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ABSTRACT 

Ninety-five percent of all roadway crashes are attributed fully or partially to human error, 

and a multitude of safety-related programs, policies, and initiatives have seen limited success in 

reducing roadway crashes and their accompanying fatalities, injuries, and property damage. For 

this reason, safety professionals have lauded the emergence of autonomous vehicles (AVs) as a 

promising palliative to the persistent problem of road crashes. Such optimism is reflected in recent 

literature that have argues from a conceptual standpoint, that road safety enhancement will be one 

of the prospective benefits of AV operations because automation removes humans from vehicle 

driving operations and therefore criminates or mitigates human error. It can be argued that the 

safety benefits of AVs will be manifest when AV market penetration reaches 100%. However, it 

seems clear from a practical standpoint that the transition from a system of exclusively human-

driven vehicles (HDVs) to that of exclusively AVs will not only be necessary but also an arduous 

journey. This transition period will be characterized by heterogeneous traffic, where human-driven 

vehicles (HDVs) and AVs share the road space, and whence the prospective safety benefits of AVs 

may not be fully realized due to human error arising from the HDV operations in the mixed traffic 

space. These traffic conflicts, which may lead to collisions, could arise from any of several contexts 

of driving maneuvers, one of which is aggressive lane changes, the focus of this thesis. From the 

literature, it is clear that lane changing is inherently more collision-prone compared to most other 

maneuvers including car following, and therefore the consequences of errant human driving 

behavior such as inattention of misjudgment during lane changing, are more severe. To address 

this problem, this thesis developed a control framework to be used by AVs to help them avoid 

collision in a mixed traffic stream with human drivers who exhibit aggressive lane-changing 

behavior. The developed framework, which is based on a Model Predictive Control (MPC) 

approach, is designed to control the AV’s movements safely by duly accommodating potential 

human error from the HDVs that could otherwise lead to any of two common collision patterns: 

rear-end and side-impact. Further, the thesis investigated how connectivity between the HDVs, 

and AVs could facilitate joint operational decision-making and sharing of real-time information, 

thereby further enhancing the safety of the entire traffic stream. Finally, the thesis presents the 

results of driving simulations carried out to test and validate the performance of the control 

framework under different traffic conditions. 
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 INTRODUCTION 

1.1 Background  

1.1.1 Safety in traffic operations 

Traffic-related fatalities and injuries continue to pose a global concern. A recent report on traffic 

safety reports that there were 1.25 million accidents in 2013 alone, and that in 30% of countries, 

fatalities from traffic related accidents is currently on the increase (Moosavi et. al., 2019). Traffic-

related accidents are the second leading cause of death between the age of 5 and 29, and the third 

leading cause of death between the age of 30 and 44 (Anjuman, et. al., 2020). In 2018, more than 

40,000 traffic-related fatalities occurred in the US (National Safety Council, 2018), and hundreds 

of thousands injured. With increasing travel demand, traffic fatalities and injuries may increase.  

To combat the problem of traffic crashes, countries continue to pursue global and local 

initiatives. These initiatives address at least one of several strategic areas including road-use policy 

(regarding vehicle and driver roadworthiness) (Labi et al., 2017), roadway design (Chen et al., 

2017; Tang et al., 2018; Chen et al., 2019), driver education, and in-vehicle design and features. 

For example, Vision Zero, a global effort, endeavors to eliminate traffic fatalities. However, 

studies have shown that 95% of crashes are related directly or indirectly to human error (NHTSA, 

2016). Thus, while significant endeavors have been made to address roadway and other factors, 

such efforts directly address only 5% of all crashes.   

With the rapid development of the vehicular automation and connectivity, reaching Vision 

Zero has become an achievable goal. Automation eliminates or drastically minimizes the human 

element in vehicle control, and therefore can directly address the 95% of accident sources (Rahman 

et. al., 2019; Noy et. al., 2018; Ye and Yamamoto, 2019; Chen et al., 2020). Interestingly, literature 

is replete with studies geared towards protecting the surrounding human drivers and pedestrians 

from errant AVs. On the other hand, there has been relatively little or no investigation into how an 

AV should maneuver in order to protect itself, and consequently the local traffic, from reckless 

human drivers. Therefore, this thesis focuses on developing an AV controller to facilitate the safety 

of vehicles in the neighborhood of the AV, to avoid imminent collision with errant HDVs. 
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1.1.2 Benefits of vehicle automation 

Vehicle automation is expected to improve the transportation system safety, for the following 

reasons: (1) the reduced reaction time of vehicles due to the sensor fusion, which include cameras, 

radar, LiDAR, and Ultrasonic sensors (Figure 1.1); and (2) the elimination of the human element 

(mainly human error) in vehicle control. 

 

 

 

Figure 1.1. Sensor fusion: camera, radar, LiDAR, Ultrasonic sensor 

 

There is a significant amount of literature on the effectiveness of sensor-based visual target 

tracking of AVs (Jia et al., 2008; Lange and Detlefsen, 1991; Dickmann et. al., 2014). Vehicle 

automation can be expected to enhance the safety of the transportation system, providing benefits 

not only to AV users but also to the HDV users. There are a number of studies that recognize that 

failures in complex systems are often due to human errors (Christoffersen, and Woods, 2002). 

Automation, considered as a cognitive prosthesis, replaces human function to a large degree, 

devoid of common causes of human error (Sheridan and Parasuraman, 2005). Therefore, 

modification of a complex system by reducing human input has been understood as an appropriate 

way to enhance the system (Lee and Seppelt, 2006). In the context of transportation engineering, 

there exists great opportunity to enhance the safety of the roadway users by incorporating 

automation (Chen et al., 2019; 2020). However, despite the frequent discussions about the safety 

benefits of AVs, few studies have investigated how AVs will provide such safety benefits. 

1.1.3 Benefits of V2V connectivity 

A complementary, yet distinct technology that can further enhance the safety benefits of vehicular 

automation is V2V (vehicle to vehicle) connectivity. (Dong et al., 2020a, 2020b, 2020c; Li et al., 
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2020a, 2020b) The V2V technology communicates information on the speed and position of 

surrounding vehicles through a wireless exchange information. In situations involving hazardous 

roadway conditions, drivers of connected human-driven vehicles (CHDVs) can receive warning 

notifications and alerts. V2V connectivity has key advantages over other emerging on-board 

technologies now appearing in high-end vehicles including radar, lidar, cameras and other sensors 

(USDOT, 2011).  

First, with its larger range compared on-board equipment, V2V connectivity allows the 

driver to receive information much faster, thereby providing greater reaction time during 

emergencies. Secondly, V2V connectivity, unlike the on-board sensors, does not rely on any lines 

of “sight,” and therefore is not prone to occlusion or inclement weather. In other words, a 

connected vehicle still receives the needed information even when it is out of sight from another 

vehicle or entity. Furthermore, connectivity technology is less expensive compared to sensor 

technologies; therefore, making it more affordable and practical for installation on AVs or HDVs. 

In past research (Talebpour & Mahmassani, 2014; 2016), assumptions of connectivity have been 

made in terms of the human reaction time but the transportation system safety impacts of 

connectivity, particularly of CHDVs were not stated clearly. 

This thesis seeks to address the opposite perspective: the AV must avoid collision imminent 

situations posed by reckless HDV maneuvers. Existing studies on CAV controllers do not 

recognize (and therefore, fail to take advantage) of the presence of connected HDVs in the vicinity 

of the CAV. In reality, a CAV that is connected to its neighboring HDVs can serve as a centralized, 

local decision maker that, with the cooperation of the CHDVs, can control the trajectories of the 

neighboring vehicles in a holistic bid to maximize overall safety (by effectively responding to 

collision-imminent situations).  

1.2 Problem statement 

As discussed earlier in this chapter, traffic crashes can be significantly reduced by “taking the 

human from the steering wheel.”, which can be most effective when the market penetration of AVs 

is 100%. However, in the HDV-AV transition phase where there will exist mixed traffic flow (both 

autonomous vehicle and human-driven vehicles in the traffic stream), human error will persist and 

therefore, the AV safety benefits will be limited. Nevertheless, several options exist to reduce or 

mitigate the errors that will be made by human-driven vehicles. One such option is to use vehicular 
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connectivity (V2V) to take over under emergency situations. Thus, this thesis presents a vehicle 

controller based on V2V that minimizes AV-HDV collision under imminent situations. Common 

types of motor vehicle accidents are as follows: vehicle rollover, single-car accidents, rear-end 

collisions, and side-impact collisions (National Safety Council, 2018; Xu et al., 2019). Therefore, 

this research considers the following collision scenarios: (1) side-impact collision and (2) read-

end collision under a lane-change situation due to HDV driver error. 

1.3 Research gaps and study objectives 

Most existing studies focus primarily on how the AV can operate without compromising the 

safety of the Neighboring HDVs (Kalra and Paddock, 2016; Koopman and Wagner, 2017; Kim et 

al., 2019; Ko et al., 2015; Chen et. al., 2013; Naranjo et al., 2008). This thesis seeks to address the 

opposite perspective: the AV must avoid collision imminent situations posed by reckless HDV 

maneuvers. Existing studies on CAV controllers do not recognize (and therefore, fail to take 

advantage) of the presence of connected HDVs in the vicinity of the CAV. In reality, the CAV that 

is connected its neighboring HDVs can serve as a centralized cooperative decision maker (Dong 

et al., 2020a, 2020b, 2020c; Ha et al., 2020a, 2020b; Du et al., 2020) that, control the trajectories 

of the neighboring vehicles in a holistic bid to maximize overall safety (by effectively responding 

to collision-imminent situations).  

