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−13.8 kOe, where Hkp = 2Ks/t−4πMs is the perpendicular anisotropy along
x-axis and the in-plane anisotropy Hki ≈ 0 due to circular shape.  . . . . . . 29
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 2.5 Steady-state Response: (a) Plot of 〈VOUT〉 (averaged over a time window
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 3.2 Categorizing Resistances: (a) Fluctuating nature: they can be continuous
or bipolar. The time dynamics and distribution are shown for each category.
(b) Current-Tunability: The fluctuations could be unaffected by I or it could
be a function of I as indicated by their transfer characteristics. I50 is the
current at the 50:50 point where the resistance spends equal time in RP and
RAP states. I0 is the biasing current defined as the slope of the (R vs I) curve
at 50:50 point. The pinning current is typically ∼ 3 − 5 I0. . . . . . . . . . . 44

 3.3 Transfer Characteristics : The BSN circuit is realized by coupling the
fluctuating resistor which is the physical realization of the random variable
ri in the BSN equation to an NMOS which provides the tunability, and then
to an inverter which thresholds the output. The four types of resistances are
coupled to a 14nm FinFET and the resistance parameters (based on exper-
imental demonstrations of MTJs [   110  ]) are chosen to match the transistor
characteristics. All resistance types except for the bipolar non-tunable were
able to achieve BSN operation following eq.   3.2  . To function as a BSN the
bipolar resistances need some means of tuning their probability distribution. 45

 3.4 Non-tunable Continuous vs Bipolar Resistance: (a) Transfer Charac-
teristics shows that while the continuous resistor results in a sigmoidal output,
the bipolar gives a stair-case like function. (b) The bipolar R is unable to
follow the Boltzmann distribution of the invertible AND gate (description in
ref.[  31  ]). All states remain equally probable.  . . . . . . . . . . . . . . . . . . 46

 3.5 Effect of n and I0 : The stochastic region of the non-tunable resistances are
determined by the resistance ratio n = RP/RAP, while the biasing current I0
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the tunable resistors behave effectively like non-tunable resistances. . . . . . 47

 3.6 Stochastic Region boundaries : The stochastic region boundaries [v+, v−]
are set by different parameters for tunable and non-tunable resistors. (a)
Shows the BSN circuit with (b) the current transfer characteristics of the
14nm FinFET NMOS when Vi ∼ 0V. (c) Non-tunable R : In this case the
boundaries are set by when Vi ≈ 0 when resistance ratio n = RAP/RP ≈ I+/I−.
(d) Tunable R : The stochastic range is determined by pinning current IP
characteristics of the resistance. The transfer characteristics of each stage in
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 3.7 (a) Choice of I50: I50 is ideally a positive quantity matched with the IDsat
of the transistor, changing I50 results in a lateral shift of the sigmoid. (b)
R vs I relationship: The output characteristics also depend on the nature
of the resistance tunability with the circuit current I. If R decreases with
I (RAP → RP), the opposing characteristics of the transistor current and
resistance change result in a non-monotonic output.  . . . . . . . . . . . . . 50
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 3.8 Low-barrier magnet fluctuation dynamics: We use the benchmarked
stochastic LLG module to simulate LBM dynamics. Each simulation is car-
ried out with a time-step at least ×100 smaller for a time-duration ×1000
than characteristic timescales to avoid any simulation time dependencies, the
exact parameters are indicated. ∆ < kBT magnets have more continuous fluc-
tuations with (b) having a more uniform distribution than (a) while slightly
higher barrier magnets have a more telegraphic fluctuation. In both cases,
the presence of high demagnetization fields cause faster fluctuations in IMA
magnets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

 3.9 Current Response of LBM: LBM response to spin-current with and with-
out external-fields for (a) circular IMA magnet (Hki ∼ 0, Hkp ∼ −HD) and (b)
isotropic anisotropy magnet (Hkp ∼ 0). Each point on the curve is a long-time
(T = 1µs, ∆t = 1ps) average magnetization from our benchmarked sLLG
module. The critical field for IMA magnet was ∼ 130Oe and for isotropic
magnet ∼ 200Oe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

 3.10 Characterization Table: MTJ Free layer and its corresponding R type
along with corresponding characteristic parameters and their analytical ex-
pression. The numbers in bracket indicates an approximate range of values for
each parameter. The proportionality constant for correlation time of magnets
with ∆ > kBT is τ0 ∼ 0.1 − 1 ns, exact equation can be found in [  82  ]. . . . . 54

 3.11 Timescale of Operation for each resistor type with two fluctuation rates
τC ∼ [160 ps, 320 ps]. The resistances are engineered to have similar char-
acteristic timescales but different fluctuation behavior (tunable, non-tunable
and continuous and bipolar fluctuation) for comparison purposes. . . . . . . 55

 3.12 (a) Energy-Delay of each type of MTJ based BSN assuming an average power
of 20 µW and timescales in fig.   3.9  . (b) Plots the fps for different no. of
neurons for each type of MTJs. For the projections only BSN performance
numbers are used, synapse would add to the power and thus energy per flip
number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

 3.13 flips per second (fps) is a substrate and algorithm independent perfor-
mance metric for simulated annealing processors much like the flops per sec-
ond metric used for general purpose computers. It is a measure of how many
flips, and hence spin configurations the system can cycle through in a second.
fps can be derived from the reported performance metrics of the processors
following ref. [   48  ]. The reported and derived quantities as indicated. Current
CMOS based annealing processors perform at ∼ 1012 fps. We project that
MTJ based hardware can increase by a few orders of magnitude. . . . . . . . 58
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 4.1 (a) Weighted p-bit (W p-bit) has two components. The first is the p-bit
implemented through an embedded s-MTJ with two inverters added to give
positive and negative outputs. The second is the capacitive voltage adder
with an inverter structure on the left similar to floating gate MOS transistors.
(b)Shows the the block diagram of W p-bit. (c) Shows how an inverter helps
amplify the input (Vi) of the capacitive network to give Vin,i at the gate of the
p-bit’s NMOS transistor T0. (d) Shows the relation of the input gate voltage
of the NMOS (Vin,i) to output (V +

OUT ). (e) Shows the transfer characteristics
of the W p-bit as a whole. The inputs in each case is swept from −0.4V to
+0.4V in 1 µs. The yellow dots are time averaged values at each point over
300 ns and the solid blue lines are numerical fits. . . . . . . . . . . . . . . . 61

 4.2 Invertible Full Adder with Wp-bit: (a)[J ] matrix for implementing a Full
Adder. (b) Explicitly shows the hardware connections made to one of the
inputs (A) from the other p-bits where 1C, 2C, and 4C represent capacitors in
units of C = C0 = 100aF . (c) Shows the subcircuit representation of the Full
Adder with its input/output terminals. Ci, B, A input and S, Co output read
terminals and separate corresponding clamping terminals hCi , hB, hA, hS, hC0 .
We used 8C for the clamping terminals to ensure input / outputs follow what
is dictated by the external signals.  . . . . . . . . . . . . . . . . . . . . . . . 64

 4.3 Full SPICE implementation of an Invertible Full Adder(5 Wp-bit):
The 5 Wp-bit invertible Full Adder circuit is simulated in (a) Directed and (b)
Inverted modes. The clamping values are indicated. All biasing terminals
that are not clamped to 1 or 0 are grounded. The histogram of [CiBASC0]
is obtained after thresholding voltages ((V < 0) ≡ −1, (V > 0) ≡ +1). The
SPICE model is run for 1µs and compared with the PSL equations where
each p-bit is updated in random but sequential order [   31  ]. In this example
I0 ' 1 is chosen to emphasize how the models are in good agreement even in
the magnitudes of the minor peaks of the histogram. . . . . . . . . . . . . . 65

 4.4 SPICE simulation of a 4bit 3-SUM Problem (9 × 5 = 45 Wp-bit
network): (a) The circuit is constructed by interconnecting two rows of
invertible Full-Adders (FA) to construct a 3 number, 4-bit adder. The sum
S is clamped to the desired value and A, B, C resolves themselves to create
all the possible 3 number subsets out of all positive numbers 0 to 24 − 1 that
satisfy A + B + C = S. (b) Shows the results when S is clamped to 15. A, B
and C get correlated to satisfy the sum with different combinations. In this
example, the inputs A, B, C are unconstrained and can take on any value
between 0-15.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
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 4.5 SPICE simulation of a 3 input, 3-bit Subset Sum Problem (7 × 5
= 35 Wp-bit network): (a) A 3-input 3-bit binary adder that adds three
numbers A,B,C. Unlike the 3SUM, in this case inputs are constrained to a
given value specified by the set G ={1, 2, 4} in this example. A target S
is selected and the output of the adders are clamped to the target value as
shown in (b). (c) Shows three different instances of a target where the inputs
find a consistent combination (the correct subset of G) to satisfy the target.
Histograms show that the highest probable state is the correct subset. An
important difference from the 3SUM circuit is that the information flow is
directed from the target (second layer of adders) to the first layer of adders. . 69

 5.1 Equivalent circuit for magnetoelectric (ME) read and write opera-
tions (a) The charge on the piezoelectric (PE) capacitor changes the easy-axis
of the ferromagnet (FM) and this causes a change in the output voltage VL
through the inverse effect. (b) Equivalent circuit model obtained from (  5.1  ).
Write operation is through the effective field ~Hme = −∇m Em/(MsVol.) that
enters the stochastic Landau-Lifshitz-Gilbert (s-LLG) equation. Read op-
eration is through the dependent voltage source V that is proportional to
∂Em/∂Q, where Em is the magnetic energy. . . . . . . . . . . . . . . . . . . 73

