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ABSTRACT

Detecting human cognitive load is an increasingly important issue in the interaction between

humans and machines, computers, and robots. In the past decade, several studies have sought to

distinguish the cognitive load, or workload, state of humans based on multiple observations, such

as behavioral, physiological, or multi-modal data. In the Human-Machine Interaction (HMI)

cases, estimating human workload is essential because manipulators’ performance could be

adversely affected when they have many tasks that may be demanding. If the workload level can

be detected, it will be beneficial to reallocate tasks on manipulators to improve the productivity of

HMI tasks. However, it is still on question marks what kinds of cues can be utilized to know the

degree of workload. In this research, eye blinking and mouse tracking are chosen as behavioral

cues, exploring the possibility of a non-intrusive and automated workload estimator. During tests,

behavior cues are statistically analyzed to find the difference among levels, using a dataset

focused on three levels of the dual n-back memory game. The statistically analyzed signal is

trained in a deep neural network model to classify the workload level. In this study, eye blinking

related data and mouse tracking data have been statistically analyzed. The one-way repeated

measure analysis of variance test result showed eye blinking duration on the dual 1-back and

3-back are significantly different. The mouse tracking data could not pass the statistical test. A

three-dimension convolutional deep neural network is used to train visual data of human behavior.

Classifying the dual 1-back and 3-back data accuracy is 51% with 0.66 F1-score on 1-back and

0.14 on 3-back data. In conclusion, blinking and mouse tracking are unlikely helpful cues when

estimating different levels of workload.
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CHAPTER 1. INTRODUCTION

This research examines different mental workload levels and observes the actual degree of

workload by analyzing spontaneous behavioral responses from eye activities and mouse usages in

a human-machine interaction setting.

1.1 Background

Estimating human cognitive load, or simply workload, has been studying extensively over

the last decades. O’Donnel and Eggemeir (1986) defined that human workload can be identified

as limited mental capacity of individuals’ when they perform tasks, which could be measured as

expanded capacity. In other words, the human ability to complete tasks is vulnerable since the

level of human cognition cannot be exponential. For example, when we were continuously

assigned to a duty that requires high-level demand, working on the task would negatively affect

our ability to accomplish as time goes by. Finally, it makes us exhausted and causes lower

performance.

Operative performance has been described in several approaches in terms of contextual

factors—the reason why connecting performance and mental workload is because of workload

derivation. Borghini, Astolfi, Vecchiato, Mattia, and Babiloni (2014) summarized the relationship

between mental workload, situation awareness, or comprehending the situation, and operative

performance as a combination of a negative and positive proportional relationship. When the

mental workload increases, the increased workload will decrease the ability to aware of the

circumstances; therefore, performance will be reduced. Debie et al. (2019) outlined the

correlation of mental workload and performance as negative impacts from depletion factors, such

as stress and fatigue, which can affect humans from an external source. Even though there is no

dominant causation of mental workload and performance, it is acceptable that estimating

cognitive workload is crucial to improvise a human operator’s performance level.

What would happen when individuals are interacting with machines? Not only are

machines limited to traditional vehicles, but also the range of machines covers any computers or

robots. The major field on estimating cognitive load has been done in car drivers or aircraft pilots
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(Borghini et al. (2014); Fridman et al. (2018); Peruzzini, Tonietti, and Iani (2019), and

Benedetto et al. (2011)). Driving cars or aircraft is reliant on human workload, and their cognitive

status involves fatigue or drowsiness, which causes a harmful safety issue. Measuring human

demand when working on activities is crucial. Correspondingly, when it comes to operators of

human-robot scenario manipulating multiple machines, measuring workload becomes more

essential not only for safety issues but also for enhancing the performance.

Considering the nature of the human workload, which is an ambiguous concept that is

unable to measure concisely numerically, researchers have examined a considerable amount of

cues from humans and have built metrics to measure the vague subject. When assessing cognitive

demand, various measurements have been conducted, such as behavioral, physiological, or

combination of dissimilar information, as multi-modal inputs (Debie et al. (2019)). The cognitive

effort has been analyzed from physiological or neurophysiological sensors such as

electroencephalography (EEG; Borghini et al. (2014)), galvanic skin response (GSR;

Nourbakhsh, Wang, Chen, and Calvo (2012)), and Functional Near-Infrared Spectroscopy

(fNIRS; Herff et al. (2014)). Although several studies investigating workload have been carried

out on physiological sensors, researchers have no consensus on which cues will be the most

beneficial to measure workload. While Cech and Soukupova (2016); Peruzzini et al. (2019) have

mentioned that a non-intrusive system will be needed. However, what kinds of human cues will

be worthy in terms of workload is still a big open question because load estimation can vary from

tasks and personal behavior patterns.

In the situation where several cues are still used in measuring the amount of workload,

recent developments in non-verbal behavior detection have led to flourishing the quality of

interactions. As a part of observable human behaviors, Longo (2011) employed mouse movement

tracking as one of the important signals to monitor cognitive states’ fluctuation. Also, eye blinks

have been stated as a promising sign to infer mental workload. Tsubota, Kwong, Lee, Nakamura,

and Cheg (1999) articulated a significant relationship between brain activation and eye blinking

by capturing cortical area functional magnetic resonance imaging, which means eye blinking

variations will result from when human dealing with given information. Moreover, Wascher,

Heppner, Möckel, Kobald, and Getzmann (2015) noted that the execution of blinks is unlikely

related to stochastic occurrences at an everyday moment, emphasizing blinks as a useful

13



measurement of cognitive processing. Even though eye-related movements are simple, mental

load indicators vary, including blink duration, blink frequency, saccade rate, and pupil size.

Taking into account that the human workload cannot be easily quantified as numeric

values, diverse researchers have stimulated different levels of workload by designing resembled

or the same environments of demanding cognitive ability. (Benedetto et al. (2011); Fridman et al.

(2018); Sampei, Ogawa, Torres, Sato, and Miki (2016)) When they measure behavioral cues, a

multidimensional scale, NASA Task Load Index (NASA-TLX; Hart and Staveland (1988)) has

been utilized to have self-assessment from respondents. Eventually, behavioral observation and

rating workload of participants in the experiment can be done concurrently.

The repeated simple eye blinks, which have temporal variations and spatial inequalities,

may be challenging to understand at the machine level. Thanks to the drastic development of deep

learning technology, neural network structure enables to learn continuous observation data. For

example, when detecting eye-related behavior, Fridman et al. (2018) showed that microscopic eye

movement could also be trained through two different features, image-based one and numeric

value-based one. Taking advantage of neural networks, this study proposes to show eye blinking

duration is a notable feature to predict human workload variations.

To sum up, the aim of this study is to evaluate and validate the relationship between eye

blinking activity and human cognitive load. Stimulating workload at different levels, statistical

data analysis between the result of levels, and learning data to estimate workload in the realistic

environment will be done in this study.

1.2 Problem Statement

When individuals perform a task with machines, the quality of interaction could be

adversely affected when a collaborative system puts much burden on humans. People may tell

how much they struggle with a given task; however, such behavior is less frequent. In

collaborating with a machine, it is vital to know the amount of work because if the amount of

human mental load can be known on the system, the appropriate amount of work will be

distributed.
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1.3 Research Question

• Will eye blinking duration be different when we conduct various levels of tasks?

