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ABSTRACT 

Background: The sensitivity to drug-induced QT prolongation is highly variable in heart failure 

(HF) patients. QT interval prolongation can lead to a life-threatening ventricular arrhythmia known 

as torsade de Pointes (TdP), which can result in sudden cardiac death. Although QT prolongation 

is a surrogate marker for sudden cardiac death, the extent of drug-induced QT prolongation, and 

thus TdP, is largely unpredictable. Therefore, developing a biomarker to predict patients’ 

sensitivity to drug-induced QTc prolongation could have a profound clinical impact. MicroRNA 

(miR) are recognized as important regulators of cardiovascular function as they shape the 

transcriptome by targeting mRNAs for repression of translation. Our multidisciplinary research 

group has demonstrated that miR-362-3p regulates a potassium channel (i.e., hERG) that is the 

most widely implicated in drug-induced QTc prolongation. The primary objects of this analysis 

focus on characterizing serum miR-362-3p expression in the circulation as a potential biomarker 

to predict subject’s susceptibility to ibutilide exposure induced QT-interval prolongation  

Methods: The dataset utilized to develop the PK-PD models were collected from a previous 

clinical study carried out by Tisdale et al. (Tisdale, et al. 2020). A total of 22 adult subjects who 

met the inclusion and exclusion criteria were enrolled and divided into three groups: a group of 

patients with heart failure with preserved ejection fraction (HFpEF, n=10), a group of patients with 

heart failure with reduced ejection fraction (HFrEF, n=2), and ten healthy subjects in the control 

group who were matched to subjects in the HFpEF group for age and sex. Following a baseline 

day of triplicate 12-lead ECGs, all subjects received ibutilide 0.003 mg/kg intravenously infused 

over 10 minutes. Serial collection of blood samples to determine serum Ibutilide concentrations 

(HPLC/MS), serum miR-362-3 expression (qPCR), with triplicate ECG readings were obtained 

pre-and-post ibutilide administration. To describe ibutilide serum concentration exposure and the 
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relationship with Fridericia-corrected QT (QTF) intervals, a non-linear mixed effect modeling 

approach was used along with clinical and demographic data, and serum miR-362-3p expression 

was evaluated as potential covariates on the PK/PD model. 

Results: A three-compartment model best described the time course of ibutilide concentrations 

profile with a proportional residual error. The individual ibutilide concentrations time profile was 

then used in an indirect response model where ibutilide concentrations are indirectly driving the 

QT interval prolongation through inhibition of the output (Kout) parameters linked to an indirect 

response model with zero‐order input parameter best described the ibutilide concentrations QT 

interval lengthening relationship. The Individual PK/PD parameters using the base model for the 

Imax and IC50 were 11.4% (9.9% RES) and 0.36 (8.4% RES) ng/mL, respectively. Following 

stepwise forwarding inclusion steps, the final covariate analyses  identified circulating miR-362-

3p expression associated with a history of myocardial infarction covariate influencing both the 

Imax and IC50 ( p<0.05).   

Conclusions: An indirect response model has been developed to describe the effects of ibutilide 

concentrations on QT-intervals. Although the semi-mechanistic model could not be developed; 

serum miR-362-3p expression was identified as a significant predictor for ibutilide-induced QT-

interval prolongation. Moreover, the upregulation of serum miR-362-3p expression enhanced IC50 

seen after ibutilide administration. The potential use of miR-362-3p as a biomarker warrants 

further investigation to identify patients at the greatest risk of TdP.  
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 INTRODUCTION  

1.1 QT Interval  

The QT interval on the electrocardiogram (ECG) represents the duration from the QRS 

complex's onset to completing the T wave. It encompasses the time required for the ventricular 

myocytes to repolarize after depolarization. (Thomas, et al. 1996) The 99th percentiles for QTc 

interval prolongation in men and women are >470 and >480 ms, respectively, have been 

recommended as definitions of QTc prolongation. (Drew, et al. 2010)  

1.1.1 Correction Method for the QT Interval 

The QT interval is affected by changes in heart rate, and so formulas must be used to correct 

the QT interval for heart rate. The patient's heart rate and QT interval are used to calculate a 

corrected QT (QTc) interval value. (Rabkin, et al. 2015; Rabkin, et al. 2017) Several formulas 

have been proposed for QT interval corrections (QTc) for changes in heart rate. (Bazett,et al. 1920; 

Fridericia, et al. 1920; Sagie,et al. 1992; Rautaharju,et al.2004; Rabkin,et al. 2015) There is not a 

"gold standard" among the formulas. However, the most commonly studied and applied QTc 

formulas are the Bazett, Fridericia, Framingham, and Rautaharju. (Indik, et al.2006; Vandenberk, 

et al. 2016; Rabkin, et al. 2017) The Bazett formula is the most extensively used correction method 

in clinical practice, and the United States Food and Drug Administration (FDA) has recommended 

the Fridericia formula for clinical trials on drug safety. (Phan, et al. 2015) 

In 1920, Henry Cuthbert Bazett proposed the Bazett formula (Eq. 2).  The formula performs 

best with a heart rate range of 60–100 beats/min. (Bazett, et al. 1920)  However, the formula is 

criticized because of its inaccuracy as it was only derived from 39 subjects and  overcorrects the 

measured QT interval at heart rates > 100 bpm and under corrects at heart rates <60 bpm. (Sagie, 
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et al. 1992) Despite the critics, the Bazett formula remains a frequently used correction approach. 

(Manion, et al. 1985; Sage, et al. 1992) It is still widely used because the thresholds for torsades 

de pointes risk have been determined using Bazett's formula (> 500 ms for marked increase risk 

of torsade de pointes (TdP); >470 in men and >480 in women for QTc prolongation. (Rautaharju, 

et al. 2009) 

  𝑄𝑇𝑐𝐵 =
𝑄𝑇
√𝑅𝑅

 (1) 

 

 (2) 

where QTcB = the Bazett’s correct QT interval and RR is the ventricular rate 

 

The Framingham formula (QTcFra) was proposed by Sagie et al. in 1992 and was 

supported by a study of approximately 5000 patients from the Framingham population in the USA. 

(Sagie, et al. 1992) This linear equation (Eq. 2) gave a more uniform QTc over a broader range of 

heart rates and is considered a better and preferred formulas then Bazett’s. (Vandenberk, et al. 

2016) However, the Framingham formula is inconvenient for use at the bedside. (Luo, et al. 2004) 

 

 𝑄𝑇𝑐𝐹𝑟𝑎 = 𝑄𝑇 + 0.154(1 − 𝑅𝑅) (2) 

The Fridericia formula was derived by Louis Sigurd Fridericia in 1920 from observations 

of 50 healthy subjects aged 3 to 81 years. Fridercia found that taking the cube root of the RR 

interval gave the best adjustment formula in comparison to Framingham. The formula (Eq. 3) 

provides more accurate QTc values in subjects with tachycardia but has the same limitations as 

Bazett's formula for slow heart rates. (Rautaharju, et al. 2002) Bazett's and Fridercia's formulas are 

logarithmic corrections. (Fridericia, et al. 1920)  

  𝑄𝑇𝑐𝐹𝑟𝑖 =
𝑄𝑇
√𝑅𝑅!      (3) 
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1.2 Electrophysiology of Ventricular Repolarization  

The QT interval measured on the ECG indicates the total duration of the ventricular 

electrical systole and diastole. The QT interval includes the ventricular depolarization time 

(indicated by the QRS duration) and the repolarization time (indicated by JT interval and the T 

wave). (Figure 1) The transition of ventricular depolarization into ventricular repolarization 

conforms to the J-point on a standard ECG. (Gussak, et al. 1995) To appreciate the role of the QT 

interval in evaluating ventricular repolarization, it is of utmost importance to understand the role 

of the cardiac action potent al and the major ion channels involved in the process  

 
 

Figure 1. illustrations of Action Potential Corresponded to Electrocardiogram (ECG)   
Panels (A) displays the surface of ECG waveform, P wave represents depolarization of the atria; the QRS complex 
represents the depolarization of the ventricles, and the T Wave represent rapid repolarization; Panels (B) display the 
ventricular action potential to the surface of ECG (Panel A); phase 0 represents the ventricular depolarization mediated 
by Na+ channel activation; phase 1 represents early rapid repolarization due to transient outward movement of K+; 
phase 2 represent plateau phase determined by the movement of inward Ca2+/Na+; phase 3 represents the late 
repolarization due to movement of K+, and phase 4 represents the resting phase maintained by the Na /K+ pump.  
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All mammalian cardiac cells have channels embedded in the plasma membrane to allow 

for the inward and outward movement of ions in the cells. These cardiac ion channels are essential 

in shaping the action potential. The channels may be open, closed, or inactivated depending on 

changes in cardiac membrane potential. Ventricular depolarization occurs as a result of the 

coordination of  action potentials, whereas repolarization occurs as a result of the recovery and 

return of membrane potential to the baseline resting phase. (Lester, et al. 2019) 

The essential ions responsible for the membrane potential are Na+, K+, Ca2+, and Cl-. The 

intracellular concentration of K+ is higher, and the concentration of Na+, Ca2+, and Cl-   are higher 

outside the cell. (Klabunde, et al. 2017) In a normal cardiac cycle, there is an inward flow of 

positive ions (mainly sodium and calcium currents) activating depolarization and outward 

movement of positive ions (mainly potassium currents) activating repolarization. There are five 

distinct phases (0 through 4) to the cardiac action potential, as described below, the start and end 

being the baseline resting phase (4) (Locati, et al. 2017). 

 

• Phase 0 (Rapid depolarization): A sudden influx of Na+ ions (INa) through Na+ channels 

produces an abrupt spike of the action potential.  

• Phase 1 (Notch or rapid repolarization): A partial repolarization following rapid 

depolarization due to closure of Na+ channels and the temporary outward movement of K+ 

(Ito) via the K+ channels.  