The thesis focuses on incorporating the automation with the connectivity to enhance safety 

of a neighborhood of AVs and HDVs under emergency conditions. Also, the thesis attempts to 

justify the safety benefits of connectivity to all road users: for non-autonomous human-driven 

vehicles, the thesis intends to show how connectivity capabilities can help compensate for their 

lack of automation 
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 LITERATURE REVIEW 

2.1 Collision avoidance 

With the increasing travel demand, traffic fatalities and injuries may increase. Collision 

avoidance needs to be focused particularly in the transition era where the traffic stream will be 

mixed (AVs and HDVs). However, as mentioned in the background section in Chapter 1 of this 

thesis, most previous research efforts were geared towards protecting the surrounding human 

drivers and pedestrians from errant AVs. Obviously, human error will exist in the mixed traffic 

flow as HDVs will be using the roads. Therefore, there is a need to investigate into how an AV 

should maneuver to protect itself. Also, it is need to investigate how the local traffic in the 

neighborhood of the AV can be protected from reckless HDVs through specific maneuvers of the 

AV. Most existing studies focus primarily on how the AV can operate without compromising the 

safety of the neighboring HDVs (Kalra and Paddock, 2016; Koopman and Wagner, 2017; Kim et 

al., 2019; Ko et al., 2015; Chen et. al., 2013; Naranjo et al., 2008).  

2.2 Control methods 

There are several simple but efficient controllers such as proportional–integral–derivative 

(PID) controllers, which is by far the dominant control structure in industrial practice (Arzén, 

1999). However, the AV control problem in this thesis may not be amenable for PID use. Because 

the interaction between the LHDV and AV will affect the control input of the controller, we 

consider a motion prediction of the LHDV through the lane change process to give the control 

system more information as well as additional constraints. For each time step, the LHDV will 

generate different information to be captured by the controller in terms of the motion (position and 

velocity of LHDV). Thus, a critical consideration for the control framework in this thesis, is to 

have real-time control ability and the ability to handle multiple constraints.  

MPC (model predictive control) also known as receding horizon control or moving horizon 

control, is widely accepted as the controller of choice for multivariable systems that have 

inequality constraints on system states, inputs and outputs (Bletis & Kothare, 2005). MPC is 

commonly used in dealing with real-time control problem with multiple constraints (Richter, 2009; 
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Richter, 2011; Zeilinger, 2011). MPC is based on iterative, finite-horizon optimization of a plant 

model. If the current control interval is assumed as 𝑘, then at time 𝑘, the current plant state is 

sampled, and a cost minimizing control strategy is computed for a horizon 𝑇 in the future. The 

method emanates from the current state and identifies a cost-minimizing control strategy over a 

time horizon 𝑇!, which is called control horizon. Only the first step of the control strategy is 

implemented, and then the plant state is sampled again, and the calculations are repeated starting 

from the new current state, ultimately yielding the final control strategy. MPC is capable of 

handling multiple inputs and outputs. It is a multivariable control algorithm that uses: 1. Internal 

dynamic model of the process. 2. Cost function over the prediction horizon. 3. Optimization 

problem that minimizing the cost function based on the control inputs. The basic MPC cost 

function for the optimization can be written as: 

𝐽 = &𝜔"‖𝑦" − 𝑟"‖# +
$

"%&

&𝜑"‖𝑢" − 𝑢"'&‖#
$!

"%&

 

Where: 𝑦" represents for the states of the system, and 𝑟" represents for the reference of the system. 

𝑢" here is the control input. 𝜑" and 𝜔" are the weights of the cost function.  

2.3 Application of model predictive control in collision avoidance 

Model predictive control (MPC) is an effective approach for solving problems that arise from 

motion planning. The MPC approach entails that the motion planning problem is formulated as an 

optimization problem, often as a constrained, convex problem solved in a recursive manner by 

considering the updating of the environment states during the planning process. In literature, MPC 

is frequently used for motion planning problems (Babu et al., 2019; Wang et al., 2019; Shen et al., 

2017; Werling et al., 2012; Ji et al., 2016). Specifically, these studies used MPC to solve the 

problem of vehicle path generation to mitigate collision. However, they focused on human error 

from inside the vehicle. Human error from outside the AV in the mixed traffic flow, was not 

considered. Further, despite the popularity of MPC for vehicular motion planning, it is essential to 

understand and address the shortcomings that arise in the use of this approach. Specifically, MPC 

does not necessarily result in closed loop stable systems. It is common to include in the control 

architecture, a final state constraint or a final state penalty that helps achieve stability of the output. 

However, when the controller structures are too complicated, the constraint set consists of many 
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inequalities, and subsequently it is difficult to guarantee stability of the outcome using the final 

state constraint. 

For this reason, researchers have explored various ways of testing and validating the stability 

of MPC controllers. Di et al. (2009) used the controller matching technique and provided two 

methods for selecting the MPC weight matrices so that the resulting MPC controller behaves as 

the given linear controller. This ensures that the inverse problem of controller matching is solved, 

and that the solution is globally asymptotically stable (Di Cairano, 2009).  

Another way is to identify the sufficient condition for stability of the closed loop system. 

Specifically, using the Lyapunov function as the cost function, an optimization problem can be 

formulated as: 𝑚𝑖𝑛(𝑉"∗ − 𝑉")&∗ ), where 𝑉"∗ refer to the objective function at time k and 𝑉")&∗  refer 

to the objective function at time k+1 respectively. For the MPC with different prediction horizon 

𝑁, if there exist negative 𝑚𝑖𝑛(𝑉"∗ − 𝑉")&∗ ), then the Lyapunov function 𝑉"  is improper for the 

system to be stable. However, if all the difference values are positive, then the 𝑉"  is a proper 

Lyapunov function under the prediction horizon 𝑁 (Simon & Löfberg, 2016).  
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 METHOD 

3.1 Problem formulation 

3.1.1 Problem settings 

Side-impact collisions, which affect the side of one or multiple vehicles, includes accidents 

where the vehicle glances off the side or near-side of another vehicle; the lateral impact is the 

primary impact rather than the front or rear. Many side-impact crashes happen when drivers on a 

multi-lane highway change lane without observing the vehicle in their blind spot and collides in 

the target lane. Rear-end collisions occur when a vehicle crashes into the rear of vehicle in front 

(Herrman, 2016). However, the most common exception to the general presumption about rear-

end collision accidents involves another vehicle on the freeway that suddenly changes lanes and 

enters the target lane. Rear-ending commonly occurs when there is traffic or an accident up ahead 

in the driver’s original lane. Upon such realization of a traffic problem in their lane downstream, 

the drivers typically choose to perform a sudden lane change instead of slowing down or fully stop. 

However, on the freeway, traffic on the target lane typically travels much faster compared to traffic 

on the driver’s original lane, which will very likely lead to a rear-end collision.  Examples of the 

two crash patterns are shown in Figure 3.1. 

This research focuses on the safety effects given by combining the automation and 

connectivity in mixed traffic flow. The vehicles included in this research are as follows (Figure 

3.1): connected autonomous vehicle (CAV, colored red); lane changing human-driven vehicle 

(LHDV, colored gray), which do not have connectivity; and connected human-driven vehicles 

(CHDVs) in the following and preceding positions (FHDV colored blue, and PHDV colored 

yellow, respectively). 
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LEGEND 

CAV (red),  

HDV (grey), CHDV 

(following blue; 

preceding yellow) 

Rear-end collision Side-impact collision 

(b). crash patterns example 

Figure 3.1. Two crash patterns (rear-end, side-impact) 

Crash patterns 

Side-impact collision: The side-impact collision also known as broadside or T-bone collisions, 

where the side of one or multiple vehicles is impacted. Side-impact collisions also include 

accidents in which a vehicle glances off the side or near-side of another vehicle, where the lateral 

impact is the primary impact rather than the front or rear. For instance, many side-impact crashes 

happen when drivers on a multi-lane highway changes lane without observing the vehicle in his/her 

blind spot, and swerves into the target lane. 

Rear-end collision: Normally, rear-end collision is regarded as a traffic accident where a 

vehicle crashes into the vehicle in front of it. However, the most common exception to the general 

presumption about rear end collision accidents involves another vehicle on the freeway suddenly 

changes lanes and enters to the target lane. This commonly happens when there is traffic or an 

accident up ahead in the driver’s original lane. Drivers usually choose to do the sudden lane change 

instead of slowing down or fully stop. However, on the freeway, traffic on the target lane usually 

travels much faster compared to traffic on the driver’s original lane, which will very likely lead to 

rear-end collision. 

Avoidance maneuvers 

The two CAV crash avoidance maneuvers (Figure 3.2) are considered based on the combination 

of the collision types and vehicle types. The first scenario is the deceleration maneuver of the CAV 
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to avoid the potential rear-end collision by the lane changing human-driven vehicle (LHDV) as 

shown in Figure 3.2(a). In the second scenario, the longitudinal positions of the LHDV and CAV 

are nearly the same. Once the LHDV lane-changing process begins, it’s hard for CAV to avoid the 

collision even by using the maximum deceleration. Thus, the autonomous vehicle only has the 

choice of lane change to the opposite lane to avoid the possible side-impact collision as shown in 

Figure 3.2(b). 

 
(a). deceleration maneuver                                       (b). lane-changing maneuver 

Figure 3.2. Different CAV crash-avoidance maneuvers 

3.1.2 Assumptions 

The following assumptions have been made in this thesis: 

(1) Vehicles are all light passenger vehicles, and the vehicle length is 4 meters, the 
diameter of buffer circles is 6 meters, the lane width is 3.7 meters. 

(2) Initial speeds of the vehicles on the road are in a proper range, considering the reality. 
(3) The lane changing trajectory of the LHDV is assumed to be cubic polynomial and is 

predicted accurately. This is based on a previous research in the literature (Yang et al., 
2018).  

(4) The latitudinal position of the CAV in the deceleration maneuver and the latitudinal 
positions of CHDVs on the target lane are constants, indicating CAV and CHDVs on 
the target lane do not perform lane change. 

