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ABSTRACT 

Sintering is a primary particulate manufacturing technology to provide densification and strength 

for ceramics and many metals. A persistent problem in this manufacturing technology has been 

to maintain the quality of the manufactured parts. This can be attributed to the various sources of 

uncertainty present during the manufacturing process. In this work, a two-particle phase-field 

model has been analyzed which simulates microstructure evolution during the solid-state 

sintering process. The sources of uncertainty have been considered as the two input parameters 

surface diffusivity and inter-particle distance. The response quantity of interest (QOI) has been 

selected as the size of the neck region that develops between the two particles. Two different 

cases with equal and unequal sized particles were studied. It was observed that the neck size 

increased with increasing surface diffusivity and decreased with increasing inter-particle distance 

irrespective of particle size. Sensitivity analysis found that the inter-particle distance has more 

influence on variation in neck size than that of surface diffusivity. The machine-learning 

algorithm Gaussian Process Regression was used to create the surrogate model of the QOI. 

Bayesian Optimization method was used to find optimal values of the input parameters. For 

equal-sized particles, optimization using Probability of Improvement provided optimal values of 

surface diffusivity and inter-particle distance as 23.8268 and 40.0001, respectively. The 

Expected Improvement as an acquisition function gave optimal values 23.9874 and 40.7428, 

respectively. For unequal sized particles, optimal design values from Probability of Improvement 

were 23.9700 and 33.3005 for surface diffusivity and inter-particle distance, respectively, while 

those from Expected Improvement were 23.9893 and 33.9627. The optimization results from the 

two different acquisition functions seemed to be in good agreement with each other. The results 

also validated the fact that surface diffusivity should be higher and inter-particle distance should 

be lower for achieving larger neck size and better mechanical properties of the material. 
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1. INTRODUCTION 

1.1  Powder Sintering 

Sintering is a process of forming a solid mass of material from a powder by application of 

an external agent such as heat, temperature or pressure. This usually takes place below the 

melting temperature of the material. The sintering kinetics is characterized by multiple diffusion 

paths, particle rigid-body motion and grain-growth through boundary migration [1]. Sintering 

can also be used as heat treatment in order to increase the strength and integrity of a material. 

This material processing technique is very useful for custom shaping of materials which have 

high melting points. Materials can be produced with uniform porosity and preserved purity. 

Efficient control of evolving morphologies like inter-particle neck region and grain boundary is 

necessary for better mechanical and thermal properties and an optimized manufacturing process.  

 

 

Figure 1: Scanning electron micrograph of spherical bronze particles to illustrate sinter neck 
formation between contacting particles prior to significant densification [2] 
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Figure 2: Outline of the neck size X and the particle size D (assumed spherical) and neck saddle 
point curvature R during two-particle sintering. A grain boundary forms in the neck due to 

crystal misalignment of the contacting particles [2] 

In the current work, microstructure evolution has been studied during solid-state sintering 

process. During solid-state sintering, morphologies such as densification and grain growth occur. 

The proper control of these structural evolutions is necessary for better mechanical properties of 

the material. Sintering takes place due to diffusion of atoms through the microstructure of the 

material. The diffusion results due to a gradient in chemical potential i.e., atoms move from a 

region of higher chemical potential to that of a lower chemical potential. Diffusion takes place by 

several mechanisms like surface diffusion, vapor transport, lattice diffusion from surface, lattice 

diffusion from grain boundary, grain boundary diffusion, plastic diffusion, etc. Higher 

densification is preferred to reduce porosity in the material and smaller grain growth is desired. 

The microstructure evolution is driven by a reduction of total system free energy through 

diffusion and structural relaxation [1]. The particle rigid-body motion that occurs during 

sintering is driven by the diffusion of atoms from grain boundaries to nearby growing neck 

surface and thus leads to formation of neck region between two particles. Analysis of the 

simulation models has found an expression for the rate of change of neck size ratio as a function 

of sintering time: 

 

�
𝑋𝑋
𝐷𝐷�

𝑛𝑛

= 𝐾𝐾𝐾𝐾 
Eq. 1.1 
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where X refers to the neck width and D the diameter of the particle. K is related to material 

properties and geometric assumptions. Due to the growing bonds between the grains, sintering 

provides strength which can be formulated as [3]: 

 

𝜎𝜎𝐵𝐵 = Σ𝑉𝑉𝑠𝑠
𝑁𝑁𝑐𝑐
𝜋𝜋 �

𝑋𝑋
𝐷𝐷�

2

 
Eq. 1.2 

where 𝜎𝜎𝐵𝐵  refers to bulk sintering strength, 𝑉𝑉𝑠𝑠 solid volumetric fractional density, 𝑁𝑁𝑐𝑐  the packing 

coordination, 𝑋𝑋
𝐷𝐷

 is the neck size to particle size ratio. In sintered porous structures, the initial 

sintering strength varies with the square of the neck size as follows [3]: 

 

𝜎𝜎𝑠𝑠 =
𝜎𝜎0

𝐾𝐾
𝑉𝑉𝑠𝑠
𝑁𝑁𝑐𝑐
𝜋𝜋 �

𝑋𝑋
𝐷𝐷�

2

 
Eq. 1.3 

where 𝜎𝜎0  refers to inherent material strength at the test temperature and 𝐾𝐾  is the stress 

concentration factor associated with the sharp neck radius. 

 

In the present study, the neck size has been considered the Quantity of Interest (QOI). The 

objective has been to control the varying neck size by designing input parameters like surface 

diffusivity and inter-particle distance at two different types of particle size ratios �𝑅𝑅2
𝑅𝑅1
�, 1 and 1.5 

where 𝑅𝑅1 and 𝑅𝑅2 refer to the particle radii. Henceforth, the aim has been to maximize the neck 

size in each case to improve the mechanical strength and integrity of the material. This in turn 

optimizes the manufacturing process with informed choices during the design phase. 

1.2 Quality Control of Powder Sintering 

However, one persistent concern in this material processing methodology as in other 

manufacturing technologies has been to produce parts with desired properties. Even if the same 

parameters are used during the manufacturing process of a specific product, it is not possible to 

acquire uniform properties. Pavan et al. used X-ray Computed Tomography (CT) based approach 

to study the effect of features' size and printing orientation on the porosity and shape deviation of 

each feature in Laser Sintering for polymers processing [4]. Several replicas of the test object 
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were made for polyamide-12 to analyze the reproducibility of the manufacturing process. It was 

observed that porosity levels of small features depend on their size and orientation with a smooth 

increase in voids' content with increased size. Also features oriented along printing direction 

showed an overall higher porosity value with bigger average pore sizes independent of the size 

of the feature. Dotchev et al. investigated polyamide 12 (PA12) powder properties deterioration 

in Laser Sintering process by artificially aging new and recycled grades of PA2200 powder in a 

temperature-controlled oven and tested using melt flow rate (MFR) indexer [5]. It was found that 

the powder exposed at a higher temperature and longer time experienced a higher deterioration 

rate. Also, powder located at the periphery and top of the build is less deteriorated than that at the 

center or the bottom of a long build. Karapatis et al. tried to find out to what extent the density of 

thin powder layers can be increased for controlling the quality of Selective Laser Sintered parts 

[6]. Experiments showed that the density of thin layers increased from 53% to 63% when 30% 

fine powder was added to coarse powder with a coarse-to-fine ratio of 1:10. However, this 

density improvement method was found to be less efficient as the particle do not arrange as 

efficiently. Yamazaki et al. studied the control mechanism of Plasma activated sintering (PAS) 

process and provided results for experimental conditions, instrumentation and process modeling 

aspects of this method along with microstructural characteristics [7]. Zarringhalam et al. showed 

that differential scanning calorimetry (DSC) has a good potential for quality control of Selective 

laser-sintered (SLS) parts [8]. DSC analysis of SLS Nylon-12 parts showed the presence of two 

distinct melt peaks which correspond to the melted and un-melted regions of the part. Also, it 

was proved that the amount of energy input during the process affects the degree of melting. 

Phillips et al. provided an approach of controlling temperature non-uniformity in Selective Laser 

Sintering (SLS) process through a feed-forward control system [9]. It was evident that a 45% 

improvement in ultimate flexural strength standard deviation was achieved. Kuang et al. 

suggested methods for controlling the sintering temperature in ceramic sintering [10]. Ultrafine 

grinding and grinding aids can improve the grindability, reduced the ground particle size, prevent 

the re-agglomeration of particles so that sintering temperature could be reduced. For ceramic 

powders made from wet-chemical method, co-precipitation and hydrothermal processes were 

suggested for production of nano-size and agglomeration-free ceramic precursor particles. 

Simchi et al. studied the possibility of using electrical conductivity as a tool for describing the 

microstructure of sintered iron compacts [11]. It was determined that the conductivity of pressed 
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compacts increased during the dewaxing temperature stage, the effect of sintering parameters at a 

higher temperature being less visible. It was established that the mechanical properties of the 

material can be predicted by using conductivity thus helping in quality control. Wegner et al. 

integrated a thermal imaging system in a laser sintering machine [12] for process monitoring. 

