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viations over the histograms in Panels (a), (b), (c), and (e), respectively.
For the fourth point (arising from Panel (d)), we estimate the error to
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3.8 This figure shows the zero-temperature phase diagram as a function of the
strength of the rotating field in a uniaxial Random field. The region where
the number of multi-periodic loops and the maximum periodicity increases
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We propose an order parameter theory of the quantum Hall nematic in high frac-

tional Landau levels in terms of an Ising description. This new model solves a couple

of extant problems in the literature: (1) The low-temperature behavior of the mea-

sured resistivity anisotropy is captured better by our model than previous theoretical

treatments based on the electron nematic having XY symmetry. (2) Our model al-

lows for the development of true long-range order at low temperature, consistent with

the observation of anisotropic low-temperature transport. We furthermore propose

new experimental tests based on hysteresis that can distinguish whether any two-

dimensional electron nematic is in the XY universality class (as previously proposed

in high fractional Landau levels), or in the Ising universality class (as we propose).

Given the growing interest in electron nematics in many materials, we expect our

proposed test of universality class to be of broad interest.

Whereas the XY model in two dimensions does not have a long-range ordered

phase, the addition of uniaxial random field disorder induces a long-range ordered

phase in which the spontaneous magnetization points perpendicular to the random

field direction, via an order-by-disorder transition. We have shown that this sponta-

neous magnetization is robust against a rotating driving field, up to a critical driving

field amplitude. Thus we have found evidence for a new non-equilibrium phase tran-

sition that was unknown before in this model. Moreover, we have discovered an

incredible anomaly at this nonequilibrium phase transition: the critical region is ac-

companied by a cascade of period multiplication events. This physics is reminiscent of

the period bifurcation cascade signaling the transition to chaos in nonlinear systems,
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and of the approach to the irreversibility transition in models of yield in amorphous

solids [1,2]. This period multiplication cascade is surprising to be present in a statis-

tical mechanics model, and suggests that the non-equilibrium transition as a function

of driving field amplitude is part of a larger class of transitions in dynamical systems.

Moreover, we show that this multi-period behavior represents a new emergent clas-

sical discrete time-crystal, since the new period is robust against changes to initial

conditions and low-temperature fluctuations over hundreds of driving period cycles.

We expect this work to be of broad interest, further encouraging cross-fertilization

between the rapidly growing field of time-crystals with the well-established fields of

nonequilibrium phase transitions and dynamical systems.

Geometrical configurations gave us a better understanding of the multi-period

behavior of the limit-cycles. Moreover, surface probes are continually evolving and

generating vast amounts of spatially resolved data of quantum materials, which re-

veal a lot of detail about the microscopic and macroscopic properties of the system.

Materials undergoing a transition between two distinct states, phase separate. These

phase-separated regions form intricate patterns on the observable surface, which can

encode model-specific information, including interaction, dimensionality, and disor-

der. While there are rigorous methods for understanding these patterns, they turn

out to be time-consuming as well as requiring expertise. We show that a well-tuned

machine learning framework can decipher this information with minimal effort from

the user. We expect this to be widely used by the scientific community to fast-track

comprehension of the underlying physics in these materials.
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1. OVERVIEW

1.1 Symmetry of underlying Nematic

A 2D Electron Gas(2DEG) in the presence of moderate to strong magnetic fields

exhibits the Integer Quantum Hall Effect. In moderate to weak magnetic fields, which

imply high Landau level occupancy, and temperature below ∼ 100mK, anisotropy in

longitudinal resistivity is observed at half integer filling ν = m + 1/2, for m ≥ 4

(Fig. 1.1) [3].

Figure 1.1. Reprinted figure 3 with permission from [(Ref. [3]) M. P. Lilly,
K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West. Phys.
Rev. Lett., 82, 394, 1999.] Copyright (2020) by the American Physical
Society. The anisotropy in the longitudinal resistivity along crystalline
axes at 25mK as reported by Lilly et al. [3]. The solid line gives the
longitudinal resistivity along the 〈11̄0〉 and the dashed line, along 〈110〉.
This shows that the easy transport occurs parallel to the 〈11̄0〉 crystal
axis of the GaAs.

The Integer Quantum Hall effect (IQHE) by itself cannot justify the anisotropic

longitudinal resistivity in between IQHE plateaus. At high fractional Landau levels,

uniform quantum Hall phases are unstable to the formation of stripe and bubble
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phases, with the stripe phases being preferred near high half-filling [4]. This state has

been identified as a nematic quantum Hall metal (NQHM), an oriented, compressible

stripe phase of interleaved integer quantum Hall states [5, 6].

Figure 1.2. Reprinted figure 2 with permission from [(Ref. [5]) Eduardo
Fradkin, Steven A. Kivelson, Efstratios Manousakis, and Kwangsik Nho.
Phys. Rev. Lett., 84, 1982, 2000.] Copyright (2020) by the American
Physical Society. The resistivity anisotropy defined as the ρa = (ρxx −
ρyy)/(ρxx + ρyy) plotted as a function of temperature from experimental
data. The simulation result from a lattice 2D XY model is a reasonable
match with the experiment only down to T=55mK in the presence of a
weak symmetry breaking field.

Fradkin et al. [5] developed an order parameter theory of the nematic to describe

the temperature evolution of the resistivity anisotropy. Using symmetry to map the

resistivity anisotropy to the nematic order parameter, they showed that the temper-

ature evolution of the resistivity anisotropy in the ν = 9/2 state is well described by

a classical 2D XY model, with a weak uniform symmetry-breaking field, through the

onset of the resistivity anisotropy as the temperature is lowered below T ∼ 150mK,

with deviations from the theory appearing below T ∼ 55mK (See fig. 1.2). This

model places the transition in the BKT universality class [7, 8].

One difficulty with this identification is that a true BKT transition does not break

symmetry, and in fact in that model long-range order of a nematic is forbidden at



3

finite temperature. However, as stressed in Ref. [5], the nematic susceptibility is

sufficiently strong in the BKT phase that net nematicity can develop anyway in the

presence of even a weak uniform orienting field. Note that without the development

of net nematicity, the resistivity anisotropy would be zero.

In chapter 2 we address the above discrepancy, devise a protocol to distinguish

an Ising from an XY nematic, and demonstrate evidence of Ising character in these

materials.

1.2 Emergent Ising symmetry from Order-by-Disorder Phenomenon

A system where long-range order is stimulated by disorder in the system, but does

not order otherwise is termed as order-by-disorder or disorder-induced order. [9–15]

The 2D XY model does not have long-range order at low temperature and in the

presence of disorder naively one would expect the system goes to a more disordered

state. But there is a type of disorder that promotes order in this system - Uniax-

ial Random Field Disorder. The random fields are only along one axis in the spin

subspace. In the case of a nematic, this type of disorder maps to two mutually per-

pendicular axes. Similar to a crystalline field giving rise to a uniform field, it can also

give rise to random field disorder along the crystalline axes.

The uniaxial random field XY model on a square lattice, in the presence of an

external field ~H[φ] is given by:

H = −J
∑
〈i,j〉

cos (θi − θj) −
∑
i

hi cos (θi)

− H
∑
i

cos (θi − φ), (1.1)

where ~Si ≡ (cos(θi), sin(θi)) is the XY spin on each site i, and J is the nearest neighbor

interaction strength. The second term arises from the interaction of a local random

field along the x-axis and the XY spins. We choose a random field hi at each site i from

a Gaussian probability distribution of width Rx, P (hi) = exp[−h2i /(2R2
x)]/(

√
2πR2

x).
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The order parameter is the magnetization per site ~m = 1
N

∑N
i=1

~Si, where N = L×L

is the number of sites.

The results from Monte Carlo simulations of Eqn. 1.1 in thermal equilibrium

are demonstrated to shed light on the order-by-disorder transition and its robust-

ness against applied field and temperature. We employ a Metropolis algorithm with

checkerboard updates, in which one Monte-Carlo sweep (MCS) updates black sites

and then white sites. We follow a field-cooling protocol in which the system is

started at a high temperature of T = 2J , then we reduce the temperature in steps of

∆T = 0.05J until T = 0.05J . At each temperature step, we thermalize the system

with 128,000 MCS and then take 12,800 measurements which are taken randomly

between 1 MCS and 16 MCS.
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(χyy) in the y direction peaks near Tc ' J , and diverges as the system size
is increased. (b) The Binder parameter yields a transition temperature
Tc ' 0.96J , consistent with the peak in the magnetic susceptibility shown
in panel (a).
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It is known that the presence of uniaxial random field disorder in the x direction

(Rx > 0) favors spontaneous symmetry breaking in the form of ferromagnetic order

in the y direction, [9, 13, 16, 17] via an order-by-disorder mechanism. Bera et al.

have used mean-field theory on the classical XY magnet to argue that the order-

by-disorder phenomenon is robust against an applied uniform magnetic field. [14]

Indeed, our simulations at moderate uniaxial random field strength Rx = 0.5J are

consistent with spontaneous symmetry breaking in the y direction, and indicate that

this phase is rather robust against disorder strength. In Fig. 1.3, we show that the

magnetic susceptibility in the y direction diverges with system size at the transition

temperature Tc = 0.96J determined from the Binder parameter.
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Figure 1.4. Transverse field cooling at Rx = 0.5J . (a) Magnetization
in the x direction mx and (b) magnetization in the y direction my in
the presence of both uniaxial random field disorder Rx and an applied
uniform field Hx. The spontaneous magnetization my remains robust at
finite disorder strength and in the presence of a uniform field applied
transverse to the ordering direction.

This order-by-disorder transition is robust even against a uniform field applied

parallel to the uniaxial random field. Our simulations of cooling in a uniform applied

field parallel the uniaxial random field direction (see Fig. 1.4) show that an order
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parameter develops in the direction perpendicular to the uniaxial random field, even

in the presence of an applied field. This shows that the spontaneous magnetization

my is robust even for moderate random field Rx = 0.5J , and finite uniform applied

field Hx, as shown in Fig. 1.4(b), consistent with the mean field results of Ref. [14].
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disorder ~H ‖ Rx with Rx = 0.5J , as described in the text. The horizontal
axis is the value of the applied uniform field Hx during the field-cooling
protocol. Upon field cooling with Hx . Rx/10, the net magnetization in
the y direction my dominates over the net magnetization in the x direction
mx. This illustrates the robustness of the spontaneous magnetization in
the y-direction even in the presence of an applied transverse field.

With strong enough transverse applied fieldHx, the order-by-disorder phenomenon

must be suppressed and the system will remain in the paramagnetic phase. Fig. 1.5

shows this crossover of the dominant magnetization from the y-axis to the x-axis with

increasing applied transverse field.

In chapter 3 we probe this system with a rotating driving field at zero tempera-

ture to uncover a rich non-equilibrium phase diagram, non-repeatability, and possible

connections to time-crystal and chaotic systems all happening near the critical region.
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1.3 Categorizing Surface Probe images

Surface probes have been around since 1982 and their number and types are in-

creasing, each with its specialization. [18,19] The copious amounts of data they pro-

vide are crucial for understanding materials down to the atomic scale. Near a phase

transition, patterns emerge which are self-similar at multiple length scales, much like

fractals. [20, 21] These geometric clusters bring out the statistical models describing

the system. While a precise analytical tool is cumbersome and requires expert knowl-

edge in the specific area, a machine learning approach can act as complementary

tools for a similar result with the least amount of effort. [22] Since a deep learning

framework with convolutional networks leads the field of pattern recognition, we can

utilize it for a similar purpose and improve upon the existing framework so that it

can be widely used.

(a) T=341K (b) T=342.4K (c) T=342.6K (d) T=342.8K (e) T=343K (f) T=343.6K

Figure 1.6. (a-f): Adapted figure 1 with permission from Ref. [23]. Copy-
righted by the American Physical Society. Thresholded s-SNIM data at
intensity 2.5. The white region is metallic and the black region is insulat-
ing.

A typical example of the type of experimental data we can analyze after thresh-

olding it appropriately as shown in figure 1.6(a-f). This data was collected by a

scattering scanning near-field infrared microscope (s-SNIM) on V O2. [24] This mate-

rial undergoes a Metal-Insulator transition and the intensity gives a measure of the

local insulating/metallic phase. A threshold intensity of 2.5 sets apart a metallic
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from an insulating region (Fig. 1.6(g-l)). As shown in Ref. [23], the results are robust

against setting a threshold within 15% of this value.

(a) 2D Ising model (b) 2D RFIM (c) 2D Percolation

(d) 3D Ising model (e) 3D RFIM (f) 3D Percolation

Figure 1.7. Critical configurations of different Ising models and percola-
tion models.

Figure 1.7 demonstrates a few of the intricate patterns that form in various 2-state

statistical models on a square/cubic lattice near criticality. Our goal is to categorize

figures 1.6(g-l) based on the patterns that form in one of:

• 2D/3D clean Ising model

• 2D/3D random field Ising model (RFIM)

• 2D/3D uncorrelated percolation model
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In chapter 4, we show the effectiveness of a deep learning framework keeping in

mind the application to experiments. We show symmetry-based data reductions and

out of sample space rejection criteria.
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2. DISTINGUISHING XY FROM ISING ELECTRON

NEMATICS

2.1 Introduction

The two-dimensional electron system/gas (2DES/2DEG) has intrigued the scien-

tific community for quite some time due to the fascinating physical phenomena it

exhibits. The Quantum Hall Effect (QHE) is one of the most interesting phenomena

in 2DES (and otherwise) which demonstrates Landau quantization in the presence of

a magnetic field. A 2DES/2DEG can be realized at a heterojunction of semiconduc-

tor materials such as in GaAs/AlGaAs, which is also the system being investigated

in this study for data analysis.

Strong electron correlations can drive systems into a variety of novel electronic

phases of matter. Electronic liquid crystals [25–27] form when electronic degrees

of freedom partially break the symmetries of the host crystal. Like their molecular

counterparts, electron nematic phases break rotational symmetry, while retaining liq-

uidity. Such oriented electronic liquids have been observed in a variety of systems,

including strontium ruthenates [28], iron superconductors [29–31], cuprate supercon-

ductors [32, 33], the (111) surface of bismuth [34, 35], and high fractional Landau

levels. The key signature in the quantum Hall regime is a pronounced transport

anisotropy that develops at low temperature [3, 36–39].

