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ABSTRACT 

Regulation of metabolism in mammalian cells is achieved through a complex interplay 

between cellular signaling, metabolic reactions, and transcriptional changes. The modeling of 

metabolic fluxes in a cell requires the knowledge of all these mechanisms, some of which may be 

unknown. A cybernetic approach provides a framework to model these complex interactions 

through the implicit accounting of such regulatory mechanisms, assuming a biological “goal”. The 

goal-oriented control policies of cybernetic models have been used to predict metabolic 

phenomena ranging from complex substrate uptake patterns and dynamic metabolic flux 

distributions to the behavior of gene knockout strains. The premise underlying the cybernetic 

framework is that the regulatory processes affecting metabolism can be mathematically formulated 

as a cybernetic objective through variables that constrain the network to achieve a specified 

biological “goal”.  

Cybernetic theory builds on the perspective that regulation is organized towards achieving 

goals relevant to an organism’s survival or displaying a specific phenotype in response to a 

stimulus. While cybernetic models have been established by prior work carried out in bacterial 

systems, we show its applicability to more complex biological systems with a predefined goal. We 

have modeled eicosanoid, a well-characterized set of inflammatory lipids derived from arachidonic 

acid, metabolism in mouse bone marrow derived macrophage (BMDM) cells stimulated by Kdo2-

Lipid A (KLA, a chemical analogue of Lipopolysaccharide found on the surface of bacterial cells) 

and adenosine triphosphate (ATP, a danger signal released in response to surrounding cell death) 

using cybernetic control variables. Here, the cybernetic goal is inflammation; the hallmark of 

inflammation is the expression of cytokines which act as autocrine signals to stimulate a pro-

inflammatory response. Tumor necrosis factor (TNF)-α is an exemplary pro-inflammatory marker 
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and can be designated as a cybernetic objective for modeling eicosanoid—prostaglandin (PG) and 

leukotriene (LK)—metabolism. Transcriptomic and lipidomic data for eicosanoid biosynthesis and 

conversion were obtained from the LIPID Maps database. We show that the cybernetic model 

captures the complex regulation of PG metabolism and provides a reliable description of PG 

formation using the treatment ATP stimulation. We then validated our model by predicting an 

independent data set, the PG response of KLA primed ATP stimulated BMDM cells. 

The process of inflammation is mediated by the production of multiple cytokines, 

chemokines, and lipid mediators each of which contribute to specific individual objectives. For 

such complex processes in mammalian systems, a cybernetic objective based on a single 

protein/component may not be sufficient to capture all the biological processes thereby 

necessitating the use of multiple objectives. The choice of the objective function has been made 

by intuitive considerations in this thesis. If objectives are conjectured, an argument can be made 

for numerous alternatives. Since regulatory effects are estimated from unregulated kinetics, one 

encounters the risk of multiplicity in this regard giving rise to multiple models. The best model is 

of course that which is able to predict a comprehensive set of perturbations. Here, we have 

extended our above model to also capture the dynamics of LKs. We have used migration as a 

biological goal for LK using the chemoattractant CCL2 as a key representative molecule 

describing cell activation leading to an inflammatory response where a goal composed of multiple 

cybernetic objectives is warranted. Alternative model objectives included relating both branches 

of the eicosanoid metabolic network to the inflammatory cytokine TNF-α, as well as the simple 

maximization of all metabolic products such that each equally contributes to the inflammatory 

system outcome. We were again able to show that all three cybernetic objectives describing the 

LK and PG branches for eicosanoid metabolism capture the complex regulation and provide a 
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reliable description of eicosanoid formation. We performed simulated drug and gene perturbation 

analyses on the system to identify differences between the models and propose additional 

experiments to select the best cybernetic model. 

The advantage to using cybernetic modeling is in its ability to capture system behavior without 

the same level of detail required for these interactions as standard kinetic modeling. Given the 

complexity of mammalian systems, the cybernetic goal for mammalian cells may not be based 

solely on survival or growth but on specific context dependent cellular responses. In this thesis, 

we have laid the groundwork for the application of cybernetic modeling in complex mammalian 

systems through a specific example case of eicosanoid metabolism in BMDM cells, illustrated the 

case for multiple objectives, and highlighted the extensibility of the cybernetic framework to other 

complex biological systems. 
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1 INTRODUCTION 

1.1 Mathematical modeling approaches for physiological mechanisms 

Engineering methodologies are critical for a quantitative understanding of physiological 

mechanisms in normal and disease states. The field of systems biology relies upon the use of 

models to organize biological knowledge and make predictions of complex processes. A variety 

of multi-omic data and mathematical approaches are available for modeling with varying, simple 

to complex, degrees of resolution [1, 2]. These models span from the DNA and gene expression 

levels to intracellular networks, to cell-to-cell and trans-membrane signals, through to the organ 

level, and even at the multi-cellular organism level. The resulting models can provide greater 

understanding of the data, identify gaps in our existing knowledge of biological processes, and 

predict new behaviors that we can explore experimentally. It is critical that we iterate between 

model and experiments to ensure that our models are realistic and descriptive of the biological 

phenomena they intend to describe. 

One example of metabolic analysis which results in the prediction of dynamics is the 

reprogramming observed during the diauxie shift in S. cerevisiae [3] and requires the integration 

of kinetics with metabolic regulation and control. Reuss and coworkers have developed structured, 

un-segregated dynamic models (state averaged over the population) of both S. cerevisiae [4] and 

E.coli [5]. These models have been used to simulate the in-vivo dynamics of key pathways such 

as the Pentose Phosphate Pathway (PPP) and sugar transport in S. cerevisiae. Dynamic models of 

varying complexity have also been constructed to study the penicillin biosynthetic pathway [6], 

optimized regulatory architectures in metabolic reaction networks [7], red-blood cell metabolic 

pathways [8], and plant metabolic pathways [9]. However, as demonstrated by cybernetic models 
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and the complexity of the models from Reuss and coworkers, simultaneously modeling both 

regulation and reaction kinetics is difficult. The central challenge is uncertainty, both in the 

parameters as well as the underlying biology. As models continue to grow in complexity, kinetic 

modeling requires a detailed understanding of reaction mechanisms and regulatory interactions 

and leads to a rapidly expanding set of adjustable parameters [10]. One approach, cybernetic 

modeling, has been used for over three decades to predict a variety of metabolic phenomena and 

incorporates this concept of control without the added burden of typical kinetic frameworks which 

require detailed knowledge of regulatory mechanisms [11, 12]. 

1.2 The cybernetic framework 

Cybernetic modeling of metabolism, at its core, embodies a framework of ordinary 

differential equations for kinetic modeling that describes the time-dependent evolution of 

metabolite concentrations, enzyme concentrations, and cellular growth. In cells, these changes in 

concentrations, both inside and outside of the cell, are governed by the directed actions of a host 

of complex biological processes. The cybernetic modeling framework distinguishes itself from 

traditional kinetic modeling by indirectly accounting for the unknown regulatory processes in the 

cell. These regulations are a cooperative cascade of molecular mechanisms that enhances a cellular 

function such as growth or survival. In the absence of high-resolution knowledge of all cellular 

signaling and metabolic events, cybernetic regulation offers a significant advantage and modulates 

the level of key enzymes through the introduction of cybernetic variables for induction (ui) and 

activation (vi). 

Cybernetic models of metabolism were first formulated to describe the growth behavior of 

cells in multi-substrate environments. These models build on the assumption that the synthesis and 

activity of the enzymatic machinery are regulated to maximize a return on investment, such as, 
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biomass, carbon uptake, etc. [13-15].For example, in the classic scenario of diauxic growth, E. coli 

regulates its transport enzymes and prioritizes the utilization of the substitutable substrates based 

on an optimal growth rate [13]. Cybernetic models have been useful in not only describing complex 

substrate uptake patterns [15] but have also yielded successful predictions of intracellular fluxes 

[16], gene-knockout behaviors [17], and multiplicity of steady states in chemostats [18]. Since the 

early abstracted cybernetic models of Dujarti et al. [13] and Kompala et al. [14], which primarily 

focused upon modeling diauxie growth on mixtures of sugars, cybernetic models have significantly 

grown in metabolic complexity, albeit not to the degree of the genome scale stoichiometric models. 

Straight was the first to build an explicit pathway structure into cybernetic models [19], later 

Ramakrishna et al. [15] built upon this foundation and developed more biologically refined 

portraits of intracellular networks.  

Properly identified cybernetic models can be predictive in many situations because of their 

goal seeking behavior. The regulation of the genes and the activity of the enzymes are obtained as 

a solution to an optimal resource allocation problem. However, cybernetic models are complicated 

and difficult to implement. The work of Varner et al., in particular highlighted both the promise 

and downside of cybernetic models. A cybernetic model describing 45 genes in the central carbon 

metabolism of E.coli equipped with a description of transcription, translation, and enzyme level 

regulation was, after model identification on wild-type physiological data, able to predict the 

physiology of a pyk knockout mutant [20]. Optimization of flux through the aspartate amino acid 

network is another example where a cybernetic model was able to predict the local impact of 

genetic manipulation (overexpression of feedback resistant pathway enzymes) [21]. Cybernetic 

models have also been used to study storage product formation and advanced bioreactor control 

system design [22]. The central issue of model identification is that, in addition to the difficulty in 
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identifying kinetic parameters, the structure of the optimal control programs governing metabolism 

must be formulated. Namjoshi and Ramkrishna [23] and later Young and Ramkrishna [24] made 

significant progress on the cybernetic identification problem. 

 One strategy that has been proposed to overcome this identification issue is to assume 

intracellular networks are at a pseudo steady-state. Hybrid cybernetic models (HCM) have 

addressed shortcomings of the approach by integrating cybernetic optimality concepts with 

elementary modes (EM; a minimal set of enzymes that can operate at steady state i.e. non-

decomposable, non-steady state pathways) [25, 26]. The cybernetic control problem then reduces 

to a choice between competing steady-state routes through the intracellular network. HCMs 

dynamically choose combinations of biochemical modes (each catalyzed by a pseudo enzyme 

whose expression is controlled by an optimal decision) to achieve a physiological objective [25]. 

This strategy has been applied to model continuous production of lignocellulosic ethanol [27].  

Ramkrishna and coworkers extended the HCM concept to lumped HCMs (L-HCM). This approach 

provides dynamic models for very large networks to be identified with limited data and can be 

applied to the cybernetic models of the previous generations. Song and Ramkrishna identify 

‘‘families’’ of EMs each containing several EMs with one or more unifying characteristics based 

upon metabolic function [26]. L-HCM can make dynamic predictions with significantly less data 

due to reduction in parameters and has been applied to an E.coli network with 67 reactions and 

S.cerevisiae network with 70 reactions, both of which matched experimental data well [28, 29]. 

However, their applicability is still constrained by the limitation in the size of the metabolic 

network that can be used.  

To address this limitation, HCM-FBA, developed by Vilkhovoy and Varner, is an alternative 

approach to HCM, specifically for large networks where the generation of elementary modes is 
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infeasible. HCM-FBA is a modification of the hybrid approach which uses flux balance analysis 

(FBA) solutions in conjunction with cybernetic control variables instead of EMs to simulate 

metabolism. This approach was applied to an aerobic E. coli metabolic network that was not 

feasible with HCM to describe cell mass growth and the shift from glucose to acetate consumption 

with considerably less modes. The fluxes predicted by HCM-FBA have not yet been validated, 

and its performance should be compared to lumped hybrid cybernetic models (L-HCM). While 

cybernetic models have focused on bacterial systems in the past, in this work, we adapt the 

framework to model the dynamic behavior of prostaglandin (PG) formation as an inflammatory 

response of bone marrow derived macrophages (BMDM) in a mammalian system [15, 28, 30, 31]. 

1.3 Cellular regulation 

The ability of a cell to process and respond to its surrounding environment and, in turn, adapt 

in that space is regulated by a complex system of signals that relay information from outside of 

the cell to its nucleus. Signaling networks are inherently complex and require a systems-level 

approach to garner insight into the dynamics and connectivity that influence one another. Multiple 

layers of cellular regulation are required to deconstruct a network and its role within the organism 

[32]. Cellular signals take on the form of absolute protein levels as well as the location of the 

protein and interactions among proteins. Furthermore, regulatory factors that influence 

suppression or promotion of the protein and their corresponding rate, length of time, and relative 

changes between states is critical to understanding the complexity associated with signaling [30-

34].  

Protein synthesis and consequently enzyme synthesis require material, energy, and temporal 

resources. Regarding material and energy resources, protein synthesis requires the presence of a 

number of cellular components, such as ribosomes, mRNA, tRNA, ATP, and polymerase enzyme 
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molecules, among others [32,35-36]. Additionally, the time available to produce any one of these 

cellular components is limited and constrained by the time required by the other activities of the 

polymerase molecules. The cybernetic framework therefore allows us to propose that the 

distribution of both material and temporal resources among the available metabolic pathways must 

be controlled such that the microorganism’s survival is optimized [23-27]. The explicit description 

of even a small fraction of the number of metabolic pathways that compose metabolism is often 

infeasible. A simpler view of the complexities of reaction networks is required to address these 

limitations. Otherwise, it would be very difficult to extract any general principles of regulation out 

of the overwhelming amount of kinetic detail. 

1.4 The inflammatory response 

Inflammation is an active defense mechanism of multicellular organisms in response to 

various harmful stressors. The primary role of inflammation is to counter the effects of these 

stressors and to initiate cell and tissue repair. Multiple factors in the immune system respond to 

inflammation; for example, macrophages are a type of white blood cell of the immune system 

designed to target substances which lack surface proteins associated with healthy body cells [32]. 

Since many inflammatory responses are beneficial, directing and instructing the inflammatory 

machinery may be a better therapeutic objective than completely suppressing it. This requires the 

understanding of the biological signaling and regulatory networks, as well as the components 

involved in the inflammatory response. Macrophages are the key mediators and contributors to the 

inflammatory response.  
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1.4.1 Macrophage cells 

Macrophages engulf and digest cellular debris, foreign substances, microbes, cancer cells, 

and anything else that does not have the type of proteins specific to healthy body cells on its 

surface. Macrophages that promote inflammation are called M1 macrophages, whereas those that 

decrease inflammation and promote tissue repair are called M2 macrophages. Beyond increasing 

inflammation and stimulating the immune system, macrophages also play an important anti-

inflammatory role and can decrease immune reactions through the release of cytokines. 

Macrophages rapidly respond to a stimulus by epigenetic modifications following a 

cascade of events due to receptor binding. This results in the production of pro-inflammatory 

cytokines (TNF𝛼, IL-6, IL-12, and type 1 IFN), chemokines, lipid mediators and other anti-

microbial molecules. The interaction of the released cytokines, chemokines and lipid mediators 

with the macrophages and other specific cells in an autocrine and paracrine manner further activate 

different signaling pathways promoting inflammation through activation of transcription factors 

like NF-κB and causing the next set of epigenetic modifications leading to expression of specific 

genes to respond to the infection. Thus, multiple temporal cycles arise. The response by the 

macrophages are anatomically specific, and so the macrophages of the lung respond differently 

compared to macrophages of heart. At each step on the cascade, the inflammatory response is 

regulated. 

1.4.2 Response to bacterial infection 

Extensive studies have been done to mimic the physiological response of bacterial infection 

and the inflammatory response on macrophage cells (Figure 1.1) through exposure to the factors 

lipopolysaccharide (LPS) and adenosine triphosphate (ATP).  



25 

 

 

 

Figure 1.1. Response of a Macrophage to Infection. A simple schematic of a macrophage cell 

membrane stimulated by lipopolysaccharide (LPS; a structural component in the cell wall of 

gram-negative bacteria) and adenosine triphosphate (ATP) leads to activation of cyclooxygenase 

(COX). Arachidonic acid is dislodged from the macrophage cell membrane and then metabolized 

into prostaglandin products.  