• Phase 2 (Plateau): The cardiac muscle fiber is in the depolarized state. There is a balance 

of Ca2+ (ICa) inward via the opening of L-type Ca2+ channels, and Na_inward via INa, 

channels and the closure of rectifier K+ channels.  
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• Phase 3 (Repolarization): Cardiac repolarization primarily occurs due to the K+ efflux 

through delayed rectifier current (IKr and IKs).  IKr is the current primarily responsible for 

ventricular repolarization. 

• Phase 4 (Diastolic): The resting membrane potential or polarized state is maintained by the 

sodium-potassium ATPase pump, Na+/Ca2+ exchanger, and the inward rectifier K+ current 

(IK1).  

 
Any changes in phase 3 occurring in the absence of dispersion of depolarization are considered 

a primary reason for QT prolongation, which indicates a lengthening of the refractory period of 

cardiac tissue. QT prolongation may be associated with blockade or modification of K+ efflux 

through delayed rectifier currents (IKr and IKs). (Roden, et al. 2008) A fundamental assumption in 

the interpretation of cardiac electrophysiology states that a QT prolongation is secondary to an 

increased action potential duration in at least a few regions of the ventricle. This increase in action 

potential duration, in turn, indicates a decrease in outward current or an increase in inward current 

(Keating, et al. 2001). 

1.3 Drug-Induced QTc Prolongation and TdP 

Prolongation of the QT/QTc can lead to a potentially deadly ventricular arrhythmia known 

as Torsade de Pointes (TdP), which was s first described by the French physician Francois 

Dessertenne in 1966. (Dessertenne, et al. 1966) Torsade de Pointes is an unusual polymorphic 

ventricular tachycardia characterized by a continuously changing amplitude and the twisting 

appearance of the QRS complexes around the isoelectric line on an ECG, that first appear positive 

and then negative. (Drew, et al. 2010) The mechanism of the relationship between the duration of 

the QT interval and the risk of TdP remains inconclusive.  However, in general a QTc of higher 
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than 500 ms or an increase in the QTc interval greater than 60 ms is usually considered to confer 

a high risk of TdP in an individual patient. (Heist, et al. 2005, Barnes, et al. 2010) 

1.3.1 Risk Factors for Drug-Induced QTc Interval Prolongation 

Major factors influencing the prevalence of QTc interval prolongation and TdP include 

QT-prolonging drug therapy, electrolyte abnormalities (e.g., a decrease in serum potassium and 

decrease in serum magnesium and calcium), and genetic polymorphisms that increase TdP risk. 

Other evident risk factors include a QTc interval >500 ms, a ≥60 ms increase in QTc interval from 

the pretreatment value, female sex (females have a two-fold increased risk compared to males), 

advanced age, heart failure with reduced ejection fraction, acute myocardial infarction, 

bradycardia, use of diuretics, inadequate dose adjustment of renally eliminated drugs in patients 

with kidney disease, elevated plasma concentrations of QTc interval prolonging drugs caused by 

drug interactions, and rapid intravenous administration of high-risk drugs. (Tisdale, et al. 2016) 

Also, the multiplicity of risk factors further raises a patient’s risk of TdP, and if not properly 

managed, TdP can progress to ventricular fibrillation (VF) or sudden cardiac death (SCD). (Li, et 

al. 2010) 

Abnormal QT/QTc prolongation is of two categories, congenital (cLQTS) and acquired 

(aLQTS). The congenital form was first described in 1975 and is a relatively uncommon but crucial 

clinical disorder. Congenital Long-QT syndrome is subdivided based on the underlying gene in 

which causative mutations occur. The most common forms are LQT1, LQT2, and LQT3 which 

are associated with the genes KCNQ1, KCNH2, and SC5NA, respectively. The clinical 

manifestations of LQT syndrome involve syncopal episodes, which can, albeit uncommonly, 

include sudden death due to cardiac arrest. It has been demonstrated that QTc-prolonging drugs 
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increase the risk of SCD in LQT patients up to two to eight times. (Straus, et al. 2005; Straus , et 

al. 2006) 

1.3.2 Drug-Induced QTc Interval Lengthening in Patients with Heart Failure 

Patients with heart failure (HF) are at a threefold increased risk of developing TdP. (Lo, et 

al. 2008) As heart failure progresses, there are alterations in the expression and function of several 

ion channels, including downregulation of KCNH2. (Beuckelmann,et al. 1993, Nabauer, et al. 

1993, Tomaselli, et al. 1999) The KCNH2 gene, also referred to as the human Ether-a-go-go 

Related Gene (i.e. hERG), encodes a potassium channel responsible for the rapid component of 

the delayed rectifier K+ current (IKr) in the heart. (Sanguinetti, et al. 1995)  IKr is crucial for 

ventricular repolarization and inhibition of this current prolongs the QT interval on a surface ECG 

which can influence the development of TdP. (Vandenberg, et al., Perry, et al. 2012) Even 

alterations in the KCNH2 function that do not present as QT interval prolongation can increase 

susceptibility to arrhythmias by increasing the dispersion of repolarization or by the depletion of 

the repolarization reserve. (Wu, et al. 2009, Yasuda et al. 2015) The term repolarization reserve 

refers to the redundancy of outward currents that drive repolarization. In addition to IKr, the slow 

component of the delayed rectifier current (IKs), contributes to ventricular repolarization, 

particularly during rapid heart rates or when IKr is compromised. Consequently, the decrease of a 

single outward potassium current, such as IKr, may not lead to noticeable changes in QT-interval.   

1.4 miRNA Biogenesis and Function 

Over the last decade, microRNAs (miRNAs or miRs) have been identified to regulate genes 

important for proper cardiac function. miRNAs are short, 22 base-long segments of non-coding 
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RNA that are involved in the regulation of gene expression in a wide variety of cellular processes. 

(Van, et al. 2011) The first miRNA (lin-4) was observed in C. Elegans in 1993. (Lee, et al. 

1993)Since then, hundreds of miRNAs have been discovered in several species, particularly 

emphasizing their role in embryonic development and disease regulation. (Pritchard, et al. 2012) 

It is now recognized that miRNAs are evolutionarily conserved among species and account for up 

to 3% of the mammalian genome. (Bartel, et al. 2009)  

miRNAs are transcribed by RNA polymerase II to generate a sizeable stem-loop structure 

called the primary miRNA (pri-miRNA). (Cai, et al. 2004) The stem-loop structure in the nucleus 

is bound by an RNase Drosha complex and its cofactor Dgcr8, which cleaves the structure to 

produce the hairpin loop-shaped precursor miRNA. (pre-miRNA)(Denli, et al. 2004) The pre-

miRNA is then exported to the cytoplasm by the nuclear transport receptor Exportin5, and the 

nuclear G-protein Ran-GTP. (Bohnsack, et al. 2004) In the cytoplasm, another RNase known as 

Dicer cleaves the loop off of the stem-loop structure, thus producing a duplex nucleotide 

containing miRNA. Finally, one strand from the duplex degenerates, and the other strand is 

assimilated into the RNA induced silencing complex (RISC) which includes Argonaute, the 

catalytic unit of the complex. (Schwarz, et al. 2003, Du, et al. 2005) The mature RNA in the RISC 

complex finds the target mRNA by binding to the 2-8 nucleotide "seed region" at the 3' end of the 

target mRNA. This results in translational repression or mRNA degradation and hence silences the 

target gene. (Pasquinelli, et al. 2012) The miRNA-RISC complex interaction with the 3'-

untranslated regions (3' UTR) of the target gene to silence gene expression is well accepted. 

However, many studies have shown that a few miRNAs can also interact with the 5'-UTR (Gu, et 

al. 2014, Broughton, et al.2016), coding sequences (Brummer, et al. 2014), and can even activate 

translation. (Xiao, et al. 2017) This interaction is dependent on various factors, including 
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subcellular localization, miRNA abundance, and the level of complementation of the miRNA-

mRNA complex (O'Brien, et al. 2018). 

The sequencing of the human genome in 2001 has paved a path for expanded identification 

of new miRNAs and their target genes. As more miRNAs have been identified, the research focus 

has shifted towards the functional characterization of miRNAs as they relate to human diseases 

and developmental anomalies. Many miRNAs have been found to play important roles in critical 

biological processes, including cell division and death, immunity, signal transduction, metabolism, 

and cell locomotion (Li, et al. 2012). Given this, the aberrant expression of several miRNAs 

associated with cancer, viral pathogenesis, and immune dysfunction was not surprising. Among 

the various conditions, cancer is the most prominent human disease that has a stable association 

with miRNA mis-regulation. The earliest association was investigated in 2002, wherein the 

deletion of miR-15 and miR-16 was observed in 65% of patients with B-cell chronic lymphocytic 

leukemia. (Calin, et al. 2002) Widespread expression profiling studies further strengthened the 

association with miRNA dysregulation and increased susceptibility to various cancers, most 

notably, breast cancer and lung cancer. Moreover, miRNA expression patterns have been assessed 

to pinpoint the cancer progression stages. (Acunzo, et al. 2015) In addition to their substantial role 

in cancer development and progression, miRNAs have been implicated in degenerative diseases, 

especially neurodegenerative diseases like Parkinson's and Alzheimer's. (Sharma, et al. 2018) 

Also, they have been implicated in a variety of other degenerative disorders of bone , (van Wijnen, 

A. J., et al.  2013), retina (Loscher, et al. 2008), muscle (Wang, et al. 2018), and heart. (Ultimo, et 

al. 2018) 
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1.4.1 microRNA & Regulation of Gene Expression 

MicroRNAs regulate gene expression by direct base pairing to the 3'UTR region of target 

transcripts. (Oliveto, et al. 2017) The miR-3'UTR complex disrupts translation by silencing the 

gene or promoting the degradation of mRNA. The characteristics and function of miRNA and 

antisense miRNA (anti-miRNA) have been studied as potential therapeutic agents. Anti-miRNA 

consist of reverse complementary sequences that lower endogenous miRNA expression and 

enhance gene expression. (Marquez, et al. 2008) Miravirsen is the first anti-miR (inhibits miR-

122) that has been FDA approved in patients with viral hepatitis C. (Hu, et al. 2012) Clinical trials 

have demonstrated that miravirsen is well-tolerated; hence the enthusiasm for developing other 

anti-miRNA -based drugs has increased. 