(5) The LHDV acceleration is assumed to be highly aggressive with little regard of its 
surroundings. The exact numerical specifications are explained in the simulation 
section. 

(6) The vehicles’ velocities are uniformly distributed.  
 

In order to make more obvious the safety benefits, each vehicle is represented by a circle 

buffer area. Figure 3.3 illustrate how the buffer area works in this research. In the lane-changing 

process, the buffer circles need to avoid tangent or intersect situations to avoid the crashes. 
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Figure 3.3. Vehicle buffer area 

3.2 Proposed approach 

This section presents the overall control framework of the controller. The detailed motion 

prediction model which considers the interactions between the LHDV and the CAV is introduced 

as well. In addition, the motion models of the controlled vehicles are formulated in this section in 

terms of deceleration and acceleration. The objective of the mathematical model in this research 

is to determine the optimal crash avoidance maneuvers, which includes the optimal deceleration 

decisions and corresponding optimal deceleration/acceleration decisions in the lane changing. The 

optimal maneuvers consider the LHDV-CAV interactions and CAV-surrounding CHDVs 

interactions. In order to determine the optimal control maneuvers, the problem is formulated as a 

bi-level optimization problem. The methodology consists of the following components: 1). control 

framework, 2). LHDV motion prediction, 3). controlled vehicles motion model, 4). the 

optimization problems to solve for deceleration and lane change maneuvers, and 5). the stability 

of the controller.  

3.2.1 Control Framework 

The proposed control framework deals with multiple vehicles in a crash-imminent situation. 

Thus, the controller needs to perform actions and deal with multiple constraints in real-time. As 

discussed previously, an MPC controller is suitable for this purpose. The motion of the LHDV is 

regarded as important reference for the CAV. The interactions between the LHDV and the 

controlled CAV, the motion of the surrounding CHDVs are crucial for the MPC controller. Figure 

3.4 shows the general structure of the proposed control framework. In this research, there are two 

CAV reaction maneuvers considered: deceleration and lane change. The CAV controller considers 

the maneuvers in a hierarchical structure, first considering the deceleration maneuver, as it is less 

disruptive. Should deceleration be insufficient or inadequate for a given crash-imminent situation, 
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it will engage in the lane-change maneuver. The MPC is formulated as an optimization problem 

and will be solved each time step to generate the optimized deceleration for CAV and FHDV or 

the optimized acceleration/deceleration for PHDV and FHDV. The detailed structure of the MPC 

based controller is described in Figure 3.4. 

 
Figure 3.4. Control framework 

3.2.2 LHDV motion prediction model 

Motion prediction includes two parts: trajectory prediction and speed profile generation. 

The LHDV is uncontrollable, and the motions are unstable. The trajectory of the aggressive LHDV 

is incorporated into the CAV controller, and the predicted aggressive trajectory is assumed to be 

cubic polynomial (Yang et al., 2018), which has second-order smoothness. The speed profile is 

then calculated based on the aggressive behavior and the rollover limit of the vehicle. 

Trajectory predicting model 

The position and velocity of the LHDV are continuous because the cubic polynomial curve 

(𝑦(𝑥) = 𝑎𝑥 + 𝑏𝑥# + 𝑐𝑥*) is second-order differentiable. The LHDV positions are represented by 

(𝑥+ , 𝑦+) , where 𝑥+  and 𝑦+  denote the longitudinal and latitudinal positions of time step 𝑡 .𝜃 

represents the course angle of the LHDV, which is the angle between the moving direction 𝑈 (in 

the Figure 3.5) and the 𝑥 − 𝑎𝑥𝑖𝑠. The ending position of the lane change trajectory is calculated 

by implementing rollover-free conditions, which are represented by (𝑥+, , 𝑦+,), the final position’s 

course angle (𝜃, = 0	;𝑦+!(𝑥+,)=0). Rollover collision is a single-car accident that can happen when 

the lane-changing vehicle is behaving aggressively, and the velocity is too large. However, in this 
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research, the collision we focused on is multi-car accidents. Thus, the rollover-free condition 

avoids the single-car accident but maintains the aggressiveness of the lane-changing vehicle. 

The rollover-free boundary can be represented by the 𝑦+, and the rollover side acceleration 

boundary, which is 𝑎-.. Thus, the rollover boundary for the final longitudinal position of the LHDV 

is: 

 

𝑥+. = √6
𝑦+,𝑢+/

B𝑦+,𝑎-.
            

(1) 

 

the value of 𝑎-. is set as 0.71g 𝑚/𝑠#(Gluckman, 2011), 𝑢+/  is the initial condition (i) velocity on 

the moving direction of time step 𝑡.  

 
Figure 3.5. Aggressive rollover-free trajectory and representation 

 

To avoid a rollover collision, the final position 𝑥+, equals to the rollover boundary 𝑥+. 

considering the most aggressive case. Figure 3.5 presents the lane changing trajectory. The moving 

coordinate system is used here to model a dynamic lane changing maneuver. The initial course 

angle of the trajectory 𝜃+/ of time step 𝑡 must satisfy 𝑦+!(𝑥+) = 𝑡𝑎𝑛𝜃+/ From the ending position of 

the course angle, we know that 𝑦+(𝑥+,) = 0. Hence, the optimal trajectory is:  

 

𝑦+(𝑥+) = 𝑡𝑎𝑛𝜃+/𝑥+ +
3𝑦++ − 2𝑥+,𝑡𝑎𝑛𝜃+/

(𝑥+,)#
𝑥+# +

𝑥+,𝑡𝑎𝑛𝜃+/ − 2𝑦+,

(𝑥+,)*
𝑥+*    (2) 
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Consider an initial LHDV velocity of 50 miles per hour. Then the longitudinal final position 𝑥+. =

√6 0"
#1"

$

20"
#3%&

≈ 86 meters. For example, in Figure 3.6: the trajectory in each time step can be generated 

by the new desired ending position, new angle, latitudinal distance. The lines in the figure represent 

the predicted trajectory of different time steps. When the location and velocity are updated in a 

new time step, the predicted trajectory changes accordingly.  

 
Figure 3.6. Predicted trajectory of LHDV in each time steep 

Speed profile predicting model 

The LHDV driver is assumed to be highly aggressive in accelerating into the target lane. The most 

aggressive longitudinal distance can be calculated based on the rollover limit, with initial velocity 

𝑢+/  at time step 𝑡. Then the aggressive acceleration can be calculated based on the rollover limit as 

well as the length of each time step: 𝜏. 

 

𝑎 =
2I 6𝑦+

,𝑢+/

B6𝑦+,𝑎-.
− 𝑢+/𝜏J

𝜏#  
(3) 

 

If we assume the highest longitudinal acceleration rate is 𝑎435, then the proper aggressive 

longitudinal acceleration can be represented as 𝑚𝑖𝑛{𝑎, 𝑎435}. Based on the acceleration, the 

aggressive velocity of the time step 𝑡 is therefore 𝑢6/ +min	{𝑎, 𝑎435}𝜏. The important information 

for each time step that will be used in the control framework is the longitudinal location, latitudinal 
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location and moving direction angle of LHDV at each time step. First step, the trajectory curve is 

calculated through the 𝑣+/ (initial longitudinal velocity) and 𝑣+, (ending longitudinal velocity) of 

LHDV: 𝐿 = 78"
$)8"

#9:
#

. The longitudinal position of the LHDV at each time step can be calculated 

by solving Equation (4): 

 

R𝑣+/ + 𝑣+,S𝜏
2 = 𝐹(𝑥+,) − 𝐹(0) (4) 

 

  𝐹(𝑥+) is the antiderivative of the 𝑓(𝑥+) 

𝑓(𝑥+) = V1 + X𝑡𝑎𝑛𝜃+/ +
6𝑦+, − 4𝑥+,𝑡𝑎𝑛𝜃+/

𝑥+,
# 𝑥+# +

3𝑥6
;𝑡𝑎𝑛𝜃/ − 6𝑦6

;

𝑥6
;*

𝑥6*Z
#

 (5) 

 

Thus, the latitudinal position can also be determined by the trajectory 𝑦6(𝑥6) . The moving 

direction at the end each time step can be calculated as follows: 

 

𝑡𝑎𝑛𝜃+, = 𝑡𝑎𝑛𝜃+/ +
3𝑦+, − 2𝑥+,𝑡𝑎𝑛𝜃+/

𝑥+,
# 𝑥+ +

𝑥+,𝑡𝑎𝑛𝜃+/ − 2𝑦+,

𝑥+,
* 𝑥+# (6) 

3.2.3 Controlled vehicles motion model 

The controlled vehicles in this thesis research are the autonomous vehicles and the surrounding 

HDVs that are connected, i.e., the FHDV and PHDV. For the FHDV, the motion model is based 

on deceleration and PHDV, the motion model is based on acceleration remains. However, the 

constraints in the optimization problem for different controlled vehicles may change accordingly. 

For the deceleration scenario, the motion model of the CAV and FHDV is given by the deceleration 

model (Equations 7-1 to 7-6). 

Deceleration 

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝑣(𝑘)∆𝑡 +
1
2𝑑

(𝑘)∆𝑡# (7-1) 
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𝑦(𝑘 + 1) = 𝑦(𝑘) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (7-2) 

𝑣(𝑘 + 1) = 𝑣(𝑘) + 𝑑(𝑘)∆𝑡 (7-3) 

𝑋(𝑘 + 1) = 𝐴𝑋(𝑘) + 𝐵𝑈(𝑘) (7-4) 

𝑌(𝑘 + 1) = 𝐶𝑋(𝑘 + 1) (7-5) 

𝑓𝑜𝑟: 𝑋(𝑘) = d𝑥(𝑘)𝑣(𝑘)e , 𝐴 = f1 ∆𝑡
0 1 g , 𝐵 = f1/2∆𝑡∆𝑡 g , 𝑈(𝑘) = 𝑑(𝑘) (7-6) 

 

Where: 𝑥(𝑘), 𝑣(𝑘) and 𝑑(𝑘) are the longitudinal position, velocity and the deceleration, 

respectively, of the controlled vehicles. The controlled variables are	𝑑(𝑘). In the lane change 

scenario, the motion model of PHDV based on the acceleration, where 𝑥(𝑘), 𝑣(𝑘) represent the 

location and the velocity. The controlled variable is the acceleration 𝑎(𝑘) , given by the 

acceleration model (Equations 8-1 to 8-6). 