1.4.2.1 Lipopolysaccharide 

LPS or endotoxin is an integral structural component of the outer cell wall of gram-negative 

bacteria responsible for the onset of microbial inflammation. LPS stimulates monocytes and 
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macrophages via toll-like receptors (TLR)-4 which are a type of pattern recognition receptors 

(Figure 1.1) [33]. The TLR-4 signaling pathway mediates the release of pro- and anti-inflammatory 

mitogen activated protein kinase cascade nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF𝜅B) and activator protein (AP)-1 [34]. NF𝜅B is a transcription factor comprised of two 

subunits represented by either one or two proteins, homo- or hetero-dimers, respectively. Released 

NF𝜅B migrates into the nuclear space activating transcription of 𝜅B-dependent genes such as 

TNF-α. It is not clear how the TLR-4 receptor becomes activated; however, studies show that LPS 

binding molecules must be in close proximity to the transmembrane signaling components [35-

37]. MD-2 is a non-membrane-spanning molecule that physically associates with TLR-4 and is 

required for LPS-induced, TLR-4 signaling [38]. It is also not clear on whether or not TLR-4 

directly interacts with LPS; however, it is reasonable to assume the role of TLR-4 in cellular 

response to LPS lies in the initiation of formation of an active signaling complex [39, 40]. MD-2 

may change the conformation of the extracellular domain of TLR-4 by changing its affinity to LPS 

or by functioning as part of a true TLR-4 ligand. Additionally, MD-2 may facilitate 

oligomerization of activated TLR-4 [35-37]. 

1.4.2.2 Adenosine triphosphate 

The acute release of ATP extracellularly in response to cell stimulation, stress, or tissue 

damage as well as when extracellular ATP is present at high levels results in a variety of 

inflammatory responses. It is important to note, ATP can also have an anti-inflammatory response 

when sustained chronic and low levels of extracellular ATP is released. Some cell types can release 

ATP through vesicular transport as well as other mechanisms [41]. Examples of this are in the 

release of ATP through stretch activated channels, voltage dependent anion channels, purinergic 

receptors involved in opening large pores in the cell membrane, and other channels found to 
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promote ATP release. Purinergic receptor activation can produce both positive and negative 

feedback in immune cells to effectively regulate the immune response [42]. Following release of 

ATP into the cell extracellular space, it is hydrolyzed down to adenosine. This process terminates 

P2 receptor activation and results in sustained signaling through purinergic receptors. Purinergic 

receptors which respond to ATP, adenosine, and other similar nucleotides are divided into three 

major families according to pharmacological and structural features. Specifically, the P2X 

receptors function as ATP gated ion channels which facilitate influx of extracellular calcium (Ca2+) 

as well as other cations (Figure 1.1) [43].  

1.5 Lipids 

The tissue-resident macrophages, upon infection, perform an accessory function of lipid 

metabolism, in addition to their prototypical roles, such as phagocytosis and destruction of harmful 

organisms [50,51]. Lipids play a key role in regulating macrophage functions and phenotypes, for 

example, pathways augmenting β-oxidation and lipid efflux drive immune cells toward an anti-

inflammatory phenotype; whereas, pathways facilitating lipid biosynthesis 

and inflammation favor a pro-inflammatory response. Consequently, we focus our study on the 

eicosanoids; they are signaling lipids that modulate a diverse set of homeostatic and inflammatory 

processes linked to various diseases [52]. Eicosanoids arise from the oxidation of Arachidonic 

acid (AA) by enzymatic pathways: Cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome 

P450 (CYP450) [53,54]. COXs catalyze the first two biosynthetic steps leading to the production 

of prostaglandins PGs, i.e., PGE2, PGD2, PGF2α, PGI2 and thromboxane (TXA2). PGs have been 

found to be responsible for initiating acute inflammation and mediating pain and other symptoms 

during the inflammatory response [37,53,54]. TXA2 is a pro-inflammatory prostanoid that 

augments cellular immune responses and has a homeostatic role in platelet aggregation. 
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Leukotrienes (LTs) and lipoxins (LXs) are 5-LOX derived lipid mediators. LTs exhibit pro-

inflammatory action and are produced at the inflammation sites by inflammatory cells. Whereas, 

LXs are anti-inflammatory as they promote infiltration of monocytes required for resolution and 

wound healing.  

Upon infection, macrophage cells are activated via induced metabolic changes associated 

with lipids [44, 45]. Lipids have been classified into eight major categories (fatty acyls, 

glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids, and 

polyketides) [46]. Each category of lipids exhibits distinct roles in various cellular processes and 

disease in addition to cross talk. For example, fatty acyls contribute to inflammation, rheumatoid 

arthritis, sepsis, and asthma. Consequently, we focus our study on a sub-category of fatty acyls 

known to contribute to inflammation, the eicosanoids. Eicosanoids are derived from arachidonic 

acid (AA), a 20-carbon fatty acid, and are further classified into prostaglandins, thromboxanes, 

leukotrienes, and other oxidized products [47]. PG formation begins when AA is free from its 

phospholipid bind in the cell membrane. PGs have been found to mediate pain, fever, and other 

symptoms associated with inflammation [48]. Eicosanoids are synthesized from AA via two 

pathways: 1) the enzyme Prostaglandin G/H synthase (EC 1.14.99.1; cyclooxygenase (COX)) 

which has been targeted for treating inflammation, musculoskeletal pain, and other conditions and 

2) the enzyme 5-lipoxygenase (LOX) where AA is converted into leukotrienes also known for 

mediating the inflammatory response.  

1.6 Mathematical modeling of lipid metabolism 

Eicosanoid metabolism is a complex lipid metabolic network involving the action of 

numerous signaling molecules, activation of myriad signaling pathways, cells, organs, making 

modeling the intricate details of the network a challenging task. A systems biology approach 
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provides a powerful strategy for quantitative understanding of the molecular basis of lipid 

metabolic networks in mammalian cells by integrating existing mechanistic knowledge and novel 

high-throughput data. In a growing area of study such as lipid metabolism, descriptive models of 

system behavior are critical in the understanding of mechanisms, development of therapeutics, and 

targeting of biomarkers. The integration of mechanistic knowledge and high-throughput data 

provides a powerful strategy for a quantitative understanding of the molecular basis of the lipid 

metabolic networks in mammalian cells. 

Systems biology allows for the elucidation of novel mechanisms in cellular and molecular 

machinery. In a growing area of study such as lipid metabolism, descriptive models of system 

behavior are critical in the understanding of mechanisms, development of therapeutics, and 

targeting of biomarkers. A systems biology approach provides a powerful strategy for quantitative 

understanding of the molecular basis of lipid metabolic networks in mammalian cells by 

integrating existing mechanistic knowledge and novel high-throughput data. Computational 

simulations enhance our understanding of the biological characteristics of eicosanoid metabolic 

networks and are critical for the assessment of drug therapeutic effects on elucidating cellular 

mechanisms.  

Eicosanoid metabolism is a complex lipid metabolic network involving the action of 

numerous signalling molecules, activation of myriad signalling pathways, cells, organs, making 

modelling the intricate details of the network a challenging task. Systems biology allows for the 

elucidation of novel mechanisms in cellular and molecular machinery through the integration of 

mechanistic knowledge and high-throughput data. In a growing area of study such as lipid 

metabolism in mammalian cells, descriptive models of system behaviour are critical in the 

understanding of mechanisms, development of therapeutics, and targeting of biomarkers.  
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Previous research by Gupta et al. developed an approach to model the flux of AA and its 

downstream metabolites using simple linear kinetics and applied it to data from the murine 

macrophage-like (RAW 264.7) cells [49]. They also extended this model to bone marrow derived 

macrophages (BMDM) primed with the lipopolysaccharide (LPS) analogue KDO2-Lipid A (KLA) 

and activated with a purinergic P2X7 receptor agonist adenosine triphosphate (ATP) [50]. In more 

recent work, Gupta et al. analyze the effect of 𝜔3 polyunsaturated fatty acids on normal eicosanoid 

metabolism in the murine macrophage cell. Their computational model aids in the understanding 

of competitive metabolism between 𝜔6 and 𝜔3 poly unsaturated fatty acids that play a pivotal role 

in cardiovascular pathologies such as atherosclerosis [51].   

1.7 The need for regulation 

Lipid biosynthesis often requires the active transport and the chemical transformation of 

several intermediates. Lipid biosynthesis is further regulated at the corresponding enzyme 

synthesis levels starting from enzyme transcription through RNA processing, translation, and 

posttranslational modifications. Lipid mediators regulate the induction and resolution of 

inflammation; however, increased levels of pro-inflammatory PGs and LTs contribute to a myriad 

of widespread chronic inflammatory diseases [53,58]. Non-steroidal anti-inflammatory drugs 

(NSAIDs), one of the most consumed classes of pharmacotherapeutic agents, work by inhibiting 

the COX-1 and COX-2 pathways [53]. They are beneficial in blocking acute inflammation but are 

ineffective at terminating inflammation or in promoting resolution and tissue repair. In addition, 

they also cause side effects, such as gastrointestinal toxicity, mild bleeding side effects, and 

cardiovascular side effects [53]. These observations motivated researchers to conduct extensive 

studies on discovering drugs that involve multi-target interventions from a systems biology 

perspective [59], [60], [61]. Despite their ability to effectively predict metabolite levels, the 
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existing models either do not incorporate biological regulatory mechanisms or only account for 

simple regulation such as gene expression level [49-52].  

1.8 Research objectives  

Simple kinetic models do not capture regulation seen at many stages in cellular function and 

signaling mechanisms in lipid biosynthesis and often require active transport and the chemical 

transformation of several intermediates. Lipid biosynthesis is further regulated at the 

corresponding enzyme synthesis levels starting from enzyme transcription through RNA 

processing, translation, and post-translational modifications. Despite their ability to effectively 

predict metabolite levels, the existing models either do not incorporate biological regulatory 

mechanisms or only account for simple regulation such as gene expression level [38,39,44,45].  

Cybernetic models have gone through various evolutions and have shown remarkable success in 

modeling different biological phenomena in bacterial systems. For complex mammalian cells, 

cybernetic modeling is in a nascent state and needs refining. Though cybernetic models 

traditionally followed simplicity, the increase in complexities, due to multiple simultaneous 

regulations and presence of multiple temporal cycles, warranted the need to incorporate more 

biological details in the cybernetic objective. Given that biological processes are regulated at many 

other stages such as posttranslational protein modification or interaction with a protein or substrate 

molecule, we demonstrate the use of the cybernetic modeling framework to account for such 

regulation in the modeling of lipid metabolism in a mammalian system in this work.  
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2 MODELING OF PROSTOGLANDIN METABOLISM 

2.1 Summary 

The work presented in this section serves to provide a predictive kinetic model incorporating 

cellular regulatory mechanisms for eicosanoid metabolism and signaling using the cybernetic 

framework with inflammation as the system objective. While there is no single entity that 

represents the totality of inflammation by itself, the cytokine tumor necrosis factor alpha (TNF-α) 

is well-known for its role in the generation of systemic inflammation and is a product of the 

response of macrophages to ATP and LPS [53, 54]. We hypothesize that PG metabolism is 

regulated to maximize inflammation characterized by the amount of TNF-α generated by the 

system. Using the lipid pathways derived from the KEGG pathway database and the time-course 

data from LIPID MAPS, our cybernetic approach to model the macrophage system provides a 

quantitative model of eicosanoid metabolism initiated with changes in the levels of AA (input) and 

resulting in the inflammatory outcome represented by TNF-α [46, 55-58]. The present study is an 

exemplar that highlights the potential for cybernetic approaches. 

2.2 Link between lipids and cytokines 

Cytokines are small molecules that function in the signaling (communication) between cells. 

They can act on other cells through paracrine signaling (close) or endocrine signaling (distant) or 

even on the cell itself through autocrine signaling. Macrophage cells are a prominent producer of 

cytokines, specifically in the production of proinflammatory cytokines [59]. Some pro-

inflammatory cytokines include IL-1β, IL-6, and TNF-α and are known to be involved in the 

process of pain. IL-1β specifically is a cytokine released in response to traumatic injury or invasion 



33 

and infection by a microbial agent. IL-6 specifically is a cytokine known to appear in response to 

nerve damage. TNF-α is a well-established cytokine for its role in many pain models [60].  

2.3 Methods 

To describe the time-dependent formation of PGs, a kinetic model is generated. This 

description approximates the conversion of AA into intermediate product prostaglandin H2 

(PGH2) and its subsequent conversion into downstream prostaglandin D2 (PGD2), prostaglandin 

E2 (PGE2), and prostaglandin F2α (PGF2α). In this simple network of PG formation, the main focus 

is on how PGH2 conversion into the three downstream PG products is regulated, which may 

represent a central decision point in the lipid metabolic system in the macrophage inflammatory 

response (Figure 2.1.a). The behavior of this network is modeled in three separate conditions: a 

control, a treatment with ATP, and a combined treatment of ATP and KLA. Measurements were 

made at 0, 0.25, 0.5, 1, 2, 4, 8, and 20 h after ATP stimulation (Figure 2.1.b). The data for all these 

conditions was taken from LIPID MAPS [61-64].  
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Figure 2.1. Simple Network Map. (a) The arachidonic acid metabolic pathway map for the 

breakdown of arachidonic acid into respective prostaglandin products via prostaglandin H2 

(PGH2) is shown: (rectangles) enzymes, (ellipses) lipid metabolites, (shaded) measured 

metabolites, (arrows) enzymatic and non-enzymatic reactions; (b) bone marrow derived 

macrophages (BMDM) were pretreated with or without KLA for 4 h and then stimulated with or 

without ATP. The media and cells were collected for lipidomic, tumor necrosis factor alpha 

(TNF-α) and transcriptomic analysis at 0, 0.25, 0.5, 1, 2, 4, 8, and 20 h after ATP stimulation; (c) 

depiction of the simplified system network used for kinetic modeling illustrates PGH2 as a 

control point and e1, e2, and e3 as cybernetic enzymes regulated via cybernetic variables for the 

regulation of PGD2, PGE2, and PGF2α fluxes. 

2.3.1 Development of the kinetic model 

The structure of the kinetics for this reaction network is arranged into two segments (Figure 

2.1.c). The first describes the conversion of AA into PGH2 using simple linear kinetics. The 

kinetics of this reaction is modeled as three separate mechanisms including a basal rate of 

synthesis, generation due to ATP stimulation, and KLA priming of cells. 

 

𝑟𝐴𝐴→𝑃𝐺𝐻2
=  𝑘𝑃𝐺𝐻2

[𝐴𝐴](1 + 𝑘𝐴𝑇𝑃[𝐴𝑇𝑃] + 𝑘𝐾𝐿𝐴[𝐾𝐿𝐴]) 2.1 
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To capture the effect of ATP, the treatments to the culture are modeled as a piecewise function, 

f(t). This piecewise function ramps up to a maximum value of 1 at 0.5 hours (ks = 2 h-1) and 

decreases exponentially (kd = 17.2 h-1) following the initial half hour of the experiment. For KLA, 

the same f(t) was used with a 4 h adjustment to account for the 4 h priming of KLA prior to ATP 

stimulation.  

 

𝑓(𝑡) =  {
 𝑘𝑠𝑡                    𝑖𝑓 𝑡 ≤ 0.5  

  𝑒−𝑘𝑑(𝑡−0.5)    𝑖𝑓 𝑡 > 0.5  
 

2.2 

 

The primary difference in this function from previous work is in the second term which includes 

exponential decay instead of a linear function to describe desensitization of cells to a given 

stimulus [65]. 

2.3.2 The cybernetic framework 

The other segment of this model employs the cybernetic framework to capture regulation 

between the different metabolic options [65]. In the cybernetic framework, there are two 

descriptions of the reaction kinetics. The first is the raw, enzyme-dependent rate of reaction which 

we termed the kinetic rate of reaction. This kinetic rate includes an enzyme quantity, 𝑒𝑖, which 

represents the amount of relative enzyme devoted to the conversion of PGH2 to a PG product.  

