometry constraint during two point contact(rearranged from equation 2.47):

l = (2R− 2r cos θy)/ sin θy (2.108)

Plug 3.29 and 3.30 into 3.20:

(−µr − µrccx −
2R− 2r cos θy

sin θy
− rccz)

+ ((r − rccx)(sin θy + µ cos θy) + rccz cos θy − µrccz sin θy)(cos θy − µ sin θy) = 0

(2.109)
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Which can be rearrange as:

R

r
=α

sin θy(−2µ sin θy cos θy + (µ2 − 1) sin2 θy)

2

+ β
−µ sin θy − sin θy(cos θy − µ sin θy)(sin θy + µ cos θy)

2

+
sin θy(cos θy − µ sin θy)(sin θy + µ cos θy)− µ sin θy + 2 cos θy

2
(2.110)

Where:

α =
rccz
r

(2.111)

β =
rccx
r

(2.112)

Figure 2.10. : Jamming Angle versus Radius Ratio when µ = 0 for Various α

If rccx = 0, Figure 2.10 shows the jamming angles for different rccz values when

µ = 0. It can be seen that for α ≥ 0, no jamming solution exists for R > r. Also

partial derivative assuming rccx = 0 gives:

∂(R
r
)

∂µ
= sin θy(α(− sin θy cos θy + µ sin2 θy)− (sin2 θy − µ sin θy cos θy)) (2.113)
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For α ≥ 0, µ ≥ 0 and θy > 0, the above partial derivative is always negative if

µ < cot θy. This condition would be easily met for reasonable friction coefficient µ

and small initial angle error θy. So when µ gets bigger, the α ≥ 0 lines in the plot

will lean more to the left and thus still no jamming solution exists for R > r.

So the previous conclusion is valid for all µ ≥ 0. In other words, when rccz ≥ 0,

which means the compliance center is below and outside the peg, such force control

to push peg downwards will not result in a jamming equilibrium. This proves that

placing the compliance center at the tip of the peg for force control active compliance

is a good idea.
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3. PROBLEM

This part would discuss the cases of rccx 6= 0 and show its effect on previous analysis.

An active control strategy to cancel out its effect and to help passive compliance

device insertion with an arbitrary compliance center is discussed. A specific case of

peg being gripped at an error angle would be studied. And a rccx estimation strategy

for this case is provided at the end.

3.1 Peg Gripped at an Error Angle

Here a specific off compliance center case with large rccx would be discussed. Such

compliance center location can happen in the real life, can cause failure of the peg-

and-hole assembly and can be estimated fairly easily. Suppose a scenario that requires

a robot to pick up a peg and then insert it into a hole. Vision is used to locate the peg

and the hole. In the real world, uncertainties are unavoidable during the process. In

the previous chapter, εx0 and θy0 represent the error before inserting starts between

the peg and the hole. And if the peg is not mounted firmly on the robot arm, error

between the peg and the gripper would exist as well. And for a passive compliance

device that is calibrated for the peg being ideally gripped, the error would then lead

to the compliance center not at where the peg actually is. And in such case, the off

compliance center and the compliance matrix would still be fixed relative to the peg

during the assembly, so the arbitrary compliance center analysis from the previous

chapter would still apply.

Now consider the case that the uncertainties from vision is much larger than the

ones from robot arm sensors and actuators, which can be caused by using a single

2-D camera. Lighting limitations, object features and pixel resolutions can all result

in errors of position and orientation estimation. For this thesis, a peg gripped at an
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error angle case will be focused. Suppose that a gripper that is configured to have a

Remote Compliance Center set up ideally at the end of the peg grabbed a peg with

some error angle, like in Figure 3.1. The vision was able to ensure the uncertainties

of θy0 and εx0 to be inside the parallelogram in Figure 2.8 to avoid wedging and cross

chamfer. Due to additional uncertainties from the peg being picked up, visual servo

strategy would be used to make sure the errors would not accumulate to have the peg

completely miss the hole area. Basically, visual servo uses the pixel difference feedback

to control so the error from peg being imperfectly gripped would be vastly canceled

when peg is being aligned to the hole [19]. For this reason, without additional control

input, the move downwards can be regarded as the same before.