Acceleration 

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝑣(𝑘)∆𝑡 +
1
2𝑎
(𝑘)∆𝑡# (8-1) 

𝑦(𝑘 + 1) = 𝑦(𝑘) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (8-2) 

𝑣(𝑘 + 1) = 𝑣(𝑘) + 𝑎(𝑘)∆𝑡 (8-3) 

𝑋(𝑘 + 1) = 𝐴𝑋(𝑘) + 𝐵𝑈(𝑘) (8-4) 

𝑌(𝑘 + 1) = 𝐶𝑋(𝑘 + 1) (8-5) 

𝑓𝑜𝑟: 𝑋(𝑘) = d𝑥(𝑘)𝑣(𝑘)e , 𝐴 = f1 ∆𝑡
0 1 g , 𝐵 = f1/2∆𝑡∆𝑡 g , 𝑈(𝑘) = 𝑑(𝑘) (8-6) 

3.2.4 Deceleration Maneuver MPC Controller Design and Optimization 

Vehicles interaction 

When their relative speeds and distances are large enough, vehicles can be represented as particles. 

However, under a collision-imminent situation, appropriate representation of vehicle dimensions 

is critical. In this thesis, each vehicle is represented as enclosed circles with a diameter length equal 

to 1.5 times the vehicle length. The collision point of the CAV and LHDV is another critical factor 
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for the controller, as this information is directly used to decide a proper prediction horizon size 𝑁<. 

In addition, the reference for the MPC controller depends on the longitudinal distance of LHDV 

and the velocity of each time step. 

As shown in Figure 3.7, the critical point can be calculated by the tangent of the two circle 

centers representing the LHDV and CAV for each time step: (𝑥=>?@ − 𝑥A@)# + (𝑦A@ − 𝑦=>?@)# =

4𝑟#. The longitudinal distance of the CAV is smaller than the longitudinal distance of the LHDV 

by a constant,	𝑙&. During the lane changing process, the velocity of the CAV needs to be less than 

or equal to the velocity of the LHDV, but with a soft constraint, the velocity can be greater than 

the velocity of the LHDV through the process. For the last time step, the velocity of the CAV is 

required to be strictly lesser than or equal to the velocity of the LHDV. From the speed profile, the 

speed at the end of each time step can be computed. 

 
Figure 3.7. LHDV-CAV interaction 

 

While the CAV’s crash avoidance maneuvers are affected by the behavior of the LHDV. 

In the deceleration scenario, the FHDV affects the deceleration rate of the CAV, with the 

maximum deceleration threshold being relaxed with connectivity. As shown in Figure 3.8, the 

challenge arises as the CAV must satisfy the maximum deceleration threshold of both itself and 

the FHDV to avoid a secondary collision that caused by the lane-changing collision, entailing a 

feasible deceleration range for the CAV to follow: max	{𝑓(𝑑B>?@435 ), 𝑑A@435}. 

 
Figure 3.8. CAV-FHDV interaction 
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To further improve the system safety, the distance between the FHDV and the CAV must 

maintain a value greater than or equal to 𝑙#, which directly affects the headway. Thus, the reference 

value of the FHDV is the CAV’s longitudinal distance 𝑥A@ and the velocity 𝑣A@ at each time step. 

The maximum deceleration rate of the FHDV is 𝑑B>?@435 , determined by both the comfortability and 

the security. The deceleration of the CAV given the FHDV is as follows: 

 

𝑓(𝑑B>?@435 ) =
2𝑙# − 2(Δ𝑥 + Δ𝑣𝜏)

𝜏# + 𝑑B>?@435  (9) 

Where:  

∆𝑥 = 𝑥A@/ − 𝑥B>?@/ , which is the initial distance between the CAV and FHDV. ∆𝑣 = 𝑣B>?@/ − 𝑣A@/ . 

Deceleration maneuver controller design 

Compared to other controllers such as the PID controller (Rivera et al., 1986), the MPC controller 

(Camacho & Alba, 2013) can predict the states of the system in multiple sampling times, and 

therefore resulting a more accurate control decision. 𝑁< represents the prediction horizon, which 

is the number of future control intervals that the MPC evaluates. 𝑁C represents the control horizon, 

which is the number of control actions to be optimized in the control interval. Based on the MPC 

control strategy, the initial value is implemented, and the calculations will be repeated at each time 

step. The predicted output for control interval 𝑖 can be represented by the system of Equations 10-

1 to 10-6: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) (10-1) 

𝑥(𝑘 + 2) = 𝐴#𝑥(𝑘) + 𝐴𝐵𝑢(𝑘) + 𝐵𝑢(𝑘 + 1) (10-2) 

𝑥(𝑘 + 3) = 𝐴*𝑥(𝑘) + 𝐴#𝐵𝑢(𝑘) + 𝐴𝐵𝑢(𝑘 + 1) + 𝐵𝑢(𝑘 + 2) (10-3)  

…  

𝑥(𝑘 + 𝑁C) = 𝐴D'𝑥(𝑘) + 𝐴D''&𝐵𝑢(𝑘) + ⋯+ 𝐵𝑢(𝑡 + 𝑁C − 1) (10-4) 

𝑥R𝑘 + 𝑁<S = 𝐴D(𝑥(𝑘) + 𝐴D('&𝐵𝑢(𝑘) + ⋯+ 𝐴𝐵𝑢(𝑘 + 𝑁C − 1) + 𝐵𝑢(𝑡 + 𝑁C − 1) (10-5) 

𝑓𝑜𝑟: 𝑋(𝑘) = d𝑥(𝑘)𝑣(𝑘)e , 𝐴 = f1 ∆𝑡
0 1 g , 𝐵 = f1/2∆𝑡∆𝑡 g , 𝑈(𝑘) = 𝑑(𝑘) 

(10-6) 

 

Thus, the output sequence and input sequence are defined in matrix form as follows: 
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𝑋(𝑘 + 1) =

⎣
⎢
⎢
⎢
⎡ 𝑥
(𝑘 + 1)
𝑥(𝑘 + 2)
𝑥(𝑘 + 3)

⋮
𝑥R𝑘 + 𝑁<S⎦

⎥
⎥
⎥
⎤

D(×&

	𝑈(𝑘) = u

𝑢(𝑘)
𝑢(𝑘 + 1)

⋮
𝑢(𝑘 + 𝑁C − 1)

v

D'×&

 (11) 

 

The system prediction can be rewritten as 𝑋(𝑘 + 1) = 𝑀5𝑥(𝑘) + 𝑀1𝑈(𝑘): 

 

𝑀5 = u

𝐴
𝐴#
⋮
𝐴D(

v

D(×#

𝑎𝑛𝑑	𝑀1 =

⎣
⎢
⎢
⎢
⎡

𝐵 0 … … 0
𝐴𝐵 𝐵 0 ⋮ 0
⋮ ⋮ ⋱ ⋮ ⋮

𝐴D''&𝐵 𝐴D''#𝐵 … ⋱ 𝐵
𝐴D('&𝐵 𝐴D('#𝐵 … … (𝐴 + 1)𝐵⎦

⎥
⎥
⎥
⎤

#D(×D'

 (12) 

 

For the deceleration maneuver, the primary goal is for the CAV to avoid collision by 

reducing its velocity. Thus, the controlled vehicles considered in this optimization problem are the 

CAV and the FHDV. The controller must satisfy both distance and velocity requirements in order 

to successfully avoid collision. Since the FHDV’s control decision will be affected by the CAV’s 

action, the problem can be formulated as a bi-level optimization, which formulated as: 

 
min

)!"*!",)#$%",*#$%"
𝐹(𝑢,- , 𝛿,- , 𝑢./0- , 𝛿./0-) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡. 𝑡𝑜. 

𝑢,- , 𝛿,- ∈ argmin
)!",*!"

6𝑓(𝑢,- , 𝛿,- , 𝑢./0- , 𝛿./0-): 𝑔1(𝑢,- , 𝛿,- , 𝑢./0- , 𝛿./0-) ≤ 0, 𝑗 = 1,… , 𝐽@ 

𝐺2(𝑢,- , 𝛿,- , 𝑢./0- , 𝛿./0-) ≤ 0, 𝑖 = 1,… , 𝐼 

(13) 

 

For the upper level, the cost function includes the control input variables of both the CAV 

and the FHDV. At the lower level, however, the control input of CAV needs to fulfill the safety 

requirements of the LHDV. Therefore, the detailed objective function and constraints can be 

formulated as follows: 
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Upper level: CAV+FHDV 

𝑚𝑖𝑛)!"
*!"

)#$%"
*#$%"

F‖𝑥./0-(𝑘 + 𝑛) − 𝑥,-(𝑘 + 𝑛)‖34 +F‖𝑢,-(𝑘 + 𝑛 − 1)‖54 + ‖𝑢./0-(𝑘 + 𝑛 − 1)‖54
6&

789

6'

789
+‖𝛿,-(𝑘 + 𝑛 − 1)‖:4 + ‖𝛿./0-(𝑘 + 𝑛 − 1)‖:4

  (14) 

s.t. . "𝑛 = 1,…	, 𝑁!*  

𝑢!" , 𝛿!" ∈ argmin
#!",%!"