 

𝑟𝑃𝐺𝐻2→𝑃𝐺𝑖

𝑘𝑖𝑛 =  𝑒𝑖𝑘𝑃𝐺𝑖
[𝑃𝐺𝐻2] 2.3 

 

The second description uses the cybernetic approach which assumes a certain metabolic 

objective, namely, optimal production of PG derivatives leading to maximum TNF-α production. 
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The framework views each pathway as a metabolic option to achieve such an objective and 

describes metabolic regulation in terms of their optimal combinations. Flux through the ith pathway 

is modeled as regulated by the control of enzyme level and its activity, i.e., 

 

𝑟𝑃𝐺𝐻2→𝑃𝐺𝑖

𝑟𝑒𝑔
=  𝑣𝑖𝑟𝑃𝐺𝐻2→𝑃𝐺𝑖

𝑘𝑖𝑛  2.4 

 

where, 𝑣𝑖 is the cybernetic variable controlling enzyme activity and rkin is the kinetic term. The 

resulting ordinary differential equations (ODEs) for each metabolite incorporated into the model 

(Figure 2.1.c) can be written as a combination of regulated rates, rreg, and degradation, where 𝛾 is 

the degradation rate constant, of metabolites:  

 

𝑑[𝑃𝐺𝐻2]

𝑑𝑡
= 𝑟𝐴𝐴→𝑃𝐺𝐻2

− ∑ 𝑟𝑃𝐺𝐻2→𝑃𝐺𝑖

𝑟𝑒𝑔

𝑖=1

 − 𝛾𝑃𝐺𝐻2
[𝑃𝐺𝐻2] 

2.5 

  

𝑑[𝑃𝐺𝑖]

𝑑𝑡
= 𝑟𝑃𝐺𝐻2→𝑃𝐺𝑖

𝑟𝑒𝑔
− 𝛾𝑃𝐺𝑖

[𝑃𝐺𝑖] 
2.6 

 

Enzyme level, 𝑒𝑖,  is governed by the following dynamic equations: 

 

𝑟𝑒𝑖
𝑘𝑖𝑛 =  𝑘𝑒𝑖

[𝑃𝐺𝐻2] 2.7 

 

𝑟𝑒𝑖

𝑟𝑒𝑔
= 𝑢𝑖𝑟𝑒𝑖

𝑘𝑖𝑛 
2.8 

 

𝑑𝑒𝑃𝐺𝑖

𝑑𝑡
= 𝛼 + 𝑟𝑒𝑖

𝑟𝑒𝑔
− 𝛽𝑒𝑃𝐺𝑖

 
2.9 
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where, 𝑢𝑖 is the second cybernetic variable regulating the induction of enzyme synthesis, and 𝑟𝑒𝑖
𝑘𝑖𝑛 

is the kinetic part of the inducible enzyme synthesis rate. The three terms on the right-hand side 

denote constitutive, 𝛼, and inducible rates of enzyme synthesis modulated by cybernetic variable, 

𝑢𝑖 , and the decrease of enzyme levels by degradation, defined by 𝛽 for the rate constant, 

respectively. The cybernetic control variables, 𝑢𝑖  and 𝑣𝑖, are computed from the Matching and 

Proportional laws, respectively: 

𝑢𝑖 =
𝜌𝑖

∑ 𝜌𝑘𝑘
  2.10 

 

𝑣𝑖 =
𝜌𝑖

𝑚𝑎𝑥𝑘(𝜌𝑘)
  2.11 

 

where the return-on-investment, 𝜌𝑖 , is defined by the flux through a particular pathway and is 

determined based on the designated system goal or objective [24]. 

2.3.3 Defining the cybernetic goal or objective 

PGs are well-characterized for their roles in the inflammatory response. Thus, in this paper, 

we focus on regulation of PG synthesis as a function of TNF-α, a marker of inflammation, for the 

selection of the model’s objective function. To quantify the relationship between each PG and 

TNF-α, a simple, linear model of TNF-α production is developed as a function of PG levels:  

 

[𝑇𝑁𝐹] = ∑ 𝑐𝑖[𝑃𝐺𝑖]

𝑖

         2.12 
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We can also approximate the time derivative of TNF-α concentration as a linear combination of 

time derivatives of 𝑃𝐺𝑖 concentrations over the time course. Additionally, due to the difference in 

magnitude of the different 𝑃𝐺𝑖 levels, a scaling was used to determine the contribution of each 𝑃𝐺𝑖 

pathway leading to TNF-α production. Thus, we define the weights, 𝑤𝑖 , as follows:  

 

𝑤𝑖 =
𝑐𝑖[𝑃𝐺𝑖]̅̅ ̅̅ ̅̅ ̅

∑ 𝑐𝑗[𝑃𝐺𝑗]̅̅ ̅̅ ̅̅ ̅
𝑗

   
2.13 

 

where 𝑤𝑖  (values of 0.2114, 0.2201, and 0.5685 for i = 1, 2, and 3 correspond to PGE2, PGF2α, and 

PGD2, respectively) are weights obtained from regression using eight time points across ATP 

stimulated and control conditions; 𝑤𝑖  does not change with time. Of the three pathways modeled, 

there is a varying degree of inflammation that results from the generation of each 𝑃𝐺𝑖 as described 

by the objective function. In this particular system, the ROI for each pathway is assumed to be the 

amount of TNF-α that each unregulated pathway can yield at each instant in time which is 

described by 𝜌𝑖 . 

𝜌𝑖 = 𝑤𝑖𝑟𝑃𝐺𝐻2→𝑃𝐺𝑖

𝑘𝑖𝑛    2.14 

  

2.3.4 Estimation of the kinetic rate parameters and uncertainty analysis 

The model was parameterized using data from two of the three conditions, the control and the 

ATP treatment cases. Data was available for the AA, PGE2, PGF2α, and PGD2 metabolites as an 8 

point time series over a 20 hour time window. We could not measure the level of PGH2 because it 

is an unstable intermediate. Therefore, in the parameter estimation process, we optimized the 

profile for PGH2 formation with the constraint that its maximum concentration remains ∼10 
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pmol/μg DNA based on the total amount of PGs produced. The magnitudes of different metabolites 

varied from 0.001 to 10 pmol/μg of DNA. To fit the model to the data, a least squared fit error was 

computed from the scaled profiles of the lipid with respect to its maximum value to ensure that the 

varying magnitude of each PG’s level did not skew the parameters towards the sole fit of PGs with 

higher magnitudes. The overall objective function for fitting the data was to minimize the fit-error 

between the experimental and the predicted metabolite concentrations [49]: 

 

𝑚𝑖𝑛
𝐾,𝑋𝑜

(∑ (∑(𝑦𝑖,𝑗,𝑒𝑥𝑝 − 𝑦𝑖,𝑗,𝑝𝑟𝑒𝑑(𝐾, 𝑋0))
2

𝑛𝑖

𝑗=1

)

𝑛𝑠𝑝

𝑖=1

)   

2.15 

 

where K are the parameters or rate constants, X0 are the initial conditions of enzyme 

concentrations, ni is the number of time-points, 21, interpolated from 0 to 20 hours (indexed as j) 

in order to provide equal weightage to later time points in the model fit, and nsp is the total number 

of species (indexed as i). The ODEs in the model were solved using ode15s for stiff systems in 

MATLAB (2017, Natick, MA).  Parameters (Table 2.1) were optimized using a two-step hybrid 

optimization procedure that started with a genetic algorithm seeded with random initial parameter 

values and run up to 100 generations to determine near optimal parameter values (Matlab® 

function “ga”). The results from the application of the genetic algorithm-based optimization were 

then further refined using a generalized constrained non-linear optimization employing a gradient 

search method (Matlab® function “fmincon”).  

The goodness of the fits was assessed by comparing the variance for the fitted data to the 

variance in the experimental (replicate) data (treatment and control data combined) using the F-

test as follows [50]: 
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𝐹 =

𝑆𝑆𝐸𝑓𝑖𝑡

(2 × 𝑛𝑡)⁄

𝑆𝑆𝐸𝑒𝑥𝑝

(2 × 𝑛𝑡 × (𝑛𝑟 − 1))⁄
          

2.16 

 

 

𝐹 =

(∑ (𝑌𝑗
𝑡𝑟𝑡 − �̅�𝑗

𝑡𝑟𝑡)
2𝑛𝑡

𝑗=1 + ∑ (𝑌𝑗
𝑐𝑡𝑟𝑙 − �̅�𝑗

𝑐𝑡𝑟𝑙)
2𝑛𝑡

𝑗=1 )

(2 × 𝑛𝑡)
⁄

(∑ ∑ (𝑋𝑖𝑗
𝑡𝑟𝑡 − �̅�𝑗

𝑡𝑟𝑡)
2𝑛𝑟

𝑖=1
𝑛𝑡
𝑗=1 + ∑ ∑ (𝑋𝑖𝑗

𝑐𝑡𝑟𝑙 − �̅�𝑗
𝑐𝑡𝑟𝑙)

2𝑛𝑟
𝑖=1

𝑛𝑡
𝑗=1 )

(2 × 𝑛𝑡 × (𝑛𝑟 − 1))
⁄

       

2.17 

 

where Xj, 𝑋j, and Yj denote the experimental data, mean experimental data, and simulated (fitted) 

data at time point j, respectively, nr is the number of replicates (nr = 3, indexed as i), nt is the 

number of time points (nt = 8, indexed as j), and trt and ctrl are treatment and control groups, 

respectively. The degrees of freedom for determining the F distribution are df1 = (2 × 𝑛𝑡) and df2 

= (2 × 𝑛𝑡 × (𝑛𝑟 − 1)). F statistic values smaller than F0.95 (16, 32) = 1.97 indicate statistically 

equal variance in simulated (fitted) and experimental data; whereas, F values smaller than F0.05 

(16, 32) = 0.4580 indicate the fit-error is statistically smaller than the experimental error. 

2.4 Results 

2.4.1 Development of the kinetic model for the COX pathway  

Our cybernetic model describes the conversion of AA into the intermediate product PGH2 

and its subsequent conversion into downstream prostaglandin products, PGE2, PGF2α, and PGD2. 

In this simple network of PG formation, the primary intent is on the regulation of PGH2 conversion 

into the three downstream PG products. To address the latter, cybernetic regulation 

(implementation of ui and vi variables) was used at this branch point. The model for the COX 
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pathway was described by 7 ODEs and 18 kinetic parameters (Table 2.1) in total; these 18 rate 

constants were estimated using a hybrid optimization approach (Materials and Methods). Using 

the optimized parameters, the eicosanoid profiles for the control and ATP stimulated case were 

simulated (Figure 2.2). For most time points, the difference between the simulated and 

experimental data in both treatment and control conditions fell within the standard error of the 

mean. The goodness of fit for the model was further examined by performing the F-test, indicating 

that the fit-error was less than the experimental measurement error (Table 2.2).  

  



42 

 

 

Table 2.1. Estimated Reaction Parameters. Reaction parameters were estimated for the 

eicosanoid metabolism model. The simulated and predicted columns refer to the parameters 

optimized for ATP stimulated BMDM cells and KLA primed ATP stimulated BMDM cells, 

respectively. The predicted parameters were further optimized from the simulated parameters 

within 30% variability. 

 

Parameter Simulated Predicted 

kpgh2 0.0022 0.0016 

kpge2 0.0044 0.0031 

kpgf2α 0.0326 0.0339 

kpgd2 0.0533 0.0585 

𝛾pge2 0.0062 0.0044 

𝛾pgf2α 0.0205 0.0197 

𝛾pgd2 0.1275 0.0893 

kkla 17.3923 0.0001 

katp 11.9112 8.3379 

kE,pge2 8.0801 10.4215 

kE,pgf2α 0.2078 0.1478 

kE,pgd2 0.2243 0.157 

𝛾PGH2 0.2603 0.3384 

α 0.2244 0.2918 

β 0.7757 1.0082 

e0,pge2 0.3974 0.5094 

e0,pgf2α 0.0133 0.0105 

e0,pgd2 0.2601 0.3379 
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Figure 2.2. Cybernetic Simulation of Eicosanoid Levels. The computational simulation of the 

eicosanoid profile is generated using the cybernetic model in ATP stimulated BMDM. The mean 

experimental data (circles) with associated standard error of the mean (SEM) from three replicate 

experiments (n = 3) for the ATP stimulated (green) and control (red) cases are taken from the 

mass spectrometry measurements of lipids. The simulation results are shown for the treatment 

and control cases (solid green and red curves, respectively). 

  

Table 2.2. Model Accuracy. Goodness of fit, F-test, for simulated/optimized (adenosine 

triphosphate (ATP) stimulated data) and predicted (Kdo2-Lipid A (KLA) primed and ATP 

stimulated) cases. F values smaller than F0.05(16, 32) = 0.4580 indicate that the fit-error is 

statistically smaller than the experimental error; whereas the F values smaller than F0.95(16, 32) = 

1.97 indicate that the fit-error is statistically comparable to the experimental error. 

Metabolite Model Fit to ATP Data Model Fit to KLA and ATP Data 

PGE2 0.0312 0.2421 

PGF2α 0.0470 0.0342 

PGD2 0.2636 0.1192 

 

 

The eicosanoid model robustness was evaluated by performing a parametric sensitivity 

analysis in which each parameter was varied individually by +/- two-fold of the original optimized 

value. The slope of each parameter and metabolite sensitivity curve was calculated to evaluate the 
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sensitivity. A heat map of the slopes was then generated (Figure 2.3). Small to moderate 

sensitivities in most of the parameters were observed. As expected, very little or no variation in 

the degradation parameters for PGD2, PGE2, and PGF2α or in the KLA parameter is seen in 

response to metabolite changes. This is especially relevant to note given the data set in which the 

parameter set was optimized for simulation was not treated with KLA and, consequently, would 

not have a dependence on this parameter. Based on these results, our model of eicosanoid 

metabolism is shown to be robust with respect to parametric perturbations.        

 

 

Figure 2.3. Model Robustness. The slope of the sensitivity curves of the arachidonic acid (AA) 

metabolism are shown as a heat map. For example, the changes in the parameter associated with 

a conversion of AA into prostaglandin H2 (PGH2) resulted in an increase in all of the 

metabolites; whereas, changes in the degradation of PGH2 resulted in a decrease in all of the 

metabolites. This is expected, given that PGH2 is in the upper part of the network, so the changes 

associated with these parameters will result in an impact on all of the corresponding downstream 

metabolites. 

2.4.2 Prediction of the eicosanoid profile in KLA primed ATP stimulated BMDM 

To test the validity of above obtained parameters, we used the parameter values to predict 

the new data set, the eicosanoid profile in KLA-primed and ATP stimulated BMDM cells. When 

the profiles were predicted with the optimized parameter values, the model prediction did not fit 
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the experimental data well. Up to 30% variability was allowed in the optimized parameter values. 

The range of 30% variability was chosen based on previous work by our group in determining 

the uncertainty of the calculated parameters in the ATP-stimulated model [50]. The prediction with 

the relaxed bounds on the parameters yields a good fit to experimental data (Figure 2.4 and see the 

results of F-test in Table 2.2). This prediction of an independent experimental dataset (KLA primed 

and ATP stimulated case), which was not used to fit the ATP-stimulation data, further validated 

the model and parameter values. The mathematical model reflects the AA metabolic network 

dynamics in BMDM cells. 

 

 

Figure 2.4. Cybernetic Prediction of Eicosanoid Levels. The computational prediction of the 

eicosanoid profile is generated using the cybernetic model in KLA primed and ATP stimulated 

BMDM. The mean experimental data (circles) with associated standard error of the mean (SEM) 

from three replicate experiments (n = 3) for KLA primed ATP-treated (magenta) and control 

(red) cases are taken from the mass spectrometry measurements of the lipids. The prediction 

results are shown for the treatment and control cases (solid magenta and red curves, 

respectively). 
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2.4.3 Understanding the role of regulation in the cybernetic variables 

In order to validate the cybernetic control mechanism that drives the modulation of reaction 

rates in the model, scaled gene expression data (representative of the enzymes synthesized) were 

compared to scaled versions of the predicted enzyme levels. The qualitative trends among both the 

gene expression data and the predicted enzyme levels are expected to be similar [66]. Simply 

stated, if the gene expression level of the enzyme for one of the pathway branches is increasing 

over a certain time period, the cybernetic variable for enzyme synthesis control and, therefore, the 

predicted enzyme levels should also be increasing.  

For comparative purposes, we first identified the genes related to the respective branch in 

the eicosanoid metabolic pathways. These genes were selected using the KEGG database ( 

Table 2.3) [56, 58]. For two of the three branches in the pathway modeled, there are genes 

associated with enzymes for the catalysis of those pathways in the network. However, the PGF2α 

branch is a non-enzymatically regulated process and does not have an associated gene for 

comparison with the corresponding cybernetic variable.   

 

Table 2.3. Enzyme information. Enzymes were identified from the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) database and other selected resources for each pathway downstream of 

prostaglandin H2 (PGH2) in prostaglandin synthesis. There is not a specific enzyme associated 

with the regulation of PGH2 into PGF2α. 