 5.2 Experiment vs circuit model: (a) The results of the self-consistent circuit
model for the structure in (b) are in good agreement with the experimental
results in [   156  ]. VME is the mathematical difference of two measurements of VR

with and without the external magnetic field, VME = VR(H 6= 0)−VR(H = 0).
(b) Experimental structure reported in [   156  ] where the piezeoelectric (PE) is
〈011〉-cut PMN-PT and the ferromagnet (FM) is N layers of TbCo2/FeCo.
The back-voltage is V=vMµ where µ = m2

x − m2
y and the magnetic energy is

Em = QP EvMµ where QP E is the charge on the capacitor CPE. The following
parameters are used: Coercivity for FM (HK=200 Oe), saturation magneti-
zation Ms=1100 emu/cc, FM thickness, tFM=200 nm, PE thickness tPE=30
µm, Area=520 × 520 nm2, Magnetoelastic constant B = −7 MPa, a net PE
constant, d = d31 − d32 = 2500 pC/N, permittivity ε = 4033 ε0, resistance
R = 2 MΩ, back voltage vM = BdtFM/2ε. In the experiment, magneto-optic
Kerr effect (M.O.K.E) is used to show the variation of magnetization, which
is compared to the pseudo-magnetization in our simulation. Experimental
panel is reproduced with permission of AIP Publishing LLC, from Reference
[  156  ]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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 5.3 Pseudomagnetization (a) Basic electrical circuit for characterization of
PE/FM structure. Information on the device is stored in the magnetic easy
axis direction (± x or ± y) which we term pseudomagnetization, µ. (b) Shows
the change of µ due to the applied voltage, V across the PE/FM structure
and (c) shows the resulting charge versus voltage characteristics in the cir-
cuit which is similar to standard ferroelectrics. (d)-(f) shows the stable states
at different voltages across the structure on a heatmap. Unlike conventional
magnetic memory there are multiple states associated with each voltage in-
dicating preferred easy axis. The states are separated by a large barrier, so
which allows for non-volatile memory application. . . . . . . . . . . . . . . . 76

 5.4 (a) Magnetoelectric 1T-1C memory cell.The READ/WRITE Operation of the
cell mimics the scheme of FeRAM operation. (b) WRITE pulse is applied to
the bit-line keeping plate line grounded. (c) READ pulse is applied to the PL
and voltage at BL is detected. The read process is destructive as in FeRAM,
but unlike DRAM is µ non-voltaile so does not require periodic refresh. . . . 79

 5.5 (a)The stability of pseudomagnetization states can be measured from equi-
librium fluctuations. The effective stability (∆) of µ can be attributed to an
effective stress anisotropy field (Hs) it feels which depends on the back-voltage
vm and the capacitance value C. (b) Switching probability of pseudomagne-
tization is calculated from 1500 samples for different amplitudes and pulse
widths. Sub-ns switching speeds (τ) can be attained due high stress fields
(Hs = CVINvm/MsV ol) in nanomagnets. . . . . . . . . . . . . . . . . . . . . 80

 5.6 Characterizing FMR Measurements Ferromagnetic resonance (FMR)
measurements performed on two samples (a) Film and (b) nanodot array show
modification of magnetic anisotropy of CoFeB by applying voltage across the
PMN-PT layer. The modified Kittle equations (eq. 5.5 and 5.6) including
the voltage-induced stress term Hs are used to fit the measurements.The re-
ported experimental parameters for the piezoelectric are relative permittivity
εr = 600, piezoelectric co-efficient d = 4500 pC/N, and for the magnet the
magnetoelastic constant B = 4 MPa. For the film the theoretically expected
ME back-voltage (vm = BdtFM/2ε) of 34 mV fits the data while a slightly
lower value of 34 mV fits the nanodots which has a Ti/Au layer inbetween
the PE and FM layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

 A.1 Pinning Field of low-barrier magnets The numerical evaluations of equa-
tions are compared to SPICE simulation for (a) Isotropic magnets and (b)
circular IMA magnets which have ∆ ≤ kBT. The pinning fields are shown to
be a function of MSΩ only where MS = 600 emu/cc and the volume of magnet
Ω is varied, The pinning field values for IMA magnets indicate that it is inde-
pendent of the large demagnetization field, HD. The precise correspondence
between the analytical formulas and the numerical simulation also constitutes
as a benchmark to our finite temperature (stochastic) LLG formulation.  . . 103
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 B.1 Behavioral Models: p-bit (a)Transfer Characteristics and p-circuit imple-
mentations showing (b) AND Gate operation and (c) 1-bit Full Adder oper-
ation for three different behavioral representations of p-bits. Only the p-bit
model expressed by eq.   B.1  with thresholding and continuous random variable
ri is able to reproduce the Bolzmann distribution exactly. . . . . . . . . . . . 105
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ABBREVIATIONS

BSN binary stochastic neuron

FM ferromagnet(ic)

fps flips per second

GSHE giant spin hall effect

IMA in-plane magnetic anisotropy

LBM low barrier magnet

LLG Landau-Lifshitz-Gilbert (equation)

MCMC markov chain monte carlo

ME magnetoelectric

MRAM magnetic random access memory

MTJ magnetic tunnel junction

p-bit probabilistic bit

PE piezoelectric

PMA perpendicular magnetic anisotropy

PSL probabilistic spin logic

RNG random number generator

SA simulated annealing

sLLG stochastic LLG

s-MTJ stochastic magnetic tunnel junction

SOT spin-orbit torque

SPICE simulation program with integrated circuit emphasis

SR stochastic resistance

STT spin-transfer torque

TMR tunnel magnetoresistance

TRNG true random number generator
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ABSTRACT

Probabilistic computing has been proposed as an attractive alternative for bridging the

computational gap between the classical computers of today and the quantum computers of

tomorrow. It offers to accelerate the solution to many combinatorial optimization and ma-

chine learning problems of interest today, motivating the development of dedicated hardware.

Similar to the ‘bit’ of classical computing or ‘q-bit’ of quantum computing, probabilistic bit

or ‘p-bit’ serve as a fundamental building-block for probabilistic hardware. p-bits are robust

classical quantities, fluctuating rapidly between its two states, envisioned as three-terminal

devices with a stochastic output controlled by its input. It is possible to implement fast

and efficient hardware p-bits by modifying the present day magnetic random access mem-

ory (MRAM) technology. In this dissertation, we evaluate the design and performance of

low-barrier magnet (LBM) based p-bit realizations.

LBMs can be realized from perpendicular magnets designed to be close to the in-plane

transition or from circular in-plane magnets. Magnetic tunnel junctions (MTJs) built us-

ing these LBMs as free layers can be integrated with standard transistors to implement the

three-terminal p-bit units. A crucial parameter that determines the response of these devices

is the correlation-time of magnetization. We show that for magnets with low energy barriers

(∆ ≤ kBT ) the circular disk magnets with in-plane magnetic anisotropy (IMA) can lead to

correlation-times in sub-ns timescales; two orders of magnitude smaller compared to magnets

having perpendicular magnetic anisotropy (PMA). We show that this striking difference is

due to a novel precession-like fluctuation mechanism that is enabled by the large demagne-

tization field in mono-domain circular disk magnets. Our predictions on fast fluctuations in

LBM magnets have recently received experimental confirmation as well.

We provide a detailed energy-delay performance evaluation of the stochastic MTJ (s-

MTJ) based p-bit hardware. We analyze the hardware using benchmarked SPICE multi-

physics modules and classify the necessary and sufficient conditions for designing them. We

connect our device performance analysis to systems-level metrics by emphasizing problem

and substrate independent figures-of-merit such as flips per second and dissipated energy

per flip that can be used to classify probabilistic hardware.
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1. INTRODUCTION

The future of computing beyond Moore’s Law is in building heterogeneous computing plat-

forms that can handle diverse workloads. This entails introducing new computing paradigms

and architectures tailored for addressing specific applications [  1 ] complementary to the

general-purpose computing architecture. Conventional computing has been dominating the

computing paradigm for decades fueled by the continuous improvements in computing per-

formance following the observation made by Gordon Moore over 50 years ago [ 2 ]. This

observation that the number of components (semiconductor transistors) in an integrated

circuit doubles every two years, dubbed Moore’s Law by Carver Mead [ 3 ], underpinned

by Dennard scaling [  4 ] had come to shape the modern-society itself. Even after the end

of Dennard scaling in 2004, new device-physics and changes in computer architecture en-

abled conventional computing performance to continue to increase exponentially. However,

as semiconductor device scaling reaches its physical limits the exponential growth rate is

finally tapering. But on the other hand, thanks to the internet of things and our own dig-

ital footprint the amount of data available to analyze is increasing at unprecedented rates

everyday [ 5 ]. As the demand to capitalize from this plethora of data increases, technological

and economic forces are propelling the computing paradigm to shift from general purpose

to specialized. The algorithmic success of neuro-inspired and quantum computing models

in dealing with large data sets have now opened up exciting new possibilities, but demands

computing performance even beyond exa-scale [ 6 ]. Moving to specialized architecture and

dedicated hardware for such compute-expensive applications is likely to provide substantial

performance advantage leading to significant breakthroughs [ 7 ].

A lot of progress are being made in this front. Machine Learning (ML) a decades old

concept has now set to become a ubiquitous part of life [  8 ] as its computational load is ac-

celerated by specialized hardware like the highly parallel graphic processor units (GPUs)[ 9 ],

[ 10 ]. Quantum computing, also a decades old concept has become a billion dollar indus-

try [  11 ] as big companies like Google, IBM, Intel, and Microsoft are taking on the grand

challenge of developing commercial quantum computers demonstrating quantum supremacy

[ 12 ]. Although significant progress has been made, the difficulty of scaling quantum bits
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for building large-scale, error-corrected quantum computer to carry out relevant calculations

that a classical computer cannot is perhaps decades away from complete [ 13 ].

In recent years, probabilistic computing has emerged as an attractive alternative for

bridging the computational gap between the classical computers of today and the quantum

computers of tomorrow. Most real-problems that quantum computers are aiming to solve

can be formulated as combinatorial optimization problems. A way to solve these compu-

tationally complex problems efficiently is to map them onto an Ising model [  14 ], [  15 ] and

use its intrinsic convergence properties to search for the ground state of the system and

reach the solution [  16 ]. Companies like Hitachi, Fujitsu, Toshiba, NTT, D-Wave, and others

have invested in building dedicated hardware accelerators based on the Ising Model broadly

termed Ising Machines. The various approaches range from quantum computers based on

quantum annealing (QA) or adiabatic quantum optimization (AQC) implemented with su-

perconducting circuits [  17 ], coherent Ising machines (CIMs) implemented with laser pulses

[ 18 ], phase-change oscillators [ 19 ], or CMOS oscillators [  20 ]–[ 23 ] to digital annealers based

on simulated annealing (SA) [  16 ] implemented with digital circuits [  24 ]–[ 30 ]. Digital an-

nealers are at the forefront of the race offering scalable, room-temperature mm sized chips.