+𝑓(𝑢!" , 𝛿!" , 𝑢&'(" , 𝛿&'("): 𝑔)(𝑢!" , 𝛿!" , 𝑢&'(" , 𝛿&'(") ≤ 0, 𝑗 = 1,… , 𝐽8 (14-1) 

𝑥"#$%(𝑘 + 1) = 𝐴𝑥"#$%(𝑘) + 𝐵𝑢"#$%(𝑘)	  (14-2) 

𝑥"#$%(𝑘 + 𝑛) − 𝑥&%(𝑘 + 𝑛) + 4
𝑙'

−𝛿"#$%(𝑛)
7 ≤ 0	𝑓𝑜𝑟	𝑛 = 1,… ,𝑁(  (14-3) 

 𝑥"#$%(𝑘 + 𝑛) − 𝑥&%(𝑘 + 𝑛) + =
𝑙'
0> ≤ 0	𝑓𝑜𝑟	𝑛 = 𝑁! (14-4) 

𝑑"#$%)*+ ≤ 𝑢"#$%(𝑘 + 𝑛 − 1) ≤ 0   (14-5) 

δ"#$%(𝑘 + 𝑛) ≥ 0 𝑛 = 1,… ,𝑁! (14-6) 

Note that the upper-level constraints do not bind the lower-level decision variables, which are 

𝑢A@ , 𝛿A@ . Thus, on the upper level, the constraints apply to 𝑢B>?@ , 𝛿B>?@ . Taking the safety 

requirements into consideration, the FHDV and the CAV need to keep a longitudinal distance 

difference no less than 𝑙# throughout the prediction horizon 𝑁<, and the speed of the FHDV of 

each time step needs to be no larger than that of the CAV by a small positive value, 𝛿B>?@(𝑘), 

which serves as a violation allowance of the bound in the soft constraint of the speed. Given the 

current state 𝑥A@(𝑘 + 𝑛), 𝑥B>?@(𝑘 + 𝑛).  

At the lower level, the optimal CAV control input: 𝑈A@∗ (𝑘) needs to fulfill the safety 

requirements of the LHDV. In the objective function, 𝑟=>?@(𝑘 + 𝑛) = d𝑙=>?@
5 (𝑘 + 𝑛)
𝑣=>?@(𝑘 + 𝑛)

e represents 

the longitudinal positions and real-time velocity of the LHDV. 

 

Lower level: CAV+LHDV 

min
,!",.!"

E‖𝑥&%(𝑡/01) − 𝑟2#$%(𝑡/01)‖3' +

4#

156

E‖𝑢&%(𝑡/0176)‖8'
4$

156

+‖𝛿&%(𝑡/0176)‖9'        (15) 

 𝑠. 𝑡. (𝑛 = 1,…	, 𝑁!)  
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𝑥&%(𝑘 + 1) = 𝐴𝑥&%(𝑘) + 𝐵𝑢&%(𝑘)	      (15-1) 

 𝑥&%(𝑘 + 𝑛) − 𝑟2#$%(𝑘 + 𝑛) + 4
𝑙6

−𝛿&%(𝑛)
7 ≤ 0	𝑓𝑜𝑟	𝑛 = 1,… ,𝑁(     (15-2) 

𝑥&%(𝑘 + 𝑛) − 𝑟2#$%(𝑘 + 𝑛) + =
𝑙6
0> ≤ 0	𝑓𝑜𝑟	𝑛 = 𝑁!    (15-3) 

𝑑&%)*+ ≤ 𝑢&%(𝑘 + 𝑛 − 1) ≤ 0	     (15-4) 

𝑓(𝑑"#$%)*+ ) ≤ 𝑢&%(𝑘 + 𝑛 − 1) ≤ 0	       (15-5) 

𝑟*'("(𝑘 + 𝑛) − 𝑥!"(𝑘 + 𝑛) + ?
@4𝑅+ − C𝑙!"

, (𝑘 + 𝑛) − 𝑙*'("
, (𝑘 + 𝑛)E

+

−𝛿!"(𝑛)
F ≤ 0	 

𝑓𝑜𝑟	𝑛 = 1, . . , 𝑁-  

   (15-6) 

𝛿&%(𝑘 + 𝑛) ≥ 0	  

 
   (15-7) 

With regard to the CAV’s speed, the constraint can be formulated as a soft constraint to 

add more flexibility. 𝛿A@(𝑡/) denotes the violation allowance of the bound in the speed constraint. 

The	𝑙A@
0  in the constraint is constant, which represents the latitudinal position of CAV.	𝑙=>?@

0 (𝑡/) 

represents the latitudinal position of the LHDV. The constraint of the control input of the CAV 

𝑓(𝑑B>?@435 , 𝑢B>?@) can be represented as: 

 

𝑓(𝑑B>?@435 ) = 	
2{𝑙# − 𝑃!R𝑋A@(𝑘) − 𝑋B>?@(𝑘)S}

∆𝑡# + 𝑑B?>@435     (16) 

𝑋A@(𝑘 + 1) = 𝑀5𝑥A@(𝑘) + 𝑀1𝑈A@(𝑘)    (16-1) 

𝑋B>?@(𝑘 + 1) = 𝑀5𝑥B>?@(𝑘) + 𝑀1𝑈B>?@(𝑘)    (16-2) 

 

𝑃! represents the parameter matrix: 

 

u

1 ∆𝑡 0 ⋯ ⋯ ⋯ 0
0 0 1 ∆𝑡 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 0 1 ∆𝑡

v

D(×#D(

                                                                                  (16-3) 
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For the lower-level problem, the objective function is QP, and the constraints are all linear 

constraints. Thus, the lower-level problem (CAV+LHDV) is a convex problem. 

3.2.5 Lane-changing Maneuver MPC Controller Design and Optimization 

Vehicle interaction 

When the deceleration for CAV is not in the feasible range, the deceleration maneuver will be 

aborted in favor of the lane changing maneuver. The real time position and velocity of the PHDVs 

and FHDVs on the target lane will be taken into account by the MPC controller, and the lane 

change maneuver must be performed aggressively in order to avoid collision. the safety 

requirements for the FHDVs and the PHDVs are the longitudinal distances need to be satisfied and 

the velocity can be flexible based on the soft constraints through the lane changing process. The 

velocity of the FHDVs and PHDVs in the last time step need to be strictly smaller or greater than 

the velocity of the lane changing CAV.   

 

 
Figure 3.9. CAV and PHDVs/FHDVs interaction 

 

As shown in Figure 3.9, the FHDV on the preceding position (FHDV-p), and the PHDV 

on the following position (PHDV-f) for each time step: R𝑥A@ − 𝑥B>?@'<S
# + R𝑦B>?@'< −

𝑦A@S
# = 4𝑟# , R𝑥F>?@'; − 𝑥A@S

# + R𝑦F>?@'; − 𝑦A@S
# = 4𝑟# . The longitudinal distance of the 

FHDV is smaller than the longitudinal distance of the CAV by a constant,	𝑙&, and the longitudinal 

distance of the PHDV is larger than the longitudinal of CAV by 𝑙& as well. During the lane change 

process, the velocity of the FHDV needs to be less than or equal to the velocity of the CAV, and 

the velocity of the PHDV needs to be larger than or equal to the velocity of the CAV.  However, 

with soft constraints, the velocity of FHDV can exceed that of the CAV, and the velocity of PHDV 
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can be smaller than that of the CAV by some small values through the process. For the last time 

step, the velocities of the PHDV/FHDV are required to be strictly lesser/greater than or equal to 

the velocity of the CAV.  

The interactions of FHDVs and PHDVs on the target lane are important considerations 

towards the bid for secondary crash avoidance as shown in Figure 3.10. The FHDV on the 

following position (FHDV-f) determines the feasible deceleration range for the FHDV–p, which 

is 𝑚𝑎𝑥{𝑓(𝑑B>?@';435 ), 𝑑B>?@'<435 } 

 

 
 

Figure 3.10. FHDVs interaction 

 

 

The distance between the FHDV–p and the FHDV–f must maintain a value greater than or 

equal to 𝑙#, which directly affects the headway. The maximum deceleration rate of the FHDV–f is 

𝑑B>?@';435 , determined by both the comfortability and the security. The deceleration of the CAV 

given the FHDV is as follows: 

𝑓R𝑑B>?@';435 S =
2𝑙# − 2(Δ𝑥 + Δ𝑣𝜏)

𝜏# + 𝑑B>?@';435  (17) 

Where: the ∆𝑥 = 𝑥B>?@'</ − 𝑥B>?@';/ , which is the initial distance between the CAV and FHDV. 

∆𝑣 = 𝑣B>?@'</ − 𝑣B>?@';/ . 

The PHDV on the preceding position (PHDV-p) determines the feasible deceleration range 

for the PHDV–f, which is 𝑚𝑖𝑛{𝑓(𝑎F>?@'<435 ), 𝑎F>?@';435 }. 

 



 
 

33 

 
 

Figure 3.11. PHDVs interaction 

 

The distance between the PHDV–p and the PHDV–f must maintain a value greater than or 

equal to 𝑙#, which directly affects the headway. The maximum acceleration rate of the PHDV–f is 

𝑎B>?@';435 , determined by both comfortability and security criteria. The acceleration of the PHDV-

p given the PHDV-f is as follows: 

 

𝑓R𝑎F>?@'<435 S =
−2𝑙# + 2(Δ𝑥 + Δ𝑣𝜏)

𝜏# + 𝑎B>?@'<435  (18) 

Where: 

∆𝑥 = 𝑥F>?@'</ − 𝑥F>?@';/ , the initial distance between the CAV and FHDV. 

∆𝑣 = 𝑣F>?@'</ − 𝑣F>?@';/ . 