Through a comparison of simulations with experiments, we obtained an Ising

universality class for the order parameter description of the electron nematic in

GaAs/AlGaAs heterojunction. It is thus necessary to settle the question of which

universality class it actually belongs to: Ising or XY. In order to address this ques-

tion, we have proposed a test for determining the same. It applies to systems acquiring

macroscopic nematic order at low temperatures.
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2.2 Quantum Hall Effect

In this section, we give a pedagogical overview of the quantum Hall effect. [40]

The ordinary Hall effect was discovered by Edwin Hall in 1879. It is the phe-

nomenon that produces a voltage difference across a conductor simultaneously per-

pendicular to an applied electric field and a magnetic field. This effect can be best

understood when we study the motion of an electron in a crossed electric ( ~E) and

magnetic field ( ~B) given by the Lorentz force (~F ) equation:

~F = −e( ~E + ~v × ~B) (2.1)

A free electron will perform cyclical motion in this configuration with a net drift

velocity (~vdrift) perpendicular to both the electric field and magnetic field:

~vdrift = −
~E × ~B

B2
(2.2)

In a finite conductor, current flow is in the direction of the electric field, and in a

steady state there cannot be any net motion of charge carriers in the direction per-

pendicular to it. Hence, there must be a charge buildup at the edges of the conductor

which provides the necessary electric field required to compensate the initial ~vdrift.

This charge buildup produces a Hall voltage. For only electronic charge carriers, the

Hall resistance (RH) is:

RH = − B

nee
(2.3)

where, ne is the 2D carrier electron density.

A 2DEG/2DES in the presence of a perpendicular magnetic field and at a suf-

ficiently low temperature produces quantized Hall resistance, which is an integer or

rational factor of h/e2.

ρxy =


1
n
h
e2
, n ∈ Z+ IQHE

1
p/q

h
e2
, {p, q} ∈ Z+ FQHE

(2.4)
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The Integer Quantum Hall Effect (IQHE) is marked by the Hall resistance plateaus

at integer factors, and the Fractional Quantum Hall Effect (FQHE) is marked by Hall

resistance plateaus at rational fractions.

2.2.1 Landau quantization and Integer Quantum Hall Effect

The energy gets quantized upon application of strong magnetic field perpendicular

to a 2DEG. The quantized energies are called Landau levels (LL). To see how the

2DEG is formed in a 3D system, let us begin with a 3D Hamiltonian:

H3D =
(p + eA)2

2mb

+ eΦ(x, y) + V (z) (2.5)

where, A is the vector potential due to the magnetic field in the z-direction (Bẑ),

p is the momentum operator, and mb is the band mass of the electron. The dynamics

in the z-direction are highly constrained because of the confining potential energy

(V (z)), in other words, there is an energy gap between the two lowest energy states.

The Φ(x, y) plays the role of the potential in the x-y plane which will be required

in Sections 2.2.2 and 2.2.3 to understand quantized Hall resistance and longitudinal

resistivity.

Since the magnetic field is in the z-direction, and B = ∇ × A, without loss of

generality we can set Az = 0. Therefore, the Hamiltonian is:

H3D =
[(px + eAx)

2

2mb

+
(py + eAy)

2

2mb

+ eΦ(x, y)
]
2D

+
[ p2z

2mb

+ V (z)
]

(2.6)

Hence, the Hamiltonian is separable in the z-direction. At low temperatures, the

dynamics become quasi-2D as excitations in the wavefunction in the z-coordinate

become thermally unfavorable.

As a result, the wavefunction in the z-direction decouples from the x and y direc-

tions:

H3D|x, y, nz〉 = H3D|x, y〉 ⊗ |nz〉 = (H2D + Enz)|x, y〉 ⊗ |nz〉 (2.7)

The exact quantization of Enz is given by the form of the confining potential energy

in the z-direction, nonetheless nz = 0 gives the ground state energy of the wavefunc-
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tion in the z-coordinate which is relevant for the 2DEG. Now, the 2D Hamiltonian

is:

H2D =
(p + eA)2

2mb

+ eΦ(x, y) (2.8)

hereafter, the p and A are in the two-dimensional x-y plane only.

We make Φ(x, y) = 0 as it is not relevant for the quantization of energy in a 2DEG

(Φ(x, y) 6= 0 will be used in Sections 2.2.2 and 2.2.3). The quantization follows after

choosing an appropriate gauge. The two most used gauges are the symmetric gauge

and the Landau gauge.

Symmetric gauge: This gauge preserves only the rotational symmetry of the sys-

tem about the z-axis. The form of the vector potential is:

AS = B(−y
2
,
x

2
) (2.9)

Let’s define the mechanical (pseudo) momenta operators (Π±), which is useful in

the quantization of energy levels and hidden degeneracy of each energy level in this

gauge.

Π± = p± eA (2.10)

Now, the 2D Hamiltonian looks like:

H2D =
Π+ ·Π+

2mb

(2.11)

To quantize this Hamiltonian we have to define new operators using Eqn. 2.10:

a± =
lb√
2~

(Π±,x − iΠ±,y)

a†± =
lb√
2~

(Π±,x + iΠ±,y) (2.12)

where, lB =
√

~/eB is the magnetic length. Their commutation relations are:

[a†±, a±] = 1, [a±, a±] = [a†±, a
†
±] = 0

[a†±, a∓] = 0, [a±, a∓] = [a†±, a
†
∓] = 0 (2.13)
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Using these operator relations and with a little bit of algebra the Hamiltonian can

be simplified to:

H2D = ~ωc
(
a†+a+ +

1

2

)
(2.14)

where, ωc is the cyclotron frequency given by ~/(mbl
2
B). The energy spectrum takes

the harmonic oscillator form :

En+,n− = ~ωc
(
n+ +

1

2

)
(2.15)

where, n± = a†±a± are number operators. n− ∈ 0, 1, 2... gives the degeneracy of each

Landau level (n+ ∈ 0, 1, 2...).

Excitations in the Landau levels are given by:

|n+, n−〉 =
(a†+)n+(a†−)n−√

n+!n−!
|0, 0〉 (2.16)

where, n− gives the degeneracy of each LL n+. Each LL should ideally be infinitely

degenerate, but it is restricted by the number of magnetic flux quanta (nB = eB/h)

threading the finite area of the sample surface, as a result giving the filling factor

ν = ne/nB

The choice of gauge depends on the geometry of the sample. The Landau gauge

is most suitable for the upcoming discussion.

Landau gauge: This gauge preserves the translational symmetry of the system in

only one of the directions.

AL = B(−y, 0) (2.17)

In this gauge example the vector potential has translation symmetry in the x-

direction only. With this choice of vector potential the wavefunction in the x-direction

will be a plane wave solution (eikxx) and now the Hamiltonian is:

H2D =
mbω

2
c

2
(y − kxl2B)2 +

p2y
2mb

(2.18)

This is a shifted harmonic oscillator Hamltonian. The wavefuntion in the y-direction

will be that of a shifted harmonic oscillator for each kx.

〈x, y|nx, ny〉 = 〈x, y|kx = nx(2π/Lx), ny〉

∼ eikxxHny(y − kxl2B)e−(y−kxl
2
B)2/2l2B (2.19)
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where, kx = nx(2π/Lx) with periodic boundary condition. Hn is the Hermite poly-

nomial of nth order. And there is a shift of kxl
2
B in the wavefunction in y-direction.

The energy takes the harmonic oscillator form :

Enx,ny = ~ωc(ny +
1

2
) (2.20)

where, nx ∈ 0, 1, 2... gives the degeneracy of the harmonic oscillator in each ny ∈

0, 1, 2... harmonic oscillator energy level, which is the LL index in this case.

The potential landscape in the x-y plane is due to the impurity potential (Φconf (y))

as well as the confining potential (Φimp(x, y)), (Fig. 3.1 of Ref. [40])

Φ(x, y) = Φconf (y) + Φimp(x, y) (2.21)

here the confining potential is taken in the y-direction as we will be looking at trans-

port in x-direction, hence relevant for this particular choice of Landau gauge. The

Hamiltonian in the presence of this confinement potential still possesses the transla-

tional symmetry in the x-direction.

To first order in the Taylor expansion, the confinement potential near y0 is:

Φconf (y) ' Φconf (y0)− Econf (y0) · (y − y0) +O
(∂2Φconf

∂y2
) (2.22)

where, Econf (y0) is the electric field in the y direction at y0. Putting this back in

Eqn. 2.8 and using Eqn. 2.18 neglecting second order terms in Φconf (y0), the Hamil-

tonian becomes:

H2D =
p2y

2mb

+
mbω

2
c

2
(y − (y0 +

eEconf
mbω2

c

))2 + eΦconf (y0) (2.23)

and the energy spectrum becomes,

Enx,ny = ~ωc
(
ny +

1

2

)
+ eΦconf (nx(2π/Lx)l

2
B) (2.24)

2.2.2 Localized states

Localized states form near a peak or a valley of the impurity potential. In Fig. 3.1

of Ref. [40], the valleys and peaks are marked by (−) and (+), respectively. Localized
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states are formed away from the edges of the 2DEG. The insulating nature of these

states are due to the formation of closed orbits around peaks and valleys.

2.2.3 Extended states

Extended states are responsible for the conduction of electrons and the reason

behind non-zero resistivity. They extend over the whole sample in x/y-direction.

Current in the nthy Landau level is given by:

Ixny
= − e

Lx

∑
kx

〈ny, kx|vx|ny, kx〉

= − e

~Lx

∑
nx

∆Enx,ny

∆(nx2π/Lx)

= − e

~Lx

∑
nx

Lx
2π

(Enx+1,ny − Enx,ny)

= − e
h

(µmax − µmin) =
e2

h
V (2.25)

Therefore, each Landau level contributes to a single quantum of conductance.

Hence the total conductance for ny completely filled LLs:

G =

ny−1∑
n′=0

Gn′ = ny
e2

h
(2.26)

where this is an example of quantum transport given by the Landauer-Büttiker for-

mula [41]:

Gn =
e2

h
Tn (2.27)

where, Tn is the transmissin coefficient for the nth quantum channel and it is

related to the reflection coefficient (Rn) by Tn +Rn = 1.

Edge states

The edge states have the property of dissipationless transmission of current along

the equipotentials near the edges, which are at a higher potential than the bulk, cre-

ating an effective electric force away from the edges. (Fig. 3.1 of Ref. [40]) These
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states are chiral in nature, i.e. their net motion (Hall drift) is only along the pos-

itive or negative x-direction depending on which edge (upper edge and lower edge,

respectively) they are close to. The chirality is the same for all edge states near the

same edge, hence there is no backscattering. From Eqn. 2.27, we can see that Tn = 1

and Rn = 0 for each fully filled LL. Hence current can pass through it without any

resistance away from half-filling and we get the Hall resistance for the IQHE:

RXY = G−1 =
1

n

h

e2
(2.28)

Bulk states

Near half-filling, bulk states are extended nearly over the whole area of the 2DEG

(Fig. 3.5 of Ref. [40]). The highest partially filled LL contributes to the reflection

coefficient Rn 6= 0 which contributes to the longitudinal resistance.

These states help in backscattering when the nthy Landau level is half full and the

potential valleys are filled up. The Fermi energy traces out equipotentials which are

spread throughout the system, which makes the bulk states extend throughout the

material and effectively connecting the edge modes. So, an electron scattered onto

an extended bulk state from one of the chiral edge states can travel to the opposite

edge and therefore backscattered. This contributes to the longitudinal resistance near

half-filling by connecting edge states and helping to backscatter. (Refer to Fig. 3.5 of

Ref. [40])

Please note that the above discussion is possible in a Landau gauge (A′L = B(0, x))

and confining potential (Φconf (x)), which keeps the Hamiltonian translationally in-

variant in the y-direction, where x and y can be interchanged so as to come to the

same conclusion about resistance in the y-direction, i.e. ρxx and ρyy will not be differ-

ent, even if the sample is not a square, according to this discussion and both should

have a peak near half-filling.
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2.3 The Nematic phase

We first give a pedagogical introduction to nematics [42], followed by our simula-

tion results.

A liquid crystal phase that favors a particular direction or orientation without

having any order in position is called a nematic. The relevant physics of an electron

nematic phase can be understood from the symmetry of the phase. A Landau theory

which obeys the symmetries of the nematic phase cannot retain odd-ordered term,

since they are not invariant under reflection or 180o rotation. Hence a Landau theory

for the nematic only admits even-ordered invariants in the absence of an applied

field. Whether a nematic-to-isotropic transition is discontinuous or continuous is

determined by the symmetry of the order parameter.

As mentioned in Section 1.1, we are interested in half-integral filling in quantum

Hall systems, where transport, i.e. the longitudinal resistivity, becomes anisotropic.

Our description assumes the formation of nematogens which are small domains of

stripes with alternately filled and empty (m + 1)th Landau Level, averaged to give

filling fraction ν = m+ 1/2. The nematic director, in this case, is given by the stripe

orientation of a nematogen.
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Figure 2.1. The four yellow arrows represent the orientations in which
the crystal field term (V ) is maximum. The orange double headed arrow
gives the orientation of the h-field with respect to the crystal field. The
gray double arrow gives the nematic orientation (θ) at a lattice position
denoted by i. The longitudinal resistivities ρxx and ρyy are typically mea-
sured along the crystallographic directions [11̄0] and [110], respectively.
Schematic of a barely melted stripes, of alternating filling fraction ν = m
(cyan) and m + 1 (blue), which usually forms in the [110] direction for
m = 4, hence becoming the easy axis of transport in the ν = m+ 1

2
state.

A nematic director (η̂α) has the property of pointing parallel or antiparallel to

any given direction, hence both η̂α and −η̂α contribute equally to the nematic order.

A second rank tensor representation is sufficient for its description. Also a high

temperature isotropic phase is requires the nematic order to yield zero when averaged
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over directions. This leads us to the nematic order parameter defined as a symmetric

traceless tensor [42]:

Qij =
A

N

∑
α

(ηαi η
α
j −

1

2
δij)δ(~r − ~rα) (2.29)

where, A/N makes the quantity dimensionless. When it is averaged over the positions

of the lattice the nematic order parameter in a two-dimensional system:

〈Qij〉 = N (ninj −
1

2
δij) (2.30)

where, n̂ is the unit vector along the principle axis, which is also called the Frank

director. We take the x-axis as our principle crystalline axis, and with the help of

Eqn. 2.30 and Eqn. 2.29 we get:

N = 〈(2(η̂α · n̂)2 − 1)〉

= 〈(2 cos2 θα − 1)〉 = 〈cos (2θα)〉 (2.31)

where θα is the angle between the principle axis (n̂) and the nematic director (η̂α) at

position ~rα.