Results found that thermal imaging is well-suited for checking on powder bed surface 

temperature distribution and the melt's temperature. Olakanmi et al. investigated the effect of 

mixing time on SLS processed density and microstructure [13]. The optimal mixing time was 

found to be ten minutes above which the density of sintered parts decreased and hence porosity 

increased. This led to the deterioration of the microstructure of the SLS sintered parts. Olakanmi 

et al. showed that microstructural evolution in laser sintered Al-12Si powder was controlled by 

specific laser energy input [14]. Zhang et al. explored the densification mechanism and 

microstructural evolution during spark plasma sintering of boron carbide powders under a 

temperature range of 1700 to 2100 degree centigrade [15]. Results found that creep deformation 

controlled by grain-boundary sliding contributed to the densification mechanism at low-effective 

stress regime. At temperature higher than 2000 or at high-stress regime, the dominant 

mechanism was dislocation climb. Chen et al. studied the effects of mechanical milling on 

morphology, phase, size distribution, specific surface area of indium-gallium-zinc oxide (IGZO) 

[16]. It showed that the IGZO mixture particles were refined and the size difference between 

particles significantly decreased after milling for 45 h. Zhang et al. characterized the 

microstructure morphology of highly transparent yttria ceramics at low-temperature sintering 

[17]. Full densification could be achieved at 1450 degree centigrade for 4 h (by vacuum pre-

sintering) and 1400 degree C for 3 h (by post hot isostatic pressing). The fabricated ceramics had 

a uniform and fine microstructure with high optical performance. Dong et al. explored the 

microstructural evolution and sintering kinetics during spark plasma sintering of pure tantalum 

powder [18]. The results found the rapid densification temperature range as 800-1300 degree C 

and the maximum shrinkage rate as 1100 degree centigrade. The density and grain size of the 

sample increased when the sintering temperature increased from 1500 to 1700 degree centigrade, 

the tensile strength and flexural strength also increased. 
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1.3 Phase-field Method for Powder Sintering 

The phase-field method is an effective tool for modeling of co-evolution of microstructure and 

physical properties at the mesoscale. The microstructure is explained by a system of continuous 

variables with the interfaces having a finite width over which the variables have varying values. 

The evolution of the microstructural morphology is described in terms of free energy of the 

system. Biswas et al. studied the consolidation kinetics during sintering process using a phase-

field modeling approach [19]. It was observed that the initial interactions among particles were 

due to surface diffusion and then densification was governed by volume and grain boundary 

diffusion. The grain size kept increasing under pressure and stabilized later when adjacent grains 

touched each other. Hotzer et al. used a phase-field model based on grand potential approach to 

study the microstructural evolution during solid-state sintering process [20]. The neck growth 

rates and particle approach in a two-particle system were compared with analytic solutions for 

different diffusion mechanisms and a good agreement was found between the two. Densification 

results for a three-dimensional green body of 24897 Al2O3-grains matched well with analytic 

Coble model. Biswas et al. investigated the microstructural changes during solid-state sintering 

using a phase-field model that included rigid-body motion, elastic deformation and heat 

conduction [21]. The simulations showed three distinctive stages during the sintering process - 

neck and grain boundary formation, neck length growth and stabilization, rapid grain growth and 

disappearance of one of the grains. Morphology evolution was found to be contributed by radius 

of particles, curvature at neck location, surface energy, grain boundary energy and variation in 

temperature. Asp et al. presented a phase-field model of sintering and related phenomena in a 

two-phase system and multi-phase system using diffusion of vacancies as the mechanism for 

redistribution of material [22]. The solid body was characterized by a low vacancy content, the 

surroundings by a high vacancy content and the surface with varying vacancy content. The 

temporal development of particles during solid-state sintering with wetting effects was shown in 

the simulations. Kumar et al. modeled sintering and simultaneous concurrent grain growth of two 

unequal-sized particles using a phase-field method [23] . The simulation revealed to have three 

sub-processes: neck growth, coarsening with concurrent slow grain boundary migration and 

rapid grain boundary motion. The simulation results were analyzed based on thermodynamic 

analysis of the driving forces for different sub-processes. The slow grain boundary migration was 

found to be sensitive to sintering geometry. Dzepina et al. incorporated contact mechanics 
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algorithm into a phase-field sintering model [24]. Energy relaxation through deformation was 

achieved by diffusive fluxes along stress gradients and rigid body motion of the deforming 

particles maintained contact between the particles. The effect of applied pressure on high 

pressure-high temperature (HPHT) liquid phase sintering of diamond particles was investigated 

and changes in neck size, particle coordination and contact flattening were observed. Termuhlen 

et al. introduced an approach for incorporating individual particle rigid-body motion during 

three-dimensional phase-field sintering simulation [25]. A grouping algorithm was introduced 

with a cut-off radius set on each grain to calculate the particle velocity during densification. This 

allowed for incorporation of densification mechanisms into three-dimensional phase-field 

sintering model. 

1.4 Machine Learning in Powder Sintering 

Machine Learning involves study of computer algorithms that can learn from data. Often seen as 

a subset of Artificial Intelligence or Data Science, machine learning focuses on building 

mathematical models that can work with unseen examples or data. The models are created based 

on a set of observation data also called as Training Data. The major motivation behind creating 

machine-learning models is imparting the ability in computers to predict complex unknown 

situations without being explicitly programmed or instructed to do so. Machine-learning 

problems can be classified into three categories based on the nature of the feedback available to 

the system:  

 Supervised learning: Training data and output data/labels are present. The goal is to 

formulate a hypothesis that maps the training data to the output data. 

 Unsupervised Learning: Training data is present with no output data or labels. The goal is 

to find hidden patterns in the training input. It is useful for finding structures in a large 

dataset. 

 Reinforcement Learning: The algorithm interacts with a dynamic environment to act in 

real-time in order to maximize a reward function. It is most suitable for situations like 

autonomous driving, robotics, game-playing against an opponent, etc.  

Statistics and Mathematical Optimization delivers theories, methods and applications towards the 

framework for machine learning. The prime objective of the algorithm is to build a generalized 

model which can produce accurate predictions for a new dataset.  
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Traditionally, constructing a machine-learning framework required considerable domain 

expertise so that raw data can be used for designing a feature extractor. This is specifically useful 

for tasks such as classification or pattern recognition. An emerging technique called Deep 

Learning improves the state-of-the-art machine-learning systems by using representation-

learning methods with multiple levels of representation for automatic detection or classification 

[26]. Traditionally, building a machine-learning framework has required very careful engineering 

analysis and domain expertise. Deep Learning methods diminish this requirement by leveraging 

combined and abstract representation-learning frameworks that can automatically extract 

features or patterns from the data. Swaroop et al. proposed a machine-learning based approach to 

predict abnormal grain growth in powdered samples prior to actual sintering [27]. The approach 

was found to have a potential to allow for pre-selection of appropriate powder samples with an 

accuracy of 82%. This way of controlling abnormal grain growth could help reduce porosity and 

hence enhancement of sintered material properties. Song et al. proposed a comprehensive 

prediction model of sinter quality based on machine learning approach [28]. Classification model 

of sinter quality and regression model of sinter's total iron content were established using 

different machine learning algorithms. Results showed that the prediction accuracy of 

classification model and regression model inferred by the extra tree is the best. The F1-score of 

the quality index classification model was found to be 0.92 and R2 of the total iron content 

regression model was 0.882 thus indicating good learning and generalization ability of the 

proposed framework. Xiao et al. applied a deep convolution neural network to detect three 

typical types of powder bed defects in selective laser sintering process: warpage, part shifting 

and short feed [29]. The method was found to have good accuracy and efficiency and was able to 

cope with geometrical distortion and image blurring. Liu et al. developed a machine learning 

approach based on Gaussian Process Regression to identify the optimized processing window for 

laser powder bed fusion process (LPBF) [30]. The determined optimized processing parameters 

made it possible to achieve previously unattainable combinations of high strength and ductility. 

It was found that in addition to grain structure, the sub-grain cell size and cell boundary 

morphology of the LPBF fabricated AlSi10Mg strongly affected the mechanical properties of the 

material. Zhouzhi et al. established a method for rapid evaluation of the effect of heating rate on 

sintering densification based on domain-adversarial neural network [31]. This allowed for 

prediction of densification evolution of a material which lacked master sintering curve (MSC) 
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from MSC data of another material. The proposed approach could provide an efficient solution 

to the issue of data scarcity in sintering field. Zhang et al. presented a multi-objective 

optimization and analysis model of the sintering process based on BP neural network [32]. 

Genetic algorithms combined with BP neural network reduced the learning time and increased 

the forecasting accuracy of the network model. The relation between factors like quality and 

multi-objectives was analyzed with the results being consistent with the process. 

1.5 Motivation, Objectives and Structure of Thesis 

The motivation of the thesis is that since neck size is directly related to the quality and strength 

of the sintered part, there is a need to develop a methodology to optimize the neck size. The 

objective of the thesis is to use machine learning approach to find out optimal values of surface 

diffusivity and inter-particle distance for maximizing neck size for equal and unequal sized 

particles. 

 

The structure of the thesis is as follows:  

Chapter 1 provides an introduction. Chapter 2 elaborates the model details and mechanisms i.e., 

phase-field model for simulation of neck growth in a non-contacting two-particle system, 

surrogate models via Machine Learning approach, sensitivity analysis and surrogate-based input 

parameter optimization through a Bayesian Optimization algorithm. Chapter 3 lists all the results 

of the models mentioned in chapter 2 and also includes discussion regarding the same. Chapter 4 

concludes the thesis with major points learned from this work and also proposes some future 

activities that can be carried out to extend this work further. 
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2. NUMERICAL MODEL DETAILS 

2.1 Phase-field model 

In the present study, the neck formation between two non-contacting spherical particles has been 

focused on. The phase-field model and its codes for solid-state sintering in Ref. [33] have been 

adopted for the current work to generate the microstructures of the two-particle model. Two 

types of field variables have been used to represent the microstructure. The conserved density 

field 𝜌𝜌 that assumes the value of one at the solid phase and zero at the pores, varying at the solid-

pore interface. The non-conserved order parameter 𝜂𝜂𝑖𝑖  has been used to distinguish the different 

particles in the microstructure. The order parameter takes the value of one for a specific particle 

and zero for the other particles. The value also varies from zero to one or one to zero across the 

grain boundaries. 