The distribution of miRNA or anti-miRNA to cardiac muscle tissue remains a challenge 

due to several physiological and cellular obstacles experienced en route to target cells. (Guzman-

Villanueva, et al. 2012) Nevertheless, pathophysiological signal targeting mechanisms that 

enhance miRNA expression may be useful to normalize the expression of gene targets. However, 

the mechanisms of the physiologic and pathophysiologic regulation of miRNA expression is an 

underserved area of research. This provides an opportunity for the development of 

pharmacological inhibitors targeting the regulatory pathways of miRNA in diseases such as HF 

Furthermore, the circulation of miRNA in the blood makes them attractive as potential biomarkers 

for clinical diagnosis. (Reid, et al. 2012) 

1.4.2 miRNAs in Cardiovascular Function and Anomalies 

miRNAs are expressed in cardiovascular tissue and have been identified as regulators of 

cardiovascular function. In addition to serving an essential role in cardiac development, they play 
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a role in the pathogenesis of various cardiovascular diseases, including cardiac arrhythmias, 

myocardial infarction, atherosclerosis, and coronary artery disease. (Romaine, et al. 2015) The 

cardiac-specific knockout of the endonuclease Dicer, which effectively disrupts all miRNAs, 

results in severe cardiac developmental anomalies, pericardial edema, and death. (da Costa 

Martins, et al. 2008) A global genomic study on healthy human heart muscle in 2008 revealed a 

handful of miRNAs including miR-1, miR-16, miR-27b, miR-30d, miR-126, miR-133, miR-143, 

miR-208 and let-7 which were found abundantly in cardiac tissue compared to other tissues. Taken 

together, this suggests that miRNAs have a definite role in cardiac muscle function and 

maintenance. (Landgraf,et al. 2007, Thum, et al. 2008) Current research has revealed more specific 

functions for these miRNAs, along with the identification of newly associated miRNAs in cardiac 

disease. For example, miR-1 has been identified as an indicator of an increased risk for heart failure 

development. (Sygitowicz, et al. 2015) Additionally, miR-126 is upregulated in response to 

vascular injury of the heart and is crucial for cell proliferation and maintenance. (Chistiakov, et al. 

2016) Any loss of its expression has been associated with atrial fibrillation and heart failure due 

to loss of its protective function against cardiac hypoxia. (Wei, et al. 2015) 

1.4.3 Dysregulations of miRNA in Patients with Heart Failure 

There is increasing evidence suggesting that miRNA dysregulation is associated with heart 

failure and comorbid pathological conditions. Both miR-1 and miR-210 regulation are positively 

correlated with New York Heart Association (NYHA) functional classifications. (Endo, et al. 

2013, Sygitowicz, et al. 2015, Zhou, et al. 2018) In addition, decreased expression of the miRNAs 

let-7i, miR-18b, miR- 18a, miR-223, miR-301a, miR-652, and miR-423 are correlated with 

increased risk of mortality in HF patients. (Ovchinnikova, et al. 2016) Contrarily, increased levels 

of miR-1254 and miR- 1306 are correlated with hospitalization and death, and increased levels of 
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miR-208b and miR- 499 are strongly correlated with the development of HF and death. (Bayes-

Genis, et al. 2018) 

The screening and examination of miRNA expression profiles in healthy and failing human 

hearts has been accomplished with deep sequencing and bioinformatics. Around 250 miRNAs 

were differentially expressed in failing human hearts compared to that of controls; high expression 

of miRNAs was observed in patients with refractory end-stage heart failure. (Leptidis, et al. 2013)  

1.4.4 miR-362-3p Targets KCNH2  

The mechanism for downregulation of KCNH2 during heart failure and the potential role 

of miR regulation is unknown. Our laboratory has correlated five miRs with KCNH2 mRNA 

down-regulation and increased in patients with a single nucleotide polymorphism (SNP) linked to 

QT interval lengthening. (Shao M, et al. 2013) Through in vitro and ex vivo examination, miR-

362-3p has been identified as binding to the 3'UTR region of KCNH2, resulting in decreased 

KCNH2-mRNA and protein expression leading to lower IKr density. (Assiri, et al. 2019)   

miR-362-3p is endogenously expressed in the heart, and further deep sequencing showed 

that it is upregulated during cardiac hypertrophy. (Leptidis, et al. 2013)  It has also been suggested 

that miRNAs may be promising biomarkers in the diagnosis HF both in patients with reduced 

ejection fraction (HFrEF) and with preserved ejection fraction (HFpEF). (Schulte, et al. 2015)  

Interestingly, our laboratory has demonstrated that miR-362-3p is upregulated in cardiac 

tissue during HFrEF. (Mourad, et al. 2015) The ventricular tissue of patients with HFrEF 

demonstrated a 60% increase in miR-362-3p coupled with a 40% reduction in KCNH2 expression. 

These data support that increased expression of miR-362-3p downregulates KCNH2 to increase 

the susceptibility to arrhythmias during HFrEF. Overall, there is clear evidence to advocate the 
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crucial role of miRNAs in heart failure pathogenesis and their use as a potential biomarker in heart 

failure therapy. 

1.5 Population Pharmacokinetics Pharmacodynamic Model Concept  

Population pharmacokinetic (PK) and pharmacodynamics (PD) modeling techniques assist 

in the identification of inter-and intra-individual variability that affects drug safety and efficacy. 

(Sun, et al. 1999) Sheiner first introduced the PK modeling concept in 1972. Initially, PK modeling 

was developed to assess sparse drug concentration data collected during therapeutic drug 

monitoring, (Sheiner, et al. 1980) but later expanded to include a PKPD modeling relationship.The 

term population pharmacokinetics refers to the  ‘mixed-effects’ (parameterization) modeling, a 

mixture of fixed and random effects. (Aarons, et al. 1991) According to Mould et al., (Mould, et 

al. 2012) population pharmacokinetics is "the study of pharmacokinetics at the population level, 

in which data obtained from all individuals in a population are evaluated simultaneously using a 

non-linear mixed-effects model."  

Traditional PK studies are designed with a detailed sampling schedule and collect multiple 

samples at fixed intervals. On the other hand, the population PK method is designed to include 

sparse sampling schedules but in a larger number of patients. These patients are usually given 

similar or different doses of drugs, and blood samples from these patients are taken from different 

time intervals. (Charles, et al. 2014) Pharmacokinetic modeling is an essential part of drug 

development and is an extensive investment for new therapeutic agents. As such, PK assessment 

involves a complex process requiring the rigorous procedures necessary to provide orderly data, 

appropriate computing platforms, adequate resources, and effective delivery. (Mould, et al. 2012) 
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1.5.1 Non-linear Mixed-effects Modeling Concept  

The term population PK usually refers to' mixed-effects models' (parameterization), a 

combination of fixed and random effects. Parameters that do not differ across individuals are 

known as fixed effects (structural). In contrast, the random effects parameters that vary across 

individuals may include inter-subject variability, which may account for the remaining 

unexplained variation. (Mould, et al. 2012, Charles, et al. 2014)  

1.5.2 Aspects of PK/PD Modeling 

There are four key sequential processes generally required to develop population 

pharmacokinetic/ pharmacodynamics modeling aspects; (1) dataset, (2) structural analysis model, 

(3) inter-subject and intra-subject variability (statistical) model, and (4) covariate models. The 

structural models generally describe the typical drug concentration versus time relationship of the 

population. They can include the systemic model (e.g. description of kinetics following 

intravenous dosing) and the absorption model (e.g. description of drug uptake in the blood for 

extravascular dosing). The inter-subject and intra-subject variability model detail the random 

variability in the population (e.g. residual, occasional and inter-subject). Covariate models detail 

the variability predicted by covariates of the individual study subjects. Non-linear mixed-effect 

modeling combines the models, applying an estimation method for the determination of the 

structural analysis model, inter-subject and intra-subject variability model, and covariate model 

parameters that describe the data. (Bonate 2011) 

1.5.3 Statistical Modeling  

The development of an appropriate inter-subject and intra-subject variability model is 

essential for proper evaluation of PK/PD data, as well as for simulation. In population PK models, 
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three inter-subject, and intra-subject variability (statistical) models are commonly used. (Lala , et 

al. 2012) The between-subject variability (BSV) or interindividual variability model indicates a 

random unexplained variance between subjects, while the between occasion variability (BOV) 

model describes individual variance between different occasions. Within-subject variability 

(WSV) or residual variability model describe unknown or unexplained variability despite 

controlling for known sources of variability. The WSV, also known as intra-individual variability, 

may represent model misspecification and error in the measurement of the assay. The parameters 

obtained from these inter-subject and intra-subject variability models quantify random, unknown 

variations. (Mould, et al. 2012, Burger, et al. 2014)    

Between-Subject Variability (BSV) 

 It is unlikely that a parameter in a model will be constant across all individuals. It is presumed 

that all model parameters are random and that there will be some variation in the values across all 

individuals. However, such assumption is not realistic due to the fact that the right type of data has 

not been collected or not enough data has been compiled to estimate the variability of a particular 

parameter in a population and hence the model needs to be simplified by considering that particular 

parameter as a fixed effect. (Lacey, et al. 1997; Limpert, et al. 2001; Mould, et al. 2013) 

Consequently, it is logical to have a model with some fixed parameters across all individuals and 

some parameters with variability across individuals. In certain cases where the variability across 

individuals can be estimated, the choice of how to model the variability usually depends on the 

type of data. PK data is often modeled on an exponential scale because the parameters of PK 

models must be constrained to be greater than zero and are usually right-skewed. (Mould, et al. 