Also, since large uncertainty from vision is assumed and the orientation of the hole,

which would be used to determine the direction to move downwards, is also estimated

by vision, control input Tx that was zero would probably be a small nonzero value in

the new case. But the difference it might cause would highly depend on the location

where vision put the peg at and the ratio between Kx and Kz. If the peg is ended

up distant to the hole and the vision estimated orientation error is huge, the peg can

completely miss the chamfer area while the robot moves it closer and sideways at the

same time, which means a whole different problem to be solved. On the other hand, if

Kz is large, the additional motion along xH will be hardly noticeable until the insert

depth gets bigger. And as discussed in the jamming diagram part, jamming is less

likely to happen when the insert depth is large. So in this thesis, the additional Tx

that will be caused by the hole orientation estimation error will be ignored.

The mass of the peg is also assumed to be relatively small compared to the gripper

device mounted on the passive compliance device. That is the change of gravity

center from such a small angle error of the peg could be ignored and would not cause

additional reaction torques or angle errors.
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Figure 3.1. : Peg Gripped at an Error Angle

Starting with the peg gripped at an error angle, the new compliance center relative

to the current peg tip center would be:

r′ccx =(Lg + rccz) sin e+ rccx cos e (3.1)

r′ccz =(Lg + rccz) cos e− Lg − rccx sin e (3.2)

Here e is the error angle from current peg to ideal peg orientation and Lg is the

length from where the gripper connects the peg to the end of the peg. It can be

inferred that with originally an ideal or close to ideal compliance center, the r′ccz

would still be small but r′ccx could be somewhat large. Later it will be shown that,

even with a relatively small angle error, but with a long peg, the compliance center

relative to the current peg center could be distant enough to cause issues during the

assembly even if the same control strategies are used. In conclusion, the peg grabbed
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at an error angle case, with the previous assumptions, would behave like a peg being

inserted with normal control input except that rccx is large.

3.2 Off Compliance Center

The analysis in two point contact and jamming diagram in previous chapter has

shown that a RCC device that places compliance center at the tip of the peg, which

means letting rccz = rccx = 0, can avoid two point contact phase and get out jamming

by increasing the force pushing downwards without any additional control input. It

is also shown in the previous chapter that placing the virtual compliance center to be

outside the peg, which means letting rccz ≥ 0 and rccx = 0, can avoid jamming during

two point contact phase for a force control active compliance strategy. However, even

with keeping rccz = 0, just changing rccx values will lead to the previous conclusions

invalid for some setups.

3.2.1 Two Point Contact

The discriminant for equation 2.49, two point contact starting and ending insert

depth, when rccx 6= 0 but still assuming rccz = 0 and Tx = Ry = 0, would be:

∆ =β2 − 4αγ (3.3)

=(KRyθy0 +Kx(r −R +Dx0 − rccx)(µr + µrccx))
2

− 4Kx(r −R +Dx0 − rccx)(2r − 2R)KRy (3.4)

=(KRyθy0 +Kxε
′′
x0(µr + µrccx))

2 − 4Kxε
′′
x0(2r − 2R)KRy (3.5)

ε′′x0 will not depend on the value of rccx. Thus partial derivative of the discriminant:

∂∆

∂rccx
= 2(KRyθy0 + µKxε

′′
x0(r + rccx))µKxε

′′
x0 (3.6)
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The left side two point contact is happening with the initial condition of θy0 > 0

and εx0 < 0, so it can be expected that ε′′x0 < 0. And using the same assumption

KRyθy0 >> µKxε
′′
x0r as earlier, the derivative will become:

∂∆

∂rccx
= 2µKxKRyθy0ε

′′
x0 + 2(µKxε

′′
x0)

2rccx (3.7)

The first part is always negative and the second part is negative when rccx < 0.

So ∆ would get bigger as rccx moves from zero to negative, and for some cases of tight

clearance ratio or big initial angle error setup that the previous ∆ is already close

to zero, this small change would bring the discriminant to be some positive value.