• Will mouse movement be effective in differentiating the different levels of cognitive load?

• Using a simple behavioral cue, would cognitive demand be classified into specific levels?

1.4 Significance

When human collaborates with machines, operators workload should be analyzed through

their observable cues. This study will show whether eye blinking and mouse tracking could be

meaningful cues measuring cognitive demands.

1.5 Assumptions

The assumptions for this study include:

• NASA-TLX questionnaire reflects the degree of human workload.

• The results of facial landmark prediction are robust.

1.6 Limitations

There are two limitations to this study. First, even though a metric of rating workload is

widely used, it is hard to measure cognitive demand in numerical values. Second, people may

react differently according to their tendencies when they are given the same workload demand.
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1.7 Delimitations

The workload level will be divided into three classes: low, medium, and high, rather than

calculated into specific numerical values. Regarding the possibility of reaction variance, each

level’s result will be statistically analyzed as average values.

1.8 Summary

In human-machine or human-computer, and human-robot interaction, analyzing workload

by behavioral cues, specifically eye blinking, is critical to measure how much individuals feel

demanding in the given tasks. Given that behavioral signals reflect a person’s cognitive activity,

the signals will be analyzed and trained to estimate the degree of cognition in three levels.
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CHAPTER 2. REVIEW OF LITERATURE

This chapter illustrates a review of relevant literature in the following order:

human-machine interactive environment, workload estimation, eye blinking, and cognitive task

classification with eye blinking activity.

2.1 Human-Machine Interaction

Human-Machine Interaction (HMI) indicates automated systems that interact with people.

As machines such as computers and robots increase, the demand for better interaction between

devices and people is increasing accordingly. Researchers have focused on human beings, the

main subjects of interaction, for enhancing the sensitivity of communication. In this

circumstance, much attention has been drawn to finding out the trivial determinants like eye

movement activity of individuals in various environments, including Human-Computer

Interaction (HCI) or Human-Robot Interaction (HRI).

Ohn-Bar and Trivedi (2014) mainly investigated automotive interfaces with hand gestures.

They proposed a contactless driver assistance system watching the seat of drivers. The system

collected RGB-Depth camera streams of the cues of drivers to classify hand movements and

recognizing users. After the system segmentized hand motions by their histogram changes, a

support vector machine (SVM) was employed in classification. The interface aimed to develop a

vision-based interface anticipating user customization and a contact-free interface. Interest in

HMI is not limited to hands. Fahim et al. (2020) applied eye movements and head gestures to help

people who have hand disabilities. Since people who are not able to use a mouse cursor have

limited accessibility, the researchers translated head gestures and blinking to the location and the

clicking event, respectively. When recognizing head gestures and blinking, an accelerometer and

gyro-sensor were adopted with a camera. When blinking detected, a convolution neural network

was selected, as Figure 2.1 presents. The accuracy of their proposed model was 95.36% in

identifying human blinking. The performance of their method has not surpassed the use of

conventional mouses within the user study with ten participants.
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Figure 2.1. An assistive application based on eye movements and head gestures by
Fahim et al. (2020) (©IEEE2020)

Human-Robot Interaction (HRI) is one of the most popular areas to enhance the

interaction between humans and robots. McColl, Jiang, and Nejat (2016) conducted a study for a

social robot to recognize affective states of individuals measuring accessibility, the level of

openness, and rapport toward the robot. A Kinect camera was selected to read two- and

three-dimensional human body language to estimate static body pose. Robot behaviors were

differently presented based on the level of accessibility and speech of individuals. A

questionnaire from 24 participants showed robots’ expression as neutral or positive ratings, not

showing a negative attitude. The level of familiarity toward robots of participants has not been
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illustrated in the research. However, the striking point is the degree of openness with robots can

be measured by just learning human postures and speech.

Especially, Human-Robot Collaboration (HRC) is the most popular area associated with

the manufacturing industry. The types of collaboration aim to share the skills of humans and

robots and to improve reliability, safety, and performance. Collaborative robots, or Cobots, are

used not only for industrial purposes like subtask allocation (F. Chen et al. (2013); Sadrfaridpour

and Wang (2017)) or motion planning (Lasota and Shah (2015)) but also for collaboration such as

assistive robots (Mukai et al. (2010)). In manufacturing contexts, humans adaptability and

flexibility are necessitated due to the low flexibility of robots (F. Chen et al. (2013); Mukai et al.

(2010)). F. Chen et al. (2013) conducted a study for optimal task allocation when humans and

robots work as co-workers. Effective scheduling tasks become critical because humans can lose

concentration and make mistakes derived from fatigue. They revealed which algorithms

effectively distribute tasks when a person and a cobot face each other, called a hybrid assembly

system. They insisted that the collaboration between robots and people will become important in

manufacturing based on the results. Sadrfaridpour and Wang (2017) also studied with an

assembly task setting when individuals and cobots are in the vicinity. They experimented by

measuring the degree of trust between two types of workers, which is a social factor, as well as

the physical interaction, giving feedback by expressing robot emotions on the screen according to

the process. Based on these studies, interest in social HRI elements is increasing, while attention

to HRC is gradually increasing in the industrial field.

Figure 2.2. An example of human and robot collaboration scenario of assembly task.
(F. Chen et al. (2013); ©IEEE2013)
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2.2 Cognitive Load Estimation

Human cognitive load, in other words, workload, has been studied for decades. Sweller

(1988) defined cognitive load as a capability of problem-solving, mainly focused on learning

effectiveness. The problem-solving procedure has several aspects: First, the number of tasks is

relevant to cognitive load, considering the human capacity to deal with several tasks in a row is

limited. Then, suppose a person grasps the problem-solving procedure. In that case, the degree of

the schemata acquisition, knowing how to solve problems, can differ depending on the

experience. The author defined the acquisition gap as a gauge to determine novices and experts,

which means that the degree of the experience is related to gaining schemata. Debue and Van

De Leemput (2014) simplified three different cognitive as intrinsic load (IL), extraneous load

(EL), germane load (GL). IL indicates the number of tasks that can initiate a load on a person. At

the same time, EL refers to the previous stage of schemata acquisition, and GL can be explained

as the cognitive load of gaining schemata of problem-solving. However, the expertise of each

individual cannot be easily measured in experiments. Moreover, assumptions might need to

encode each load to which indicator of quantifiable ratings. Therefore, in this study, the workload

will be divided into different levels.

2.2.1 Behavioral Measures

Behavioral measures indicate actions or expressions of humans, which are extrinsic and

observable. For example, human pose and development, behavior patterns when manipulating

input devices, and facial activities can be significant hints to presume cognitive progressions.

Some researchers conducted studies on human movement, eye blinking, but not only did they

focus on blinks, but they measured as many as possible from the eye region, including blink rate,

blink duration, and average pupil size (Benedetto et al. (2011); S. Chen, Epps, Ruiz, and Chen

(2011); Li et al. (2020)). Although a single behavioral measure has its own limitations, which are

subjective to the measurement noise contrary to physiological or neuro-physiological

measurement and has low efficiency, it will be worth to analyze when it is joined to other cues.
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2.2.1.1 Eye Blinking

Figure 2.3. Eye blinking analysis by Benedetto et al. (2011) (©2010 Elsevier Ltd.)