Entrez ID Pathway Gene Symbol Name 

64292 PGH2 → PGE2 Ptges prostaglandin E synthase 

54486 PGH2 → PGD2 Hpgds/Ptgds2 

 

hematopoietic prostaglandin D2 

synthase 
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Gene expression data inform the relative levels of enzyme present. To validate the 

cybernetic approach, we qualitatively compare gene expression measurements with the 

corresponding cybernetic enzyme levels. Given gene expression data is represented as a fold 

change with respect to the control case, we have also taken fold changes of the enzyme levels from 

the cybernetic model in the treatment cases with respect to their corresponding value in the control 

cases. Both gene expression and cybernetic enzyme level data was normalized to their 

corresponding maximum value (ei/ei,max) to visualize a clear comparison of dynamic trends. These 

comparisons are made for both the ATP and combined KLA primed ATP stimulated treatment 

conditions.  Overall, the scaled predicted enzyme profiles in solid green (ATP stimulated case) 

and magenta (KLA primed ATP stimulated case) match the general behavior of their 

corresponding genes identified in  

Table 2.3 which are denoted by dashed black lines (Figure 2.5). 

 

 

Figure 2.5. The Role of Regulation in the Cybernetic Variables. The behavior of the scaled 

cybernetic model enzyme level simulations (green in ATP stimulated case and magenta in KLA 

primed followed by ATP stimulated case) generally match the trends of the scaled gene 

expression values (black dashed lines) for PtGES and Hpgds/PtGDS2 pathways in (left) ATP 

and (right) combined KLA primed ATP stimulated treatments. 
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2.5 Discussion 

The cybernetic approach differs substantially from other modeling methods. For traditional 

kinetic modeling, detailed metabolic regulatory mechanisms are necessary [67, 68]; however, the 

cybernetic approach models these regulatory actions as a collective process with an optimal system 

objective. Cybernetic enzymes and variables are used to describe a succinct mode of regulation 

related to the organism’s goal. While we show that cybernetic modeling predicts complex cellular 

phenomena, we also validate the assumption that the cybernetic control mechanisms mimic 

cellular regulation [66]. The cybernetic variables for enzyme synthesis and activity, 𝑢𝑖  and 𝑣𝑖, are 

compared with cellular data that is representative of the regulatory mechanisms in cells. We show 

that the scaled predicted enzyme profiles generally match the behavior of their corresponding 

genes identified from literature (Section 3.3). These predicted enzyme levels are calculated from 

metabolomics data and are made on the assumption that enzymes for substrate pathways are 

regulated in such a way as to optimize the objective function—in this case, formation of TNF-α. 

The predicted enzyme levels as informed by the 𝑒𝑖 control variables are independent of the gene 

expression data. Qualitatively comparing the behavior of the dynamic gene expression profiles 

with the predicted enzyme levels further validates our cybernetic model (Figure 2.5) and serves to 

validate the idea that modeling macrophage cells from a goal-oriented perspective is useful. 

Additionally, the fact that the model, with the TNF-α objective function, is able to make 

predictions of the KLA primed and ATP stimulated treatment case, as well as, of gene expression 

trends validates the use of TNF-α as a control assumption central to the model.  

 

The statistical analysis of multi-omics data coupled with development of mathematical 

models aid in the unraveling of complex biological systems. In this study, we used a two-step, 

hybrid optimization approach to estimate rate constants of the AA metabolic network in BMDM 
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using time-course lipidomic data. All the kinetic parameters in our models were estimated through 

a nonlinear optimization approach based on the experimental data. Therefore, this study using a 

multi-omics data-driven systems biology approach is useful for understanding in vitro eicosanoid 

metabolism. Our model showed a good fit to the experimental data as seen from the goodness of 

fit performed by the F-test (Table 2.2), which suggests that the model captured the key 

characteristics of the lipid metabolic network in BMDM cells. After fitting parameters to two 

conditions (i.e., the control and ATP treatment conditions), the model provided the fits which are 

shown in Figure 2.2. Effectively, this model is reliable as it is also evident that the model correctly 

explains the evolution of the metabolite concentrations for the different conditions involved in the 

fit. In the control condition, we see a relatively low rate of prostaglandin formation as we expect. 

The ATP treatment case shows a good agreement with all prostaglandin products generated, and 

the kinetics of the model are cross-validated using an additional treatment condition, KLA primed 

ATP stimulated (Figure 2.4).  

We then compared the effective rate constants associated with the enzymes PtGDS2 (EC 

5.3.99.2) and PtGES (EC 5.3.99.3) and their corresponding values reported in the literature to 

confirm the reliability of our optimized parameter values [69-75]. In order to compare the enzyme 

activities obtained from concentrations in LIPID MAPS experimental data and literature values of 

enzyme-enriched protein, we used appropriate conversion factors as discussed in Kihara et al., 

2014 [50]. In summary, the calculated values from our simulation of eicosanoid metabolism for 

PtGDS2 activity and PtGES were within the expected range of values reported in the literature. 

The reported flux of PGD2 in macrophages is not detectable and determined to be less than 1 

nmol/min/mg of total protein which is consistent with our model value, 1x10-5 nmol/min/mg of 

total protein [74]. For the flux of PGE2, the reported literature value of 0.4 pmol/min/mg of total 
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protein is of the same order as our computed value, 0.1 pmol/min/mg of protein [71]. Our 

computed values are consistent with those reported in the literature and further validate our 

computational model. 

2.6 Concluding remarks 

We have developed a quantitative model of the eicosanoid metabolic pathway by using 

cybernetic regulation in primary macrophages under control (basal) and ATP stimulation 

conditions. Additionally, we have been successful in predicting metabolite levels of the eicosanoid 

profiles and capturing the relative changes in gene expression of relevant enzymes under a set of 

conditions different from that used for calculating the model rate constants. In particular, we 

successfully predicted the eicosanoid profiles for the KLA-primed ATP-stimulated case. We have 

demonstrated the use of the cybernetic approach to model the regulation of mammalian lipid 

metabolism. The cybernetic model provides a robust description of metabolite formation and can 

be used to predict perturbations to metabolism. Our computational model assists in understanding 

the complexity of eicosanoid metabolism and in examining complex regulatory phenomena.
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3 MULTI-OBJECTIVES CAPTURE THE DIVERSE BRANCHES OF 

EICOSANOID FUNCTIONS   

3.1 Summary 

In general, the cybernetic goal for mammalian cells may not be based solely on survival or 

growth but on specific context dependent cellular responses. In Chapter 2, we modeled the 

dynamics of arachidonic acid (AA) metabolism during the inflammatory response of murine bone 

marrow derived macrophages (BMDM) using a cybernetic approach where the goal of the cell was 

to defend the organism from infection [86]. Given the complexity of mammalian systems, cells 

can have multiple biological roles; therefore, the cybernetic goal may be composed of multiple 

objectives. We show that we are able to effectively capture the dynamics of the eicosanoid network 

using different cybernetic objectives to describe the system.  

3.1.1 The case for multiple objectives 

For unicellular organisms, the goal can be as simple as maximizing the organism’s growth 

rate, but for multicellular organisms, the goal may be different and/or more complex depending on 

the context. For example, the process of inflammation is mediated by the production of multiple 

cytokines, chemokines, lipid mediators, etc. each of which contribute to specific individual 

objectives. For complex processes in mammalian systems, a cybernetic objective based on a single 

protein/component may not be sufficient to capture the biological process thereby necessitating 

the use of multiple objectives or a single objective dependent on the cellular levels of several 

biological or molecular components. Below we provide one example of macrophage cell activation 

leading to an inflammatory response where a goal composed of multiple cybernetic objectives is 

warranted.  
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In the case of inflammation, upon binding of lipopolysaccharide (LPS) to the toll like 

receptor (TLR)-4 on macrophages, signaling pathways such as NF-kB and p38 MAPK pathways 

are activated, leading to an inflammatory response. This activation results in the production of 

cytokines, such as TNF-α, interleukin (IL)-2, and IL-10, as well as, upregulation of mRNA for 

several enzymes involved in production of prostaglandins and other lipids. This activation and 

upregulation leads to substantial remodeling of lipid metabolism [76-79]. Figure 3.1 illustrates a 

metabolic network in which various lipids are remodeled during the inflammatory response. This 

lipid remodeling can be associated with different phenotypes, e.g., eicosanoids, a subcategory of 

the fatty acyls, are known to contribute to inflammation [61, 80], and ceramides regulate cell 

survival and apoptosis [81]. From this example, it is clear a single objective may not be able to 

define the regulation across various lipid categories as a result of multiple functional endpoints. 

3.1.2 The eicosanoid oxygenases 

Even within eicosanoid metabolism, the cyclooxygenase (COX) enzymes catalyze the 

production of prostaglandins and thromboxane, while the lipoxygenase (LOX) enzymes catalyze 

the production of leukotrienes and lipoxins. Prostaglandins are responsible for initiating acute 

inflammation and mediating pain during the inflammatory response [61, 80, 82]. Thromboxane 

(TXA2)—a pro-inflammatory prostanoid that augments cellular immune responses and tissue 

injury—has a homeostatic role in platelet aggregation. Leukotrienes exhibit pro-inflammatory 

action and are produced at the sites of inflammation. Conversely, lipoxins are anti-inflammatory 

and promote infiltration of monocytes required for resolution of inflammation and wound healing. 

The multitude, as well as, variation of signals within the eicosanoid network warrants the use of 

multiple objectives.  
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Figure 3.1. Detailed network for LPS-stimulated lipid metabolism and signaling pathway. Black 

lines represent lipid metabolism, red lines represent signaling pathways, and the magenta dashed 

lines represent metabolite to protein activity modulations. Metabolites and enzymes are 

represented in rectangular boxes and oval boxes, respectively. The metabolites are colored based 

on their lipid categories. The measured and unmeasured metabolites are differentiated by thick 

and thin borders, respectively [76]. 

 

Now, let us consider a single node in the metabolic network, namely the COX2 enzyme. 

The quantitative level and activity of the COX2 enzyme, linked to AA metabolism, are highly 

regulated by the activation of NF-κB and p38 MAPK signaling pathways (Figure 3.1). Cells also 

regulate COX2 by intracellular compartmentation and AA levels [83]. The regulation is, therefore, 

complex even at a single node in the network. Earlier models have defined enzyme levels using 

transcriptomic data and incorporated regulation at the transcriptional level only [84, 85]. As 



 

54 

previously discussed in Chapter 2, the cybernetic model by Aboulmouna et al. used a single 

objective function based on concentrations of TNF-α protein [86]. TNF-α is a key cytokine 

produced in response to LPS stimulation and has no explicitly known interactions with 

prostaglandins; however, both the TNF-α and prostaglandin products correlate with increased 

inflammation. Several other cytokines are also produced during inflammation. TNF-α in 

combination with other inflammatory cytokines, such as IL-1, IL-6, and IL-12, can serve as a 

correlate of prostaglandin production [87], however, leukotrienes are known to increase the 

expression of adhesion proteins and promote cell motility [88]; they can correlate better with 

chemokines such as CCL2. As a result, each subprocess or even specific node might be correlated 

with sets of mediator molecules (including cytokines, chemokines, and lipids) pertaining to 

different objectives. 

In the following sections, we explore the use of a single cybernetic objective to describe the 

network metabolic behavior and compare this to the use of two cybernetic objectives in defining 

of the system’s cybernetic goal.  

3.2 Methods 

3.2.1 Development of the kinetic model 

The structure of the kinetics for this reaction network is again arranged into two segments 

(Figure 3.2). The first describes the conversion of AA into PGH2 described by standard linear 

kinetics and an adapted Michaelis-Menten kinetic equation. The kinetics of this reaction is 

modeled as three separate mechanisms including a basal rate of synthesis, generation due to ATP 

stimulation, and KLA priming of cells as follows. The AA is metabolized into n products Pi in the 

presence of enzyme ei. For i = 1 to n, 
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𝑟𝐴𝐴→𝑃𝑖
=  𝑘𝑖𝑒𝑖[𝐴𝐴](1 + 𝑘𝑎𝑡𝑝[𝐴𝑇𝑃] + 𝑘𝑘𝑑𝑜[𝐾𝐷𝑂] + 𝑘𝑘𝑑𝑜𝐴𝑇𝑃[𝐾𝐷𝑂][𝐴𝑇𝑃]) 3.1 

 

The rate of production of Pi from AA can be written as: 

 

𝑑𝑃𝑖
𝑑𝑡

= 𝑘𝑖𝑒𝑖[𝐴𝐴](1 + 𝑘𝑎𝑡𝑝[𝐴𝑇𝑃] + 𝑘𝑘𝑑𝑜[𝐾𝐷𝑂] + 𝑘𝑘𝑑𝑜𝐴𝑇𝑃[𝐾𝐷𝑂][𝐴𝑇𝑃]) − 𝑔𝑖𝑃𝑖

− (𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑓𝑙𝑢𝑥𝑒𝑠) 

3.2 

 

where 𝑔𝑖  is the degradation rate constant. Here, Pi represents PGH2, LTA4, 5-HETE, and 15-

HETE metabolites in the system (Figure 3.2). It is important to note that PGH2 and LTA4 are 

unstable intermediates and therefore not measured metabolites in the system (denoted by a 

translucent circle in Figure 3.2). The enzyme level, 𝑒𝑖, is governed by the following equation: 

𝑑𝑒𝑖

𝑑𝑡
= 𝛼 +

𝑘𝑒,𝑖[𝐴𝐴]

[𝐴𝐴] + 𝐾𝑀,𝐴𝐴
− 𝛽𝑒𝑖 

 

3.3 

The three terms on the right-hand side denote the constitutive rate 𝛼, the maximum inducible rate 

of enzyme synthesis which takes on the form of Michaelis-Menten kinetics, and the decrease of 

enzyme level through degradation defined by the rate constant 𝛽.  
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Figure 3.2. Expanded Eicosanoid network of AA metabolism to PG and LK products.  The 

network is divided into 3 sections, AA metabolism, PGH2 metabolism, and LTA4 metabolism.  

 

To capture the effect of ATP and KDO, the treatments to the culture are modeled as a 

piecewise function  

 

𝑓(𝑡) =  {
  𝑘𝑠𝑡               𝑖𝑓 𝑡 ≤ 1/𝑘𝑠 

  e−𝑘𝑑(𝑡−1/𝑘𝑠)    𝑖𝑓 𝑡 > 𝑘𝑠  
 

 

3.4 

where kd and ks were determined from a regression model to obtain the piecewise function, f(t). 

This piecewise function ramps up to a maximum value ks and the second term which includes 

exponential decay instead of a linear function to describe desensitization (kd) of cells to a given 

stimulus [65]. 

3.2.2 The cybernetic framework 

The other segments of this model employ the cybernetic framework to capture regulation 

between the different metabolic options [65]. In the cybernetic framework, there are two 
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descriptions of the reaction kinetics. The first is the raw, enzyme-dependent rate of reaction which 

we termed the kinetic rate of reaction. This kinetic rate includes an enzyme quantity, 𝑒𝑖, which 

represents the amount of enzyme ei devoted to the conversion of substrate metabolite 𝑀𝑠 to 𝑛 

product metabolites 𝑃𝑖. 

 

𝑀𝑠

𝑒𝑖
→ 𝑃𝑖  𝑤ℎ𝑒𝑟𝑒 𝑖 = 1 𝑡𝑜 𝑛 3.5 

 

 

The rate of production of 𝑃𝑖 from 𝑀𝑠 can be written as: 

 

𝑟𝑀→𝑃𝑖

𝑘𝑖𝑛 =  𝑒𝑖𝑘𝑃𝐺𝑖
[𝑀𝑠] 

 

3.6 

The second description uses the cybernetic approach which assumes a certain metabolic 

objective, namely, optimal production of PG derivatives leading to maximum TNF-α production. 

The framework views each pathway as a metabolic option to achieve such an objective and 

describes metabolic regulation in terms of their optimal combinations. Flux through the ith pathway 

is modeled as regulated by the control of enzyme level and its activity, i.e., 

 

𝑟𝑀𝑠→𝑃𝑖
= 𝑟𝑃𝑖

𝑘𝑖𝑛𝑣𝑖                             

 

3.7 

where 𝑟𝑃𝑖

𝑘𝑖𝑛 is the unregulated rate defined above to produce 𝑃𝑖 and 𝑣𝑖 is the cybernetic variable 

controlling enzyme activity. The resulting ordinary differential equations (ODEs) for each 

metabolite incorporated into the model can be written as a combination of regulated rates 
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𝑑𝑃𝑖

𝑑𝑡
= 𝑟𝑃𝑖

𝑘𝑖𝑛𝑣𝑖 − 𝑔𝑖𝑃𝑖                   

 

3.8 

where 𝑔𝑖  is the degradation rate constant. The enzyme level, 𝑒𝑖, is governed by the following 

equation: 

𝑟𝑒𝑖
𝑘𝑖𝑛 =  𝑘𝑒𝑖

[𝑀𝑠] 3.9 

 

𝑑𝑒𝑖

𝑑𝑡
= 𝛼 + 𝑟𝑒𝑖

𝑘𝑖𝑛𝑢𝑖 − 𝛽𝑒𝑖 

 

3.10 

where 𝑢𝑖 is the cybernetic variable regulating the rate of enzyme synthesis. The three terms on the 

right-hand side denote the constitutive rate 𝛼, the maximum inducible rate 𝑟𝑒𝑖
𝑘𝑖𝑛 of enzyme 

synthesis modulated by cybernetic variable 𝑢𝑖 , and the decrease of enzyme level through 

degradation defined by the rate constant 𝛽.  