In conclusion, for a peg that is originally to the left of the hole and tilted slightly

clockwise, an off compliance center on the left side can cause the peg to encounter

two point contact.

3.2.2 Jamming Diagram

Since the insert direction is expected to be exactly the same as ideal compliance

center case, without any control strategy changes, that is still Tx = Ry = 0, the

same forces and torques in equations 2.96 to 2.98 can be used. However, if rccx

is some negative value, the top line, indicating two point contact for θy > 0, in the

jamming diagram, Figure 2.6, will be moved downwards. And for a tight clearance

ratio, two point contact can happen at a shallow insertion depth, so the top line can

be even below the horizontal axis when l is small. In such a case, a positive My

Fz
will

always be positive no matter how much Fz can be increased by moving downwards,

meaning the combination of force and torque will result a point outside the jamming

parallelogram. Thus, an off compliance center on the left side can cause jamming

during two point contact without any change in control strategy.
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3.2.3 l-θ Plot

Figure 3.2 shows the l-θ plot for a peg-and-hole assembly process for various rccx

while rccz = 0. For a initial condition of positive θy0 and negative εx0, the blue to green

curves show rccx
r

values from −2 to 2. The plot verifies that for such initial conditions,

a negative rccx can lead to two point contact phase, the concave part in the plot. It

is also obvious that the chamfer crossing l-θ relationship is much more sensitive to

rccx value change than other contact states. Later, a rccx estimation strategy would

be shown based on this behavior.

Figure 3.2. : l-θ Plot for Various rccx
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3.2.4 Active Compliance

As for the equation 2.110 discussed for active compliance, the term for β is

negative if µ < cot θy, θy > 0 and µ ≥ 0. So a negative rccx would increase R
r

and

cause the curve to shift to the right, causing the jamming that was avoided to be

possible to happen. Figure 3.3 shows how rccx affects the result when rccz = 0.

Figure 3.3. : Jamming Angle versus Radius Ratio when µ = 0.1 for Various β

3.3 Force and Moment Plots

To have a better understanding of the effect an arbitrary compliance center has on

the peg-and-hole problem, the forces and torques required to complete such an assem-

bly process would be good indicators. The force and torque that sensors would detect

for each contact states during the peg-and-hole assembly assuming a smooth quasi-

static movement were mostly already discussed in the last chapter. The following
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part will focus on the predicted force and torque versus insert depth assuming initial

condition of θy0 > 0 and εx0 < 0 and no additional control input, as Tx = Ry = 0.

For the chamfer crossing contact state, equations 2.32 to 2.34 show how Fx, Fz

and My would be functions of θy and s and equation 2.28 shows θy value depending

on s. By using s values from s0 to 0, the force and torque can be predicted. And

when combined into plots of force and torque versus insert depth, a negative height

difference between the peg tip and hole entrance, −s sinα, is used for virtual l.

During one point contact, equations 2.44 to 2.46 indicate how Fx, Fz and My are

governed by θy and l and equation 2.42 shows the relationship between θy and l. By

using l values from 0 to l2 and from l′2 to insert depth that θy = 0 or the depth that

the peg is fully inserted, or in the cases of two point contact not happening from 0

all the way to these, the force and torque predicted versus insert depth can be drawn

for one point contact.

And for the two point contact state, f1 and f2 would be too hard to decouple so

Fx and My would be estimated by the position and the orientation of the peg and

the passive compliance system. Here, the rotational difference between Fx and Dx is

ignored for simplicity. From equations 2.25 and 2.7

Fx = Kx(Dx −Dx0) (3.8)

My = KRy(θy − θy0) (3.9)

The same geometry constraint during one point contact for Dx, equation 2.39,

would still be valid for the left side being considered. So with two point contact

geometry constraint shown in equation 2.48:

Dx = R− r + rccx + rcczθy (3.10)

So Fx would be:

Fx = Kx(rccz(θy − θy0)− ε′′x0) (3.11)
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And since it is the force maintaining two point contact equilibrium being esti-

mated, the relation from equation 2.72 should hold. So Fz can be predicted as:

Fz =
My + (µr + rccz + l

2
)Fx

rccx + l
2µ

(3.12)

=
KRy(θy − θy0) + (µr + rccz + l

2
)Kx(rccz(θy − θy0)− ε′′x0)

rccx + l
2µ

(3.13)

Thus Fx, Fz and My are functions of θy and l while lθy = 2R− 2r. Using l values

from l2 to l′2 can plot out the two point contact part.