2013.) 
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Between-Occasion Variability (BOV) 

Individual PK parameters can vary with time, and the source of the variability is determined 

by the occasion. Initially, between-occasion variability (BOV) was defined as an residual 

unexplained variability component (RUV) (Karlsson, et al. 1993) and was later cited as a 

component of BSV. The BOV should be evaluated whenever appropriate. As reported by Karlsson 

and Sheiner, bias was observed to exist in both variance and structural parameters when BOV was 

completely ignored. (Karlsson, et al. 1993) However, the degree of bias depended on the design 

of the study, the magnitude of the BOV, and the inter-individual variability. Failure to consider 

BOV may result in an increased chance of statistically significant bias in the period of time in 

parameter estimates.  

Within-Subject Variability 

Within-subject variability (WSV), or RUV, arises from a variety of sources, such as as 

assay variability, incorrect sample time collection, dosing errors, and model misspecification. The 

WSV model selection usually depends on the type of data evaluated and is similar to the BSV 

model. (Mould, et al. 2013) The model that determines the within-subject variability is known as 

the residual variance model. The more heterogeneous and substantial the residual variance, the 

higher the need for it to be included in the overall model. WSV depends on specific covariates, 

such as changes in the assay between studies, variations in the execution of studies, or the 

involvement of different patient populations requiring different WSV models. (Mould, et al. 2002)  

1.5.4  Covariate Model Analysis   

One of the critical terms in population PK study is "covariate," which relates to any variable 

that is limited to an individual. Covariates are categorized into intrinsic factors such as those that 
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are genetically determined or inherited, or age, height, weight, and race; and extrinsic factors that 

are influenced by the external environment such as drug dose, degree of medication adherence, 

smoking habits, and presence of adjuvant medications. Covariates can be classified as continuous 

(e.g. age), dichotomous (e.g. sex), or polychotomous/categorical (e.g. race). Generally, intrinsic 

covariates do not differ over a short duration, whereas extrinsic covariates can differ during the 

course of a study. (Bonate, 2011) The covariate modeling method can be univariate or multivariate, 

and various methods for covariate selection have been described, including the classical stepwise 

covariate modeling method.  

1.6 Pharmacodynamic (PD)  

Pharmacodynamics (PD) is the study of the effect of drugs on the body. In other words, PD 

represents a drug effect at the physiological, biological, and molecular levels. (Benet, et al. 1995, 

Campbell, et al. 2017) The recognition of PD science began in the mid-1960s with the work of Dr. 

Gerhard Levy, who first described an association between drug concentrations and reversible drug 

reactions using mathematical equations. (Levy, et al. 1964, Levy, et al. 1966) Since then, PD 

modeling has emerged as a significant field to mathematically outline drug effects. (Mager, et al. 

2003) PD modeling is now crucial for regulatory review of new therapeutics. (Huang, et al. 2013)  

Different types of PD models range from linear models to more complex models. The 

relationship between plasma concentrations and PD response of a drug, whether beneficial or 

adverse, can be evaluated using simple direct effect models such as the liner pharmacodynamic 

model, Emax model, and sigmoidal Emax model. (Holford, 2017) In the Emax model, the drug 

effect is directly proportional to the drug concentration. The Emax model can be described as 

shown in Eq.4; where E is defined as the drug effect (observed), Emax is defined as the maximal 
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drug effect, Conc is defined as the drug concentration, and EC50 is defined as the concentrations 

that produce half of the maximal effect. 

 E = 	 7!"#$	#		$%&'
($%&	)	$%&'

8 (4) 

Note that Emax and EC50 can be denoted as Imax and IC50 for drugs that have inhibitory effects. 

At very low concentrations (below the EC50), the concentration-effect relationship became liner 

and can be described by the following equation (Eq.5)    

 

E= Slope * Conecntration                                 (5) 

When the concentration relationship's effect cannot be adequately fit with the Emax model, an 

extension of the Emax model introduces an additional exponent known as the Hill coefficient, 

called the sigmoidal Emax model. The Hill coefficient determines the 'steepness' of the effect 

versus concentration curve. Nevertheless, some drugs require time for their response due to an 

equilibration delay between the plasma compartment and the action site. This delay is seemingly 

not related to plasma concentrations but can be associated with the effect-compartment ('link') 

model. (Hull, et al. 1978; Stanski, et al. 1990)  

Pharmacodynamic models can also be classified according to the time dependency, known 

as time-invariant and time-variant models. Time-invariant models are so named because the PD 

parameters remain constant over time. This model is sufficient for most drugs because their 

changes are directly related solely to their concentration at the effect site. However, with some 

drugs, the PD parameters can change as a result of tolerance (i.e., a decrease in the response) 

(Meibohm, et al. 2002) or sensitization (decrease in the number of receptors, or the receptor 

affinity) in the patient's system. (Ploeger, et al. 2009) 
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1.6.1 The Pharmacodynamic Modelling Concept  

PD modeling can use a mechanism-based approach to offer insight into the mechanistic 

process behind drug effects. These semi-mechanistic response models are commonly sub-

classified as indirect pharmacodynamic models, in which the effect of a drug indirectly related to 

secondary or a more intermediate response steps. (Agoram, et al. 2007; Danhof, et al. 2008) This 

classification can be dependent upon the pathophysiology of the disease state and requires an 

understanding and consideration of the mechanisms.  Indirect response models are used to study 

the PD of a wide variety of drugs with an indirect mechanism of action.  The first formal proposal 

of indirect response models was presented as four basic models by Dayneka and 

colleagues.(Dayneka, et al. 1993) 

The basic structure of indirect models include inhibition of the production variable (kin) 

(Model 1), inhibition of the dissipation variable (kout) (Model 2), stimulation of the production 

variable (kin) (Model 3), and stimulation of the dissipation variable (kout) (Model 4), as presented 

in  formed due to inhibition of the factors influencing the response variable kout dissipation. #3 represents Model 

3, describes the drug response formed to stimulate the response variable kin development factors. #4 represents 

Model 4 describes the drug response produced due to stimulating the factors influencing the response variable kout 

dissipation. 

 (Jusko , et al.   1994, Sharma , et al. 1998) 
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Figure 2. Structure of four basic indirect response models 

Note #1 represents Model 1, outlines the drug response formed to inhibit the factors regulating the response variable 
kin's output; #2 represents Model 2, describes the drug response formed due to inhibition of the factors influencing 
the response variable kout dissipation. #3 represents Model 3, describes the drug response formed to stimulate the 
response variable kin development factors. #4 represents Model 4 describes the drug response produced due to 
stimulating the factors influencing the response variable kout dissipation. 

Model 1 (Inhibition-kin) 

Model 1 outlines the drug response formed as a consequence of inhibiting the factors 

regulating the output of the response variable kin. Where Imax is the maximum fractional ability of 

the drug to influence the inhibition processes and IC50 is the drug concentration that produces half 

of the maximum inhibition. The Imax and IC50 inhibition mechanism are known to operate on a kin 

as shown in Eq. 6:  

 

 dR
dt = k*& 71 −

+"#$	#		$(
+$%&	)	$)

8-k%,-	x	R (6) 

   

(kin is the zero-order rate constant. Kout is the first order rate constant. Imax is the maximum 

fractional ability of the drug to influence the inhibition processes. IC50 is the concentration that 

produces half of the maximum inhibition. The Cp value is the plasma drug concentrations). 

Model 2 (Inhibition-kout) 

Model 2 describes the drug response formed as a consequence of inhibition of the factors 

influencing the response variable kout dissipation. Where IC50 is the concentration that produces 

half of the maximum inhibition. The mechanism of inhibition with an IC50 is considered to function 

on kout as shown in Eq.Error! Reference source not found.Error! Reference source not found. 

7Error! Reference source not found.Error! Reference source not found. below: 

 



 
 

30 

 dR
dt = k*& − k%,-	(1 −

+"#$	.		$(
+$%&)	$)

)R (7) 

   

(Imax is the maximum fractional ability of the drug to influence the inhibition processes. IC50 is the 

concentration that produces half of the maximum inhibition. The Cp value is the plasma drug 

concentrations, R response). 

Model 3 (Stimulation- kin) 

Model 3 describes the drug response formed as a consequence of stimulating the factors 

regulating the response variable kin development. The mechanism of stimulation process with SC50 

is considered to function on the kin as shown in Eq. 8 below: 

 

 dR
dt = k*& 71 +

/"#$	#		$(
/$%&)$)

8 -k%,-	x	R (8) 

 

(Smax is the maximum fractional capacity of the drug to affect stimulation. SC50 is the concentration 

which produces half of the maximum stimulation. Cp is the concentration of the plasma, R 

response) 

Model 4 (Stimulation- kout) 

Model 4 describes the drug response produced as a result of stimulating the factors 

influencing the response variable kout dissipation. The mechanism of stimulation process with SC50 

is considered to function on kout as shown in Eq. 9 below: 

 

 dR
dt = k*& − k%,-	(1 +

*"#$	$		+(
*+%&,+)

)R (9) 
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(Smax is the maximum fractional capacity of the drug to affect stimulation. SC50 is the concentration 

which produces half of the maximum stimulation. Cp is the concentration of the plasma, R 

response). 

1.7 Summary 

In summary, The sensitivity to drug-induced QT prolongation is highly variable in heart 

failure (HF) patients. QT interval prolongation can lead to a life-threatening ventricular arrhythmia 

known as torsade de pointes (TdP), resulting in sudden cardiac death. Although QT prolongation 

is a surrogate marker for sudden cardiac death, the extent of drug-induced QT prolongation, and 

thus TdP, is mostly unpredictable. Our research group has identified miR-362-3p as a potential 

regulator of the QT interval. Understanding the interplay between drug-induced QT interval 

lengthening in HF, in addition to serum miR expressioncould be enhanced through PK-PD models 

to assess circulating serum-miR as a potential biomarker for drug-induced QT-interval 

prolongation. Thus, the primary objective is to develop a semi-mechanistic model using the 

nonlinear mixed-effects approach to describe serum miR-362-3p expressions in the circulation as 

a potential biomarker to predict subject susceptibility to drug induced-QT interval prolongation. 

We hypothesize that subjects with higher serum miR-362-3 expressions are more susceptible to 

drug-induced QT interval prolongation. 