Lane-changing Maneuver Controller Design 

In the lane changing maneuver, the goal is to avoid collision by diverting the CAV away from the 

predicted collision point.  The controlled vehicles considered in this optimization problem are the 

PHDVs and the FHDVs in the target lane. Similar to the deceleration maneuver, the controller 

must satisfy the distance and velocity requirements in order to ensure safety. The FHDVs and the 

PHDVs are independent from each other. Therefore, in the lane changing maneuver, the control 

of the FHDVs and the PHDVs are two parallel bi-level MPCs. However, both need to consider the 

trajectory and the velocity of the CAV. Therefore, the detailed model can be formulated as follows: 

With regard to the FHDVs, there are two following vehicles on the target lane that are 

considered in the controller: FHDV–p, FHDV–f, the detailed objective function of the FHDVs is 

shown as follows: 
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min
)#$%"(',*#$%"(',)#$%"(),*#$%"()

𝐹(𝑢./0-;<, 𝛿./0-;<, 𝑢./0-;= , 𝛿./0-;=) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜:  

𝑢./0-;<𝛿./0-;< ∈ argmin
)#$%"(',*#$%"('

M
𝑓N𝑢./0-;<, 𝛿./0-;<, 𝑢./0-;= , 𝛿./0-;=O:

𝑔1N𝑢./0-;<, 𝛿./0-;<, 𝑢./0-;= , 𝛿./0-;=O ≤ 0, 𝑗 = 1,… , 𝐽
P 

𝐺2N𝑢	./0-;<, 𝛿./0-;<, 𝑢./0-;= , 𝛿./0-;=O ≤ 0, 𝑖 = 1,… , 𝐼 

(19) 

 

For the upper level, the cost function includes the control input variables of both the 

FHDVs. While at the lower level, the control input of FHDV-p needs to fulfill the safety 

requirements of the lane changing CAV. Thus, the detailed upper level and lower-level objective 

functions and constraints can be formulated as follows: 

 

Upper level: FHDV– f + FHDV – p 

𝑚𝑖𝑛)#$%"()
*#$%"()
)#$%"('
*#$%"('

FQ𝑥./0-;=(𝑘 + 𝑛) − 𝑥./0-;<(𝑘 + 𝑛)Q3
4 +FQ𝑢./0-;<(𝑘 + 𝑛 − 1)Q5

4
6&

789

6'

789

+Q𝑢./0-;=(𝑘 + 𝑛 − 1)Q5
4 + Q𝛿./0-;<(𝑘 + 𝑛 − 1)Q:

4 + Q𝛿./0-;=(𝑘 + 𝑛 − 1)Q:
4
 

(20) 

s.t. . "𝑛 = 1,…	, 𝑁!*  

𝑢"#$%7!, 𝛿"#$%7! ∈ argmin
,%&'"(#,.%&'"(#

M
𝑓(𝑢&% , 𝛿&% , 𝑢"#$% , 𝛿"#$%):

𝑔:(𝑢&% , 𝛿&% , 𝑢"#$% , 𝛿"#$%) ≤ 0, 𝑗 = 1,… , 𝐽R (20-1) 

𝑥"#$%7;(𝑘 + 1) = 𝐴𝑥"#$%7;(𝑘) + 𝐵𝑢"#$%7;(𝑘)	  (20-2) 

𝑥"#$%7;(𝑘 + 𝑛) − 𝑥"#$%7!(𝑘 + 𝑛) + 4
𝑙'

−𝛿"#$%7;(𝑛)
7 ≤ 0	𝑓𝑜𝑟	𝑛 = 1,… ,𝑁(  (20-3) 

𝑥"#$%7;(𝑘 + 𝑛) − 𝑥"#$%7!(𝑘 + 𝑛) + =
𝑙'
0> ≤ 0	𝑓𝑜𝑟	𝑛 = 𝑁! (20-4) 

𝑑"#$%7;)*+ ≤ 𝑢"#$%7;(𝑘 + 𝑛 − 1) ≤ 0   (20-5) 

δ"#$%7;(𝑘 + 𝑛) ≥ 0 𝑛 = 1,… ,𝑁! (20-6) 

 

The safety requirements are also considered that makes the FHDVs keep a longitudinal 

distance greater than 𝑙#. 𝛿B>?@'G(𝑘), which serves as a violation allowance of the bound in the soft 

constraint of the speed.  
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Lower level: FHDV – p + CAV 

min
,%&'"(#,.%&'"(#

ES𝑥"#$%7!(𝑡/01) − 𝑟2#$%(𝑡/01)S3
' +

4#

156

ES𝑢"#$%7!(𝑡/0176)S8
'

4$

156

+S𝛿"#$%7!(𝑡/0176)S9
'  

(21) 

 𝑠. 𝑡. (𝑛 = 1,…	, 𝑁!)  

𝑥"#$%7!(𝑘 + 1) = 𝐴𝑥"#$%7!(𝑘) + 𝐵𝑢"#$%7!(𝑘)	   (21-1) 

 𝑥"#$%7!(𝑘 + 𝑛) − 𝑟2#$%(𝑘 + 𝑛) + 4
𝑙6

−𝛿"#$%7!(𝑛)
7 ≤ 0	𝑓𝑜𝑟	𝑛 = 1,… ,𝑁(  (21-2) 

𝑥"#$%7!(𝑘 + 𝑛) − 𝑟2#$%(𝑘 + 𝑛) + =
𝑙6
0> ≤ 0	𝑓𝑜𝑟	𝑛 = 𝑁! (21-3) 

𝑑"#$%7!)*+ ≤ 𝑢"#$%7!(𝑘 + 𝑛 − 1) ≤ 0	  (21-4) 

𝑓(𝑑"#$%7;)*+ ) ≤ 𝑢"#$%7!(𝑘 + 𝑛 − 1) ≤ 0	    (21-5) 

𝑟*'("(𝑘 + 𝑛) − 𝑥&'(".-(𝑘 + 𝑛) + ?
@4𝑅+ − C𝑙&'(".-

, (𝑘 + 𝑛) − 𝑙*'("
, (𝑘 + 𝑛)E

+

−𝛿&'(".-(𝑛)
F ≤ 0	 

𝑓𝑜𝑟	𝑛 = 1, . . , 𝑁<  

(21-6) 

𝛿"#$%7!(𝑘 + 𝑛) ≥ 0	  

 
(21-7) 

𝛿B>?@'<(𝑡/)  denotes the violation allowance of the bound in the speed constraint. 

The 	𝑙B>?@'<
0  in the constraint is constant, which represents the latitudinal position of 

CAV.	𝑙=>?@
0 (𝑡/) represents the latitudinal position of the LHDV. The constraint of the control input 

of the CAV 𝑓(𝑑B>?@';435 , 𝑢B>?@'<) is the same as the deceleration maneuvers.  

With regard to the PHDVs, the focus of the objective functions is the optimal acceleration 

rate.  The PHDVs considered here are: PHDV–p and PHDV–f. The objective function is shown as 

follows: 

 
min

)*$%"(',**$%"(',)*$%"(),**$%"()
𝐹(𝑢:/0-;<, 𝛿:/0-;<, 𝑢:/0-;= , 𝛿:/0-;=) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜: 
(22) 
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𝑢)*+,-., 𝛿)*+,-. ∈ argmin
/!"#$%&,1!"#$%&

+
𝑓-𝑢)*+,-2, 𝛿)*+,-2, 𝑢)*+,-., 𝛿)*+,-..:

𝑔3-𝑢)*+,-2, 𝛿)*+,-2, 𝑢)*+,-., 𝛿)*+,-.. ≤ 0, 𝑗 = 1,… , 𝐽
8 

𝐺2N𝑢:/0-;<, 𝛿:/0-;<, 𝑢:/0-;= , 𝛿:/0-;=O ≤ 0, 𝑖 = 1,… , 𝐼 

 

At the upper level, the cost function includes the control input variables of both the PHDVs. 

While at the lower level, the control input of PHDV–f needs to fulfill the safety requirements of 

the lane changing CAV. Thus, the detailed upper level and lower-level objective functions and 

constraints can be formulated as follows: 

 

Upper level: PHDV – f + PHDV – p 

𝑚𝑖𝑛)*$%"('
**$%"('
)*$%"()
**$%"()

FQ𝑥:/0-;=(𝑘 + 𝑛) − 𝑥:/0-;<(𝑘 + 𝑛)Q3
4 +FQ𝑢:/0-;<(𝑡?@7;9)Q5

4
6&

789

6'

789

+Q𝑢:/0-;=(𝑡?@7;9)Q5
4 + Q𝛿:/0-;<(𝑡?@7;9)Q:

4 + Q𝛿:/0-;=(𝑡?@7;9)Q:
4

 

 

(23) 

 𝑠. 𝑡. (𝑛 = 1,…	, 𝑁!)  

𝑢:/0-;= , 𝛿:/0-;= ∈ argmin
)*$%"(),**$%"()

M
𝑓N𝑢:/0-;<, 𝛿:/0-;<, 𝑢:/0-;= , 𝛿:/0-;=O:

𝑔1N𝑢:/0-;<, 𝛿:/0-;<, 𝑢:/0-;= , 𝛿:/0-;=O ≤ 0, 𝑗 = 1,… , 𝐽
P (23-1) 

 𝑥9#$%7!(𝑘 + 1) = 𝐴𝑥9#$%7!(𝑘) + 𝐵𝑢9#$%7!(𝑘) (23-2) 

𝑥9#$%7!(𝑘 + 𝑛) − 𝑥9#$%7;(𝑘 + 𝑛) − 4
𝑙'

𝛿9#$%7!(𝑛)
7 ≥ 0	𝑓𝑜𝑟	𝑛 = 1,… ,𝑁(  (23-3) 

𝑥9#$%7!(𝑘 + 𝑛) − 𝑥9#$%7;(𝑘 + 𝑛) − =
𝑙'
0> ≥ 0	𝑓𝑜𝑟	𝑛 = 𝑁!  (23-4) 

0 ≤ 𝑢F>?@'<(𝑘 + 𝑛 − 1) ≤ 𝑎F>?@'<435    (23-5) 

δF>?@'<(𝑘 + 𝑛) ≤ 0 𝑘 = 1,… ,𝑁< (23-6) 

The safety requirements are also considered that makes the PHDVs keep a longitudinal 

distance greater than 𝑙#. Further, the speed of the PHDV–f of each time step needs to be no smaller 

than that of the PHDV–p by a negative value, 𝛿F>?@'<(𝑘), which serves as a violation allowance 

of the bound in the soft constraint of the speed.  