Figure 3.4. : Fz Prediction for a Passive Peg-and-hole Assembly

Figure 3.4 shows a general trend for the Fz required to smoothly insert the peg

into the hole. Here note that Fz is the force sensor would read along the zP axis, so

the reaction forces from the hole would appear negative during the assembly process.

The first straight line in red with negative insert depth is the chamfer crossing phase.

The second part in yellow is one point contact and the last bit in purple is two point

contact. It can also be seen that there is a huge force value jump between the end

of the chamfer crossing and the start of one point contact. Such behavior could be



38

used to help identify which contact state the peg and the hole are in. And later this

would be needed for rccx estimation.

For the off compliance center scenario, if two point contact can happen and rccx

is some negative value for θy0 > 0, the denominator for Fz can be really small and

thus make the Fz required to be extremely huge. The smallest l for two point contact

would be l2. For a nonzero rccx, equation 2.61 with no additional control becomes:

θy2 =
KRyθy0 + (µr + µrccx + l2 + rccz)Kx(ε

′′
x0 + rcczθy0)

(µr + µrccx + l2 + rccz)Kxrccz +KRy

(3.14)

rccz = 0 and rccx should be roughly same magnitude as r. If l2 is roughly the same

magnitude of or even less than µr, with the previous assumption KRyθy0 >> µKxε
′′
x0r,

l2 can be expressed as:

l2 ∼=
2R− 2r

θy0
(3.15)

So the denominator for Fz become:

rccx +
l2
2µ

= rccx +
R− r
θy0µ

(3.16)

This means that a practically small clearance ratio, a relatively large initial angle

error and a reasonable friction coefficient combining with a rccx that is roughly the

same magnitude of r can lead to an infinitely large Fz. This case is the same as having

the top line in the jamming diagram to be crossing the origin point.

3.4 Active Control

From all of the geometry and force analysis in the last chapter, it can be seen

that the peg-and-hole assembly behavior can be affected by changing Tx and Ry.

Equations 2.34, 2.46 and 2.72 show that the relationship between force and torque

required for inserting is determined by position and orientation. Equations 2.32 and

2.44 show that the force and torque magnitude sensor would detect is determined by

the current position of the peg, the position of the end factor and the compliance

stiffness. And equations 2.28 and 2.42 have Tx and Ry terms implying the peg
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orientation and position during the process could be indirectly controlled. But when

Tx and Ry are variables depending on other variables, the analysis would need to be

reviewed.

Here a control strategy of Tx and Ry is provided for pegs with the conditions of

the off compliance center to behave like an ideal passive compliance device for the

same initial rotational and transitional error relative to the hole. Suppose the control

input Tx and Ry to be:

Tx =rccz(θy − θy0) (3.17)

Ry =
−rccxFz + rcczFx

KRy

(3.18)

Because Tx and Ry contain the variables depending on l and θy, the expressions

cannot be plugged into the results directly. Now the same process for each contact

states would be carried out again with the same move downwards motion for θy0 and

εx0 to show the effect of such control input strategy.

For chamfer crossing, f1 from equation 2.27 becomes:

f1 =
Kx

B
(r + rccx + rcczθy −R− s cosα− εx0 − rccx − rcczθy0 − rccz(θy − θy0)) (3.19)

=− Kx

B
(ε′x0 + s cosα) (3.20)

So Fx and Fz would be:

Fx = −Kx(ε
′
x0 + s cosα) (3.21)

Fz =
A

B
Kx(s cosα + ε′x0) (3.22)

Thus in this case My would be:

My =KRy(θy − θy0 −Ry) (3.23)

=KRy(θy − θy0) + rccxFz − rcczFx (3.24)

=KRy(θy − θy0)− rccxf1A− rcczf1B (3.25)

Combine with equation 2.24 and yield:

θy =
KRyθy0B + rKxA(ε′x0 + s cosα)

KRyB
(3.26)
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Here the Fx, Fz and θy under such additional active control have the same result

as equations 2.32, 2.33 and 2.28 with Tx = Ry = 0 and rccx = rccz = 0.

