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ABSTRACT

Cyclobutane pyrimidine dimers (CPD) are the predominant DNA lesions formed upon

exposure of this biopolymer to sunlight. Given the potentially dire biological consequences of

DNA lesions [  1 ]–[ 4 ], there is a need to fully characterize their behaviour, with an eye towards

understanding their complete reactivity and as a possible means to detect and quantify their

presence in the genome. The work described in this dissertation describes studies of the

alkaline reactivity of CPD lesions generated within dinucleotide & polynucleotide strands.

It was found that CPD-TpT is generally inert under alkaline conditions at room temperature,

which is in agreement with earlier studies on alkaline hydrolysis of CPD-thymine and CPD-

thymidine [  5 ]. However, a re-evaluation of the same reaction in the presence of 18O labelled

water demonstrated that, similar to other UV-induced DNA lesions containing a saturated

pyrimidine ring, CPD undergoes a water addition at the C4=O group of the nucleobase

leading to the formation of a hemiaminal intermediate [  6 ]. This intermediate, however, does

not lead to hydrolysis products and completely reverts to starting material under those same

conditions. Moreover, the two C4=O groups present on 3′ and 5′-thymines in a CPD molecule

show different chemical reactivities, with the 3′ C4=O group having greater affinity towards

water addition as compared to the one on 5′ end, a fact reflected in different rates of exchange

with the incoming nucleophile leading to the hemiaminal intermediate. The 18O labelling

reaction was also investigated in CPD lesions generated within oligonucleotides to probe the

cause of asymmetry between the 3′ vs 5′ C4=O groups; ultimately, it was determined that

the asymmetric reactivity observed to occur between the two C4=O groups was an intrinsic

property of the CPD molecule and did not arise as a result of asymmetry in a dinucleotide

setting.

In addition to the above studies, during the course of the investigation of the nucleophilic

reactivity of CPD, a chemical reaction was observed leading to what appeared to be the

rapid and total chemical reversal of CPD lesions to the original TpT (thymine-thymine

dinucleotide)! This ”repair” reaction occured when CPD reacted with hydrazine, and appears

facilitated by an inert atmosphere under which it rapidly proceeds to completion at room

temperature.
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1. INTRODUCTION

1.1 DNA structure, damage and repair

The intention of this section is to acquaint the reader with the details of DNA structure

important to understanding the formation, outcome and repair of cyclobutane pyrimidine

dimer (CPD) lesions.

1.1.1 B-form DNA structure

The primary structure of DNA consists of phosphodiester-linked nucleotide units that

contain a 2′-deoxy-D-ribose sugar ring and an aromatic nucleobase (Figure  1.1 ). The nucle-

obases found in DNA include the purines adenine (A) and guanine (G) and the pyrimidines

cytosine (C) and thymine (T). The primary structure of DNA has a consistent 5′ −→ 3′

polarity with both a negatively charged sugar-phosphate backbone and an array of rela-

tively hydrophobic nucleobases, amphiphilic features which ultimately drive the assembly

and maintenance of secondary and tertiary nucleic acid structures.

While DNA is known to exist in several polymorphs (A-form, B-form and Z-form), the

predominant DNA structure found under physiological conditions is referred to as the B-

form. This conformation of DNA contains two antiparallel strands of nucleic acid connected

by stacked Watson-Crick A·T and G·C base pairs that spiral around a central polymer

axis in a right-handed helical sense (Figure  1.2 ). The specific nature of Watson-Crick base

pairing results in a duplex composed of single strands that are self-complementary; thus,

knowledge of the nucleobase order in one strand is sufficient to define the primary sequence

of the other, a feature that facilitates the replication and repair of DNA.

.

The right-handed helical structure of B-form DNA (Figure  1.2 ) contains a hydrophobic

interior of Watson-Crick base pairs stacked nearly perpendicular to the central polymer

axis at 3.4 Å intervals [  7 ], [ 8 ]. The π-π stacking interactions that occur between these

aromatic planes provide a substantial stabilizing force that helps to maintain the duplex

nature of DNA [  9 ]. Further, each base-pair plane of B-form DNA is rotated approximately

36◦ relative to the one preceding it, resulting in a complete right-handed helical turn for
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Figure 1.1. The primary structure of DNA. Figure credits: left panel, figure
adapted from ”Nucleic Acids: Figure 1,” by OpenStax College, Biology (CC
BY 3.0). Right panel, figure adapted from ”DNA Chemical Structure,” by
Madeleine Price Ball (CC0/public domain).

Figure 1.2. Double-helical structure of DNA. Figure modified from ”DNA
Structure and Sequencing: Figure 3,” by OpenStax College, Biology (CC BY
3.0).

every 10 contiguous base pairs and thus a helical pitch of 34 Å (3.4 Å/repeat unit X 10 base

pairs/helical turn). With the Watson-Crick base pairs inside, the anionic sugar-phosphate

backbone spirals around the outside of the helix, creating a hydrophilic exterior with a net

charge of -2 for each base pair repeat unit. The high density of negative charge associated

with this biopolymer also dictates to some extent the character of agents which associate with

it: agents that bind most efficiently to DNA often possess a net overall positive charge. Two
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other important structural details of the sugar-phosphate backbone include the deoxyribose

ring conformation and the N -glycosidic bond angles: in B-form DNA the deoxyribose ring

adopts a C2′-endo conformation, while the N -glycosidic bond angle is in an anti-configuration

(Figures  1.3 ,  1.4 )

Figure 1.3. Deoxyribose sugar pucker conformations. Figure adapted from [  10 ]

Figure 1.4. The N -glycosidic bond angles found in DNA structures. Figure
adapted from [ 11 ]

The overall 3-D structure of B-form DNA creates two distinct helical grooves, the minor

and the major, which spiral around the exterior surface of the double strand (Figure  1.2 ).

In B-form DNA, the minor groove is narrow, while the major groove is wide, with both

grooves possessing a moderate, nearly equivalent depth. Importantly, these two grooves

create unique microenvironments for the binding and recognition of ligands (i.e., proteins

or small molecules). The floors of the major and minor grooves are defined by the opposite

sides of the stacked Watson-Crick base-pair planes which create patterns of hydrogen-bond

24



donor and acceptor sites within the plane of the base pair (Figure  1.5 ) [  12 ]. Thus, the floors

of the grooves of the DNA helix would differ for individual base-pair sequences with respect

to their patterns of H-bond donors, H-bond acceptors, and sites available for hydrophobic

interactions (e.g., the C5 methyl group of thymidine). These differences form the basis, in

part, for the sequence-selective binding of certain ligands [ 13 ].

Figure 1.5. Structures of B-DNA and Watson–Crick base pairs. Hydrogen
atoms on the B-DNA helix have been removed for clarity. Figure adapted from
[ 14 ]
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Table  1.1 shows the base stacking free energy values for adjacent nucleobases, which are

indicative of the contribution of individual nucleobase steps to the overall stability of duplex

DNA [  15 ]. As tabulated, the parameter values are scattered from -0.19 kcal/mol for the TpA

step to -2.17 kcal/mol for the GpC step. This range is generally consistent with parameter

values for coaxial stacking. Based on these values, GpC is the most stable contact, TpA is the

least stable contact and a tendency towards more efficient stacking for mixed dinucleotides

is in the order TpG<ApG<GpA<GpT. When similar nucleobases are stacked next to each

other, the stacking energy seems indifferent to the identity of the base. This is evident by the

similar values of stacking free energies for ApA, TpT, GpG and CpC steps ranging between

-1.11 kcal/mol and -1.44 kcal/mol. In general, GpG and CpC steps (both with energy values

of -1.44 kcal/mol) appear to be more stable than ApA and TpT steps, both of which have a

stacking free energy value as -1.11 kcal/mol.

Table 1.1. Stacking free energy parameters for adjacent pairs of nucleobases
in a duplex DNA strand (the reported values of ∆G are in kcal/mol) [ 15 ]

KL A T G C
A -1.11 -1.34 -1.06 -1.81
T -0.19 -1.11 -0.55 -1.43
G -1.43 -1.81 -1.44 -2.17
C -0.55 -1.06 -0.91 -1.44

From Table  1.1 , it is also evident that the stabilizing effect of two stacked thymine residues

is higher than it would be if thymine was stacked next to an adenine or a guanine nucleobase.

In terms of structure, the two thymines in a TpT step do not lie in the same plane. Rather,

the two nucleobases display a ”propeller twist” arrangement in which they rotate counter

relative to one another along the long axis of the base pair, giving the base pair a propeller-

like geometry (Figure  1.6 ). The C4=O groups on adjacent thymine nucleobases in a TpT

step are hydrogen-bonded with the amine hydrogens from the adenine nucleobases on the

complementary strand, as highlighted in Figure  1.6 .

Along with the B-form, A-form DNA is another relatively well-studied polymorph of

DNA. A-form DNA is not naturally abundant in living cells; however, B-form DNA trans-

forms into an A-form helix as the relative humidity of its environment decreases to 75% and
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Figure 1.6. Section of a DNA double helix showing a thymine-thymine step.
Figure modified from [ 16 ]

the NaCl concentration drops below 10%. Interestingly, of relevance here, UV irradiation

of A-Form DNA found in ”packaged” DNA of bacterial endospores leads to the formation

of spore photoproduct (SP) lesions. A comparison of the helix structural parameters from

crystallized examples of the two forms of DNA is shown in Figure  1.7 [ 7 ].

Figure 1.7. Different conformations of the DNA double helix. (a) The struc-
ture of B-DNA as proposed by Watson and Crick in 1953, based on fibre
diffraction studies. Modified from Sinden et al. (1998) [ 17 ]. (b) A- and B-
DNA, as seen from the side of the helix (above), and looking down the helix
axis (below). The structures were drawn from the crystal structures, using the
Cn3D programme, available from the NCBI home page.
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1.1.2 UV-Induced DNA damage

DNA is vulnerable to chemical and physical damage [  18 ]. As a result, DNA lesions are

generated under the constant stress of agents like sunlight, oxygen and oxidizing radicals, etc.

[ 19 ]–[ 21 ]. Ultraviolet light harms cells by directly interacting with, and altering chemically,

the nucleobases of DNA, leading to UV-induced DNA photoproducts. Of the three categories

of solar ultraviolet radiation, only UV-A and UV-B are capable of penetrating the earth’s

atmosphere [  22 ]. Thus, these two categories of solar radiation pose the maximum danger to

humans, especially as depletion of the ozone layer allows higher levels of ultraviolet radiation

to reach the surface of the earth (Figure  1.8 ) [  23 ]–[ 26 ]. It has been demonstrated that the

ability of UV light to damage a given nucleobase in DNA is determined by two factors: (1)

the sequence of the DNA in the immediate vicinity of the photoproduct (refer to Table  1.1 

summarizing the relative stabilities of various dinucleotide steps) [ 15 ], and (2) the flexibility

of the DNA at the site of the photoproduct (pyrimidine-rich sequences generally account

for relatively flexible regions of the DNA) [  27 ]. For pyrimidines, the predominant photore-

action in double-stranded DNA involves covalent dimerization between adjacent pyrimidine

residues, leading to the formation of various kinds of pyrimidine dimers [  28 ]–[ 30 ]. In contrast

to adjacent pyrimidines, non-adjacent, pyrimidines (pyrimidines flanked on either side by a

purine) do not readily form UV photoproducts in double-stranded DNA. This is attributed

to torsional constraints imposed by the double helix which make it difficult for non-adjacent

pyrimidines to adopt a geometry necessary for photoreaction (Table  1.1 )[ 15 ]. In contrast to

that, adjacent pyrimidines have the required geometry optimal for dimer formation (refer

to ”propeller geometry” explained in Figure  1.6 ) [ 16 ]. Dimerization is also much easier in

melted DNA because the geometrical changes required for adjacent pyrimidine residues to

dimerize are easier to adopt in single-stranded DNA [  27 ]. Although purines are believed

to be resistant to UV damage relative to pyrimidines, it has been shown that at moderate

UV dosages, purines flanked on their 5′ side by two or more contiguous pyrimidines readily

form UV photoproducts in double-stranded DNA. In this case, flanking pyrimidines appear

to activate purine photoreactions by transferring triplet excitation energy to the purine. In

support of this notion, melting of the DNA helix greatly inhibits the ability of flanking
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pyrimidines to activate purine photoreactions, presumably by disrupting intimate orbital

overlap required for triplet transfer [ 27 ].

Figure 1.8. Overview of UV induced DNA damage showing the parts of UV
radiation reaching the earth’s surface and the lesions that result from UV-B
exposure. Figure adapted from [  31 ]

As noted earlier, direct DNA damage occurs when a photon of UV light is absorbed by

a DNA pyrimidine. Photon absorption leads to two classes of pyrimidine dimers in most

living cells: (1) cyclobutane pyrimidine dimers (CPDs) [ 3 ], [  32 ], [  33 ] and (2) pyrimidine (6-4)

pyrimidone photoproducts (6-4PPs) [ 34 ], [ 35 ]. Another lesion, spore photoproduct (SP) is

formed upon UV-irradiation of bacterial endospores where conditions of low hydration force

the DNA into an uncommon A-form [ 36 ], [  37 ]. This unique DNA conformation, coupled

with the presence of small acid soluble proteins (SASPs) in spore genomic DNA alters the

outcome of the thymine photoreaction, making SP the dominant photoproduct. Figure  1.9 

illustrates the three classes of naturally occurring UV lesions: CPD, 6-4PP and SP. Included

here also is 5,6-dihydro-2′-deoxyuridine (dHdU) which is formed when cytosine is exposed

to ionizing radiation under anoxic conditions (and is considered a general structural model

for lesions containing a saturated pyrimidine ring) [ 38 ].
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Figure 1.9. Naturally occurring thymine dimers and dHdU that possess a
saturated pyrimidine ring. Figure adapted from [  6 ]

Why do these lesions form? DNA is a very large molecule that absorbs the energy it

gains on interaction with a photon of UV light and then quickly releases that energy as heat.

During the time after the DNA absorbs the energy and before it dissipates the heat, it is in

a higher energy state and is more reactive; the shorter this reactive time is, the less likely

it is that the DNA will undergo a harmful reaction. It turns out that DNA is extremely

effective at dissipating the extra energy quickly, so it becomes damaged less than 0.1% of

the time it absorbs UV light. In cases where damage does occur, there are different ways

excited DNA can react; however the cross-linking of two base pairs is the most common. If

two pyrimidine base pairs (thymine or cytosine) are stacked upon each other, the two rings

can fuse together via a pericyclic reaction to form a cyclobutane pyrimidine dimer (Figure

 1.10 ). The pericyclic reaction is possible because of the close proximity of the rings and

how their symmetries align (Figure  1.6 ). This leads to a four-carbon cyclobutane ”bridge”

between adjacent pyrimidine residues. Importantly, dimerization between the pyrimidines

makes it difficult for DNA replication enzymes to determine what base pairs should be across

from the fused pyrimidines, leading to errors. Such errors can change the DNA sequence of

a daughter strand and ultimately how it encodes a protein, resulting in a mutant protein

product. If the mutation occurs in an area which codes DNA repair enzymes or tumour

suppressing proteins, such mutations can lead to cancer.

Cyclobutane thymine dimers, which account for more than 90% of all lesions formed in

the human genome upon UV-B irradiation, block replicative and transcriptional polymerases

[ 20 ], [  39 ], [  40 ], resulting in bypass replication by error-prone Y-polymerases like polη in the

former case, and transcription-coupled repair in the latter. In the absence of efficient repair,
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Figure 1.10. Dimerization of adjacent pyrimidine nucleobases on UV irradiation

these lesions can result in mutations, cancer and cell death. To avoid mutagenesis and

carcinogenesis by the CPD lesion, this damage is repaired by the well-studied nucleotide

excision repair (NER) pathway in cells.

1.1.3 DNA repair mechanisms and human disease

DNA damage repair occurs in both prokaryotic and eukaryotic organisms, and many of

the proteins involved are highly conserved throughout evolution. In fact, cells in both forms

of life have evolved a number of mechanisms to detect and repair various kinds of DNA

damage, irrespective of the cause of the damage. Since DNA plays a vital role in the process

of cell division, DNA repair is closely tied to regulation of the cell cycle. In brief, cell division

occurs through a process involving the G1, S, G2 and M phases of the cell cycle, with DNA

replication occurring in the S-phase and mitosis occurring in M phase. During the course of

the cell cycle, active checkpoint mechanisms ensure that the DNA of a cell is intact before

allowing replication and cell division to occur. Errors in these checkpoint mechanisms can

result in an accumulation of DNA damage, which, in turn, can lead to mutations.

Underscoring the importance of proper DNA repair, genetic defects in the DNA repair

machinery underlie a number of diseases in humans, but generally share common traits. Most

notably, defects in DNA repair can translate into diseaases and a predisposition towards

cancer. These disorders include ataxia-telangiectasia (AT), a degenerative motor condition

that is caused by a failure to repair oxidative DNA repair in the cerebellum, and xeroderma
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pigmentosum (XP), a condition characterized by an increased sensitivity to sunlight and

linked to a defect in an important ultraviolet damage repair mechanism (Table  1.2 ) [ 41 ]–

[ 44 ]. In addition, a number of genes that have been implicated in carcinogenesis, e.g.,

like the RAD group, have also been indicated to encode proteins actively associated with

DNA damage repair. In the next sections, the main concepts associated with DNA repair

mechanisms relevant to this research will be reviewed.

Table 1.2. Some human hereditary diseases and cancers associated with
DNA-repair defects

Syndrome Affected Repair Pathway Defective Protein Type of Genomic Defect Cancer
Xeroderma
pigmentosum (XP) Nucleotide excision repair XP, CS Point mutations Skin cancer
Ataxia
telanglectasia (AT) DNA DSB response ATM Chromosome aberrations Lymphomas
AT-like disorder DNA DSB response MRE11 Chromosome aberrations Lymphomas
Nijmegan breakage
syndrome (NBS) DNA DSB response NBS1 Chromosome aberrations Lymphomas
BRCA1/BRCA2 Homologous recombination BRCA1, BRCA2 Chromosome aberrations Breast cancer
Werner syndrome Homologous recombination WRN helicase Chromosome aberrations Various
Bloom syndrome Homologous recombination BLM helicase Chromosome aberrations Leukemia
Hereditary
nonpolyposis
colorectal cancer
(HNPCC) Mismatch repair MLH1, MSH2 Microsatellite instabilty Colorectal
Fanconi anemia DNA crosslink repair FANC-D2 Chromosome aberrations Leukemia
Li Fraumeni DNA DSB response p53, others? Cell-cycle checkpoints Many
Riddle DNA DSB response RNF168 Cell-cycle checkpoints Unknown

Nucleotide Excision Repair (NER) in eukaryotes and prokaryotes: Enzymatic

repair

When direct DNA damage fuses two nucleobases together, the DNA obtains a distinct

bulge in its normal double helical shape (Figure  1.11 ). Several enzymes actively screen the

DNA within living cells looking for such structural abnormalities [  45 ]. When a bulge is

detected, repair proteins are activated that cut out the damaged part of the DNA and put in

the correct base pairs [  46 ]–[ 52 ]. This process is called nucleotide excision repair (NER). Both

CPD and 6-4PP lesions are repaired through NER. In eukaryotic organisms, NER utilizes

the products of several genes. Defects in some of these genes are linked to the human disease

XP, as well as other conditions that are characterized by an increased susceptibility to skin

cancer that is elevated about a thousand-fold over normal [ 41 ]–[ 44 ].