Therefore the nematic order parameter is completely determined by the angle the

nematic director makes with the principle crystalline axis. This closely resembles an

XY spin and is symmetric under π rotation, which is expected as the director should

not have a net direction but an orientation.

For a nematic which breaks the U(1) symmetry [26,32,43,44] into a C4 symmetry

with its principle axis along x-direction, the order parameter is given by:

N ∝ ρxx − ρyy
ρxx + ρyy

(2.32)

This is an example of how the nematic order can be related to transport anisotropy.

In a 2DEG with near half-filled LL, with N ≥ 2, the anisotropic resistivity in x and y-

direction is characteristic of a nematic phase. Hartree-Fock calculations were carried

out by Koulakov et al. [4,45], and Moessner and Chalker [46] show that unidirectional

stripe order charge density wave ground states form because of softening of Coulomb
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interactions at the nodes of the electronic wavefunction in excited LL. Hence, at

ν = 9/2, the system phase separates into a ν = 4 and a ν = 5. They predicted a

CDW wavelength of the order of the classical cyclotron radius of ∼ 100nm for half-

integer filling of LL N ≥ 2, which matches with experiments. At lower filling, for LL

N < 2 the CDW order may be destroyed by quantum fluctuations.

A nematic can form by partial melting of a solid, i.e. a stripe or a smectic, restoring

translation symmetry, but not orientation symmetry [36]. Thermal and quantum

fluctuations can lead to a stripe-nematic phase transition in a quantum Hall system

and the thermal phase transition is well studied in Ref. [26]. A nematic can also form

from a thermal/quantum melting of a frustrated quantum antiferromagnet. From a

Fermi-liquid perspective, where the Fermi surface reflects the underlying symmetry of

the system, a nematic phase can form due to a Pomeranchuk instability of the Fermi

surface. Hence, in a 2DES, a Pomeranchuk instability induces a nematic quantum

phase transition by distorting a circular Fermi surface to an ellipse due to quadrupolar

effects [38, 47].

In the following sections, we study some of the lattice models which can describe

nematic order. Lattice models are useful for simulations.

2.3.1 2D XY Nematic

The nematic order parameter is a headless vector, which depends on orientation

but not the direction. It is symmetric under a π rotation. Using the nematic order

parameter formulated in Eqn. 2.31, the Hamiltonian for an XY nematic with nearest

neighbor coupling and an explicit symmetry breaking field is defined as:

HXY = −J
∑
〈i,j〉

cos (2(θi − θj))− h
∑
i

cos (2(θi − φ)) (2.33)

where, J is the tendency of neighboring sites to align their orientation, h is the

symmetry breaking field, and θ is orientation of the nematic order. The h-field sets

the preferred orientation of the nematic to be along θ = φ (mod π), hence the two-

fold symmetry of the h-field term is apparent.
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2.3.2 2D XY Nematic with four-fold symmetry breaking field

(a) φ = 0 (b) φ = π/12

(c) φ = π/6 (d) φ = π/4

Figure 2.2. Plot of a single site potential energy as a function of θ. The
h-term with different φ ((a)-(d)) is plotted in green, the V -term is plotted
in blue and the total site energy (V -term+h-term) is plotted in purple.
(a) The difference between the 2 distinct potential minima is largest; (d)
All the potential minima are at same energy.

In the presence of a four-fold symmetry breaking field which can arise due to

crystalline lattice effects or otherwise, the Hamiltonian of this “modified XY nematic”,

using Eqn. 2.33 is given by:

HXY−V = HXY − V
∑
i

cos (4θi) (2.34)
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where, V is the strength of the four-fold symmetry breaking field. In the absence

of a two-fold symmetry breaking field (h), V sets the preferred orientation along

θ = 0 (mod π/2), hence the four-fold symmetry of the V -term is evident in the

absence of an h-field. Also, if the h-field points along one of the symmetry axes of

the four-fold V , then the four-fold symmetry is broken down to two-fold symmetry.
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(a) Varying V in XY-V model with h = 0.15J and φ = 0.

(b) Varying h in XY-V model with φ = 0 and V = J .

(c) Varying φ in XY-V model with h = 0.05J and V = J .

Refer to Fig. 2.2 for details.

Figure 2.3. Simulation of the modified XY model with 4-fold symmetry
breaking term given in Eqn. 2.34.
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Our simulations (Fig. 2.3(a)) show the effect of increasing V . They show that

the low-temperature phase becomes more gradual, as a function of temperature for

a larger V . The V → ∞ limit will be a flat curve near T = 0 which is the Ising

case. Here we can observe the shift in the transition temperature T ∗XY−V towards the

Ising transition temperature T ∗Ising. Fig. 2.3(b) shows the dependence on h, which

show that the transition becomes more gradual, as a function of temperature, as h is

increased, and the T ∗XY−V increases.

The effect of rotating the uniform orienting field h away from a crystalline axis is

explored in Fig. 2.3(c), where the angle φ between h and the crystalline axes is varied.

Note that up until φ ≈ π/6 the impact on the temperature evolution is negligible.

However, at the high symmetry point φ = π/4, there is a true symmetry breaking

transition, and the temperature onset is quite sudden. This symmetry arises due

to the degeneracy of the on-site potential at two different θ’s (mod π) for φ = π/4

(Fig. 2.2).
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2.3.3 Ising Nematic

Figure 2.4. Simulation of an Ising model on 100× 100 lattice, where we
vary the h with σφ = +1, Eqn. 2.36

A two-dimensional Ising nematic is same as the Ising model with the mapping of:

σ = +1↔ θ = 0 (mod π)

σ = −1↔ θ =
π

2
(mod π) (2.35)

The Hamiltonian of the Ising nematic is a special case of the modified XY nematic

(Eqn. 2.34), where V →∞. This can be seen with a slight modification of Eqn. 2.34,

where the last term is replaced by −V
∑

i(cos (4θi)− 1). This removes the −∞ from

the lowest energy configurations of the on-site potential due to V → ∞. Now, the

finite energy configurations of this model is given by θ = 0 (mod π) and π/2 (mod

π), which corresponds to the Ising nematic configuration. The Ising Hamiltonian is

given by:

HIsing = −J
∑
〈i,j〉

σi.σj − h
∑
i

σi.σφ (2.36)
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where, σφ = cos (2φ) is dependent on the value of φ. J and h holds the usual nearest

neighbor interaction and on-site two-fold symmetry breaking potential, respectively.

The effect of h-field on the order parameter as a function of temperature is shown

in Fig. 2.4. It shows the same effect as that of Fig. 2.3(b), i.e. the transition becomes

gradual and the onset temperature of order (T ∗Ising) shifts towards higher tempera-

tures.

2.4 Hysteresis

A phenomenon in which a system remembers the previous state of the system,

where the system lags the conditions. In the present context of lattice models the

hysteresis at 0 < T < Tc is governed by the existence of a spontaneously broken

symmetry phase with no external symmetry breaking field present.

2.4.1 2D XY universality class

The Mermin-Wagner Theorem states that continuous symmetry cannot be spon-

taneously broken at finite temperatures in systems with sufficiently short-range in-

teractions in dimensions d ≤ 2. As a result the XY model, which is a special case,

cannot spontaneously break the continuous U(1) (circular) symmetry of the model in

a d ≤ 2 dimensional lattice. Hence the XY model does not undergo a second-order

phase transition at any finite non-zero temperature with its spontaneous magnetiza-

tion vanishing for all temperatures. Although there is no second-order phase tran-

sition, the model has a transition from a quasi-ordered phase to an isotropic phase.

Spin-spin correlation function decays exponentially at high temperatures but at low

enough temperatures decays as a power law (quasi-long range order). This low tem-

perature bound vortex-antivortex phase (quasi-ordered) to an unpaired vortex and

antivortex phase above a critical temperature (TKT = 0.89J in the square lattice XY

model with nearest-neighbor coupling strength J) is known as a Kosterlitz-Thouless
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(KT) transition. Hence the XY model is in Berezinskii-Kosterliz-Thouless (BKT)

universality class.

Another way to see why the low-temperature phase does not show any spontaneous

magnetization is in the following manner. There is an infinite degeneracy of the

ground state which are connected in a continuous manner. A fluctuation in the

transverse direction to the magnetization is massless, which implies that it comes

about with no energy cost. These fluctuations (which are related to the transverse

susceptibility) are Nambu-Goldstone modes of broken continuous symmetry which

destroy the ordered phase because they logarithmically diverge with system size.

In the presence of an explicit symmetry breaking field the system develops a

finite order parameter below a transition temperature T ∗XY . The critical exponent δ

gives the power-law dependence of the magnetization M with the magnetic field h:

M(h) ∼ h1/δ.

2.4.2 2D Ising universality class

The square lattice Ising model was exactly solved analytically by Lars Onsager

for h = 0 [48]. The spontaneous magnetization at T ≤ Tc is given by:

M(T, h = 0) =

[
1− sin−4

(2J

T

)]1/8
, T < Tc (2.37)

This model has a spontaneously broken symmetry phase which exist below T <

Tc = 2.27J . An applied magnetic field (h 6= 0) moderates the abrupt transition near

Tc and also elevates T ∗Ising.

A moderate two-fold symmetric field in an XY model, which is the same as a

four-fold symmetric field (V) of the XY nematic, makes the nature of the transition

Ising like. Hence the modified XY model (nematic) is in the Ising model (nematic)

universality class.

At a finite field h and at a temperature below the transition temperature T ∗

there is a developed order parameter for both the Ising and the XY model. As h

is reduced to zero the order of the phase will be determined by the spontaneously
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broken symmetry phase. Since the Ising case has spontaneously broken symmetry,

the magnetization in the absence of applied field will be determined by its previous

state, i.e. the sign of the h, and the strength of the coercive field hc required to

reverse the magnetization depends on the temperature; whereas in the XY case the

magnetization goes to zero as h1/δ, hence requiring no coercive field to change the

magnetization. Therefore, it is evident that the XY model is more susceptible to

changes in h (0 < T < Tc) than the Ising model, hence hysteresis is demonstrated in

the Ising universality class but not in the XY universality class.

2.5 Dependence of resistivity anisotropy on Temperature

As mentioned in the section 2.3, the nematic phase gives rise to anisotropic

transport properties at a macroscopic scale. The longitudinal resistivity becomes

anisotropic with decreasing temperature. The resistivity increases in the direction

perpendicular to the stripes, if we assume the formation of stripes with alternating

filling fraction m and m+1. The anisotropy is only seen in half-filled LL N ≥ 2,

which implies a half-integer filling fraction of ν ≥ 9/2, this corroborates with the

prediction of CDW states by Koulakov et al. [4, 45], and Moessner and Chalker [46].

The formation of stripes along one of the principle axes helps us to understand the

low resistivity along the stripe axis, where current can be propagated in an almost

dissipationless manner by the edge states whereas the conductance in the transverse

direction is hindered due to traversal across alternately filled Landau levels.
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(a) XY model with moderate 4-fold symmetry breaking term V,

Eqn. 2.34

(b) Ising Model, Eqn. 2.36

Figure 2.5. Monte Carlo simulations (purple dots) on a lattice of 100x100
sites, compared to experimental data (green line) of resistivity anisotropy
ρxx−ρyy
ρxx+ρyy

from Lilly et al. [3]. The theoretical comparison is to: (a) the

Ising model with a uniform orienting field h, and (b) the XY model with
a moderate four-fold symmetry breaking field V and uniform orienting
field h. Note that within an XY description, a moderate 4-fold symmetry
breaking term V 6= 0 is required to capture the low-temperature depen-
dence of the resistivity anisotropy, which changes the universality class of
the electron nematic from XY to Ising. The resistivity anisotropy ρxx−ρyy

ρxx+ρyy

is from the experimental data of Lilly et al. [3].
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2.5.1 A comparison with XY model with four-fold symmetry breaking

term

The effect of V on the universality class of the pure XY model is that as the V field

becomes stronger, the transition temperature changes from 0.89J towards 2.27J . Our

simulations are done with very large V which shift the Tc near the Ising universality

class. Fig. 2.5(a) shows how the resistivity anisotropy data of Lilly et al. [3] compares

with this classical model.

The “nematicity” (order parameter of the nematic) in this model is N =
〈
e2iθ
〉

[5].

Because the (normalized) macroscopic transport anisotropy ρa transforms under ro-

tations in the same way as the nematicity, the two are related as ρa ≡
[
(r + 1)/(r −

1)
](
ρxx − ρyy

)
/
(
ρxx + ρyy

)
= f(N ) where f(N ) is an odd function of N , and

r ≡ ρxx(N → 1)/ρyy(N → 1) is what the ratio of macroscopic resistivities would

be in a fully oriented state. For small N , f(N ) = N [5, 43].

We find that the entire temperature evolution can be captured in the presence

of both nonzero h and nonzero V , as shown in Fig. 2.5(a) [49]. In the Figure, we

use uniform orientational field h = .15J along with four-fold symmetry breaking

term V = 6J , and J = 35.3mK. Smaller values of V have too steep of a slope at low

temperatures. For larger values of V , the higher temperature behavior (100−150mK)

can no longer be captured. For the parameters of Fig. 2.5(a), the absolute strength

of the interaction J is about half that of Ref. [5]. Because the value of V that we use

is not small with respect to J , the universality class of the transition is now Ising,

not XY. For a pure XY model with h = 0 and V = 0, the transition temperature

is TKT = .89J [8], but in Fig. 2.5(a) the onset of nematicity is happening closer to

the (2D) Ising transition temperature of Tc = 2.27J , consistent with this shift of

universality class [49].
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2.5.2 A comparison with Ising model

Our comparison of the experimental resistivity anisotropy to an Ising model is

shown in Fig. 2.5(b) [49]. We find that the data can be well described throughout

the entire temperature range within a simple Ising model, with J = 32.5mK and

h = 0.1J .

The nematic order parameter in this case is N = (1/N)
∑

i σi. As in the case of an

XY model of an electron nematic, the (normalized) macroscopic resistivity anisotropy

ρa maps to the macroscopic order parameter in the Ising description as ρa = g(N )

where g(N ) is an odd function of N and to first order in N , g = f .