1.8 Project Objective:  

The primary objective was to develop a semi-mechanistic model to describe serum miR-

362-3p expressions as a potential biomarker to predict sensitivity to ibutilide induced-QT interval 

prolongation in patients with HF.   
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 METHODS 

The dataset utilized for the development of the population PK-PD model was acquired 

from a previously published clinical trial by our research group (Tisdale, et al. 2020). This study 

was originally designed as a prospective, single, parallel comparative study to determine the 

impact of heart failure with preserved ejection fraction (HFpEF) on sensitivity to drug-induced QT 

prolongation.  

2.1 Ethical Aspect  

The study was approved by the Indiana University Purdue University Indianapolis (IUPUI) 

Institutional Review Board (IRB). All patients provided written informed consent. 

2.2 Study Subjects 

Subjects were enrolled into one of the three study groups (1) heart failure with reduced 

ejection fraction (HFrEF), (2) HFpEF, and (3) Control group without documented HF that was 

matched to the HFpEF group by age and sex. Subjects enrolled in the HFpEF group met the 

following criteria: symptomatic HF, left ventricular ejection fraction (LVEF) ≥50% within the 

previous 2 years, and 1 or more of the following findings on the echocardiogram: E/E'> 15; E/A < 

0.5; maximum left atrial volume index of >40 mL/m2; and diastolic dysfunction grade 2 or greater.   

2.3 Eligibility Criteria 

        In order to qualify for the study, subjects had to weigh between 60 and 130 kg. Serum 

magnesium concentrations were required to be higher than 1.8 mg/dL, and serum potassium 

concentrations greater than 3.8 mEq/L. Qualified subjects had hepatic transaminases less than 
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three times the standard upper limit, hematocrit above 26%, and estimated creatinine clearances 

of at least 20 mL/minute. Subjects were excluded from the study if they were pregnant or lactating, 

had an individual or family history of TdP, long QT syndrome, sudden cardiac death (not 

associated with myocardial infarction), or had New York Heart Association (NYHA) defined class 

IV heart failure. Subjects were also excluded for permanently paced ventricular rhythm or 

sustained arrhythmias, including atrial fibrillation. Patients who had been given Vaughan Williams 

Class 1a drugs or class III antiarrhythmic drugs within five half-lives of ibutilide infusion,had a 

baseline QTc interval above 450 ms, or had adjuvant use of QT interval-prolonging drugs were 

also excluded.  

2.4 Study Design 

The design included two phases (1) a study day dedicated to a screening phase and (2) a 

study day dedicated to the treatment phase. During the screening phase, enrolled subjects remained 

for 12 hours at the Indiana Clinical Research Center (ICRC) for baseline QT measures. Twelve 

lead ECGs (Marquette Mac 5500, GE. Healthcare Biosciences, Pittsburgh, Pennsylvania) were 

serially collected in triplicate (approximately 1 minute apart) at the following pre-specified time 

points; 0, 15, 30, and 45 minutes, and 1, 2, 4, 6, 8 and 12 hours.  In the treatment phase, subjects 

received a single IV dose of ibutilide (0.03 mg/kg) diluted in 50 ml of normal saline and 

administered slowly via infusion pump over 10 minutes at the ICRC. Following IV infusion, 

triplicate 12 lead ECG readings and venous blood samples (10 mL) were collected at baseline from 

all the subjects and at the following pre-specified times; end of infusion and at 5, 10, 15, 20, 30, 

and 45 minutes, and 1, 2, 4, 6, 8, and 12 hours post-infusion. Blood (10 mL) samples were obtained 

using an indwelling catheter in the arm contralateral to that of the ibutilide infusion. 
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2.5 QT Interval Measurements and QT Interval Correction  

Triplicate 12-lead ECGs were collected during both phases of this trial. The RR and QT 

intervals were measured from leads II, V1, and V5 using electronic calipers in the the MUSE 

automated system (GE. Healthcare Biosciences, Pittsburgh, PA). The triplicate ECG readings were 

collected approximately 1 minute intervals from pre-specified time points: at 0 minutes, at the end 

of infusion, at 5, 10,15, 20, 30, and 45 minutes, and later on at 1, 2, 4, 6, 8 and 12 hours. The QT 

intervals were corrected for heart rate using the Fridericia formula.  

2.6 Serum Ibutilide Concentration Assay  

The serum was separated from whole blood and then stored (-70° F) until further analysis. 

Serum ibutilide concentrations were determined in the Indiana University Clinical Pharmacology 

Analytical Core (CPAC) Laboratory using reverse-phase high-performance liquid 

chromatography with mass spectrometry (HPLC-MS) detection (Agilent 1290 HPLC, Eksiegent 

Autosampler, and AB Sciex 5500 MS).  

2.7 Quantitative Reverse Transcriptase-Polymerase Chain Reaction (q-PCR) Analysis   

A total of 500 ng RNA of each sample was reverse transcribed using the High Capacity 

RNA-to-cDNA Kit (Applied Biosystems, Foster City, CA, USA). According to the manufacturer's 

recommendation, the extracted RNA synthesized the cDNA by mixing the RNA with reverse 

transcriptase enzyme mix, random sequence oligonucleotide, and nuclease-free water and using 

the TaqMan Gene Expression Assays kit (Life Technology, Carlsbad, CA, USA).  
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2.8 Population Pharmacokinetic-Pharmacodynamic Analysis 

2.8.1 Software 

Pharmacokinetic/Pharmacodynamic modeling was performed using a nonlinear mixed-

effect model approach (NONMEM, Version 7, ICON Development Solutions, Ellicott City, MD, 

USA). The population parameters were evaluated using the classical first-order conditional 

estimation method with interaction (FOCE-I). (Bauer 2019) The adjunct tools used to evaluate 

the population PK-PD model utilized during the modeling process were R (version 3.1.2) and 

XPose (version 4.5.3), along with the graphical interface Pirana version 2.9.0. (Lindbom, et al. 

2005, Keizer,et al. 2013) 

2.8.2 Structural PK Model 

Initially, a non-compartmental analysis (NCA) was performed to determine the preliminary 

pharmacokinetic input parameter estimates utilized during the population PK modeling process.  

Briefly, the total area under the concentrations-time curve (AUC 0-∞)  was calculated using the 

trapezoidal rule. Clearance (CL) was estimated by dividing the ibutilide dose over the total area 

under the concentrations-time curve (AUC 0-∞). The volume of distribution (V) was calculated 

by multiplying the clearance (CL) by the mean residence time (MRT), and finally, the terminal 

half-life (t1/2) was calculated by dividing 0.693 over the slope of the terminal phase (ke). 
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Summary of NAC 

Parameters Median  

AUC0--∞ 
(mg*hr/mL) 

2.5 

CL (mL/hr/kg) 0.10  

V (mL/kg) 0.01 

t1/2 (hr) 6.04 

Ke (1/hr) 0.044 
 

Several structural population PK models were investigated (e.g. two compartments and three-

compartment models). Multiple criteria were used to determine the selection of the final 

population PK base model including; likelihood ratio test, visual inspection of the goodness-of-fit 

(GOF) plots, precision in parameter estimates, the Akaike information criterion (AIC), and 

consistency with previously published ibutilide PK-PD parameters. (Tisdale, et al. 2008, Zeng, et 

al. 2017) 

2.8.3 Structural PK-PD Model   

The PD response model was developed using an indirect response model based on its 

mechanistic effects (IKr inhibition) with zero‐order input parameter and output parameter 

predicting the QT interval prolongation. The selected PD model provided the best fit to the 

observed data as described in equation   

 𝑑𝑄𝑇
𝑑𝑡 = 𝐾𝑖𝑛 ∗ 𝐸𝐹𝐹(𝐶𝑂𝑁) − 𝐾𝑜𝑢𝑡 ∗ 𝑑𝑄𝑇 

 

𝐸𝐹𝐹(𝐶𝑂𝑁) = 	1 − I
𝐼𝑚𝑎𝑥 ∗ 𝐶𝑜𝑛𝑐
𝐼𝐶50 + 𝐶𝑜𝑛𝑐M 

 

 

(11) 
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Where Kin denotes the zero-order rate constant, and Kout denotes the first-order rate constant; 

EFF(CON) is the effect of ibutilide concentrations on QT. Imax denotes the maximum effect, and 

IC50 denotes the ibutilide-plasma concentration that is required to achieve 50% of the maximum 

effect on QT. 

Baseline QTc from both phases was included as the dependent variable. To account for 

diurnal variation associated with baseline QT interval, an inter-occasion term on the QT baseline 

parameter was utilized according to the following equation:   

CC=0, IF (TIME.GT.12) =OCC1 

IOV(1-OCC) *ETA (5) +OCC*ETA (6) 

OMEGA BLOCK (1) 0.05; IOV VARIANCE OMEGA BLOCK (1) SAME 

where IOV are random variables between occasion IOVs and OCC denotes each phase, with OCC0 

representing the screening phase (day 1) and OCC1 representing the ibutilide phase (day 2). 