The NER process in eukaryotes is carried out by at least 18 protein complexes via four

discrete steps, namely: (1) detection of damage; (2) excision of the DNA segment surrounding

32



Figure 1.11. Stereoview representations of the crystal structures of B-form
DNA decamer before and after the dimerization of adjacent pyrimidine nucle-
obases to form a CPD lesion. The thymidines making up the dimer are drawn
in red. The view shows part of the major groove of the molecule. In CPD-
containing DNA, the phosphodeoxyribose backbone shows a sharply kinked
(30◦) structure. Figure modified from [  3 ]

and including the damaged site; (3) filling in the resulting gap using DNA polymerase; and

(4) sealing the nick between newly incorporated DNA and older DNA using DNA ligase

(Figure  1.12 ). In bacteria the process of NER is carried out by three proteins, called UvrA,

UvrB and UvrC [ 42 ], [ 53 ]–[ 55 ].

Figure 1.12. Schematic representation of the nucleotide excision repair pathway
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‘Photoreactivation’ as a repair pathway

Along with enzymatic means of DNA lesion repair, bacteria, along with several other

organisms, possess a mechanism of DNA damage repair known as photoreactivation that is

carried out by a class of enzymes called ‘photolyases’. Photolyases are monomeric proteins

with molecular weights ranging between 50-60 kDa that possess stoichiometric amounts of

two chromophores/cofactors. One of these cofactors is FADH, and the second chromophore

is either methenyltetrahydrofolate (MTHF) or 8-hydroxy-5-deazariboavin (8-HDF) (Figure

 1.13 ). The photolyase repair process is often referred to as ‘light repair’ since it requires light

energy. In contrast, NER and other repair mechanisms are called ‘dark repair’ mechanisms,

as they are not dependent on light as an energy source.

During photoreactivation, photolyases cause the DNA helix to extrude a pyrimidine

dimer, if present, and then bind to it. Upon lesion recognition, an enzyme-bound chro-

mophore (MTHF or 8-HDF) absorbs a photon of light to initiate the reaction. The overall

enzymatic process results in a direct reversal of damaged DNA to its undamaged form (Fig-

ures  1.14 and  1.15 ) [  43 ], [ 56 ]–[ 59 ]. Photolyases are known to occur in numerous organisms

including fungi, plants, invertebrates (fruit flies) and vertebrates including frogs [  20 ], [  43 ].

However, photolyases do not appear to exist in humans [ 58 ], [ 60 ], [ 61 ].

Figure 1.13. Crystal structure of E. coli photolyase: (A) Ribbon diagram
representation showing the N-terminal α/β domain, the C-terminal α-helical
domain, and the positions of the two cofactors; (B) surface potential repre-
sentation showing the solvent-exposed residues. Key: blue, basic groups; red,
acidic groups; white, hydrophobic groups. The square marks the hole leading
to FAD in the core of the R-helical domain [ 62 ]

34



Figure 1.14. (A) cyclobutane pyrimidine dimer (CPD) and (B) pyrimidine
(6-4) pyrimidone photoproduct (6-4PP), both formed after the dimerization of
adjacent thymidine residues and their photoreactivation by the enzyme pho-
tolyase in the presence of light. Figure adapted from [  63 ]

Figure 1.15. An illustration of the key molecular events in the photoreacti-
vation of a CPD molecule. MTHF absorbs a 300-500 nm photon and transfers
the excitation energy to FADH- by FRET. The 1(FADH-)∗ transfers an elec-
tron to CPD, which undergoes [2 + 2] cycloreversion to generate a Pyr and a
Pyr◦−; back electron transfer to FADH◦ restores the catalytic cofactor to the
active reduced form, and the dimer is converted to canonical bases. Figure
adapted from [ 64 ]

1.2 Alkaline Reactivity of UV-Induced DNA Lesions

As noted earlier, the two prominent DNA lesions induced by UV light are the cis-syn

cyclobutane pyrimidine dimer (CPD) and the pyrimidine (6-4) pyrimidone photoproduct

(6-4PP), both formed as a result of dimerization between adjacent stacked pyrimidine bases

in DNA. Importantly, the generation of these lesions can not only lead to genetic mutations,

but can also alter the chemical stability and reactivity of genomic DNA [  4 ]. For example,
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undamaged DNA is known to withstand acids and bases; however, DNA containing UV-

induced damage is very sensitive to alkali. In fact, the 6-4PP lesion was originally identified

as a UV-induced alkali-sensitive DNA lesion. DNA strand cleavage occurs at the site of this

lesion when UV-irradiated DNA is subject to hot alkali treatment (Figure  1.16 ) [  65 ], [  66 ].

Indeed, this procedure has been used to identify (and quantify) the 6-4PP lesion in short,

well-defined DNA sequences at single nucleotide resolution. Alkaline lability has also been

employed in DNA foot-printing experiments to monitor DNA-protein interactions in vivo.

Thus, if the altered reactivity of lesion-containing DNA is fully understood, the knowledge

obtained might be exploited for the detection/quantification of these lesions along with

revealing their fundamental reactivities.

Figure 1.16. General scheme for SP-induced strand cleavage reaction in the
presence of 0.2 M KOH at 90◦C for 0.5 hours. By extension, this reaction
is also valid for strand cleavage caused by other DNA lesions containing a
saturated pyrimidine ring e.g. 6 4-PP and dHdU, since alkali-induced N3-C4
bond cleavage has been shown as a common feature in all these lesions. Figure
adapted from [ 6 ]

While the chemical reactivity of the 6-4PP lesion has been studied in detail, the reactivity

of the most commonly found DNA UV-induced lesion, i.e., cyclobutane pyrimidine dimer

(CPD) still remains obscure. In the following sections the chemistries of the pyrimidine (6-4)
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pyrimidone photoproduct (6-4PP), 5-pyrimidinyl-5,6-dihydropyrimidine (spore photoproduct,

SP) and 5,6-dihydo-2’-deoxyuridine (dHdU) lesions under alkaline conditions will be reviewed

for later comparison to our work on the alkaline reactivity of the CPD lesion.

1.2.1 Alkaline hydrolysis of pyrimidine (6-4) pyrimidone photoproduct (6-4PP)
lesions leading to DNA strand scission

Pyrimidine (6-4) pyrimidone photoproduct (6-4PP) is a common DNA photo-damage

product formed upon exposure to the UV component of sunlight. Upon forming, this lesion

leads to a sharp kink in the DNA double-helical structure, thereby distorting it significantly

[ 67 ]. NMR and X-ray diffraction studies have revealed that presence of a 6-4PP lesions

causes a distortion of around 44◦ in the double helical structure (Figure  1.17 (b)) [  68 ], [  69 ].

In contrast, the cyclobutane pyrimidine dimer (CPD) causes relatively minor structural

distortion, i.e., a 36◦ helical bend towards the major groove (Figures  1.17 (a) and  1.18 ) [  1 ]–

[ 3 ]. In comparison to CPD, 6-4PP is much more mutagenic [  70 ]–[ 72 ]; it arrests the replicative

fork of general replicative DNA polymerases. Underscoring the importance of this lesion,

when it is bypassed by the human Y-polymerase polη, there is a 7-fold higher tendency for

the insertion of a G instead of an A opposite to the 3′-T of the 6-4PP lesion. [ 73 ], [  74 ] Due

to the drastic DNA structural distortion caused by this lesion, it is believed to be readily

recognized by the DNA repair machinery leading to its quick removal in living cells (half-life

of 6-4PP = 2.3h) [ 75 ]. 6-4PP lesions that elude the repair pathway are suggested to be the

primary cause of UV-B induced cell apoptosis especially in NER-deficient cells [ 76 ], [ 77 ].

Given the above, it was thus significant to understand the physical and chemical proper-

ties of 6-4PP. 6-4PP is alkali labile, inducing DNA strand scission upon hot alkaline treat-

ment [  66 ], [  80 ], [  81 ]: alkaline treatment initiates a nucleophilic attack on the C4=O group

on 5′-thymine of 6-4PP, forming a hemiaminal intermediate, that can lead to the rupture

of the N3-C4 bond to yield a hydrolysis product (Figure  1.19 )[ 82 ]. The above is followed

by a deglycosylation reaction at the 3′- thymine, ultimately leading to DNA strand scission

(Figure  1.16 ) [ 83 ].

A re-examination of the 6-4PP alkaline hydrolysis reaction under more detailed conditions

suggested that the resulting water adduct is not as stable as previously suggested. Also,
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Figure 1.17. Structures of DNA duplexes showing the presence of (a) CPD
and (b) 6-4PP lesion (in green). Hydrogen atoms are not shown, prepared
from PDB entries 1TTD [ 78 ] and 1CFL [ 79 ] using PyMOL. (version 1.1r1)

Figure 1.18. Schematic diagram illustrating CPD-induced kink of the DNA
helix. Regular B-DNA and CPD-containing DNA are depicted in green and
red, respectively. (a) Side view with a helical axis. (b) Top view. Figure
adapted from [ 3 ]

it was found that the hydrolysis product undergoes an additional deamination reaction to

yield 2-oxazolidinone (5-4) pyrimidone, eliminating the N3 as a molecule of ammonia (Figure

 1.20 )[ 72 ].

1.2.2 Alkaline hydrolysis of spore photoproduct (SP) and DNA strand scission

SP is formed as a result of a unique environment found exclusively within endospores. En-

dospores possess a low hydration environment and the presence of specialized DNA-binding
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Figure 1.19. Alkaline hydrolysis reaction in 6-4PP as described by Higurashi
et al. [ 82 ]. Figure adapted from [  72 ]

Figure 1.20. Modified hydrolysis reaction of 6-4PP

proteins called Small Acid Soluble Proteins (SASPs). Under these conditions, DNA trans-

forms from a more commonly found B-form to an A-form, leading to a change in the proximity

of nucleobase pyrimidines to one another [  84 ], [  85 ]. UV irradiation of this A-form of DNA

results in SP as the dominant (>95% yield) photo-lesion [ 36 ], [ 86 ].

To investigate the chemical reactivity of SP, the behaviour of this lesion was studied at

and above physiological pH values [ 6 ]. These studies showed that the loss of aromaticity in the

thymine residue on the 5′-side of the SP dimer, activates the C4 position in this nucleobase,

making it susceptible to water addition and formation of a hemiaminal intermediate at or

above neutral pH. Under basic conditions, this hemiaminal species undergoes a rupture of

the N3-C4 bond leading to a hydrolysis product that readily triggers a cascade of elimination

reactions that can, eventually, lead to DNA strand scission (Figures  1.16 and  1.21 ).

The formation of hemiaminal intermediates in SP occurs at pH 7.4, and is facilitated by

basic conditions. Once formed, the fate of the hemiaminal intermediate is dependent on the
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Figure 1.21. General scheme for 18O incorporation into SP TpT. Figure adapted from [ 6 ]

pH of the surrounding medium. A high hydroxide concentration (such as that found at pH

13 and above) forces a vast majority of the hemiaminal intermediate to decompose via N3-

C4 bond rupture, resulting in the SP hydrolysis product. A low hydroxide concentration,

however, favours hydroxide elimination from the hemiaminal intermediate, thus reverting

to SP. This observation is supported by the rates of 18O exchange in SP, during which

the vast majority of SP hemiaminal intermediates decay back to SP, as indicated by the

negligible yield of SP hydrolysis product at pH 11 and the mere 70% yield under conditions

of concentrated base.

The fate of the SP hydrolysis product also depends on the pH of solution. In a neutral

medium, the hydrolysis product is unstable leading to a cascade of elimination reactions

and, ultimately, strand scission. Under strong alkaline conditions, however, the major decay

pathway of the hydrolysis product is to eliminate water and revert to SP (again via the

hemiaminal intermediate).

1.2.3 Complete decay of dHdU hemiaminal intermediates to elimination prod-
ucts at alkaline pH

5,6-dihydo-2′-deoxyuridine (dHdU) pyrimidine lesions result from ionizing damage to

cytosine under anoxic conditions [ 38 ]. It has been demonstrated that treatment of dHdU

with concentrated base for 30 minutes resulted in its complete conversion to the hydrolysis
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product dHdU-H2O [  6 ]. This is in contrast to the slower and incomplete conversion of SP

to its hydrolysis product SP-H2O under the same conditions. These results suggest that

relative to SP, the N3-C4 bond in dHdU is more prone to base hydrolysis (Figure  1.22 ).

Figure 1.22. General scheme for alkaline hydrolysis in dHdU photolesion.
Figure adapted from [ 6 ]

18O incorporation experiments in dHdU (under conditions of concentrated base) indicated

the presence of a double 18O labeled dHdU-H2O adduct, suggesting that the single 18O labeled

dHdU-H2O must be formed, similar to that observed in SP. However, the unchanged ratio of

single to double 18O labeled dHdU-H2O over an extended period of time indicated that the

dHdU hydrolysis product is not prone to reversal in contrast to the reversible formation of

SP hydrolysis product at alkaline pH. Further analysis of dHdU under weak basic conditions

(pH 11.0) suggested that the formation of an hemiaminal intermediate is reversible (similar

to that observed in SP), but the formation of hydrolysis products from the decomposition

of hemiaminal species is not [ 6 ].

1.2.4 Hemiaminal intermediate formation during deamination of damaged cy-
tosine (C) and 5-methylcytosine (5mC) at neutral pH

It is worth mentioning that there is evidence for the formation of hemiaminal species in

the chemistry of cytosine residues as well as thymine and uracil. The C4-NH2 moieties in

damaged cytosine (C) and 5-methylcytosine (5mC) are known to be prone to deamination

reactions at neutral pH [  32 ], [  87 ], which are also suggested to be mediated by a hemiami-

nal intermediate [  88 ], [  89 ]. Similarly, hemiaminal species are also known to occur during
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the deamination reactions of cytidine and adenosine catalyzed by cytidine and adenosine

deaminase enzymes respectively [ 90 ], [ 91 ].

These results suggest that N3-C4 bond cleavage is probably a common feature possessed by

saturated pyrimidine residues.[ 6 ] Collectively, it appears that in a saturated pyrim-

idine residue, the C4 position becomes a “hot spot” for subsequent water

addition-elimination reactions via a tetrahedral intermediate in living cells,

the decay route of which appears to be influenced by the chemical environment

of the ring (based on different reaction outcomes observed in case of different

lesions under similar reaction conditions) (Figure  1.23 ). The crystal structure of

SP and NMR study of dHdU suggest alterations in the structure of a saturated pyrimidine

ring that further support this hypothesis. In the case of SP, the crystal structure of the

lesion revealed clearly that the 5′- thymine ring is distorted from a planar structure, with

the C6 and the methyl moiety located 0.5 Å above the plane defined by the other five atoms

(Figure  1.24 ) [ 88 ], [  89 ]. Even in dHdU, loss of aromaticity results in a similar outcome,

as shown by a NMR spectroscopic study [  38 ]. Although the C4 amide moiety undergoes

little structural alteration due to resonance interactions among the carbonyl moieties and

the lone pairs of the two N atoms still intact, in all these instances, loss of aromaticity

and the ring distortion likely activate the C4 position in these saturated nucle-

obases, promoting the generation of a hemiaminal intermediate. The formation

of a hemiaminal intermediate also suggests the presence of a labile oxygen at C4 position of

the molecule that is exchangeable with the aqueous solution.

Figure 1.23. General scheme for alkaline hydrolysis of DNA containing
pyrimidine damage. Figure adapted from [  6 ]
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Figure 1.24. Crystal structure of the SP-containing duplex 16-mer oligonu-
cleotide in a host–guest complex. Figure adapted from [  88 ]

1.2.5 Summary: Alkaline hydrolysis of various DNA lesions and previous stud-
ies of the alkaline reactivity of CPD lesions

To date, the base-catalyzed addition-elimination reactivity of the pyrimidine lesions 6-

4PP, SP, dHdU and CPD have been studied to various extents. Although it appears that

the first step, i.e. formation of a gem-diol intermediate at C4=O followed by rupture of the

N3-C4 bond probably occurs for all lesions [  6 ], the ultimate fate of the resulting modified

lesion varies significantly among pyrimidine dimer lesions. At one extreme, the N3-C4 bond

rupture of the gem-diol intermediate in dHdU is irreversible; the hydrolysis product that

results has few choices but to undergo the deglycosylation process eventually leading to

DNA strand scission. In contrast, the hydrolysis reaction of SP is reversible, which lowers

the yield of the hydrolysis product and reduces the DNA strand cleavage efficiency. Similar

to dHdU, the hydrolysis product of 6-4PP is unlikely to be reversible after the formation of

the gem-diol intermediate [  4 ], [  83 ]; the putative hydrolysis product is not stable and, thus,

cannot be isolated. What can be isolated is the deaminated product, 2-oxazolidinone (5-4)

pyrimidone [  72 ]. Thus, even if there is a possibility of the hydrolysis reaction in 6-4PP to

be reversible, deamination initiated by the 5′-OH group in the putative hydrolysis product

effectively competes with the reverse reaction, leading to 2-oxazolidinone (5-4) pyrimidone

as the final hydrolysis product.
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In contrast to the reactivities of 6-4PP, SP and dHdU described in the previous sections,

there are very few studies on the alkaline hydrolysis of cyclobutane pyrimidine dimer (CPD).

While previous studies have explored the reactivity of CPD derived from two thymines

(nucleobases) or two thymidines (nucleobase + sugar) moieties, these model studies fail to

reflect DNA in living systems. Indeed, the study of the alkaline reactivity of CPD derived

from thymine alone explored the reactivity of four isomers i.e. cis-syn, cis-anti, trans-syn

and trans-anti, all of which are formed when a solution of free thymine is irradiated with

UV radiation (Figure  1.25 ) [  5 ], but unlikely to form in biologically-relevant DNA structure.

The cis-syn and trans-syn isomers (labeled as isomers 1 and 3 in Figure  1.25 ) were found to

be stable even in presence of concentrated alkaline solutions at room temperature (Figure

 1.26 ). The trans-anti isomer (labeled as isomer 4 in Figure  1.25 ), however, underwent ring

opening in presence of 0.01 M NaOH solution at room temperature to yield a cyclobutane

dicarboxylic acid derivative (Figures  1.26 and  1.27 ). Under conditions of high temperature,

however, even the cis-syn isomer that was refractory to hydrolysis at room temperature,

underwent ring opening to yield the cyclobutane dicarboxylic acid derivative (Figure  1.28 )

[ 92 ], [ 93 ]. In all these experiments, no attempt was made to reveal the reversibility of the

generated hydrolysis product. Moreover, no studies are known for the alkaline reactivity of

CPD derived from nucleotides, the biologically relevant form of DNA.