Remarkably, we find that the entire temperature range of the resistivity anisotropy

ρa can be captured quite well within an Ising model in the presence of a weak

uniform orienting field. Within this context, the low temperature saturation of(
ρxx − ρyy

)
/
(
ρxx + ρyy

)
to a value ≈ .818 6= 1 could have several origins [5, 43]:

(i) Taken at face value, the saturation implies that the bare “nematogens” repre-

sented by each Ising variable have an intrinsic resistivity anisotropy which persists

down to the lowest temperatures, r = ρxx/ρyy ≈ 10. This could be attributable to

quantum fluctuations within a bare nematogen. (ii) Similar saturation effects could

also arise from even a small amount of quenched disorder, since the critical (random

field type) disorder strength is zero in a two-dimensional Ising model. (iii) Nonlinear

terms in the function g(N ) can lead to g 6= 1 as N → 1 at low temperature.

The conclusion from these comparisons is that both the models support the pres-

ence of a two-fold symmetry breaking field and there is a large four-fold crystalline

field in play that effectively makes this transition Ising like.

2.6 Symmetry breakers

The circular symmetry of a free 2DEG can be broken by the point group sym-

metry of the lattice. The four-fold symmetry of the host crystal or piezoelectricity

of GaAs can break the circular symmetry. Whereas the two-fold symmetry is not
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apparent at the heterojunction since a π/2 rotation is not one of the valid symmetry

operations. The symmetry-breaking mechanism from four-fold to two-fold is not well

understood and a matter of ongoing research. The search for the intrinsic two-fold

symmetry breaking mechanism behind the easy axis of conduction has been inconclu-

sive. Experimentally there have been discoveries of external factors that can control

the transport axis for easy conduction. This has also led to the development of some

theoretical understandings based on these factors.

2.6.1 In-plane magnetic field

An in-plane magnetic field (B‖) can switch the symmetry directions and the de-

pendence on it is not linear. In a weak in-plane magnetic field, the easy axis is oriented

perpendicular to the field (Fig. 2.6) [50,51]. However, a strong in-plane magnetic field

can switch it back to stripes parallel to the applied in-plane field as observed by Shi

et al. [52].
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Figure 2.6. Reprinted figure 2 with permission from [(Ref. [50]) M. P.
Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West. Phys.
Rev. Lett. 83, 824, 1999.] Copyright (2020) by the American Physical
Society. Switching of easy transport axis with applied in-plane magnetic
field.

2.6.2 Uniaxial strain

It was observed experimentally that an external strain can switch the easy axis

direction in a two-dimensional hole gas (2DHG) [53]. A theoretical description was

also devised based on spin-orbit interaction. According to this theoretical descrip-

tion, at zero strain, both crystalline axes were equivalent and shear strain (internal

or external) could break the symmetry between the two axes of the 2DHG/2DEG.

Experimental data from Ref. [53] is shown in Fig. 2.7.



35

Figure 2.7. Reprinted figure 1 with permission from [(Ref. [53]) Sunanda
P. Koduvayur, Yuli Lyanda-Geller, Sergei Khlebnikov, Gabor Csathy,
Michael J. Manfra, Loren N. Pfeiffer, Kenneth W. West, and Leonid P.
Rokhinson. Phys. Rev. Lett. 106, 016804, 2011.] Copyright (2020) by the
American Physical Society. (a) Anisotropy due to internal strain. (b) and
(c) Thermally induced tensile strain along [110] and [11̄0], respectively,
switches the easy transport axis.

2.6.3 Density of 2DEG

Most of the experiments have shown the easy axis of conduction to be 〈110〉.

However, Zhu et al. [54] have reported the switching of the easy axis from 〈110〉 to

〈11̄0〉 upon increasing the in situ density of the 2DEG as shown in figure 1 of Ref. [54].
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2.7 A proposed experimental test to determine the universality class

based on hysteresis

The order parameter theory which best describes the system may depend on the

chemistry of the system. We propose a test to distinguish them, assuming it is in the

clean limit of both the Ising and the XY model.

As discussed in Section 2.4, a two dimensional Ising model undergoes spontaneous

symmetry breaking at low enough temperature but a two-dimensional XY model does

not according to the Mermin-Wagner theorem. The 2D Ising model is a candidate of

hysteresis when we change the h-field in the ordered phase. But the XY model does

not show hysteresis as there is a goldstone mode in the absence of any field which can

destroy nematic order.

The effect of an in-plane magnetic field on the nematic order is discussed in Sec-

tion 2.6.1. Since, the nematic order is symmetric under π rotation and the nematic

order parameter switches sign upon a π/2 rotation, the dependence of the orienting

field on the applied in-plane magnetic field has to be of the form h ∝ (B2
x − B2

y) to

the lowest order in a Taylor expansion. Hence h ∼ B2
‖ cos (2φ) is invariant under π

rotation which preserves the symmetry of the Hamiltonian. An appropriate choice

of B‖ can cancel the effect of hint which is determined by the microscopics of the

system. Other external perturbations also contribute to an orienting field, such as

uniaxial strain (Section 2.6.2), electron density in the 2DEG (Section 2.6.3) [53, 54].

In all models, a phase transition only exists at zero orienting fields, h = 0. In the

Ising case, the phase transition is into a low-temperature, long-range ordered nematic

phase which spontaneously breaks rotational symmetry. For the 2D XY model, the

phase transition is in the BKT universality class, and the low-temperature phase is

critical throughout the temperature range, with no long-range order, and therefore

no net nematicity N , measurable by N ∝ (ρxx− ρyy)/(ρxx + ρyy). Upon field cooling

in any weak h, all models will develop a net nematicity below a crossover temperature
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which is close to the phase transition temperature, whether Tc = 2.27J in the Ising

case, or TKT = .89J in the XY case.

Figure 2.8. Equilibrium phase diagram for (a) two-dimensional Ising
model and (b) two-dimensional XY model. In both cases, a low-
temperature phase transition occurs only without an orienting field h = 0.
In the Ising case, the low-temperature phase has long-range nematic or-
der, and in the XY case, the low-temperature phase only has topological
order but no long-range nematic order. The experimental hysteresis test
we propose begins by (i) cooling (green arrow) with or without applied
field happ, followed by (ii) sweeping the orienting field happ so as to move
the system back and forth across the low-temperature phase (orange dot-
ted line). Refer to Fig. 2.9 for the experimental prediction of the response
of the nematicity N as a function of applied orienting field.

However, hysteresis can clearly distinguish between these universality classes. The

hysteresis protocol we propose (shown in Fig. 2.8) is the following [49]: Cool in an

orienting field h > 0 such as in-plane magnetic field (see Ref. [55, 56] for a list of

orienting fields), and go to low temperature, well within the nematic region. Then,

reduce h to zero, and sweep it to negative values h < 0. Using, e.g., in-plane magnetic

field as an orienting field, this is equivalent to cooling with an in-plane field configura-

tion of ~Bin−plane = (Bx > 0, By = 0), then holding the temperature fixed, decreasing



38

Bx to zero, then immediately increasing the field By from zero while holding Bx = 0

so as to end with an in-plane field configuration of ~Bin−plane = (Bx = 0, By > 0).

Indeed, quantum Hall stripes can be reoriented via application of in-plane field [51].

At low temperature in the Ising case, there is hysteresis in the net nematicity N as

the in-plane field is swept so as to take h from positive to negative and back again,

or vice versa. Therefore in the Ising case, the net nematicity should remain in an

oriented state, until the coercive field strength hc 6= 0 is reached.

However, in the XY case, there should be no hysteresis. This follows from the

Mermin-Wagner-Hohenberg theorem, since decreasing an applied field h so as to end

on the critical phase at h = 0 can leave no long range order, N (h → 0) → 0 where

N is the net nematicity. Because h → 0 with T < TKT is critical, N ∝ h(1/δ) as

field is swept, where the critical exponent δ = (4/η) − 1 varies from δ(TKT) = 15 to

δ(T → 0)→∞ [57]. This case is shown in Fig. 2.9(b) [49].

Figure 2.9. Predicted result of hysteresis test for (a) an Ising nematic
and (b) an XY nematic. Cooling (green arrow) the system below Tc
(Ising) or TKT (XY) gives rise to a net nematicity in the presence of any
orienting field h, including the case of no applied orienting field, since then
h = hint 6= 0. Subsequently sweeping the in-plane orienting field gives rise
to either hysteresis in the Ising case, or no hysteresis in the XY case.
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It should also be noted that the test is clearest in clean samples, since the addition

of random field effects in the presence of a net orienting field h puts both models in

the universality class of the random field Ising model [58], which has hysteresis at a

low temperature. Whereas hysteresis of a clean Ising model has a net macroscopic

jump in the nematicity, hysteresis of a random field Ising model is smooth in two

dimensions [59]. At very weak but finite random-field strength, the model predicts

avalanches in the resistivity anisotropy around the hysteresis loop with power-law

behavior set by critical exponents characteristic of the 2D random field Ising model

critical point.

Note that our simulations, as well as those of Ref. [5], indicate the presence of

a weak intrinsic orienting field, hint in the sample, on the order of hint ≈ 3 − 5mK.

(Section 2.6) This means that to achieve h = 0 requires that some extrinsic orienting

field, such as an in-plane magnetic field or uniaxial strain [55, 56], must be applied

to compensate. Assuming this could be achieved, then zero-field cooling (ZFC) with

h = hint + happ = 0 has stark differences in the two models. In the Ising case,

ZFC gives rise to long-range order with net nematicity and macroscopic resistivity

anisotropy, with Ising critical behavior at the onset of nematicity, and the direction

of that nematicity can randomly switch upon repeated cooling at h = 0. In the XY

case, ZFC can’t produce long-range order or net nematicity, but the system would

instead enter a topological phase with power-law nematic order, and accompanying

critical phenomena.
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Figure 2.10. Reprinted figure 2 with permission from [(Ref. [60]) Q.
Shi, M. A. Zudov, B. Friess, J. Smet, J. D. Watson, G. C. Gardner, and
M. J. Manfra. Phys. Rev. B 95, 161404(R), 2017.] Copyright (2020)
by the American Physical Society. Experimentally observed temperature-
induced hysteresis by Shi et al. near half-filling upon changing the LL
filling and in presence of a small (constant) in-plane magnetic field.

In Ref. [60], Shi et al. showed (Fig. 2.10) that a nematic can maintain its orienta-

tion at a low temperature when the LL filling is changed. The nematic re-orients to its

equilibrium orientation only upon heating. This behavior is not possible for a nematic

falling in the XY universality class because it is reoriented at any finite temperature.

Although hysteresis only at a constant filling fraction is discussed here, the observed

hysteresis upon changing filling in the presence of a small (constant) in-plane field

reinforces the idea that these NQHMs possibly belong to the Ising universality class .
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2.8 Conclusion

To summarize, we have shown that the temperature-dependent anisotropic resis-

tivity in NQHM at ν = 9/2 can be entirely described by an Ising order parameter

model. We have also outlined an experimental method for hysteresis to distinguish

Ising nematic from XY nematic, which generally applies to any system which may

be described by an Ising model or an XY model. We also recognized experimental

evidence of Ising behavior in a hysteresis protocol different than our protocol, but

ultimately reinforcing our idea of NQHMs falling in the Ising universality class.
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3. PERIOD MULTIPLICATION CASCADE AT THE

ORDER-BY-DISORDER TRANSITION IN UNIAXIAL

RANDOM FIELD XY MAGNETS

3.1 Introduction

The XY model, in which interacting spins are confined to rotate within a plane,

has been a staple of statistical mechanics and condensed matter studies, having been

applied to a broad range of physical systems including planar magnets, superfluids,

superconductors, two-dimensional melting, nematic liquid crystals, and electron ne-

matics, among others. [3, 9, 10, 61–67] In two dimensions, the XY model exhibits a

BKT transition to a power-law ordered phase, yet with no long-range order. [7, 68]

As such, the addition of random fields to a two-dimensional XY model is expected

to result in even less order: Imry and Ma argued that a (d ≤ 4)-dimensional system

with continuous order parameter (with O(n) symmetry with n ≥ 2) in the presence

of random fields cannot have long-range order for any finite disorder strength. [69]

However, the addition of uniaxial random fields reduces the global symmetry of

the Hamiltonian, and the Imry-Ma argument no longer applies. [13] In this case, the

low-temperature phase has long-range order via an order-by-disorder transition, in

which XY spins align perpendicular to the random fields. [13, 16] This is a special

case of a more general class of order-by-disorder transition, where an n-dimensional

spin system orders in an (n-k)-dimensional subspace due to orthogonal k-dimensional

random fields. [9, 10,13,17]

We consider the possibility of a non-equilibrium transition. We use simulations

to study the order-by-disorder transition in the presence of a rotating driving field at

zero temperature.
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By analyzing the avalanche size distribution as a function of the magnitude of

an applied driving field, we find evidence that the system undergoes a continuous

non-equilibrium phase transition at a critical amplitude of the driving field. Once a

limit-cycle is established, we observe that the period of the hysteresis loops become

n-fold near a critical applied field strength, where n is as large as 7 in our largest

systems. We present evidence that the period of the subharmonic entrainment is

rigid against perturbations in initial conditions, and perturbations of the drive field,

indicating that a classical discrete time-crystal emerges near criticality. [70, 71] We

present finite-size scaling evidence that the period of these multi-period limit-cycles

will diverge in the thermodynamic limit. An experimental test of this would be the

presence of non-repeatability in the response due to a rotating driving field near the

transition.

As discussed further in section 3.5 there are several experimental systems cor-

responding to the XY model into which uniaxial random field disorder can be in-

corporated, whereby these ideas can be tested experimentally. These include layers

of Josephson junctions, [61] superfluid in a uniaxially stressed aerogel, [62] ultra-

cold atoms in the presence of speckle radiation, [9] uniaxially stressed 2D Wigner

crystals, [63–66] the half-integer quantum Hall effect, [3] and possibly the graphene

quantum Hall ferromagnet. [10, 67]

3.2 Models

3.2.1 2D Ising model with Disorder

The energy of the random field Ising model is given by the following Hamiltonian:

HRFIM = −J
∑
〈i,j〉

σi.σj +−
∑
i

(H + hi).σi (3.1)

The critical field strength for a 2D Ising model with random fields is zero in the ther-

modynamic limit. But in a finite-size system, the critical field strength is dependent

on the system size and the random field strength. The near the critical field strength
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Figure 3.1. (a) Hysteresis of Ising model of 10242 sites at zero tempera-
ture with Gaussian distribution of random field given by R in each plot.
(b) Hysteresis of XY model of 1282 sites at zero temperature with isotropic
Gaussian distribution of random fields given by Rx = Ry. The hysteresis
curves were generated for an applied field along Y-axis. (c) Hysteresis
of XY model of 1282 sites at zero temperature with uniaxial Gaussian
distribution of random fields given by Rx . The hysteresis curves were
generated for an applied field along X-axis. (d) Hysteresis of XY model
of 1282 sites at zero temperature with the uniaxial Gaussian distribution
of random fields given by Rx . The hysteresis curves were generated for
an applied field along Y-axis.

the Ising model has avalanches at all length scales. An avalanche is described as

flipping a large cluster from up (+1) to down (−1) or vice versa triggered by desta-
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bilizing a few spins. Figure 3.1(a) shows that upon increasing the Gaussian random

field strength the critical field strength decreases.