However, these deterministic digital hardware only emulates the probabilistic nature of the

algorithms. Infact, the random number generators (RNGs) occupy a major portion of the

annealing processors today [  28 ]. A substantial performance advantage could be achieved if

probabilistic algorithms ran directly on probabilistic hardware with naturally probabilistic

constituents. The probabilistic spin logic (PSL) framework based on the concept of using

probabilistic bits or ‘p-bits’, is an embodiment of this idea [  31 ]–[ 33 ]. p-bits are classical

quantities intermediate between the stable bits of digital electronics and the q-bits of quan-

tum computing. In this work, we analyze the physical implementations of p-bits

using naturally stochastic elements to serve as building-blocks for realization of

compact, scalable, energy-efficient PSL hardware.
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1.1 Probabilistic Spin Logic

The idea of a probabilistic computer to prelude quantum computers can be found in the

seminal keynote address by Richard Feynman on simulating physics with computers [ 34 ].

Feynman articulated that the only efficient means to simulate a phenomenon was with a

system governed by its same fundamental constituents. A wide range of practical problems

of great interest today, like machine learning and combinatorial optimization, essentially

involve probabilities. So, an efficient way to solve these problems would be by using a

probabilistic computer whose fundamental constituents are probabilistic bits.

In 2016, Behin-Aein et. al. [  33 ] proposed the idea of interconnecting transistor like three

terminal stochastic devices, subsequently dubbed the ‘p-bit’ by Camsari et. al. [  31 ] to serve

as a building block for probabilistic networks. Probabilistic spin logic (PSL) is the name

given to the study of these networks of p-bits. The ‘spin’ in PSL is originally motivated by its

strong ties to magnetic-devices and efficient realizations of hardware p-bits using low-barrier

magnets which we document in this thesis.

A wide variety of problems encompassing two active but disjoint fields of research,

stochastic machine learning [ 35 ], [  36 ], and quantum computing [ 37 ]–[ 41 ] can be mapped

onto the p-computer through proper design of the interconnections between the p-bits. Ba-

sically, what we propose is a naturally stochastic hardware that can implement probabilistic

alogrithms that are based on Markov chain Monte Carlo (MCMC) efficiently.

A p-circuit solves a problem by naturally converging to the ground state of the system

described by its energy:

E = I0

−1
2

N∑
i,j=1

Jijmimj −
N∑

i=1
himi

 (1.1)

where, m denotes the p-bit, J is the coupling co-efficient or interconnection strength be-

tween the p-bits, h is the external bias applied to a p-bit and I0 is a dimensionless quantity

representative of the system’s temperature. For machine learning applications I0 is typically

kept constant, while for optimization problems involving simulated annealing I0 is varied.
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p-circuit

𝑚𝑖 = sgn tanh 𝐼𝑖 − 𝑟𝑖 …..(1)

𝐼𝑖 = σ 𝐽𝑖𝑗𝑚𝑗 + ℎ𝑖 ……. (2)

Figure 1.1. PSL framework: (a) p-bit: The p-bit is a classical quantity
that fluctuate rapidly between +1 and −1 and its fluctuations can be tuned
through an input bias Ii. (b) p-circuit: multiple p-bits can be connected
through synaptic connections to form p-circuits to perform useful functions.

The p-bits are essentially tunable random number generators (RNGs), analogous to the

binary stochastic neurons (BSNs) [  42 ] of stochastic neural networks and can be described

mathematically by

mi = sgn(tanh(Ii) − ri) (1.2)

where, ri is a random number between ±1 and Ii is the input to the p-bit. Here, we use

bipolar variable mi = ±1 to represent the two states ‘1’ and ’0’ of the system. The output

fluctuation probability of the p-bits are controlled by their individual input Ii generated from

the weighted sum of the states of other p-bits according to:

Ii = I0

1
2

N∑
j=1

Jijmj + hi

 (1.3)

Eq.  1.2 and  1.3 together describes the PSL framework. Problems can be mapped onto

PSL through appropriate J and h [ 15 ]. The same framework accompanied by a learning rule

can also be used to calculate the J and h themselves [  36 ], [  43 ]. Infact, eq.  1.2 and  1.3 are

widely used in many modern algorithms, but they are commonly implemented in software

whose performance could be accelerated by building dedicated hardware. So, how do we

build a scalable energy-efficient hardware for implementing PSL?
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Much work has gone into developing accelerators for performing the matrix multiplication

and addition of eq.  1.3 which the PSL hardware can directly benefit from [ 44 ]–[ 47 ]. Our

primary focus in this thesis is on the design of a hardware accelerator for implementing

eq.  1.2 , the p-bit.

1.2 Realization of Probabilistic Hardware

Any random signal generator whose randomness can be tuned with a third terminal

could serve as a suitable physical realization of p-bit, but what is the most efficient way to

do it? Completely digital implementations using conventional CMOS technology are possible

[ 48 ]–[ 50 ], but getting true randomness from deterministic circuits require elaborate circuits

with unfavorable size, power-consumption, and latency [  19 ], [  51 ]. Also, it beats our original

motivation of leveraging from nature’s innate stochasticity. In this thesis, we show that

hardware p-bits can be efficiently and compactly realized using low-barrier magnets (LBMs)

in structures similar to those in conventional magnetic random access memory (MRAM)

technologies [ 52 ], [ 53 ].

LBM
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Figure 1.2. Basic Design Principle: The random thermal fluctuations
in low barrier magnet’s magnetization can be utilized to realize a stochastic
resistor (SR) through the tunnel magnetoresistance (TMR) effect in an MTJ
structure. The stochastic MTJ (s-MTJ) acts as the source of randomness (ri)
in hardware realizations of p-bits.

The key element in the designs is the stochastic magnetic tunnel junction (s-MTJ) which

has been shown to be well-suited for the physical implementation of random number genera-

tors [  54 ]–[ 56 ]. LBMs whose magnetization fluctuates randomly under thermal perturbations
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can be built from perpendicular magnetic anisotropy (PMA) magnets designed to be close

to the in-plane transition or from circular in-plane magnetic anisotropy (IMA) magnets [ 57 ].

MTJs utilizing these unstable LBMs as free layers present themselves as fluctuating stochas-

tic resistances (SR). The basic design principle for p-bit hardware realization involves using

the resulting fluctuating resistance (R) of such stochastic MTJ structures in conjunction with

necessary electrical components to realize a tunable random number generator as shown in

fig.  1.2 .

We apply magnet and circuit physics to comprehensively evaluate and characterize low-

barrier magnet (LBM) based p-bit implementations shown in fig.  1.3 . The fundamental

design principle of these devices is actually independent of the magnetic realizations, it

applies to any stochastic resistor (SR). So, we also classifying necessary and sufficient condi-

tions for designing p-bits from this general perspective and hope these design rules stimulate

discussion in the realization of different stochastic resistors.

Figure 1.3. p-bit realizations with stochastic MTJ: In each design the
LBM MTJs act like a stochastic fluctuating resistance. The fluctuations are
tuned to behave like a p-bit. In (a) Design 1, the tunability is achieved through
spin current manipulation of magnetic state. The structure and operation
principle is similar to the spin-orbit-torque (SOT) controlled MRAM. In (b)
Design 2, the structure looks like a spin-transfer torque (STT) MRAM, but
it achieves tunability mostly through the NMOS transistor. (c) shows the
realization of a compact building block - the weighted p-bit (wpbit) using
design (b) coupled to a capacitive voltage adder to perform the weight logic.
We demonstrate fully hardware realization of p-circuit operation using this
building block through SPICE simulation.
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We evaluate the performance of the proposed designs using SPICE compatible multi-

physics modules, where benchmarked spintronic device models [  58 ] are coupled with state-

of-the art transistor models [ 59 ]. We project the overall performance of LBM based PSL

hardware based on the individual p-bit performance characteristics. The LBM implemen-

tations of p-bits enable autonomous or clock-less operation of p-circuits and are thus not

limited by clock-frequencies like digital circuits. We benchmark PSL hardware performance

against digital implementation of Ising Machines by focusing on problem and substrate-

independent performance metrics - flips per second (fps) and energy per flip. These metrics

could serve as key figures of merit in the benchmarking test suits for the emerging class of

specialized probabilistic hardware.

𝐦𝐢 = sgn(tanh 𝐈𝐢 − 𝐫)

𝝉, 𝒑
𝑬 = 𝒑𝝉

Performance Metric

𝒇 =
𝑵

𝝉

flips per second

Performance Metric
energy-delay Combinatorial Optimization

Ising 
Machines

Benchmark Application 

Figure 1.4. Evaluation of PSL framework: We define a set of perfor-
mance metrics to benchmark the performance of PSL hardware. We evaluate
the p-bit performance in terms of the average time and energy it takes to flip
to a new random state. We emphasise the evaluation of hardware performance
in terms of a problem independent metric - flips per second. It has been shown
that PSL can be realized as a hardware accelerator for a wide spectrum of ap-
plications, in this thesis we benchmark our hardware performance against the
digital implementations of Ising Machines.

1.3 Organization of Thesis

This thesis is aimed to present a comprehensive evaluation of probabilistic spin logic

hardware for compact and efficient implementation of probabilistic algorithms. Our primary
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focus is on sprintronic devices realized with low-barrier magnets (LBMs). We discuss the

interesting physics of mono-domain low-barrier (∆ ≤ kBT) magnets which is typically ig-

nored and provide analytical expressions to characterize its fluctuation dynamics and predict

current and magnetic-field response. The thesis is organized as follows:

Chapter 2 presents a detailed performance analysis of p-bit realizations using low-barrier

magnet (LBM) based magnetic tunnel junctions (MTJ). We define the energy and delay for

these class of devices and identify the magnet and transistor properties that contribute to

them. Our analysis identifies the correlation time of magnetization be a crucial parameter

that determines the response of such devices. We show that this correlation time can be in

sub-ns timescales for circular disk magnets with in-plane magnetic anisotropy (IMA) having

low energy barriers (≤ kBT). These fast fluctuations and the compact realization leads to

energy requirements of only ∼ a few fJ to evaluate the BSN function, orders of magnitude

lower than the digital CMOS implementations.

A key result we highlight in this chapter is difference between the fluctuation dynamics

of mono-domain LBM with in-plane magnetic anisotropy (IMA) and perpendicular magnetic

anisotropy (PMA). The presence of large out-of-plane demagnetization fields enable an al-

most two-orders of magnitude faster precession-like fluctuation dynamics in the circular-IMA

magnets compared to its PMA counterpart. The striking numerical observation is backed by

physical understanding and analytical expressions in this chapter. Following the theoretical

predictions, ∼ GHz fluctuations have been observed in circular IMA LBM MTJ structures

recently.