And for one point contact, f1 from equation 2.41 becomes:

f1 =Kx(lθy + r −R + rccx + rcczθy − εx0 − rccx − rcczθy0 − rccz(θy − θy0)) (3.27)

=Kx(lθy − ε′x0) (3.28)

So Fx and Fz in this case would be:

Fx = Kx(lθy − ε′x0) (3.29)

Fz = −µKx(lθy − ε′x0) (3.30)

And then My would be:

My =KRy(θy − θy0 −Ry) (3.31)

=KRy(θy − θy0) + rccxFz − rcczFx (3.32)

=KRy(θy − θy0)− µrccxf1 − rcczf1 (3.33)

Combine it with equation 2.38:

θy =
KRyθy0 + (µr + l)Kxε

′
x0

(µr + l)Kxl +KRy

(3.34)

Again Fx, Fz and θy are the same as previous analysis for one point contact with

Tx = Ry = 0 and rccx = rccz = 0.

And for two point contact, the same geometry constraints are still valid. So

putting equation 3.34 and 2.48 together gives:

αl2 + βl + γ = 0 (3.35)

Here:

α = Kxε
′′
x0 (3.36)

β = KRyθy0 + µKxε
′′
x0r (3.37)

γ = (2r − 2R)KRy (3.38)
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The solution l2 and l′2 would be the same as the solution for equation 2.49 with

Tx = Ry = 0 and rccx = rccz = 0.

And Fx for two point contact can be derived from equations 2.25, 2.39 and 2.48:

Fx =Kx(Dx −Dx0 − Tx) (3.39)

=Kx(lθy + r −R + rccx + rcczθy − εx0 − rccx − rcczθy0 − rccz(θy − θy0)) (3.40)

=−Kxε
′′
x0 (3.41)

With control Ry, My should be:

My =KRy(θy − θy0 −Ry) (3.42)

=KRy(θy − θy0) + rccxFz − rcczFx (3.43)

Thus Fz to maintain equilibrium state, by using equation 2.72, would become:

Fz =
KRy(θy − θy0)− (µr + l

2
)Kxε

′′
x0

l
2µ

(3.44)

This result of Fx and Fz are the same as predicted in equation 3.13 assuming

rccx = rccz = 0.

From all of the above, this active control strategy would make the peg go through

the same θy and l relationships using the same Fx and Fz as an ideal RCC device.

Only My is changed. Apparently, with the compliance center at a different location,

it won’t be possible to have the same My when forces and the relative position of

the peg are the same. Referring to jamming diagram, left and right edge at ± 1
µ

is

fixed, while rccx only affects vertical axis intercept and rccz only affects slope. Thus

only changing My value while keeping Fx and Fz untouched is possible to have the

combination lie within the new parallelogram for the off compliance center.

This active control strategy does not rely on rccz being negligible. So if the off

compliance center relative to the peg is known or is estimated by some means, integra-

tion of such active control and the passive compliance device can have any arbitrary

compliance center to act like an ideal compliance center. So the advantage of a passive

compliance device can be used on various peg-and-hole occasions.
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For a unknown error compliance center in the peg gripped at an error angle case,

the control strategy would be:

Tx =r̂ccz∆θy (3.45)

Ry =
−r̂ccxFz + r̂cczFx

KRy

(3.46)