3.2.2 2D XY model with Disorder

The energy of the random field XY model is given by the following Hamiltonian:

HRFXY = −J
∑
〈i,j〉

~Si.~Sj +−
∑
i

( ~H + ~hi).~Si (3.2)

The XY model with random field disorder would have a coercive field strength which

increases with disorder strength. The following two cases are quite distinct:

2D XY model with Isotropic Random Field

When the random fields point in any direction with the same probability, the

random field are said to be isotropically distributed. In this case, the critical field

strength increases with increasing random field strength. The axis along which the

driving field is swept is irrelevant. The effect of increasing random field strength on

zero temperature hysteresis is shown in figure 3.1(b).

2D XY model with Uniaxial Random Field

The uniaxial random field case is a special case. As described in section 1.2,

there is an emerging Ising character in this system which arises due to the competing

interaction between the spins and the on-site field.

There is no hysteresis if the field is swept along the axis parallel to the random

fields. A constant nominal field is applied along the Ising symmetry axis to break

this symmetry while sweeping the field along the random field axis. The results for

different strengths of random fields are shown in figure 3.1(c).

The hysteresis curves upon field sweep along the emerging Ising symmetry axis

makes the system undergo avalanches similar to the random field Ising model. The
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results for different strengths of random fields are shown in figure 3.1(d). Unlike the

random field Ising model, here the critical field strength increases as a function of

random field strength, since the stability of the Ising like order parameter is dependent

non-monotonically on Random field strength. The non-monotonicity comes from

the fact that if the random fields are too large then the local spins will be aligned

with the random fields which are randomly oriented giving no net order. Hence,

only at intermediate random field strengths one would observe the order-by-disorder

transition of the Uniaxial Random Field XY model to the Ising universality class.

In the subsequent sections, we concentrate on the uniaxial random field XY model

on a square lattice, in the presence of driving applied field ~H[φ], with constant mag-

nitude H = | ~H| given in Eqn. 1.1. We study this system at zero temperature under

the influence of a rotating applied driving field whose angle φ = ωt advances in time

slowly, in the ω → 0 limit. The dynamics is quasi-static: after each small increment

of the driving field angle, the energy of the system is minimized. (See section 3.6 for

details of the simulation method.) This type of dynamics [1] presupposes that the

system is connected to a heat bath which prevents heating by the drive.

Symmetry considerations imply that the timescales associated with barriers to

equilibration of this model diverge exponentially near criticality [72], for the following

reasons. In the presence of a uniform applied field H, the symmetry of the XY model is

reduced to that of the Ising model. This means that the system can have a symmetry-

breaking transition, in which a spontaneous magnetization forms perpendicular to the

applied field H. Adding a uniaxial random field along any axis that is not parallel

to H applies random fields to that Ising variable, placing the critical behavior in the

universality class of the random field Ising model. It is well-known that the timescales

to equilibration diverge exponentially with proximity to criticality in the random field

Ising model. [72] In fact, at the corresponding critical point, temperature fluctuations

are irrelevant in the renormalization group sense, meaning they are not necessary in

order to capture the essential critical behavior. During a single cycle of the rotating

applied field we consider here, the symmetry of the system remains in the universality
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class of the random field Ising model, except for a set of measure zero (when H is

parallel to the random fields). Therefore, as the applied field is rotated, the system

is forced to traverse regions with enormous energy barriers most of the time. On

long enough length scales, these energy barriers must be present. For a given rate of

dissipation of the heat bath, the energy barriers can be made to diverge sufficiently

to beat the rate of dissipation by moving closer to criticality. Thus, we study our

model at zero temperature, for the same reason that zero temperature results from

the random field Ising model have been applied to many disparate physical systems,

some even at room temperature. [73]

3.3 Results

3.3.1 Behavior of the Limit Cycles

Fig. 3.2 shows the rich behavior of the limit-cycles in rotating driving field, as a

function of the magnitude of the driving field H at intermediate disorder strength

Rx = 0.5J . Panel (b) shows the sense of the driving field, which is held at constant

magnitude, but rotated counterclockwise, i.e. φ increases in time as φ = ωt in the

ω → 0 limit, starting from φ = π/2. Fig. 3.2 (a) shows a plot of mx vs. the angle

φ of the applied field. Panel (d) shows a plot of my vs. the angle φ of the applied

field. Panel (c) shows the combined parametric plot of magnetization mx in the x

direction, plotted against the magnetization my in the y direction. The sense of the

parametric plot in panel (c) is counterclockwise. In each case, the system is started

from a locally stable configuration in an applied field ~H||~̂y at zero temperature, which

has been relaxed from an initially saturated state aligned with the applied field. This

The transient response before the limit-cycle is not shown in this figure. We discuss

the transient response in section 3.3.3.
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Figure 3.2. Steady state response to rotating applied field at T = 0. A
system of size N = 160×160 with Rx = 0.5J is started from an initial ap-
plied field in the y-direction. The initial spin configuration is aligned with
the applied field, then relaxed according to Equations (3.4) as described
in the text, after which the applied field is rotated counterclockwise as
denoted in panel (b). Panels (a), (c), and (d) show the response once a
steady state is reached under the driving field. Panel (a) shows the re-
sponse of the magnetization in the x direction, while panel (d) shows the
response of the magnetization in the y direction. Panel (c) is a paramet-
ric plot of my vs. mx. In all panels, the arrows denote the state of the
system when the driving field is at an angle φ = π, i.e. aligned along the
x direction. For driving field strength H = 0.041J , the response of the
system has double the period of the driving field. The open arrow on this
trace denotes the state of the system at driving field angle φ = π during
every other cycle of the driving field.
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For moderate disorder strength Rx = 0.5J , we find that at small amplitudes of

the driving field, the spontaneous magnetization in the y direction remains robust.

This is evident in the small hysteresis loops we find for H = 0.02J as shown by

the purple trace in the parametric plot Fig. 3.2(c). This indicates that the system

continues to display spontaneous symmetry breaking in the y direction, retaining its

Ising ferromagnetic character in the presence of a weak rotating driving field.

As the magnitude of the applied field is increased, there is a change in behavior

from ferromagnetic to paramagnetic response. This is evident in the large, almost

circular hysteresis loop we find for larger H = 0.15J , as shown by the red trace in

the parametric plot Fig. 3.2(c). This change is consistent with either a crossover in

behavior or a non-equilibrium phase transition at a critical magnitude of the driving

field. Note that the rotating hysteresis loops at intermediate driving field strengths

H = 0.041J and H = 0.07J have a rich structure: Numerous avalanches are evident

in these traces. As we will see in Sec. 3.3.2, the avalanche structure provides further

insight into the question of whether the change from ferromagnetic to paramagnetic

response is a crossover or a phase transition. Perhaps the most intriguing feature

of the intermediate driving field regime is that in the blue trace (H = 0.041J), the

limit-cycle has double the period of the driving field. We find that limit-cycles often

become multi-periodic at intermediate field strength, for a large enough system size.

We explore this region of the phase diagram in more depth in Sec. 3.3.4.

3.3.2 Avalanches Near the Transition

In this section, we focus on the characteristics of the avalanches that occur near

the transition from Ising ferromagnetic to a paramagnetic response. We find a rich

avalanche structure at intermediate field strengths, as can be seen in the blue and

green traces in Fig. 3.2 (H = 0.041J and H = 0.07J , respectively). Notice that

while the avalanches are apparent in both mx and in my, they are most prominent

in my, which serves as the order parameter in this system. When magnetization is
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cast as an extensive quantity, ~M =
∑N

i=1
~Si = N ~m, then in the thermodynamic limit,

avalanches δ ~M of diverging size accompany a second order phase transition.
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Figure 3.3. Avalanche statistics for disorder strengthRx = 0.5J from zero
temperature simulations. The response of the magnetization to a rotating
driving field often proceeds via avalanches, in which there is a discontinu-
ous jump in the magnetization δ ~M in response to a small change δφ of the
driving field angle. In panel (a), we plot the size of the largest avalanche

|δ ~M |max per limit-cycle at each rotating field strength, disorder-averaged,
for a range of system sizes. Panel (b) shows the disorder-average of the

second moment δ ~M of the avalanche size distribution where the error bars
are the standard deviation over the disorder average as described in the
text. The brackets 〈 〉 denote an average over the limit-cycle, and the
overbar denotes a disorder average. By both of these measures, the size of
the avalanches grows with system size implying divergent fluctuations at
a critical field strength in the thermodynamic limit. The vertical bars in
both panels mark the peak value from a running 3-point average. Within
the resolution of the plot in panel (a), these values are coincident for sizes
N = 80 × 80 and N = 100 × 100, and for sizes N = 128 × 128 and
N = 160 × 160. In panel (b), the peak values are coincident for sizes
N = 64× 64 and N = 160× 160.

Fig. 3.3(a) plots the size of the largest avalanche |δ ~M |max at each rotating field

strength, for a range of system sizes N = L × L. Results are averaged over several

disorder configurations of the random field at disorder strength Rx = 0.5J , ranging
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from 75 disorder configurations for system size N = 642, to 30 disorder configurations

for system size N = 1602. (See Section 3.6.3.) Notice that fluctuations as measured

by the largest avalanche diverge with increasing system size at a critical driving field

strength, Hc(Rx = 0.5J). We estimate the value of Hc at Rx = 0.5J as follows:

For each system size, the peak value based on a 3-point average is indicated by the

vertical bar. The corresponding peak value of the applied field strength, averaged

over all system sizes, is Hc = (0.0452± 0.0015)J .

In Fig. 3.3(b), we plot the second moment of all avalanches in each limit-cycle,〈
(δ ~M)2

〉
at each rotating driving field strength, for a range of system sizes. Re-

sults are disorder averaged, using the same number of disorder configurations as in

Fig. 3.3(a). Notice that this alternate measure of fluctuations based on the second mo-

ment of the avalanche size distribution is also consistent with the system undergoing

a second-order, non-equilibrium phase transition at a critical driving field strength,

Hc. In this case, we find that Hc(Rx = 0.5J) = (0.0432 ± 0.0016)J , in agreement

with the value of the critical field strength we find from Fig. 3.3(a).

3.3.3 Transient Response

Fig. 3.4(a-c) shows how the magnetization responds to a rotating driving field

in the vicinity of the phase transition. There is a transient response before the

system settles into a limit-cycle. A limit-cycle is a steadily repeating response in

the magnetization due to a rotating driving field. While we find that most limit-

cycles have the same period as the driving field, we find that near the transition

regime, limit-cycles often have a longer period. We first discuss the behavior of the

transient response, before turning our attention to the behavior of the multi-periodic

limit-cycles in Sec. 3.3.4
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(c) H = 0.046J ; N = 160× 160.
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Figure 3.4. Transient response and multi-period limit-cycles at T=0 near
the transition field strength for disorder strength Rx = 0.5J with a specific
disorder configuration for each system size. Panels (a-c) show the initial
transient response (black curves), followed by multi-periodic limit-cycles
(rainbow curves). (a) System size N = 642. Here, the transient response
lasts roughly half a cycle before a period-2 limit-cycle is established. (b)
System size N = 1002. Here, the transient response lasts roughly one cycle
before a period-2 limit-cycle appears. (c) System size N = 1602. Here, the
transient response lasts almost 1.5 cycles before a period-3 limit-cycle is
established. (d) The disorder-averaged duration of the transient response,
as a function of H. The error bars are the standard deviation over the
disorder average as described in the text. The mean of the transient
distribution function for each system size is marked by a vertical line of
the corresponding color.
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The transient response in panels (a-c) of Fig. 3.4 is marked in black. In Fig. 3.4(d),

we plot the duration of the transient response, as a function of H, for various system

sizes. The results shown have been averaged over several disorder configurations. (See

Section 3.6.3 for details.) At high and low strength of the driving field, the transient

response becomes so negligible as to be smaller than the symbol size on this graph.

However, at intermediate driving field strength, the transient response grows with

increasing system size. The fact that the transient response grows with increasing

system size is further corroboration that the system is undergoing a second-order

phase transition. In Fig. 3.4, the mean of each transient distribution function is

denoted by a vertical line, color-coded to the system size. The average of the mean

value of H from these vertical lines is 〈Htr〉N = (0.0430 ± 0.0014)J , consistent with

our previous estimates of Hc(Rx = 0.5J).

3.3.4 Period Increase Near the Transition

We now turn our attention to the behavior of the limit-cycles at intermediate

driving field strength. One of the most fascinating features of the limit-cycles in

this regime is that some of them have a longer period than that of the driving field.

Fig. 3.4 shows some representative cases of this behavior. Fig. 3.7 visualizes how the

spin configurations respond to the driving field during one of the period-2 limit-cycles.

Domain walls have dramatically different configurations during the second cycle as

opposed to the first cycle of the driving field, suggesting a prominent role for domain

wall pinning and domain wall creep. More examples of such behavior can be found

in our videos [74] of the simulation results.

https://www.youtube.com/playlist?list=PLhxhhdi9rQWPrrQ7VWtg6a2xdtZYQMCjO
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Figure 3.5. Multiperiod limit-cycles at zero temperature. Panels (a-
e) show what fraction of limit-cycles that exhibit multi-periodicity as a
function of driving field strength H at Rx = 0.5J . The smallest system
size we simulated, N = 64× 64, is shown on the bottom left in panel (e).
System size increases from bottom to top in the left panels, up to system
size N = 160 × 160. In the bar graphs, period-2 limit-cycles are shaded
pink; period-3 limit-cycles are purple; period-4 limit-cycles are green; the
period-5 limit-cycle is orange; and the period-7 limit-cycle is red. We
did not observe any period-6 limit-cycles. Black dots represent the net
contribution from all multi-period limit-cycles at each field. In each bar
graph, the vertical blue line is the mean of the distribution function, 〈Hlc〉
in units of J . (f) From the results of panels (a-e), we plot 〈Hlc〉N vs.
the inverse of system size N on a log-log scale. In Panel (f), the error
bars are standard deviations over the histograms in Panels (a), (b), (c),
and (e), respectively. For the fourth point (arising from Panel (d)), we
estimate the error to be the average of that in the third and fifth points.
A power-law fit of 〈Hlc〉N for the three largest system sizes is given by the
red curve; the fit for the four largest system sizes is given by the green
curve; and the fit for all calculated system sizes is given by the dark blue
curve. The y-intercept is consistent among all of these fits, yielding an
average value of 〈Hlc〉N→∞ = (0.0434± 0.0020)J .
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In order to explore this behavior quantitatively, we studied several disorder config-

urations near the transition, as a function of system size. Fig. 3.5 shows a histogram

of the likelihood of multi-period limit-cycles. For a given magnitude of the driving

field H and a given system size N , we plot the number of disorder configurations

whose limit-cycle has a period greater than that of the driving field, divided by the

number of all disorder configurations studied at that H and N . Starting from the

bottom panel on the lefthand side of Fig. 3.5, panel (e), the system size increases as

one moves to the next panel up the page, up to panel (a) which shows the largest

system we studied, N = 160× 160. Different color bars indicate the period of multi-

period behavior: pink indicates period-doubling; blue shows period tripling; period-4

limit-cycles are denoted in green; yellow is for period-5, and orange is for period-7. We

did not observe any period-6 limit-cycles, although presumably these would appear

at certain disorder configurations as well.