2.1.1 Governing equations of phase-field model 

The microstructure is defined by the free energy function of the system which is mathematically 

represented as: 

 

𝐹𝐹 = �[𝑓𝑓(𝜌𝜌, 𝜂𝜂1, …𝑝𝑝) +
𝑘𝑘𝜌𝜌
2

(∇𝜌𝜌)2 + �
𝑘𝑘𝜂𝜂
2

(∇𝜂𝜂𝑖𝑖)2]𝑑𝑑𝑑𝑑 
𝑖𝑖𝑑𝑑

 

Eq. 2.1 

where 𝑘𝑘𝜌𝜌and 𝑘𝑘𝜂𝜂  are gradient energy coefficients for concentration and grain boundary energies 

respectively [33]. The evolution equation for density field follows the Cahn-Hilliard equation: 

 
𝜕𝜕𝜌𝜌
𝜕𝜕𝐾𝐾

= ∇. �
𝐷𝐷∇δF
δρ � = ∇. D∇ �

∂f
𝜕𝜕𝜌𝜌

− 𝑘𝑘𝜌𝜌∇2𝜌𝜌� 

Eq. 2.2 

where D is the microstructure-dependent diffusivity coefficient [33]. D is assumed to take the 

form: 
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𝐷𝐷 = 𝐷𝐷𝑑𝑑𝑣𝑣𝑣𝑣𝜙𝜙(𝜌𝜌) + 𝐷𝐷𝑑𝑑𝑣𝑣𝑝𝑝 [1 − 𝜙𝜙(𝜌𝜌)] + 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓 𝜌𝜌(1 − 𝜌𝜌) + 𝐷𝐷𝐺𝐺𝐵𝐵��𝜂𝜂𝑖𝑖𝜂𝜂𝑚𝑚
𝑖𝑖≠𝑚𝑚𝑖𝑖

 

 

 
Eq. 2.3 

where 𝐷𝐷𝑑𝑑𝑣𝑣𝑣𝑣  is the bulk diffusivity, 𝐷𝐷𝑑𝑑𝑣𝑣𝑝𝑝  is the diffusivity of the vapor phase, 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓  is the surface 

diffusivity and 𝐷𝐷𝐺𝐺𝐵𝐵  is the grain boundary diffusivity. The interpolation function 𝜙𝜙(𝜌𝜌) is assumed 

as: 

 

𝜙𝜙 = 𝜌𝜌3(10 − 15𝜌𝜌 + 6𝜌𝜌2) 
Eq. 2.4 

This ensures the bulk diffusivity is zero at the pores and one at the solid regions. The non-

conserved order parameter which represents the particles and the grain boundaries follows the 

Allen-Cahn equation: 

 
𝜕𝜕𝜂𝜂𝑖𝑖
𝜕𝜕𝐾𝐾

= −
𝐿𝐿
𝜕𝜕𝜂𝜂𝑖𝑖

𝛿𝛿𝐹𝐹 = −𝐿𝐿 �
𝜕𝜕𝐹𝐹
𝜕𝜕𝜂𝜂𝑖𝑖

− 𝑘𝑘𝜂𝜂∇2𝜂𝜂𝑖𝑖� 

Eq. 2.5 

where 𝐿𝐿 is the grain-boundary mobility [33]. 

 

The Cahn-Hilliard and Allen-Cahn governing equations were solved with finite difference 

algorithm by using five-point stencil in two-dimensional space. The time integration was carried 

out by simple explicit Euler time marching scheme.    

2.1.2 Geometry and mesh of equal size and unequal size two-particle models 

For equal-sized particles, the radii of the two spherical particles were made equal and the model 

was simulated for 20,000 time steps. The radius of each particle was 20 units. The simulation 

cell was discretized into 100 grid points in the x-direction and 100 grid points in the y-direction.  

The grid spacing was 0.5 in both x and y directions. The inter-particle distance was kept as 40 

units initially and was varied according to the uniform distribution. 
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For unequal sized particles, the radius of one of the spherical particles was made 1.5 times of that 

of the other and the phase-field model was simulated for 20,000 time steps. The radius of one 

particle was 20 and that of the other was 40/3. The simulation cell was discretized into 100 grid 

points in the x-direction and 100 grid points in the y-direction. The grid spacing was 0.5 in both 

x and y-directions. The inter-particle distance varied from 33.3 through 34.8. 

2.1.3 Material properties 

The gradient coefficient for concentration field 𝑘𝑘𝜌𝜌  was set to 5.0, the gradient coefficient for 

order parameters 𝑘𝑘𝜂𝜂  was assigned value of 2.0, mobility of order parameters 𝐿𝐿 set as 10.0 [33]. 

The value of bulk diffusivity 𝐷𝐷𝑑𝑑𝑣𝑣𝑣𝑣  was 0.04, diffusivity of the vapor phase 𝐷𝐷𝑑𝑑𝑣𝑣𝑝𝑝  0.002, initial 

surface diffusivity 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓  16.0, grain boundary diffusivity 𝐷𝐷𝐺𝐺𝐵𝐵  1.6 [33]. Since the values in the 

phase-field model were normalized, temperature was not considered as an explicit input 

parameter. However, temperature effect can be included by using temperature-dependent 

material properties. 

2.1.4 Boundary conditions 

The concentration field which takes the value of 1 in the particles and 0 elsewhere was initialized 

to 0. It is a one-dimensional array and can be represented as 𝑐𝑐𝑣𝑣𝑛𝑛(𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦).. The two-dimensional 

array of non-conserved order parameters for the particles 𝑒𝑒𝐾𝐾𝑣𝑣𝑠𝑠(𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦 ,𝑛𝑛𝑝𝑝𝑣𝑣𝑠𝑠𝐾𝐾) was initialized to 

0.  𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦  represents the total number of grid points in the simulation cell and 𝑛𝑛𝑝𝑝𝑣𝑣𝑠𝑠𝐾𝐾  is the 

number of particles.   

2.2 Machine Learning Approach 

2.2.1 Gaussian Process Regression 

A Gaussian Process is a set of random variables, any finite number of which have joint Gaussian 

distributions [34]. A random variable is any variable whose value depends on the outcome of a 

random phenomenon. Any random variable can be described by its cumulative distribution 
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function which describes the probability that the random variable will be less than or equal to a 

certain value. The cumulative distribution function can be described as: 

 

𝐹𝐹𝑋𝑋(𝑥𝑥) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) 
Eq. 2.6 

where X is the random variable and x is the target value. A joint distribution is used when we 

want to study two random variables together. For instance, the joint cumulative distribution 

function of two random variables X and Y can be represented as: 

 

𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥,𝑋𝑋 ≤ 𝑦𝑦) 
Eq. 2.7 

which can also be represented as: 

 

𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) = 𝑃𝑃((𝑋𝑋 ≤ 𝑥𝑥)  ∩  (𝑋𝑋 ≤ 𝑦𝑦)) 
Eq. 2.8 

A Gaussian Process consists of a mean function m(x) and a covariance function k(x, x'). The 

Gaussian distribution can be indicated as: 

 

𝑓𝑓 ~ 𝐺𝐺𝑃𝑃(𝑚𝑚,𝑘𝑘) 
Eq. 2.9 

which means the function 𝑓𝑓 is distributed as a Gaussian Process with mean function 𝑚𝑚  and 

covariance function 𝑘𝑘  [34]. The individual random variables in a vector from a Gaussian 

distribution are indexed by their position in the vector. For example, if the input variable is 

denoted by 𝑥𝑥, then for each input 𝑥𝑥, there is an associated random variable 𝑓𝑓(𝑥𝑥) which is the 

value of the stochastic function 𝑓𝑓 at that location. The Gaussian Process regression function also 

known as Kriging has a basis function that can be formulated as [35]: 

 

𝜓𝜓𝑖𝑖 = exp  (−�𝜃𝜃𝑗𝑗 �𝑥𝑥𝑗𝑗
(𝑖𝑖) − 𝑥𝑥𝑗𝑗 �

𝑝𝑝𝑗𝑗
)  

𝑘𝑘

𝑗𝑗=1

 

Eq. 2.10 

The 𝜃𝜃 in the equation above allows the width of the basis function to vary from variable to 

variable [35]. The varying value of 𝑝𝑝𝑗𝑗  allows for the smoothness to vary for the function. As 
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mentioned earlier, each input variable has an associated random output variable, so the observed 

responses can be denoted by a set of random vectors: 

 

𝒀𝒀 = �
𝑋𝑋(𝑥𝑥1)
⋮

𝑋𝑋(𝑥𝑥𝑛𝑛)
� 

Eq. 2.11 

The random vector has a mean of 𝟏𝟏𝜇𝜇 where 𝟏𝟏 is an 𝑛𝑛 × 1 column vector of ones. The random 

variables are correlated with each other by the expression: 

 

𝑐𝑐𝑣𝑣𝑠𝑠�𝑋𝑋�𝑥𝑥𝑖𝑖�,𝑋𝑋(𝑥𝑥𝑣𝑣)� = exp(−�𝜃𝜃𝑗𝑗 �𝑥𝑥𝑗𝑗𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑣𝑣 �
𝑝𝑝𝑗𝑗 )  

𝑘𝑘

𝑗𝑗=1

 

Eq. 2.12 

From this an 𝑛𝑛 × 𝑛𝑛 correlation matrix can be constructed for the observed samples: 

 

𝚿𝚿 =  �
𝑐𝑐𝑣𝑣𝑠𝑠[𝑋𝑋(𝑥𝑥1),𝑋𝑋(𝑥𝑥2)] ⋯ 𝑐𝑐𝑣𝑣𝑠𝑠[𝑋𝑋(𝑥𝑥1),𝑋𝑋(𝑥𝑥𝑛𝑛)]

⋮ ⋱ ⋮
𝑐𝑐𝑣𝑣𝑠𝑠[𝑋𝑋(𝑥𝑥𝑛𝑛),𝑋𝑋(𝑥𝑥1)] ⋯ 𝑐𝑐𝑣𝑣𝑠𝑠[(𝑋𝑋(𝑥𝑥𝑛𝑛),𝑋𝑋(𝑥𝑥𝑛𝑛)]

� 

Eq. 2.13 

A covariance matrix can be created from the above correlation matrix [35]: 

 

𝐶𝐶𝑣𝑣𝑑𝑑(𝒀𝒀,𝒀𝒀) = 𝜎𝜎2𝚿𝚿 
Eq. 2.14 

Correlation refers to the degree at which two random variables are linearly related to each other. 