 

Lower level: PHDV– f + CAV 



 
 

37 

min)*$%"()
**$%"()

FQ𝑥:/0-;=(𝑡?@7) − 𝑟,-(𝑡?@7)Q3
4 +

6'

789

FQ𝑢:/0-;=(𝑡?@7;9)Q5
4

6&

789

+Q𝛿:/0-;=(𝑡?@7;9)Q:
4

 

 

(24) 

 𝑠. 𝑡. (𝑛 = 1,…	, 𝑁!)  

𝑥9#$%7;(𝑘 + 1) = 𝐴𝑥9#$%7;(𝑘) + 𝐵𝑢9#$%7;(𝑘)	   (24-1) 

𝑟&%(𝑘 + 𝑛) − 𝑥9#$%7;(𝑘 + 𝑛) + 4
𝑙6

−𝛿9#$%7;(𝑛)
7 ≤ 0	𝑓𝑜𝑟	𝑛 = 1,… ,𝑁(  (24-2) 

𝑟&%(𝑘 + 𝑛) − 𝑥9#$%7;(𝑘 + 𝑛) + =
𝑙6
0> ≤ 0	𝑓𝑜𝑟	𝑛 = 𝑁!  (24-3) 

0 ≤ 𝑢9#$%7;(𝑘 + 𝑛 − 1) ≤ 𝑎9#$%7;)*+  (24-4) 

0 ≤ 𝑢9#$%7;(𝑘 + 𝑛 − 1) ≤ 𝑓(𝑎"#$%7!)*+ )	  (24-5) 

𝑟&%(𝑘 + 𝑛) − 𝑥9#$%7;(𝑘 + 𝑛) +

⎣
⎢
⎢
⎡X4𝑟' − Z𝑙9#$%7;

< (𝑘 + 𝑛) − 𝑙&%
< (𝑘 + 𝑛)[

'

𝛿𝐹𝐻𝐷𝑉−𝑝(𝑛) ⎦
⎥
⎥
⎤
≤ 0	 

𝑓𝑜𝑟	𝑛 = 1, . . , 𝑁! 

(24-6) 

𝛿9#$%7;(𝑘 + 𝑛) ≤ 0	  (24-7) 

At the lower level, the optimal PHDV–f control input: 𝑈F>?@';∗ (𝑡") needs to fulfill the 

safety requirements of the lane changing CAV. In the objective function, 𝑟A@(𝑡")6) =

d𝑙A@
5 (𝑡")6)
𝑣A@(𝑡")6)

e  represents the longitudinal positions and real-time velocity of the CAV. The 

constraint of the control input of the CAV 𝑓(𝑎F>?@'<435 ) can be represented as: 

𝑓(𝑎F>?@'<435 ) = 	
−2 �𝑙# − 𝑃! �𝑋F>?@'<(𝑘) − 𝑋F>?@';(𝑘)��

∆𝑡# + 𝑎F?>@'<435  (25) 

𝑋F>?@'<(𝑘 + 1) = 𝑀5𝑥F>?@'<(𝑘) + 𝑀1𝑈F>?@'<(𝑘) (25-1) 

𝑋F>?@';(𝑘 + 1) = 𝑀5𝑥F>?@';(𝑘) + 𝑀1𝑈F>?@';(𝑘) (25-2) 

Where the 𝑃!  represents the same matrix mentioned in the discussion for the deceleration 

maneuver. 
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3.2.6 MPC based Controller Feasibility and Stability Analysis 

Recursive feasibility analysis 

One of the crucial problems in MPC is the lack of guaranteed stability and feasibility. Most of the 

stability proofs of MPC are based on recursive feasibility. The MPC controller is recursively 

feasible if and only if for all initially feasible state 𝑥H and for all optimal sequence of control inputs 

the MPC optimization problems remains feasible all the time. In order to apply the stability test, it 

is necessary to prove recursive feasibility. There exist sets of initial points that will ensure that the 

recursive feasibility of the bi-level optimal problem is satisfied. If the initial points are feasible, 

then the bilevel problem is recursively feasible.  

Proof.  Let the feasible set of the state 𝑥GIJ,.(𝑘 + 𝑛) represented by: 𝑆GIJ,. , and the 

feasible set of state	𝑥1<<,.(𝑘 + 𝑛) represented by: 𝑆1<<,.. Also, assume the feasible set of the 

control inputs {𝑢GIJ,.(𝑘 + 𝑛), 𝛿GIJ,.(𝑘 + 𝑛)}, {𝑢1<<,.(𝑘 + 𝑛), 𝛿1<<,.(𝑘 + 𝑛)}are 𝐶GIJ,. , 𝐶1<<,..  

If {𝑢1<<,.(𝑘 + 𝑛), 𝑢GIJ,.(𝑘 + 𝑛), 𝛿1<<,.(𝑘 + 𝑛), 𝛿GIJ,.(𝑘 + 𝑛)}  is feasible for the 

bilevel problem:𝐵 �𝑥GIJ,.(𝑘), 𝑥1<<,.(𝑘)� with initial states 𝑥GIJ,.(𝑘), 𝑥1<<,.(𝑘), then the states 

𝑥GIJ,.(𝑘 + 1), 𝑥1<<,.(𝑘 + 1) will still in the feasible sets (𝑥GIJ,.(𝑘 + 1) ∈ 𝑆GIJ,. , 𝑥1<<,.(𝑘 +

1) ∈ 𝑆1<<,.) after the control inputs: {𝑢GIJ,.(𝑘), 𝛿GIJ,.(𝑘)}, {	𝑢1<<,.(𝑘), 𝛿1<<,.(𝑘)}, which are 

in the feasible sets. Since the 𝑥GIJ,.(𝑘 + 1) ∈ 𝑆GIJ,. , and the lower level: CAV-LHDV is a 

quadratic problem with linear constraints for{𝑢GIJ,.(𝑘 + 1), 𝛿GIJ,.(𝑘 + 1)}, which is the new 

feasible set: 𝐶KA@ . The problem is convex, there will exists optimal 𝑢GIJ,.(𝑘 + 1), 𝛿GIJ,.(𝑘 +

1) ∈ 𝑎𝑟𝑔𝑚𝑖𝑛𝑓(𝑢GIJ,. , 𝛿GIJ,.).  

For the upper level, with 𝑥GIJ,.(𝑘 + 1) ∈ 𝑆GIJ,. 	𝑎𝑛𝑑	𝑥1<<,.(𝑘 + 1) ∈ 𝑆1<<,. , optimal 

control inputs 𝑢GIJ,.∗ (𝑘 + 1), 𝛿GIJ,.∗ (𝑘 + 1) , the upper level cost function, which is also the 

bilevel problem objective function can be written as a quadratic programming problem as follows: 
1
2
𝑈=>?@A∗ (𝑘)C(𝐻6 + 𝑅)𝑈=>?@A∗ (𝑘) +

1
2
𝑈,!!@A(𝑘)C(𝐻' + 𝑅)𝑈,!!@A(𝑘) − 

𝑈=>?@A∗ (𝑘)C𝐻D𝑈,!!@A(𝑘) + 𝑥,!!@A(𝑘)C𝐹6𝑈,!!@A(𝑘) − 

𝑥=>?@A(𝑘)C𝐹'𝑈,!!@A(𝑘) +
1
2
∆=>?@A∗ (𝑘)C𝑃6∆=>?@A∗ (𝑘) +

1
2
∆,!!@A(𝑘)C𝑃'∆,!!@A(𝑘) 

(26) 

Where: 𝐻& = 𝐻# = 𝐻* = 𝑀1
$𝑄𝑀1, 𝐹& = 𝐹# = 𝑀1

$𝑄𝑀5	  

And the Hessian matrix will be: 
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d𝐻# + 𝑅 0
0 𝑃#

e 

 

Since the 𝐻#, 𝑅, 𝑃# are positive. The determinants of leading principal minor of the Hessian 

matrix𝐻# + 𝑅 and (𝐻# + 𝑅)𝑃# are both positive. Thus, the cost function is positive definite. Also, 

the constraints are all linear for {	𝑢1<<,.(𝑘 + 1), 𝛿1<<,.(𝑘 + 1)}, which formulate a new feasible 

set 𝐶B>?@. Then, for the upper level, with: 𝑥GIJ,.(𝑘 + 1) ∈ 𝑆GIJ,. , 𝑥1<<,.(𝑘 + 1) ∈ 𝑆1<<,., and 

optimal control inputs of the lower level 𝑢GIJ,.∗ (𝑘 + 1), 𝛿GIJ,.∗ (𝑘 + 1), there exist optimal control 

inputs of the upper level  𝑢1<<,.∗ (𝑘 + 1), 𝛿1<<,.∗ (𝑘 + 1).  

Thus, if there exist feasible solution for bilevel problem: 𝐵 �𝑥GIJ,.(𝑘), 𝑥1<<,.(𝑘)�, then 

there exists feasible solution for  𝐵 �𝑥GIJ,.(𝑘 + 1), 𝑥1<<,.(𝑘 + 1)�. 