Figure 2.4. A heatmap of mouse tracking Benedetto et al. (2011) (©2010 Elsevier
Ltd.)

A considerable amount of research has been published on eye blinking measurement and

workload over three decades (Benedetto et al. (2011); Boehm-Davis, Gray, and Schoelles (2000);

Fridman et al. (2018); Stern and Skelly (1984)). Benedetto et al. (2011) showed analysis results

of eye blinks that the duration of eye blinks are different in ordinary states and when tasks are

given to participants, as Figure 2.3 depicts. However, eye blinking duration has no significance
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during the designed experiment setup, Benedetto et al. (2011) classified three groups of eye

blinks, as Figure 2.4 shows. Benedetto et al. (2011); Boehm-Davis et al. (2000); Wascher et al.

(2015) have in common sense that eye blink rate is increased when the cognitive process is

finished in discrete experimental setups. Even though Benedetto et al. (2011) stated that the

studies which have been done performed differently and even used analysis methods are not the

same, we can conclude that eye blinking can be a significant and meaningful cue in terms of

cognitive workload measurement.

2.2.1.2 Mouse Movement

Figure 2.5. A heatmap of mouse tracking (Guo and Agichtein (2012); ©ACM2012)

Guo and Agichtein (2012) focused on mouse usage in web sites to know individuals’

interest. As Figure 2.5 shows, creating a heatmap can represent how much time a user is

interested in a specific field on a screen. The relevancy of data on the screen can be known with

the mouse-tracking data, analyzing dwelling time. Rheem, Verma, and Becker (2018) conducted

a study to find relevance between cognitive load and mouse usage. In the experiment, participants

were asked to perform two kinds of tasks at the same time. One task is a mouse motor task to

catch three different sizes that appeared on the screen; another one is arithmetic calculations in
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two levels. The study showed that slower responses and relatively inactive trajectory resulted from

a higher cognitive load, showing the possibility of mouse tracking for estimating cognitive load.

2.2.2 Multimodal measures

The reason for measurements with different cues is that a single signal has limitations of

sensor failures, has various sources of noise and the degree of demands on a person, and

unrepresentative of a large number of subjects (Debie et al. (2019)). In this section, multimodal

measures only related to eye-related behavior regarding workload estimation were reviewed.

Rozado (2015) fused EEG and pupilometry to detect cognitive workload. They conducted an

experiment asking participants to repeatedly perform arithmetical calculations, retrieving pupil

diameter and EEG signal variations. It turns out that combining EEG signal and pupilometry

outperformed in terms of accuracy other than single cues. In this context, combining more than

two signals will be beneficial to estimate workload levels more accurately than using a single

movement.

2.3 Facial Feature Extraction

Several studies have been made to detect human facial components or facial landmarks.

With respect to the component detection, Haar Cascade Classifier of OpenCV is one of the

well-known approaches. The haar-feature based classifiers catch the region of similar features

that are already trained. However, the exposed region cannot answer facial components’ exact

positions, giving blunt areas of targeted objects. Facial landmark detection prospers automatic

face-related analysis tasks, such as face action recognition (Pfister, Li, Zhao, and Pietikäinen

(2011); Zhu, Lei, Yan, Yi, and Li (2015)).

In this context, Dlib (King (2009)), which is based on Histogram of Oriented Gradient

(HOG) and SVM, is one of widely utilized in facial landmark detection task. A number of studies

have used Dlib; however, gradient vectors in HOG are unlikely to cover all different angles of

face detection. Contrary to the landmark detection result of a frontal face, even though the same

frame is given to two detectors, Dlib cannot return any value of tilted head direction, while
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OpenPose can. Compared to the HOG and SVM based approach, OpenPose (Cao, Simon, Wei,

and Sheikh (2017)) supports facial keypoints detection using multiple views to project the precise

position of human landmarks (Simon, Joo, Matthews, and Sheikh (2017)). Each key point can be

extracted by the given number in Figure 2.6. Given a trained model from techniques, we would

expect the result of facial feature extraction will be comparably robust.

Figure 2.6. An example of facial key points in
CMU-Perceptual-Computing-Lab/openpose (n.d.)

(©CMU-Perceptual-Computing-Lab)

2.4 Eye Blinking Detection

2.4.1 Landmark-based Eye Blinking Detection

Cech and Soukupova (2016) proposed an eye detection algorithm using facial landmarks.

The eye-related features are mainly six points, both horizontal ends p1, p4 and four curve points

p2, p3, p5, and p6 as in the Figure 2.7. Taking advantage of that essential points can be detected

with the open-sourced libraries, Cech and Soukupova (2016) calculated eye blinking with a

simple Euclidean distance equation. The calculated Eye Aspect Ratio (EAR) value decreases

when eyes are closing two vertical distances between p2 and p6 and p3 and p5 gradually
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decreases, as Figure 2.7. After both EAR values are calculated, the average of the values is

compared with a specific threshold. Finally, the authors set the thresholding value to 0.2.

Figure 2.7. Eye landmark prediction on left eye (Cech and Soukupova (2016);
©Computer Vision Winter Workshop)

2.4.2 Importance of Statistical Analysis

Coral (2016) brought up a lack of statistical analysis metric about eye-related behavior,

mentioning that only reviewing p-test value could be not sufficient. Debie et al. (2019) indicated

that statistical analysis on sensor measurement results would be needed when the authors

reviewed studies of fusion-based cognitive workload assessments. For example, Benedetto et al.

(2011); Boehm-Davis et al. (2000); Wascher et al. (2015) performed ANOVA tests to verify

significance between baselines and controlled experiments. If participants’ behavior in

experiments was measured over twice, the measures are considered dependant variables

considered treatments to observe any discrepancy between more than two observations (Singh,

Rana, and Singhal (2013)). Mainly, Benedetto et al. (2011); Boehm-Davis et al. (2000); Rozado

(2015) performed repeated measure ANOVA tests, considering collected data are dependent and

measured repeatedly. An assumption for rmANOVA, sphericity assumption has to be satisfied

with the rmANOVA test. The assumption is to show the necessities of population variances are
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equal to the test environment since the experiment trials are randomly selected from the general

people (Singh et al. (2013)).

2.4.3 Learning methods of eye-related features

Several methodologies have been applied to train eye-related features such as eye blinking

or pupil movements. Considering eye movements are spontaneous development of temporal and

spatial representation, features were selected in diverse ways. In this section, the literature review

has been done with respect to the relationship between eye-related activities and workload

estimation.