Chapter 3 presents a structured design guideline for realization of p-bit hardware using

stochastic MTJs for designers. We identify necessary conditions for successful realization of

p-bits and define a systematic approach to matching the magnetic and circuit parameters

for the embedded MTJ hardware.

We also evaluate the performance of autonomous probabilistic computing hardware re-

alized using s-MTJs against the clocked digital implementations of Ising Machines in this

chapter. We connect our device-level analysis to problem independent hardware figures-of-
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merits: flips per second and dissipated energy per flip that can be used to benchmark such

probabilistic hardware. The naturally stochastic hardware can overcome the technological

difficulties of producing random numbers with deterministic hardware and also eliminate

the need for a global clock and sequencers. The compact unit can drastically reduce the

area footprint while promising massive scalability by leveraging the existing Magnetic RAM

(MRAM) technology.

Chapter 4 presents the design of a complete building block for PSL by augmenting

the p-bits with a floating-gate MOS-based capacitive adder to provided the weighted-sum

input locally. p-bit interconnections can be implemented off-chip either in software or with a

hardware matrix multiplier unit, but that requires data to be transferred back and forth. So

instead we present a low-level compact hardware implementation where each p-bits come with

its own local capacitive adder network to provide inputs is proposed. We call these building-

blocks weighted p-bits. We demonstrate that such weighted p-bits can interconnected like

gates and scale from 1-bit invertible full-adder to small instances of more complex problems

like the subset-sum problem. This type of building blocks are suited for realizing p-circuits

with sparse and discrete weights.

Chapter 5 departs a little from probabilistic hardware and proposes a new type of

magnetoelectric memory device that stores information on magnetic easy-axis or pseudo-

magnetization, in piezoelectric/ferromagnetic (PE/FM) heterostructures. We present an

equivalent circuit model of the magnetoelectric (ME) phenomena and use SPICE simula-

tions to benchmark this model against experimental data that demonstrate the read and

write operation through the ME effect. We show how the magnetoelectric coupling between

the PE/FM combination can lead to non-volatility in pseudo-magnetization even when the

magnet is designed as a low-barrier nanomagnet.

Chapter 6 provides a summary of this work and a future outlook.
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2. LOW BARRIER MAGNET DESIGN

FOR HARDWARE PROBABILISTIC BITS

Most of the materials in this chapter have been extracted verbatim from the paper: “Low Barrier Magnet

Design for Efficient Hardware Binary Stochastic Neurons”, O. Hassan, R. Faria, K. Y. Camsari, J. Z. Sun,

and S. Datta, published in IEEE Magnetic Letters, vol. 10, 2019 [ 60 ].

In this chapter we evaluate stochastic magnetic tunnel junction (s-MTJ) based realiza-

tions of the fundamental building block of probabilistic spin logic (PSL) - the probabilistic

bit (p-bit). Low barrier magnets (LBMs) built either from perpendicular magnets designed

to be close to the in-plane transition or from circular in-plane magnets can provide a natural

physical source of randomness for the realization of p-bits [ 37 ], [  57 ], [  61 ]. MTJs utilizing

such LBMs have been shown to be well-suited for the implementation of random number

generators (RNGs) [ 55 ], [  56 ], [  62 ]. The p-bits, which are essentially three terminal tunable

RNGs can be realized by combining s-MTJs with standard CMOS transistors, similar to

spin-orbit torque (SOT) and spin-transfer torque (STT) magnetoresistive random access

memory (MRAM) devices [ 31 ], [  63 ]. We discuss the physics of low-barrier magnets and

evaluate the performance of two such p-bit designs in this chapter.

Asp-bits are analogous to the binary stochastic neurons (BSNs) in stochastic neural

networks, we use the word BSN and p-bit interchangeably throughout this thesis.

2.1 Hardware p-bit realizations

Many inference and machine learning algorithms are based on networks of binary stochas-

tic neurons [  42 ], [  64 ]–[ 68 ] each of whose response mi at time step (n+1) is determined by the

input Ii at time n (ri: random number between −1 and +1):

mi(n + 1) = sgn[tanh Ii(n) − ri] (2.1)

In the absence of an input Ii the output mi fluctuates randomly between two values −1 and

+1. A positive Ii(n) makes +1 more likely, while a negative Ii(n) makes −1 more likely [  69 ].

Each BSN described by eq.  2.1 receives its input from a weighted sum of other BSNs obtained
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Figure 2.1. Fluctuation Dynamics of LBM: (a) Schematic illustration of
circular LBM with saturation magnetization Ms and volume Ω = π(D/2)2t and
the magnetization m = M/Ms = (mx, my, mz) ≡ (cos θ, sin θ sin φ, sin θ cos φ).
SPICE simulation shows m(t) dynamics on Bloch sphere of a low barrier
circular magnet with (∆ ≈ 0) for magnet with (b) Hkp ≈ 0 and (c)
Hkp ≈ −4πMs ≈ −13.8 kOe, where Hkp = 2Ks/t − 4πMs is the perpen-
dicular anisotropy along x-axis and the in-plane anisotropy Hki ≈ 0 due to
circular shape.

from a “synapse” Ii(n) = ∑
j Wij mj(n). A wide variety of functions can be implemented by

properly designing or learning the weights Wij [ 39 ], [ 70 ], [ 71 ].

The BSN function (eq.  2.1 ) is evaluated repeatedly in modern algorithms but they are

typically implemented in software. Efforts have been put into developing a suitable hardware

for accelerating evaluation of this function, many of which are based on magnetoresistive

random access memory (MRAM) technology which is a major contender in the field of non-

volatile memory using stable magnets to store information in the form of 0’s and 1’s. By

contrast, BSNs can be built out of nanomagnets designed to have low energy barriers [ 37 ],

[ 61 ], [  62 ], [  72 ]–[ 76 ]. The performance of such BSN designs are largely dependent on the

magnetization fluctuation rates of the LBM’s, making it important to design the low barrier

magnet to have a high fluctuation rate.

The time scale of fluctuations can be very different for the two categories of low barrier

magnets as shown in fig.  2.1 b and c. In PMA with vanishing perpendicular anisotropy field

making ∆ → 0, the thermal noise makes the magnetization fluctuate randomly anywhere

on the Bloch sphere, while in circular IMA with no preferred easy axis and a large effective
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demagnetization field (HD = 4πMs) restricts the fluctuations to to a compressed region near

the equator (i.e. in-plane moment), making more rapid fluctuations possible.

In this chapter, we present a distinction between fluctuation dynamics of low barrier

PMA and IMA magnets providing analytical expressions for two very important parameters

for performance evaluation of hardware BSNs: the correlation time τc and pinning current

Ip for ∆ ≈ kBT and below. Circular IMA magnets have a correlation time two orders of

magnitude smaller compared to PMA and a pinning current that is much higher. We also

present a device level performance evaluation on two previously proposed compact BSN

designs [ 31 ], [ 77 ] using circular IMA magnet and show that the sub-ns operation results in

only ∼ a few fJ of energy requirement for evaluating the BSN function which is orders of

magnitude lower than its CMOS implementation [ 78 ], [ 79 ].

2.2 Low Barrier Magnet (∆ ≤ kBT) Dynamics

2.2.1 Correlation Time

A key parameter defining the BSNs performance would be the rate at which it produces

the random numbers. For an LBM BSN, this rate is related to the magnetization fluctuation

rate of the low barrier magnet. The time it takes for the magnet to lose its memory, the

correlation time τc is defined by the full-width-half-maxima of the temporal auto-correlation

function C(t) of magnetization and could be used to characterize the relevant time-scale of

operation of BSN.

In low barrier magnets where the energy barrier is well below the thermal energy (∆ �

kBT ) its magnetization becomes a continuous variable. The Arrhenius law which describes

the thermal fluctuations of high barrier magnets (∆ � kBT ) with two distinct magnetic

states thus does not hold for LBM [  61 ], [  80 ]. Instead, thermal fluctuations in monodomain

low barrier magnets could be characterized starting from Fokker-Planck equation (FPE)[ 81 ],

[ 82 ] or the Landau-Lifshitz-Gilbert (LLG) equation including a Langevin term describing

thermal fluctuation [ 80 ], [ 83 ].

Coffey et. al. [  82 ] analyzes the magnetic fluctuations in a PMA magnet due to thermal

noise in detail by using the Fokker-Planck equation (FPE) derived by W. F. Brown [  81 ]. The
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analysis presented in these references focused on high-barrier magnets but are not limited

to it and thus can be evaluated for ∆ → 0 to describe the low barrier magnet dynamics of

PMA magnets which agree well with numerical results.

PMA: C(t) = exp
(

−2αγ
kBT

MSΩ |t|
)

τc = MSΩ
αγkBT

ln(2)
(2.2)

In low barrier circular IMA magnets when thermal noise kicks the magnetization out-of-

plane, due to absence of an easy axis and the presence of large orthogonal demagnetization

field HD the in-plane magnetization starts precessing. If we consider an ensemble of such

magnets each with a different precession frequency due to thermal noise, the average mag-

netization vector would quickly dissipate. The auto-correlation function of the in-plane

magnetization mz = cos(φ(t)) could be expressed as:

C(t) =
∫ 1

−1
dmx cos(γHDmxt)ρ(mx)

/∫ 1

−1
dmxρ(mx)
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Figure 2.2. Correlation Time of PMA and IMA magnets (a) The
normalized auto-correlation of magnetic fluctuations taken in the z direction,
(b) Comparison of τc as a function of number of spins Ns ≡ MsΩ/µB where
Ms = 1100 emu/cc and the volume Ω is varied. Damping coefficient α is
assumed to be 0.01: Results from numerical simulations agree well with the
equations cited in the text.
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where the in-plane precession dynamics is described by φ(t) ≈ γHDmxt [ 83 ] for low damping

α. The perpendicular magnetization mx follows a Boltzmann distribution with ρ(mx) ≈

exp(−HDMSΩm2
x/2kBT ). For large values of HD the integral could be extended to ±∞

and evaluated to give an expression for the auto-correlation function and correlation time as

follows:
IMA: C(t) = exp

(
−γ2

(
HDkBT

MSΩ

)
t2

2

)

τc =
√

8 ln(2) 1
γ

√
MSΩ

HDkBT

(2.3)

In numerical simulations, we observe essentially the same auto-correlation behavior, even

when the correlation function is obtained from the time-dependent fluctuations of a single

magnet fluctuating for long time periods as shown in fig.  2.2 a. In PMA no such precessional

fluctuation mechanism exists as the internal fields are compensated.