There are several correlation coefficients like Pearson correlation coefficient, Spearman's rank 

correlation coefficient, Kendall's rank correlation coefficient, etc. The value of the correlation 

coefficient can vary between -1 and +1. A value of +1 refers to a perfect linearly increasing 

relationship between the two variables. A value of -1 refers to a perfect linearly decreasing 

relationship between the variables. A value of 0 refers to no correlation or dependence between 

the variables. The closer the coefficient is to -1 or +1, the stronger the correlation is between the 

variables. Covariance is defined as the correlation between two or more sets of random variables. 

For two random variables X and Y, 

 

23 



 
 

𝐶𝐶𝑣𝑣𝑑𝑑(𝑋𝑋,𝑋𝑋) = 𝐸𝐸�(𝑋𝑋 − 𝜇𝜇𝑥𝑥)�𝑋𝑋 − 𝜇𝜇𝑦𝑦�� 
Eq. 2.15 

 

= 𝐸𝐸[𝑋𝑋𝑋𝑋] − 𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦  
Eq. 2.16 

where  𝜇𝜇𝑥𝑥  and 𝜇𝜇𝑦𝑦  are the means of 𝑋𝑋  and 𝑋𝑋  and 𝐸𝐸 is the expectation. The relation between 

correlation and covariance can be represented as [35]: 

 

𝑐𝑐𝑣𝑣𝑠𝑠(𝑋𝑋,𝑋𝑋) =
𝑐𝑐𝑣𝑣𝑑𝑑(𝑋𝑋,𝑋𝑋)
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦

 

Eq. 2.17 

The correlation between the elements of Y depends on the values of absolute distance between 

the sample points �𝑥𝑥𝑗𝑗𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑣𝑣�, the parameters 𝑝𝑝𝑗𝑗  and 𝜃𝜃𝑗𝑗 . It has been observed that as the two points 

move close together i.e., 𝑥𝑥𝑗𝑗𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑣𝑣 → 0 , exp �−�xj
i − xj

l�
pj� → 1  i.e., the points show highly 

increasing linear correlation whereas when the distance→ ∞, the correlation coefficient→ 0, i.e., 

the points have no correlation. 𝜃𝜃𝑗𝑗  is a width parameter that affects how far a data point's 

influence extends. A low 𝜃𝜃𝑗𝑗  means all data points have a high correlation [35] while the reverse 

is true for a high 𝜃𝜃𝑗𝑗 . Hence 𝜃𝜃𝑗𝑗  can be considered as a measure of how active the approximating 

function is. The value of 𝜃𝜃 and 𝑝𝑝 can be found out by maximizing the likelihood of the observed 

responses 𝒀𝒀. Taking the natural logarithm of likelihood : 

 

ln(𝐿𝐿) = −
𝑛𝑛
2

ln(2𝜋𝜋) −
𝑛𝑛
2

ln(𝜎𝜎2) −
1
2

ln|𝚿𝚿| −
(𝒚𝒚 − 𝟏𝟏𝜇𝜇)𝑇𝑇𝚿𝚿−𝟏𝟏(𝒚𝒚 − 𝟏𝟏𝜇𝜇)

2𝜎𝜎2  
Eq. 2.18 

The maximum likelihood estimates (MLEs) for 𝜇𝜇 and 𝜎𝜎2: 

 

�̂�𝜇 =
𝟏𝟏𝑇𝑇𝚿𝚿−1𝒚𝒚
𝟏𝟏𝑇𝑇𝚿𝚿−1𝟏𝟏

 
Eq. 2.19 

𝜎𝜎�2 =
(𝒚𝒚 − 𝟏𝟏𝜇𝜇)𝑇𝑇𝚿𝚿−1(𝒚𝒚 − 𝟏𝟏𝜇𝜇)

𝑛𝑛
 

Eq. 2.20 

The concentrated ln-likelihood function can be denoted as [35]: 
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ln(𝐿𝐿) ≈ −
𝑛𝑛
2

ln(𝜎𝜎2) −
1
2

ln|𝜳𝜳| 
Eq. 2.21 

The values of 𝜃𝜃 𝑣𝑣𝑛𝑛𝑑𝑑 𝑝𝑝 are found to maximize the above ln-likelihood function. This is usually 

done through a genetic algorithm or exhaustive search function. The maximum likelihood 

estimate (MLE) for the Kriging prediction 𝑦𝑦� is given by [35]: 

 

𝑦𝑦�(𝒙𝒙) = �̂�𝜇 + 𝝍𝝍𝑇𝑇𝚿𝚿−1(𝒚𝒚 − 𝟏𝟏�̂�𝜇) 
Eq. 2.22 

2.2.2 Surrogate Modeling 

Surrogate models are approximations of the original simulation model. They are cheap to 

evaluate unlike the multi-physics simulation models. They can often be used when it is not 

possible to predict the outcome of a model by any other method. They consider the original 

simulation model as a black box and require little to no knowledge about its inner working. The 

Gaussian Process Regression (Kriging) methodology has been used here to build the surrogate 

models that predict neck size from input parameters surface diffusivity and inter-particle 

distance. A 4-level full factorial Design of Experiments (DOE) was performed in the process of 

creating the surrogate model. First, the design variables and response variables were determined. 

In this case, the design variables were surface diffusivity and the inter-particle distance. The 

response variable was certainly the size of the evolved neck region in-between the two spherical 

particles. The statistical design of experiments allows varying all variables simultaneously rather 

than varying one-factor-at-a-time [36]. This way the mutual interactions between the variables 

are also considered. So the quantity of interest neck size can be modeled as a function of these 

two design variables: 

 

𝑁𝑁 = 𝑓𝑓�𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓 ,𝑑𝑑� 
Eq. 2.23 

where 𝑁𝑁 refers to the neck size, 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓  stands for surface diffusivity and 𝑑𝑑 refers to the inter-

particle distance. 
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2.2.3 Training data 

Table 1 and Table 2 below show the DOE matrix for equal-sized and unequal sized particles 

respectively. Sixteen simulations of the phase-field model were performed at varying values of 

the input parameters. A uniform distribution of data was considered for both surface diffusivity 

and inter-particle distance. For equal-sized particles, the range of surface diffusivity was [4, 24] 

and that for inter-particle distance [40, 41.5] while for unequal sized particles, the ranges were 

[4, 24] and [33.3, 34.8] respectively. There was not much difference in values of neck size at 

higher time steps. Hence, in order to reduce computational expense, the total time steps were 

kept at 5000 and the neck size after each simulation was noted. The trend in response values was 

found to be monotonic, so even if more simulations were performed, the additional data points 

would be on the same surfaces. 

Table 1: DOE matrix for equal-sized particles 

 

Serial No. 

Surface diffusivity 

(𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓 ) 

Inter-particle 

distance (𝑑𝑑) 

 

Neck size(𝑁𝑁) 

1 4 40 14.15388 

2 8 40 15.50387 

3 16 40 17.18751 

4 24 40 19.36508 

5 4 40.5 12.40309 

6 8 40.5 13.95348 

7 16 40.5 15.748 

8 24 40.5 16.69287 

9 4 41 8.00002 

10 8 41 9.53848 

11 16 41 12.1875 

12 24 41 14.1732 

13 4 41.5 5.84617 

14 8 41.5 7.75193 

15 16 41.5 10.39367 
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Table 1 continued 

16 24 41.5 12.28342 

 

Table 2: DOE matrix for unequal sized particles 

Serial No. 

Surface diffusivity 

(𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓 ) 
Inter-particle 

distance (𝑑𝑑) Neck size (𝑁𝑁) 

1 4 33.3 12.093 

2 8 33.3 13.2308 

3 16 33.3 14.68752 

4 24 33.3 15.55554 

5 4 33.8 10.46155 

6 8 33.8 11.47285 

7 16 33.8 13.22831 

8 24 33.8 14.28572 

9 4 34.3 6.82169 

10 8 34.3 8.37208 

11 16 34.3 10.39367 

12 24 34.3 12.06348 

13 4 34.8 4.30771 

14 8 34.8 6.76924 

15 16 34.8 9.06252 

16 24 34.8 10.39367 

 

Observations 4, 5, 6 and 7 in both Table 1 and Table 2 were kept aside for model testing purpose 

and were not used for generating the metamodels. 

2.2.4 Metamodel generation 

The metamodel was generated from the training data through Gaussian Process Regression. The 

ooDACE toolbox was used for the creation of the surrogate model [37]. A fourth of the data in 
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Tables 1 and 2 were left out and kept reserved for validation and testing the accuracy of the 

model. The lower bound and upper bound of the hyper-parameters were fixed at [-5 5]. Three 

Gaussian regression functions of orders zero, one and two were tested for building the 

metamodel. A meshgrid of size 100×100 was created to plot the surface of neck size. 