2.4.3.1 Machine Learning and Deep Learning Li et al. (2020) utilized a supervised learning

approach when predicting mental fatigue. In the scenario of construction equipment

manipulating, eye-behavior-related features, such as blink rate, blink duration, pupil diameter, and

gaze position, were chosen altogether from an eye tracker to be used as time-series data. The

sequential data are divided into several levels in terms of data labeling. When the derived

measurements are classified into different levels, Toeplitz Inverse Covariance-Based Clustering

(TICC) was used. Each level consists of time-based sequential data, as Figure 2.8 shows. The

extracted data and label went into classification algorithms, SVM, Decision Tree (DT), K-Nearest

Neighbor (KNN), Boosted Tree (BT), and Linear Discriminant Analysis (LDA). The authors

found that SVM outperforms other algorithms with an accuracy of at least 80%. However, the

authors stated that short 1 hour experiments would not be evident compared to operators who

work more than 8 hours. On top of that, additional sensors that resemble eyeglasses will need to

extract pupil movement as well.
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Figure 2.8. TICC used mental fatigue identification (Li et al. (2020); ©2019 Elsevier
B.V.)

Fridman et al. (2018) adopted two methods, the three-dimensional convolutional neural

network (3D-CNN) model, as Figure 2.9 shows, and the Hidden Markov Model (HMM). The

features fed in each model are eye image sequence and extracted pupil position, respectively,

divided by the level of verbal cognitive tasks. Contrary to numeric features mentioned in Section

2.2.1, image sequence can be another type of feature which does not require feature extraction

stages. The authors defined 3D-CNN as early temporal fusion because image concatenation is

given to the neural net structure. The frame per second (FPS) is downsampled from 30fps to

15fps and temporarily concatenated into 90 frames to hold temporal and spatial features of 6

seconds, showing examples as Figure 2.10. HMM is described as a late temporal fusion as in the

model features are mixed in Markov chains with random variables that states are not identifiable.

One critical downside of HMM is that the inference result could be affected by arbitrarily given

parameters. As a result, 3D-CNN outperformed HMM with 86.1% accuracy. However, even

though Fridman et al. (2018) stated that the two models would be available as open-sources, it

was impossible to access the implemented models while this study was in progress. The 3D-CNN

structure can be one possible neural net structure in terms of workload estimation.
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Figure 2.9. The three-dimensional convolutional nerual network (3D-CNN) model
structure (Fridman et al. (2018); ©ACM2018)
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Figure 2.10. Eye blinks of three different cognitive loads (Fridman et al. (2018);
©ACM2018)
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2.5 Summary

This chapter elaborated a review of the literature regarding the concept of human-robot

collaboration, workload estimation related to behavioral signals, and several learning methods

from eye-related features.
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CHAPTER 3. RESEARCH METHODOLOGY

The goal of this research is to establish a workload estimation model with the images of

significant behavioral cues with visual images. In this chapter, an overview of the proposed

structure and the phases of research are introduced. The research overview consists of the

following order: an explanation of the available dataset from a preliminary study, preprocessing,

data evaluation, and a deep learning model. The final part demonstrates how metrics will evaluate

the result of workload estimation.

3.1 Dataset

A preliminary study was conducted with 30 human subjects for data collection and

evaluation under Purdue IRB #1812021453. For this preliminary study, two cameras were

employed and positioned at the participant’s front and side. Participants were asked to wear

sensors, including electrocardiogram (ECG), electromyography (EMG), and GSR.

Experiment Setup

50-inch TV screen

Mouse

Keyboard

Intel Realsense

USB camera Microphone

: Behavioral  sensor

Figure 3.1. User study setup (Jo et al. (2020))
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3.1.1 Experimental Setup
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Figure 3.2. Workload test procedure

The user study setup is presented in Figure 3.1. After counting down ten to one, the dual

n-back games (Hampson, Driesen, Skudlarski, Gore, and Constable (2006)) were done

consecutively. The dual n-back games derive human cognitive load, which requires participants to

remember the previous signs presented in a front screen or played through a speaker, as Figure 3.3

shows. Two randomly selected test methods, position and audio cues, are presented. During the

test, participants were asked to click the left mouse button if a visible box in the screen is the

same as the one shown n-steps before, and the right button if given question matched in an

auditory way. When clicking one of the mouse buttons, participants do not need to move the

mouse or press any keyboard buttons. When completed the memory test games, participants were

asked to complete the NASA-TLX self-assessment rating their perceived cognitive state during

the games, Figure 3.4 shows. NASA-TLX rating consists of six components, mental demand,

physical demand, temporal demand, performance, effort, and frustration. After completing each

level of the n-back game, participants can answer how much it was demanding they felt during

the game as a self-assessment. Each component is answered with scrolling bars to indicate

demands from very low to very high. For example, if the degree of mental demand is much less

than medium, a participant can scroll the bar of the mental demand section near very low. This

procedure is done on three different levels, 1-back, 2-back, and 3-back, as Figure 3.2 depicts.

During the user study, the two types of camera data record participants’ behavioral responses

simultaneously. Sensors record the physiological reactions at the same time.
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Figure 3.3. Dual n-back Graphical User Interface (GUI) in the experiment (Jo et al.
(2020))

Figure 3.4. NASA-TLX GUI in the experiment (Jo et al. (2020))

As a result of the workload test, following datatypes were collected:

• Video recordings from the front: In order to get psychological and physiological response,

the participants’ facial expressions and gestures of upper body were recorded, as shown in

Figure 3.5(a).
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• Video recordings from the side: As displayed in Figure 3.5(b), a side view of the participant

was also recorded to monitor the behavior of participants. This recording displayed any

observable changes when they sat down.

• Input/Output device measurements: Voice recordings and mouse tracking of the

participants were collected during the workload tests.

(a) Front view of a participant and features (b) Side view of a participant and features

Figure 3.5. An example of camera images from the front and the side

3.1.2 Data Selection

The part of 16 sets of data among 30 participants is selected to extract a more precise

inference of the eye region. The excluded data has two main issues. As Figure 3.6(a) shows,

object occlusions with reflected lights around eye region (e.g. wearing eyeglasses). Or, as Figure

3.6(b) presents, the irregular position of the front camera disturbs to get eye-related information

The two main issues cause the low accuracy of the open-source eye landmark detection.

Therefore, analysis of eye detection was preceded, and data of 16 participants were selected

according to the result. When each participant conducted n-back games with three distinct levels,

the front camera stream and mouse tracking information were chosen.
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Mouse tracking has been analyzed from 23 sets of participants. The main reason for

excluded data is data error at each experiment. Three types of data are expected among three

different levels, but one experiment of data cannot be examined in 6 participant sets. Mouse

tracking has been analyzed based on saved position data and ROS time stamps.

(a) Example of eye occlusion and light reflection (b) Example of irregular position

Figure 3.6. Examples of excluded data

3.1.3 Data Extraction for Analysis

The ROS environment is selected to proceed with the data extraction phase following the

rosbag file format of the dataset. The procedure of data extraction is depicted in Figure 3.7. When

extracting eye-related data, an open-source library, OpenPose (Cao et al. (2017),

CMU-Perceptual-Computing-Lab/openpose (n.d.)) is chosen. Each frame is supplied as an input

of OpenPose to get facial landmarks. An example of extracting facial landmarks is shown in

Figure 3.13. Besides, the library was not supported in the ROS environment. One necessity is that

the library is needed to be converted to ROS compatible version to use. Therefore, another

open-sourced project of OpenPose wrapper by Zhang and Travers-rhodes (n.d.) has been applied

into the feature extraction module and optimized for the characteristics of the dataset. The whole

structure of ROS-based data extractor is presented in Figure 3.8.