M1

M2

(a) (b)

Figure 2.3. Pinning current of PMA and IMA magnets (a) PMA
and IMA magnet’s long time averaged magnetization 〈m〉 as a function of
applied spin current IS, (b) Comparison of PMA/IMA IP as a function of
number of spins Ns ≡ MsΩ/µB where Ms = 1100 emu/cc and the volume Ω is
varied. Damping coefficient α is assumed to be 0.01: Results from numerical
simulations agree well with the equations cited in the text.
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2.2.2 Biasing Current

Another important parameter for evaluating an LBM based stochastic device performance

is itds sensitivity to spin current. To maintain stochasticity in MRAM type devices, they

should be immune to read current, and the amount of current required to bias BSN devices

is also relevant for power considerations. In high barrier magnets the concept of switching

current is presented [  84 ], for low barrier magnets we refer to pinning currents as the relevant

quantity which can be mathematically defined as: IP = (〈m〉/IS)−1 as shown in fig.  2.3 .

The pinning currents for PMA can be derived from steady-state Fokker-Planck equation as

described in Ref. [  85 ], while for IMA magnets with ∆ → 0 and low damping, the pinning

current can be approximated from the relation IP ≡ qNSC(0)
/∫∞

0 dtC(t). fig.  2.3 shows

that the numerical results are well described by the obtained expressions:

PMA: IP = 6q

h̄
αkBT (2.4)

IMA: IP = 2q

h̄

√
2
π

√
HDMSΩ kBT (2.5)

The derivation of eq.  2.4 and eq.  2.5 assume zero energy barriers, but numerically we observe

that these equations are approximately valid for barriers up to ∆ ≈ kBT . In practice

obtaining near-zero barrier circular magnets could be challenging due to process variation.

For interconnected networks of p-bits, a distribution of correlation times for each p-bit needs

to be considered as shown in Ref.[ 86 ].

Note that IMA-based designs can achieve sub-nanosecond correlation times even with

fairly large volumes, provided that monodomain behavior can be preserved with a small

enough diameter, while PMA-based designs tend to be much slower making IMA magnets

more suitable for BSN applications. This is accompanied by fairly large pinning currents for

IMA compared to PMA which minimizes read disturb effects.

In the following section we used circular IMA magnets M1 and M2 with volumes 800π

and 20480π nm3, respectively for evaluating the performance of two LBM based hardware

BSN designs.
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2.3 Performance Evaluation of p-bits

In this section we evaluate the steady-state and time response of two hardware BSN

designs proposed in the past [  31 ], [  77 ] shown in fig.  2.4 and measure the energy and delay

associated with each.

FM
MgO

LBM
FM
MgO

LBM

sLLG

sLLG
0

0

I IsSHE

(a) (b) 

(c) (d) 

MTJ
branch

MTJ
branch

inverter

inverterVi

BSN-A BSN-B

Vi

Vi
Vi

Is = PIc

Is = βIIN

x

y
z

Figure 2.4. Two BSN designs using stochastic MTJ with fluctuat-
ing resistance: (a) BSN-A uses an input spin current to pin the fluctuating
resistance [  31 ]. Structurally it looks similar to spin-orbit torque magnetoresis-
tive random access memory (SOT-MRAM). (b) BSN-B looks similar to spin
transfer torque MRAM (STT-MRAM) but it makes no use of spin torque. The
input voltage controls the resistance of a field effect transistor (FET) which
is in series with the MTJ [ 77 ]. (c) and (d) show the circuit models used for
SPICE simulations.

The designs makes use of a magnetic tunnel junction (MTJ) whose free layer is a low

barrier magnet with a fluctuating magnetization mz(t), resulting in a fluctuating resistance,

RMTJ(t)−1 = G0[1+mzi(t)TMR/(2+TMR)] where G0 is the average conductance and TMR
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is the tunneling magnetoresistance. The fluctuating resistance RMT J(t) is converted to a

fluctuating voltage Vi(t) by the potential divider:

Vi(t)
VDD/2 = (±)RMTJ(t) − R0

RMTJ(t) + R0
(2.6)

The fluctuations are controlled by two different mechanisms in the two designs. BSN-A is

a spin-orbit-torque controlled device [  31 ] which uses the input spin current (in y direction)

from the GSHE layer to pin the free layer magnetization (in z direction) of the MTJ thereby

pinning RMT J and implements (+) configuration of eq.  2.6 . BSN-B is a series resistance

controlled device [ 77 ] which uses the input voltage to control the transistor resistance R0

and implements the (−) configuration of eq.  2.6 . Ideally RMT J remains unchanged, though

in actual designs it may be important to consider unintended pinning effects of the current.

Both designs use a minimum sized CMOS inverter to convert the fulctuating Vi into a rail-

to-rail output VOUT . In each case we will use SPICE simulations based on state-of-the-art

stochastic Landau-Lifshitz-Gilbert (s-LLG) models for LBM’s [ 87 ] free layer of the MTJ

having G0 ' (25KΩ)−1 and TMR = 2P 2/(1 − P 2) = 110% with polarization P ' 0.6

coupled with 14 nm HP FinFET’s [  88 ] to show that the output voltage VOUT from a specific

BSN is approximately related to its input VIN by an equation that mimics eq.  2.1 :

VOUT (t + t0)
VOUT 0

≈ sgn
[
tanh VIN(t)

VIN0
− r(t)

]
(2.7)

with scaling factors VOUT 0, VIN0, t0 characterizing the specific hardware design.

2.3.1 Steady-State Response

Fig.  2.5 shows the individual steady state response of design A,B using magnet M1 and

M2, which can all collapse onto the same curve using appropriate scaling parameters. The

output scaling quantity VOUT0 ' VDD/2 = 0.4V is the same for all cases as this quantity

is defined entirely by CMOS inverter output voltage swing. On the other hand, the input

scaling parameters are very design dependent. For BSN-A IIN0 is determined by pinning

currents of magnets M1 and M2. Indeed, the scaling parameters in fig.  2.5 b were obtained
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from eq.  2.5 . For BSN-B VIN0 ∼ 50mV for both magnets, determined by transistor charac-

teristics. Note that the SPICE simulations include the read disturb current, but its effect is

minimal due to the high pinning currents of low barrier IMA compared to PMA as can be

seen from eq.  2.4 and eq.  2.5 .

(a) (b)

A:M1

A:M2 B:M2

B:M1

m

VOUT0 = VDD/2=0.4 V
IIN0(M1) ≈ 150µA
IIN0(M2) ≈ 600µA

VIN0(M1,M2) ≈ 50mV

Figure 2.5. Steady-state Response: (a) Plot of 〈VOUT〉 (averaged over a
time window � τc) vs VIN for designs A, B using magnets M1, M2. The grey
lines indicate VOUT without time averaging. (b) All four plots in (a) collapse
onto a single curve using appropriate scaling parameters VOUT0, IIN0, VIN0. The
resulting curve approximately follows the time averaged 〈mi〉 of eq.  2.1 .

2.3.2 Time Response

Fig.  2.6 shows the two relevant timescales associated with BSN operation. First is the cor-

relation time of the output voltage which is determined by the magnet parameters. Indeed,

the FWHM of the autocorrelation function corresponds well to eq.  2.3 , which is expected

since circuit related times are much shorter in this case. Second is the response time which

is very design dependent. For BSN-A it is determined by magnet physics while for BSN-B

it is determined by transistor physics [ 89 ]. Our analysis shows that the response time t0 of

a single BSN-B neuron is independent of magnet parameters. However, the response of an

interconnected network of such neurons would also involve the magnet correlation time τc.
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Figure 2.6. Two relevant time-scales for BSN Operation: (a), (b)
show correlation time and (c),(d) show response time. (a) Output voltage
fluctuations with Ii = 0 for designs A, B using magnets M1, M2. (b) Corre-
sponding normalized autocorrelation functions. (c) Response to a step function
Ii : −10 → 0 at t=0 averaged over 1000 ensembles for all four cases.(d) All four
curves in (c) collapse onto a single curve using appropriate scaling parameter
t0.

2.3.3 Power Consumption

Fig.  2.7 shows the power drawn from the sources ±VDD/2 individually by the MTJ

branch and the inverter branch as VIN is stepped at t = 0 from different initial to final

values as indicated. The steady-state values of the power dissipated in both the MTJ and

inverter branches agree quantitatively with the simple estimate (see dashed line in figures)

from V 2
DD/R, where R is the appropriate resistance, namely RMT J +R0 for the MTJ branch,

and RNMOS + RPMOS for the inverter branch. For the MTJ branch, the power dissipated is
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Figure 2.7. Power Consumption for (a) BSN-A and (b) BSN-B when the
input is stepped at t=0 as indicated.

∼10-20 µW for all cases except in the middle panel for BSN-B. In this case the final state

involves a large negative input voltage VIN for which the series transistor is turned OFF,

making the resistance R extremely large, so that V 2
DD/R → 0. In all other cases, the total

R is of the order of the MTJ resistance ∼ 25KΩ, so that V 2
DD/R ∼ 25µW . For the inverter

branch, BSN-A dissipates ∼10 µW since the voltage at the inverter input in all cases remains

close to the threshold value making both NMOS and PMOS branches fairly conducting. On

the other hand, for BSN-B, PMOS and NMOS get turned off for large positive and for

large negative input VIN respectively, making the effective R very large. Only for input

voltages ∼ 0, both PMOS and NMOS branches are conducting, giving rise to a steady-state

power ∼ 10µW like BSN-A. This number could be lowered if we can engineer larger voltage

fluctuations at the inverter input, |δVi| ∼ P 2VDD/(4 − P 4). Our assumed TMR of 110%

corresponds to P ∼ 0.6, giving a |δVi| ∼ 75 mV .

Note that in this analysis the power drawn from VIN is not considered which is expected

to be very different for a low input impedance design (BSN-A) compared to a high input

impedance design (BSN-B) and will depend on the driving mechanism and circuitry. Overall,
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both designs suffer from significant steady-state power losses and would need to be turned

off when not in use. This can be done straightforwardly for BSN-B using a large negative

input voltage VIN . The key point to note is that the energy dissipated during the evaluation

of the BSN function is ∼ 20 µW × 50 ps =1 fJ which is orders of magnitude smaller than

CMOS implementations of the same function [  78 ], [  79 ] as noted earlier from system level

simulations in [ 90 ].