Here r̂ccx and r̂ccz are the estimated off compliance center position relative to the

peg tip, Fx and Fz are the values got from force and torque sensors and KRy is set

as the experiential torsion stiffness about y axis of the compliance matrix. θy can

be reflected by the readings from peg orientation minus an error while θy0 would

be the angle reading after visual servo aligns and before move downwards starts

minus roughly the same error. Thus ∆θy, the rotational angle change sensed after

peg alignment, should be able to represent θy − θy0 within the magnitude of sensor

accuracy without knowing the actual orientation of the hole. The uncertainties were

assumed to be mainly caused by vision and the errors from force torque sensors

and angle sensors would be assumed to be much smaller. Although the Tx and

Ry would only be carried out by changing the reference input of the robot position

control, which means they at best would only have the accuracy of the actuators,

the passive compliance device itself can help insertion even when the clearance is

smaller than the robot accuracy. Thus such a control strategy, which does not rely on

the information obtained from vision, where the dominant uncertainties come from,

should help overcome the relatively large compliance center error.

3.5 rccx Estimation

From the previous l-θ plot part, it can be seen that rccx can affect the θy for chamfer

crossing greatly. Now for a peg gripped at an error angle case, rccz is relatively small.

So the eqaution 2.28 for chamfer crossing θy assuming rccz = 0 would be:

θy = θy0 +
KRyRyB− (rccx + r)AKx(−ε′x0 − Tx − s cosα)

KRyB
(3.47)
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Rearrange and get rccx as:

rccx = −
KRyB(Ry + θy0 − θy))
KxA(ε′x0 + Tx + s cosα)

− r (3.48)

And equation 2.8 with small angle approximation indicates:

εx0 + Tx = r −R− s0 cosα (3.49)

In other words, rccx can be estimated as:

r̂ccx = −
KRyB(Ry − (θy − θy0))
KxA((s− s0) cosα)

− r (3.50)

=
KRy(sinα− µ cosα) sinα(Ry −∆θy)

Kx(cosα + µ sinα) cosα∆z
− r (3.51)

HereRy is the control input, ∆θy is the angle difference sensed from initial position,

r and α are considered known values and KRy , Kx and µ are values gathered from

previous experiments. ∆z is the distance peg moved along the zp axis since first

contact with the chamfer. When there is first some reaction force sensed that exceeds

the zero zones, a position reading along the peg z axis from the sensors would be

recorded to represent −s0 sinα minus some error. And any new position reading

after that can be treated as −s sinα minus roughly the same error. Thus this ∆z

reading can be used to estimate −(s− s0) sinα within the uncertainties of the robot

position sensors without taking the hole position estimated by vision into account.

Therefore such rccx estimation strategy would not be affected by the assumption that

vision accuracy is poor.

For a complete peg-and-hole procedure, after vision moved the peg near the hole

and the orientation of the hole was estimated, the peg will be inserted with a straight

position control. The spike in Fz at the end of chamfer crossing would be used as an

indicator to distinguish the contact states. The rccx estimation was run without any

control input of Tx and Ry until the end of chamfer crossing. If the estimated rccx

was large, the addition active control would be used for the rest of the peg-and-hole

insertion to cancel out the majority effect of such off compliance center.
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4. SIMULATION

Due to limitations on the access of experiment equipment, only simulations were done

to verify the theoretical conclusions. Plots with realistic parameters were generated

using MATLAB and simulation of peg-and-hole assembly problems were run with

open source physics engine Project Chrono. The results shown would be able to

prove the active control discussed in the last chapter is indeed necessary and helpful

to the process.

4.1 MATLAB Fz Prediction

First two theoretical predictions of Fz would be shown to show how peg gripped at

an error angle case could lead to jamming during two point contact. The parameters

are selected as the following to be practical in real world cases. The radius of the peg

is r = 9.9mm and the radius of the hole is R = 10mm. The friction coefficient between

the peg and the hole for all contact states throughout the assembly is assumed to be

µ = 0.1. The stiffness of passive compliance device is chosen to be Kx = 1N/mm and

KRy = 104N·mm/rad. These values represent the magnitude of actual RCC devices.

It can be seen from previous analysis that if Kx, Kz and My are multiplied by the

same amount, the peg behavior during insertion would not change as long as quasi-

static motion is maintained. Only the magnitude of forces and torques being sensed

would be different.