2.2.5 Model testing 

For model testing purpose, the root mean squared error (RMSE) can be used as a metric [35]. If 

the available observed data is enough, 0.25𝑛𝑛 𝑥𝑥 → 𝑦𝑦 pairs can reserved for model testing [38]. 

RMSE can be formulated as: 

 

�
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛𝐾𝐾
𝑖𝑖=0 

𝑛𝑛𝐾𝐾
 

Eq. 2.24 

where 𝑛𝑛𝐾𝐾  is the number of observations for testing, 𝑦𝑦𝑖𝑖  is the 𝑖𝑖𝐾𝐾ℎ  observation and 𝑦𝑦�𝑖𝑖  is the 

prediction corresponding to the  𝑖𝑖𝐾𝐾ℎ  observation [35]. 

Table 3: Model Testing data for equal-sized particles 

 

Serial No. 

Surface diffusivity 

(𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓 ) 

Inter-particle 

distance (𝑑𝑑) 

 

Neck size(𝑁𝑁) 

1 24 40 19.36508 

2 4 40.5 12.40309 

3 8 40.5 13.95348 

4 16 40.5 15.748 

 

Table 4: Model Testing data for unequal sized particles 

 

Serial No. 

Surface diffusivity 

(𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓 ) 

Inter-particle distance 

(𝑑𝑑) 

 

Neck size(𝑁𝑁) 

1 24 33.3 15.55554 
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Table 4 continued 

2 4 33.8 10.46155 

3 8 33.8 11.47285 

4 16 33.8 13.22831 

 

2.2.6 Cross-validation 

Cross-validation is a technique to test how accurately a predictive model will perform in real life. 

The goal is to test the model's ability to predict new data that was not used as training data. This 

can help to avoid problems like overfitting or underfitting of the model and generalize the model 

for working on unknown datasets. Cross-validation involves partitioning the data into subsets 

called training set and validation set. In one round, the model is built using the training set and 

validated using the validation/testing set. Multiple rounds are performed like this with different 

subsets to reduce variability. The error in prediction is found in each round. The average error for 

all rounds gives an estimate of the accuracy of the predictive capability of the model. There are 

two types of cross-validation methods: Exhaustive and Non-exhaustive. The exhaustive methods 

include Leave-p-out cross-validation, Leave-one-out cross-validation, while the non-exhaustive 

methods include k-fold cross-validation, Holdout method, Repeated random sub-sampling 

validation. In this work, the Leave-one-out cross-validation (LOOCV) has been used to evaluate 

the surrogate model. In LOOCV, the dataset is divided into 𝑘𝑘 subsets where 𝑘𝑘 equals the total 

number of observations. The function approximator is trained on all the data except for one point 

and prediction is made for that point. The average error is computed from all such predictions. 

Though it can be a little computationally expensive, it gives accurate measure of the 

predictability of the machine-learning model. The advantage is that the variance is reduced to 

minimum and it does not depend on how the dataset is subdivided unlike other cross-validation 

methods. Mathematically, if a mapping 𝜁𝜁: {1, … ,𝑛𝑛} → {1, … ,𝑘𝑘}  describes the allocation of 𝑛𝑛 

training points to one of the 𝑘𝑘 subsets and 𝑓𝑓−𝑖𝑖  is the value of the predictor obtained by removing 

the subset 𝜁𝜁(𝑖𝑖), the cross-validation measure can be depicted as [35]: 
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𝜖𝜖𝐶𝐶𝑉𝑉 =
1
𝑛𝑛
� |𝑦𝑦𝑖𝑖 − 𝑓𝑓−𝑖𝑖
𝑛𝑛

𝑖𝑖=1

| 

Eq. 2.25 

where the absolute error has been taken into account between the 𝑖𝑖𝐾𝐾ℎ  test response and the 𝑖𝑖𝐾𝐾ℎ  

predicted value. 

Table 5: Cross-Validation data for equal-sized particles 

 

Serial No. 

Surface diffusivity 

(𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓 ) 

Inter-particle 

distance (𝑑𝑑) 

 

Neck size(𝑁𝑁) 

1 4 40 14.15388 

2 8 40 15.50387 

3 16 40 17.18751 

4 24 40 19.36508 

5 4 40.5 12.40309 

6 8 40.5 13.95348 

7 16 40.5 15.748 

8 24 40.5 16.69287 

9 4 41 8.00002 

10 8 41 9.53848 

11 16 41 12.1875 

12 24 41 14.1732 

13 4 41.5 5.84617 

14 8 41.5 7.75193 

15 16 41.5 10.39367 

16 24 41.5 12.28342 
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Table 6: Cross-Validation data for unequal sized particles 

Serial No. 

Surface diffusivity 

(𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓 ) 
Inter-particle 

distance (𝑑𝑑) Neck size (𝑁𝑁) 

1 4 33.3 12.093 

2 8 33.3 13.2308 

3 16 33.3 14.68752 

4 24 33.3 15.55554 

5 4 33.8 10.46155 

6 8 33.8 11.47285 

7 16 33.8 13.22831 

8 24 33.8 14.28572 

9 4 34.3 6.82169 

10 8 34.3 8.37208 

11 16 34.3 10.39367 

12 24 34.3 12.06348 

13 4 34.8 4.30771 

14 8 34.8 6.76924 

15 16 34.8 9.06252 

16 24 34.8 10.39367 

 

Each observation here was considered a subset. So for each iteration, fifteen sets of training data 

were available and one set of test (validation) data was present. The error was found in each 

iteration by subtracting the predicted response from the test response. 

2.2.7 Sensitivity Analysis 

Sensitivity Analysis can determine how robust the result is. It can help save time and make 

informed decisions or choices. Sensitivity Analysis finds out which input variable has more 

contribution towards the variation of the output response variable. Global Sensitivity Analysis 
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(GSA) takes into account all input variables in a model and determines sensitivity by evaluating 

over the entire range of each input variable [39]. 

2.2.8 Pearson product-moment correlation coefficient 

The Pearson product-moment correlation coefficient can be used to determine the contribution of 

each input parameter on the variability of the response QOI i.e., neck size [40]. 

 

Corr �𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓 ,𝑁𝑁� = 𝜌𝜌𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓 𝑁𝑁 =
Covariance(𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓 ,𝑁𝑁)

𝜎𝜎𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓 𝜎𝜎𝑁𝑁
 

Eq. 2.26 

 

Corr(𝑑𝑑,𝑁𝑁) = 𝜌𝜌𝑑𝑑𝑁𝑁 =
Covariance(𝑑𝑑,𝑁𝑁)

𝜎𝜎𝑑𝑑𝜎𝜎𝑁𝑁
 

Eq. 2.27 

where 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓  is the surface diffusivity, 𝑑𝑑 is the inter-particle distance, 𝑁𝑁 the neck size, 𝜎𝜎𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓 , 𝜎𝜎𝑑𝑑  

and 𝜎𝜎𝑁𝑁  are the standard deviations of 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓 , 𝑑𝑑 and 𝑁𝑁 respectively. 

2.2.9 Bayesian Optimization 

Bayesian Optimization is a class of machine-learning-based optimization methods focused on 

solving the problem 

 

max
xϵA

𝑓𝑓(𝑥𝑥) 
Eq. 2.28 

where 𝑓𝑓(𝑥𝑥) is the objective function, 𝑥𝑥 is the input, 𝐴𝐴 is the feasible set. The input 𝑥𝑥 is in ℝ𝑑𝑑  for 

a value of 𝑑𝑑  that is not too large, typically 𝑑𝑑 ≤ 20 . The feasible set 𝐴𝐴  is a hyper-rectangle 

{𝑥𝑥𝜖𝜖ℝ𝑑𝑑 :𝑣𝑣𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖} or the d-dimensional simplex {𝑥𝑥𝜖𝜖ℝ𝑑𝑑 :∑ 𝑥𝑥𝑖𝑖 = 1}𝑖𝑖 . The objective function 𝑓𝑓 

is continuous and modeled using Gaussian Process Regression. 𝑓𝑓  usually lacks any known 

special structure like concavity or linearity that would make it easy to optimize using techniques 

that leverage such structure to improve efficiency. So 𝑓𝑓 is considered as a black-box. This type 

of optimization is also referred to as derivative-free optimization as there is no evaluation of first 

or second-order derivatives. Bayesian optimization consists of two main components: a Bayesian 
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statistical model for modeling the objective function and an acquisition function to decide where 

to sample next. The statistical model which is usually a Gaussian process, provides a Bayesian 

posterior probability distribution that describes potential values for 𝑓𝑓(𝑥𝑥) at a candidate point 𝑥𝑥. 

For each evaluation of 𝑓𝑓 at a new point, the posterior distribution is updated. The acquisition 

function measures the value that would be generated by evaluation of the objective function at a 

new infill point 𝑥𝑥 based on current posterior distribution over 𝑓𝑓. The Gaussian Process-based 

models permit the calculation of an estimated error in the model, hence it is possible to use this 

to position infill points where the uncertainty in the prediction of the model is highest. The mean 

squared error (MSE) in a Gaussian process-based prediction model is [35] 

 

�̂�𝑠2(𝐱𝐱) = 𝜎𝜎2 �1 −𝝍𝝍𝑇𝑇𝚿𝚿−1𝝍𝝍 +
1 − 𝟏𝟏𝑇𝑇𝚿𝚿−1𝝍𝝍
𝟏𝟏𝑇𝑇𝚿𝚿−1𝟏𝟏 � 

Eq. 2.29 

Using this estimated error, the uncertainty in prediction can be modeled by considering it as the 

realization of a normally distributed random variable 𝑋𝑋(𝐱𝐱) with mean 𝑦𝑦�(𝐱𝐱) and variance �̂�𝑠2(𝐱𝐱). 