2.4 Summary

The device level analysis presented here elucidates the role of proper magnet design for

achieving the subnanosecond response times that is crucial for fast and low energy operation.

The analysis also suggests low barrier IMA magnets maybe a more suitable candidate for p-

bit type applications due to its fast fluctuation dynamics, while modern non-volatile MRAM

technology is largely based on PMA magnets [ 52 ].

39



3. EVALUATION OF PROBABILISTIC BITS FOR

ACCELERATING ISING MACHINES

Most of the materials in this chapter have been extracted verbatim from the paper: “Quantitative Evaluation

of Hardware Binary Stochastic Neurons”, O. Hassan, S. Datta, and K. Y. Camsari. (to be submitted)

In the era of internet of things (IoT), combinatorial optimization problems are ubiquitous

[ 25 ]. Infact, most of the real-problems that quantum computers are aiming to solve can be

formulated as combinatorial optimization problems.From directing traffic flow [  91 ], to routing

interconnections in integrated circuit design [  92 ], [  93 ], to making financial decisions [ 94 ], drug

discoveries [  95 ], etc. - all involve solving a form of combinatorial optimization problems. The

demand for solving these problems faster and more efficiently is ever-increasing. But such

problems typically fall into the category of NP-hard or NP-complete class in computational

complexity theory [  14 ], with no known polynomial time solution, making them notoriously

difficult to solve in digital computers using traditional computing methods. This has made

the making way for a new paradigm in computing: Ising computing. Ising computing maps

combinatorial optimization problems to an Ising model, and solves it by searching for the

ground state of the system described by [ 15 ], [ 37 ]:

E = −1
2

N∑
i,j=1

Jijmimj −
N∑

i=1
himi (3.1)

where, m denotes the Ising spin, J is the coupling co-efficient and h is the external bias. In

the machine learning field, the same underlying principle is used to for Boltzmann Machines.

The binary stochastic neurons (BSNs) [  65 ] of stochastic neural networks are well suited to

function as a ‘spin’ is such systems, described mathematically by:

mi = sgn[ tanh(Ii) − ri] (3.2)

where ri is a random number between +1 and −1, and Ii = −∂E/∂mi is the input to the

neuron.
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Figure 3.1. 1MTJ-3T compact BSN hardware which utilizes the natural
physics of low-barrier nanomagnets holds the promise to accelerate the simu-
lated annealing processors.

Given the importance of optimization problems, a lot of research has gone into developing

algorithms and identifying appropriate hardware for Ising computing. Various approaches

including quantum computers based on quantum annealing (QA) or adiabatic quantum
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optimization (AQC) implemented with superconducting circuits [ 17 ], coherent Ising machines

(CIMs) implemented with laser pulses [  18 ], phase-change oscillators [ 19 ], or CMOS oscillators

[ 20 ]–[ 23 ] and digital annealers based on simulated annealing (SA) [  16 ] implemented with

digital circuits [ 24 ]–[ 30 ] are being explored.

In this chapter, we comprehensively evaluate and characterize a stochastic magnetic tun-

nel junction (sMTJ) based realization of the Ising spin (eq.  3.2 ) where random numbers are

generated using the natural physics of low barrier nanomagnets [  77 ] in a compact design.

A network of these BSN units can be coupled with a memristive crossbar array [  96 ]–[ 98 ] to

perform the synaptic operation as shown in fig.  3.1 can drastically improve the area require-

ments and accelerate computation speed of Ising Machines. We evaluate the performance of

the BSN device in terms of its energy and delay metrics and connect these to the problem

and substrate-independent metric of flips per second that the probabilistic system makes

[ 48 ].

Our evaluation of 1MTJ-3T BSN design considers different types of low-barrier nano-

magnet realizations of MTJs. As the MTJ essentially functions as a two-terminal stochastic

resistor (SR), we first take a general 3T-1SR design approach, classifying necessary and suf-

ficient conditions for achieving the BSN operation for different types of SRs in Section  3.1 .

We relate these conditions to the different sMTJ realizations in Section  3.2 . We report

the timescale of operation, power and energy for each case based on benchmarked SPICE

simulations of the BSN hardware consisting of spintronic elements from a modular circuit

framework [  99 ] coupled to 14nm FinFET PTM models [  59 ], and provide analytical results

for relevant quantities in Section  3.3 . Lastly, we use these device performance metrics to

project onto hardware performance figures of merit such as flips per second that a proba-

bilistic sampler makes. Our projections indicate orders of magnitude improvement potential

over current digital implementations.

3.1 General Approach to Design of BSN

Binary stochastic neurons (BSNs) are well suited to function as a ‘spin’ in Ising machines

for solving combinatorial optimization problems [  60 ], [  65 ]. A compact and efficient hardware
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realization of the BSN leveraging the natual physics of stochastic nanomagnets can be made

by using unstable magnetic tunnel junctions (MTJs) [ 62 ], [ 100 ]–[ 103 ] as shown in fig.  3.1 .

The compact design of BSN based on low-barrier magnet (LBM) stochastic MTJs (sMTJs)

was first proposed in 2017 [ 77 ]. Using magnet and circuit physics to analyze the performance,

it was reported that using an LBM in a circular disk geometry with energy barriers below

kBT as the free layer of an MTJ results in sub-ns response times requiring only ∼ a few fJ

of energy per random bit [  60 ]. The proposed design and the performance analysis considers

a very specific type of sMTJ which had circular in-plane magnetic anisotropy (IMA) whose

fluctuations are undisturbed by the current in the circuit for typical current drive conditions.

However, in 2019, a version of the BSN design that was implemented in hardware to solve an

8-bit factorization problem [  38 ], consisted of an sMTJ with perpendicular anisotropy (PMA)

and a barrier of a few kBT as its free layer. Unlike the circular in-plane design, the PMA

design relied on its resistance being tunable by the spin-transfer-torque effect in order to

achieve the BSN operation. This has called for an extension of our initial analysis presented

in [ 60 ] which we systematically perform in this chapter.

As the MTJs in the BSN circuit effectively act as a fluctuating resistor, R [ 104 ] and the

design principle is independent of this realization, for establishing the fundamental design

rules we approach it from a general perspective and we hope these design rules stimulate

discussion in the realization of different stochastic resistors that use different mechanisms

[ 105 ]–[ 109 ].

3.1.1 Types of fluctuating resistances

We categorize the fluctuating R into four types. First based on the fluctuating nature

it can be continuous or bipolar (telegraphic). Second, it can be tunable or non-tunable

depending on whether it is affected by the current that is flowing through it.

A continuous resistor can have its resistance being any value between [RP → RAP] while

a bipolar resistor only assumes the two values RP and RAP as shown in fig.  3.2 (a). The

distribution of continuous resistances can be of different types as well. It can be uniform or

follow slightly bimodal distribution in the case of an MTJ as shown in the figure. Differ-
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Figure 3.2. Categorizing Resistances: (a) Fluctuating nature: they can
be continuous or bipolar. The time dynamics and distribution are shown for
each category. (b) Current-Tunability: The fluctuations could be unaffected
by I or it could be a function of I as indicated by their transfer characteristics.
I50 is the current at the 50:50 point where the resistance spends equal time in
RP and RAP states. I0 is the biasing current defined as the slope of the (R vs
I) curve at 50:50 point. The pinning current is typically ∼ 3 − 5 I0.

ent distributions typically result in different average R values, slightly bimodal or uniform

distributions are better suited than Gaussian distributions for BSN realizations.

The current I flowing in the circuit can tune the probability distribution of the resistance

fluctuations, and we call such resistors tunable resistors. When designing a BSN with current

tunable R, we need to know the current where fluctuations are equal between the two extreme

states (I50) [  104 ] and the current required to pin the resistance to one of those states. An

important parameter in this case is the bias current I0, which is the slope of the R vs I

curve at the 50-50 point. Typically, ∼ 3 − 5 I0 current is required to pin the fluctuating

resistance to one of its states. We will later provide analytical expressions for I0 for four

cases of resistors that can be obtained by various MTJs (fig.  3.10 ).

Based on this analysis, we categorize the fluctuating resistance into four types: Non-

tunable continuous (NTC), Non-tunable bipolar (NTB), tunable continuous (TC) and tun-

able bipolar (TB).
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3.1.2 Performing the BSN function

We first take a look at the transfer characteristics of the device to see whether the four

types of resistance can faithfully mimic BSN operation described by eq.  3.2 . The fluctuating

R is a physical realization of the random variable ri, the NMOS acts as a constant current

source that provides tunability, and the inverter performs the sgn operation in eq.  3.2 .

Non-tunable Bipolar R

Tunable Continuous R

Tunable Bipolar R

Non-tunable Continuous R

Rp 17kΩ

Rap 35kΩ

n 2

I0 1μA

I50 15A

Specifications:

14 nm
FinFET

I

1SR -3T BSN

VDD 0.8 V

IDsat 15 μA

Figure 3.3. Transfer Characteristics : The BSN circuit is realized by cou-
pling the fluctuating resistor which is the physical realization of the random
variable ri in the BSN equation to an NMOS which provides the tunability, and
then to an inverter which thresholds the output. The four types of resistances
are coupled to a 14nm FinFET and the resistance parameters (based on ex-
perimental demonstrations of MTJs [  110 ]) are chosen to match the transistor
characteristics. All resistance types except for the bipolar non-tunable were
able to achieve BSN operation following eq.  3.2 . To function as a BSN the
bipolar resistances need some means of tuning their probability distribution.

Fig.  3.3 , shows that while all other resistance types were able to reproduce the desired

sigmoidal average curve 〈mi〉 = tanh(Ii), the non-tunable bipolar resistor gives a staircase-like

function instead.This is because of the fixed delta function like resistance distribution at the

two extreme states (see fig.  3.2 (a)ii). As there is no continuity in the resistance distribution

and no means of tuning the delta distribution itself, the BSN output fluctuations are equal

until either of the threshold points are crossed, resulting in the stair-case like function.
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Mathematically, when the resistance is bipolar, it means ri is ±1. So, for any input

Ii where |tanh(Ii)| < 1, the output 〈m〉 is equal to zero. In fig.  3.4 (b), if we look at a

simple invertible AND gate [ 31 ], [ 77 ] operation, it is evident that devices with stair-case like

function cannot be used as BSN. This has been demonstrated experimentally in ref. [ 111 ],

[ 112 ] where a stable MTJ was used as a bipolar resistor whose distribution was tuned by an

external field.