The library supports the prediction results of given images with high probability, as Figure

3.11 indicates the possible eye landmarks, enabling the use of EAR mentioned in Section 2.2.1.1.
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The Equation 3.1 shows how six feature points were calculated. When participants blink their

eyes as Figure 3.12 presents, each EAR from the eyes and the mean value of two EAR were

stored numerically. Based on the extracted EAR value in a frame, eye blinking can be detected,

which enables to measure eye blinking duration in milliseconds. On the other hand, the front

camera stream is converted into a group of single images. The size of the extracted images is

640x480, and the number of images is 88,776.

Figure 3.11. Eye landmark prediction on left eye

-

-

ROSbag-based 
multimodal affective 

dataset

Openpose_ros Eye Aspect Ratio 
(EAR) extraction

Left EAR

Right EAR

Average EAR

Topic-based mouse 
tracking

Pixel variation

Mouse moving 
frequency

Figure 3.7. Data extraction procedure on eye-related and mouse-related behavior
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Ros-bag file openpose-ros
wrapper

front video 
analyzer

ROS node 
(program) ROS topic

Figure 3.8. ROS-based data extractor

p1
p6 p5

p2 p3

p4

Figure 3.12. Eye Aspect Ratio (EAR) calculation based upon eye closing

(a) Dlib result of a frontal face (b) OpenPose result of a frontal face

Figure 3.9. A result of facial landmark detection of a frontal face
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(a) Dlib result of a tilted face (b) OpenPose result of a tilted face

Figure 3.10. A result of facial landmark detection of a tilted face

Eye Apsect Ratio(EAR) =
‖p2− p6‖+‖p3− p5‖

2‖p1− p4‖
(3.1)

Figure 3.13. Eye landmarks extraction

Mouse tracking data has been extracted with respect to moving frequency and position

changes. The data on a mouse moving frequency and position changes are based on the ROS-bag

dataset topics designed to send signals indicating a participant moved the mouse to the specific
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position during the test, as Figure 3.14 illustrates. The position data has the coordinate of the

mouse at specific ROS time stamps. Participants’ mouse operation can be measured by

combining the position of the mouse and the timestamps. An example of mouse-tracking data can

be shown as Figure 3.15.

ROS time...

ROS topic   data: [x] 1426
[y] 761

Moving coordinate (x, y)

...

Figure 3.14. ROS topic structure of mouse tracking

1-back 2-back 3-back

Participant #2

Participant #3

Figure 3.15. Examples of mouse tracks

3.1.4 Statistical Analysis

After extracting behavioral features, statistical tests are done to verify that retrieved

information is valid. The blinking duration of each stage and each 10 seconds time frame will be
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statistically evaluated by one-way repeated measure analysis of variance (rmANOVA; Benedetto

et al. (2011); Singh et al. (2013)) since the dataset in Section 3.1 is based on the individuals’

dependant response of different n-back level. The purpose of statistical evaluation is to determine

whether there is a significant difference between baseline and three different levels of n-back

games. On top of that, every ten seconds of data from baseline to n-back games will be analyzed

to discover any workload development during the experiment. In the rmANOVA test,

measurement results have been assumed that sphericity is already satisfied.

3.1.4.1 Hypotheses

3.1.4.1.1. Hypothesis 1

The first hypotheses for rmANOVA are the following:

Null hypothesis H0: The response of participants in terms of each behavioral cue will

have the same measurement during three different levels of the n-back test.

Alternative hypothesis Hα : The behavioral cue of participants will be different during

three different n-back tests.

3.1.4.1.2. Hypothesis 2

The second hypotheses for rmANOVA are the following:

Null hypothesis H1: The participants’ response of each ten seconds from the baseline

and n-back games will be the same.

Alternative hypothesis Hβ : Each measurement of participants will be different during

three different n-back tests from baseline measurements.

If any behavior measurements are assessed to be of statistical significance in different

levels’ tests, the given data can be trained with the selected deep neural network to estimate

workload. In that case, the visual data will be an input of one of the learning models described in

the following Section 3.2.
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3.1.5 Data Extraction for Deep Learning

If a behavioral signal is analyzed to be statistically meaningful, the deep learning process

is processed according to the statistical result. For deep learning training to estimate the different

level workload, image-based input is chosen. The extracted images are transformed to have only

eye area information through a preprocessing to train them in the deep learning structure. Since

the angle of the face is highly likely different with time, the face region should be aligned to

compare frames. The algorithm of facial alignment is followed from Rosebrock (2017). As in

Figure 3.16, the slanted head direction in an individual frame is aligned based on the eyes’ center

points, obtaining a two-dimensional rotation matrix to correct images by the affine

transformation. When taking two eye center points, facial landmarks are extracted by OpenPose

(CMU-Perceptual-Computing-Lab/openpose (n.d.)). Accordingly, the newly updated two eye

center points are calculated by a matrix dot operation with the rotation matrix and two original

eye center points. Based on the updated eye centers, two eye regions are cropped as 64x64 images

from both sides.

Face landmark extraction 
by OpenPose

Original 1 frame
Rotation based on 
eye center points

Cropping eye 
regions based on 
the rotated image 

Figure 3.16. Eye regional image extraction with angle correction

3.2 Deep Learning Approach

The purpose of 3D-CNN is to classify the different level of human cognitive load from the

experiments. This section explains how input for learning has been created, a selected model, and

what metrics are used.
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3.2.1 3D-CNN Training

This study adopts the 3D-CNN model from Fridman et al. (2018) to estimate workload in

this study. As Figure 3.17 shows, the extracted sequential gray-scaled images from the ROS-bag

dataset are integrated in 90 frames. Since each image has a 3-dimensional format with 1-channel,

the 90 integrated images are in 4-dimension, indicating eyelid movement activity of 3 seconds.

The 4-dimensional cubes can be derived from each set of participants’ data. Each 3-second

sequence is made into five-dimensional chunks that could be fed in the 3D-CNN model. The

five-dimensional input can be represented as following:

(Sample number, Frame count, Image width, Image height, Channel)

The sample number illustrates the number of extracted sets of spatial eye features for 3

seconds. The frame count indicates the number of multiplying 30fps and duration. The remaining

part, image width, image height, and channel can be derived from individual images. The

structure of 3D-CNN model is presented in Table 3.1. The network uses the combination of

three-dimensional convolutional layers, max-pooling, and fully connected layers. In the last part,

a softmax layer is to have a classification result of 3 different workload levels. Each convolutional

layer uses 128 features with a 3x3x3 kernel. Besides, max-pooling layers utilize a 2x2x2 kernel

and a 2x2x2 stride at each stage. Up to the author’s experience, a problem was found that

3D-CNN occupied a lot of memory while using NVidia RTX 2080 Super GPU, which has an

8-gigabyte capacity. However, this memory issue can be solved using cloud computing resources,

for example, using Amazon Web Services (AWS).
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width = height = 64
1 gray-scale channel

90 
frames

Eye regional features 
for 3 seconds

... 