Considering the possibility that 𝑋𝑋(𝐱𝐱) can take different values, due to the size of �̂�𝑠2(𝐱𝐱), infill 

criteria can be made which balances the values of 𝑦𝑦�(𝐱𝐱) and �̂�𝑠2(𝐱𝐱). One way to balance these two 

is minimizing a statistical lower bound [35]: 

 

LB(𝐱𝐱) = 𝑦𝑦�(𝐱𝐱) − 𝐴𝐴�̂�𝑠(𝐱𝐱) 
Eq. 2.30 

where 𝐴𝐴  is a constant that controls the exploitation/exploration balance. As 𝐴𝐴 → 0, LB(𝐱𝐱) →

𝑦𝑦�(𝐱𝐱) (pure exploitation) and as 𝐴𝐴 → ∞, the effect of 𝑦𝑦�(𝐱𝐱) becomes negligible and minimizing 

LB(𝐱𝐱) is equivalent to maximizing  �̂�𝑠(𝐱𝐱) (pure exploration) [35]. 

2.2.10 Optimization using Probability of Improvement 

Usually, the infill point is placed at a value of 𝐱𝐱 that will help in an improvement on the best 

observed value so far, i.e., 𝑦𝑦min  [35]. By considering 𝑦𝑦�(𝐱𝐱)  as the realization of a random 

variable, the probability of improvement can be calculated as 𝐼𝐼 = 𝑦𝑦min −𝑋𝑋(𝐱𝐱)
𝑦𝑦min

  [35]. 
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𝑃𝑃[𝐼𝐼(𝐱𝐱)] =
1

�̂�𝑠√2𝜋𝜋
� 𝑒𝑒−[𝐼𝐼−𝑦𝑦�(𝐱𝐱)]2/(2𝑠𝑠2)d𝐼𝐼

0

−∞
 

Eq. 2.31 

Using the error function, 

𝑃𝑃[𝐼𝐼(𝐱𝐱)] =
1
2 �

1 + erf�
𝑦𝑦min − 𝑦𝑦�(𝐱𝐱)

�̂�𝑠√2
�� 

Eq. 2.32 

For a maximization problem, 

𝐼𝐼 =
𝑋𝑋(𝐱𝐱) − 𝑦𝑦max

𝑦𝑦max
 

Eq. 2.33 

2.2.11 Optimization using Expected Improvement 

If the mean 𝑦𝑦�(𝑥𝑥) and the variance �̂�𝑠2(𝑥𝑥) are provided, the amount of improvement over the 

current model can be determined. The Expected Improvement can be calculated by [35]: 

 

𝐸𝐸[𝐼𝐼(𝑥𝑥)] = �𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑦𝑦�(𝑥𝑥)�Φ�
𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑦𝑦�(𝑥𝑥)

�̂�𝑠(𝑥𝑥) � + 𝑠𝑠𝜙𝜙 �
𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑦𝑦�(𝑥𝑥)

�̂�𝑠(𝑥𝑥) � 𝑖𝑖𝑓𝑓 𝑠𝑠 > 0 

Eq. 2.34 

 

                    = 0 𝑖𝑖𝑓𝑓 𝑠𝑠 = 0 
Eq. 2.35 

where Φ(. ) and 𝜙𝜙(. ) are the cumulative distribution function and probability density function 

respectively. A maximum expected improvement infill procedure usually finds the global 

optimum. Using the error function, the expected improvement can be expressed as: 

 

𝐸𝐸[𝐼𝐼(𝐱𝐱)] = �𝑦𝑦min − 𝑦𝑦�(𝐱𝐱)� �
1
2

+
1
2

erf�
𝑦𝑦min − 𝑦𝑦�(𝐱𝐱)

�̂�𝑠√2
�� + �̂�𝑠

1
√2𝜋𝜋

exp �
−�𝑦𝑦min − 𝑦𝑦�(𝐱𝐱)�2

2�̂�𝑠2 � 

Eq. 2.36 

Figure 3 shows a Gaussian RBF prediction for a function by finding the minimum of the RBF 

model. However, the search of the original function gets stuck at a local optimum instead of the 

global optimum. 
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Figure 3: A minimum prediction based infill strategy for Gaussian RBF prediction [35] 

Equation (2.31) is interpreted graphically in Figure 4 which shows the prediction in Figure 3 

along with a vertical Gaussian distribution with variance 𝑠𝑠2(𝒙𝒙) centered around the prediction 

𝑦𝑦�(𝒙𝒙). The Gaussian distribution represents the uncertainty in the prediction and the area enclosed 

by the distribution below the best observed value so far, 𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 , is the Probability of Improvement. 

The Expected Improvement is the first moment of area enclosed by the Gaussian distribution 

below the best observed value.   
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Figure 4: A graphical interpretation of the probability of improvement [35] 

In the current work, the Efficient Global Optimization (EGO) algorithm [41] was used to find the 

best design possible. The Probability of Improvement and Expected Improvement were used as 

acquisition functions. After finding the initial best design, i.e., the maximum value of neck size 

from the simulation response values, the acquisition function is maximized using a genetic 

algorithm [42]. The optimal values of the design variables are determined and using those values, 

the new response is found out from the simulation model. This helps in updating the metamodel 

in each iteration. This process is continued till an adequately suitable design is obtained or until 

the maximum number of iterations i.e., 15 is reached. The following flowchart illustrates the 

workflow of the optimization routine. 
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The optimization problem for equal-sized particles can be framed as 

    find   𝒙𝒙 ∈ ℝ2 

    maximize  𝑁𝑁(𝑥𝑥) 

 subject to  𝑥𝑥𝑖𝑖 ∈ {4,40, … ,24,41.5} 

 
Sampling Plan 

 
Simulation 

Kriging Metamodel 

Generation 

Model Testing/Cross-

Validation 

Initial Kriging 
Metamodel 

Maximization of 

Acquisition Function 

Conv. 

End 

 
Add Infill Points 

 
Update Metamodel 

Figure 5: Efficient Global Optimization (EGO) algorithm 
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where 𝒙𝒙 = �𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓 ,𝑑𝑑�  is the vector of design variables surface diffusivity and inter-particle 

distance, and 𝑁𝑁(𝒙𝒙) is the neck size. 

 

The Efficient Global Optimization (EGO) approach was used in this work for the following 

major advantages [41]: 

 Fewest function evaluations are required among other competing optimization methods. 

This is due to the possibility of interpolating or extrapolating accurately over large 

distances in the design space.  

 There is a credible stopping rule based on the acquisition function from further searching 

the surrogate. This is possible because the probabilistic model provides confidence 

intervals on the function's value at unsampled points, the validity of which can be 

checked by model validation techniques.  

 There is a fast approximation to the multi-physics simulation model that can be used to 

identify important variables and visualize the nature of input-output relationships.     
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3. RESULTS AND DISCUSSION 

3.1 Sintered Particle Microstructures from Phase-field Modeling 

Figures 6-9 depict the microstructure evolution with the sizes of the two spherical particles being 

equal, using the phase-field code in Ref. [33]. In this case, it can be observed that the shrinkage 

of both particles takes place at an equal rate. The neck evolution is rapid at the beginning and 

then slows down later. The changes in the size of the neck can be attributed to the transport of 

matter from regions in the vicinity with high concentration to the neck region facilitated by 

various diffusion paths. The neck sizes at time steps 100, 5000, 12,500 and 20,000 are 9.02257, 

17.36433, 20.96770 and 22.47932 respectively.   

 

 

Figure 6: Neck evolution at time step 100 for equal-sized particles 
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Figure 7: Neck evolution at time step 5000 for equal-sized particles 

 

Figure 8: Neck evolution at time step 12,500 for equal-sized particles 
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Figure 9: Neck evolution at time step 20,000 for equal-sized particles 

Figures 10-13 describe the evolution of the neck region for unequal sized particles, i.e., particle 

size ratio of 1.5, using the phase-field code in Ref. [33]. It was observed that the neck formation 

was rapid in the early stages of the simulation but later slowed down and reached a steady state. 

It was also observed that the smaller particle had a faster contraction. The neck sizes at time 

steps 100, 5000, 12,500 and 20,000 are 8.18180, 14.80311, 16.82539 and 18.66670 respectively. 
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Figure 10: Neck evolution at time step 100 for unequal sized particles 

 

Figure 11: Neck evolution at time step 5000 for unequal sized particles 
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Figure 12: Neck evolution at time step 12,500 for unequal sized particles 

 

Figure 13: Neck evolution at time step 20,000 for unequal sized particles 
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Figure 14 below shows the nature of evolution of the neck region for both equal and unequal 

sized particles. The curve showing increase of neck size is steep at the beginning for both the 

particle sizes and then tends to flatten as the time step increases. In both cases, the surface 

diffusivity was fixed at 16. This indicates that the particle size does not have a significant effect 

on the evolution of neck size at later time steps. 

 

 

Figure 14: Evolution of neck size at different time steps for equal and unequal sized particles 

3.2 Machine Learning Results 

3.2.1 Equal Sized Particles 

A. Initial Metamodel Generation 

Figures 15-17 show the initial metamodels obtained using three regression functions of order 

zero (Regpoly0), one (Regpoly1) and two (Regpoly2) respectively. The neck size is seen to 

increase with increasing surface diffusivity and decreases with increasing inter-particle distance. 
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Figure 15: Metamodel by Regression Function of Order Zero 

 

Figure 16: Metamodel by Regression Function of Order One 
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Figure 17: Metamodel by Regression Function of Order Two 

B. Model Testing 

Table 7 below shows the root mean square error (RMSE) values for each initial metamodel. The 

model with regression function of order zero was found to have the least RMSE of 1.2077 and 

hence was selected for further optimization process. 