𝑚𝑖 = sgn[tanh 𝐼𝑖 − 𝒓𝒊[±𝟏]]𝑚𝑖 = sgn[tanh 𝐼𝑖 − 𝒓𝒊]

Transfer Characteristicp-bit :(a)

AND Gatep-circuit :(b)

Figure 3.4. Non-tunable Continuous vs Bipolar Resistance: (a) Trans-
fer Characteristics shows that while the continuous resistor results in a sig-
moidal output, the bipolar gives a stair-case like function. (b) The bipolar
R is unable to follow the Boltzmann distribution of the invertible AND gate
(description in ref.[ 31 ]). All states remain equally probable.

3.1.3 Parameter Dependence and Design Choices

Fig.  3.3 is created with a fixed set of parameters for the resistor and coupled with a specific

transistor technology, 14 nm FinFET models. In this section we explore how the transfer
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characteristics are affected by different parameters of the resistors and FET characteristics

and how to choose the right combination of R and FET to be coupled.

Stochastic Region: The stochastic region, which we define next, is a function of the

resistance ratio n for non-tunable resistors and biasing current I0 for tunable resistors as

shown in fig.  3.5 , that needs to be matched with the transistor characteristics.

Non-tunable Bipolar R Tunable Bipolar R

Non-tunable Continuous R Tunable Continuous R

Figure 3.5. Effect of n and I0 : The stochastic region of the non-tunable
resistances are determined by the resistance ratio n = RP/RAP, while the
biasing current I0 of tunable resistances control the stochastic region. For
large biasing currents, the tunable resistors behave effectively like non-tunable
resistances.

Effect of n: The resistance ratio n = RP/RAP is directly related to the stochastic region

∆v through the NMOS characteristics in case of non-tunable resistor designs. The edge of

the stochastic region v± is defined by when Vi = VDD/2 − [I+RP, I−RAP] ≈ 0 where the

current I± is determined by the NMOS as shown in fig.  3.6 (c). For a desired ∆v = v+ − v−
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(stochastic region) and NMOS transistor, the required n = RAP/RP should approximately

equal I+/I−. Ideally, the minimum value of the resistance should be RP = (VDD/2)/I+ and

to get full pinning, ∆v should be less than VDD. For a 14nm FinFET, to get a stochastic

region of ∆v = 50 − 200mV, the resistance ratio n should be around 2 − 50. The resistance

ratio n is a measure for tunneling magneto-resistance, TMR (= (n − 1) × 100%) in case of

MTJs. Typically MTJs have TMRs ranging from 100−300% [ 113 ] with a maximum reported

TMR of 604% [ 114 ], so the resistance ratio of MTJs are well within the desired range, but the

general requirements we outline should be applicable for other types of stochastic resistors

as well.

Effect of I0: In case of tunable resistances, the stochastic region is independent of the

resistance ratio and depends on the pinning current and thus the bias current (I±
P ∝ I0)

instead as shown in fig.  3.6 (d). For large bias currents (I0 � I), the tunable resistances act

essentially like non-tunable resistances. To get the full range of R,the NMOS needs to be

able to supply the pinning current. If the pinning current is (3 − 5)I0 as shown in fig.  3.2 ,

then to get the full range of the resistance I+
Pmax needs to be around ∼ (6 − 10)I0. In case of

14nm FinFETs, I+
max is around ∼ 40 µA, restricting I0 to values less than 7 µA.

Choice of I50: Another parameter that is important for the operation of tunable resistors

is the I50 which determines the midpoint of the sigmoid. I50 is the current at which the

resistance on average spends equal time in RP and RAP states [  104 ]. As the circuit can only

support positive current values, it needs to be a positive quantity and preferably matched

with the saturation point (VDS = VGS) current IDsat of the NMOS transistor. Changing I50

shifts the transfer characteristics laterally as shown in fig.  3.7 (a).

R vs I: One last requirement is that, for current tunable resistance with increasing current

I, the resistance needs to increase from RP → RAP . This can be understood intuitively:

Increasing I means the NMOS transistor is becoming more conductive. If the MTJ con-

comitantly becomes more conductive as I is increasing, the transfer characteristics can show

non-monotonic behavior as shown in fig.  3.7 (b). This requirement holds true irrespective of

whether the circuit’s R branch consists of a PMOS-1R or 1R-NMOS topology.
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(a) (b)

(c) (d)

Δ𝑣

𝑣+

𝑣−

Δ𝑣

𝑣−

𝑣+

I+Ip
+

I−Ip
−

𝑣− 𝑣+
Δ𝑣

Figure 3.6. Stochastic Region boundaries : The stochastic region bound-
aries [v+, v−] are set by different parameters for tunable and non-tunable resis-
tors. (a) Shows the BSN circuit with (b) the current transfer characteristics of
the 14nm FinFET NMOS when Vi ∼ 0V. (c) Non-tunable R : In this case the
boundaries are set by when Vi ≈ 0 when resistance ratio n = RAP/RP ≈ I+/I−.
(d) Tunable R : The stochastic range is determined by pinning current IP char-
acteristics of the resistance. The transfer characteristics of each stage in (c)
and (d) indicates the stochastic range v+ and v− and the relation to the NMOS
characteristics in each case in (b).
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(a) (b) 

Figure 3.7. (a) Choice of I50: I50 is ideally a positive quantity matched
with the IDsat of the transistor, changing I50 results in a lateral shift of the
sigmoid. (b) R vs I relationship: The output characteristics also depend on
the nature of the resistance tunability with the circuit current I. If R decreases
with I (RAP → RP), the opposing characteristics of the transistor current and
resistance change result in a non-monotonic output.

3.2 Realization of fluctuating resistances with sMTJs

A magnetic-tunnel-junction (MTJ) whose free layer is a low-barrier magnet (LBM) could

serve as a physical realization of fluctuating resistors. Depending on the nature and charac-

teristics of the LBM magnetization fluctuations, we can get different types of R. Our previous

analysis [ 60 ] was restricted to one type of LBM, the circular IMA with barrier < kBT, in

this section we extend it to include all possible LBMs.

A general description of the energy associated with a magnet is given by [ 60 ]:

E = 1
2HkpMsΩ(1 − m2

x) + 1
2HkiMsΩ(1 − m2

z)

− ĤextMsΩ · m̂

(3.3)

where, Hkp = 2Ks/t − 4πMs is the perpendicular anisotropy field along the x-axis, Ks is

the surface anisotropy density, Hki is the in-plane anisotropy along z-axis, Hext is the external

field, Ms is the saturation magnetization and Ω = π(D/2)2t is the volume of the magnet. By

adjusting the thickness or the shape of the magnet, the magnetic anisotropy of the magnet

can be scaled to behave like a low-barrier magnet [  57 ], [  60 ]. We use the stochastic LLG

module from our spintronics library [  58 ] to simulate the LBM dynamics. This model has

been carefully benchmarked against general Fokker-Planck based methods [ 99 ].
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(a) Circular IMA (Δ < 𝑘𝐵𝑇): 𝐻𝑘𝑝 ≈ −4𝜋𝑀𝑠; 𝐻𝑘𝑖 ≈ 0

(b) Isotropic (Δ < 𝑘𝐵𝑇): 𝐻𝑘𝑝 ≈ 0

(c) LBM IMA (Δ~5𝑘𝐵𝑇): 𝐻𝑘𝑝 ≈ −4𝜋𝑀𝑠; 𝐻𝑘𝑖 ≠ 0

(d) LBM PMA (Δ~5𝑘𝐵𝑇): 𝐻𝑘𝑝 ≠ 0

~160𝑝𝑠

~5𝑛𝑠

~160𝑛𝑠

~500𝑛𝑠

(Δt = 1ps, T = 5μs)

(Δt = 5ps, T = 5μs)

(Δt = 50ps, T = 500μs)

(Δt = 1ps, T = 1μs)

Figure 3.8. Low-barrier magnet fluctuation dynamics: We use the
benchmarked stochastic LLG module to simulate LBM dynamics. Each simu-
lation is carried out with a time-step at least ×100 smaller for a time-duration
×1000 than characteristic timescales to avoid any simulation time dependen-
cies, the exact parameters are indicated. ∆ < kBT magnets have more contin-
uous fluctuations with (b) having a more uniform distribution than (a) while
slightly higher barrier magnets have a more telegraphic fluctuation. In both
cases, the presence of high demagnetization fields cause faster fluctuations in
IMA magnets.
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LBM Fluctuation Dynamics: By low-barrier magnet we refer to magnets whose barrier

is < 10kBT or so, whose magnetization fluctuates randomly in presence of thermal noise.

Interestingly, the magnetization dynamics of low-barrier magnets with barrier < kBT are

different from those with a slightly higher barrier [  60 ], [ 83 ]. The simple exponential depen-

dence of retention time of the magnetization state on the barrier height is not valid around

or below kBT [ 82 ].

Fig.  3.8 shows the fluctuation dynamics, the magnetization distribution, and the auto-

correlation time (τCORR) for low barrier magnets. Magnetization fluctuations translate into

resistance fluctuations in MTJ, and we see that magnets with barrier < kBT act like continu-

ous resistances, while slightly higher barrier magnets, which have a more defined two states,

give telegraphic fluctuations, and in both cases IMA magnets fluctuate orders of magnitude

faster than their PMA counterparts due to a new mechanism where the demagnetization

field plays a central role [ 60 ], [ 61 ], [ 83 ], [ 115 ], [ 116 ].

Current Response of LBM: Magnetic fluctuations can be tuned by spin-current. For

high barrier magnets, the minimum current required to switch the magnetization is called

the critical current [ 84 ], in case of low-barrier magnets, we refer to it as a biasing current,

defined by the inverse of the derivative taken at 〈m〉 = 0, mathematically expressed as:

I0 = (〈m〉/IS)−1 at low bias (IS). The current required to pin the magnetization, similar to

switching current in high-barrier magnets is assumed to be ∼ 3−5 I0, as indicated in fig.  3.2 .

IMA magnets have a much larger pinning current than PMA magnets because of the large

demagnetization field present due to their disk shape [  35 ], [  60 ], [  84 ], meaning transistors

with much larger current ranges would be required for IMA magnet MTJs than PMA for

tunable resistors.