The vertical blue bars mark the mean of the distributions in Fig. 3.5(a-e), 〈Hlc〉N .

In Fig. 3.5(f), we plot 〈Hlc〉N vs 1/N on a log-log plot, in order to determine the

limiting value 〈Hlc〉N→∞. Fits of the finite size scaling in Fig. 3.5(f) for all system

sizes, the four largest system sizes, and the three largest system sizes yield a consistent

value for 〈Hlc〉N→∞ within error bars. The average of these three methods yields

〈Hlc〉N→∞ = (0.0434± 0.0020)J .

3.3.5 Approach to Non-Repeatability

We find that at small system sizes, multi-period behavior is rare. However, as the

system size is increased, and the disorder configurations can become correspondingly

more rich, the likelihood of multi-period behavior increases. In Fig. 3.6(a), we plot the

maximum observed period of a limit-cycle, vs. 1/N . The maximum period increases

with increasing system size, in a manner consistent with a diverging period in the

thermodynamic limit.
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Figure 3.6. Trends of the zero temperature multi-periodic behavior of the
limit-cycles with increasing system size. In panel (a) we plot the maximum
period of the limit-cycles observed in Fig 3.5(a-e), as a function of 1/N
(purple circles). The black line is a fit to the simulation results. The trend
is toward divergence of the period of limit-cycles in the thermodynamic
limit. In panel (b), we plot the maximum likelihood of multi-periodic
limit-cycles, obtained from the peak heights of the left-hand panels in
Fig 3.5 (purple circles). The black line is a fit to the simulation results.
The trend is toward saturation of the likelihood of multi-period behavior
in the thermodynamic limit.

Notice also that the distribution in Fig. 3.5(a-e) grows in height with increasing

system size. For N = 160×160, we find that 20−30% of disorder configurations in the

range H = (0.04− 0.046)J display multi-periodic behavior. To quantify these effects,

we plot the maximum height of the distributions in Fig. 3.5(a-e) in Fig. 3.6(b). This

measure also shows sharp increase with increasing system size. The fact that both

the likelihood of multi-period behavior and the period of limit-cycles steadily increase

with increasing system size points toward a thermodynamic limit in which the period

of limit-cycles goes to infinity. If the period of a system diverges in the thermodynamic

limit, then the system has effectively entered a regime of non-repeatability. We discuss

further implications of this finding in the next section.
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3.3.6 Spin configurations under driving rotating field

In our zero temperature simulations, energy is minimized for each site based on

the local field and the configuration of the nearest neighbor interactions. We use two

types of driving protocol: one is changing the driving field angle (φ) at a constant

rate; the other one is a variable rate where the rate is slowed down if the change

in response magnetization is large and sped up if the response is small. Both these

protocol gives us the same periodicity of the limit-cycle. For example, if the constant

rate is too large it can merge two avalanches into one but the overall magnetization

remains the same.

We also observe that the system falls into the same limit-cycle however we ini-

tialize the spins. Due to the emergent Ising symmetry in the system and the above

observation, the limit-cycles will be the same irrespective of the sense of rotating

driving field. This is because the spin configurations can be mapped by a symme-

try transformation from the response limit-cycle of a clockwise rotating field to the

response limit-cycle of counter-clockwise rotating field. Only the transient response

depends on the initial spin configuration.

Figure 3.7 shows the various spin configurations the system goes through before

and during a limit-cycle with periodicity 4π. The rich structure of the domain walls

are stable due to the random field distribution. All the plots in Fig. 3.7 are unique

and Figs. 3.7(a-i) does not repeat but Figs. 3.7(j-cc) are part of the limit-cycle which

repeats indefinitely. See []PURR3260 for better visualizations of the evolving spin

configurations in limit-cycles with n > 1 periods.

https://www.youtube.com/playlist?list=PLhxhhdi9rQWPrrQ7VWtg6a2xdtZYQMCjO
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Figure 3.7. Example of spin configurations during a period-2 limit-cycle
with transient response of less than 2π. The spin configurations (a-i) are
the transient response which does not repeat. The spin configurations (j-
cc) are for a limit-cycle with a period of 4π which is twice the periodicity
of the driving field. Spin configurations (j-s) are different in the next cycle
(t-cc) of the driving field for the same angle φ of the driving field. For this
particular disorder configuration and system size, the spin configurations
repeat every 2 periods of the driving cycle. Here, the driving field strength
is H = 0.04J , and the system size is 160×160. See the videos in Ref. [74]
of simulation results for further examples.

https://www.youtube.com/playlist?list=PLhxhhdi9rQWPrrQ7VWtg6a2xdtZYQMCjO
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3.4 Evidence of Non-repeatability
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Figure 3.8. This figure shows the zero-temperature phase diagram as a
function of the strength of the rotating field in a uniaxial Random field.
The region where the number of multi-periodic loops and the maximum
periodicity increases with system size is labeled as the expected region
of non-repeatability for infinitely large systems. This region coincides
with the region where the largest avalanche occurs is this system where
〈Hc〉 = (0.0437 ± 0.0009)J , which is marked by the vertical blue line.

The line plots shows that the disorder-average of the second moment δ ~M
of the avalanche size distribution where the error bars are the standard
deviation over the disorder average as described in the text. The brackets
〈 〉 denote an average over the limit-cycle, and the overbar denotes a
disorder average.

Using four different methods to quantify the fluctuations in the system (see Ta-

ble 3.1), we find evidence for a second-order non-equilibrium phase transition from

spontaneous Ising ferromagnetism at low driving field strength, to XY paramagnetism

at high driving field strength. The critical field strength at which this transition
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occurs is consistent across all methods we employed, yielding an average value of

Hc = 0.0437± 0.0009, as denoted in the phase diagram in Fig. 3.8.

Table 3.1.
Critical field strength.

Method Value of Hc/J

Largest avalanche of limit-cycle 0.0452± 0.0015

Second moment of avalanches in limit-cycle 0.0432± 0.0016

Duration of transient response 0.043± 0.0014

Finite size scaling of multi-periodic behavior 0.0434± 0.0020

Overall average of above methods 0.0437± 0.0009

We furthermore find that far from being irrelevant, disorder plays a prominent

role near the transition. Because the disordered energy landscape makes the system

highly susceptible to spatial fluctuations near the transition, there is both longer

transient response and a longer period of limit-cycles near Hc. Remarkably, both the

likelihood of multi-period behavior and the period of the limit-cycles increase with

no sign of saturation as the system size is increased. The trend we find is toward

a thermodynamic limit in which limit-cycles never repeat. A large enough physical

system at this critical point should therefore display a regime of non-repeatability.

As shown in Fig. 3.8, the regime of non-repeatability in the thermodynamic limit

coincides with the non-equilibrium phase transition. The dependence of this simple

model upon history implies that experiments on XY systems with uniaxial random

fields are particularly sensitive to disorder. Conflicting experimental results could

arise if hysteresis protocols are not closely monitored.

Similar behavior is predicted to occur in models of amorphous solids under periodic

shear stress. [1, 2, 75]. In these systems, simulations revealed that under periodic

shear, the response of the system becomes multi-periodic, in a way that is consistent

with chaotic behavior at a critical shear amplitude. More work would be needed to
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determine whether the multi-periodic cascade observed here is indicative of chaotic

behavior in the thermodynamic limit. Similar multi-period cascades signal the onset

of chaos in nonlinear systems, suggesting that the multi-period cascades observed here

and in periodically driven models of amorphous solids are characteristic of a larger

class of transitions in dynamical systems.

While the discussion above points toward non-repeatability in the thermodynamic

limit, there is a way to take the thermodynamic limit on this model such that n

remains finite. A finite system of size L×L with a particular disorder pattern at the

critical point has a finite period n with respect to the driving period. Now tile space

by making k copies of this system (including the particular disorder pattern), and let

k →∞. With this method of taking the thermodynamic limit, the period n remains

finite, even for increasing system size. We have verified that when a disorder pattern

is tiled into a 2× 2 superlattice of the original disorder pattern (i.e. k = 4) then the

spin response in the limit-cycle is also a superlattice of the original spin configuration,

and n is unchanged from the case k = 1.

By this second method of taking the thermodynamic limit, in the vicinity of

the non-equilibrium transition, the system should display the characteristics of a

classical [70, 71] discrete time-crystal [76–78], in which the discrete time-translation

symmetry imposed by the periodic drive is spontaneously broken in a way that leads

to rigid subharmonic entrainment. While some authors are willing to apply the label

time crystal to an open system, where energy from the drive moves through the system

into a heat bath (as in the present case) [70, 77, 79], others prefer a more restrictive

use of the term time crystal, reserving it for closed, conservative systems [80]. We are

using the term time crystal in the former, broader sense.

We find that the period of the response remains stable against perturbations in the

initial conditions and stable against low-temperature fluctuations (see Section B in

Supplementary Information), indicating that the spontaneous breaking of the discrete

time-symmetry is rigid. Yao et al. [70] find that the critical endpoint between a

classical discrete time-crystal and the disordered phase of a dissipative, coupled chain
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of classical nonlinear pendula terminates in a critical point which is not in an Ising

universality class. Because the non-equilibrium transition we find here is in an Ising

universality class, this indicates that there is more than one classical discrete time-

crystal universality class. The results here further underscore the fact that long-range

interactions are not a necessary ingredient to stabilize a time crystal. [81]

While our results point to the rigidity of n to very low-temperature fluctuations,

more analysis would be needed to establish whether the n is truly long-range ordered

in time. However, what we observe is a promising avenue toward time crystal behavior

in a new system, as can be seen in Fig. 3.7. The figure shows a period-2 limit-cycle.

Two types of domain walls are evident in the figure: single domain walls that are

either white or black, and double domain walls that are white and black. Comparing

Fig. 3.7(k) and Fig. 3.7(u), it is evident that on the second time through the driving

cycle, the domain walls are in a very different configuration as compared to the

first time through the drive cycle. The same is true while comparing Fig. 3.7(p) and

Fig. 3.7(z). Furthermore, the single (white) domain wall in the lower left of Fig. 3.7(p)

has no counterpart in Fig. 3.7(z), and is topologically distinct from it. These are all

indications that (1) the domain walls are pinned by the random fields, and therefore

that (2) spin configurations in the second cycle likely have high energy barriers to

spin configurations at the same phase of the drive during the first cycle. In random

field models, the timescales to equilibration grow exponentially near criticality [72].

This combination of topological differences, domain wall pinning, and high barriers to

equilibration is the physical origin of the stability of the period of these multi-period

cycles against low-temperature fluctuations, and likely leads to true time-crystalline

rigidity of n if care is taken in how the thermodynamic limit is approached and how

dissipation is handled.

The work in this chapter was done at uniaxial random field strength Rx = 0.5J ,

with zero random field strength in the y-direction. Further work is needed to obtain

the full phase diagram as a function of random field strengths Rx and Ry.
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3.5 Applications to Physical Systems

The uniaxial random field XY model has been applied to many systems, including

layers of Josephson junctions, [61] superfluid in a uniaxially stressed aerogel, [62]

ultracold atoms in the presence of speckle radiation, [9] uniaxially stressed 2D Wigner

crystals, [63–66] and the half-integer quantum Hall effect. [3] Uniaxial random field-

induced order has also been discussed in connection with the graphene quantum Hall

ferromagnet. [10,67] We discuss below a few of these systems in which there is also a

clear way to drive the system with a rotating field.

3.5.1 Electron nematics

An electron nematic occurs when the electronic degrees of freedom spontaneously

break the rotational symmetry of the host crystal. Electron nematics have been

observed or proposed in several material systems, including transition metal oxides

like cuprate superconductors, manganites, nickelates, and cobaltites; valley symmetry

breaking systems like single and bilayer graphene, elemental bismuth, and AlGaAs

2DEG’s, as well as strontium ruthenates and iron pnictides. [82, 83] For electron

nematics with XY symmetry [49] there is a factor of two between the physical angle

of the nematic in the plane, and the natural angles in an XY model. This is because

a nematic is symmetric under 180o rotation, whereas the XY spins change sign under

the same operation. The uniaxial random fields we discuss in this paper can arise in

these systems if random orienting fields are strong only along the major crystalline

axes. Note that in this case, the order-by-disorder transition would induce the electron

nematic to orient along a direction which is diagonal to the major crystalline axes.

Several external perturbations can be used as a driving field on an electron ne-

matic, including magnetic field, electric field, high currents, and uniaxial stress. [56,84]

Note that similar symmetry considerations apply to the driving field in these systems.

For example, a rotating applied magnetic field ~B = [Bx, By] = B[cos(ωt)), sin(ωt)]

can be used to exert the rotating driving field of Equation (1.1) for the case of a
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nematic, with the caveat that rotating the applied field by 90o changes the sign of

the driving field:

~H = [Hx, Hy] = H[cos(2ωt), sin(2ωt)] . (3.3)

3.5.2 Quantum Gases

Random-field induced order has been proposed to happen in coupled Bose-Einstein

condensate systems. [9] Theoretical and numerical results on two-component Bose

gases predict that by using a Raman field to couple two internal states, uniaxial

random field disorder can be produced. The uniaxial nature is achieved by a Raman

coupling with a constant phase, while the randomness is achieved through random

strength of the Raman field. [11,85] Similarly, a rotating driving field can be applied

by a Raman coupling with uniform strength, but a rotating phase.