2.7.4 Covariate Analysis  

A structural base model was used to determine all the possible contributions of pre-

specified covariates contribution to the observed variability in the PK model of ibutilide and 

ibutilide-induced QT-interval (PK-PD model). The selection of covariates was initially based on 

the forward addition technique in which covariates are added to the base model, and then the 

backward elimination was utilized to remove one at a time. Covariates were considered statistically 

significant if the objective function value (OFV) decreased by > 3.84 units after the addition of 

each covariate. Similarly, only covariates that increased the OFV by > 6.63 units during backward 

elimination were kept in the model.  
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For continuous covariates, the following functional forms were utilized:  

a. Linear 

 𝑇𝑉𝜃 = 𝜃 + 𝜃012 ∗ (𝐶𝑂𝑉 − 𝐶𝑂𝑉345678) (12) 

 

NONMEM coding 𝑇𝑉𝜃 = 𝑇𝐻𝐸𝑇𝐴(1) ∗ 𝑇𝐻𝐸𝑇𝐴(2) ∗ (𝐶𝑂𝑉 − 𝐶𝑂𝑉345678)	

𝜃 = 𝑇𝑉𝜃 ∗ 𝐸𝑋𝑃U𝐸𝑇𝐴(1)V 

(13) 

 

b. Power 

 𝑇𝑉𝜃 = 𝜃 ∗ (
𝐶𝑂𝑉

𝐶𝑂𝑉345678
)
9012

 (14) 

 

NONMEM coding 𝑇𝐶𝜃 = 𝑇𝐻𝐸𝑇𝐴(1) ∗ I
𝐶𝑂𝑉

𝐶𝑂𝑉345678
M ∗∗ 𝑇𝐻𝐸𝑇𝐴(2)	

𝜃 = 𝑇𝑉𝜃 ∗ 𝐸𝑋𝑃U𝐸𝑇𝐴(1)V 

 

(15) 

 

c. Exponential 

 𝑇𝑉𝜃 = 𝜃 ∗ 𝐸𝑋𝑃(𝜃012 ∗ (𝐶𝑂𝑉 − 𝐶𝑂𝑉345678)) (16) 

 

NONMEM coding 𝑇𝑉𝜃 = 𝑇𝐻𝐸𝑇𝐴(1) ∗ 𝐸𝑋𝑃(𝑇𝐻𝐸𝑇𝐴(2) ∗ (𝐶𝑂𝑉 − 𝐶𝑂𝑉345678))	

𝜃 = 𝑇𝑉𝜃 ∗ 𝐸𝑋𝑃U𝐸𝑇𝐴(1)V 

 

(17) 

 

(TVθ reflects the population value of the parameter for a given covariate value and θ is the 

population value of the parameter for those individuals with a covariate value equal to the median 

value (COVmedian) as for those individuals COV-COVmedian= 0 or COV / COVmedian= 1.  θcov reflects 

a fractional change in population parameter value due to the covariate effect). 
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In NONMEM equations, TVθ is a standard value parameter with a covariate median value 

(COVmedian). θ is the parameter estimate; ETA (1) is the parameter estimate difference between the 

person and the population. THETA (2) is a factor that describes covariate influence (COV). 

2.8.4 Random Effect Model 

The inter-individual variability of the PK and PD model parameters for each patient was best 

described by an exponential model (Equation Error! Reference source not found.) as shown below (Feng, et 

al. 2006): 

 𝑃𝑖 = 𝜃 ∗ exp	(𝜂𝑝) (18) 
 
Where Pi is the individual parameter estimate for the subject; θ is the population mean estimate 

for parameter P; and (ηp) denotes the difference between Pi and θ.  

 

The intra-individual variability (residual error model, RUV) was best described by 

proportional error for the PK model and by additive error for the PD model. The proportional 

error equation (19) is presented below (Choi, et al. 2016): 

 𝐷𝑉 = 𝐼𝑃𝑅𝐸𝐷 + (𝐼𝑃𝑅𝐸𝐷 ∗ 𝜀1) (3) 

Where DV is the dependent variable for the observed PK/PD model, IPRED is the PK, and 

PKPD model-predicted concentrations/effect for the individual and ε1 and ε2 are the differences 

between the individual observed and individual predicted concentrations/effect. 

2.9 Model Evaluation  

The criteria for model evaluation included objective function value (OFV), Akaike 

information criterion (AIC), visual assessment of the goodness of fit plots (e.g., predicted versus 

observed concentrations; weighted residual versus predicted concentration), and overall 

plausibility and precision of the PK and PK-PD parameter estimates. Furthermore, a drop-in OFF 
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of > 3.84 (p < 0.05, degrees of freedom = 1) was considered a significant decrease in the objective 

of the function value. The visual predictive check (VPC) was performed to further confirm the 

accuracy and predictive performance of both the PK and PK-PD output using the final parameter 

estimates to simulate a profile of 1,000 individuals by prediction of the 95 percentiles. The median 

and the fifth and ninety-fifth percentiles were determined and then superimposed with the original 

data. The model was considered to appropriately represent the data if most of the observed data 

points fell within the fifth and 95 percentile intervals and were equally distributed around the 

median. (Baheti et al. 2011, Park, et al. 2014) 
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 RESULTS 

3.1 Clinical and Demographic Characteristics of all Subjects 

A total of 22 subjects (15 women and 7 men), aged 18 to 80 years who met the inclusion and 

exclusion criteria were enrolled and divided into three groups: a group of heart failure with 

preserved ejection fraction (HFpEF, n=10), a group of heart failure with reduced ejection fraction 

(HFrEF, n=2), and ten healthy subjects in the control group were matched to subjects in the HFpEF 

for age (67±10 years) and sex. There were no significant differences in terms of age and weight in 

all groups. Overall, a  total of 536 ibutilide serum concentrations, serum miR-362-3p expressions, 

and QT interval data points were included in the analyses. Error! Not a valid bookmark self-

reference. shows the demographics and clinical characteristics of study subjects. 

Table 1. Participant Demographics and Subject Characteristics 
Characteristic Matched Controls 

(n=10) 
HFpEF 
(n=10) 

HFrEF 
(n=2) 

Male sex, n (%) 3 (30) 3 (30) 1 (50) 

White, n (%) 8 (80) 7 (70)  1 (50) 

African American, n (%) 2 (20)  3 (30) 1 (50) 

Age, years 67 ± 9 69 ± 8 67 ± 1 

Weight, Kg 82.2 ± 12 89.7 ± 13 87.3 ± 3 

Ibutilide dose, mg 0.25 ± 0.04 0.27± 0.04               0.26 ± 0.01                

Serum miR-362-3p, n (%) 2 (20) 8 (80) 2 (100) 

Concurrent diseases, n (%)    

- Hypertension 6 (60) 8 (80) 2 (100) 

- Coronary artery disease 1 (10) 3 (30) 2 (100) 

- Diabetes mellitus                          2 (20) 5 (50) 1 (50) 

- Hyperlipidemia                             6 (60) 5 (50) 2 (100) 

Concomitant medications, n (%)     

- ACE inhibitors/ARBs                   3 (30) 7 (70) 2 (100) 

- Loop diuretics                               2 (20) 7 (70) 2 (100) 

- Beta-blockers 2 (20) 8 (80) 2 (100) 

- Statins                                            4 (40) 5 (50) 2 (100) 

Note: HFpEF = Heart failure with preserved ejection fraction; HFrEF= Heart failure with reduced ejection fraction; 
Data presented as n (%) or mean ± S.D. 
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3.2 Population PK Modeling  

The population PK model was developed to describe ibutilide serum concentration versus 

time. The PK model was estimated using the first-order conditional estimation method with an 

interaction term (FOCE-I). The PK parameters of ibutilide were evaluated by both two- and three-

compartment PK models (implemented via ADVAN3, TRNAS4, ADVAN11, and TRANS4 

subroutines receptively) with first-order elimination from the central compartment. The final 

population PK base model was selected based on the objective function value (OBJ), Akaike 

information criterion (AIC), visual inspection of the goodness of fits plots, individual and 

population parameter estimates, and reduction in both residual and interindividual variability. 

Following noncompartmental analyses, a 2-compartment model with first-order elimination 

from the central compartment was compared to a 3-compartment model. The two compartmental 

models' apparent volume of distributions parameter was poorly estimated, reflected by a large 

shrinkage value greater than 30%.  The term shrinkage refers to the residual error in the model 

calculated as 1-SD (individual weighted residuals). Therefore, for larger shrinkage value; the 

individual predictions shrink back toward the observation where theDV is equal to the IPRED. 

The goodness of fit plots (GOF) for the 2 compartment model are presented in Figure 3 along with 

model evaluation criteria with the parameter estimates listed in Table 2. In addition to improving 

the model fit, the PK parameter estimates from the three compartment model aligned with those 

previously reported.  Accordingly, the structural population PK model was best described by a 3-

compartment model with first-order elimination from the central compartment, as illustrated in 

Figure 4. While other residual error models did not significantly improve the model fit (delta OFV 

< 3.84) as shown by the GOF in Figure 5, A proportional error model best described the residual 

variability. The mean parametervalue of ibutilide clearance (CL) was 199 L/hr, the mean volume 

distribution of the central compartment (VC) was 28.6 L; and the mean volume distribution of 
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peripheral compartment 1 (VP1) and f peripheral compartment 2 (VP2) were 80.2 L and 1020 L, 

respectively.   

3.3 Covariate Analysis—PK Model  

In analyzing the covariate relationships, each covariate was added univariately in the base 

model using centered, linear, exponential, or power relationships, as presented in Table 3.. The 

tested covariates did not have a significant effect on any of the PK parameters.  Hence, the base 

structural model represented the final PK model. 

3.4 Model Evaluation  

The dependent variable (observed ibutilide serum concentration) vs Individual predicted 

serum concentration (IPRED) vs time along with the GOF plots indicated no misspecifications in 

the model (Figures 5 & 6). The predictive performance was determined to be acceptable, as most 

of the observed data points contained in the model's 90% confidence interval of the predictions 

reflect the 5th–95th percentiles as displayed in Figure 7. The final population PK parameter 

estimates for both the fixed-effect and random-effect parameters were in close agreement with the 

corresponding median estimates derived from the bootstrap, as displayed in Table 4. 
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Table 2. A 2-Compartmental Population PK Model Parameter Estimate for Ibutilide 

Parameter        Population Estimates (RSE %) 

CL, L/hr. 264 (7%) 

Q, L/hr. 566 (12%) 

Vc, L 62.5 (12%) 

Vp, L 940 (7%) 

ω Cl 0.104 (52%) 

ω Q 0.0633 (43%) 

 ω Vc    0.015 (39%) 

ω Vp 0.109 (100%) 

σ PROP 0.0611 (14 %) 

Note. CL = systemic clearance, Q= Intercompartmental clearance, Vc = Volume distribution of central compartment, 
Vp = Volume distribution of peripheral compartment, ω = Inter-individual variability (omega), σ = Residual 
variability (sigma), PROP = Proportional, RSE = Residual standard error. 
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Figure 3. Goodness-of-fit plots for the 2-compartmental population PK model of ibutilide 
Note. (A) observed ibutilide concentrations vs. individual predicted ibutilide serum concentrations (B) observed 
concentrations vs. population predicted concentrations (C) Conditional weighted residuals versus population 
predicted concentrations (D) Conditional weighted residuals versus time. 
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 Ibutilide Infusion   
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

Figure 4. Display the Three Compartmental Structural Pharmacokinetic Model of Ibutilide  
Note. CL = systemic clearance, Q2 = Intercompartmental clearance 1, Q3= Intercompartmental 
clearance 2, Vc = Volume distribution of central compartment, Vp1 = Volume distribution of 
peripheral compartment 1, Vp2 = Volume distribution of peripheral compartment 2.  
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Table 3. Summary of Pop-PK Model Covariate Analysis 

Note. OBJ = The objective function value; ∆ OBJ =the difference in objective function values between the base and 
the added covariate model’, Vc= Systemic clearance from the central compartment; Vc= Volume distribution of 
central compartment, Vp1= Volume distribution of peripheral compartment 1, Vp2= Volume distribution of 
peripheral compartment 2; WT = Weight;  NS= Non-significant. 
  