The cybernetic control variables, 𝑢𝑖  and 𝑣𝑖, are computed from the Matching and 

Proportional laws, respectively: 

𝑢𝑖 =
𝜌𝑖

∑ 𝜌𝑘𝑘
  3.11 

 

𝑣𝑖 =
𝜌𝑖

𝑚𝑎𝑥𝑘(𝜌𝑘)
  3.12 

 

where the return-on-investment, 𝜌𝑖 , is defined by the flux through a particular pathway and is 

determined based on the designated system goal or objective [24]. 
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3.2.3 Defining the cybernetic objective 

PGs are well-characterized for their roles in the inflammatory response. Thus, in Chapter 

2 (Aboulmouna et al), we focused on regulation of PG synthesis as a function of TNF-α, a marker 

of inflammation, for the selection of the model’s objective function. However, we explore the 

possibility of a combined objective for the approach of modeling the expanded network. To 

quantify the relationship between metabolites and the designated cytokine for each corresponding 

branch of the network a simple, linear ODE for the rate of cytokine (e.g., TNF-α) is developed as 

a function of metabolite 𝑚𝑖 (e.g., PGE2) levels:  

 

𝑑[𝐶𝑗]

𝑑𝑡
= ∑ ℎ𝑖[𝑚𝑖]

𝑖

−  𝛾[𝐶𝑗] 3.13 

 

We can also approximate the time derivative of TNF-α concentration as a linear combination of 

time derivatives of 𝑃𝐺𝑖 concentrations over the time course. To determine the contribution of each 

𝑚𝑖 pathway leading to TNF-α production we define the weights, 𝑤𝑖 , as follows:  

 

𝑤𝑖 =
ℎ𝑖

∑ ℎ𝑗𝑗
 3.14 

 

where 𝑤𝑖  are weights obtained from regression using seven time points across the ATP stimulated 

condition; 𝑤𝑖  does not change with time. Of the pathways modeled, there is a varying degree of 

inflammation that results from the generation of each 𝑚𝑖 as described by the objective function. 

In this particular system, the ROI for each pathway is assumed to be the amount of 𝐶𝑗 that each 
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unregulated pathway can yield at each instant in time which is described by 𝜌𝑖  (adapted from 

Straight 1994) for divergent branch points in a metabolic network. 

 

𝜌𝑖 = 𝑤𝑖𝑟𝑚𝑖→𝑃𝑖

𝑘𝑖𝑛 /𝑃𝑖 3.15 

3.2.4 Estimation of the kinetic rate parameters and uncertainty analysis 

The model was parameterized using data from three of the four available experimental 

conditions, the control, the KLA primed, and the ATP treatment cases. Data was available for the 

Prostaglandin and Leukotriene metabolites as an 8 point time series for the control case (7 points 

for the treatment cases) over a 20 hour time window. We do not have measurements for the level 

of PGH2 and LTA4 because they are unstable intermediates. Therefore, in the parameter estimation 

process, we optimized the profile for PGH2 formation with the constraint that its maximum 

concentration remains ∼10 pmol/μg DNA based on the total amount of PGs produced and a 

constraint was not required for LTA4. The magnitudes of different metabolites varied from 0.001 

to 10 pmol/μg of DNA. To fit the model to the data, a least squared fit error was computed from 

the scaled profiles of the lipid with respect to its maximum value to ensure that the varying 

magnitude of each metabolite’s level did not skew the parameters towards the sole fit of the one 

metabolite with highest magnitude. The overall objective function for fitting the data was to 

minimize the fit-error between the experimental and the predicted metabolite concentrations [49]: 

 

min
𝐾,𝑋𝑜

(∑ (∑ (𝑦𝑖,𝑗,𝑒𝑥𝑝 − 𝑦𝑖,𝑗,𝑝𝑟𝑒𝑑(𝐾, 𝑋0))
2

/max (𝑦𝑖,𝑗,𝑒𝑥𝑝) 

𝑛𝑖

𝑗=1

)

𝑛𝑠𝑝

𝑖=1

) 

3.16 
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where K are the parameters or rate constants, X0 are the initial conditions of enzyme 

concentrations, ni is the number of time-points, 7 (indexed as j), and nsp is the total number of 

species (indexed as i). The ODEs in the model were solved using ode15s for stiff systems in 

MATLAB (2019, Natick, MA).  Parameters (Table 1) were optimized using a three-step hybrid 

optimization procedure that started with a heuristic search algorithm (Matlab® function 

“MultiStart”) seeded with an initial parameter set and run up to 90 iterations to determine near 

optimal parameter values. The result from the application of the heuristic optimization was then 

further refined using a two-step local optimization approach employing a string-searching 

algorithm (Matlab® function “patternsearch”) followed by a generalized constrained non-linear 

optimization employing a gradient search method (Matlab® function “fmincon”).  

The goodness of the fits was assessed by comparing the variance for the fitted data to the 

variance in the experimental (replicate) data (treatments and control data combined) using the F-

test as follows [50]: 

 

𝐹 =

𝑆𝑆𝐸𝑓𝑖𝑡

(𝑛𝑒 × 𝑛𝑡)⁄

𝑆𝑆𝐸𝑒𝑥𝑝

(𝑛𝑒 × 𝑛𝑡 × (𝑛𝑟 − 1))⁄
 

3.17 

 

𝐹 =

(∑ (𝑌𝑗
𝑡𝑟𝑡 − �̅�𝑗

𝑡𝑟𝑡)
2𝑛𝑡

𝑗=1 + ∑ (𝑌𝑗
𝑐𝑡𝑟𝑙 − �̅�𝑗

𝑐𝑡𝑟𝑙)
2𝑛𝑡

𝑗=1 )

(𝑛𝑒 × 𝑛𝑡)
⁄

(∑ ∑ (𝑋𝑖𝑗
𝑡𝑟𝑡 − �̅�𝑗

𝑡𝑟𝑡)
2𝑛𝑟

𝑖=1
𝑛𝑡
𝑗=1 + ∑ ∑ (𝑋𝑖𝑗

𝑐𝑡𝑟𝑙 − �̅�𝑗
𝑐𝑡𝑟𝑙)

2𝑛𝑟
𝑖=1

𝑛𝑡
𝑗=1 )

(𝑛𝑒 × 𝑛𝑡 × (𝑛𝑟 − 1))
⁄

  

3.18 

 

where Xj, 𝑋j, and Yj denote the experimental data, mean experimental data, and simulated (fitted) 

data at time point j, respectively, nr is the number of replicates (nr = 3, indexed as i), nt is the 
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number of time points (nt = 7, indexed as j), ne is the number of experimental conditions used, and 

trt and ctrl are treatment and control groups, respectively. The degrees of freedom for determining 

the F distribution are df1 = (𝑛𝑒 × 𝑛𝑡) and df2 = (𝑛𝑒 × 𝑛𝑡 × (𝑛𝑟 − 1)). F statistic values for the 

fitted data smaller than F0.95 (21, 42) = 1.81 indicate statistically equal variance in simulated (fitted) 

and experimental data; whereas, F values smaller than F0.05 (21, 42) = 0.51 indicate the fit-error is 

statistically smaller than the experimental error. For the prediction case of KLA primed, ATP 

stimulated BMDM, F statistic values smaller than F0.95 (7, 14) = 2.76 indicate statistically equal 

variance in simulated and experimental data; whereas, F values smaller than F0.05 (7, 14) = 0.28 

indicate the fit-error is statistically smaller than the experimental error. 

3.3 Results 

3.3.1.1 Relating inflammation to the cybernetic objective  

As noted in previous chapters, cybernetic modeling is a goal driven approach to modeling 

dynamic systems. The essence of cybernetics lies in the provided goal chosen to describe the 

overall system behavior. Cybernetic models have their origin in the hypothesis that metabolic 

regulation has evolved so that cells make optimal decisions when presented with metabolic choices 

[89]. They integrate intracellular kinetics with an abstracted description of metabolic regulation 

and control. These control mechanisms are manifested as control variables that modify each kinetic 

rate in the model. As described previously, cybernetic models have two types of control variables, 

the ui and vi variables. The u variables are the outputs of an optimal control program managing 

gene expression while the cybernetic v variables control enzymatic activity. An additional 

cybernetic control variable has been formulated, wi , which describes allocation of translational 

resources [65].  
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We define a local cybernetic objective to the description of different branches within the 

eicosanoid network which correlate with known physiological changes in immune response such 

as increased cytokine or chemokine levels. The prostanoids are either correlated to TNF-α  

(denoted as single objective) or designated as equivalently valuable (denoted as equal objective) 

in the onset of inflammatory signaling such that each metabolite contributes equally, and we 

simply define the objective as maximizing the product of all prostanoids.  The leukotriene branch 

objective is defined based on correlation with the chemoattractant CCL2 (two objective case), 

which is then compared to the prostaglandin objective of TNF-α (single objective case) as the 

representative inflammatory cytokine, as well as a third objective in which equivalent weightage 

(equal weight case) is assigned to each LK in the branch. The weights of each objective designation 

were calculated via an ODE relation describing cytokine rate to a corresponding set of metabolites 

(3.2.3). In order to avoid an overfitting problem, the metabolites associated with each objective 

were limited to their respective branch ( 

Table 3.1 and Table 3.2).  

 

Table 3.1. Calculated weights associated with the LOX metabolic network. 

weight CCL2 

objective 

Equal 

objective 

wLTB4 0.10 0.33 

wepiLTB4 0.63 0.33 

wt-epi-LTB4 0.27 0.33 

 

  



 

64 

Table 3.2. Calculated weights associated with the COX metabolic network. 

weight TNF-α 

objective  

Equal 

objective 

wPGE2 0.15 0.25 

wPGF2α 0.29 0.25 

wPGD2 0.33 0.25 

wTXB2 0.23 0.25 

3.3.1.2 Simulation 

To obtain the kinetic parameters, the AA metabolic network was simplified and divided 

into COX and LOX subnetworks similar to the division for the objective designation (Figure 3.2 

detailed illustration of the intracellular signaling with eicosanoid metabolic network is shown in 

Figure 3.1). As an example of simplification, thromboxane A2 (TXA2) synthase (Thromboxane 

A synthase (TXAS)/thromboxane A synthase 1 (Tbxas1)) produces a bioactive lipid mediator, 

TXA2, but TXA2 is rapidly and nonenzymatically degraded to TXB2, which is measurable under 

our experimental condition. Therefore, the simplified network included TXB2 but not TXA2. 

Next, the models for both pathways were described by 24 ODEs in total and 56 parameters. The 

rate constants were estimated using a three-step hybrid optimization approach (3.2.4). Then, the 

eicosanoid profiles for the control, KLA primed, and ATP non-primed were simulated (Figure 3.3, 

Figure 3.4, and Figure 3.5) using three different cybernetic model objectives defined previously as 

TNF-α, CCL2, or equal weightage, respectively.  

3.3.1.3 Prediction 

To test the validity of the calculated parameters for all three of the models, we used the 

parameter values to predict a third independent data set, the eicosanoid profile in KLA-primed and 

ATP stimulated BMDM cells. When the profiles were predicted with the optimized parameter 
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values, the model prediction did not fit the experimental data very well. Up to 10% variability was 

allowed in the optimized parameter values. The range was determined from the 30% variability 

chosen based on previous work by our group in determining the uncertainty of the calculated 

parameters in the ATP-stimulated model [50]. The prediction with the relaxed bounds on the 

parameters for all three models yields a good fit to experimental data (Figure 3.3, Figure 3.4, and 

Figure 3.5). This prediction of an independent experimental dataset (KLA primed and ATP 

stimulated case), which was not used to fit the ATP-stimulation data, further validated the models 

and parameter values. The mathematical model reflects the AA metabolic network dynamics in 

BMDM cells. 
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Table 3.3 Calculated kinetic parameters for the COX pathway. The columns represent 

parameters calculated for each cybernetic model with either a single objective, two objectives, or 

no defined objective. The parameters are described as calculated parameter ± standard-error of 

mean (SEM) calculated from the uncertainty analysis.  

**Note the (--) indicates those parameters were held the same as in the single model case. 

Parameter Single 

objective 

Two 

objectives 

Equal 

objective 

      kPGH2 0.0056 -- 0.0050 

      kPGD2 0.5833 -- 0.4921 

      kPGE2 0.0182 -- 0.0062 

     kPGF2a 0.0025 -- 0.0018 

      kTXB2 0.0172 -- 0.0103 

     kdPGD2 0.0515 -- 0.0520 

      kPGJ2 0.0205 -- 0.0207 

     kdPGJ2 0.0362 -- 0.0388 

      gPGH2 0.6727 -- 0.4186 

      gPGD2 0.0095 -- 0.0045 

      gPGE2 7.19E-07 -- 1.32E-06 

     gPGF2a 7.21E-07 -- 7.11E-07 

      gTXB2 7.14E-07 -- 7.12E-07 

     gdPGD2 7.05E-07 -- 7.07E-07 

      gPGJ2 7.18E-07 -- 7.10E-07 

     gdPGJ2 0.0906 -- 0.1032 

     PGH2_0 0.0080 -- 0.0074 

   PGH2_K_0 0.9969 -- 0.9999 
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Table 3.4 continued 

Parameter Single 

objective 

Two 

objectives 

Equal 

objective 

       kATP_P 4.9998 -- 4.9991 

       KmAA 32.6344 -- 48.0240 

       KmPG 2.3630 -- 1.4908 

     kePGH2 0.5998 -- 0.9997 

     kePGD2 0.9999 -- 1.0000 

     kePGE2 0.9579 -- 0.8778 

     kePGF2 0.4755 -- 0.3786 

     keTXB2 0.5866 -- 0.4835 

  ePGH2_K_0 0.9970 -- 0.8286 

  ePGD2_K_0 0.0807 -- 0.1651 

  ePGE2_K_0 0.0316 -- 0.1622 

 ePGF2a_K_0 0.2659 -- 0.7993 

  eTXB2_K_0 0.4488 -- 0.5614 

      kLTB4 3.7248 4.9979 4.9256 

      kepiL 4.7975 1.7410 4.4478 

    ktransL 4.6567 3.6802 4.4778 

      kLTA4 0.0002 0.0002 0.0002 

     kHETE5 0.0004 0.0005 0.0005 

    kHETE15 0.0002 0.0001 0.0001 

      gLTB4 0.7044 0.9457 0.8706 

      gepiL 0.3519 0.2946 0.4394 
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Table 3.5 continued 

Parameter Single 

objective 

Two 

objectives 

Equal 

objective 

    gtransL 0.8269 0.8416 0.7316 

      gLTA4 0.3474 0.5946 0.3299 

     gHETE5 0.8784 0.9982 0.9668 

    gHETE15 0.2768 0.2438 0.2578 

     LTA4_0 0.0009 0.0010 0.0010 

   LTA4_K_0 0.0005 0.0005 0.0005 

  eLTB4_K_0 0.5551 0.6384 0.5566 

  eepiL_K_0 0.7226 0.7766 0.7405 

 etransL_K_0 0.7526 0.7758 0.7306 

  eLTA4_K_0 0.7883 0.7999 0.7975 

eHETE15_K_0 0.6956 0.5995 0.6656 

     keLTB4 0.4857 0.1603 0.4317 

     keEPIL 0.2246 0.1495 0.2715 

   ketransL 0.3168 0.2327 0.3207 

     keLTA4 0.6220 0.5610 0.5733 

   keHETE15 0.7040 0.6085 0.6863 

     kATP_L 0.0017 0.0003 0.0017 

       kmLK 0.0139 0.0851 0.0135 

       beta 0.5375 0.5375 0.8909 
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Figure 3.3. Cybernetic Simulation of Eicosanoid Levels for the Two Objective Case. The 

computational simulation of the eicosanoid profile is generated using the cybernetic model with 

the defined objective of CCL2 for the Leukotriene branch and TNF-α for the Prostaglandin 

branch in three different treatment conditions (control, KLA primed, and ATP stimulated 