3.5.3 Magnetic systems

While the mapping of a magnetic system with XY symmetry to Equation (1.1)

is clear, the realization of a uniaxial random field in these systems is less clear. It

may be possible to design a system in which epitaxial strain from a substrate exerts

random uniaxial fields on a 2D XY ferromagnet through a magnetoelastic coupling.

3.6 Methods

3.6.1 Hysteresis Protocol

The magnetization my in the y-direction at intermediate disorder strength Rx =

0.5J remains ordered even in the presence of weak applied transverse field Hx. (See

Section 1.2) Therefore, to begin the hysteresis studies, we first initialize the system

in a y-magnetized state, by starting from the fully saturated y magnetization, with

the driving field aligned along y, ~H||y, then allow the system to relax [58] at that

applied field. We take the angle φ of the applied field to be φ = Arctan(Hy/Hx), so
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the initial direction of the applied field is φ = π/2. After rotating the applied field by

an amount δφ( ~H), the spin configuration is updated successively so as to minimize

the energy, in the ω → 0 limit. After a transient response, the response of the system

then settles into a limit-cycle.

Each time the applied field direction is updated, the energy is minimized on each

site by aligning the spin on each site with its effective field, ~heffi . Hence the following

update strategy is repeated until the spin configuration converges to the nearest

energy minimum:

~heffi (t) = J
∑
j∈〈i,j〉

~Sj(t) + ~hi + ~H,

~Si(t+ 1) =
~heffi (t)

|~heffi (t)|
(3.4)

This update mechanism is similar to Equation (2) of Ref. [86], however the effective

on-site field in our case includes only the instantaneous influence of nearest neighbors,

whereas Ref. [86] is working in a mean-field limit. The update algorithm we employ

is described in more detail below, in section 3.6.2.

We continue to allow spins to relax under the influence of Equations (3.4) until

a limit-cycle is reached, defined by {~Si}(φ + 2πn) = {~Si}(φ). We use the following

parameters in our simulations: δmcutoff = 10−4, δφmax = 2π × 10−4, δφmin = 2−14 ×

δφmax. Hence the avalanches (δm) are only well-defined within the precision of the

driving field angle, δφmin = 2π × 6.1× 10−9.

3.6.2 Spin Relaxation Method

The rotation of the driving field and subsequent relaxation of the spin configura-

tion is performed as follows. Starting from an initial spin state {~Si}(φ) for a given

applied field direction φ = Arctan(Hy/Hx) and with δφ initially set to δφ = δφmax:

1. Update φ→ φ+ δφ.

2. Use Equations (3.4) to relax the spin configuration.
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3. If δm > δmcutoff , then:

(a) If δφ = δφmin, accept the new spin configuration and the new φ, and

proceed to Step 1

(b) Else reject the changes. Set δφ→ δφ/2 and proceed to Step 1

4. Else accept the new spin configuration and the new φ, and:

(a) If δφ = δφmax or δm ≥ δmcutoff

2
, proceed to Step 1.

(b) Else, set δφ→ 2× δφ and proceed to Step 1.

3.6.3 Disorder Averages

Table 3.2 reports the number of disorder configurations used in Figs. 3.3, 3.4,

and 3.5.

Table 3.2.
Number of disorder configurations used in Fig. 3.3 (a) and (b), Fig. 3.4(d),
and Fig. 3.5 (a-e).

Size (N = L× L) Configurations

64× 64 75

80× 80 60

100× 100 50

128× 128 40

160× 160 30

3.7 Conclusions

In conclusion, we have shown that the order-by-disorder transition of the two-

dimensional XY model in the presence of a uniaxial random field persists up to a
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critical strength of the rotating driving field. Near the critical driving field strength,

the response of the system has a period which is an integer multiple n > 1 of the

driving field period. The trend with increasing system size is toward increasing period

n, suggesting the onset of what is effectively non-repeatability as n → large in the

thermodynamic limit. Similar multi-period cascades signal the onset of chaos in

nonlinear systems, and signal the onset of irreversibility in periodically driven models

of plastic deformation, suggesting that multi-period cascades are characteristic of a

larger class of transitions in dynamical systems. Our results further indicate that

the period n can be engineered to remain finite if the thermodynamic limit is taken

by tiling a particular disorder pattern into a superlattice. In this case, behavior

reminiscent of classical discrete time-crystals emerges near criticality.
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4. CLASSIFYING SURFACE PROBE IMAGES WITH

NEURAL NETS

4.1 Introduction

The types of surface probes, e.g. atomic force microscope (AFM), scanning tun-

neling microscope (STM), scanning near-field optical microscope (SNOM), scattering

scanning near-field infrared Microscope (s-SNIM), and more, [18, 19] and the wealth

of data they generate is increasing at a rapid pace, where current classification tech-

niques involve human intervention making the process time-consuming. Automation

of this process will help researchers gain insights spending as little time as possible

on classification. With the progress in Deep Learning and its broad applicability, it

has become a highly used tool in diverse fields. Convolutional neural networks are

heavily used in image classification. Lukasz et al. has shown that with machine learn-

ing, images from simulation can be classified with very good accuracy of ∼ 97%. [22]

Here we show that a deep learning architecture can classify 2D surface images into

one of the 2D/3D clean Ising models, 2D/3D random field Ising models, or 2D/3D

percolation models to even better accuracy (> 99%). Furthermore, we have cus-

tomized the model with symmetry transformations and rejection criteria, which can

handle many anomalous predictions. We apply this framework to experimental data

to demonstrate its potential.

4.2 Simulations

We consider clean Ising models, random field Ising models (RFIM), and uncor-

related percolation models to generate lattice configurations, which will be used as

training examples in section 4.3.
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(a) T2D=2.30J (b) T2D=2.35J (c) T2D=2.45J (d) T2D=2.55J

(e) T3D=4.50J (f) T3D=4.52J (g) T3D=4.55J (h) T3D=4.60J

(i) R2D=1.00J (j) R2D=1.05J (k) R2D=1.10J (l) R2D=1.15J

(m) R3D=2.25J (n) R3D=2.26J (o) R3D=2.27J (p) R3D=2.28J

(q) p=0.50 (r) p2D=0.59 (s) p3D=0.69 (t) p=0.80

Figure 4.1. Critical configurations generated from simulations of different
Ising models and percolation models.
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The Hamiltonian of the clean Ising model is given by equation 2.36 with σφ =

1. Where, σi ∈ {+1,−1}/{1, 0}/{↑, ↓} is a two-state local order parameter. This

model undergoes a phase transition at a critical temperature of T 2D
c ≈ 2.27J in

two-dimensional systems and T 3D
c ≈ 4.51J in three-dimensional systems. [48, 87]

The simulation consisted of a mixture of Monte-Carlo updates with checkerboard

Metropolis and Wolff algorithms to thermalize and generate images near the critical

temperature. Figures 4.1(a-d) shows some configurations near and above T 2D
c on a

100× 100 lattice. Figures 4.1(e-h) shows some configurations near and above T 3D
c on

the surface of a 100× 100× 100 lattice.

The random field Ising model (RFIM) is used to model the disorder in the Ising

system as given in equation 3.1. Where most of the variables can be identified with

the Ising model Hamiltonian (Eqn. 2.36 with σφ = 1). In this model, the uniform

field h and the local random fields hi couple with the local order parameter. The

random fields are chosen from a Gaussian distribution of strength R where, P (hi) ∝

exp(−h2i /(2R2). At zero-temperature, this model undergoes a non-equilibrium phase

transition at a random field strength of R ≈ 2.16J in a three-dimensional system

(3D-RFIM) and R→ 0 in a two-dimensional system (2D-RFIM). [88] This model was

simulated at zero-temperature while sweeping the field h. The most striking patterns

form near the coercive field, hence used for training examples for the Neural Net.

Figures 4.1(i-l) shows some configurations at the lowest possible disorder strengths

on a 100×100 lattice. For a small system, finite-size effects play a key role in pushing

the critical field strength to a higher value. Figures 4.1(m-p) shows configurations at

the lowest possible disorder strengths on the surface of a 100× 100× 100 lattice.

In the uncorrelated percolation model, a site is occupied with a probability p. It is

the same as flipping a biased coin where p is the probability of turning up heads. The

percolation threshold (critical percolation probability, pc) is marked by a percolating

cluster spanning over the system. In a two-dimensional system this threshold occurs

at p2Dc ≈ 0.59 and in a three-dimensional system at p3Dc ≈ 0.31. [89] Figures 4.1(r)

shows a critical configuration of 100× 100 sized 2D percolation. Figures 4.1(s) shows
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a critical configuration of a slice in 100× 100× 100 3D percolation. As we shall see

in section 4.3.1, configurations generated by the black↔white symmetry transforma-

tions are equivalent, hence this represents a configuration generated from critical 3D

percolation at p = 0.31.

Configurations generated from all other percolation probabilities were put in a

separate class. This helps in separating the interesting patterns in the above models

near criticality from the images which are mostly black or mostly white (Fig. 4.1(t))

and random noise (Fig. 4.1(q)).

Table 4.1.
Simulation details.

Model T/J R/J p Type

2D Clean Ising 2.25− 2.64 0 N/A Monte-Carlo

3D Clean Ising 4.45− 4.65 0 N/A Monte-Carlo

2D RFIM 0 1.00− 1.19 N/A Zero-Temperature

3D RFIM 0 2.25− 2.29 N/A Zero-Temperature

2D Percolation N/A N/A 0.57-0.61 Biased coin flip

3D Percolation N/A N/A 0.29-0.33 Biased coin flip

N N 0.02-0.2 Biased coin flip

Other Percolation / / 0.48-0.52 Biased coin flip

A A 0.8-0.98 Biased coin flip

4.3 Customized Deep Learning Model

In order to detect a critical configuration of the above models, we simulate them

near their respective transitions and feed the results into a deep neural network that

specializes in pattern recognition in images. Our approach is geared towards equip-

ping researchers dealing with high volumes of data from surface probes that can be
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Start

Flattened Input Image: 10000(100× 100)

Symmetry Reduction

CNN Input Label: (7)

Decision

Mark rejected

Output: Prediction

Stop

Yes

No

Figure 4.2. End-to-end Classification flowchart with CNN. Here we
highlight where the non-trainable part of the classification. The symme-
try transformation layer is added which acts on the training dataset and
while testing the classification as well. These operations (See Fig. 4.3)
has the advantage of reducing the amount of data required to train the
network as well as provide one crisp prediction given any one of the 16
possible configurations of a single image. The simulated images and their
corresponding labels are provided as training and validation data for the
deep learning models (Fig. 4.4). After training, the output distribution
from the CNN for all the known classes are stored for a further test which
checks whether the prediction class determined from the maximum of 7
unit CNN-output is close to the distribution in the training set, otherwise,
it is marked as rejected.
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classified into one of these models. Traditional approaches, like the one described in

Ref. [20,23,90], are more time consuming and require expert knowledge in the matter.

Here, we train a Convolutional Neural Network (CNN) to classify a 2D image into

any one of the above models discussed above. For generating 2D images from three-

dimensional models we used slices and surface configurations, with an open boundary

condition (along one of the axes) for the Ising models. We generate simulation results

from 100× 100 (2D) and 100× 100× 100 (3D) lattice size systems.

The parameters from table 4.1 are used to generate 8000 images for each model

near its transition. A percolation probability away from 2D and 3D critical percolation

strengths contribute to 16000 images. This dataset is curated by taking all the 16

symmetry operations and passing it through the symmetry reduction, keeping only

the unique configurations.

4.3.1 Symmetry Operations

Let us turn our attention to the symmetry operations in effect. These 16 symmetry

operations that can be applied to any square image. Most of the 16 transformations

can be mapped to a single configuration. This is utilized to our advantage for training

and validation without loss of generality:

1. Ising symmetry(2): {+1,−1} ↔ {−1,+1}. If a configuration has majority

down spin, flipping them makes them majority spin up.

2. Rotation(4): Rotate by π/2, π, 3π/2. The quadrant (numbered cyclically) which

has the most spin up is rotated to become the 1st quadrant.

3. Transpose(2). The quadrants with the most spin up between 2nd and 4th

(diagonally opposite) becomes the 2nd quadrant with the help of transpose

operation.

All the above operations are performed in the given order and the logic is summa-

rized in Fig. 4.3. There are some configuration which cannot be mapped to a single
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configuration using these symmetry operations. For example, if exactly half the spins

are up, the first step cannot reduce it down to a unique configuration. But the pos-

sibility of that occurrence is
NCN/2

2N
≈ 1.592× 103008/1.995× 103010 ≈ 0.008. But this

is accounted for when we take all the 16 symmetry operations on a configuration and

apply the reduction operations to keep only the unique configurations.

Flattened Image: (10000)

Round to 0, 1

Reshape: 100× 100× 1

Majority Spin up? Flip Spin 0↔ 1

Quadrant with most 1s?

Rotate 90o

Rotate 90o

Rotate 90o

2nd > 4th Quadrant 1s? Transpose

Output: 100× 100× 1

Yes

No

4th

3rd

2nd

1st

Yes

No

Figure 4.3. Symmetry reduction method.
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4.3.2 Convolutional Neural Net Arcitecture

Input Image: (100× 100× 1)

Convolution 2D: 5× 5× 1− 32

Max Pooling: 2× 2

Convolution 2D: 5× 5× 32− 64

Max Pooling: 2× 2

Flatten

Fully connected

Fully Connected with Dropout

Softmax/Sigmoid Cross-entropy

Input Label: (7)

Output Layer: (7)

A
d
am

O
p
ti

m
iz

er

Layer 1a: (100× 100× 32)

Layer 1b: (50× 50× 32)

Layer 2a: (50× 50× 64)

Layer 2b: (25× 25× 64)

Layer 3a: (40000)

Layer 3b: (1024)

Layer 3c: (7)

Figure 4.4. Convolutional Neural Network. The input image here
is reduced by the symmetry operations given in Fig. 4.3. We use
ADAM (Adaptive moment estimation) optimization algorithm to train
the network. [91] The output labels/probability is determined using sig-
moid/softmax on the output layer.
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The convolutional neural net (CNN) consists of two 2D convolution layers and

max-pooling layers followed by two fully connected layers resulting in seven-dimensional

output classes for classification. This base model is trained with two different activa-

tion functions on the output layer based on the type of classification required:

• Using a softmax activation layer on the final output layer would result in a single

label classification, if there are n output classes with numbers vi the softmax is

defined as:

Y softmax
i = exp (vi)/

n∑
j=1

exp (vj) (4.1)

where, Y softmax
i is the output probability/likelihood estimate.