Model Parameter  Covariate OBJ ∆ OBJ           P-value Functional Form  

CL Weight -1280.914 0 NS Power 

CL Weight -1280.914 0 NS Additive 

CL Weight -1280.914 0 NS Exponential 

Vc Weight -1280.914 0 NS Power 

Vc Weight -1280.914 0 NS Additive 

Vp1 Weight -1280.914 0 NS Power 

Vp1 Weight -1280.914 0 NS Additive 

Vp1 Weight -1280.914 0 NS Exponential 

Vp2 Weight -1280.914 0 NS Power 

Vp2 Weight -1280.914 0 NS Additive 

Vp2 Weight -1280.914 0 NS Exponential 

CL AGE -1280.914 0 NS Power 

CL SEX -1280.914 0 NS Power 

CL RACE -1280.914 0 NS Power 
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Figure 5. Goodness-of-fit plots for the final population PK model of ibutilide 

Note. (A) observed concentration vs. Individual predicted concentration. (B) observed concentration vs. Population 
predicted concentration. (C) Conditional weighted residuals versus Population predicted 
concentration. (D) Conditional weighted residuals versus time. 
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Figure 6. Individual plots for the final PK model outputs 

Note. Open circles are observed ibutilide serum concentrations. Solid lines are individual predicted ibutilide serum 

concentrations. 
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Figure 7. Visual predictive checks (VPC) of the final pharmacokinetic model 

Note. Ibutilide serum concentrations(ng/mL) are represented by open. The observed 5% and 95% percentiles are 
presented with dashed red lines, and the 95% confidence intervals for the corresponding model predicted percentiles 
as described by semitransparent blue fields. 
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Table 4. Final Population Pharmacokinetic Model and the Bootstrap Median Parameter 
Estimate for Ibutilide 

Parameter Population Estimates (RSE%) Bootstrap Median (95 CI%) * 

Cl, L/hr. 199 (8.7%) 203.18 (165.09 - 232.90) 
Clic1, L/hr. 209 (8.1%) 207.92 (175.87 - 242.12) 
Clic2, L/hr. 316 (5.5%) 327.01 (281.70 - 350.30) 
Vc, L 28.6 (7.9%) 29.86 (24.19 - 33.01) 
Vp1, L 80.2 (0%) 80.20 (80.20 - 80.20) 
Vp2, L 1020 (7.9%) 1075.58 (862.41 - 1177.58) 

    ω Cl 0.103 (30.8%) 0.109 (0.0514 – 0.175) 
ω Cl ic1 0.055 (45%) 0.057 (0.0136 – 0.104) 
ω Cl ic2 0.039 (34.1%) 0.036 (0.0134 – 0.0649) 

     ω Vc 0.01 FIX - 
ω Vp1 0.01 FIX - 
ω Vp2 0.146 (36.8%) 0.116 (0.0255 – 0.204) 

σ PROP 0.026 (11.2 %) 0.0255 (0.02 – 0.0316) 
Note. Cls = systemic clearance, Clic1 = Intercompartmental clearance 1, Cl ic1 = Intercompartmental clearance 2, Vc = 
Volume distribution  of central compartment, Vp1 = Volume distribution of peripheral compartment 1,  Vp2 = Volume 
distribution of peripheral compartment 2, ω = Inter-individual variability (omega), σ = Residual variability (sigma), 
PROP = Proportional, RSE = Residual standard error, CI = Confidence interval. 

3.5 Population PK-PD Model 

For the PD model, 444 QT intervals recorded from all subjects were included as the 

dependent variable. The relationship of ibutilide serum concentration versus time profile and its 

effects to induce QT interval prolongation were assessed. Individual ibutilide serum 

concentration versus time profiles were included with an indirect response model where ibutilide 

serum concentrations were indirectly driving QT interval prolongation through inhibition of the 

output (Kout) parameter. The indirect PK-PD model is schematically illustrated in Figure 8. A 



 
 

52 

high inter-occasion variability due to day-to-day variability in the QT baseline was observed. 

Thus, an inter-occasion terms was estimated on the baseline QT parameter. The addition of IOV 

resulted in a significant reduction of inter-occasion variability (OBJ decreased by a value of 69). 

Hence the addition of the IOV term improved the model fit to the data. The visual inspections of 

the GOF plots for the structural PK-PD model are displayed in Figures 9 & 10. The objective 

function values and the Akaike Information Criterion (AIC) were evaluated. The structural 

parameters estimated from the indirect PK-PD model were for the Imax and IC50 0.115 ms and 

0.36 ng/mL, respectively. Table 5 shows the parameter estimates and bootstrap analysis of the 

structural PK-PD parameters.  
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Figure 8. Schematic Representations of Ibutilide PKPD Model Indirect Effect  
Where CL = systemic clearance, VC = volume distribution of the central compartment, VP1 = volume distribution of 
peripheral compartment 1, VP2 = volume distribution of peripheral compartment 2, Q2 = intercompartment clearance 
for compartment 2, Q3 = intercompartment clearance for compartment, Kin denotes the zero-order rate constant, and 
Kout denotes the first-order rate constant; EFF(CON) is the effect of ibutilide concentrations on QT. Imax denotes the 
maximum effect, and IC50 denotes the ibutilide-plasma concentration that is required to achieve 50% of the maximum 
effect on QT. 
  
																																													5:;

5<
= 𝐾𝑖𝑛 ∗ 𝐸𝐹𝐹(𝐶𝑂𝑁) − 𝐾𝑜𝑢𝑡 ∗ 𝑑𝑄𝑇  

 

𝐸𝐹𝐹(𝐶𝑂𝑁) = 	1 − I
𝐼𝑚𝑎𝑥 ∗ 𝐶𝑜𝑛𝑐
𝐼𝐶50 + 𝐶𝑜𝑛𝑐M 

 

  



 
 

54 

 

 

 

Figure 9. The goodness-of-fit plot of the structural pharmacokinetic-pharmacodynamic 
model of ibutilide 

Note. (A) Observed QTF interval versus individual predicted QTF interval (ms) (B) observed QTF interval versus 
Population predicted. (C) Conditional weighted residuals versus Population predicted concentration. (D) Conditional 
weighted residuals versus time. 
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Figure 10. Individual plots for final PK-PD model outputs. 

Note. Open circles are observed QT interval. Solid lines are individual predicted ibutilide serum concentrations. 
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Table 5. Summary of Estimated Population PKPD Parameters from the Base Model  

Parameter Population Estimates 
(RES%)  

Bootstrap Median (95 CI%) 
* 

Imax (%) 11.4% (9.9)               (0.088 – 0.142) 

IC50 (ng/mL) 0.36 (8.4%) (0.301 - 0.419)  

Baseline QT (ms) 414 (0.5%) (409.59 - 418.41) 

Kout  (hr -1 ) 9.75 (3.4%) (9.005 - 10.295) 

ω Kout 0.35 (31.2%) - 

ω IC50 1.56 (9%) - 

ω Base QT 0 FIX  - 

IOV Variance  0.0009 (5.8%) - 

IOV Variance  0.0009 (14.2%) - 

σ PROP  0.0002 (8.7%) - 

Note. * Based on Percentiles. Base= pre-ibutilide dose QT interval; Imax = maximum effect of ibutilide on QT; EC50 
= serum ibutilide concentration required to achieve 50% of the maximum effect QT occurs; Kout = first order rate 
constant; IOV= Inter-occasion variability; ω = Inter-individual variability (omega), σ = Residual variability (sigma), 
PROP = Proportional, RSE = Residual standard error, CI = Confidence interval.  
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3.5.1 Biomarker Model 

   A sub-set of a linear model, direct and indirect models were attempted to describe serum 

miR-362-3p. Efforts to describe the influences of serum miR-362-3p in the circulation on the PD 

model parameters through a semi-mechanistic model were not successful. The indirect response 

model to describe the expression of serum miR-362-3p observed within a is illustrated in Figure 

11.  The expression patterns of serum miR-362-3p observed within as the study groups is displayed 

in Figure 12. Due to the small sample size, availability of the baseline of serum miR-362-3, and 

collections time was limitations for the dataset, this approached failed. Therefore, a sub-set of the 

liner and direct model was attempted, but none of the serum miR-362-3p model parameters were 

predicted by the model; thus, a covariate analysis approach was used. 
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Figure 11. Schematic picture for the biomarker model linked to the PKPD model 
Note. Kin= denotes the zero-order rate constant; Kout= denotes the first-order rate constant 
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Figure 12. The expressions of serum miR-362-3p (CT-25) vs Time (hrs.) in three groups of 

heart failure subjects 
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3.5.2 Covariate Analysis— Model  

An alternative approach with miR-362-3p in the serum was included with other  covariates 

that potentially influence PK-PD model parameters, as listed in Table 6. The covariate selection 

process was done using stepwise selection procured on Imax and IC50 parameters, where forward 

inclusion resulted in the PK-PD model identifying circulating miR-362-3p expression in serum 

and myocardial infarction as a significant covariate influencing Imax parameter (ΔOFV -16.03, -

15.09, p<0.05).  