Figure 1.25. The four possible isomers of CPD-thymine (R=H) formed after
UV-irradiation of a frozen solution of thymine. Figure adapted from [  5 ]
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Figure 1.26. Stability of thymine dimers 1 and 3 to base (-) and easy alkaline
ring opening of dimer 4 by 0.01 N NaOH (. . .) and 0.1 N NaOH (- - -) at
room temperature (1.6 X 10−4 mol/l.). Figure adapted from [  5 ]

Figure 1.27. General scheme showing alkaline hydrolysis in trans,anti isomer
of CPD-thymine at room temperature

Thus, the chemical structure of a given pyrimidine lesion influences the outcome of its

reaction with alkali. Although dHdU and SP share similar chemical structures, the cross-

link bond between the two thymine bases in SP likely places some degree of restriction on

the 3D structure, which influences the reverse reaction, even though the negatively charged

carboxyl moiety is a weak electrophile and the amide is a weak nucleophile. Given that the

stacking interactions that occur between the two thymine residues are maintained in both SP

and cis-syn CPD, as revealed by the dinucleotide as well as lesion-containing oligonucleotide

structures, it is thus highly likely that the cis-syn CPD may also exhibit a similar reversible

hydrolysis reaction.
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Figure 1.28. Alkaline hydrolysis of cis-syn CPD-Thymine in presence of
0.1M NaOH at 75◦C for ≈ 24 hours. Figure adapted from [  93 ]

1.2.6 Thesis statement

In light of the above studies, it is hypothesized that the C4 position of a sat-

urated pyrimidine residue becomes a “hot spot” for water addition-elimination

reactions via a tetrahedral intermediate, the final outcome of which appears to

be influenced by the chemical environment of the ring.

The work described in Chapters 2 and 3 tests the above hypothesis in the most common

DNA lesion encountered in living cells i.e., the cis-syn isomer of cyclobutane pyrimidine

dimer (CPD). As noted earlier, previous work on cyclobutane pyrimidine dimers formed

from thymine and thymidine clearly show that cis-syn CPD is stable in teh presence of

high concentration of alkali (1M) at room temperature (Figure  1.26 ). Since all other lesions

with a saturated pyrimidine ring undergo ring-opening under much milder conditions than

employed in the case of CPD, the inertness of CPD to alkaline hydrolysis indicates a possibly

unique reactivity worthy of investigation.
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As described in subsequent chapters, the results of our studies of cyclobutane pyrim-

idine dimers derived from dinucleotide TpT confirm the results found with CPD lesions

derived from free thymines and thymidines. We found that CPD-TpT does not react even

in presence of concentrated alkali (up to 1M concentration). Even more fascinating was the

observation that CPD-TpT is refractory to hydrolysis even at higher temperatures (up to

90◦C) (Figure  1.29 ). In comparison, CPD-thymine underwent ring opening in presence of

concentrated alkali when the temperature was increased only to 75◦C (Figure  1.28 ). This

observation indicates the reduced lability of the N3-C4 bond in a dinucleotide environment

vs the cyclization of free nucleobase (thymine).

Figure 1.29. General overview of alkaline hydrolysis reaction of cyclobutane
pyrimidine dimer from dinucleotide TpT (CPD-TpT)

However, our investigation of the same reaction in 18O labelled water indicates that,

similar to other DNA lesions, CPD undergoes a water addition at the C4 carbonyl group

leading to the formation of a hemiaminal intermediate. This intermediate, however, does not

lead to hydrolysis products and completely reverts back to the starting material (Figure  1.30 ).

Moreover, the two C4 carbonyl groups present on 3′ and 5′-thymines in a CPD molecule

show different predispositions towards water attack, which is reflected by different rates of

exchange with the incoming nucleophile leading to the hemiaminal intermediate. Along with

studies involving dinucleotide models, the reactivities of these lesions were further explored

in an oligonucleotide setting and in various structural variants of CPD-TpT, to prove that the

observed differential reactivity observed between C4 carbonyl groups on 3′ and 5′-thymines
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in CPD is an intrinsic property of the CPD lesion, and not simply an artifact of steric

accessibility .

Figure 1.30. Nucleophilic addition to C4 carbonyl groups in a CPD molecule
leading to the formation of a gem-diol intermediate

Hydrazine-induced CPD repair as a novel and efficient DNA repair pathway

During our investigation of the nucleophilic reactivity of the cyclobutane pyrimidine

dimer (CPD) molecule, a chemical reaction leading to the rapid and total reversion and

chemical repair of CPD lesion to TpT was discovered! This repair reaction occurs in the

presence of hydrazine monohydrate, and is facilitated by an inert atmosphere under which

the reversal of CPD to TpT is completed rapidly (in less than two hours). In the presence

of oxygen, the rate of this reaction is significantly reduced (starting material not completely

used up even after 24 hours, at elevated temperatures). As described in Chapter 4, this

reaction was investigated using four orthogonal techniques: reverse-phase HPLC, UV-Visible

spectroscopy, NMR spectroscopy and LC-MS, in an attempt to determine the reaction rate

and to characterize the intermediate(s) and possible mechanisms involved.
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2. DEFINING THE ALKALINE REACTIVITY OF

DINUCLEOTIDE CYCLOBUTANE PYRIMIDINE DIMER

(CPD) LESIONS

2.1 Introduction

This chapter reports the investigation of the alkaline reactivity of a dinucleotide model

of the most common DNA photolesion encountered in living cells, the cyclobutane pyrim-

idine dimer (CPD) [  3 ], [ 32 ], [ 33 ]. Photo-irradiation of living cells results primarily in the

formation of the cis-syn isomer of CPD. As outlined in Chapter 1, earlier work on cyclobu-

tane pyrimidine dimers resulting from free thymine nucleobases and thymidine nucleosides

clearly show that cis-syn CPD is stable in the presence of a high concentration of alkali (1

M) at room temperature [ 5 ]. The results described in this chapter investigated cyclobutane

pyrimidine dimers resulting from the dinucleotide TpT and are consistent (Figure  2.1 ); our

additional investigation of the same reaction in 18O labeled water indicated that, similar

to other DNA lesions, CPD undergoes a water addition at the C4 carbonyl group leading

to the formation of a hemiaminal intermediate. This intermediate, however, does not lead

to further hydrolysis products and completely reverts to the starting lesion (Figure  2.2 ).

Moreover, these investigations determined that the two C4 carbonyl groups present on each

of the 3′ and 5′ thymines in a CPD molecule show different chemical reactivities, which

are reflected by different rates of exchange with the incoming nucleophile leading to the

hemiaminal intermediate.

Figure 2.1. General overview of alkaline hydrolysis reaction of cyclobutane
pyrimidine dimer from dinucleotide TpT (CPD-TpT)
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Figure 2.2. Nucleophilic addition to C4 carbonyl groups in a CPD molecule
leading to the formation of a gem-diol intermediate

As reviewed in Chapter 1, the alkali-catalyzed addition-elimination reactions of four kinds

of pyrimidine lesions: 6-4PP, SP, dHdU and CPD, have been reviewed to varying extents

[ 5 ], [ 6 ], [ 72 ], [ 82 ], [ 83 ], [ 92 ], [ 93 ]. Although it appears that the first step, i.e., formation of

gem-diol intermediate at C4=O followed by rupture of the N3-C4 bond probably occurs for

all lesions, the fate of the resulting hydrolysis products varies significantly across various

lesions. The N3-C4 bond rupture from the gem-diol intermediate in dHdU is irreversible [  6 ].

The hydrolysis product that results has fewer choices but to undergo the deglycosylation

process eventually leading to strand scission. In contrast, the hydrolysis reaction in SP is

reversible, which lowers the yield of the hydrolysis product and reduces the strand cleavage

efficiency [  6 ]. Similar to dHdU, the hydrolysis product in 6-4PP is not likely to be reversible

[ 72 ]. The putative hydrolysis product of 6-4PP (formed after the cleavage of N3-C4 bond)

is not stable and thus, cannot be isolated. It undergoes an additional deamination step to

yield 2-oxazolidinone (5-4) pyrimidone, the final product of 6-4PP alkaline hydrolysis. Thus,

even if there is a possibility of the hydrolysis reaction in 6-4PP to be reversible, deamination

initiated by the 5-OH group in the putative hydrolysis product effectively competes with the

reverse reaction, leading to 2-oxazolidinone (5-4) pyrimidone as the final hydrolysis product.

Thus, the chemical structure of a given pyrimidine lesion determines the outcome of its

reaction upon base treatment, i.e. its alkaline lability. For example, although dHdU and SP

share similar chemical structures, the cross-link bond between the two thymine bases in SP

likely places some degree of restriction on the 3D structure, which drives the occurrence of
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the reverse recyclization reaction, even though the negatively charged carboxyl moiety is a

weak electrophile and the amide is a weak nucleophile.

In comparison to 6-4PP, SP and dHdU, there are very few studies devoted to understand-

ing the alkaline hydrolysis of cyclobutane pyrimidine dimer (CPD) [ 5 ], [  92 ], [  93 ]. Even the

ones that are available, explore the reactivity of CPD lesion derived from thymine (nucle-

obase only) or thymidine (nucleoside) moieties, none of which reflect the true state of DNA

in living systems. Indeed, the study on alkaline reactivity of CPD-thymine explored the

reactivity of all four possible isomers which result on irradiation of thymine base with UV

radiation [ 5 ]. The trans,anti isomer of CPD-thymine was readily hydrolyzed, resulting in a

full-hydrolysis product with the two N3-C4 bonds cleaved. In contrast, cis-syn CPD-thymine

was initially refractory to hydrolysis even in presence of concentrated alkali (Figures  1.26 and

 1.27 ). A later study, however, found that a 24 hour treatment using 0.1 M sodium hydroxide

solution at 75◦C, resulted in a full-hydrolysis product (Figure  1.28 ) [ 92 ], [  93 ]. However, no

attempt was made to reveal the reversibility of the generated hydrolysis product. It should

be noted that the stacking interactions between the two thymine residues are maintained

in both SP and cis-syn CPD, as revealed by the dinucleotide as well as lesion-containing

oligonucleotide structures. It is thus, highly likely that the cis-syn CPD may also exhibit

a similar reversible hydrolysis reaction. Moreover, no studies have been reported for the

alkaline reactivity of CPD derived from dinucleotides, a much closer model to true DNA

relative to free nucleobases.

2.2 Results

2.2.1 ESI-MS analyses of the alkaline hydrolysis of CPD-TpT in 18O labelled
water

Incubation of dinucleotide CPD-TpT with various amounts of NaOH (up to 1 M concen-

tration for 1 mM CPD-TpT) at various temperatures (up to 90◦C) failed to yield hydrolysis

products. This result was different from the results obtained during alkaline hydrolysis of

CPD-thymine at elevated temperatures that led to the cleavage of the N3-C4 bond and

subsequent formation of a cyclobutane dicarboxylic acid derivative (Figure  1.28 ) [  92 ], [  93 ].

To investigate the formation of a hemiaminal intermediate during alkaline hydrolysis of a
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CPD lesion, the same reaction was conducted in the presence of 18O labelled water. For

this reaction, CPD-TpT was suspended in 250 mM NaOH solution prepared in 18O labelled

water. The final concentration of CPD-TpT was 1 mM. After every 24 hours, ≈ 0.5 µL of the

reaction mixture was withdrawn and was rapidly quenched by mixing with ≈ 19.5 µL of 1 M

ammonium acetate buffer to arrest the progress of the reaction. The aliquot containing the

quenched reaction mixture was stored at -20◦C. Similar aliquots were obtained after every

24 hours for a period of 18 days. After each collection, the eppendorf tube containing the

original reaction mixture was carefully sealed to avoid the interaction of NaOH solution in

the reaction mixture with atmospheric carbon dioxide, that is known to reduce the alkalinity

of NaOH due to the formation of sodium carbonate.

ESI LC-MS (negative ion mode) analyses of the reaction between 1 mM CPD-TpT and

250 mM NaOH in 18O labelled water at room temperature (Figure  2.3 ) showed a rapid

decrease in the intensity of the mass of CPD-TpT that reached a base value of approximately

4% in 5 days whereafter it became constant. The decrease in M peak was accompanied by an

increase in the intensity of (M+2) (formed by the exchange of a single 16O with 18O atom)

and (M+4) (formed by the exchange of two 16O atoms) peaks. This observation suggests the

existence of two sites of nucleophilic attack in the CPD molecule and a differential reactivity

of the two sites towards an incoming nucleophile (evidenced by the different rates of increase

of the M+2 and M+4 peaks).
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Figure 2.3. ESI-MS analysis of 18O exchange reaction in 1 mM CPD-TpT in
presence of 250 mM NaOH solution in 18O labeled water at room temperature.
Right panel: ESI-MS chromatograms showing 18O incorporation in CPD-TpT
(increase in intensity of M+2 and M+4 peaks accompanying the decrease in
M peak), Left panel: 18O exchange reaction kinetics in CPD-TpT monitored
using ESI-MS over 18 days.

2.2.2 13C NMR spectroscopic analyses of alkaline hydrolysis of CPD-TpT in 18O
labelled water

In an attempt to clearly identify the site of 18O exchange in our CPD model (C2=O or

C4=O), the same exchange reaction (CPD-TpT+NaOH in 18O labelled water) was again

monitored using 13C NMR spectroscopy and ESI-MS. It should be noted that the carbonyl

groups on C2 and C4 positions in a CPD molecule (C2=O and C4=O) have different chemical

shift values on a 13C NMR spectrum (Figure  2.4 ). In fact, even the two C2=O groups on each

of the 3′ and 5′ ends of the molecule (and the two C4=O groups) appear as distinct peaks on

the 13C NMR spectrum of CPD-TpT. As shown in Figure  2.4 , the two C2=O groups have

chemical shift values of 153.6165 ppm and 154.1394 ppm, respectively while the two C4=O
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groups appear at 172.4110 ppm and 173.3148 ppm respectively. Figure  2.5 shows the 13C

NMR spectrum of TpT for reference. In a TpT molecule, the two C2=O groups appear at

151.4545 ppm and 151.6308 ppm respectively. In comparison, the two C4=O groups appear

at 166.1712 ppm and 166.3362 ppm respectively. Thus, the process of dimerization between

the two thymine rings has more effect on the electronic environment around the C4=O

groups as compared to that of the C2=O groups. Figures  2.4 and  2.5 clearly show that the

dimerization process leads to a downfield shift of approximately 6 ppm for the C4=O groups.

For the C2=O groups, this shift is ≈2 ppm. Formation of the cyclobutane ring also leads

to increased differentiation between the environments of the two C4=O groups (and the two

C2=O groups). This is reflected by the difference in 13C chemical shift values; 0.9038 ppm

in CPD-TpT versus 0.165 ppm in TpT for the C4=O groups and 0.5229 ppm vs 0.1763 ppm

for the C2=O groups.

Figure 2.4. 13C NMR spectrum of dinucleotide CPD-TpT
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Figure 2.5. 13C NMR spectrum of dinucleotide TpT

The electronic influence of 16O is different than that of 18O on the carbon atom in a

carbonyl group. As a result, an 18O atom directly attached to a 13C atom has been shown to

cause a small (0.010-0.050 ppm) upfield shift in the 13C NMR resonance position as compared

to that of the 16O isotopomer (Figure  2.6 ) [ 72 ], [  94 ]–[ 97 ]. Keeping that in mind, an 18O-

induced upfield shift in the 13C NMR resonance position of the carbonyl group undergoing

the exchange reaction was expected. It should be noted that the intensity of the original

C=16O peak decreases as the new C=18O peak emerges out of it.

The reaction was set up by suspending ≈ 132 mM CPD-TpT in 250 mM NaOH solution

prepared in 18O labelled water. At each time point, the reaction progress was first screened

using LC-MS to ensure the optimal formation of (M+2) and (M+4) species. After a quick

check with LC-MS, the reaction mixture was neutralized using an equimolar solution of HCl

(to avoid signal reduction in the NMR peak of 13C=O carbon atom caused by NaOH). The

reaction mixture pH was monitored using litmus paper. The NaCl salt formed as a result

of the neutralization process was removed from the reaction mixture using RP-HPLC. The

resulting solution was evaporated to dryness and re-dissolved in D2O for NMR measurements.
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The results of 13C NMR-based investigation of the exchange reaction are summarized in

Figure  2.7 and Figure  2.8 shows the ESI-MS scans taken right before the 13C NMR spectra.

As shown in Figure  2.7 , there was no detectable change in the intensity of the two C2=O

groups. In contrast, there was a clear indication of an 18O-induced upfield shift in the 13C

NMR resonances of both C4=O groups; this observation supports the notion that the C4=O

group is the site of nucleophilic attack in a CPD molecule.

Among the two available C4=O groups (on 3′ and 5′ ends), the one appearing downfield

on the 13C NMR spectrum appears to react faster than the other C4=O. It makes sense,

since the carbonyl group that appears downfield is more deshielded, and is therefore, more

electrophilic that the other one. Based on these results, the following structures were assigned

for the (M+2) and (M+4) species (Figure  2.9 ). It can be seen that there is still ambiguity

in the structure assignment of the (M+2) species, since the chemical shift(s) due to the two

C4=O (and the two C2=O) remain to be assigned (Figure  2.10 ).

Figure 2.6. 18O-induced shift in 13C-NMR chemical shift
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Figure 2.7. Selective 18O incorporation into C4=O of CPD-TpT observed via
13C-NMR. Please refer to Figures  2.29 ,  2.30 ,  2.31 and  2.32 for the complete
NMR spectrum at each of these time points.

2.2.3 Two-dimensional NMR (HMBC) analyses of CPD-TpT to determine the
more electrophilic C4=O group

To distinguish between the two potential C4=O groups (and the two C2=O groups) on 3′

or 5′ termini of the CPD dinucleotide model, the molecule was analyzed using long-range het-

eronuclear correlation NMR spectroscopy (HMBC). (H1, 13C)-HMBC provides correlations

between protons and carbons that are two or three bonds apart from each other (though

occasionally four-bond or even five-bond correlations may be observed). Thus, the carbon

associated with the C4=O group was expected to undergo long-range heteronuclear coupling

with the hydrogen(s) associated with the –CH3 group and the –CH2 group at C6 position

(Figure  2.11 ). Since the H1 NMR spectrum of CPD-TpT is well-characterized (Figure  2.12 )

[ 98 ], we could easily distinguish between the –CH3 groups (and the –CH2 groups) of the 3′

and 5′ ends. Thus, following the correlation of these peaks with the C=O group carbons, we

could distinguish between the two C4=O carbonyl carbons (and the two C2=O carbons).
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Figure 2.8. 18O exchange reaction in CPD-TpT: ESI-MS scans recorded
right before NMR analysis. The M peak (m/z=545) was rapidly replaced by
a M+2 peak (m/z=547) at T=1 day. After 5 days, the M peak (m/z=545)
was almost completely depleted and a M+4 peak (m/z=549) started showing
up, that continued to grow throughout the course of the reaction.