Table 7: RMSE values at different regression functions for equal-sized particles 

Particle size  Regpoly0 Regpoly1 Regpoly2 

Equal 1.2077 1.2205 1.3937 

 

C. Cross-Validation 

Table 8 shows the average error found by cross-validation for the observations used to build the 

surrogate model of equal-sized particles. The model with regression function of order zero has 

the least error of 0.25836. Hence error results from both model testing and cross-validation 

indicate Regpoly0 is the best metamodel for equal-sized particles. 
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Table 8: Cross-Validation errors for equal-sized particles 

Particle size ratio Regpoly0 Regpoly1 Regpoly2 

Equal 0.25836 0.38635 0.32083 

 

D. Sensitivity Analysis 

Figures 18 and 19 show the correlation of surface diffusivity and inter-particle distance with 

neck size respectively. Figure 18 points out a strong correlation with correlation coefficient of 

0.5733 explaining that as the surface diffusivity increases, there is a large increase in neck size. 

Figure 19 explains that the inter-particle distance is strongly associated with the neck size with a 

Pearson correlation coefficient of -0.8028. As the inter-particle distance increases, there is a large 

decrease in neck size. 

 

 

Figure 18: Correlation between surface diffusivity and neck size for equal-sized particles 
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Figure 19: Correlation between inter-particle distance and neck size for equal-sized particles 

E. Optimization by Probability of Improvement 

Figures 20 and 21 show the first iteration of input parameter optimization using Probability of 

Improvement (PI) as the acquisition function. Figure 20 illustrates the random sampling plan 

with surface diffusivity ranging from 4 to 24 and inter-particle distance from 40 to 41.5. Figure 

21 shows the first metamodel generated by Gaussian Process Regression and explains the 

monotonic nature of the data for neck size linearly increasing with increasing surface diffusivity 

and decreasing with inter-particle distance. 
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Figure 20: Sampling plan for iteration 1 of PI optimization for equal-sized particles 

 

Figure 21: Kriging metamodel for iteration 1 of PI optimization for equal-sized particles 

Figures 22 and 23 describe the last iteration in the optimization process. The values of optimal 

design variables converged after 10 iterations at [23.8268, 40.0001]. Hence the iteration was 

stopped here. The maximum neck size was 19.0476 and the Probability of Improvement 0.5119. 
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Figure 22: Sampling plan for iteration 10 of PI optimization for equal-sized particles 

 

Figure 23: Kriging metamodel after iteration 10 of PI optimization for equal-sized particles 

F. Optimization by Expected Improvement 

Figures 24 and 25 show the first iteration of design optimization using Expected Improvement 

(EI) as the acquisition function. Figure 24 displays the random sampling plan with surface 

diffusivity ranging from 4 to 24 and inter-particle distance from 40 to 41.5. Figure 25 shows the 
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initial metamodel generated by Kriging regression and re-iterates the fact that the neck size 

linearly increases with increasing surface diffusivity and decreases with increasing inter-particle 

distance. 

 

 

Figure 24: Sampling plan for iteration 1 of EI optimization for equal-sized particles 

 

Figure 25: Kriging metamodel for iteration 1 of EI optimization for equal-sized particles 
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Figures 26 and 27 demonstrate the last iteration in the optimization process. After 15 iterations 

were used up, the values of optimal design variables were found as [23.9874, 40.7428]. The 

maximum neck size was 19.0476 and the Expected Improvement 8.1805E+03. The solution 

obtained looks like a global optimum as all potential values seem to have been explored from the 

entire design space. 

 

 

Figure 26: Sampling plan for iteration 15 of EI optimization for equal-sized particles 
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Figure 27: Kriging metamodel for iteration 15 of EI optimization for equal-sized particles 

Figure 28 shows how the Probability of Improvement is varying with each iteration for equal-

sized particles. It gradually decreases as the iterations proceed. The design converges after 10 

iterations. 

 

 

Figure 28: Probability of Improvement at each iteration for equal-sized particles 
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Figure 29 presents the Expected Improvement at each iteration for equal-sized particles. The EI 

tends to decrease after each iteration but seems to require more number of iterations to finally 

become zero. This might be because the function is trying to explore the entire design space for 

possible infill points.    

 

 

Figure 29: Expected Improvement at each iteration for equal-sized particles 

Figures 30 and 31 detail the responses sampled by PI and EI at each iteration to update the 

Kriging surrogate. Some samples are used to exploit the surrogate while others are used to 

explore the design space. The optimal solutions were found after 10 and 15 iterations 

respectively. 
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Figure 30: Response of the designs sampled by PI for equal-sized particles 

 

Figure 31: Response of the designs sampled by EI for equal-sized particles 

3.2.2 Unequal Sized Particles 

A. Initial Metamodel Generation 
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Figures 32-34 show the initial metamodels obtained using three regression functions of order 

zero (Regpoly0), one (Regpoly1) and two (Regpoly2) respectively. The figures have surfaces 

that detail the monotonic increase of neck size with increase in surface diffusivity and decreasing 

neck size with increase in inter-particle distance. The neck size increased from 12.093 to 

14.68752 for inter-particle distance of 33.3, from 6.82169 to 12.06348 for inter-particle distance 

of 34.3 and from 4.30771 to 10.39367 for inter-particle distance of 34.8. The surface diffusivity 

ranged from 4 to 24 and inter-particle distance spanned 33.3 through 34.8.   

 

 

Figure 32: Metamodel by Regression Function of Order Zero for unequal sized particles 
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Figure 33: Metamodel by Regression Function of Order One for unequal sized particles 

 

Figure 34: Metamodel by Regression Function of Order Two for unequal sized particles 

B. Model Testing 

Table 9 below shows the root mean square error (RMSE) values for each metamodel. The model 

with regression function of order zero was found to have the least RMSE of 0.4111 and hence 
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was chosen for Bayesian optimization. For both equal and unequal sized particles, the model 

with regression function of order zero gave the least mean square error. Also, the error was 

observed to decrease for unequal sized particles. 

Table 9: RMSE values at different regression functions for unequal sized particles 

Particle size  Regpoly0 Regpoly1 Regpoly2 

Unequal 0.4111 0.7734 1.0878 

 

C. Cross-Validation 

Table 10 shows the average error found by leave-one-out cross-validation for the observations 

used to build the surrogate model of unequal sized particles. The model with regression function 

of order zero has the least error of 0.3149. The error results from model testing and cross-

validation for unequal sized particles indicate Regpoly0 is the suitable metamodel to start the 

optimization process with. This result concurs with that of equal-sized particles. The cross-

validation error is greater for unequal sized particles than equal-sized particles.   

Table 10: Cross-Validation errors at different regression functions for unequal sized particles 

Particle size Regpoly0 Regpoly1 Regpoly2 

Unequal 0.3149 0.5850 0.4362 

 

D. Sensitivity Analysis 

Figures 35 and 36 show the correlation of surface diffusivity and inter-particle distance with 

neck size respectively for unequal sized particles. As for equal-sized particles, Figure 35 

demonstrates a strong positive correlation between surface diffusivity and neck size with a 

coefficient of 0.5734. Figure 36 explains the strong dependence of neck size on inter-particle 

distance with a Pearson correlation coefficient of -0.7960. As the inter-particle distance increases, 

there is a considerable decrease in neck size. This proves that the nature of correlation between 

the QOI and input parameters is independent of the particle size. 
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Figure 35: Correlation between surface diffusivity and neck size for unequal sized particles 

 

Figure 36: Correlation between inter-particle distance and neck size for unequal sized particles 

E. Optimization using Probability of Improvement 

Figures 37 and 38 show the first iteration of neck size optimization using Probability of 

Improvement (PI) as the acquisition function. Figure 37 illustrates the random sampling plan 
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with surface diffusivity ranging from 4 to 24 and inter-particle distance from 33.3 to 34.8. Figure 

38 shows the first metamodel generated by Gaussian Process Regression with neck size linearly 

increasing for the range of surface diffusivity and decreasing for that of inter-particle distance. 

 

 

Figure 37: Sampling plan for iteration 1 of PI optimization for unequal-sized particles 

 

Figure 38: Kriging metamodel for iteration 1 of PI optimization for unequal-sized particles 
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Figures 39 and 40 describe the last iteration in the optimization process. The values of optimal 

design variables were fixed at [23.9700, 33.3005] after exhausting all 15 iterations. The 

maximum neck size was 16.1905 and Probability of Improvement was 0.4999. 

 

 

Figure 39: Sampling plan for iteration 15 of PI optimization for unequal-sized particles 

 

Figure 40: Kriging metamodel after iteration 15 of PI optimization for unequal-sized particles 
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F. Optimization using Expected Improvement 

Figures 41 and 42 show the first iteration of Bayesian Optimization using Expected 

Improvement (EI) as the acquisition function. Figure 41 displays the input sampling plan with 

surface diffusivity ranging from 4 to 24 and inter-particle distance from 33.3 to 34.8. Figure 42 

shows the initial metamodel generated by Kriging regression and the increasing nature of the 

neck size with increasing surface diffusivity and decreasing with inter-particle distance. 