Sufficient condition for stability 

It is well known that MPC controllers do not necessitate internal stability. Thus, it is essential to 

analyze and ensure the stability of the MPC controller. In order to obtain internal stability, it is 

common to add a final state constraint or final state penalty.  However, for the MPC controller in 

a complex system, it is difficult to show stability using the final state constraints/final state penalty 

(Simon & Löfberg, 2016). All the weights are chosen to guarantee the convexity of the cost 

function to use the KKT condition to change the bilevel MPC to a single-level optimization 

problem. The sufficient condition can be proven by showing the value function is decreasing 

between two consecutive time steps. (𝑉"∗ − 𝑉")&∗ ≤ 0) for any k. If the value: 𝑉"∗ − 𝑉")&∗ 	is smaller 

than or equal to zero for any k, which means the 𝑉" is a valid Lyapunov function. Therefore, the 

system can be stabilized by the bilevel MPC controller. However, the test is only a sufficient test, 

not a necessary test. The system might be stable, but the Lyapunov function may not be valid for 

the closed loop system. However, with the sufficient stability test, there is greater chance to 

guarantee the stability of the system.  

For both maneuvers, the Lyapunov functions are set to be the cost function of the 

optimization control problem, which are the higher-level objective functions of the bi-level 

optimization formulation. Different prediction horizon values will be tested based on the sufficient 

condition for stability. In this thesis, the range of the prediction horizon is 𝑁< = 3,… ,7, the values 
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of the cost functions are tested to check the stability of the vehicles system after it is controlled 

using the bi-level MPC in deceleration/lane change maneuver. 
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 NUMERICAL EXPERIMENTS AND RESULTS 

This chapter presents numerical examples of the crash avoidance framework, 

corresponding to the two crash avoidance maneuvers discussed in earlier chapters. The 

experimental simulation is implemented in MATLAB using YALMIP. The simulated timestep is 

0.2s. and the weights for the objective functions are specified as: [𝑃, 𝑄, 𝑅] = [15,10,10]. The 

safety requirements for the safety distance between the lane changing vehicles and the vehicles on 

the target lane is 𝑙& = 5𝑚, the safety distance between the vehicles on the target lane is 𝑙# = 10𝑚. 

The maximum deceleration as well as acceleration are assumed to be 5.08𝑚 𝑠#⁄  (Bae et al., 2019). 

The maximum longitudinal acceleration is assumed to be 3.024𝑚 𝑠#⁄  (Bokare et al., 2017). 

Because the interstate highway standards for the U.S. Interstate Highway System use a 12-ft. (3.7m) 

standard lane width (Sofield, 2018). Therefore, if the Cartesian axis origin is taken as the mid-

point of the LHDV, then 𝑙A@
0 = 3.7𝑚. 

 

 
Figure 4.1. Deceleration maneuver initial states of LHDV, CAV and FHDV 

 

In this framework, the deceleration maneuver is considered preferentially. As shown in 

Figure 4., the initial state of the LHDV in this example is as follows. Location: 5m, Velocity: 

17.88𝑚 𝑠⁄ (40𝑚𝑝ℎ). The initial longitudinal bumper to bumper distance between the CAV and 

LHDV is considered between 5m and 6m. The bumper-to-bumper distance between the CAV and 

FHDV is considered in the range from 5m to 34m.  In order to test the performance of the control 

framework avoid the secondary collision (CAV and FHDV in deceleration maneuver), all the test 

cases have the initial velocities of the FHDV higher than the initial velocities of CAV. The velocity 

range of the CAV is set to be 17𝑚 𝑠⁄  to 21𝑚 𝑠⁄ , the velocity range of the FHDV is set to be 18𝑚 𝑠⁄  
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to 22𝑚 𝑠⁄ . In order to choose a proper prediction horizon to make sure the system has higher 

possibility to be stable, the sufficient test for stability is necessary and the results are shown in the 

following figure: 

 
Figure 4.2. Sufficient stability test for deceleration maneuver 

 

The range of the prediction horizon considered in this thesis is set as 7, when the controlled 

vehicles (CAV and FHDV) have different relative velocity, the stability rate will change. The 

higher the relative velocity, the lower the propensity of the system to be stable. As shown in the 

Figure 4.2, when 𝑁<=5, the system has the highest probability to be sufficiently stable, which 

means the initial states set of the system when 𝑁<=5 is the largest. In reality, the distribution of the 

velocity will also affect the choice of prediction horizon. However, in this research, we use the 

uniform distribution of the velocities. Thus, we choose 𝑁<=5 in the deceleration maneuver of the 

MPC controller. There are some situations that deceleration might not be enough for the CAV to 

avoid the collision. Thus, the lane change maneuver needs to be activated. The vehicles controlled 

in the lane change maneuvers are the lane changing CAV, FHDVs and PHDVs on the target lane.  
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Figure 4.3. Sufficient stability test for deceleration maneuver 

 

The initial location information of the vehicles in the lane-changing maneuver is showed 

in figure 4.3. The longitudinal relative distance between the CAV and vehicles on the target lane 

are considered between range 5m to 6m, the bumper-to-bumper distance between the FHDVs and 

PHDVs are considered in a wider range from 5m to 34m. The initial velocity of the vehicles on 

the target lane are in the range from 17𝑚 𝑠⁄  to 22𝑚 𝑠⁄ , minor difference because of the positions.  

The CAV velocity in the infeasible cases of the deceleration maneuver is from 17𝑚 𝑠⁄  to 

21𝑚 𝑠⁄ . Thus, there will be multiple lanes changing motions because of the CAV’s different initial 

velocities in the lane changing maneuver. The sufficient stability test will be taken based on 

different CAV lane changing motions. The stability is various based on different CAV lane 

changing motions. When the speed is in the middle, around 19𝑚 𝑠⁄  to 20𝑚 𝑠⁄ , the stability rates 

are the highest. When 𝑁<=5, the overall stability is the highest among all the prediction horizons. 

Thus, we choose 𝑁<=5 in the lane changing maneuver of the MPC controller. The successful rates 

of the deceleration maneuver and the deceleration + lane changing maneuvers are showed in figure 

4.4(b).  
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(a) Successful rates of deceleration maneuver  

 

 

 

 

 

 

 

 

 

 

(b) Successful rates of deceleration + lane changing maneuvers 

Figure 4.4. Sufficient stability test for deceleration maneuver 

 

In figure 4.4, the successful rate is quite low (<0.4) when the bumper-to-bumper distance 

is smaller than 7m. Also, when the relative velocities are larger, the successful rates are not ideal. 

According to the lane changing maneuver, the successful rate of different CAV lane changing 

motions are different with different CAV lane changing motions. The overall successful rate after 

taking the lane changing maneuver into account is showed in figure 4.4(b). The successful rate 

combines the deceleration maneuver and lane changing maneuver is observed to improve 

significantly. The worst case, which is the largest relative velocity with smallest bumper-to-
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bumper distance has successful rate more than 0.6. For the rest of situations, the successful rates 

are greater than 0.9, and for the cases have small relative velocity, the successful rates are 1. When 

the two maneuvers are taken together, the successful rates are satisfied in most cases. 

Furthermore, in this thesis, we test the success rates when there is no connectivity in the 

system, and therefore, the traditional car-following model is used as the only means of vehicle 

control. The optimal velocity and optimal acceleration/decelerate rates are calculated based on the 

tangent condition of the circle buffer areas. The success rates are tested under different situations 

in terms of the bumper-to-bumper distance between the CAV and FHDV, and their relative 

velocities. As shown in Figure 4.5, when the bumper-to-bumper distance is smaller than 7 meters, 

the success rates are nearly lower than 0.2. When the relative velocities larger than 2.5m/𝑠#, the 

success rates are 0. Generally, when the bumper-to-bumper distance is larger and the relative 

velocities are smaller, the success rates are higher and, in some cases, reach 1.0 (i.e., 100%). Where 

there exists connectivity and the proposed cooperative control framework in the system, the 

success rates improve drastically compared to the car-following case. The overall success rates are 

higher when the connectivity cooperative control framework is used (average 0.9) compared to the 

car-following framework (average 0.4). 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Connectivity Cooperative Control Framework        (b) Car-following Framework 

Figure 4.5. Sufficient stability test for deceleration maneuver 
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 CONCLUDING REMARKS 

In order to enhance the roadway safety in the mixed traffic flow era and protect the traffic 

system from errant human drivers that perform lane-changing maneuvers recklessly, this paper 

proposes a control framework using the Model Predictive Control method based on the V2V 

connectivity. This framework focuses on an example of human error that cannot be eliminated by 

vehicle automation, specifically, human error from HDVs in the mixed traffic flow. The thesis 

outcomes can significantly enhance roadway safety by reducing the exposure of CAVs to errant 

or reckless human drivers that operate in the CAV’s neighborhood. The control framework is 

demonstrated using numerical examples that consider various traffic setups in terms of the initial 

velocity as well as initial location of the controlled vehicles. The results suggest that the control 

framework, which contains two maneuvers (deceleration and lane-changing) has an average 

successful rate of collision avoidance throughout the LHDV lane-changing process of at least 90%. 

The successful rate can reach 100% under some specific situations such as where the relative 

velocity is small. 

However, there exist some limitations and future work of this research. First, the velocity 

distribution used in this paper is uniformly distributed. In reality, the velocities of the vehicles 

might follow a certain pattern that may not be uniformly distributed. Second, the control 

framework needs to be tested in real world or a realistic driving simulator. Third, new methods 

including reinforcement learning can be used to provide more reliable results of the predictive 

aspects of the model. This thesis demonstrates the feasibility of the proposed crash avoidance 

framework considering vehicular interactions between the CAV and connected human-driven 

vehicle (CHDV), which gives a strong justification for promoting vehicle connectivity. Overall, 

the research outcome is expected to have far-reaching benefits in terms of public trust in AV safety, 

adoption of AVs, and willingness to purchase connectivity for their HDVs. On a broader front, we 

expect that the framework will help increase the body of knowledge and expand the understanding 

and awareness of techniques to enhance AV collision avoidance, and possibly influence the 

passage of new policies, regulation, rulemaking, or legislation associated with CAV safety and 

operations.  
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