The clearance ratio selected is fairly large so the allowed vision uncertainty can

be large enough for the following setups. Here the values chosen are specifically

designed to lead to extreme results. The initial error after peg alignment would

be θy0 = 0.08rad and εx0 = −1.5mm. And the off compliance center will be at

rccx = −13mm and rccz = −0.64mm. This is equivalent to a 13cm long peg being
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gripped with an error angle of 0.1rad or roughly 5.7 deg. This is also the same

magnitude of uncertainty required for vision servo to avoid wedging.

Figure 4.1. : Fz Prediction for the Ideal Compliance Center

Figure 4.1 shows the Fz required for the peg to be inserted quasi-statically with an

ideal compliance center at the middle of the tip of the peg. Here the force is already

quite large during the two point contact phase because the initial angle error θy0 is

relatively large. But the exact values would be largely depending on the stiffness of

the passive device selected.

Figure 4.2 plots out the theoretical Fz required for the peg while rccx = −0.013

and rccz = −0.00064. The denominator rccx + l2
2µ

is so small that Fz has reached an

extremely high value. And no matter what the actual stiffness value would be, these

two plots have shown how a negative rccx with positive θy0 and negative εx0 initial

condition can lead to potential failure.
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Figure 4.2. : Fz Prediction for the Off Compliance Center

4.2 Project Chrono Simulations

Additional simulations using c++ and open source physics engine Project Chrono

were done to better verify the previous results. A screen capture is shown in Figure

4.3. The red shape is a set of triangle mesh to represent the hole. The blue cylinder

is the peg and the little white ball represents the robot end factor. A marker fixed

on the peg that is at the same location of the white ball will be the compliance

center. The marker is connected to the white ball through two springs and a torsion

spring. The effect of gravity is canceled out and the white ball will simply move

downwards. Since no damping was set for the springs, to achieve better stability and

mimic a quasi-static movement, the actual forces and moments applied in the physics

engine simulation is set to be a-hundredth of supposed values to not cause apparent

acceleration. But the values used for later plot generation are restored back to the
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Figure 4.3. : Project Chrono Simulation

same Kx and KRy as above. As discussed earlier, such change would not affect the

insertion depth and rotation relationship according to theoretical analysis.

4.2.1 Ideal Compliance Center

Figure 4.4 to 4.7 shows the physics engine simulation result along with the

theoretical MATLAB predictions for a ideal compliance center rccz = rccx = 0. Here

the forces and moments for a small clearance ratio will lead to unavoidable small

oscillation. For the l-θ plot, the maximum and minimum θy is displaced. It is obvious

that the peg will be more stable at latter part of two point contact states. It can also

be noticed that there is a small increase of insertion depth at the start of two point

contact phase for all plots. This is because negative contact distance can happen for

the physics engine simulation, which means that the hole edge has penetrated into

the peg and the peg tip has penetrated the other side of the hole a little bit for the
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Figure 4.4. : Simulation l-θ for the Ideal Compliance Center

Figure 4.5. : Simulation Fz for the Ideal Compliance Center
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Figure 4.6. : Simulation Fx for the Ideal Compliance Center

Figure 4.7. : Simulation My for the Ideal Compliance Center



50

reaction forces to achieve balance. But the overall trend has shown such simulation

fits the theoretical predictions pretty well.

Figure 4.8. : Simulation versus Theory for Chamfer Crossing

Also figure 4.8 provides a detailed look at the chamfer crossing behavior for

the ideal compliance center case. The yellow line is the linear approximation using

equation 2.28 and the red crosses are the θy results from numerically solving the

equation 2.20. This helps show that the approximations are reasonable and the θy

value jump for l-θ plot also fits the actual peg behavior.

4.2.2 Off Compliance Center

Figure 4.9 and 4.10 show the Project Chrono simulation result for peg gripped

at an error angle case. The insertion is jammed at a shallow depth and the peg stops

moving even while the amount of Fz keeps getting bigger. Even after the Fz has

exceeded the prediction values of Fz at a larger insertion depth l, the jamming is still

there. This is probably due to the negative contact distance stated above. Under

such large forces, the peg might be constantly overlapping the hole edge, leading the

actual insertion depth inside the hole to be smaller than it appears. Also the chamfer



51

Figure 4.9. : Simulation l-θ for the Off Compliance Center

Figure 4.10. : Simulation Fz for the Off Compliance Center
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crossing behavior is shown in the l-θ plot as well. And this will be used to estimate

rccx.