 

 

Figure 41: Sampling plan for iteration 1 of EI optimization for unequal-sized particles 
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Figure 42: Kriging metamodel for iteration 1 of EI optimization for unequal-sized particles 

As shown by figures 43 and 44, at the end of 15 iterations, the values of design variables 

converged at [23.9893, 33.9627], the maximum neck size being 16.1905 and Expected 

Improvement as 6.0914e+03. The solution obtained here tends to be a global optimum. 

 

 

Figure 43: Sampling plan for iteration 15 of EI optimization for unequal-sized particles 
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Figure 44: Kriging metamodel after iteration 15 of EI optimization for unequal-sized particles 

Figure 45 shows the Probability of Improvement at each iteration for unequal sized particles. 

Initially, the PI decreases and tends to zero, then becomes constant in the later iterations. The 

trend is similar to the case for equal-sized particles but here the function will apparently require 

more than 15 iterations to eventually turn zero. 

 

 

Figure 45: Probability of Improvement at each iteration for unequal sized particles 
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Figure 46 presents the Expected Improvement at different iterations for unequal sized particles. 

The EI seems to be higher in the later iterations indicating that the function is trying to improve 

upon the value of maximum neck size. 

 

 

Figure 46: Expected Improvement at each iteration for unequal sized particles 

Figures 47 and 48 depict the responses obtained by maximizing the acquisition functions 

Probability of Improvement and Expected Improvement respectively for unequal sized particles. 

As in the case of equal-sized particles, there are some high values of neck size which exploit the 

surrogate while there are some low values of the same which explore the design space. EGO 

selects designs that lead to maximization of the acquisition function meeting the constraints of 

input parameters.   
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Figure 47: Response of the designs sampled by PI for unequal sized particles 

 

Figure 48: Response of the designs sampled by EI for unequal sized particles 

Table 11 lists the optimal values of design variables surface diffusivity 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓  and inter-particle 

distance 𝑑𝑑  as obtained from the two acquisition functions. For equal-sized particles, the 

Probability of Improvement gives the optimal result as [23.8268, 40.0001] when the design 
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converged after 10 iterations. The Expected Improvement after 15 iterations provides an optimal 

design of [23.9874, 40.7428] which indicates a global optimum. For unequal sized particles, the 

Probability of Improvement provides a solution of [23.9700, 33.3005] while the Expected 

Improvement provides optimal values of [23.9893, 33.9627] after consuming all 15 iterations. 

 

The maximum value of surface diffusivity present in the sampling plan is 24. The minimum 

values of inter-particle distance in the sampling plans are 40 and 33.3 for equal-sized and 

unequal sized particles respectively. Hence, the optimization result validates the theory that 

surface diffusivity should be as high as possible to have better densification of the material 

undergoing sintering. The optimal values of inter-particle distance emphasize the fact that lower 

inter-particle distance leads to a close-packed arrangement of atoms and hence reduction of 

porosity between the particles. This leads to better mechanical properties of the material. The 

optimization result from two different acquisition functions looks in good agreement with each 

other. 

Table 11: Optimal values of design variables 

Particle size  Optimal design [Dsurf, d] by 

Probability of Improvement 

Optimal design [Dsurf, d] by 

Expected Improvement 

Equal [23.8268, 40.0001] [23.9874, 40.7428] 

Unequal [23.9700, 33.3005] [23.9893, 33.9627] 
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4. CONCLUSION AND FUTURE WORK 

Undeniably, sintering is a pervasive material processing technology with its application ranging 

from laser-based sintering to spark plasma sintering. However, the post-build part quality needs 

to be focused on for better reliability on this technology and wide usage. In the current work, a 

machine-learning framework was developed to aid in quality control of the solid-state sintering 

process. Specifically, the microstructure evolution during the process was optimized. Controlling 

the microstructure morphology is an essential part of any manufacturing process. Machine 

Learning has a huge impact on ensuring product quality by predicting the microstructure during 

the design process.  

 

The process design in the current work was based on two different particle sizes. The following 

conclusions can be drawn: 

 With increasing surface diffusivity, the neck size in between particles always increases 

irrespective of the particle radii. For equal-sized particles, the neck size increased from 

14.15388 to 19.36508 with increase of surface diffusivity from 4 to 24 and inter-particle 

distance constant at 40. For unequal sized particles, the neck size increased from 12.093 

to 15.55554 with the same increase of surface diffusivity and inter-particle distance 

constant at 33.3. This is because surface diffusivity increases densification in the material 

and hence enlargement of neck width occurs. The neck size decreases with increase in 

inter-particle distance independent of particle radii. For equal-sized particles, the neck 

size decreased from 14.15388 to 5.84617 with increase of inter-particle distance from 40 

to 41.5 at constant surface diffusivity of 4.  For unequal sized particles, the neck size 

decreased from 12.093 to 4.30771 for an increase of inter-particle distance from 33.3 to 

34.8 with a constant surface diffusivity of 4. This is attributable to the fact that lesser 

inter-particle distance leads to reduction in porosity and hence better densification due to 

a close-packed arrangement of particle micro-structure. This helps in enhancing material 

properties.  

 As depicted in section 3.1, shrinkage of particles occurs at an equal rate for equal-sized 

particles while for unequal sized particles, the smaller particle contracts faster. The neck 

formation proceeds in the same manner for both equal and unequal sized particles. The 
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neck sizes for equal-sized particles were 9.02257, 17.36433, 20.96770 and 22.47932 

corresponding to time steps 100, 5000, 12,500 and 20,000 while for unequal sized 

particles the corresponding neck sizes were 8.18180, 14.80311, 16.82539 and 18.66670 

for the same time steps. The neck evolution is rapid initially and then slows down later.  

 The neck size seems to be higher for equal-sized particles than that for unequal sized 

particles for the same time steps as illustrated by the phase-field simulation results in 

section 3.1. This might be due to the rapid shrinkage of the smaller particle in the case of 

unequal sized particles. Also, Figure 14 shows that the particle size does not have a 

significant effect on the evolution of neck size during the later stages of sintering process.    

 The inter-particle distance has a higher contribution to the variation of neck size than that 

of surface diffusivity irrespective of particle size. This is evident from the sensitivity 

analysis results in section 3.2. For equal-sized particles, the value of the correlation 

coefficient between surface diffusivity and neck size is 0.5733 which indicates a strong 

positive correlation. The same conclusion can be drawn from the value for unequal sized 

particles which is 0.5734. The correlation coefficients between inter-particle distance and 

neck size for equal and unequal sized particles are -0.8028 and -0.7960 respectively 

which indicate a strong negative association of inter-particle distance with neck size. As 

the values are closer to -1, the lesser the inter-particle distance, the more the value of 

neck size should be. Hence, to get better mechanical properties of the material, it is 

recommended to have the inter-particle distance as small as possible and surface 

diffusivity as high as possible.   

 For both equal-sized and unequal sized particles, the metamodel with regression function 

of order zero (Regpoly0) is the best initial metamodel. According to Tables 7 and 8, the 

root mean square error and cross-validation error for Regpoly0 for equal-sized particles 

are 1.2077 and 0.25836. The same for unequal sized particles are 0.4111 and 0.3149 as 

inferred from Tables 9 and 10.   

 For equal-sized particles, the Probability of Improvement gave optimal values of design 

variables surface diffusivity and inter-particle distance as 23.8268 and 40.0001 while 

Expected Improvement provided values 23.9874 and 40.7428 respectively. For unequal 

sized particles, the optimal design values from Probability of Improvement were 23.9700 

and 33.3005 while those from Expected Improvement were 23.9893 and 33.9627. Hence, 
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the optimization results from the two different acquisition functions tend to concur with 

each other.  

 The optimal values of input parameters surface diffusivity and inter-particle distance 

validate the general theory that surface diffusivity is preferred to be higher for enhanced 

densification of the material after sintering while inter-particle distance is desired to be 

lower for a close-packed arrangement of atoms to reduce porosity and hence increase 

density of the material.  

Future work in this context can include the following: 

 Using all 16 training data points to build better surrogate models with lesser root mean 

square error. If 16 data points are not enough for building the surrogate model, an 

adaptive sampling approach can be used which will balance the local exploitation and 

global exploration via an error information. This strategy consists of sequentially 

selecting new points by maximizing an expected prediction error criterion that considers 

both the bias and variance information [43], thus making up for data deficit.    

 Developing machine-learning methodologies for automatic measurement of neck size. 

 Since the trend in the data for neck size is monotonic with respect to the input parameters, 

the surrogate models can be built using the polynomial response surface method. This can 

be achieved by the curve fitting toolbox in MATLAB.  

 The phase-field simulations can be performed on parallel processors to reduce the time 

for generating the microstructures.  

 Active Learning methodologies can be used to incorporate all essential input parameters 

to build the metamodels so that the surrogate model covers all the design variables.  

 Meta-heuristics techniques may be used to decide the optimal particle size for better 

mechanical properties of the material. 
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5. MAJOR CONTRIBUTION 

The following were the major activities carried out in this work: 

 Performed sensitivity analysis and found the correlation of input parameters surface 

diffusivity and inter-particle distance with neck size for equal-sized and unequal sized 

particles during sintering.   

 Applied Gaussian Process Regression algorithm to create surrogate models of neck size 

for equal-sized and unequal sized particles. 

 Performed model testing on the surrogate models to quantify root mean square error 

(RMSE) for the initial metamodels. 

 Applied leave-one-out cross-validation algorithm to calculate average error in the initial 

metamodels. 

 Using Bayesian Optimization method, the optimal values of surface diffusivity and inter-

particle distance were determined for both equal-sized and unequal sized particles.  

 A comparative study was done for optimization by two different acquisition functions, 

Probability of Improvement and Expected Improvement. 
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