5-dimensional 
feature

Figure 3.17. The steps of creating 5-dimensional eye regional input

Layer (type) Options Shape
Input Layer None (Sample number, 90, 64, 64, 1)

Convolution3D
features=128

kernel=3 (Sample number, 90, 64, 64, 128)

Convolution3D
features=128

kernel=3 (Sample number, 90, 64, 64, 128)

Maxpooling3D
kernel=2
strides=2 (Sample number, 45, 32, 32, 128)

Convolution3D
features=128

kernel=3 (Sample number, 45, 32, 32, 128)

Convolution3D
features=128

kernel=3 (Sample number, 45, 32, 32, 128)

Maxpooling3D
kernel=2
strides=2 (Sample number, 22, 16, 16, 128)

Convolution3D
features=128

kernel=3 (Sample number, 22, 16, 16, 128)

Convolution3D
features=128

kernel=3 (Sample number, 22, 16, 16, 128)

Convolution3D
features=128

kernel=3 (Sample number, 22, 16, 16, 128)

GlobalMaxpooling3D None (Sample number, 128)
Fully Connected 1024 (Sample number, 1024)
Fully Connected 512 (Sample number, 512)

Softmax 3 (Sample number, 3)
Table 3.1. The structure of 3D-CNN (Fridman et al. (2018))
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3.2.2 Evaluation metrics

F1-score is widely used to evaluate the accuracy of machine learning or deep learning

models. In this proposed study, as seven universal emotions, each emotion-labeled class has four

cases. We define them as true-positive (TP), true-negative (TN), false-positive (FP), and

false-negative (FN), respectively. For example, true-positive means for when the given data

indicates the eye blinking activity of 1-back, and the result of the predictor indicates perceived

information is about 1-back test. In calculating F1-scores, accuracy is essential, but it is more

important not to make incorrect detection results. There are two terminologies to indicate the

detection rate and accuracy, as recall (Eq. 3.2) and precision (Eq. 3.3).

Recall =
True Positive

True Positive+False Negative
(3.2)

Precision =
True Positive

True Positive+False Positive
(3.3)

F1−Score = 2∗ Precision∗Recall
Precision+Recall

(3.4)

3.3 Summary

This chapter discussed the methodology of the proposed study. The dataset from

preliminary research on workload derivation test, statistical analysis and hypotheses, a deep

learning approach for detecting workload based on temporal and spatial data from extracted

images, and a method for evaluating strategy are presented.
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CHAPTER 4. RESULTS AND EVALUATION

In this chapter, steps of verifying extracted data, selecting behavioral measures,

preprocessing results, and evaluating trained data are presented. The analysis of behavioral

measurements based on the dataset in Section 3.1 is explained in Section 4.1. The evaluation of

workload result is depicted in Section 4.2 will be presented and explained based on proposed

methodology in Section 3.2.1.

4.1 Statistical Analysis

As mentioned in Section 2.4.2, according to the need for data analysis, this section

describes the statistical analysis results. First, data validation between workload level and

NASA-TLX questionnaire result is presented. Accordingly, statistical analysis of behavioral

measurements from data is presented. The purpose of the analysis to find valid behavioral cues to

estimate different level of workload. The statistical analysis is done with the IBM SPSS Statistics

software.

4.1.1 Data validation between workload and NASA-TLX questionnaire result

After collecting all the data, we analyzed the dual n-back game score sand the

questionnaire results created by the participants after experiments of each level are completed.

Specifically, as Figure 4.1 shows, n-back game score, depicted in the blue color, gradually

Rating 1-back 2-back 3-back
Game score 100 55.56 40
Mental demand 40 60 70
Physical demand 40 65 75
Temporal demand 35 55 65
Performance 40 60 70
Effort 40 65 75
Frustration 50 60 70

Table 4.1. Median values of the dual n-back game score and NASA-TLX questionnaire
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Figure 4.1. The results of the Dual n-Back game score and NASA-TLX questionnaire
according to the level of the workload (Jo et al. (2020))

dropped as the game level increased (1-back: 100; 2-back: 55.56; 3-back: 40). As Table 4.1,

shows, NASA-TLX ratings show that the dual 1-back has the lowest ratings, while the dual

3-back has slightly the highest ratings. The result means that participants’ workload is relatively

high at the dual 3-back test than other levels. The median values are increased in each

NASA-TLX rating items. Considering the game score and questionnaire result, the dual n-back

game could successfully derive the different cognitive load levels. Based on the analysis, the dual

1-back can be considered as low-level workload, 2-back as medium one, and 3-back as high-level

workload. Each component of NASA-TLX is measured with one-way rmANOVA test. As Table

4.2 represents, All tests showed significance, which means the results of self-assessment in three

levels are statistically different.

F-test p-value Significance
Game score F(2, 56) = 36.622 p = .000 (p <.05) Significant difference
Mental demand F(2, 56) = 36.416 p = .000 (p <.05) Significant difference
Physical demand F(2, 56) = 4.137 p = .021 (p <.05) Significant difference
Temporal demand F(2, 56) = 13.684 p = .000 (p <.05) Significant difference
Performance F(2, 56) = 29.178 p = .000 (p <.05) Significant difference
Effort F(2, 56) = 17.911 p = .000 (p <.05) Significant difference
Frustration F(2, 56) = 33.616 p = .000 (p <.05) Significant difference

Table 4.2. rmANOVA results of NASA-TLX
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4.1.2 Data analysis on measurements

As extracted measures from the dataset in Section 3.1, each measure, blink frequency,

blink duration, mouse moving frequency, and mouse position changes, is examined to find

statistical difference between the workload level. Table 4.3 shows mean and standard deviation

values of measures. The values in parenthesis indicate standard deviation values. While eye blink

frequency has minor fluctuation in mean values (1-back: 18 counts, 2-back: 18.25 counts, 3-back:

18.44 counts), blink duration, mouse moving frequency, and mouse position changes have

variations among levels. Blink duration shows gradual changes among levels, while mouse

moving frequency has slightly decreased. The dual 2-back mouse position changes was the lowest

than other levels.

Measure
Task
1-back 2-back 3-back

Blink frequency [count] 18 (8.17) 18.25 (11.16) 18.44 (9.80)
Blink duration [milliseconds] 409.30 (103.48) 438.44 (95.29) 473.14 (112.8)
Mouse moving frequency [count] 3.11 (3.05) 3.23 (3.56) 5.61 (8.25)
Mouse moving duration [nanoseconds] 0.87 (1.69) 0.35 (0.23) 0.39 (0.37)
Mouse position changes [pixel] 4.19 (4.56) 3.40 (1.70) 4.10 (2.70)

Table 4.3. Mean and standard deviation values of levels

Mean value of each measure from each experiment is evaluated by one-way rmANOVA to

find whehter the result is significantly different among levels. The result of significance is shown

in Table 4.4. If p-value is less than 0.05, null hypothesis H0 in Section 3.1.4.1.1 is rejected, in

other words, the alternative hypothesis, there are difference across the experiment levels, is valid.