Figure 2.9. Possible structure(s) of the reaction products

Figure  2.13 shows the full HMBC spectrum for CPD-TpT with the cross-peaks between

C4=O carbons and -CH2 hydrogens highlighted. Based on known assignment of the H1

NMR peaks [  98 ], the -CH2 hydrogen with the more downfield chemical shift (approximately

4.35 ppm) was assigned as the one from the 3′ terminus. Consequently, since it showed a

correlation with the downfield C4=O carbon (appearing at 173.3148 ppm), this C4=O carbon

could be assigned as the one from 3′ end of the molecule.
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Figure 2.10. 13C NMR spectrum for CPD-TpT showing the more reactive C4=O moiety

To confirm this assignment, the cross-peaks between the C4=O carbon atoms and the

–CH3 group protons were examined as highlighted in Figure  2.14 . Again, the –CH3 proton

appearing (relatively) upfield was identified as the one from the 3′ end. Since it correlated

with the downfield C4=O carbon, that carbon atom could surely be assigned as the one from

3′ end of the molecule, confirming our earlier assignment. It should be noted that the

C4=O carbon with relatively downfield resonance shift was the one that reacted first with

the incoming nucleophile. Thus, on the basis of our HMBC assignment, the C4=O carbon

from 3′ side of the CPD molecule appears to be more reactive than the one from 5′ side.

Figure 2.11. Structure of CPD-TpT with the highlighted hydrogen atoms
(in red) undergoing long-range coupling with the C4=O groups
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Figure 2.12. H1 chemical shifts of the di-deoxy-nucleoside monophosphates
dCpdT, dTpdC. dTpdT and their photoproducts at 300 K. Chemical shifts
are in ppm relative to DSS. Adapted from [ 98 ]

2.2.4 Characterization of CPD-TpT with a selective 15N label on the 3′ side

To unambiguously verify the assignment of the C=O groups on the 3′ and 5′ ends of the

CPD molecule, a CPD-TpT molecule with a selective 15N label on the 3′ end was synthesized.

Since 15N is NMR active (I=1/2), it will selectively split the two carbonyl groups (both C2=O

and C4=O) on the 3′ end leaving the 5′ carbonyls unperturbed (Figure  2.15 ).

Figure  2.16 shows the ESI-MS spectrum of 3′ 15N-CPD-TpT showing a 15N enrichment

of around 73%. Figure  2.17 shows the 13C NMR spectrum of this same structure. This

figure clearly shows the C4=O group with downfield chemical shift was split into a doublet.

These results establish that the peak with higher chemical shift value (more downfield) is

located at the 3′ end of the molecule (the one that reacted first), which is in agreement with

the results of our HMBC-based assignment. It should be noted that 15N, that has a nuclear

spin value of 1/2 (I=1/2) splits the C=O peak into a doublet (2I+1). The third peak seen

in the 13C NMR resonance position of the C4=O (and C2=O) from 3′ end was the singlet
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Figure 2.13. H1-13C HMBC spectrum showing the cross-peaks between -H6
hydrogens and C4=O groups

due to ≈27% of the molecules that were without a 15N enrichment (Figure  2.18 ). Figure

 2.19 shows a comparison of C=O group chemical shift values between 15N CPD-TpT and 15N

TpT, both with an 15N label at the 3′ end. The figure clearly shows the effect of dimerization

of the thymine rings on the environment around the C=O groups, with the C4=O group

undergoing higher structural perturbation as compared to the C2=O group. The figure also

shows a ’switch’ between the chemical shift values of C4=O peaks from 3′ and 5′ ends, as
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Figure 2.14. H1-13C HMBC spectrum showing the cross-peaks between -CH3
hydrogens and C4=O groups

a result of the dimerization process. This ’switch’ implies that the structural perturbation

as result of dimerization is more pronounced in case of the C4=O group from 3′ side of the

molecule as compared to the C4=O from 5′ side. Based on the results of this HMBC-based

assignment and the 13C NMR spectrum of 15N CPD-TpT, we assign a structure to the M+2

species observed during the 18O labeling experiment: Figure  2.20 shows the final products

obtained after alkaline hydrolysis of CPD-TpT in 18O labeled water.
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Figure 2.15. Schematic representation of 15N induced splitting in the 13C
chemical shift of a C=O group

Figure 2.16. ESI-MS chromatogram of CPD-TpT with selective 15N enrich-
ment on the 3′ side

2.3 Discussion

The alkaline reactivity of the most common DNA lesion encountered in living cells i.e.

cyclobutane pyrimidine dimer (CPD) was investigated using a unique dinucleotide model.

Photo-irradiation of living cells results primarily in the formation of the cis-syn isomer of

CPD. Earlier work on cyclobutane pyrimidine dimers resulting from thymine and thymidine

clearly show that cis-syn CPD is stable in presence of high concentration of alkali (1 M) at

room temperature (Figure  1.26 ) [ 5 ]
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Figure 2.17. 13C NMR spectrum of CPD-TpT with a selective 15N label on
3′ side showing the C2=O and C4=O groups

Figure 2.18. 13C NMR spectrum of 3′ 15N CPD-TpT showing the splitting
induced by 15N atom

Our results using dinucleotide CPD-TpT model confirm the same results. However, our

investigation of the reaction in 18O labeled water indicated that, CPD does indeed undergo

a water addition at the C4=O group leading to the formation of a hemiaminal intermediate.

These results are consistent with the results obtained during the investigation of chemical

reactivities of other DNA lesions containing a saturated pyrimidine ring, i.e., 6-4PP, SP

and dHdU [  6 ], [ 72 ], in all of which the C4=O group was the first site of nucleophilic attack
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Figure 2.19. 13C NMR spectrum showing the ”switch” in the position of 3′

C4=O as a result of dimerization between the two thymine rings

Figure 2.20. Products obtained after alkaline hydrolysis of CPD-TpT lesion
in presence of 18O labeled water

and the C2=O remained unaffected. In case of CPD however, the hemiaminal intermediate

completely reverts to the starting material (Figure  2.21 ). Moreover, the two C4 carbonyl

groups present on 3′ and 5′-thymines in a CPD molecule show different chemical reactivities,

the 3′ being more reactive, which is reflected by different rates of exchange with the incoming

nucleophile leading to the hemiaminal intermediate.
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Figure 2.21. General scheme for alkaline hydrolysis of DNA lesions contain-
ing a saturated pyrimidine ring. All of these lesions are shown to undergo the
formation of a hemiaminal/gem-diol intermediate as a result of nucleophilic
attack on the C4=O group. The fate of the intermediate thus formed depends
on the chemical environment of the ring. In case of 6-4PP, SP and dHdU,
formation of the hemiaminal intermediate is followed by rupture of the N3-C4
bond, leading to a hydrolysis product. In case of CPD however, the hemiami-
nal intermediate eliminated a molecule of water and reverted to the starting
material. Figure adapted from [  6 ]

Based on our investigation of the alkaline reactivity of CPD using ESI-MS, 13C NMR

spectroscopy and the synthesis of 3′ 15N-CPD-TpT, it was found that the formation of

a hemiaminal intermediate is indeed a common property of DNA lesions con-

taining a saturated pyrimidine ring [ 6 ]. Our investigation indicated that CPD, similar

to other sunlight-induced DNA lesions containing a saturated pyrimidine ring, undergoes the

formation of a hemiaminal intermediate upon interaction with alkali. However, in contrast

to other lesions, the hemiaminal intermediate formed in the case of CPD does not lead to

a subsequent cleavage of the N3-C4 bond and rather reverts to the starting material. Our

experiments on the alkaline reactivity of CPD in 18O labelled water did establish the lability

of the oxygen atom associated with the C4=O group.

In addition to the lability of C4=O oxygen, we also established the differential reactivity

of the two C4=O groups contained within a CPD lesion on the 3′ and 5′ ends. It should

be pointed out that earlier results, based on the crystal structure of a DNA duplex con-

taining a CPD lesion, provide some evidence of structural asymmetry between the 3′ and 5′

thymines (based on the strength of hydrogen bonds between the C4=O groups in a CPD
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lesion and the amine hydrogens on complementary adenine residues) [  3 ]. However, there is

no evidence/explanation of the cause of this asymmetry, neither is there any evidence for

this kind of structural asymmetry in a single-stranded DNA strand. Furthermore, there is

no known evidence of any asymmetry in reactivity between the two C4=O groups of a CPD

lesion contained within a DNA strand.

2.3.1 Biological consequences

Similar to many other repair proteins, both the direct-photoreversal enzyme photolyase

and the excision repair enzyme T4 endonuclease V employ base flipping to access the thymine

dimer lesion. The mechanistic cycle showing CPD repair by photolyase enzyme

clearly show the C4=O group on 3′ end as the first site of electron attack in

a CPD molecule. However, there is no known evidence to prove that. Our

results provide a firm and clear evidence to support this observation! (Figure

 2.22 )

Figure 2.22. Schematic representation of the order of alkaline reactivity in CPD-TpT
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2.4 Experimental

2.4.1 Materials and general methods

All reagents and chemicals were purchased from Sigma Aldrich, Fisher Scientific, Alfa

Aesar and VWR Chemicals and used without further purification. All reactions were carried

out using oven or flame-dried glassware in freshly distilled solvents. Purification of reaction

products was carried out by flash chromatography using silica gel (Dynamic Adsorbents Inc,

32-63 µm). NMR spectra were obtained using a Bruker 400 MHz NMR Fourier transform

spectrometer using deuterium oxide as a solvent and with residual water acting as an internal

standard. The chemical shifts in NMR spectra were reported in parts per million (ppm).

2.4.2 HPLC product analyses

HPLC analyses were performed at room temperature using a Waters (Milford, MA)

HPLC system coupled to a 2489 UV-Vis detector at 260 nm and 230 nm. A Waters C18

RP column (2.5 µm particle size, 50 ×4.6 mm i.d.) was equilibrated in solvent A (10 mM

ammonium acetate in water, pH 6.8), and compounds were eluted with an ascending gradient

(0%-10%) of acetonitrile from 1min to 20 min at a flow rate of 1 mL/min. Semi-preparative

HPLC analyses were performed at room temperature with the same Waters HPLC setup.

An XBridge OST C18 column (2.5 µm particle size, 50 ×10 mm i.d.) was equilibrated in

solvent A (10 mM ammonium acetate in water, pH 6.8), and compounds were eluted with

an ascending gradient (1-10%) of acetonitrile in 20 min at a flow rate of 4.73 mL/min.

2.4.3 LC/MS product analyses

LC/MS-based assays of 18O incorporation were conducted using Agilent 1200-6520 cap-

illary LC-Q-TOF MS spectrometer using a Waters C18-RP column (2.5 µm particle size, 50

x 4.6 mm i.d.). The column was equilibrated in solvent A (10 mM ammonium acetate in

water) and acetonitrile (solvent B) in 20 min at a flow rate of 1 mL/min. The mass sig-

nals were monitored using negative ion mode. Data were acquired via “Agilent MassHunter
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Workstation Data Acquisition (B.03.00)” software and analyzed via “Qualitative Analysis of

MassHunter Acquisition Data (B.03.00)” software.

2.4.4 Synthesis and characterization of dinucleotide CPD-TpT

CPD-TpT was synthesized following the protocol developed by Bdour et al. (Figure  2.23 )

[ 99 ]. CPD-TpT formed after UV-B irradiation of TpT was purified using reverse-phase HPLC

(Figure  2.24 ) and its concentration was determined using UV-Visible absorption spectroscopy

(ε=1500 M−1 cm−1) [ 100 ] [ 101 ]. Figures  2.25 and  2.26 show the 13C and 31P NMR spectra

for TpT. Figures  2.27 and  2.28 show the 13C and 31P NMR spectrum for CPD-TpT.

2.4.5 Formation of CPD-TpT (M+2) and (M+4) species for ESI-MS and 13C
NMR studies

Dinucleotide CPD-TpT was dissolved in 0.25 M NaOH to a final concentration of 1

mM for ESI-MS analysis and ≈ 132 mM for 13C NMR analysis. The resulting solution

was maintained at room temperature (25◦C) to allow the formation of (M+2) and (M+4)

species as assessed by monitoring 0.5 µL aliquots of the reaction mixture by LC-MS. For

NMR analyses, the reaction mixture was first monitored using LC-MS at various time points

to ensure the optimal formation of (M+2) and (M+4) species. After a quick check with

LC-MS, the reaction mixture was neutralized using an equimolar solution of HCl. After

neutralization, the solution was evaporated to dryness and re-dissolved in D2O for NMR

measurements. Figures  2.29 ,  2.30 ,  2.31 and  2.32 represent the 13C NMR spectra showing
18O incorporation in CPD-TpT at T=0 day, T=1 day, T=5 days and T=49 days.

2.4.6 Synthesis of CPD-TpT variant with a selective 15N label at the 3′ side

15N labelled thymidine used in this synthesis was synthesized using the protocol developed

by Bdour et al [ 99 ]. TpT with a selective 15N label at the 3′ side was synthesized using the

scheme developed by Bdour et al[ 99 ] after minor modifications. Since we wanted a label only

at the 3′ side of the molecule, we used thymine phosphoramidite (without 15N enrichment)

during the coupling step. CPD was obtained after irradiating an aqueous solution of TpT
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(selectively 15N labelled at the 3′ side) with UV-B radiation for ≈ 4 hours. The reaction

produced a mixture of trans-syn and cis-syn isomers of CPD. The cis-syn isomer that is

the major product of the reaction (>86% yield) was purified using reverse phase HPLC,

followed by desalting and lyophilisation. Concentration of CPD-TpT lesion was determined

using UV-Visible absorption spectroscopy (ε=1500 M−1 cm−1). Figure  2.33 shows the 13C

NMR spectrum for dinuceotide TpT with the 15N label on 3′ side. Figure  2.34 shows the 13C

NMR spectrum for the CPD lesion that results from it.
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Figure 2.23. Reaction scheme for synthesis of CPD-TpT. Modified from [ 99 ]
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Figure 2.24. Reverse-phase HPLC chromatogram showing UV-B photo-
irradiation of TpT

Figure 2.25. 13C NMR spectrum for TpT
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Figure 2.26. 31P NMR spectrum for TpT

Figure 2.27. 13C NMR spectrum for CPD-TpT
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Figure 2.28. 31P NMR spectrum for CPD-TpT

Figure 2.29. Full 13C NMR spectrum showing 18O incorporation in CPD-
TpT at T=0 days
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Figure 2.30. Full 13C NMR spectrum showing 18O incorporation in CPD-
TpT at T=1 day

Figure 2.31. Full 13C NMR spectrum showing 18O incorporation in CPD-
TpT at T=5 days
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Figure 2.32. Full 13C NMR spectrum showing 18O incorporation in CPD-
TpT at T=49 days

Figure 2.33. 13C NMR spectrum for dinucleotide TpT with a selective 15N
label on the 3′ end
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Figure 2.34. 13C NMR spectrum for CPD-TpT with a selective 15N label on
the 3′ end of the molecule
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3. DEFINING THE ALKALINE REACTIVITY OF

CYCLOBUTANE PYRIMIDINE DIMER (CPD) LESIONS IN

OLIGONUCLEOTIDES

3.1 Introduction

The work presented in Chapter 2 described the alkaline reactivity of cyclobutane pyrimi-

dine dimer (CPD) lesions generated from dinucleotides. These studies indicated that, similar

to other DNA lesions, CPD undergoes a water addition at the C4 carbonyl group of the

thymine residue leading to the formation of a hemiaminal intermediate. Further, as shown

by the 18O labeling studies with CPD-TpT, this intermediate does not lead to hydrolysis prod-

ucts and completely reverts back to the starting material under alkaline conditions. Together

these results indicate that the two C4 carbonyl groups present on the 3′ and 5′ thymines in a

CPD molecule show different chemical reactivities towards hydrolytic attack, with the C4=O

group on 3′ thymine being more reactive (Figure  3.1 ).

Figure 3.1. Products obtained after alkaline hydrolysis of CPD-TpT lesion
in presence of 18O labeled water
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What leads to the observed difference in the reactivities of the two possible C4=O groups

in a CPD molecule? Is it an intrinsic property of the CPD molecule OR does it occurs due to

the structural asymmetry in a CPD lesion? To investigate these possibilities further, alkaline

hydrolysis reaction were conducted on a CPD lesion contained within a DNA hexanucleotide

AATTAA (AAT̂ TAA) and tetranucleotide ATTA (AT̂ TA). It should be noted that a CPD-

TpT molecule (T̂ T ) has some degree of structural asymmetry between the 3′ and 5′ ends;

however once a T̂ T lesion is flanked by adenine groups on both sides, it loses that asymmetry

(Figure  3.2 ). Thus, if the differential reactivity between the two C4=O groups is an intrinsic

property of a CPD molecule, a similar result should be observed in the reactivity of AAT̂ TAA

and AT̂ TA. As outlined herein, it was determined that the observed asymmetry in alkaline

reactivity, between the C4 carbonyl groups on the 3′ and 5′ thymines in CPD, is an intrinsic

property of the CPD residue.

Figure 3.2. Structural representation of a CPD-AATTAA (AAT̂ TAA)
molecule (the CPD-TpT or T̂ T molecule is highlighted in red and the four
adenosine groups are shown in black)
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3.2 Results

3.2.1 Analyses of the alkaline hydrolysis of hexanucleotide AAT̂ TAA in 18O
labelled water via ESI-MS

AAT̂ TAA was obtained by UV-B irradiation of an aqueous solution of AATTAA main-

tained at 4◦C for ≈ 4 hours. The cis-syn isomer required for our experiments was puri-

fied from the UV-irradiated mixture using reverse-phase HPLC followed by desalting and

lyophilisation (Figure  3.3 ). The concentration of AAT̂ TAA was determined using UV-visible

absorption spectroscopy (Figure  3.4 )( Molar extinction coefficient for AATTAA was obtained

using the oligoanalyzer tool from IDT DNA technologies, ε=69600 M−1 cm−1) [  102 ]). The

resulting powder (after lyophilisation) was suspended in 250 mM NaOH solution prepared

in 18O labelled water to a final concentration of 1 mM. After every 24 hours, ≈ 0.5 µL of

the reaction mixture was withdrawn and rapidly quenched by mixing with ≈ 19.5 µL of 1 M

ammonium acetate buffer to arrest the progress of the reaction. The aliquot containing the

quenched reaction mixture was stored at -20◦C. Similar aliquots were obtained after every

24 hours for a period of 10 days. After each collection, the eppendorf tube containing the

original reaction mixture was carefully sealed to avoid the interaction of NaOH solution in

the reaction mixture with atmospheric carbon dioxide (known to reduce the alkalinity of

NaOH due to the formation of sodium carbonate).