BMDM) and used to predict a fourth independent data set (KLA primed/ATP stimulated). The 

mean experimental data (circles) with associated standard error of the mean (SEM) from three 

replicate experiments (n = 3) for the KLA primed (blue), ATP stimulated (green), control (red), 

and KLA primed/ATP stimulated (magenta) cases are taken from the mass spectrometry 

measurements of lipids. The simulation results are shown for the treatment and control cases 

(solid blue, green, and red curves, respectively) along with the prediction curve (magenta) for the 

combined KLA primed/ATP stimulated condition. 
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Figure 3.4. Cybernetic simulation of Leukotrienes with TNF-α as the defined cybernetic 

objective. The computational simulation of the eicosanoid profile is generated using the 

cybernetic model with the defined objective of TNF-α  for the Leukotriene branch in three 

different treatment conditions (control, KLA primed, and ATP stimulated BMDM) and used to 

predict a fourth independent data set (KLA primed/ATP stimulated). The mean experimental 

data (circles) with associated standard error of the mean (SEM) from three replicate experiments 

(n = 3) for the KLA primed (blue), ATP stimulated (green), control (red), and KLA primed/ATP 

stimulated (magenta) cases are taken from the mass spectrometry measurements of lipids. The 

simulation results are shown for the treatment and control cases (solid blue, green, and red 

curves, respectively) along with the prediction curve (magenta) for the combined KLA 

primed/ATP stimulated condition. 
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Figure 3.5. Cybernetic Simulation of Eicosanoid Levels for the Equal Weightage Cybernetic 

Model. The computational simulation of the eicosanoid profile is generated using the cybernetic 

model with the defined objective of equal weightage metabolites for the Leukotriene and 

Prostaglandin branches in three different treatment conditions (control, KLA primed, and ATP 

stimulated BMDM) and used to predict a fourth independent data set (KLA primed/ATP 

stimulated). The mean experimental data (circles) with associated standard error of the mean 

(SEM) from three replicate experiments (n = 3) for the KLA primed (blue), ATP stimulated 

(green), control (red), and KLA primed/ATP stimulated (magenta) cases are taken from the mass 

spectrometry measurements of lipids. The simulation results are shown for the treatment and 

control cases (solid blue, green, and red curves, respectively) along with the prediction curve 

(magenta) for the combined KLA primed/ATP stimulated condition.  
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Table 3.6. Model Accuracy for the single objective (TNF-α) model. Goodness of fit, F-test, for 

simulated/optimized (control, adenosine triphosphate (ATP) stimulated, and Kdo2-Lipid A 

(KLA) primed data) and predicted (Kdo2-Lipid A (KLA) primed and ATP stimulated) cases. F 

values smaller than F0.05(21, 42) = 0.51 indicate that the fit-error is statistically smaller than the 

experimental error; whereas, the F values smaller than F0.95(21, 42) = 1.81 indicate statistically 

equal variance in simulated (fitted) and experimental data. 

 

Metabolite 

 

Model Fit 

to Data 

Model Prediction 

to KLA+ATP Data 

PGD2 0.4462 0.3171 

PGE2 0.6382 0.3082 

PGF2α 0.2873 0.2551 

TXB2 0.4209 0.2803 

dPGD2 0.4869 0.6840 

PGJ2 0.4453 0.2142 

dPGJ2 0.4534 0.3430 

LTB4 0.2289 0.2792 

12-epi-LTB4 0.2462 0.2161 

6-trans-epi-LTB4 0.2350 0.2854 

5-HETE 0.2865 0.2597 

15-HETE 0.2842 0.3189 
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Table 3.7. Model accuracy for Leukotriene branch with CCL2 objective. Goodness of fit, F-test, 

for simulated/optimized (control, adenosine triphosphate (ATP) stimulated, and Kdo2-Lipid A 

(KLA) primed data) and predicted (Kdo2-Lipid A (KLA) primed and ATP stimulated) cases. F 

values smaller than F0.05(21, 42) = 0.51 indicate that the fit-error is statistically smaller than the 

experimental error; whereas the F values smaller than F0.95(21, 42) = 1.81 indicate statistically 

equal variance in simulated (fitted) and experimental data. 

Metabolite 
Model Fit 

 to Data 

Model Prediction  

to KLA+ATP Data 

LTB4 0.2394 0.1992 

12-epi-LTB4 0.2422 0.2896 

6-trans-epi-LTB4 0.2306 0.2958 

5-HETE 0.2902 0.3350 

15-HETE 0.2861 0.3011 
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Table 3.8. Model accuracy for equal weightage cybernetic model of eicosanoid metabolism. 

Goodness of fit, F-test, for simulated/optimized (control, adenosine triphosphate (ATP) 

stimulated, and Kdo2-Lipid A (KLA) primed data) and predicted (Kdo2-Lipid A (KLA) primed 

and ATP stimulated) cases. F values smaller than F0.05(21, 42) = 0.51 indicate that the fit-error is 

statistically smaller than the experimental error; whereas the F values smaller than F0.95(21, 42) = 

1.81 indicate statistically equal variance in simulated (fitted) and experimental data. 

Metabolite 
Model Fit  

to Data 

Model Prediction 

to KLA+ATP Data 

PGD2 0.4382 0.3320 

PGE2 0.6202 0.3861 

PGF2α 0.2850 0.2568 

TXB2 0.4204 0.2847 

dPGD2 0.4813 0.8027 

PGJ2 0.4347 0.2263 

dPGJ2 0.4421 0.3568 

LTB4 0.2330 0.2792 

12-epi-LTB4 0.2473 0.2161 

6-trans-epi-LTB4 0.2321 0.2854 

5-HETE 0.2890 0.2597 

15-HETE 0.2833 0.3189 

 

The eicosanoid model robustness was evaluated by performing a parametric sensitivity 

analysis in which each parameter was varied individually by +/- two-fold of the original optimized 

value. The slope of each parameter and metabolite sensitivity curve was calculated to evaluate the 

sensitivity. A heat map of the slopes was then generated. Small to moderate sensitivities in most 

of the parameters were observed. As expected, very little or no variation in the degradation 

parameters is seen in response to metabolite changes. Based on these results, our models of 

eicosanoid metabolism are shown to be robust with respect to parametric perturbations.        
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3.4 Discussion 

3.4.1 Understanding the role of regulation in the cybernetic variables 

Eicosanoids are derived from arachidonic acid (AA), a 20-carbon fatty acid, and are further 

classified into prostaglandins, thromboxanes, leukotrienes, and other oxidized products [47]. PGs 

have been found to mediate pain, fever, and other symptoms associated with inflammation [48]. 

Prostanoids thus formed are immediately released outside of the cell, with little if any of the 

product remaining in the cell. Because they are either chemically or metabolically unstable, 

prostanoids work only locally, near their site of production. PGI2 and TXA2 spontaneously degrade 

into inactive compounds under physiological conditions, and other PGs are enzymatically 

inactivated during a single passage through the lung. In addition, PGD2 and PGE2 are slowly 

dehydrated in biological fluids containing serum albumin to yield the cyclopentenone PGs, PGA2 

and PGJ2, which contain an unsaturated ketone. Evaluating the role of regulation as it appears in 

our model results allows us to relate the significance of our model to biologically relevant 

mechanisms. 

3.4.1.1 u and v dynamics (biological significance) 

Two prominent features of acute inflammation are vasodilation and pain generation which 

are attributed to prostanoid contributions. The profiles of prostanoids generated in an inflammatory 

site change during the course of inflammation and are also dependent on the stimulus and site of 

inflammation [6]. In pain, the PGs are involved in both hyperalgesia, an increased sensitivity to a 

painful stimulus, and allodynia, a pain response to a usually nonpainful stimulus.  

Additionally, systemic illnesses are typically associated with fever, loss of appetite, fatigue, 

and the induction of slow-wave sleep, among others. PGD2 is synthesized in both the central 

nervous system (CNS) and peripheral tissues; it both inflammatory and homeostatic functions. 
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[101]. PGD2 in the brain tissue is involved in the regulation of sleep and other CNS activities, 

which also includes pain perception [102, 103]. Given the role of PGD2 in sleep cycles, it likely 

contributes to the drowsiness associated with systemic illness [102]. 

The lipid of specific interest to the inflammatory response is PGE2 because it plays a role 

in all processes that lead to the classic signs of inflammation. PGE2 is the most abundant PG 

detected in various tissues and is known to have bone-resorptive activity and to mediate bone 

resorption induced by cytokines and LPS. Pathological and physiological actions of PGE2 occur 

via four sub- types of PGE receptors, termed E-type prostanoid receptor 1–4 (EP1–4) which are 

expressed in the cell surface membrane and each receptor is associated with a distinct signal 

transduction pathway. PGE2 is involved in the induction of acute inflammation and induces 

redness, heat, and swelling reactions by relaxing vascular smooth muscle and increasing blood 

flow via the EP2/EP4 receptors. Pain is a result of the action of PGE2 on sensory neurons found in 

the periphery as well as on central sites within the brain and spinal cord [37]. 

Additionally, hyperalgesia, an enhanced sensitivity to pain and classic sign of inflammation, is 

mediated mainly by PGE2 through the EP1 receptor signaling that acts on these sensory neurons 

at the site of inflammation [55]. We see that PGE2 regulates various steps of inflammation in a 

context-dependent manner and takes on both pro-inflammatory and anti-inflammatory properties 

proving a critical player in the inflammatory response. 

PGF2α is primarily derived from COX-1 in the female reproductive system and is a critical 

player in ovulation and contraction of the smooth muscle of the uterus. Findings show that 

PGF2α plays a significant role in renal function, arterial contraction, myocardial dysfunction, brain 

injury, and pain [146-151]. Biosynthesis of PGF2α in vivo is found in larger quantities in basal 

physiological conditions, as well as certain physiological and pathophysiological situations like 
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acute and chronic inflammation, in both the peripheral plasma and urine [143]. Increased synthesis 

of PGF2α has been reported in patients suffering from various forms of arthritis [159]. Elevated 

levels of PGF2α have also been associated with cardiovascular risk factors along with increased 

levels of IL-6 and acute phase proteins in body fluids [160, 161]. 

The prostanoid TXA2 is an unstable AA metabolite with a half-life of about 30 seconds is 

non-enzymatically degraded into biologically inactive TXB2. TXA2 is predominantly derived from 

platelet COX-1, as well as in other cell types including by macrophage COX-2 [164, 165]. The 

principle vasoactive product of COX-1 in platelets is TXA2. In addition, TXA2 along with several 

other eicosanoids, PGE2 and PGI2, may contribute to regulation of systemic blood pressure.  

Leukotrienes are known pro-inflammatory mediators that contribute to pathophysiologic 

features of asthma, such as airway smooth muscle contraction, increase in microvascular 

permeability, stimulation of mucus secretion, and recruitment of eosinophils into the airways 

[125].  In particular, LTB4 selectively affects neutrophil functions and recruitment into the lung, 

where it has the capacity to activate these cells, resulting in inflammation. LTB4 may also be 

involved in inflammatory pain by reducing the nociceptive threshold via neutrophil signaling [8]. 

From this information, we would expect that PGE2 and PGD2 synthesis and activity (Figure 

3.6) remain highest relative to their neighboring branched metabolites also being regulated by the 

cybernetic control variables. At the basal state, the enzyme levels for Ptges1 are higher than that 

for Ptgds2 (Figure 3.6). The flux through Ptges1 provides the highest cybernetic control across all 

four prostanoids as the system’s initial response to infection. As the enzyme Ptgds2 increases, we 

see a switch in the cybernetic control for an enhanced inflammatory response. The cybernetic 

regulation of PGF2a and TXB2 enzymes are not as prominent as PGE2 and PGD2 enzymes; 

however, we do see an increase in cybernetic regulation of those enzymes (Figure 3.6). The higher 
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basal level of Ptges1 compared to that of Ptgds2 is also corroborated in our micro-array expression 

data and in publicly available tissue RNAseq dataset. We know that PGE2 and PGD2 are known 

mediators in the inflammatory response particularly during the acute phase of inflammation. 

Similarly, for the Leukotriene branch, we note the enzymes associated with LTB4 and 6-trans-12-

epi-LTB4 are most active in the branch. We again see a switch in the prioritization of metabolite 

production between these two competing products in the models (Figure 3.8 and Figure 3.8).  

 

 

Figure 3.6. Cybernetic control variables u and v for the Prostaglandin branch in the single 

objective case. 
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Figure 3.7. Cybernetic control variables u and v for the Leukotriene branch in the single 

objective case. 

 

 

 

Figure 3.8. Cybernetic control variables u and v for the Leukotriene branch in the two-objective 

case. 
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3.4.1.2 Comparison of model flux to literature 

To confirm the reliability of calculated rate constants, the effective rate constant for the 

enzymes COX (EC 1.14.99.1), PGDS (EC 5.3.99.2), and PGES (EC 5.3.99.3) were compared with 

the corresponding values reported in the literature [33–36]. Since the concentrations in the LIPID 

MAPS experimental data and literature values were reported in units of pmol/mgDNA and 

mmol/min/mg of enzyme-enriched protein, respectively, we used appropriate conversion factors, 

assuming the cell diameter to be 10mm and other relevant information about the average cell 

density, percentage protein content, and total percentages of RNA and mRNA per cell. For the 

amount of COX protein per cell, we used COX mRNA/total RNA data from Chan et al. [37] and 

assumed that this ratio is the same at the protein level. The values reported in the literature were 

based on in vitro measurements with partially purified protein. Thus, we assumed that the literature 

values represented basal activity and compared these activities (flux through the enzyme) for 

predicted activities of these enzymes in the control and treated simulations to provide an expected 

range. For example, our computed range for COX includes the reported value (10-14 

mmol/min/cell) [37]. A comparison between the simulated and experimental values for all three 

enzymes is shown in Table 3.9. The finding that the flux distribution between PGD2 and PGE2 

pathways is comparable to previous reports has an important implication for the validity of the 

computational model.  
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Table 3.9. Comparison of computed enzyme activities with the corresponding literature values. 

Enzyme 

(EC No.) 

Literature 

Value 

(mol/ 

min/mg protein) 

Literature 

Value 

(mol/ 

min/cell) 

Single 

objective 

(mol/ 

min/cell)  

Two 

objective 

(mol/ 

min/cell) 

Equal 

objective 

(mol/ 

min/cell) 

COX  

(EC 1.14.99.1) 

3.96 10-14 10-14- 10-13 -- 10-14- 10-13 

Ptges  

(EC 5.3.99.3) 

2 10-15  10-18 - 10-15 -- 

 

10-17- 10-15 

Hpgds/Ptgds2 

(EC 5.3.99.2) 

1.7 10-14 10-17 - 10-14 --  

 

10-16- 10-14 

3.4.2 Model perturbation analysis 

Three different perturbations were performed on different branches of the eicosanoid 

network to assess variations between the cybernetic models. A perturbation of ATP translates to a 

perturbation to the COX enzyme which can come in the form of a non-steroidal anti-inflammatory 

drug (NSAID), such as Aspirin. Other perturbations to the system come downstream of this and 

result in perturbations to enzymes at the branches in the network where we employ the cybernetic 

control variables. Two separate perturbations were performed on two different enzymes targeting 

the COX pathway with Ptgds2 (the enzyme associated with PGD2 production) and the LOX 

pathway with LTA4h (the enzyme associated with LTB4 production) inhibition through simulated 

chemical knockdown (mock drug response) and gene-knockdown studies. 

3.4.2.1 ATP reduction 

A system perturbation to the ATP results in down regulation of the COX enzyme and 

consequently results in down regulation of all associated metabolites in the prostanoid branch of 

the network. The curves associated with the single objective (green) and equal weights (black) 



 

82 

models show little to no variation between the models (Figure 3.9). This is likely attributed to the 

similarity between the objective weights (Table 3.2) defined between the two models for the PG 

branch.  For the LK branch, we see a decrease in LK metabolites when a similar perturbation is 

applied impacting the initial ATP input to the system for that part of the network. From these plots 

(Figure 3.9) we can see the LK branch shows a variation in metabolite levels for the metabolites 

specifically associated with the cybernetic control variables. If we refer to the plot for LTB4, for 

example, we notice that the red curve representing the two objective case, or the CCL2 chemokine 

associated with the leukotriene branch, decreases as the suppression of the COX enzyme increases 

(Figure 3.10). If we look at metabolites not regulated by the cybernetic control variables (e.g., 5-

HETE and 15-HETE) we notice that the differences between cybernetic models during a 

perturbation are not seen (Figure 3.9). This confirms our hypothesis and expectation that the 

weight associated with each branched metabolite impacts the resulting cybernetic formulation. 
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Figure 3.9. Eicosanoid metabolite levels simulated by a reduction in ATP to the system. 