Blink frequency has no significant difference among levels (F(2,30) = 0.038, p >.05). Mouse

moving frequency has also no significance across the experiment levels (F(2,44) = 2.036, p

>.05). The time duration of moving a mouse did not show any significance (F(2,44) = 1.889, p

>.05). Lastly, mouse position changes have no significant gaps between levels (F(2,44) = 0.419,

p >.05). The only significant measure is blink duration across the levels, showing p-value less

than 0.05. According to the rmANOVA test result, blink duration can be meaningful cues

predicting people’s workload.

Based on the result of the table 4.3, the each n-back result is compared to the result of

other level games. The Table 4.5 presents the comparison of each level. One finding from the
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rmANOVA test is that there is a meaningful difference between 1-back and 3-back with a

significance of 98% confidence. There is no significance between the pair of 1-back and 2-back,

and 2-back and 3-back.

Measure F-test p-value Significance
Blink frequency F(2,30) = 0.0386 p = .9621 (p >.05) No significance
Blink duration F(2,30) = 3.50 p = .0430 (p <.05) Significant difference across levels
Mouse moving frequency F(2,44) = 2.036 p = .143 (p >.05) No significance
Mouse moving duration F(2,44) = 1.889 p = .163 (p >.05) No significance
Mouse position changes F(2,44) = 0.419 p = .660 (p >.05) No significance

Table 4.4. F-test result of measurements

Level Source Sum of Squares df Mean Square F-value Significance

1-back & 2-back
level 6795.713 1 6795.713 1.559 .231
Error(level) 65399.775 15 4359.985

2-back & 3-back
level 9629.219 1 9629.219 2.015 .176
Error(level) 71667.708 15 4777.847

1-back & 3-back
level 32603.610 1 32603.610 6.699 .021
Error(level) 73007.891 15 4867.193

Table 4.5. rmANOVA results of each level comparison

4.1.3 Analysis on blink duration

Based on the statistical analysis in Section 4.1.2, eye blinking duration has been analyzed

slicing experiment results in ten seconds as same as the duration of baseline. Here, each baseline

refers to the ten seconds when participants were asked to watch the fixation cross before the dual

n-back tests were initiated.

Following null hypothesis H1 in Section 3.1.4.1.2, measured eye blinking duration of

baseline and each dual n-back in the same time period, ten seconds, is compared. Generally, the

mean blink duration values are higher at each baseline, showing the longest duration at 3-back

games (1-back: 725.81ms, 2-back: 735.35ms, 3-back: 912.00ms). The small difference found

according to the Table 4.6 is blinking duration shows slight higher values among time frames in

n-back tests.

The Table 4.7 shows a comparison result between same time periods of baseline and

experiment. All different levels show a significant difference between each duration, referring to
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the data from baseline and experiment are different (1-back: F(6,90) = 4.988, p <.05; 2-back:

F(6,90) = 3.846, p <.05; 3-back: F(6,90) = 2.197, p <.05). Therefore, the alternative

hypothesis Hβ is selected, meaning eye blinking reaction of participants are different from

baseline and dual n-back test.

Measurement Baseline
n-back test
Duration 1 Duration 2 Duration 3 Duration 4 Duration 5 Duration 6

1-back 725.91 (538.58) 345.06 (196.04) 339.79 (163.40) 427.62 (227.35) 402.97 (166.11) 453.25 (290.72) 313.09 (190.40)
2-back 735.35 (593.40) 348.75 (240.87) 424.49 (174.46) 493.13 (384.96) 361.99 (188.78) 318.39 (205.60) 331.66 (248 34)
3-back 912.00 (1195.75) 409.56 (188.80) 477.36 (359.03) 488.10 (159.17) 480.94 (267.68) 445.69 (219.02) 363.23 (245.81)

Table 4.6. Average and variance values of every ten second frame

Level Source Sum of Squares df Mean Square F-value Significance

1-back
Measure 1885788.67 6 314298.111 4.988 .000
Error(measure) 5670664.57 90 63007.384

2-back
Measure 2089690.73 6 348281.788 3.846 .002
Error(measure) 8149446.94 90 90549.410

3-back
Measure 3196104.11 6 532684.019 2.197 .05
Error(measure) 21822583.7 90 242473.152

Table 4.7. rmANOVA results of levels in ten seconds frame

4.1.4 Summary of Statistic Analysis

First of all, the eye blinking duration is only a significant behavioral cue when estimating

different human cognitive load levels. Table 4.5 verifies that participants’ response in the 1-back

and 3-back game are distinct, while two consecutive level experiments do not show significance.

As analyzed in Table 4.7, there is a clear difference between when a person is not given any task

and when a task is performed. All in all, eye blinking activity could be a promising behavioral cue

to have automated estimation of human cognitive workload.
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4.2 Result

This chapter shares three items of the result of this study: the result of image

preprocessing, training, and a confusion matrix of a trained model based on 3D-CNN neural

network structure.

4.2.1 Image Preprocessing

Based on the preprocessing stage in Section 3.1.5, the number of extracted eye images of

both side are about 177,034. The original images are about 88,776, expecting the aligned the

number of images were 177,552. The loss of images was 60,518.

4.2.2 Training Steps and Result

The training model is implemented in TensorFlow with four batch-size and 20 epoch due

to extensive memory consumption. The training phase has been done in AWS Deep Learning

AMI (Ubuntu 18.04), utilizing p2.xlarge instance with Tesla K80 GPU, taking approximately 3.5

hours. The five-dimensional, temporal, and spatial features are made to 910 samples. The ratio of

training and testing data has been divided into 80-20, 728 samples of training, and 182 samples of

testing. During the training, the best result of training based on value accuracy is saved. The

result of the 19th epoch among 20 trials is finally chosen as the best result with 39.041% value

accuracy. When evaluating the model with previously split test data, the accuracy is about 38%

with F1-score 0.45, 0.14, and 0.40 in the order of 1-back to 3-back. Following the statistical result

that there is a statistical difference between dual 1-back and 3-back between them, binary

classification training is done. The accuracy of the trained model is 51% with F1-score 0.66 and

0.14 in the order of the dual 1-back and 3-back.
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Level Precision Recall F1-score Accuracy

3-level classification
1-back 0.32 0.78 0.45

0.382-back 1.00 0.08 0.14
3-back 0.52 0.32 0.40

2-level classification
1-back 0.50 0.97 0.66

0.51
3-back 0.71 0.07 0.14

Table 4.8. Precison, recall, F1-score of trained data

4.3 Discussion

With interest in behavioral signals other than sensors when observing human responses,

behavioral cues during three different levels of n-back games have been examined to estimate

human cognitive workload. Among available behavioral signals from the multimodal affective

dataset, eye blinks and mouse tracking have been chosen as promising ones.

In Table 4.1, there is a big difference between dual 1-back and 2-back games when

looking at the game scores and the NASA-TLX self-assessment score. It is worth noting that

during the experiment, some participants experienced difficulty in playing 2-back games after

they completed the previous ones. The difficulty caused drastic falls between game scores. In

Table 4.2, the numerical gaps between 2-back and 3-back are lesser than the difference between

1-back and 2-back, which means participants showed their mental burden at the first two games

more. One guess about the smaller difference between 2-back and 3-back is that some

participants even gave up their 3-back games if they experienced pressure or frustration on 2-back

games. It seems that memorizing visual or phonetic signs two steps before might cause workload

in the HMI setting.