AAT̂ TAA (molar mass 1799.3 g/mole) being a hexanucleotide, contains five phosphate

groups and thus potentially five different charged states. The spectra shown in Figure  3.5 

correspond to -2 state (m/z = 898.65), which is the most abundant charged state. For the

-2 charged state, the M, M+2 and M+4 species appear at m/z values of 898.18, 899.18

and 900.18 respectively. For comparison, Figure  3.6 shows the deconvoluted mass spectra

for AAT̂ TAA for the same time points. It should be noted here that the normal isotopic

distribution in a hexanucleotide molecule involves a higher ratio of M+2 and M+4 peaks as

compared to that in a dinucleotide, because of the higher number of carbon atoms in this

molecule (Refer to Figure  3.5 left panel, T=0 time point). Due to this, the relative ratios of

M, M+2 and M+4 species are ≈ 70%, 25% and 5% at the first time point i.e. T=0 days.
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ESI LC-MS (negative ion mode) analysis of the reaction between 1 mM AAT̂ TAA and

250 mM NaOH in 18O labelled water at room temperature showed a similar trend to that

observed in dinucleotide CPD-TpT (or T̂ T ). Once again, there was a rapid decrease in

the intensity of M peak followed by an increase in the intensity of (M+2) and (M+4) peaks

(Figure  3.5 ). A similar reaction pattern in AAT̂ TAA proves that the asymmetry in reactivity

between the two C4=O groups is an intrinsic property of the CPD molecule and is NOT due

to the asymmetry in structure in a dinucleotide.

Figure 3.3. RP-HPLC chromatogram showing AAT̂ TAA and unreacted
AATTAA after UV-B photo-irradiation
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Figure 3.4. UV-Visible absorption spectrum for AAT̂ TAA

3.2.2 Analyses of alkaline hydrolysis of hexanucleotide AAT̂ TAA in 18O labelled
water using 13C NMR spectroscopy

To determine if AAT̂ TAA followed the same reaction pattern as dinucleotide T̂ T , the

alkaline hydrolysis of AAT̂ TAA was studied using 13C NMR spectroscopy. At each time

point (Figure  3.7 ), the reaction progress was first screened using LC-MS to ensure the optimal

formation of (M+2) and (M+4) species. After a quick screening with LC-MS, the reaction

mixture was neutralized using an equimolar solution of HCl (to avoid signal reduction in

the NMR peak of 13C=O carbon atom caused by NaOH). pH of the reaction mixture was

monitored using a litmus paper. The NaCl salt formed as a result of the neutralization

process was removed from the reaction mixture using RP-HPLC. The resulting solution

was evaporated to dryness and re-dissolved in D2O for NMR measurements. It is worth

mentioning here that AAT̂ TAA, having a higher molar mass than T̂ T , has relatively slower

NMR relaxation times. Unfortunately this results in peak broadening and further reduces

the already poor resolution between C=16O and C=18O peaks. The 13C NMR spectra at

different time points are overlaid in Figure  3.7 .

As with the dinucleotide substrate lesion, the C2=O groups showed no detectable 18O

exchange. However, among the two C4=O groups, the one occuring upfield (with a lower

chemical shift value) reacted first. This differed from what was observed in the case of

dinucleotide T̂ Tand observation leads to the following two possibilities:
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Figure 3.5. Left panel: ESI-MS chromatograms for -2 charged state of
AAT̂ TAA showing 18O enrichment over a period of 10 days 2. 18O reaction
kinetics in AAT̂ TAA monitored using ESI-MS

• The reaction pattern in AAT̂ TAA is reversed relative to dinucleotide T̂ T ; with the 5′

C4=O group reacting first in this oligonucleotide environment.

• The reaction pattern in AAT̂ TAA remains the same as T̂ T . However, now the two

C4=O groups have simply undergone a change in chemical shift values.

This issue was addressed by synthesizing an oligonucleotide with a selective 15N label (on 3′

or 5′ side) using solid-phase DNA synthesis to permit the selective NMR coupling between

the 15N and C4=O group on 3′ side of the lesion. This experiment was carried out on a

tetranucleotide molecule (AT̂ TA) rather than a hexanucleotide, since it was expected to

show a similar trend in reactivity as hexanucleotide AAT̂ TAA and was relatively easier to
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Figure 3.6. Deconvoluted ESI-MS chromatograms for AAT̂ TAA showing
18O enrichment over a period of 10 days

synthesize. The following results summarize the ESI-MS and 13C NMR analyses of the 18O

labelling reactions in AT̂ TA.

3.2.3 Study of alkaline hydrolysis of AT̂ TA in 18O labelled water using ESI-MS

ATTA was synthesized using standard solid-phase DNA synthesis technique using con-

trolled pore glass (CPG) beads [ 103 ]. AT̂ TA was obtained after UV-B irradiation of an

aqueous solution of ATTA maintained at 4◦C for ≈ 4 hours. The cis-syn isomer was purified

using reverse-phase HPLC after which it was desalted and lyophilized. The concentration of
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Figure 3.7. 13C NMR spectra showing 18O exchange in AAT̂ TAA over time.
Please refer to Figures  3.19 ,  3.21 and  3.22 for the complete spectrum at each
time point.

AT̂ TA in solution was determined using UV-visible absorption spectroscopy (Figure  3.8 )(

Molar extinction coefficient for ATTA was obtained using the oligoanalyzer tool from IDT

DNA technologies, ε=45600 M−1 cm−1) [  102 ]. The powder obtained after lyophilisation was

suspended in 250 mM NaOH solution prepared in 18O labelled water to a final concentration

of 1 mM. Aliquots were collected after every 24 hours in the same way as described earlier

in the case of T̂ T and AAT̂ TAA. Figure  3.9 shows the ESI-MS spectra obtained at various

time points and the kinetic curve for the complete 18O exchange reaction for a 1 mM solu-

tion of AT̂ TA in the presence of 250 mM NaOH. As illustrated, AT̂ TA exhibited a similar

differential reactivity between the two available C4=O groups as was seen earlier in the case

of T̂ T and AAT̂ TAA. Figure  3.10 shows a comparison of the rates of 18O labelling in AT̂ TA

and T̂ T in presence of 250 mM NaOH.
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Figure 3.8. UV-Visible absorption spectrum for AT̂ TA and ATTA

Figure 3.9. Right panel: ESI-MS chromatograms showing 18O enrichment in
AT̂ TA over a period of 10 days Lest panel: 18O reaction kinetics in AT̂ TA
monitored using ESI-MS

3.2.4 13C NMR spectroscopic analyses of alkaline hydrolysis of AT̂ TA in 18O
labelled water

To ascertain that the reaction pattern in AT̂ TA, the alkaline hydrolysis reaction was

studied again using 13C NMR spectroscopy (each time point analysed simultaneously using

ESI-MS for comparison. Once again, slower relaxation times of C=O groups in CPD-ATTA

resulted in broader peaks and reduced resolution between C=16O and C=18O peaks relative
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Figure 3.10. 18O labeling of AT̂ TA in 250 mM NaOH in presence of T̂ T as
internal standard measured using ESI-MS

to those in dinucleotide T̂ T . The results are summarized in Figure  3.11 . As is apparent from

the 13C NMR spectra, the C4=O with relatively upfield chemical shift undergoes exchange

first, similar to the trend observed in the case of AAT̂ TAA. Thus, the NMR peak assignment

from AT̂ TA can safely be applied to AAT̂ TAA.

Figure 3.11. 13C NMR spectra showing 18O exchange in CPD-ATTA over
time. Please refer to Figures  3.23 and  3.25 for the complete NMR spectrum
at each of these time points.
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3.2.5 Synthesis and characterization of AT̂ TA with a selective 15N label at the
3′-thymine residue

To identify the initial site of nucleophilic attack in AT̂ TA (by default also in AAT̂ TAA),

AT̂ TA with a selective 15N label at the 3′ position was synthesized. 15N being NMR active

(I=1/2) interacts with the C=O groups in its vicinity (both C2=O and C4=O groups on 3′

end of the molecule) and splits them into a doublet (2I+1). The C2=O and C4=O group

peaks on the 5′ end of the lesion are left unaffected, and are thus differentiated from the

ones at 3′ end of the molecule (Figure  3.12 ). Figure  3.13 shows the ESI-MS spectrum of 3′

15N 15N , showing around 69% 15N incorporation. Figure  3.14 shows a section of 13C NMR

spectrum for the compound highlighting the C2=O and C4=O groups. The complete 13C

NMR spectrum, along with H1, 15N and 31P NMR spectra for the compound, can be found

in the Experimental section of this chapter. As is evident from Figure  3.14 , the C4=O with

a relatively upfield chemical shift (the one that was shown to react first) remains at the 3′ end

of the molecule. This establishes beyond reasonable doubt that in AT̂ TA and in AAT̂ TAA,

the C4=O group on the 3′ end of the lesion reacts first followed by the 5′ C4=O group. There

is no noticeable exchange seen on the C2=O groups during the time course of the reaction.

The above results indicate that the order of hydrolytic reactivity in a CPD molecule is

unaffected by the presence of neighbouring groups around the CPD moiety or by a change in

chain length. The final outcome of the exchange reaction is as depicted for dinucleotide T̂ T

in Figure  3.15 .

Figure 3.12. Schematic representation of the structure of AT̂ TA with a
selective 15N label on 3′ side
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Figure 3.13. ESI-MS chromatogram of AT̂ TA showing 15N enrichment in the molecule

Figure 3.14. Section from 13C NMR spectrum of 15N labeled AT̂ TA show-
ing C2=O and C4=O groups. Please refer to Figure  3.31 for the complete
spectrum.

Figure 3.15. Products obtained after alkaline hydrolysis of T̂ T lesion in
presence of 18O labeled water

3.3 Discussion

There are very few studies devoted to understanding the alkaline hydrolysis of cyclobu-

tane pyrimidine dimer (CPD) lesions [  5 ], [ 92 ], [ 93 ]. Unfortunately, studies have only explored

the reactivity of CPD lesions derived from thymine (nucleobase only) or thymidine (nucleo-

sides only) models, none of which reflect the true polymeric state of DNA in living systems.
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Here we investigated the alkaline reactivity of the most common DNA photolesion en-

countered in living cells, i.e., cyclobutane pyrimidine dimer (CPD). Photo-irradiation of

living cells results primarily in the formation of cis-syn isomer of CPD. Earlier work on cy-

clobutane pyrimidine dimers resulting from thymine (nucleobase) or thymidine (nucleoside)

models clearly show that the cis-syn CPD is stable in the presence of a high concentration of

alkali (1M) at room temperature. Our results with cyclobutane pyrimidine dimers resulting

from dinucleotide TpT (described in Chapter 2) parallel these results (Figure  2.1 ). However,

our investigation of the same reaction in 18O labeled water seemingly proved that, similar

to other DNA lesions, CPD indeed undergoes a water addition at the C4 carbonyl group

leading to the formation of a hemiaminal intermediate. However, this intermediate does not

lead to any hydrolysis products and rapidly reverts to the starting material (Figure  2.2 ).

Moreover, the two possible C4 carbonyl groups present on the 3′ and 5′ thymines of a CPD

lesion show different chemical reactivities, with the C4=O group on 3′ sidebeing the initial

point of hydrolytic attack. Following our findings in Chapter 2, this chapter has now de-

scribed the replication of these results in an oligonucleotide setting (in tetranucleotide, ATTA

and hexanucleotide, AATTAA), indicating that the asymmetric alkaline reactivity observed

between the C4 carbonyl groups on the 3′ and 5′ thymines in CPD, is an intrinsic property

of the CPD residue. Moreover, similar to dinucleotide T̂ T , the C4=O group on 3′ side in

AT̂ TA and AAT̂ TAA is more reactive than the one on 5′ side (Figure  3.16 )

Figure 3.16. Schematic representation of the order of alkaline reactivity in CPD-TpT
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3.3.1 Biological consequences

As noted in Chapter 2, both the direct-photoreversal enzyme photolyase and the excision

repair enzyme T4 endonuclease V employ base flipping to access the thymine dimer lesion.

The mechanistic cycle showing CPD repair by the photolyase enzyme clearly

shows the C4=O group on 3′ end as the first site of electron attack in a

CPD molecule. However, there is no known evidence to prove that. Our

results with dinucleotide (T̂ T) and now oligonucleotide models (AAT̂ TAA and

AT̂ TA), provide a firm and clear evidence to support this observation! (Figure

 2.22 )

3.4 Methods

3.4.1 Materials and general methods

All solvents and chemicals were of analytical grade and purchased from Sigma, Fisher

or VWR and used without further purification. NMR spectra were obtained using a Bruker

400 MHz NMR Fourier transform spectrometer using deuterium oxide as a solvent and with

residual water acting as an internal standard. Mass spectrometric (MS) analyses were ob-

tained via electrospray ionization (ESI) employing an ion-trap mass analyzer. HR-MS anal-

yses were performed using a Q-TOF LC/MS spectrometer; data were acquired via “Agilent

MassHunter Workstation Data Acquisition (B.03.00)” software and analyzed via “Qualitative

Analysis of MassHunter Acquisition Data (B.03.00)” software.

3.4.2 HPLC product analyses

HPLC analyses were performed at room temperature using a Waters (Milford, MA)

HPLC system coupled to a 2489 UV-Vis detector at 260 nm and 230 nm. A Waters C18

RP column (2.5 µm particle size, 50 ×4.6 mm i.d.) was equilibrated in solvent A (10 mM

triethylammonium acetate in water, pH 10.0), and compounds were eluted with an ascending

gradient (1%-10%) of acetonitrile in 20 min at a flow rate of 1 mL/min. Semi-preparative

HPLC analyses were performed at room temperature with the same Waters HPLC setup.
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An XBridge OST C18 column (2.5 µm particle size, 50 ×10 mm i.d.) was equilibrated in

solvent A (10mM ammonium acetate in water, pH 6.8), and compounds were eluted with an

ascending gradient (1-10%) of acetonitrile in 20 min at a flow rate of 4.73 mL/min. Products

were confirmed by LC/MS spectrometry and NMR spectroscopy.

3.4.3 LC/MS product analyses

LC/MS-based assays of 18O incorporation were conducted via an Agilent 6520 Accurate

Mass Q-TOF LC/ MS spectrometer using a Waters C18-RP column (2.5 µm particle size,

50 ×4.6 mm i.d.). The column was equilibrated in solvent A (10 mM ammonium acetate in

water) and acetonitrile (solvent B) in 20 min at a flow rate of 1 mL/min. The mass signals

were monitored using negative ion mode.

3.4.4 Formation of CPD-containing oligonucleotides

Oligonucleotides were prepared manually using controlled pore glass (CPG) beads. AAT̂ TAA

and AT̂ TA were obtained after UV-B (302 nm) irradiation of the aqueous solutions of the

corresponding oligonucleotides in ice-cold solution for ≈ 4 hours. The UV-B irradiated reac-

tion mixture was subjected to RP-HPLC purification to purify the CPD-containing oligonu-

cleotides. The purified oligonucleotides were desalted using RP-HPLC and their concentra-

tions were determined using UV-visible absorption spectroscopy (Molar extinction coefficient

for AATTAA and ATTA was obtained using the oligoanalyzer tool from IDT DNA technolo-

gies, ε=69600 M−1 cm−1 for AATTAA and ε=45600 M−1 cm−1 for ATTA) [  102 ]. Figures

 3.17 and  3.18 show 13C and 31P NMR spectra for hexanucleotide AATTAA. Figures  3.19 

and  3.20 show 13C and 31P NMR spectra for AAT̂ TAA. Figures  3.21 and  3.22 represent the
13C NMR specta showing 18O incorporation in AAT̂ TAA at T=1 day and T=5 days.

Figures  3.23 and  3.24 represent the 13C and 31P NMR spectra for tetranucleotide AT̂ TA.

Figures  3.25 and  3.26 represent the 13C NMR spectrum showing 18O incorporation in AT̂ TA

at T=1 day and T=5 days.
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Figure 3.17. 13C NMR spectrum for hexanucleotide AATTAA

3.4.5 Synthesis of AT̂ TA containing a selective 15N label on 3′ side

15N labeled thymidine and thymidine phosphoramidite were synthesized using the pro-

tocol developed by Bdour et al [ 99 ]. The 15N labeled thymidine phosphoramidite was then

used for ATTA synthesis using CPG beads. AT̂ TA with a 15N label on 3′ side was obtained

after UV-B (302 nm) irradiation of the aqueous solutions of the 15N labeled ATTA in ice-cold

solution for ≈ 4 hours. The UV-B irradiated reaction mixture was subjected to RP-HPLC

purification to purify the 15N labeled AT̂ TA. The purified oligonucleotide was desalted us-

ing HPLC and its concentrations was determined using UV-visible absorption spectroscopy

(ε=45600 M−1 cm−1). Figures  3.27 ,  3.28 ,  3.29 and  3.30 show H1, 13C, 31P and 15N NMR

spectra for 15N-labeled thymidine phosphoramidite that was used to synthesize AT̂ TA with

a selective 15N label on its 3′ side. Figures  3.31 and  3.32 show 13C and 31P NMR spectra for

this molecule.

93



Figure 3.18. 31P NMR spectrum for hexanucleotide AATTAA

Figure 3.19. 13C NMR spectrum for AAT̂ TAA
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Figure 3.20. 31P NMR spectrum for AAT̂ TAA

Figure 3.21. 13C NMR spectrum showing 18O incorporation in AAT̂ TAA at T= 1 day
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Figure 3.22. 13C NMR spectrum showing 18O incorporation in AAT̂ TAA at T= 5 days

Figure 3.23. 13C NMR spectrum for AT̂ TA
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Figure 3.24. 31P NMR spectrum for AT̂ TA

Figure 3.25. 13C NMR spectrum showing 18O incorporation in AT̂ TA at T= 1 day
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Figure 3.26. 13C NMR spectrum showing 18O incorporation in AT̂ TA at T= 5 days

Figure 3.27. H1 NMR spectrum for 15N-labeled thymidine phosphoramidite
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Figure 3.28. 13C NMR spectrum for 15N-labeled thymidine phosphoramidite

Figure 3.29. 31P NMR spectrum for 15N-labeled thymidine phosphoramidite
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Figure 3.30. 15N NMR spectrum for 15N-labeled thymidine phosphoramidite

Figure 3.31. 13C NMR spectrum for AT̂ TA with a selective 15N-label on 3′ side
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Figure 3.32. 31P NMR spectrum for AT̂ TA with a selective 15N-label on 3′ side
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4. INVESTIGATION OF THE HYDRAZINE REACTIVITY OF

CYCLOBUTANE PYRIMIDINE DIMER (CPD) LESIONS: A

POTENTIAL MEANS OF LESION REPAIR?

4.1 Introduction

In order to explore the reactivities of the two C4=O groups (and the lability of their

respective N3-C4 bonds) in CPD, the alkaline reactivity of CPD nested in dinucleotide and

oligonucleotide contexts was investigated in Chapters 2 and 3. Earlier published work on

cyclobutane pyrimidine dimers resulting from thymine and thymidine clearly showed that

cis-syn CPD is stable in presence of high concentration of alkali (1 M) at room temperature

(Figure  1.27 )[ 5 ]. Our results on cyclobutane pyrimidine dimers resulting from dinucleotide

TpT confirmed these results (Figure  2.1 ); and through our investigation of the same reaction

in 18O labelled water we proved that, similar to other DNA lesions, CPD undergoes a water

addition at the C4=O group leading to the formation of a hemiaminal intermediate. This

intermediate, however, does not lead to any hydrolysis products and completely reverts

to the starting lesion (Figure  2.2 ). Moreover, as revealed in Chapters 2 and 3, the two

C4=O groups present on the 3′- and 5′-thymines in a CPD lesion show different chemical

reactivities, reflected by different rates of exchange with the incoming nucleophile leading

to the hemiaminal intermediate. Further, the results obtained with the dinucleotide model

(CPD-TpT or T̂ T ) were replicated in an oligonucleotide setting and in various structural

variants of CPD-TpT, to prove that the observed asymmetry in alkaline reactivity, between

C4=O groups on the 3′- and 5′-thymines in CPD, is an intrinsic property of the CPD residue.