4.2.3 Integration of Active Control and Passive Compliance

Figure 4.11. : Active Control Simulation l-θ Plot

Figure 4.12. : Active Control Simulation Fz Plot
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Figure 4.13. : Active Control Simulation Fx Plot

Figure 4.14. : Active Control Simulation My Plot

Figure 4.11 to 4.14 are the results from combination active control and passive

compliance. Here rccz is assumed to be negligible and the control input of Tx = 0

and Ry = 0.013Fz/KRy after chamfer crossing state is used. It can be seen that the

l-θ, Fz and Fx for the off compliance center would be almost the same as the ideal
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compliance center case. The major difference is a little acceleration along the z axis

after the spike of Fz. And in the last My plot, a lighter purple curve showing the

My for the ideal case is also provided together with the darker purple one for the

theoretical prediction with this active control. These results show the effect of the

combination of active control with passive compliance. Therefore, with a relatively

small rccx and rccz error, since the θy, Fx and Fz would behave like the ideal with

additional active control, the new My would also be within a reasonable range and

potential jamming caused by the off compliance center can be avoided.

4.2.4 Active control with Estimated rccx

Figure 4.15. : Active Control Simulation l-θ with r̂ccx = −0.0105
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Figure 4.16. : Active Control Simulation Fz with r̂ccx = −0.0105

Figure 4.17. : Active Control Simulation Fx with r̂ccx = −0.0105
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Figure 4.18. : Active Control Simulation My with r̂ccx = −0.0105

Finally r̂ccx is combined with the active control. From various trials, it is found

that the estimation is most accurate around the place when Fz is peaked around

chamfer crossing. It is probably due to the magnitude of the variables are relatively

larger compared to the change caused by oscillations. So with Tx = 0 and Ry = 0

during the chamfer crossing until Fz drastically changed. The equation 3.51 is

used to get a result of r̂ccx ≈ −0.0105. Then additional control of Tx = 0 and

Ry = 0.0105Fz/KRy is applied until the end. From figures 4.15 to 4.18, it can be

seen that, although the Fz values are less stable, the potential jamming is still avoided

even when r̂ccx does not exactly match rccx.
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5. SUMMARY

This thesis did the analysis of the peg-and-hole problem for arbitrary compliance

centers and proved an active control strategy that can cancel out most of the problems

caused by the compliance center not being at the tip of the peg. The peg gripped at

an error angle case has proven to be able to cause jamming in certain scenarios and

the estimation for the compliance center for such cases is shown to be useful with

the active control. This setup is meaningful because it should be able to utilize the

advantages of passive compliance devices most of the time and the additional active

control can help deal with cases when error is large without the need to stop and

re-grip. Also the arbitrary compliance center model with the integration of active

control and passive compliance can be further used in other real life cases such as

a fixed RCC with various different size pegs. As long as the dimensions of the peg

and the compliance center relative to the tip of the peg can be estimated, the active

control and passive compliance can even insert the peg into a hole with the clearance

smaller than the robot accuracy.
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6. RECOMMENDATIONS

In the problem chapter, it was discussed how some off compliance centers can hinder

the assembly process for certain initial conditions. However, it is also implied that

some other off compliance center can help avoid two point contact jamming for these

initial conditions. So if the signs of the initial errors can be controlled by the approach

and alignment strategy, then varying the compliance center to be off in some way can

be beneficial to the peg-and-hole problem.

For future research work, here are some recommended aspects to look into. This

thesis has assumed rccz of the off compliance center to be small. However, for an

unknown compliance center, a better compliance center location estimation algorithm

would be needed to find both r̂ccx and r̂ccz. This thesis has also assumed a limited

degree of freedom in the 2-D scenario at the start, how an arbitrary compliance center

would affect the peg-and-hole problem in 3-D and what active control should look

like for 3-D still require further studies for more real world applications.
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