Overall, the constructed PK-PD model's performance was improved compared to the base 

PK-PD model, and the included covariates of the un-explained variability in the population.  

Compared to base model the unexplained inter-patient variability in the final covariate PK-PD 

model decreased from 11.8% to 9.7% for Imax which significantly reduced the OBJ -5.2. Overall, 

the performance of the constructed covariate PK-PD model was acceptable compared to the base 

model. The final PK-PD model estimates, and covariate‐parameter relationships are summarized 

in Table 6.   



 
 

61 

 
 

 
 
Table 6. Summary of covariates in the pharmacokinetic/pharmacodynamic (PK/PD) 
modeling 

 
 
Note: ΔOFV is the difference in objective function values between base and covariate model; DM= Diabetes mellitus; 
MI= Myocardial infractions; LEVF= Left vehicular fractions BB= Beta-blocker; ACE= ACE inhibitors; LD=Loop  
 
  

 OBJ Delta OBJ EC50 Emax P Values 
BASE MODEL 2243.65     

      
miR-362-3p on Imax 2227.62 -16.04 0.32 0.10 <0.05 
miR-362-3p on IC50 2235.87 -7.76 0.48 0.12 <0.05 

HFG on Imax 2243.65 0.00 0.35 0.11 ns 
HFG on IC50 2252.39 8.74 0.25 0.10 ns 
SEX on Imax 2243.57 -0.08 0.35 0.12 ns 
SEX on IC50 2243.62 -0.04 0.38 0.11 ns 

RACE on Imax 2241.35 -2.30 0.43 0.13 ns 
RACE on IC50 2243.64 -0.01 0.36 0.11 ns 
Weight on Imax 2243.63 -0.02 0.35 107.00 ns 
Weight on IC50 2243.65 0.00 0.38 0.11 ns 
AGE on Imax 2243.65 0.00 0.35 0.11 ns 
AGE on IC50 2242.80 -0.85 1.57 0.11 ns 
DM on Imax 2239.15 -4.50 0.38 0.13 <0.05 
DM on IC50 2241.99 -1.67 0.47 0.11 ns 
MI on Imax -15.97 -15.97 0.30 0.15 <0.05 
MI on IC50 2243.61 -0.04 0.38 0.11 ns 

LVEF on Imax 2243.65 0.00 0.35 0.11 ns 
LVEF on IC50 2243.65 0.00 0.35 0.11 ns 

BB Imax 2243.65 0.00 0.11 0.35 ns 
BB IC50 2243.65 0.00 0.29 0.11 ns 

LD on Imax 2243.65 -1.25 0.12 0.37 ns 
LD on IC50 2243.65 -3.72 0.36 0.12 ns 

ACE on Imax 2243.65 -0.36 0.24 0.11 ns 
ACE on IC50 2242.07 -1.59 0.24 0.11 ns 
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Table 7. Forward Selections 

Base Model 1  OBJ Delta 
OBJ 

IC50 Imax 

miR-362-3p on Imax 2227.62  0.32 0.10 

miR-362-3p + MI on Imax 2222.10 -5.52 0.26 0.09 

miR-362-3p + MI on Imax  
+ miR-362-3p on IC50 

2221.91 -0.20 0.24 0.09 

miR-362-3p, MI + DM on Imax 2222.10 0.00 0.26 0.09 

 
Note. Most significates were miR-362-2p which were kept in the model while testing others. 
 
 
Model Evaluation 

The individual  QT intereval vs time models  (Figure 13) demonstrated a good descriptive 

of model predictions wihtout clear mis-specifications'. The predictive performance of the final PK-

PD model was evaluated using visual predictive check. The VPC plots determined to be acceptable 

as the most observed data points contained in the 90% prediction interval (5th - 95th percentiles) of 

the model (Figure 14). Moreover, the final covariate PK-PD parameter estimates for both fixed 

and random-effect models agreed with the corresponding median estimated obtained from 

bootstrap analysis. This  indicates the high predictive performance of the final model parameter 

estimates (Table 8). 
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Figure 13. Individual plots for the final PK-PD model outputs 
Note. Open circles are observed QT interval. Solid lines are individual predicted QT intervals. 
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Figure 14. Visual predictive checks (VPC) of final the PK-PD model 
Note. QT intervals (ms) are represented by open circles. The observed 5% and 95% percentiles are presented with 
dashed red lines, and the 95% confidence intervals for the corresponding model predicted percentiles as described by 
semitransparent blue fields. 
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Table 8. Summary of the final Covariate PK/PD parameters estimate 

Parameter Population Estimates (RES%) 

Imax(%) 9 (8.9%)  

IC50 (ng/mL) 0.26 (8.4%) 

Baseline QT (ms) 414 (0.5%) 

Kout (hr-1) 11.2 (1.4%) 

ω Kout 0.324 (31.2%) 

ω IC50 1.46 (9%) 

ω Baseline QT 0 FIX  

IOV Variance  0.00107(0%) 

IOV Variance  0.00107(5%) 

σ PROP  0.00019 (8 %) 

 
Note. * Based on Percentiles. Base, pre-ibutilide dose QT interval; Imax = maximum effect of ibutilide on QT; IC50 
= serum ibutilide concentration required to achieve 50% of the maximum effect QT occurs; Kout = first order rate 
constant; IOV, Inter-occasion variability; ω = Inter-individual variability (omega), σ = Residual variability (sigma), 
PROP = Proportional, RES = Residual standard error, CI = Confidence interval.  
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 DISCUSSION  

In the present study, the contribution of serum miR-362-3p to drug-associated QT interval 

changes in patients with heart failure was investigated. For this purpose, a PK-PD model was 

developed to describe the relationship between ibutilide concentration and QTc changes and 

determine the contribution of miR-362-3p expression and other potential covariates' variability 

with ibutilide-induced QT interval lengthening.  

The PK and PD data used in the current project were obtained from a previous clinical trial 

that assessed patients' susceptibility with HFpEF to ibutilide-induced QT interval prolongation. 

(Tisdale, et al. 2020) Based on a nonlinear mixed effect model approach, the population 

pharmacokinetic model described the serum ibutilide concentration vs. time profile. This was best 

described by a three compartmental model with a first-order elimination rate constant from the 

central compartment, consistent with previously published population PK model. (Z Zeng, et al. 

2017) 

The present study's outcome demonstrated that subjects with heart failure had a greater 

degree of ibutilide-induced QTc, with a mean Imax increase by 39% compared to the control 

group.  Accordingly, HF patients (either HFrEF or HFpEF) had greater ibutilide-induced QT 

interval lengthening. In general, a QTc of higher than 500 ms or an increase in the QTc] greater 

than 60 ms is considered to confer an increased risk of TdP in an individual patient. (Heist, et al. 

2005, Barnes, et al. 2010)  

In this analyses the effect of serum miR-362-3p expression on ibutilide-induced QTc 

interval was evaluated as a potential covariate on IC50 and Imax. Overexpression of serum miR-

362-3p was identified as a predictor of ibutilide sensitivity with an IC50 (ng/mL) 0.26 (8.4%) as 

compared to ibutilide base PD model parameters with an IC50 (ng/ml) 0.34 (21.7%) 
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Notablypatients with higher expression of serum miR-362-3p demonstrated lower IC50 associated 

with ibutilide induced QT. The specific mechanism determining the association between miR-362-

3p expression and QT interval sensitivity remains unclear. One possible explanation is the 

reduction  of potassium channels, thereby enhancing ibutilides effect. Furthermore, ibutilide might 

have a possible involvement in regulating miR-362-3p expression.(Rodrigues, et al. 2011)  The 

authors evaluated 19 drugs' involvement in expressing ten different miRNAs in four different cell 

lines. It was found that all ten miRNAs were differentially expressed, depending on the type of 

drug administered.  They concluded that several drugs might be associated with alteration of 

miRNA expression. Lastly, the changes noticed in ibutilide response could be related to either a 

significant increase in releasing cellular miRNAs to circulation or significant disposition of 

miRNAs from circulation, resulting in an alteration of circulating miR-362-3p.  

 The results of the covariate analysis concluded that erum miR-362-3p expression and a 

history of myocardial infarction were significant predictors on Imax . This indicates that subjects 

with a history of myocardial infarction or high expressions of serum miR-362-3p may be at an 

increased risk to ibutilide - induced QT interval prolongation. 

The study had limitations including the small sample size. Thus the analysis may have been 

underpowered to detect clinically relevant statistical differences in covariates or outcome 

measures. Secondly, inter-intra variations between HF subgroups with elapsed time between the 

initial diagnosis and the impact of other morbidities were not evaluated. Furthermore, serum miR-

362-3p expression levels may be influenced by other pathways, pathophysiological signaling, or 

underlying mechanisms that could not be assessed in the present study.  
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This is supported by previous lab work data, which has demonstrated that miR-362-3p 

expression reduced hERG regulation and may mediate the involvement in drug-induced QT 

interval lengthening (Assiri, et al. 2019). However, the definite mechanism of the association 

between miR-362-3p expression and the drug target remains inconclusive. Consequently, future 

studies should be directed towards understanding the association between microRNA serum 

expression and QT interval changes. The assessment of such an association would explain the  

mechanism and contribution of miRNA in drug-induced QT interval lengthening to enhance 

theraptutic interventions. 

Conclusion 

In conclusion, an indirect response model has been developed to describe the effects of 

ibutilide concentrations on QT-intervals. While the planned semi-mechanistic model did not work 

due to the study's limitations; serum miR-362-3p expression was identified as a significant 

predictor effect for ibutilide-induced QT-interval prolongation. Thus, serum miR-362-3p 

expression in the circulations was a significant preditor of ibutilide sensitivity base on the IC50 

parameter estimates. The potential utility of serum miR-362-3p as a biomarker to identify patients 

at the most significant risk of TdP warrants further investigation.  
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