Since simple alkaline treatment failed to open the pyrimidine ring of CPD even under

conditions of high alkalinity and elevated temperatures, stronger nucleophiles were examined

in our quest to investigate the lability of the N3-C4 bond (as observed in other DNA lesions

with a saturated pyrimidine ring) (Figure  1.23 )[ 6 ]. Along with various nitrogen and sulfur

containing nucleophiles (nitrogen and sulfur being stronger nucleophiles than oxygen) like

lysine and 2-mercaptoethanol (both of which yielded some reaction products, further exper-

iments required to explore the nature of these products), we tried hydrazine monohydrate,

which is known for its increased nucleophilicity on account of the ‘alpha effect’ of the two
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neighbouring nitrogen atoms [  104 ]–[ 106 ]. We expected a nucleophilic attack by nitrogen on

the C4=O group followed by a cleavage of the N3-C4 bond, similar to that observed upon

treatment of all other sunlight-induced DNA lesions with an alkali [ 6 ].

As detailed below, a rapid and complete chemical reversal of dimeric CPD to the two

canonical bases (TpT) was observed upon lesion treatment with hydrazine (Figure  4.1 ). The

finding is particularly interesting as it demonstrates a means of chemical DNA repair. In the

work described below, the intricacies of the reaction are described and the reaction path-

way was probed by characterizing the intermediate(s) involved using various experimental

techniques (independently and in tandem).

Figure 4.1. General scheme for hydrazine mediated CPD repair

4.2 Results

4.2.1 Investigation of hydrazine-mediated CPD repair using reverse-phase HPLC

Figure  4.2 shows a representative reverse phase HPLC (RP-HPLC) chromatogram of the

reaction of 1 mM CPD-TpT with 100 mM hydrazine under argon after 240 minutes of the

reaction. The reaction between CPD-TpT and hydrazine monohydrate to yield dinucleotide

TpT proceeded with considerable ease at room temperature. However, it did not proceed

to completion even after using high concentrations of hydrazine (up to 1 M for 1 mM of

CPD-TpT) and utilizing higher temperatures (up to 90◦C) under ambient atmosphere. In

contrast, the reaction was facile and rapidly proceeded to completion (most of the starting

material used up in less than 2 hours) in an inert atmosphere (at room temperature). This
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can most likely be attributed to the auto-oxidation of hydrazine reported under aerobic

conditions [  107 ]. A striking observation was the continued formation of the product (i.e.,

TpT) even after rapidly freezing the reaction mixture immediately after mixing the two

reactants; indicating the formation of an intermediate species (on reaction of CPD-TpT

with hydrazine) that collapsed to TpT by a possible intramolecular rearrangement. Since

the intermediate(s) appeared to be unstable at neutral pH (used for HPLC analyses earlier),

a basic buffer (10 mM triethylammoniumacetate TEAA, pH 10.0) was used as buffer A

during RP-HPLC analyses of this reaction. Buffer B was acetonitrile (as used earlier).

TpT was confirmed as the product of the reaction using three independent techniques: UV-

visible absorption spectroscopy (Figure  4.3 ), LC-MS and RP-HPLC co-injection (Figure

 4.4 ), all in the presence of dinucleotide TpT as an internal standard. Please refer to Section

4.4.1, Figures  4.17 and  4.18 for the complete list of spectra at various time points (from

T=0 minutes to T=240 minutes) for the reaction between 1 mM CPD-TpT and 100 mM

hydrazine under argon atmosphere at room temperature. Figure  4.19 represents the kinetic

curve showing the change in concentration of CPD-TpT, TpT and the potential intermediate

as determined by RP-HPLC measurements.

In order to determine the effect of change(s) in concentration of CPD-TpT and hydrazine

on the rate of the reaction, the same reaction (described above) was conducted by systemat-

ically varying the concentration(s) of CPD-TpT and hydrazine keeping other reaction con-

ditions constant. All these experiments were conducted at room temperature under argon

atmosphere. The reaction species at various time points were analyzed using RP-HPLC.

Figures  4.20 and  4.21 show the spectra recorded at various time points for the reaction be-

tween 1 mM CPD-TpT and 200 mM hydrazine. Figure  4.22 shows the change in reaction

rate (as a function of the rate of decrease of CPD-TpT) on doubling the concentration of

hydrazine, keeping that of CPD-TpT constant. Since hydrazine is already present in excess

(as compared to CPD-TpT) in the reaction mixture, the reaction was expected to proceed via

’pseudo-first order’ kinetics, where a change in the concentration of hydrazine should have

no effect on the rate of the reaction. The observed change can most likely be attributed to

an increase in the pH of the solution, that in turn, had an accelerating effect on the reaction

rate.
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Figures  4.23 and  4.24 show the spectra recorded for the reaction between 2 mM CPD-TpT

and 100 mM hydrazine. Figure  4.25 shows the change in reaction rate (as a function of the

rate of decrease of CPD-TpT), when the concentration of CPD-TpT is doubled keeping that

of hydrazine constant. No change in the reaction rate on doubling the concentration of CPD-

TpT was rather surprising; suggesting that the reaction rather proceeded via a ’zero order’

kinetics and not the expected ’pseudo-first order’ kinetics. It should be pointed out that similar

trend was observed while studying the kinetics of 18O exchange reaction in cis-syn CPD-TpT

(Appendix A, Figure  A.3 ). A similarity in the trends of the two reactions (18O

labeling and hydrazine-mediated repair) leads to the inference that a CPD-TpT

molecule undergoes nucleophilic addition via ’zero order’ kinetics, and suggests

that the two reactions proceed via a similar mechanism.

Figure 4.2. Reverse-phase HPLC chromatogram of the reaction of CPD-TpT
with hydrazine under argon atmosphere

Hydrazine-mediated repair was also tried in various structural variants of CPD-TpT, in an

attempt to vary the stacking arrangement of the lesion in aqueous solution, and therefore,

obtain a better understanding of the structural intricacies contributing to the speed and
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Figure 4.3. Comparison of UV-Visible absorption spectra of CPD-Hydrazine
reaction product and that of TpT control

efficiency of the reaction. One of these structural variants was a CPD isostere in which the

phosphate linker between the thymidine residues was replaced by a methylene linker (CPD-

TcT). The goal of the study was to determine the role of phosphate linker and thus, the

role of solution conformation of CPD on the outcome of the repair reaction. The reaction

between CPD-TcT and hydrazine was found to proceed with similar ease, thereby implying

that the phosphate linker (and thus the solution conformation of CPD) has little influence

on the outcome of the reaction (Figure  4.5 ). Please refer to Figure  4.26 for a complete list

of spectra recorded at various time points for the reaction between 1 mM CPD-TcT and

100 mM hydrazine under argon atmosphere at room temperature. A comparison between

the rate(s) of repair reaction in CPD-TpT and CPD-TcT was made by studying the kinetics

of hydrazine-mediated CPD-TcT repair in presence of CPD-TpT as an internal standard

(Figure  4.6 ). The figure clearly illustrates that, even though a change in the nature of the

linker does not alter the outcome of the repair reaction, nevertheless, the rate of decay of

CPD-TcT (and thus the rate of formation of TcT) is faster than CPD-TpT in presence of

the same amount of hydrazine, thereby implying a change in reaction rate with a change in

solution conformation of the CPD molecule.
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Figure 4.4. Reverse-phase HPLC-based doping experiments to identify TpT
as CPD + Hydrazine reaction product

Figure 4.5. Reaction scheme involving repair of CPD-TcT lesion to TcT

The CPD-TpT repair reaction was also attempted in the presence of methyl hydrazine

instead of hydrazine monohydrate. Although there was some reaction observed (evidenced by

the loss of the CPD-TpT species), no TpT formation was observed during the course of the

experiment. This observation, in combination with the results from the reaction of CPD-TpT

with lysine, ammonia and mercaptoethanol (during which ’some hydrolysis products’ were

observed), indicates that the presence of hydrazine monohydrate is crucial for the repair

reaction.
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Figure 4.6. Rate of decay of CPD-TpT vs CPD-TcT in presence of 100 mM Hydrazine

4.2.2 Analyses of the reaction using Q-TOF LC-MS: Investigation of the reac-
tion intermediate(s)

In order to characterize the potential intermediate species observed during the RP-HPLC

experiments (Figures  4.17 and  4.18 ), the reaction between 1 mM CPD-TpT and 100 mM

hydrazine was analyzed using a Q-TOF LC-MS. After every 30 minutes, aliquots were drawn

out of the reaction mixture (conducted in a flask fitted with an argon balloon) and quickly

injected into a LC-MS instrument. The reaction species were monitored under positive ion

mode. Figure  4.7 shows the LC-MS profile for the reaction mixture at T=1 minute (immedi-

ately after mixing hydrazine with CPD). The chromatogram shows a large CPD peak and a

TpT peak. Appearance of the product peak immediately after mixing the two reactants indi-

cates the rapid rate of this reaction. The peak at m/z=579 (M+32) most likely corresponds

to the adduct formed between CPD/TpT with hydrazine present as a buffer during the LC-

MS run, since similar adducts were observed during the control runs as well (Figure  4.8 ).

Figures  4.27 ,  4.28 ,  4.29 and  4.30 show the LC-MS and UV-visible profiles for the reaction

mixture at various time points (T=30 min to T=120 min). Although the UV-visible profiles

show a clear indication of a species with an retention time close to that of CPD-TpT (as ob-

served during the RP-HPLC experiments, Figures  4.17 and  4.18 ), the elution of these species

occurs within the void volume of the 18C column used for the LC-run. Due to this reason,

the mass values of these species cannot be obtained with confidence. It should be noted
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here that a CPD-TpT lesion shows very poor affinity towards a 18C column, and thus has a

very low retention time. Retention time for this lesion can be increased by using ion-pairing

reagents e.g. triethylammonium acetate (TEAA) (or ammonium acetate) that contain a long

hydrophobic chain that can bind to the 18C chains in a column. The positively-charged am-

monium groups in these ion-pairing agents bind to the negatively-charged phosphate group

in the CPD-TpT lesion, thus resulting in a higher retention time. However, since a mass

spectrometer is incompatible with TEAA buffer (and the reaction intermediates were found

to be unstable under neutral pH, thereby limiting the use of ammonium acetate), the basic

conditions during LC-MS experiment were maintained using 10 mM hydrazine solution as

buffer A, that shows no ion-pairing abilities.

Figure 4.7. LC-MS Profile for CPD + hydrazine reaction mixture at T=1
min. Panels A and B show the mass values for the LC-MS peaks corresponding
to CPD and TpT respectively.
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Figure 4.8. Mass spectra corresponding to CPD-TpT and TpT controls in
presence of 10 mM hydrazine as LC-buffer.

4.2.3 Study of CPD + hydrazine reaction kinetics using UV-Visible absorption
spectroscopy

In an attempt to shed further light on the reaction mechanism, the reaction kinetics was

monitored using UV-visible spectrophotometry. Since it was now known that the reaction

was facilitated by an inert atmosphere, the reaction between 1 mM CPD-TpT and 100 mM

hydrazine was conducted and monitored under an argon atmosphere. To achieve this, the

reaction was conducted in a quartz cuvette that was sealed with an argon balloon. The entire

set up was placed in a UV-visible absorption spectrophotometer that recorded the complete

absorption profile for the reaction mixture at various time points. An overlay of the UV-

visible absorption spectrum of the reaction mixture over a period of 45 minutes showed a

marked increase in absorbance at 260 nm with time. This indicates the formation of TpT

molecule (Figure  4.9 ). Figure  4.10 shows the UV-Visible absorption spectra for the controls

(CPD-TpT and TpT). The most striking observation in this experiment was the appearance of

an ’isosbestic point’ that indicates the presence of an intermediate species during hydrazine-

mediated chemical repair of CPD-TpT to dinucleotide TpT, which is consistent with our

RP-HPLC and LC-MS results (Figure  4.11 ).
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Figure 4.9. Overlay of UV-visible chromatograms obtained for the reaction
between 1 mM CPD-TpT and 100 mM Hydrazine under argon atmosphere

Figure 4.10. Control UV-Visible absorption spectrum for CPD-TpT and
dinucleotide TpT

4.2.4 Analyses using 1H, 13C and 31P NMR spectroscopies: Identification and
characterization of the reaction intermediate(s)

On the basis of our RP-HPLC and LC-MS results, it was determined that the reaction

of CPD with hydrazine is favored by an inert atmosphere. These experiments also indicated

the presence of an intermediate species that showed a similarity in retention time (and

potentially structure) with the CPD-TpT lesion. Analyses of the same reaction (under
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Figure 4.11. Overlay of the UV-visible absorption profiles for the reaction
mixture (CPD-TpT + hydrazine) to show the isosbestic point

inert conditions) using UV-visible absorption spectroscopy also suggested the presence of

an intermediate species (reflected by the presence of an isosbestic point). In an attempt to

characterize the potential intermediate(s) and determine the reaction mechanism, the CPD

+ hydrazine reaction was conducted in an NMR tube (maintained under argon atmosphere)

and the reaction progress was followed using 1H, 13C and 31P NMR.

Based on earlier results describing the alkaline reactivity of DNA lesions (containing

a saturated pyrimidine ring), it is known that the C4=O of the pyrimidine ring is the

initial site of nucleophilic attack in such molecules [ 6 ]. The formation of a tetrahedral

intermediate (after the attack of nucleophile on C4=O group) is followed by cleavage of

the N3-C4 bond (Figure  1.23 ). In fact, the cis-syn isomer of CPD-thymine was found

to react with alkali at elevated temperatures following a similar mechanism [  92 ][ 93 ]. The

reaction occurred on heating CPD-thymine in presence of 0.1 M NaOH at 75◦C and led to

the formation of 1,2-cis-dimetyl-3,4-cis-diureido-1,2-cyclobutane dicarboxylic acid. However,

during our investigation of the alkaline hydrolysis of cis-syn CPD-TpT (CPD derived from

dinucleotide TpT), we failed to obtain any hydrolysis product even under conditions of high

alkali concentration (up to 1 M for 1 mM of CPD-TpT) and high temperatures (up to 90◦C).
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On conducting the same reaction in the presence of 18O labeled water, it was found that even

cis-syn CPD-TpT undergoes the formation of a similar ‘hemiaminal intermediate’ as observed

in other DNA lesions containing a saturated pyrimidine ring. However, this intermediate

reverts to the starting material instead of yielding hydrolysis products (Figure  2.2 ). Since,

hydrazine is a stronger nucleophile than the hydroxide ion (on account of the alpha effect

in hydrazine)[ 104 ]–[ 106 ], it is logical to assume that a nucleophilic attack by hydrazine on

cis-syn CPD-TpT will result in the cleavage of the N3-C4 bond (Figure  4.12 ). Thus, if

the reaction between cis-syn CPD-TpT and hydrazine actually results in the formation of

cyclobutane derivative shown in Figure  4.12 , and the reaction is monitored using 13C NMR

spectroscopy, the product should differ from the reactant only in terms of the chemical

shifts of the C2=O and C4=O groups. In fact, the chemical shifts for both these sets of

C=O groups should undergo a downfield shift (based on NMR chemical shift prediction by

ChemDraw). This was exactly what we found. Figure  4.13 shows an overlay of the reaction

mixture at T=0 hrs and T=4 hrs; with an enlarged image to show the C2=O and C4=O

groups at T=0 hrs (blue) and T=4 hrs (red). Figure  4.14 shows a comparison of these groups

with the C2=O and C4=O groups of the TpT molecule for reference. It is clearly evident

from Figure  4.13 that, out of all the carbon atoms in the CPD molecule, only C2=O and

C4=O groups are affected upon interaction with hydrazine (since these are the only carbon

atoms in the lesion that undergo a change in chemical shift upon reaction with hydrazine).

Even the 1H NMR spectra for the reaction mixture at T=0 hours and T=4 hours were

very similar (since there are no hydrogens on the C4=O groups) that further supports our

assignment of the structure of the intermediate. In addition, the 31P NMR spectrum showed

a slight downfield shift in the phosphorus peak at T=4 hours as compared to that at T=0

hours (Figure  4.15 ). Thus, on the basis of the information from NMR analyses of hydrazine-

mediated CPD-TpT repair reaction, the intermediate shown in Figure  4.12 is most likely

formed during the reaction.
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Figure 4.12. Potential intermediate formed after the attack of hydrazine on
cis-syn CPD-TpT

Figure 4.13. Top panel: Overlay of the full 13C NMR spectrum of the reaction
mixture at T=0 hrs (blue) and T=4 hrs (red), Bottom panel: Overlay of the
13C NMR spectrum of the reaction mixture at T=0 hrs (blue) and T=4 hrs
(red) showing the C2 and C4 C=O groups. Please refer to Figures  4.31 and
 4.32 for the complete spectrum at each of these time points.

4.3 Discussion

4.3.1 Tentative reaction scheme

Based on our investigation of the CPD + hydrazine reaction using several orthogonal

techniques (independently and in tandem with each other) the following information can be

drawn about this unique repair reaction.
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Figure 4.14. Overlay of the 13C NMR spectrum of the reaction mixture at
T=0 hrs (blue) and T=4 hrs (red) showing the C2 and C4 C=O groups and
the C=O groups of the TpT molecule (control). Please refer to Figure  2.25 

for the complete 13C NMR spectrum for TpT. Figures  4.31 and  4.32 show the
complete 13C NMR spectrum for CPD-TpT + hydrazine reaction mixture at
T=0 hours and T=4 hours.

Figure 4.15. Overlay of 31P NMR spectrum of the reaction mixture at T=0
hrs and T=4 hrs

• The reaction between CPD-TpT and hydrazine almost instantly (in less than 1 min

after mixing the two reactants) leads to the formation of the ring-opened product

shown in Figure  4.12 as reflected by the appearance of the peak due to the potential

intermediate in the RP-HPLC spectrum at T=1 min (Figure  4.17 ).

• The ring-opened product thus formed, favours an inert atmosphere to complete its

conversion to dinucleotide TpT. Under these conditions, the conversion to TpT is facile.
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This was indicated by the enhanced rate of TpT formation under argon atmosphere:

<2 hours for reaction completion as compared to several days in presence of air. In fact,

the TpT peak appeared in the chromatogram recorded at T=1 minute, immediately

upon mixing the two reactants.

• The conversion of the ring-opened intermediate to TpT involves an intramolecular

rearrangement as suggested by the continued formation of TpT even after quick freezing

the reaction mixture and storing at -20◦C.