Single objective (TNFa)
Two objective (CCL2)
Equal objective

ATP treatment Reduced to factor f:

f=1
f=0.7
F=0.2
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Figure 3.10. Relative enzyme levels of Eicosanoids simulated by a reduction in ATP to the 

system. 

 

  

Single objective (TNFa)
Two objective (CCL2)
Equal objective

ATP treatment Reduced to factor f:

f=1
f=0.7
F=0.2
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3.4.2.2 Enzyme activity suppression: Mimicking a drug response 

A targeted drug dose to suppress a specific enzyme in the eicosanoid network corresponds 

to a suppression in the specific enzyme’s activity. A simulated enzyme perturbation to the PGD2 

branch of the network results in down regulation of the Ptgds2 enzyme and consequently results 

in down regulation of all associated metabolites in the prostanoid branch of the network (Figure 

3.10).  Similarly, we see a decrease in leukotriene metabolites when an enzyme perturbation is 

applied impacting a branch in that part of the network. From the perturbation plots (Figure 3.10), 

we can see the leukotriene branch shows a variation in metabolite levels for the metabolites 

specifically associated with the cybernetic control variables. If we again refer to the plot for LTB4, 

for example, we notice that the red curve representing the two objective case, or the CCL2 

chemokine associated with the leukotriene branch, decreases as the suppression of the LTA4h 

enzyme increases (eLTB4 goes down, Figure 3.12). If we look at metabolites not regulated by the 

cybernetic control variables (e.g., 5-HETE and 15-HETE) we notice that the differences between 

cybernetic models during a perturbation are not seen (Figure 3.11). This confirms our hypothesis 

and expectation that the weight associated with each branched metabolite impacts the resulting 

cybernetic formulation. 
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Figure 3.11. Eicosanoid metabolite levels for a simulated drug targeted response to PGE2 and 

LTB4 by an induced chemical suppression of enzyme activity for Ptges1 and LTA4h, 

respectively. 

Single objective (TNFa)
Two objective (CCL2)
Equal objective

Enzyme activity Reduced to factor f:

f=1
f=0.7
F=0.2
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Figure 3.12. Relative enzyme levels of Eicosanoids for a simulated drug targeted response to 

PGE2 and LTB4 by an induced chemical suppression of enzyme activity for Ptges1 and LTA4h, 

respectively. 

3.4.2.3 Enzyme synthesis suppression: Mimicking a gene knockdown study 

A gene knockdown study to suppress a specific enzyme in the eicosanoid network 

corresponds to a suppression in the specific enzyme’s synthesis. A simulated enzyme perturbation 

to the PGD2 branch of the network results in down regulation of the Ptgds2 enzyme and 

Single objective (TNFa)
Two objective (CCL2)
Equal objective

Enzyme activity Reduced to factor f:

f=1
f=0.7
F=0.2
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consequently results in down regulation of all associated metabolites in the prostanoid branch of 

the network.  Similarly, we see a decrease in leukotriene metabolites when an enzyme perturbation 

is applied impacting a branch in that part of the network. From the perturbation plots (Figure 3.13), 

we can see the leukotriene branch shows a variation in metabolite levels for the metabolites 

specifically associated with the cybernetic control variables. If we refer to the plot for LTB4, for 

example, we notice that the red curve representing the two objective case or the CCL2 chemokine 

associated with the leukotriene branch we see those levels decrease as the suppression of the 

LTA4h enzyme increases (Figure 3.14, graph labeled eLTB4). If we look at metabolites not 

regulated by the cybernetic control variables (e.g., 5-HETE and 15-HETE) we notice that the 

differences between cybernetic models during a perturbation are not seen (Figure 3.13). This 

confirms our hypothesis and expectation that the weight associated with each branched metabolite 

impacts the resulting cybernetic formulation. 
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Figure 3.13. Eicosanoid metabolite levels for a simulated gene knockdown response for PGE2 

and LTB4 by an induced suppression of enzyme synthesis of Ptges1 and LTA4h, respectively. 

Single objective (TNFa)
Two objective (CCL2)
Equal objective

Enzyme synthesis Reduced to factor f:

f=1
f=0.7
F=0.2
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Figure 3.14. Relative enzyme levels of Eicosanoids for a simulated gene knockdown response 

for PGE2 and LTB4 by an induced suppression of enzyme synthesis of Ptges1 and LTA4h, 

respectively. 

3.5 Concluding remarks 

The process of inflammation is mediated by the production of multiple cytokines, 

chemokines, lipid mediators, etc. each of which contribute to specific individual objectives. For 

such complex processes in mammalian systems, a cybernetic objective based on a single 

Single objective (TNFa)
Two objective (CCL2)
Equal objective

Enzyme synthesis Reduced to factor f:

f=1
f=0.7
F=0.2
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protein/component may not be sufficient to capture all the biological process thereby necessitating 

the use of multiple objectives. The choice of the objective function has been made by intuitive 

considerations in this Chapter. If objectives are conjectured, an argument can be made for 

numerous alternatives. Since regulatory effects are estimated from unregulated kinetics, one 

encounters the risk of multiplicity in this regard giving rise to multiple models. The best model is 

of course that which is able to predict a comprehensive set of perturbations. Here, we have 

extended our model in Chapter 2 to also capture the dynamics of LKs. We have used migration as 

a biological goal for LK using the chemoattractant CCL2 as a key representative molecule 

describing cell activation leading to an inflammatory response where a goal composed of multiple 

cybernetic objectives is warranted. Alternative model objectives included relating both branches 

of the eicosanoid metabolic network to the inflammatory cytokine TNF-α, as well as simply 

maximization of all metabolic products such that each equally contributes to the inflammatory 

system outcome.  

We were again able to show that all three cybernetic objectives describing the LK and PG 

branches for eicosanoid metabolism capture the complex regulation and provide a reliable 

description of eicosanoid formation. We performed simulated drug and gene perturbation analyses 

on the system to identify differences between the models and found all cybernetic models 

(indicated by red, green, and black curves) show similar trends. Based on statistical analysis of the 

data and associated error with the models, we find that all three models provide statistically 

significant good fits to the data as well as are able to capture the prediction scenario of KLA+ATP 

reasonably well. If we look at the LK branch, we see what appears to be significant variations 

between the models but we are unable to differentiate whether these differences are statistically 

significant such that we can say they are in fact attributed to the model variations or are an artifact 
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of the associated measured experimental errors. Nevertheless, the cybernetic theory should not 

take on the burden of this uncertainty. It is still worth noting that the cybernetic framework holds 

and is able to capture the dynamics of the system.  

In the equal objective case, we are defining the weights of the system to be equivalent, 

thereby stating the cybernetic objective is simply a maximization of the branching products. In 

relating the immune system to the actual objective, there is a hypothesis buried in that definition. 

The underlying hypothesis is based on the fact that we must produce all these metabolites in such 

a way that all the metabolites are equally important in their role in the inflammatory response. The 

inflammation is maximized by the joint production of all the involved prostanoids. Because all are 

important, we can not exclude any one of the metabolites. We see that all three models capture the 

metabolite levels effectively; however, the corresponding enzyme levels and regulatory control 

variables highlight distinct differences. Additional experiments that induce differences in the 

metabolic outcomes of the eicosanoids to select the best cybernetic model are necessary. In 

particular, capturing the LK dynamics and repeating existing experiments to reduce the error 

associated with that branch will be critical in allowing for differences in cybernetic models to 

emerge.  
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4 EXTENSION OF THE CYBERNETIC FRAMEWORK AND 

APPLICATION TO OTHER SYSTEMS  

4.1 Summary 

In the following sections, we explain the cybernetic modeling framework through an 

example and highlight the extensibility of the cybernetic framework to other complex biological 

systems.   

4.2 The proposed cybernetic framework for applications in mammalian systems 

Cybernetic modeling defines the cybernetic objective which accounts for regulatory 

processes in the cell based on optimizing an organism’s goal. The model achieves its cybernetic 

objective by controlling the level of key enzymes using cybernetic control variables for induction 

of enzyme synthesis (u) and modulation of enzyme activity (v). A schematic to develop the 

cybernetic model for a metabolic network and estimate the unknown parameters (𝑝) is presented 

in Figure 4.1. The trained model can then be used to predict novel scenarios. Here, we present a 

generic formulation of the cybernetic framework where it is applied to a specific node in the 

metabolic network. 

4.2.1 Determining the cybernetic equations/formulation  

The cybernetic framework views each branch of the pathway as a metabolic route to 

achieve a designated objective and describes metabolic regulation in terms of their optimal 

combinations. Metabolic networks can be comprised of specific decision points where a substrate 

metabolite 𝑀𝑠 is converted to 𝑛 product metabolites 𝑀𝑖 in the presence of enzymes 𝑒𝑖. 
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𝑀𝑠

𝑒𝑖
→ 𝑀𝑖  where 𝑖 = 1 𝑡𝑜 𝑛 4.1 

 

The rate of production of 𝑀𝑖 from 𝑀𝑠 can be written as: 

 

𝑟𝑀𝑠→𝑀𝑖
= 𝑟𝑀𝑖

𝑘𝑖𝑛휀𝑖𝑣𝑖 4.2 

 

where 𝑟𝑀𝑖

𝑘𝑖𝑛 is a function of the substrate 𝑀𝑠 and represents the unregulated rate to produce 𝑀𝑖; 휀𝑖 

represents relative 𝑒𝑖 concentration with respect to a theoretical maximum 𝑒𝑖 concentration; 𝑣𝑖 is 

the cybernetic variable controlling enzyme activity. The metabolite levels are determined from the 

following relation (the “Model” block in Figure 4.1): 

 

𝑑𝑀𝑖

𝑑𝑡
= 𝑟𝑀𝑖

𝑘𝑖𝑛𝑣𝑖휀𝑖 − 𝛾𝑖𝑀𝑖 
4.3 

 

where 𝛾𝑖  is the degradation rate constant. The enzyme and relative enzyme level, 𝑒𝑖 and 휀𝑖, 

respectively, are governed by the following equations: 

 

𝑑𝑒𝑖

𝑑𝑡
= 𝛼 + 𝑟𝑒𝑖

𝑘𝑖𝑛𝑢𝑖 − 𝛽𝑒𝑖 
4.4 

 

𝑑휀𝑖

𝑑𝑡
= 𝛽

𝛼 + 𝑟𝑒𝑖
𝑘𝑖𝑛𝑢𝑖

𝛼 + max (𝑟𝑒𝑖
𝑘𝑖𝑛)

− 𝛽휀𝑖 
4.5 

 

where   휀𝑖 =
𝑒𝑖

max(𝑒𝑖)
   𝑎𝑛𝑑  max(𝑒𝑖) =

𝛼 + max (𝑟𝑒𝑖
𝑘𝑖𝑛)

𝛽
 

4.6 
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where 𝑢𝑖 is the cybernetic variable regulating the rate of enzyme synthesis. The three terms on the 

right-hand side denote the constitutive rate 𝛼, the maximum inducible rate 𝑟𝜀𝑖
𝑘𝑖𝑛 of enzyme 

synthesis modulated by cybernetic variable 𝑢𝑖 , and the decrease of enzyme level through 

degradation defined by the rate constant 𝛽.  

4.2.2 Defining the cybernetic objective 

In the standard cybernetic framework, the defined biological goal is maximization of 

biomass or carbon uptake rate. However, for complex mammalian systems, the system goal may 

be different. For example, during infection, the initial goal of the system may be to maximize the 

inflammatory response. The work by Aboulmouna et al. adapted the cybernetic framework 

described above to model AA metabolism in inflamed macrophages  [33]. Macrophages are known 

as cytokine factories and express various cytokines in response to inflammation. Cytokines 

facilitate communication within the immune system. Tumor necrosis factor (TNF)-α is an 

exemplary pro-inflammatory cytokine and was designated as a cybernetic objective for modeling 

AA metabolism.  
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Figure 4.1. A schematic representing cybernetic modeling and determination of unknown 

parameters (𝒑) (based on Aboulmouna et al. [32]). The cybernetic model is formulated using 

standard kinetic equations with the addition of a regulatory framework implemented through the 

cybernetic control variables 𝑢 and 𝑣, obtained from the matching and proportional laws, 

respectively. The variable 𝑣 regulates enzyme activity while 𝑢 regulates enzyme synthesis, and 

each is computed from the reaction fluxes at a given branch point. The dynamic model consisting 

of kinetic mass balance equations is solved numerically, and the sum of the squares of the error 

between the simulated metabolite concentrations (𝑀) and experimentally measured 

concentrations (𝑀𝑒𝑥𝑝) is minimized to estimate 𝑝. In the case of a cybernetic objective 

incorporating weights (𝑤), a correlation between the experimental transcriptomic/proteomic data 

(𝑐𝑒𝑥𝑝) corresponding to the designated cybernetic objective and metabolomics data (𝑀𝑒𝑥𝑝) is 

used to calculate 𝑤. The weights (𝑤) modulate the cybernetic control variables 𝑢 and 𝑣. 

4.2.2.1 Linear representation of a single objective 

In the AA metabolic network [32], the cybernetic objective was implemented at the PGH2 

branch point where PGH2 was converted to downstream products PGD2, PGE2, and PGF2α. The 

cybernetic objective determined the flux distribution based on the contribution of each metabolite 

(𝑤𝑖) towards the production of TNF-α and was captured in the form of the cybernetic control 
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variables, 𝑣𝑖 and 𝑢𝑖. These are computed from the Proportional and Matching laws [12], 

respectively, as follows:  

 

𝑣𝑖 =
𝑤𝑖𝑟𝑖

𝑘𝑖𝑛휀𝑖

𝑚𝑎𝑥
𝑗=1,2,…,𝑛

(𝑤𝑗𝑟𝑗
𝑘𝑖𝑛휀𝑗)

  , 𝑢𝑖 =
𝑤𝑖𝑟𝑖

𝑘𝑖𝑛휀𝑖

∑ (𝑤𝑗𝑟𝑗
𝑘𝑖𝑛휀𝑗)𝑛

𝑗=1

 
4.7 

 

where 𝑤𝑖  is the weight for the ith metabolite associated with a specific cybernetic objective and 

implicitly accounts for regulation by unmodeled processes. The cybernetic objective is a function 

of experimentally measured components; consequently, any parameters related to the cybernetic 

objective function can be computed directly.  

The weights (𝑤𝑖) in Aboulmouna et al. were calculated directly from experimental data 

(left-bottom blocks in Figure 4.1) by assuming a linear relationship between the three 

prostaglandin products and the cytokine TNF-α levels (adapted from Aboulmouna et al. [33]) 

 

[𝑇𝑁𝐹𝑎]̇ = ∑ 𝑤𝑖[𝑃𝐺𝑖]̇

𝑖

 
4.8 

 

The weights quantitatively accounted for the functional relevance of the PG metabolites for 

production of TNF-α (Equation 4.8). Once the dynamic model is fully defined, it is solved 

numerically, and the sum of the squares of the error (SSE) between the simulated metabolite 

concentrations (𝑀𝑖) and experimentally measured concentrations (𝑴𝒆𝒙𝒑,𝒊) is minimized to estimate 

p (top-right block in Figure 4.1) [33,34]. For large systems with many parameters and limited 

measurements, a common challenge is over-fitting. To account for the effect of number of parameters on 

SSE, approaches similar to Akaike information criterion [90] or Bayesian information criterion [91], such 
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as 𝜆N + SSE (where N is the number of parameters and 𝜆 is a positive scalar), may help compare among 

several models of the system [92]. 

4.2.2.2 Nonlinear relation of cybernetic objectives using information theory  

Using biological understanding and intuition to identify correlations between the 

metabolites and modulators is not always feasible. A vast amount of omics 

data available have information about links between these metabolites and modulators hidden 

in plain sight. New-age models like information theory and neural networks on these 

data can help us to identify the cybernetic goal. Use of these new-age models would allow for the 

inclusion of combinations of multiple objectives subsumed into one objective function that can 

account for non-linearities.  A key factor in the delegation of the cybernetic objective is in 

exploring not only linear contributions, but nonlinear relationships between cytokines and 

prostaglandins. Information theoretic approaches could allow for the inclusion of combinations of 

multiple objectives subsumed into a single cybernetic goal that can account for nonlinearities. We 

expect that linking of the cybernetic model with the techniques mentioned previously can more 

effectively capture the regulatory mechanisms.  