Their difficulties become remarkable when they use the mouse in the experiment. In Table

4.3, the number of mouse usage times gradually increased as the workload level increases. The

distance of mouse position has the lowest mean and standard values at the 2-back games. The

mouse relevant data on 2-back indicates that their usage comparably decreased from 1-back with

lower moving duration and position changes. The lower time of moves and changes show

participants made fewer moves at the mouse usage. Even though they were required to click

buttons on the mouse, not relocating it, their activities in 2-back decreased because they might

focus on the games more to have accurate answers, which refrains them from using redundant
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behavior responses. At the 3-back, all mouse data were increased. The increased value may be

caused by individuals who gave up the test at the level. The value changes of blink frequency and

blink duration in Table 4.3 are unexpected because we expected that value would decrease when

participants play more complicated games. The frequency and duration values are slightly

increased, which means when their workload increases, they blink longer.

However, an interesting point found in Table 4.5. Although some participants expressed

their mental burden transition of 1-back to 2-back, there is no statistical significance on their blink

duration. The statistical difference between 1-back and 3-back exists. As Li et al. (2020) stated in

their discussion, given tasks could not arouse all workload levels in short experiments. Each game

conducted about 60 seconds, which might not be enough to trigger different cognitive states.

Taking into consideration that consecutive games did not show their significance, the experiment

duration could be longer, or the level could be increased.

When looking at Table 4.6, blink duration is longer in the baseline. During the experiment

divided into ten seconds as same as the baseline, participants’ blinking duration increased as time

went by and decreased at the last part of the experiments. Considering the variance of each

measure, it is yet difficult to say all participants showed similar patterns. However, it is an

intriguing point that some participants showed the longest eye blinking in the middle of

experiments at the third duration, while others showed the shortest eye blinking at the 2-back

games. With the result of Table 4.7, blink duration in baseline and experiment are significantly

different. It would be able to distinguish human blinks in natural and task environments.

Regarding the results of deep learning, the accuracy is about 38%. Paying attention to the

F1-scores calculated for each level, we can see that the score of 2-back games is significantly

lower than other games. The result aligns with the statistical output of Table 4.5 that the 2-back

game result does not have a statistical difference from the outcome of 1-back and 3-back games.

Another trial is training 1-back and 3-back game results except for 2-back ones. The trial with

two different levels is because the dual 1-back and 3-back show a significant difference from the

one-way rmANOVA test. However, the accuracy of the newly trained model is 51%, which is a

similar result of choosing one between two.

There are two possible steps to improve the model’s accuracy. It would be a challenging

point to measure generalized estimation of the human workload because of individual
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characteristics. One trial is that estimating human behavior patterns compared to the baseline. In

the experiment, the time focusing a fixation cross was utilized as the baseline. It would be

possible to classify human behavior when they naturally present in the HMI setting. Based on the

result during baseline, we could expect that each participant falls in a specific category. For

example, some individuals tend to blink longer, while others do not. If we can get the relevant

point of eye blink duration between baseline and experiment, it might be able to optimize the

workload classification problem. Another trial is increasing the amount of data. In the training

phase, 16 sets of blinks were utilized. When utilizing three sets of data, the accuracy was about

76%. The higher accuracy result aligns with the result of Fridman et al. (2018) that they used 90

samples with six seconds of eye behavior in training in the same neural net structure. It could be

concluded as more prolonged eye behavior should be examined when estimating human

workload. Still, it is not easy to generalize that the trained model with reduced data can classify

all participants’ different workload levels with possibilities of overfitting. If the data increases, it

might be helpful to find a pattern of blinking.

Taking into account that physiological or neuro-physiological measurements can be other

cues to estimate workload as well, different modalities can be joined together. Not only confined

the estimation into behavioral measures, but other methods also can be utilized. A multimodal

approach will be an alternative one to improve the assessment of workload. On top of that, one of

the original objectives not stated in the previous sections was running a real-time workload

estimator in the local environment. When loading the trained model, it requires greater memory

consumption due to larger dimensional inputs than other neural networks. It would discourage

using estimation of physiological or neuro-physiological sensors. Therefore, other neural

networks considering spatiotemporal features such as Convolutional LSTM (ConvLSTM; Shi et

al. (2015)) or 3D Residual Networks (3DResNet; Hara, Kataoka, and Satoh (2017)) might be

alternatives to find whether different networks would work in terms of reducing memory

consumption.
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CHAPTER 5. CONCLUSION

This chapter illustrates the conclusion of the study, challenges during this study, and

expected future study.

5.1 Conclusion

This study demonstrates the human cognitive load estimation with behavioral cues. As

behavioral measures, two simple data have been chosen, mouse tracking data and eye blink.

Based on the statistical analysis, we found a significant difference in eye blinking duration

between the lowest and the highest levels with 98% occurrence. On the contrary, the

mouse-tracking data analysis did not significantly differ among the dual n-back levels. The data

of eye blinking is given to a 3d convolutional deep neural networks to be learned. Overall, the

trained model can assess with 39.04% accuracy in three workload classification, while another

model trained with the dual 1-back and 3-back data in 51% accuracy. We tried to find the

relationship between the workload and human behavioral signals, but in conclusion, it is unlikely

to estimate the workload with mouse tracking or eye blinking.

5.2 Challenges

In this study, the front videos and mouse tracking data were utilized as an interesting data

stream to analyze. Regarding mouse-tracking data, there was a relatively rare disturbance.

However, the eye region was solely based on recorded pixels, which can be distorted from the

field of view of cameras, occluded from some objects, or partially missing due to face rotation. In

the dataset, the distance and angle from the front camera to participants were not constant, as

mentioned in 3.1.2, which might require different image correction techniques and different EAR

threshold values per each participant. When aligning facial regions, it seems that the alignment

should not have been done in the 2D environment, but in the 3D environment as mentioned by

Fridman et al. (2018).
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On top of that, one issue regarding facial landmark detection unexpectedly computed key

points differently. To be more specific, when a single video was evaluated by a ROS-based

calculation, the extracted facial points, and accordingly, the EAR value was not expected to have

the same value at discrete trials. Considering the nature of the open-source library trained from a

neural network structure, it produces non-identical values at each trial. When it comes to the

problem requiring a precise value-based decision, it could be challenging to have accurate

estimation results.

Maior, das Chagas Moura, Santana, and Lins (2020) stated that EAR threshold is not

sufficient to be applied to people in a different condition, especially, natural eye openness is

different. Even the Rosbag-based Multimodal Affective Dataset has different angles at each

participant, which will cause considerable changes when dealing with various participants’

behavioral data. Taking into consideration that facial landmark detection computes different

values at each trial, even the EAR value from one after another trial cannot be the same.

5.3 Future Study

This study explored two types of behavioral signals, eye blinking and mouse tracking.

However, vision-based data have flourished data, such as pose and its development, facial

expressions, and gaze. As the expected progress, extracting data, analyzing them statistically if

needed, training models, and testing them will be the same. Moreover, not limited to behavioral

cues but expanded to physiological sensors, multimodal analysis can be expected as a future study.
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