• The intermediate thus formed is sensitive to changes in pH, under which it collapses

back to the starting material, CPD-TpT. This was supported by the complete absence

of ‘intermediate’ peak and a strong CPD-TpT peak on HPLC chromatogram when 10

mM ammonium acetate, pH 6.8 was used as buffer A. In contrast, when 10 mM TEAA,

pH 10 was used as buffer A, the peak due to the intermediate appeared consistently

across several time points.

Based on these observations, the following reaction scheme is suggested for hydrazine-

mediated chemical repair of CPD-TpT to dinucleotide TpT (Figure  4.16 ).

Figure 4.16. Reaction scheme for hydrazine-mediated repair of CPD-TpT,
including a proposed structure for the intermediate

Interaction of CPD with the hydroxyl group (generated as a nucleophile during the alka-

line hydrolysis reaction) provided important information regarding the asymmetric reactivity

of the C4=O groups on the 3′ and 5′ ends of the lesion. However, these studies failed to

provide any information about the lability of the N3-C4 bond in CPD relative to other
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sunlight-induced DNA lesions. Also, since the hemiaminal intermediate formed after the

attack of hydroxyl group on CPD failed to yield hydrolysis products, the reversibility of the

product could not be investigated. Thus, we wondered if the cleavage of N3-C4 bond in

CPD could be achieved by employing a stronger nucleophile: hydrazine was chosen for the

reaction. However, to our surprise, reaction of CPD-TpT with hydrazine reverted CPD back

to the two canonical nucleobases instead of ring opening! (Figure  4.1 )

Following the above, detailed investigation of the reaction using several orthogonal exper-

imental techniques led to the observation that the interaction of CPD with hydrazine results

in the formation of a tetrahedral intermediate that leads to rupture of the N3-C4 bond as

expected. However, the product thus formed is unstable under the reaction conditions and

further leads to cleavage of the cyclobutane ring, thereby restoring the thymine nucleobases

to their undamaged form (Figure  4.16 ). We also studied the reaction rate with respect to

changes in concentrations of the two reactants. The reaction was carried out at different

pH values (in the presence of different concentrations of sodium hydroxide) and at different

temperatures with the same outcome. This reaction was also attempted in the presence of

hydrazine and sodium hydroxide in 18O labelled water to study the competition between 18O

labelling reaction of C4=O groups in CPD (described in Chapters 2 and 3) and the repair

reaction (described in Chapter 4). It was found that most of the starting material (CPD)

was converted to TpT before 18O labelling could occur.

4.4 Methods

4.4.1 HPLC reaction analyses

The reaction between CPD-TpT and hydrazine was conducted on a Schlenk line at room

temperature. At each time point, the reaction mixture was withdrawn out of the reaction

flask using a syringe pre-equilibrated with argon. Equal volumes of the reaction mixture

(exactly 100 µL) were injected into the HPLC machine at each time point to enable accurate

quantification. Calibration curves for both CPD-TpT and TpT were plotted before the

reaction to determine the linear dynamic range of the instrument. HPLC analyses were

performed at room temperature using a Waters (Milford, MA) HPLC system coupled to a
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2489 UV-Vis detector at 260 nm and 230 nm. A Waters 18C RP column (2.5 µm particle size,

50 ×4.6 mm i.d.), that was fitted with an Agilent guard column, was equilibrated in solvent

A (10 mM triethylammonium acetate in water, pH 10.0), and compounds were eluted with

an ascending gradient (0%-8%) of acetonitrile from 1 min-20 min at a flow rate of 1 mL/min.

For RP-HPLC analyses of the reaction between CPD-TcT and hydrazine, 10 mM hydrazine

(pH 9-10) was used at buffer A and acetonitrile as buffer B. The compounds were eluted with

a gradient of (0%-8%) of acetonitrile from 1 min-24 min, (8%-32%) of acetonitrile from 24

min-34 min and (32%-100%) of acetonitrile from 34 min-35 min: flow rate was maintained

at 1 mL/min and exactly 20 µL of the reaction mixture was injected for each time point.

Figures  4.17 and  4.18 show the complete list of spectra at various time points (from

T=0 minutes to T=240 minutes) for the reaction between 1 mM CPD-TpT and 100 mM

hydrazine under argon atmosphere at room temperature. Figure  4.19 represents the kinetic

curve showing the change in concentration of CPD-TpT, TpT and the potential intermediate

as determined by RP-HPLC measurements. Figures  4.20 and  4.21 show the spectra recorded

at various time points for the reaction between 1 mM CPD-TpT and 200 mM hydrazine.

Figure  4.22 shows the change in reaction rate (as a function of the rate of decrease of

CPD-TpT) on doubling the concentration of hydrazine, keeping that of CPD-TpT constant.

Figures  4.23 and  4.24 show the spectra recorded for the reaction between 2 mM CPD-TpT

and 100 mM hydrazine. Figure  4.25 shows the change in reaction rate (as a function of the

rate of decrease of CPD-TpT), when the concentration of CPD-TpT is doubled keeping that

of hydrazine constant. Figure  4.26 shows the spectra recorded at various time points for the

reaction between 1 mM CPD-TcT (thymidine nucleoside connected by a methylene linker)

and 100 mM hydrazine under argon atmosphere at room temperature.

4.4.2 LC/MS reaction analyses

CPD-TpT + hydrazine was conducted on a Schlenk line at room temperature. At each

time point, the reaction mixture was withdrawn out of the reaction flask using a syringe

pre-equilibrated with argon (as described in the previous section). Equal volumes of the

reaction mixture (exactly 10 µL) were rapidly injected into the LC-MS machine (to prevent

the degradation of any potential intermediates due to exposure to air) for each time point to
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Figure 4.17. Reverse-phase HPLC chromatograms showing the change in
absorbance at 230 nm of various species in the reaction between 1 mM CPD-
TpT and 100 mM hydrazine under argon atmosphere at room temperature
from T=0 minutes to T=90 minutes.

maintain consistency among the spectra obtained for various time points. LC/MS-analyses

of the CPD + hydrazine reaction was conducted using Agilent 1200-6520 capillary LC-Q-

TOF MS spectrometer using a Waters C18-RP column (2.5 µm particle size, 50 ×4.6 mm

i.d.) fitted with an Agilent guard column. The column was equilibrated in solvent A (10

mM hydrazine in water, pH 9-10) and compounds were eluted with an ascending gradient

(0%-8%) of acetonitrile from 1 min-20 min at a flow rate of 1 mL/min. The mass signals
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were monitored using positive ion mode. Figures  4.27 ,  4.28 ,  4.29 and  4.30 show the LC-MS

and UV-visible profiles for the reaction mixture at various time points (T=30 min to T=120

min).

4.4.3 UV-visible spectrophotometry analyses

1 mM CPD-TpT was maintained under argon atmosphere in a quartz cuvette that was

sealed with an argon balloon. The path length of the cuvette was chosen as 0.2 cm in order

to minimize the overall absorbance of the reaction mixture (Beer-Lambert law, A=εbc) and

reduce the noise at lower wavelengths (less than 240 nm), since both CPD-TpT and hydrazine

have absorbance maximum in this region. 100 mM hydrazine was aliquoted out in a syringe

pre-equilibrated with argon and was rapidly transferred to the cuvette containing CPD-

TpT. The spectrophotometer was quickly closed and remained closed for the duration of the

experiment. The automated software for the instrument scanned the complete absorption

profile for the reaction mixture at various time points.

4.4.4 Synthesis and characterization of dinucleotide CPD-TpT

CPD-TpT was synthesized following the protocol developed by Bdour et al. [ 99 ] (Fig-

ure  2.23 ). CPD-TpT formed after UV-B irradiation of TpT was purified using reverse-phase

HPLC (Figure  2.24 ) and its concentration was determined using UV-Visible absorption spec-

troscopy (Molar extinction coefficient for CPD-TpT=1500 M−1 cm−1) [  100 ] [  101 ]. Figures

 2.25 and  2.26 show the 13C and 31P NMR spectra for TpT. Figures  2.27 and  2.28 show the
13C and 31P NMR spectrum for CPD-TpT. Figures  4.31 and  4.32 show the complete 13C

NMR spectrum for CPD-TpT + hydrazine reaction mixture at T=0 hours and T=4 hours

respectively.
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Figure 4.18. Reverse-phase HPLC chromatograms showing the change in
absorbance at 230 nm of various species in the reaction between 1 mM CPD-
TpT and 100 mM hydrazine under argon atmosphere at room temperature
from T=120 minutes to T=240 minutes.
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Figure 4.19. Kinetic curve showing the change in concentration of CPD-
TpT, TpT and the potential intermediate as determined by RP-HPLC mea-
surements.
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Figure 4.20. Reverse-phase HPLC chromatograms showing the change in
absorbance at 230 nm of various species in the reaction between 1 mM CPD-
TpT and 200 mM hydrazine under argon atmosphere at room temperature
from T=0 minutes to T=90 minutes.
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Figure 4.21. Reverse-phase HPLC chromatograms showing the change in
absorbance at 230 nm of various species in the reaction between 1 mM CPD-
TpT and 200 mM hydrazine under argon atmosphere at room temperature
from T=120 minutes to T=240 minutes.
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Figure 4.22. Variation in the rate of decay of CPD-TpT (reactant) on dou-
bling the concentration of Hydrazine keeping the concentration of CPD-TpT
constant
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Figure 4.23. Reverse-phase HPLC chromatograms showing the change in
absorbance at 230 nm of various species in the reaction between 2 mM CPD-
TpT and 100 mM hydrazine under argon atmosphere at room temperature
from T=0 minutes to T=90 minutes.
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Figure 4.24. Reverse-phase HPLC chromatograms showing the change in
absorbance at 230 nm of various species in the reaction between 2 mM CPD-
TpT and 100 mM hydrazine under argon atmosphere at room temperature
from T=120 minutes to T=240 minutes.
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Figure 4.25. Variation in the rate of decay of CPD-TpT (reactant) on dou-
bling the concentration of CPD-TpT keeping the concentration of hydrazine
constant
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Figure 4.26. Reverse-phase HPLC chromatograms showing the change in
absorbance at 230 nm of various species in the reaction between 1 mM CPD-
TcT and 100 mM hydrazine under argon atmosphere at room temperature
from T=0 minutes to T=270 minutes.
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Figure 4.27. LC-MS Profile for CPD + hydrazine reaction mixture at T=30
min. Panels A and B show the mass values for the LC-MS peaks corresponding
to CPD and TpT respectively.
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Figure 4.28. LC-MS Profile for CPD + hydrazine reaction mixture at T=60
min. Panels A and B show the mass values for the LC-MS peaks corresponding
to CPD and TpT respectively.
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Figure 4.29. LC-MS Profile for CPD + hydrazine reaction mixture at T=90
min. Panels A and B show the mass values for the LC-MS peaks corresponding
to CPD and TpT respectively.
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Figure 4.30. LC-MS Profile for CPD + hydrazine reaction mixture at T=120
min. Panels A and B show the mass values for the LC-MS peaks corresponding
to CPD and TpT respectively.
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Figure 4.31. 13C NMR spectrum showing CPD-TpT + hydrazine reaction
mixture at T=0 hours

Figure 4.32. 13C NMR spectrum showing CPD-TpT + hydrazine reaction
mixture at T=4 hours
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5. SUMMARY

Our research on DNA photodimers, especially cyclobutane pyrimidine dimers (CPDs), demon-

strates how chemical techniques can be employed to advance our understanding of the re-

activity and repair of these photolesions. The 18O labeling strategy described in Chapters

2 and 3, for the first time, allowed us to firmly establish the reactivity of CPD, previously

viewed as an inert lesion. Use of a dinucleotide CPD model with a selective 15N label unam-

biguously established the order of reactivity of the two electrophilic C4=O moieties of the

lesion.

In comparison, previous studies on the reactivity of the naturally occurring cis-syn iso-

mer of CPD used the isomers derived from simple thymine or thymidine monomers, none

of which truly reflects the structural framework of naturally occurring DNA. Our studies of

the alkaline lability of cis-syn CPD derived from dinucleotide, tetranucleotide and hexanu-

cleotide strands, truly establish the reactivity of cis-syn CPD in an alkaline environment,

and are more physiologically relevant. The 18O labeling experiments on tetranucleotide and

hexanucleotide CPDs followed the same trend observed in a dinucleotide molecule thereby es-

tablishing the inherent reactivity of a CPD lesion. The selectively N15-labeled CPD molecule

derived from dinucleotide and tetranucletide species further established the C4=O on the 3

side of the lesion as the first site of nucleophilic attack in CPD (Figure  3.16 ). Based on our

results, the two seemingly identical pyrimidine residues are now established to play distinct

roles in the reactivity of cyclobutane pyrimidine dimer (CPD) photolesions.

Despite the progress made, questions as to the reactivity of CPD photolesions still remain.

For instance, what is the role of individual structural moieties (base, sugar, phoshate and

methyl group) in the observed reactivity of a CPD lesion? Further, does the reactivity of the

individual C4=O groups change with the change in chain length or a change in neighbouring

groups? How does a duplex environment affect the observed reactivity pattern? Also, is

the CPD lesion inert in an acidic environment? Does the observed asymmetry persists in

presence of acids as well?

We have followed through some of these queries and have obtained some preliminary

results. For example, our results from 18O exchange experiments with cis-syn and trans-
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syn CPD-TpT isomers show that trans-syn CPD-TpT exhibits a similar reaction pattern

(asymmetry between the two C4=O groups). However, the reaction rate in case of the

trans-syn isomer is significantly lower as compared to the cis-syn isomer (Figure  A.15 ).

This observation indicates that the stereochemistry of the methyl group (cis vs trans) has

a profound effect on the rate of 18O exchange in the CPD lesion. This difference probably

arises due to the change in accessibility of the C4=O groups with the change in methyl

group stereochemistry. Moreover, 18O labeling experiments with cis-syn, trans-syn, cis-anti

and trans-anti CPD isomers from thymidine showed that none of these isomers exhibit

any detectable 18O exchange even with high concentrations of base (up to 1nM) or elevated

temperatures (up to 75◦C) (Figure  A.24 ). On the other hand, similar experiments with CPD

lesion containing an unnatural methylene linker (CH2-) instead of the phosphate linker (CPD-

TcT) demonstrated a similar asymmetry between the C4=O groups as seen in CPD-TpT.The

results from these two experiments indicate that a linkage between the sugar moieties bearing

the CPD lesion is necessary for the formation of a hemiaminal water adduct. The similarity in

reaction pattern between CPD-TpT and CPD-TcT suggests that CPD-TcT adopts a similar

stacking arrangement in solution as CPD-TpT, leading to a similar asymmetric reactivity

between the two C4=O groups.

The rate of 18O exchange in CPD has also been shown to vary with an increase in

chain length of the strand containing the CPD moiety, as evidenced by our 18O labeling

experiments with CPD generated within dinucleotide, tetranucleotide and hexanucleotide

strands. The CPD lesions from dinucleotide and tetranucleotide were observed to exhibit

similar 18O exchange rates (Figure  3.10 ). In contrast, these rates were significantly reduced

in the case of CPD within a hexanucleotide context, most likely due to the increase in steric

constraints (Figure  5.1 ). Also, a change in flanking nucleotides from adenine to guanine was

found to affect the reactivity of C4=O groups in a CPD molecule; the rate of 18O exchange

was found to be faster in GGT̂ TGG as compared to that in AAT̂ TAA (Figure  A.36 ). Further

experiments need to be conducted to explore these phenomena in detail.

In addition to the elucidation of the reactivity pattern in a cyclobutane pyrimidine dimer,

our studies have also discovered a small molecule-mediated total repair of CPD lesion (Figure
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 4.1 ). We have also achieved the characterization of the intermediate species formed during

the reaction leading to a tentative mechanistic route.

The CPD+hydrazine reaction provides the interesting possibility of small molecule-

mediated rapid and complete repair of the CPD lesion under ambient conditions (room

temperature). In terms of future prospects, it will be interesting to see the outcome of the

reaction in an oligonucleotide and duplex environments. In addition, the reaction could be

conducted on various structural variants of dinucleotide CPD-TpT, in order to understand

the role of base, sugar, phosphate and methyl moieties in its outcome. It will also be interest-

ing to look for similar repair in other DNA lesions, i.e., pyrimidine pyrimidone photoproduct

(6-4PP) and 5-pyrimidinyl-5,6-dihydropyrimidine (spore photoproduct, SP).

In order to investigate the role of phosphate linker in the observed repair reaction and to

potentially increase the lifetime of reaction intermediates, we carried out the reaction in a

CPD variant in which the phosphate linker was replaced by a methylene linker (CPD-TcT).

Interestingly, the reaction showed a similar outcome as CPD-TpT (albeit with a slower

reaction rate) (Figure  4.6 ). These results, along with the 18O labeling results discussed

above, indicate that the physical presence of the phosphate linker has little effect on the

reactivity/repair of a CPD molecule, and the molecule shows similar reactivity as long as

the stacking arrangement is maintained. We also tried the CPD-TpT repair reaction in the

presence of methyl hydrazine instead of hydrazine monohydrate. Although there was some

reaction observed (evidenced by the loss of the CPD-TpT species), no TpT formation was

observed during the course of the experiment. This observation, in combination with the

results from the reaction of CPD-TpT with lysine, ammonia and mercaptoethanol (during

which ”some hydrolysis products” were observed), indicate that the presence of hydrazine

monohydrate is crucial for the repair reaction.

Our studies on cyclobutane pyrimidine dimer variants described here suggest that organic

synthesis and chemical analyses can potentially enable the development of several other

useful ”tool-sets” that may help in the understanding of the chemistry of DNA lesions in

unprecedented detail. In this context, we tentatively bring out the following two directions

to demonstrate what may be done in the future.
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Firstly, lesion-specific antibodies have played a pivotal role in the development of DNA

photobiology. The antibodies for CPD and 6,4-PP were created almost forty years ago. Since

then, these antibodies have enabled numerous biological studies involving these photolesions

in various organisms including rodents and humans with the use of assays like immunos-

taining and immunoprecipitation. However, the CPD antibodies that are currently available

merely recognize the CPD structure, and can not differentiate between the CPD variants

generated from various combinations of di-pyrimidine moieties e.g., CPD lesions generated

from TpT, TpC, CpT or CpC steps. Similar problems persist with the 6,4-PP antibod-

ies. More strikingly, no antibodies have been reported for SP photolesion so far. Current

advances in immunology have enabled the development of antibodies that are capable of

distinguishing minute structural variations in antigens. For instance, monoclonal antibod-

ies that can specifically recognize 5-methylcytosine (5mC) are now commercially available,

proving that it is now possible to develop antibodies that can distinguish the subtle struc-

tural differences between T/C and 5mC. Therefore, it is possible to generate antibodies that

can differentiate between various pyrimidine dimers. In order to make it work, a thorough

knowledge of the reactivity pattern of these photolesions is required. This, coupled with

careful antibody screening post immunization, should potentially enable the development of

antibodies with increased specificity.