Macrophages are known to be cytokine factories signifying inflammation. In our prior 

work, we chose tumor necrosis factor alpha (TNF-α) as representing the inflammatory response 

for the objective function to be maximized, i.e. the cybernetic goal [86]. To incorporate the data 

on TNF-α in the optimization of the cybernetic goal, we built a linear relationship between 

proteomic data on TNF-α and lipidomic data on PGs using a least square fit, which, in principle, 

is based on correlation. We showed that, for a selected cybernetic goal, our model captures the 

complex regulation of PG metabolism and provides a reliable predictive description of PG 

formation [86]. However, the model excludes the role of other cytokines as an inflammatory 
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response and also does not account for the nonlinear relationship between cytokines and PGs. 

Further, cybernetic approaches rely on optimizing regulatory mechanisms for a given goal, and the 

goal is set a priori in an arbitrary manner. Developing information theoretic approaches to identify 

and optimize system goals in combination with optimizing the reaction rate and regulatory 

parameters can aid in more clearly defining the objective. This can be done by taking combinations 

of multiple phenotypic objectives subsumed into one optimal cybernetic goal for an organism 

using the maximization of mutual information between the weighted time series metabolite data 

and weighted combinations of multiple time series transcriptomic data [93].  

We can expand the goal of the system to include combinations of multiple objectives 

subsumed into one optimal goal for an organism. Maximizing the mutual information (MI) 

between weighted time series metabolite data and weighted combinations of time series cytokine 

transcriptomic data would allow the extraction of information on the overall system goal as 

follows:  

                         max
𝑤𝑖,𝑤′

𝑗

(𝐼(∑ 𝑤𝑖𝑚𝑖𝑖  , ∑ 𝑤′
𝑗𝑐𝑗𝑗 )) , where ∑ 𝑤𝑖𝑖 = 1 and ∑ 𝑤′𝑗𝑗 = 1 4.9 

 

where I(x,y) is the MI between two variables x and y,  𝑤𝑖  is weight associated with each pathway’s 

(𝑚𝑖) contribution to the formation rate of the multi-objective goal and 𝑤′𝑗  is the weight associated 

with contribution of each cytokine (𝑐𝑗) to the multi-objective goal (∑ 𝑤′
𝑗𝑐𝑗𝑗 ). Similar to Equation 

4.8, the ROI for each pathway is assumed to be the amount of the goal that each unregulated 

pathway (associated 𝑤𝑖) can yield at each instant in time, which is described by 𝜌𝑖 .  

 

𝜌𝑖 = 𝑤𝑖𝑟𝑚𝑎→𝑚𝑖
𝑘𝑖𝑛  4.10 
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MI between the weighted time-course vectors of metabolite levels and weighted time-

course vectors of the cytokine levels can be optimized using efficient algorithms. In this case, due 

to the difference in magnitude of the different metabolite levels, a scaling of the metabolite levels 

will need to be carried out prior to correlating with the cytokines. Once the cybernetic goal of the 

system from maximizing the MI is obtained, the associated 𝑤𝑖  can be used to optimize the 

parameters of the model using a two-step hybrid optimization procedure which involves 

application of effective global search techniques followed by a local deterministic search. Similar 

to the work in Chapter 3.2.4, the model can be parameterized and validated using existing data. 

4.2.3 Quantify objective validity and determine overall system objective function  

Cybernetic models have their origin in the hypothesis that metabolic regulation has evolved 

so that cells make optimal decisions when presented with metabolic choices [94]. The evolutionary 

history of an organism implies cellular objectives that change with time and environmental factors; 

determining well defined objective functions is the challenge, especially in the context of 

multicellular organisms.  

The cybernetic approach differs substantially from other modeling methods. For traditional 

kinetic modeling, detailed metabolic regulatory mechanisms are necessary [67, 68]; however, the 

cybernetic approach models these regulatory actions as a collective process with an optimal system 

objective. Cybernetic enzymes and variables are used to describe a succinct mode of regulation 

related to the organism’s goal. While we showed (Chapters 2 and 3) that cybernetic modeling 

predicts complex cellular phenomena, we also validated the assumption that the cybernetic control 

mechanisms mimic cellular regulation [66]. The cybernetic variables for enzyme synthesis and 

activity, 𝑢𝑖  and 𝑣𝑖, were compared with cellular data that is representative of the regulatory 

mechanisms in cells. We showed that the scaled predicted enzyme profiles generally match the 
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behavior or trends of their corresponding genes identified from literature (Chapters 2.4.3 and 

3.4.1). These predicted enzyme levels are calculated from metabolomics data and are made on the 

assumption that enzymes for substrate pathways are regulated in such a way as to optimize the 

objective function— formation of TNF-α. The predicted enzyme levels as informed by the 𝑒𝑖 

control variables are independent of the gene expression data. Qualitatively comparing the 

behavior of the dynamic gene expression profiles with the predicted enzyme levels further 

validated our cybernetic model (Figure 2.5) and served to validate the idea that modeling 

macrophage cells from a goal-oriented perspective is useful. 

The objective function used in the model, e.g., maximizing the rate of TNF-α formation, is 

a central postulate of the cybernetic model presented here. While TNF-α is well characterized as a 

signaling molecule generated in the macrophage response of LPS binding to the TLR4 receptor, 

other inflammatory cytokines such as the interleukins (ILs) like IL-1, IL-6, and IL-12 can also be 

used to describe the goal of the system [95]. Control goals related to other functions of PGs besides 

inflammation are also of interest; however, given that the response of macrophages to ATP and 

KLA is an inflammatory one, the objective function centered around TNF-α seemed most relevant 

within the context of the system and conditions studied in Chapter 2. However, it is unclear if the 

proposed objective function’s associated weights (wi) are unique as seen in Chapter 3 when 

exploring multiple objectives and their validity in describing the system. As a result, it is critical 

to establish an approach that allows for a quantitative understanding of the relation between 

cybernetic variables and the cellular regulatory components as described by gene expression data.  

4.3 Beyond the macrophage cell 

Upon resolution of inflammation, the system’s objectives may change. For instance, 

metabolic fluxes may be better indicated by pro- or anti-inflammatory cytokines depending on the 
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state of the macrophages [96-100]. Since there is dynamic remodeling between pro- and anti-

inflammatory macrophage populations (M1 and M2, respectively) [101, 102], the correlation of 

events at different timescales can be highly dependent on distinct objectives. In order to model 

such a process, a list of mediators corresponding to multiple objectives supporting the different 

cellular functions is necessary. Using biological understanding and intuition to identify links 

between the metabolites and regulators is not always feasible; however, omics data (i.e., 

metabolomic and transcriptomic data) may facilitate identification of the correlations and potential 

links between these metabolites and regulators. While the current cybernetic model uses linear 

correlation to relate omics data, an alternate model can be proposed to estimate these cybernetic 

weights based on information theory approaches or by training a neural network [103, 104].  

4.3.1 Macrophage cell polarization  

An essential part of the inflammatory response is the resolution phase after the initial pro-

inflammatory phase. The inflammation process is mediated by the production of multiple 

cytokines, chemokines, lipid mediators, etc. The early mediators are pro-inflammatory, 

whereas, the late mediators are anti-inflammatory or pro-resolution. These mediators could alter 

the cellular regulation of macrophages by receptor binding, thus creating positive and negative 

feedback loops. Inflammation, though a necessary process, if uncontrolled, could lead to chronic 

inflammation and several auto-immune diseases [66,67]. The negative regulation in the 

inflammatory cascade plays a vital role in the prevention of disease progression [40,68–

71]. These mediators can alter the different subprocesses in inflammation.  

One way to prevent uncontrolled inflammation is to polarize the macrophages to be anti-

inflammatory [72]. Macrophages are divided into two cell types in vitro based on the type of 

stimulation: M1 (classically activated) associated with highly microbicidal and pro-inflammatory 
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responses that are stimulated by LPS and IFN-γ, and M2 (alternatively activated) associated with 

anti-inflammatory responses, tissue remodeling, and resolution of inflammation that are stimulated 

by anti-inflammatory stimuli like IL-4 [36,73]. Another classification provides three sub-types in 

M2 cells based on the stimulation [74]. But in vivo, transcriptome studies proposed a spectrum of 

macrophage activation states beyond that of M1/M2 dichotomy [75]. Modeling of macrophage 

cells can incorporate the presence of these cell groups. Their transition from one type to 

another may depend on mediators [76–78]. Each of these cell types have different metabolic 

regulation performing different function. Further, the production of these mediators could be 

affected by metabolism. Cybernetic regulation can be thus incorporated at the intracellular 

metabolic pathway and cellular level, creating a multi-level cybernetic formulation.   

4.3.2 Use as a pharmaceutical model 

COX inhibitors (nonsteroidal anti-inflammatory drugs (NSAIDs)) are common and found 

in daily-use drugs such as aspirin and ibuprofen [105]. Two isoforms of COX have been identified. 

COX-1 is expressed constitutively while COX-2 is an inducible enzyme. The two isoforms have 

diverse physiological and pathophysiological roles due to their structural differences and 

corresponding inhibitory profiles. Traditional NSAIDs block both COX-2 and COX-1 which 

consequently interfere with homeostatic function which includes blocking platelet activation. Both 

COX-1 and COX-2 share similar structural properties, including a hydrophobic region that allows 

AA access to the respective active sites. In COX-2, this hydrophobic region has an exposed side 

pocket which allows for COX-2 to have greater substrate recognition than COX-1. This structural 

difference in the active site of COX-2 has allowed for selective inhibition of COX-2 by compounds 

developed and marketed as anti-inflammatory drugs [106]. These drugs were known for their 

limited gastric toxicity to have an advantage over traditional NSAIDs [107, 108].  
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The magnitude and duration of the inflammatory response is regulated via a number of 

checkpoints. Defects in endogenous anti-inflammatory pathways predispose the host to chronic 

inflammatory diseases. An ideal approach to address this chronic inflammatory response would be 

in the development of therapeutics that exert multiple effects at various phases rather than 

suppressing the response in its entirety. In order to do this, it is crucial we develop a clearer 

understanding of the driving forces associated with each individual inflammatory response and 

tailor treatments accordingly. Additionally, it is necessary to better define the inflammatory 

response in order to determine ways in which we can enhance this process in conjunction with 

anti-inflammatory therapies.  

Fatty acids (FAs) are simple lipids comprised of a carbon chain and a terminal carboxylic 

acid. Saturated FAs have no double bonds and are synthesized by chain elongation. Humans lack 

desaturases which modify single bonds to a double bond in FAs in the position distal to the ∆9 

carbon. Consequently, it is required that we supplement our diets with essential FAs (EFAs). EFAs 

are further elongated and desaturated in our body resulting in ω3 and ω6 polyunsaturated fatty 

acids (PUFAs). Arachidonic acid is a representative ω6 PUFA and is a precursor of PGs, 

leukotrienes (LTs), and other oxygenated metabolites [109, 110]. As discussed in Chapter 1, 

inhibition of COX is a primary objective of many pharmaceutical initiatives. An expanded network 

model will allow us to understand how the inhibition of COX impacts downstream production of 

PGs in our network model. A prior study by Gupta et al. involves the competitive metabolism of 

AA and eicosapentaenoic acid (EPA) which acts in a similar mechanism to a COX inhibitor 

(Figure 3.2) in the eicosanoid metabolism network [51]. The ω3-PUFAs, such as EPA and 

docosahexaenoic acid (DHA), are now widely used as a supplement for health benefits. We will 

use the parameter set obtained from the KLA stimulated study to predict the response of EPA and 
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DHA on the metabolism of AA. This study represents an example of drug inhibition of COX using 

EPA as well as DHA [111].  

4.4 Extension of cybernetics to other complex mammalian processes 

The framework developed in Chapter 4.2 can be applied to several biochemical pathways. 

Our primary test example has been the macrophage system, where we have deep experimental 

knowledge of multiple outcome variables. Information theoretic cybernetic framework could 

identify the combination of cytokines, e.g., TNF-α, interleukins (ILs) IL-1, IL-6, and IL-12 to 

determine the optimal objective function [112]. Depending upon the system and conditions being 

modeled, one may need to incorporate more reactions and regulatory connections possibly 

spanning multiple timescales and involving multiple compartments. We provide some exemplar 

cases in the following.  

NF-𝜅B is a transcription factor, which is the critical mediator for cellular responses to a 

number of physiological responses such as inflammatory cytokines, developmental signals, and 

cellular stressors. NF-𝜅B activity is inhibited by associating with I𝜅B isoforms I𝜅B𝛼, I𝜅B𝛽, I𝜅B𝜖, 

and I𝜅B𝛿 whose degradation and synthesis heavily regulate NF-𝜅B signaling [113]. In this model, 

NF-𝜅B will take on a similar role as the cytokines in the cybernetic goal and the I𝜅B isoforms will 

serve a function similar to the metabolites described (Equation 4.9). The NF-𝜅B network is 

regulated by two pathways: the canonical NF-𝜅B essential modulator (NEMO)-dependent 

pathway and noncanonical NEMO-independent pathway. A transient TNF stimulus applied to the 

system to elucidate the functional significance of I𝜅B degradation on NF-𝜅B signaling via the 

canonical pathway could be modeled. Additionally, simulated model knock-down studies of 

individual I𝜅B isomers will inform the role of NF-𝜅B in regulating its own homeostasis [113]. 
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Another example, involving the differentiation of multipotent thymic precursor cells into T-

cells or myeloid cells, depends on the competition between PU.1 and Notch signals. Presence of 

PU.1 differentiates the precursor cells into myeloid cells. However, when Notch is present, 

precursor cells differentiate into T-cells [114]. In this case, we can dynamically optimize the T-

cell or myeloid cell potential (markers) as the cybernetic goal/cell fate decision in relation to some 

function of PU.1 and Notch signaling. The results can then be validated with available flow 

cytometry data [114]. These examples highlight a limited application of cybernetics in immune 

related responses, but the cybernetic framework can be applied in any system where a well-defined 

cybernetic objective is identified. 

4.5 Concluding remarks 

The complexity of regulatory mechanisms in biological processes makes its explicit 

modeling difficult. The strength of cybernetics is in the ability to indirectly model this complexity 

using specific “goals”. This powerful technique can capture non-linearities in biological systems 

without adding any additional parameters to simple enzymatic models. The approach is flexible 

and allows for the introduction of multiple objectives to describe complex behavior. In solving 

inverse problems in biological systems, as in our case, the collective behavior (overall phenotype) 

is much easier to measure than the individual parameters. The parameters are mostly unknown and 

experimental data can be noisy. Complete identifiability analysis can provide an estimate of the 

range of parameter values consistent with experimental data [115]. Another limitation while 

modeling complex systems is that the exact quantitative goal of the system is unknown—only a 

qualitative expectation is known. One can attempt to formulate a cybernetic goal based on multiple 

components or phenotypes (multiple-objectives) and the resulting optimization problem can be 

solved using the notion of pareto-optimality [116].  
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Cybernetic models have evolved over the years and have been used to model biological 

processes in several bacterial and yeast systems. For biological processes in mammalian systems, 

this thesis work establishes a framework for cybernetic modeling in these systems. However, 

cybernetic modeling in multicellular organisms is still in a nascent state but is yielding promising 

results [86, 117]. In multi-cellular organisms, temporal- and context-dependence of the “goal” can 

suggest the use of multiple objectives. Approaches based on the notion of pareto-optimality have 

a great potential to handle multiple objectives and will likely play an important role towards 

successful use of cybernetic modeling for mammalian systems. 

The advantage to using cybernetic modeling is in its ability to capture system behavior 

without the same level of detail required for these interactions as typical kinetic modeling. 

However, the evolutionary history of an organism implies cellular objectives that change with time 

and environmental factors; determining well defined objective functions is the challenge, 

especially in the context of multicellular organisms. We have laid the groundwork for application 

of cybernetic modeling in complex mammalian systems. Insight into the metabolic goals of 

multicellular systems allows for a more complete understanding of how the states of these cells 

evolve over time. This insight can provide us the necessary knowledge to develop a greater 

understanding of dysregulation of the immune response and in the development of therapeutics for 

inflammatory diseases.  
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