• Whereas a sigmoid activation layer would result in a multi-label classification.

The sigmoid is simpler in the sense that it assigns a probability irrespective of

the other classes:

Y sigmoid
i = 1/(1 + exp (−vi)) (4.2)

where, Y sigmoid
i is the output probability/likelihood estimate.

The simulation results after the symmetry reduction is divided into a training

set and a validation set. The training set is used to train the network whereas the

validation set is used for testing generalization error. A saturating validation error

during training roughly marks the onset of overfitting. Figure 4.5 shows that the

classification errors are less than 0.5% for both activation functions (softmax and

sigmoid).

4.3.3 Rejection Criteria

After training this model, we devised and implemented a method for rejecting

the final prediction based on the distribution at the output layer before the soft-

max/sigmoid activation. Figure 4.6 shows distribution of the output before the final

activation layer. Since this distribution is well clustered in the six critical models
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(a) Error from softmax activation (b) Error from sigmoid activation

Figure 4.5. Error in the training and validation set vs. the number
of epochs. Epochs correspond to the number the times the training set
went through a training process. (a) Softmax activation(Eqn. 4.1): To
prevent overfitting we chose epoch=4 for testing with experimental im-
ages. Training/Validation accuracy = 99.64%/99.67% (b) Sigmoid acti-
vation(Eqn. 4.2): To prevent overfitting we chose epoch=9 for testing with
experimental images. Training/Validation accuracy = 99.97%/99.79%

of interest, a prediction point lying far from its corresponding cluster is marked as

an anomaly. For each class, a distribution of the output layer is generated from the

training examples. The validation process confirms that the optimum deviation from

the training distribution is given by the standard deviation in each output dimension.

The generalization of this method would be to use any or all of the intermediate layers

for detecting such an anomaly in the input data, see Ref. [92].
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(a) Distribution in layer before softmax.

(b) Distribution in layer before sigmoid.

Figure 4.6. The distribution of values in the pre-final layer of each class.
As we can see that they cluster near specific values, they can be used to
reject any prediction which does not lie sufficiently close to any of these
values.

4.4 Application to experimental images

We procured some experimental images which are a good candidate for these

models. The image sizes from experiments can be of any size. To use our framework
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which was trained on 100 × 100 images, we can scale it down close to our target

size. Since it is best to look at the largest possible length scales we do a block

renormalization for black and white images larger than 100(2n+ 1)× 100(2n+ 1) of

unit cell size (2n + 1) × (2n + 1). For grayscale images, we can reduce it by n × n

by averaging and then setting a threshold. The resulting image can go through the

classification process if we use a sliding window (like a convolution) over the image.

The generated prediction from all of these are averaged into a single result.

The images in figures 4.7, 4.8, 4.10 and 4.12 were obtained from Ref. [23]. The

data was collected using s-SNIM on a sample of vanadium dioxide (see section 1.3).

A rigorous scaling analysis is available in Ref. [23]. In this part, we were provided

with grayscale images of size 256× 256, hence were able to scale it down to 128× 128

by averaging over 2× 2 pixels.
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(a) T = 341.0K (b) T = 342.4K (c) T = 342.6K (d) T = 342.8K (e) T = 343.0K (f) T = 343.6K

Figure 4.7. Classification from deep learning model with softmax acti-
vation which specializes in categorizing into one label. The test images
from a scanning near field microscopy on a sample of V O2 in the metal-
insulator transition regime. The images were downscaled by a factor of
two. The resulting image was thresholded using the same threshold that
as in Ref. [23]. The outcome is expected to be in RFIM. And since these
are planar material 2D RFIM is correctly predicted by our deep learn-
ing model. The color-coded overlay is placed on the black and white
images to show their corresponding classification. Only one center pixel
of a 100 × 100 window is colored by using this method. And we do the
same classification by shifting this window by 1 pixel in either right or
down. The probability estimates are averaged over all the predictions
into a single prediction probability in the bar chart.

Figure 4.7 shows the results of classification with the CNN trained with a single-

label (Eqn. 4.1) classifier. The positive detection for 2D-RFIM is generated for the

Figure 4.7(b-e).
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(a) T = 341.0K (b) T = 342.4K (c) T = 342.6K (d) T = 342.8K (e) T = 343.0K (f) T = 343.6K

Figure 4.8. Classification from deep learning model with sigmoid acti-
vation which specializes in assigning to probability for multiple classes.
The test images are the same as figure 4.7. The outcome is expected to
be in RFIM. And since these are planar material 2D RFIM is correctly
predicted by our deep learning model. A color-coded overlay is placed
on each black and white image to show their corresponding classification.
Only one center pixel of 100×100 window is colored by using this method.
And we do the same classification by shifting this window by 1 pixel in
either right or down. The probability estimates are averaged over all the
classifications into a single prediction probability in the bar chart.

Figure 4.7 shows the results of classification with the CNN trained with a multi-

label (Eqn. 4.2) classifier. The positive detection for 2D-RFIM is generated for all

except Figure 4.7(c). This was not expected as the completely black image was given

a high chance of falling in 2D-RFIM.
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Can the Rejection Criteria do better?

(a) T = 342.6K

(b) T = 342.8K

(c) T = 343.0K

Figure 4.9. Pre-final layer of CNN before softmax activation(Eqn 4.1).
The light gray spots in the figure represent predictions that need to be
rejected based on the displacement from the predicted cluster in Sec. 4.3.3.
The black spots are the predictions that are accepted. We will see in
figure 4.10 how this affects the predictions generated.



83

We show the distribution in the pre-final layer of the CNN when the test images

in figure 4.7(c-e) are passed through the network trained with a softmax activation

(Eqn. 4.1), in figure 4.9. In this case, the rejection criteria were able to filter out

images that were away from the 2D-RFIM cluster in the training set. In figure 4.10 we

demonstrate the rejection criteria on the four images that were predicted as 2D-RFIM

to very high possibility. The effect is clear since the only test image surviving the

rejection criteria was taken at T=342.8K(Fig. 4.10(c)). Hence, the basis of rejection

was able to nail down the test image which was most likely to be in the 2D-RFIM

(See Fig. 4.10(c)).

(a) T = 342.4K (b) T = 342.6K (c) T = 342.8K (d) T = 343.0K

Figure 4.10. Description same as figure 4.7. The darker colors are
from predictions that did not pass the rejection criteria as described in
section 4.3.3.

Figure 4.11 shows the distribution of the pre-final layer before the sigmoid acti-

vation (Eqn. 4.2) for the test images in figure 4.8(c-e). Firstly, the completely black

image classified into 2D-RFIM, is discarded as a badly classified image. In Fig. 4.12(c)

the prediction likelihood of 2D-RFIM and 3D-RFIM was reduced, with 2D-RFIM still

the better candidate. But in figure 4.12(b) we see 3D RFIM is detected with a small
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likelihood. The rejection suppressed more than half of these predictions in the 3D-

RFIM. For the rest of the badly classified test images, the rejection criteria handled

it quite well.
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(a) T = 342.6K

(b) T = 342.8K

(c) T = 343.0K

Figure 4.11. Pre-final layer of CNN before sigmoid activation(Eqn 4.2).
The light gray spots in the figure represent predictions that need to be
rejected based on the displacement from the predicted cluster in Sec. 4.3.3.
The black spots are the predictions that are accepted. We will see in
figure 4.12 how this affects the predictions generated.
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(a) T = 342.4K (b) T = 342.6K (c) T = 342.8K (d) T = 343.0K

Figure 4.12. Description same as figure 4.8. The darker colors are
from predictions that did not pass the rejection criteria as described in
section 4.3.3.

Both the methods gave a larger positive identification for the 2D-RFIM (Fig. 4.10(c)

and Fig. ??(c)). This strengthens our confidence in this classification method, where

for all other temperatures almost all of the classification of the Ising model is rejected

by our final decision criteria (Fig.4.10(a,b,d) and Fig.4.12(a,b,d)). Although the soft-

max still has a small edge over the sigmoid activation with less spurious detections.

Experimental images in figure 4.13 is obtained from Alexandre Zimmers Lab at

ESPCI, where they used an optical microscope on V O2 film to measure the local

reflectance of the surface. First, let’s discuss some details about the experimental

setup. A 130nm V O2 thin film was deposited by rf magnetron sputtering on an r-

cut sapphire substrate. Gold electrodes separated by 20µm were deposited on top

of the film. The sample showed a clear insulator to metal transition above 68oC by

four orders of magnitude drop in its resistivity. [93] The optical experimental setup

consists of placing this V O2 thin film sample on a Peltier heater inside a microscope.

Surface reflection images were taken in the visible range with a ×150 magnification

dry Olympus objective lens with an optical aperture of 0.9 and a focal point of 1mm.
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The temperature was typically cycled from 55oC to 75oC around the metal to insulator

transition. Inevitable temperature dilation of the Peltier heater brought the sample

out of focus while heating:

• To compensate the z drift the sample was moved up and down 10µm periodically

(period∼10s) by a piezoelectric crystal under it to bring the sample in and out

of focus. In the post-experiment analysis, among the 62000 images recorded

during the 14-hour experiment (3 major temperature loops and 10 subloops),

895 images were selected to be in focus by pinpointing the minimum compression

ratios.

• Thermal drifts in the x-y plane were compensated post-experiment, using Adobe

Premiere Pro program.

How we converted these images from grayscale to black-and-white is by observing

that each pixel intensity changed from a high saturation value (Imax) near T=55oC

to a low saturation value (Tmin) near T=75oC in a rounded step-like manner. Hence

we define a single-pixel-turnon intensity independent of the other pixels at Imin+Imax

2
.

Figure 4.13, shows the performance of the two networks with the decision criteria

to handle bad predictions. Both of our neural nets identified these as 2D RFIM.

The CNN with softmax(Fig. 4.13(a)) activation distinctly identified 2D-RFIM for

this image. Whereas the predictions from CNN with sigmoid(Fig. 4.13(b)) activation

identified both 2D and 3D-RFIM, with 2D-RFIM being the more likely candidate.

The rejection criteria suppressed predictions from both 2D/3D RFIM, making both

the predictions suppressed. The 2D-RFIM beats the 3D-RFIM with a very low mar-

gin. Hence, some skepticism is justifiable for this CNN. But the model trained with

a softmax activation performs significantly better than the sigmoid.

4.5 Conclusion

We have shown the accuracy that can be achieved by using a convolutional neural

net to classify simulated images is better than 99%. We also demonstrate that this
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framework can be applied to real experimental images. The CNN model trained

with a softmax activation (See Eqn. 4.1) performs better on experimental images

than the sigmoid activation (See Eqn. 4.2). The symmetry reductions significantly

lower training time by reducing the size of the input data without reducing accuracy.

The implementation of a distribution based rejection method makes prediction more

precise. But, some fine-tuning may be required before going into production. The

future scope of this framework is huge, we list a few here: (1) generalize the CNN to

handle inputs of any size, (2) a learning-based optimization for the rejection classifier,

(3) a regression-based algorithm may be used to detect critical parameter for each

model, (4) handling grayscale images without the need to threshold them, and more.

Since this deep learning model can be trained on simulated data and/or classified

experimental data, it will be a significant boost in detecting the underlying physics

from 2D data.
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(a) Prediction from CNN with

Softmax.

(b) Prediction from CNN with

Sigmoid.

Figure 4.13. These images are from a series of images undergoing a Metal-
Insulator phase transition, where all the pixels saturate individually to a
different minimum(Imin) and a maximum(Imax) intensity. The intensity
of each pixel was scaled from [Imin, Imax] → [0, 1]. The threshold was
then set to 0.5. This image was taken at T=62.8oC. Classification with
deep learning model with (a) Softmax activation, and (b) Sigmoid activa-
tion. The bright green/cyan colors, in both the bar plot and the overlay,
indicate 2D-RFIM/3D-RFIM classification, respectively, that passed the
rejection criteria. Whereas the bright green/cyan colors indicate the re-
jected classifications. The predicted possibility for each category is shown
in the bar plots.
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5. SUMMARY

In chapter 2, we have shown that the entire temperature dependence of the observed

resistivity anisotropy in NQHM at ν = 9/2 can be well described by taking into

account the discrete rotational symmetry of the underlying crystal. We expect sim-

ilar temperature evolution to occur for ν > 9/2 half-integer fillings, and also for the

ν = 5/2 and 7/2 states which display anisotropic resistivity upon application of a

moderate in-plane field. Inclusion of such a symmetry-breaking term shifts the uni-

versality class of the electron nematic from the Kosterlitz-Thouless universality class

of the two-dimensional XY model to the two-dimensional Ising universality class.

We furthermore propose an experimental test for hysteresis that can clearly distin-

guish whether any 2D electron nematic is in the Ising or XY (Kosterlitz-Thouless)

universality class.

In chapter 3, we see that the role and type of quenched disorder is important. The

disorder causes both random fields as well as random bonds. In presence of both, the

universality class is set by random field disorder as it is relevant in both cases. Random

field disorder in an infinite system with an applied field leads to the same universality

class in both models. For a random field XY model in d < 4 and for a random field

Ising model in d ≤ 2, macroscopic symmetry breaking can not occur even for the

weakest coupling possible. But for an XY model in the presence of a uniaxial random

field disorder, the macroscopic symmetry breaking is restored in the model. Upon

driving the system with a rotating field quasi-statically while the system was attached

to a zero-temperature heat bath, we see the response becomes multi-periodic where

the avalanche size distribution diverges. We also found a non-equilibrium critical point

which is home for a multi-periodic behavior. The increasing periodicity of response

with system size grows towards non-repeatability in the thermodynamic limit, which

is very much like the transition to chaos. The observed period multiplication in
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this model resembles a classical discrete time-crystal. We discuss its application to

electron nematic, quantum gas, and XY magnets.

In chapter 4, we worked with two variations of a deep learning model to clas-

sify images from various Ising models and percolation models. The machine learning

model’s better performance with a single-label classifier than the multi-label classifier

was demonstrated with experimental images. The specialized symmetry reduction

and rejection criteria formulated provide better robustness against anomalous predic-

tions to the deep learning model.

We have outlined two different hysteresis protocols to distinguish an XY model

with Ising symmetry from its counterparts without broken symmetry. We also devised

a strategy to differentiate Ising models and percolation models with machine learning.

In the process, we found a critical discrete time-crystal and similarities with a chaotic

dynamical system.
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