Secondly, in comparison with antibody-specific immunoassays that suffer from non-

specific antibody binding and/or weak binding as a result of DNA secondary structures, the

’holy grail’ for genome-wide DNA photolesion analysis is to exploit the power of lesion-specific

chemistry to enable lesion labeling and minimize the structural bias. For instance, during the

8-oxo-7,8-dihydroguanine (OG) sequencing technique recently developed by Burrow’s group,

the lower redox potential of OG (about 600mV lower than G) was utilized to enable the se-

lective oxidation of OG without affecting the undamaged G in the strand. The electrophilic

OG oxidation product that is formed can then be labeled by amine-terminated biotin, al-

lowing the specific identification of modified DNA fragments through biotin-streptavidin

interactions for subsequent high-throughput sequencing studies. The basis of the successful

development of OG sequencing assay is a good understanding of the redox properties of OG.

As a matter of fact, any given DNA lesion may possess some unique chemical properties, the
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understanding of which may enable targeted lesion modification, eventually allowing selec-

tive enrichment of DNA fragments containing the lesions. As demonstrated in our studies

on the alkaline reactivity of SP, 6,4-PP, dHdU and CPD, these lesions show very different

chemical reactivities under similar conditions, even though all of them pass through the same

gem-diol intermediate before ring opening. This difference in alkaline lability may enable us

to design assays to specifically target a particular DNA lesion. It is our hope that a thorough

understanding of the difference in chemical reactivity among various pyrimidine lesions as

well as other DNA lesions is close tied with genome-wide lesion mapping in the near future.

Figure 5.1. 18O labeling of AAT̂ TAA in presence of T̂ T as internal standard
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A. APPENDIX

A.1 Determination of the kinetics of 18O labeling experiments of CPD-TpT

CPD-TpT was synthesized following the protocol developed by Bdour et al [ 99 ] (Fig-

ure  2.23 ). CPD-TpT formed after UV-B irradiation of TpT was purified using reverse-phase

HPLC (Figure  2.24 ) and its concentration was determined using UV-Visible absorption spec-

troscopy. Before conducting a detailed analysis of the kinetics of 18O exchange reaction in

CPD-TpT, calibration curves were drawn in order to determine the linear range for Q-TOF

HR-MS instrument response in response to CPD-TpT concentration, and to obtain reliable

quantification data during the experiments. In order for a thorough investigation of the re-

action kinetics, the variation in reaction rate was studied in response to change(s) in reaction

temperature, concentrations of CPD-TpT and NaOH. It was found that the change in rate

of decrease of CPD-TpT (i.e. the rate of the first exchange) was negligible in response to a

significant change in concentration(s) of the two reactants (CPD-TpT and NaOH). Similar

trends were observed with the rate of decrease of (M+2) species and the concurrent rate of

increase of (M+4) peak, stating no detectable changes in the rate of the second exchange.

Since NaOH is already in excess as compared to CPD-TpT, the reaction was expected to

proceed via a ’pseudo-first order’ kinetics. No change in the reaction rate on changing the

NaOH concentration simply states that a further increase in the pH of the reaction medium

does not increase the concentration of 18OH- ions and thus has no effect on the reaction

rate. The indifference of the reaction rate to change in CPD-TpT concentration, however,

insinuates a ’zero order’ kinetics. The results are summarized in the sections that follow:

A.1.1 Effect of temperature on the rate of 18O labeling reaction

In order to determine the dependence of 18O exchange reaction rate on temperature,

variation in M, (M+2) and (M+4) species were recorded over time during the reaction of

1mM CPD-TpT in presence of 100 mM NaOH in 18O labeled water at room temperature

(RT), 40◦C and 60◦C. It was found that the reaction rates on heating the reaction mixture

were substantially higher than the ones at RT, as expected; the first 18O exchange was

completed in less than 3 hours at 60◦C whereas it took 40 hours at RT. Figure  A.1 shows
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the representative equation at the kinetic curve for the reaction at RT. A comparison between

the reaction rates at 40◦C and 60◦C as a function of the rate of change in M, (M+2) and

(M+4) peaks is shown in Figure  A.2 .

Kinetics of 18O exchange reaction between 1.3 mM of CPD-TpT+100 mM

NaOH at room temperature (RT)

Figure A.1. Variation of M, (M+2) and (M+4) species with time during the
18O exchange reaction of 1.3 mM of CPD-TpT in presence of 100 mM NaOH
at room temperature (RT)

Kinetics of 18O exchange reaction between 1.3 mM of CPD-TpT+100 mM

NaOH at 40◦C and 60◦C

A.1.2 Effect of the concentration(s) of CPD-TpT and NaOH on the rate of 18O
labeling reaction

Figures  A.3 and  A.4 show the change in reaction rate with changes in the concentration(s)

of CPD-TpT and NaOH respectively. Figure  A.5 summarizes these results.
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Figure A.2. Comparison of the reaction rates as a function of the rate(s) of
change of M, (M+2) and (M+4) species at 40◦C and 60◦C

Figure A.3. Comparison of the reaction rates as a function of the rate(s) of
change of M, (M+2) and (M+4) species during the 18O exchange reaction of
1.3 mM and 2.6 mM of CPD-TpT in presence of 100 mM NaOH at 60◦C

A.2 Effect of the relative Stereo-chemistry of C6-methyl groups (cis vs trans)
on the electron transfer potential of cyclobutane pyrimidine dimer (CPD)
lesions

In living organisms, CPD mostly occurs in two conformations: cis-syn and trans-syn; with

the cis-syn isomer formed in major amounts ( 98%). Once we found the differential reactivity

of the two C4=O groups in cis-synCPD-TpT, we wondered if a change in the relative stereo-

chemistry of the two C6 methyl groups (and thus, a change in the packing arrangement in
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Figure A.4. Comparison of the reaction rates as a function of the rate(s) of
change of M, (M+2) and (M+4) species during the 18O exchange reaction of
1.3 mM of CPD-TpT in presence of 100 mM and 200 mM NaOH at 60◦C

Figure A.5. Comparison of the reaction rates as a function of the rate(s) of
change of M, (M+2) and (M+4) species with change(s) in concentrations of
CPD-TpT and NaOH at 60◦C

solution) will affect the outcome of the 18O exchange reaction. To address that, we conducted

the 18O labeling reaction in cis-synCPD-TpT in presence of equal amount of the trans-syn

isomer as an internal standard. TpT was synthesized following the protocol developed by

Bdour et al [ 99 ]. UV-B photo-irradiation of TpT in ice for 4 hours yielded a mixture of cis-

syn and trans-syn isomers in the ratio 98:2 (Figure  A.6 ). The two isomers were purified using

reverse-phase HPLC using 10mM ammonium acetate (pH 6.8) and acetonitrile as the buffers
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(Figure  A.7 ). Their respective concentrations were determined using UV-Visible absorption

spectroscopy (Figure  A.8 ).

Calibration curves for both cis-syn and trans-syn CPD-TpT were drawn to determine the

linear range for Q-TOF HR-MS instrument response as a function of concentration of the

two compounds (Figures  A.9 and  A.10 ). 18O exchange reaction was conducted in a single

pot containing a mixture of 3mM of cis-syn and trans-syn CPD-TpT isomers in presence of

250 mM of NaOH at 75◦C. We chose to heat the reaction mixture because when the same

reaction was carried out at room temperature, trans-syn CPD-TpT showed no detectable
18O exchange for a period of 8 days (Figures  A.11 and  A.12 ). The reaction rate(s) for the

two isomers (at 75◦C) are individually described as a function of variation in M, (M+2) and

(M+4) peaks in Figures  A.13 and  A.14 . Figure  A.15 shows a comparison of the rate(s) in

the two isomers.

From the kinetic curves, it can be clearly seen that although a change in the relative

stereo-chemistry of the C6 methyl groups does not change the outcome of the reaction, it

brings about a significant change in the rate of the reaction. The trans-syn isomer was found

to react a lot more slowly as compared to the trans-syn isomer. This can most likely be

attributed to the reduced accessibility of the C4=O groups to the 18OH- ions, when the C6

methyl groups are trans with respect to each other.

A.3 Effect of phosphate linker on the chemical reactivities of carbonyl groups
in cyclobutane pyrimidine dimer (CPD) lesions

In order to study the effect of phosphate linker on the chemical reactivities of the carbonyl

groups in a CPD molecule, we studied the 18O exchange reaction in CPD-thymidine in

presence of CPD-TpT as an internal standard. It should be noted that CPD-thymidine lacks

the ’phosphate linker’ that connects the two thymidine residues in a CPD-TpT molecule.

Any change observed between the chemical reactivities in the two molecules can most likely be

attributed to the change in stacking arrangement of the molecules in solution. UV-B photo-

irradiation of thymidine at 4◦C in 35% acetone-water mixture led to four stereo-isomers of

CPD-thymidine namely cis syn, cis anti, trans syn and trans anti (Figure  A.16 ).
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Figure A.6. Reaction scheme for the synthesis of cis-syn and trans-syn CPD-TpT

It should be pointed out here that photo-irradiation of TpT under similar conditions

yields only two out of these four stereo-isomers i.e.cis syn and trans syn CPD-TpT. This

is because, the presence of the phosphate linker between the two thymidine moieties in TpT,

reduces the degrees of freedom of the molecule and prevents the thymidine rings to adopt

an ’anti’ conformation with respect to each other. The absence of this kind of structural

constraint also leads to a slower rate of photo-reaction in thymidine. The reaction peaks

after approximately 19 hours in contrast to 4 hours for CPD-TpT formation in > 90% yield.
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Figure A.7. Reverse-phase HPLC chromatograms showing the relative
amounts of cis-syn and trans-syn isomers of CPD-TpT formed after UV-B
photo-irradiation of TpT

Figure A.8. UV-Visible absorption spectra for cis-syn and trans-syn isomers of CPD-TpT

Figure  A.17 shows the HPLC chromatogram for the reaction mixture after 18.5 hours of

photo-irradiation. Concentration of the CPD-thymidine isomers was determined using their

absorbance (Figure  A.18 ) and the molar extinction coefficient (available online). Figures

 A.19 ,  A.20 ,  A.21 and  A.22 show C13 NMR spectra for the four CPD-thymidine isomers.

In order to compare the rate(s) of 18O exchange between CPD-thymidine and CPD-

TpT, the exchange reaction was conducted for each isomer in presence of CPD-TpT as an

internal standard. The reaction was done at room temperature to prevent any degradation
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Figure A.9. Calibration curve for cis-syn CPD-TpT

Figure A.10. Calibration curve for trans-syn CPD-TpT

of the more reactive isomers (trans anti) in presence of high concentration of NaOH. As

expected, CPD-TpT showed rapid exchange with the first exchange (C4=O

on 3′ side) almost complete in less than 24 hours, after which the second

exchange (C4=O on 5′ side) started showing up (Figure  A.23 ). In contrast,

none of the four stereo-isomers of CPD-thymidine showed any significant

signs of 18O exchange over the 11 days for which the reaction was monitored

(figure  A.24 ). The reaction was first conducted in presence of 100 mM NaOH to avoid
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Figure A.11. 18O exchange reaction of cis-syn CPD-TpT in presence of 250
mM NaOH at room temperature

any degradation/hydrolysis of trans anti CPD-thymidine. However, the NaOH concentration

was increased to 250 mM when no change was observed any of the CPD-thymidine isomers

in presence of 100 mM NaOH. The reaction was stopped at 11 days, since most of the trans

anti isomer was hydrolyzed by that time (Figure  A.25 ).

Figure  A.26 shows that none of the CPD-thymidine isomers underwent a nucleophilic

exchange during the course of the reaction, which in turns underscores the importance of the

phosphate linker and thus, the stacked conformation in solution to the chemical reactivity

of the carbonyl groups in a CPD molecule. In the absence of this three-dimensional packing

arrangement, the carbonyl groups remain chemically inert towards a nucleophile. These

results also explain the ’chemical inertness’ of the cis-syn isomer of CPD known so far

(Figure  A.27 ).

A.4 Effect of neighboring bases on the electron transfer potential of cyclobutane
pyrimidine dimer (CPD) lesions

So far, we have studied various aspects of the intricacies of the chemical reactivities of

carbonyl groups in a CPD molecule. We studied the effect of increase in chain length on
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Figure A.12. 18O exchange reaction of trans-syn CPD-TpT in presence of
250 mM NaOH at room temperature

the electron transfer potential of carbonyl groups. We also studied the effect of changes in

concentration(s) of the two reactants. This was followed by a study of the effect of changes in

stereo-chemistry of the C6 methyl groups and the effect of the presence/absence of phosphate

linker on the reactivity pattern. We also studied the chemical reactivities under different

reaction conditions i.e. at various values of pH and temperature. The next question we ask

ourselves is the effect of neighboring groups (A vs G) surrounding the CPD molecule on

the outcome and rate of the nucleophilic exchange reaction. To this effect, we decided to

compare the rate(s) of 18O exchange in CPD-AATTAA and CPD-GGTTGG.

CPD-GGTTGG was prepared after UV-B irradiation of GGTTGG (commercially avail-

able). The reaction was particularly challenging because the guanosine moiety is known to

undergo oxidation rapidly even under conditions of slight increase in the reaction tempera-

ture. As a result, GGTTGG underwent rapid degradation by the heat produced by the UV-B

lamp long before any cycloaddition could occur; thereby reducing the yield of the reaction

drastically. We tried to circumvent around this problem by conducting the photo-reaction

in ice, and by reducing the exposure time to minimise the oxidation reaction, but that led to
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Figure A.13. Rate(s) of change of M, (M+2) and (M+4) species during the
18O exchange reaction of cis-syn CPD-TpT in presence of NaOH

only minor improvements in the yield. We tried to compensate this by collecting unreacted

starting material (GGTTGG) after HPLC purification of CPD-GGTTGG and subjecting it

to another round of UV irradiation. Figure  A.28 shows the RP-HPLC chromatogram for the

reaction mixture after UV-B photo-irradiation. As can be seen from the figure, the yield of

the product is only 15% after the first round of photo-irradiation. It is even lower after the

second round, probably due to partial degradation/oxidation of the starting material after

the first round.

Concentration of the product i.e. CPD-GGTTGG was determined by recording its UV-

Visible absorption spectrum and using the extinction coefficient value available online (Figure

 A.29 ). 18O exchange reaction was done by suspending 1mM of CPD-GGTTGG in 18O

labeled water in presence of 100 mM NaOH at room temperature. The reaction was also

tried in presence of 250 mM and 500 mM concentrations of NaOH. Figure  A.30 shows the
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Figure A.14. Rate(s) of change of M, (M+2) and (M+4) species during the
18O exchange reaction of trans-syn CPD-TpT in presence of NaOH

calibration curve for CPD-GGTTGG, plotted to determine the linear range of Q-TOF HR-

MS instrument response as a function of amount of compound injected. Figures  A.31 ,  A.32 

and  A.33 summarize the results. Figure  A.34 compiles the results from the three reactions.

It can be seen that the reaction rate shows only minor changes with variation in NaOH

concentration. This is in agreement to the results obtained in CPD-TpT under similar

conditions (Figure  A.4 ), and can most likely be attributed to changes in the solution pH.
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Figure A.15. Comparison of the reaction rates as a function of the rate(s)
of change of M, (M+2) and (M+4) species during the 18O exchange reaction
of cis-syn and trans-syn isomers of CPD-TpT in presence of NaOH

In order to compare the rate(s) of 18O exchange in CPD-GGTTGG and CPD-AATTAA,

CPD-AATTAA was obtained by a UV-B irradiation of an aqueous solution of AATTAA for

around 4 hours. The cis-syn isomer required for our experiments was purified out of the UV-

irradiated mixture using reverse-phase HPLC followed by desalting and lyophilisation (Figure

 3.3 ). The concentration of CPD-AATTAA was determined using UV-Visible absorption

spectroscopy (Figure  3.4 ). The resulting powder (after lyophilisation) was suspended in 18O

labelled water and adjusted for the required NaOH concentration. Figure  A.35 shows the

calibration curves for CPD-AATTAA. Figures  A.36 ,  A.37 and  A.38 show a comparison of

the reaction rates.i.e. effect of changes in neighboring groups on the rate of 18O exchange

reaction in a CPD molecule. It can be clearly seen that the reaction in CPD-GGTTGG is

slightly higher than that in CPD-AATTAA. The variation in reaction rate can be attributed
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Figure A.16. Reaction scheme for UV-B photo-irradiation of thymidine lead-
ing to CPD-thymidine

to the small differences in steric constraints imposed by the groups surrounding the CPD

moiety (A vs G) or the chemical/electronic nature of the group itself. In general, it can

be concluded with confidence that the neighboring groups surrounding the CPD

moiety do have an effect on the rate at which it reacts; with the CPD moiety

surrounded by more guanosines undergoing exchange at a faster pace that the

one surrounded by more adenosines.
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Figure A.17. RP-HPLC chromatogram showing thymidine after 18.5 hours
of UV-B photo-irradiation

Figure A.18. UV-Visible absorption spectrum for various isomers of CPD-thymidine
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Figure A.19. C13 NMR spectrum for cis-syn CPD-thymidine

Figure A.20. C13 NMR spectrum for cis-anti CPD-thymidine
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Figure A.21. C13 NMR spectrum for trans-syn CPD-thymidine

Figure A.22. C13 NMR spectrum for trans-anti CPD-thymidine
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Figure A.23. ESI-MS spectra overlaid to show 18O exchange in CPD-TpT over 11 days
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Figure A.24. ESI-MS spectra overlaid to show 18O exchange in various iso-
mers of CPD-thymidine over 11 days
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Figure A.25. Reaction scheme showing the degradation of trans,anti isomer
of CPD-thymidine after 11 days of alkali exposure
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Figure A.26. Reaction scheme summarizing the alkaline reactivities of CPD-
thymidine isomers

Figure A.27. Reaction scheme comparing the alkaline reactivities of CPD-
TpT and various isomers of CPD-thymidine
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Figure A.28. RP HPLC chromatogram showing CPD-GGTTGG and unre-
acted GGTTGG after UV-B irradiation in ice

Figure A.29. UV-Visible absorption spectrum for CPD-GGTTGG and GGTTGG
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Figure A.30. Calibration curve for CPD-GGTTGG

Figure A.31. 18O exchange for CPD-GGTTGG in presence of 100 mM of
NaOH at room temperature
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Figure A.32. 18O exchange for CPD-GGTTGG in presence of 250 mM of
NaOH at room temperature

Figure A.33. 18O exchange for CPD-GGTTGG in presence of 500 mM of
NaOH at room temperature
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Figure A.34. Comparison of the rates of 18O exchange in CPD-GGTTGG
in presence of various amounts of NaOH

Figure A.35. Calibration curve for CPD-AATTAA
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Figure A.36. Comparison of the rates of change in M peak during 18O
exchange reaction in CPD-GGTTGG and CPD-AATTAA

Figure A.37. Comparison of the rates of change in M+2 peak during 18O
exchange reaction in CPD-GGTTGG and CPD-AATTAA
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Figure A.38. Comparison of the rates of change in M+4 peak during 18O
exchange reaction in CPD-GGTTGG and CPD-AATTAA
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