An important thing to note here is the current tunability in presence of an external field

which can arise, for example, due to the fixed, stable layer that acts as a reference to the free

layer in the MTJ. In the case of high-barrier magnets, the spin-current induced magnetic

switching hysteresis loop just shifts in case of PMA magnets depending on the direction of

field, but for IMA magnets the shape of the hysteresis and magnet dynamics is changed

[ 84 ]. The large demagnetizing field present perpendicular to the magnetization plane in
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IMA magnets causes the magnetization to precess around it when spin-current is applied in

the opposite direction to the external field. The same is observed in low-barrier magnets

as shown in fig.  3.9 . The larger the external field the more pronounced the effect is. The

uniform precessional motion kicks in at high-field, when the current is close to the biasing

current or higher applied in the opposite direction to the field. Very recently, this has been

observed experimentally for low fields [  116 ]. While this is an undesired effect in case of our

BSN operation, this can be useful in context to oscillator based networks [ 117 ].

(a) (b)

Figure 3.9. Current Response of LBM: LBM response to spin-current
with and without external-fields for (a) circular IMA magnet (Hki ∼ 0, Hkp ∼
−HD) and (b) isotropic anisotropy magnet (Hkp ∼ 0). Each point on the
curve is a long-time (T = 1µs, ∆t = 1ps) average magnetization from our
benchmarked sLLG module. The critical field for IMA magnet was ∼ 130Oe
and for isotropic magnet ∼ 200Oe.

This has important implications in terms of acting as a fluctuating resistance in a BSN

circuit. IMA magnets with external fields (i.e. uncompensated dipolar fields in MTJ [ 118 ])

greater than its pinning field is not suited to function as a tunable or non-tunable resistor.

IMA magnets with continuous magnetization coupled to a transistor with small saturation

current ( tens of µA) compared to the biasing current of IMA ( hundreds of µA) can work as

non-tunable resistors, and as experimental observations in ref. [  116 ] suggest, it can withstand

small (compared to its pinning field) stray fields.
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PMA magnet MTJs with their small biasing current (∼ few to few tens of µA) when

coupled to typical transistors act as tunable resistors in BSN circuit. In this case the external

bias field is actually preferred, since this enables positive I50 current [ 38 ].

So, if we coupled an MTJ with a 14nm FinFET (VDD = 0.8 and IDsat = 15µA) [  59 ], the

table in fig.  3.10 summarizes the resistance mapping and the associated parameters.

R Type MTJ Free Layer 𝛕𝐂𝐎𝐑𝐑 𝐈𝟎 𝐈𝟓𝟎 𝐇𝟎

Non-tunable

Continuous
Δ < 𝑘𝐵𝑇

Circular IMA
8ln(2)

1

𝛾

𝑀𝑠Ω

𝐻𝐷𝑘𝐵𝑇

2𝑞

ℏ

2

𝜋
𝐻𝐷𝑀𝑆Ω𝑘𝐵𝑇 0 (n/a)

2𝑘𝐵𝑇

𝑀𝑆Ω

Tunable

Continuous
Δ < 𝑘𝐵𝑇

Isotropic ‘PMA’
ln(2)

1

𝛾

𝑀𝑠Ω

𝛼𝑘𝐵𝑇

6𝑞

ℏ
𝛼𝑘𝐵𝑇

4𝑞𝛼

ℏ

1

2
𝐻𝑒𝑥𝑡𝑀𝑠Ω

3𝑘𝐵𝑇

𝑀𝑆Ω

Non-tunable 

Bipolar
2𝑘𝐵𝑇 < Δ < 10𝑘𝐵𝑇

IMA
∝

𝑒Δ/𝑘𝐵𝑇

(1 + Τ𝐻𝐷 2𝐻𝑘)

4𝑞𝛼

ℏ
Δ 1 +

𝐻𝐷
2𝐻𝐾

0 (n/a) ~𝐻𝑘

Tunable

Bipolar

2𝑘𝐵𝑇 < Δ < 10𝑘𝐵𝑇

PMA
∝ 𝑒 ΤΔ 𝑘𝐵𝑇

4𝑞𝛼

ℏ
Δ

4𝑞𝛼

ℏ

1

2
𝐻𝑒𝑥𝑡𝑀𝑠Ω ~𝐻𝑘

(sub-ns)

~10 ns

1 ns ~ 1 μs

0.1~ 100 μs

(0.1~1mA)

(0.4~4 μA)

(0.5~25μA)

(0.05~25mA)

(𝛼 < 0.1) (𝛼 < 0.1)

Figure 3.10. Characterization Table: MTJ Free layer and its correspond-
ing R type along with corresponding characteristic parameters and their ana-
lytical expression. The numbers in bracket indicates an approximate range of
values for each parameter. The proportionality constant for correlation time
of magnets with ∆ > kBT is τ0 ∼ 0.1 − 1 ns, exact equation can be found in
[ 82 ].

3.3 Performance Evaluation of sMTJ based BSN

In the final section we compare the physical performance of these different sMTJs in a

BSN and project how Ising Machines built with such devices would perform in contrast to

digital annealers of today.

3.3.1 Device-Level Performance Evaluation

Timescale of Operation: The two relevant timescales of operation for a BSN are, the

correlation time τC which is the average time it takes to produce new output at given input

and the response time τN which is defined as the average time it takes for the circuit to
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give a random output with correct statistics as the input is changed [ 60 ]. fig.  3.11 shows

the two timescales for the three types of fluctuating resistances for MTJs with two different

timescales. For simplicity we assumed the correlation time to be same for all types of

magnets, but in reality they would follow the τCORR relations indicated in fig.  3.10 [ 60 ], [  83 ].

i Step response time 𝝉𝑵: time to give first random no.

ii Correlation Time 𝝉𝑪: time to give new random no.

(NTC) (TC) (TB)
𝜏𝑁 𝜏𝑁 𝜏𝑁

(NTC) (TC) (TB)

𝜏𝐶 𝜏𝐶 𝜏𝐶

Figure 3.11. Timescale of Operation for each resistor type with two
fluctuation rates τC ∼ [160 ps, 320 ps]. The resistances are engineered to have
similar characteristic timescales but different fluctuation behavior (tunable,
non-tunable and continuous and bipolar fluctuation) for comparison purposes.

Fig.  3.11 shows that the response time, τN for non-tunable resistor is independent of the

fluctuation time of the resistance, it is rather proportional to the RC delay of the circuit.

While for the tunable cases, the response time is related to the characteristic timescales of

the resistor. But the time to give new numbers or flip rate τC at VIN = 0 is entirely resistance

fluctuation time dependent for all cases (τC ≈ τCORR). So for the tunable case, the two said

timescales of operation are likely to be similar as they are governed by the magnet fluctuation

characteristics while for the non-tunable case, the response time which is RC dependent has

the potential to be very short compared to the magnet dependent correlation time. For most

applications this difference may not be of importance but for some applications where the
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network is directed, like Bayesian inference having two different timescales seems to be a

requisite [ 119 ].

Power: Our SPICE simulations indicate that the average power consumed by the BSN

circuit is 〈P〉 ≈ 2 × VDDIDsat [ 60 ]. The 2 is for the two branches, the MTJ branch and

the inverter branch. This holds true for all types of resistors. For a 14nm FinFET with

VDD = 0.8V and IDsat ∼ 15µA, 〈P〉 ∼ 20µW. The MTJ branch power could be reduced by

operating in subthreshold region IDsub ∼ 1µA, but this reduces the total power by ×0.5 while

trading-off with an ×10 increase in the RC response time. Given the flexibility, it is preferable

to design the MTJ to operate in the saturation region of transistor. For tunable case this

means matching I50 ∼ IDsat, for non-tunable this means having 〈R〉 ≈ (VDD/2)/IDsat.

NTC

TC

TB

NTC TC TB

P ~20μW

CMOS 
processor

fl
ip

s 
p
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Figure 3.12. (a) Energy-Delay of each type of MTJ based BSN assuming
an average power of 20 µW and timescales in fig.  3.9 . (b) Plots the fps for
different no. of neurons for each type of MTJs. For the projections only BSN
performance numbers are used, synapse would add to the power and thus
energy per flip number.

Energy: As there are two timescales associated with the BSN operation, we can define

two energy as well, the energy to give first random number EN ∼ τN〈P〉 and the energy

expanded between producing a new random number EC = τC〈P 〉. fig.  3.12 (a) shows an

energy delay plot indicating the ranges for each type of MTJs. When describing the energy-

delay performance of BSN instead of quoting two numbers, we quote the larger number
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which is the correlation time τC and the energy EC . The individual energy-delay numbers

can be used to project performance parameters for processors built with them.

3.3.2 Hardware Projections:

Typically the performance of an Ising hardware is measured in terms of time and energy

it takes to solve a specific problem. Time to solution depends not only on the physical hard-

ware performance but also on the algorithm that is being implemented. Here, we emphasize

measuring the hardware performance in terms of a purely hardware metric flips per second

(fps) [  24 ], [ 48 ], [ 120 ], which refers to the maximum number of spin configurations the hard-

ware can cycle through per second. It depends on the number of spins in the system (N)

and the time it takes for a spin to flip (τ), f = N/τ .

For the digital annealers the spin update time is usually determined by its clock period

(τclk) which ranges typically in tens of ns range. To ensure fidelity simultaneous updates of

connected spins needs to be avoided [  121 ] forcing digital annealers that operate on clock edge

to update spins sequentially. So in a network where all spins are connected effectively only

one spin can update per clock cycle [  27 ]. But it need not be if some spins are unconnected

(i.e. nearest neighbor [  24 ], [  25 ], or king-graph [  26 ] connection, or if spins are parallelized

by implementing special algorithms [  28 ]–[ 30 ]. Based on the reported total spin number

and clock speeds of digital annealing hardware today which have about ∼ 10K neurons

that can update per ∼ 10ns clock period, we derive an estimation of their performance at

f ∼ 104/10−8 = 1012 flips per second [ 25 ], [ 48 ] as shown in fig.  3.13 .

Compared to digital annealers the Ising spin hardware we presented in this work can

work autonomously, i.e, without a synchronizing clock or a sequencer [  36 ], [  48 ], [  119 ]. In this

mode, the speeds are governed by neuron (τneu) and synapse (τsyn) time only, and to ensure

fidelity and avoid simultaneous updates of connected BSNs the synapse needs to update

faster than the the neuron (τsyn < τneu). Sutton et. al. [  48 ] defines a metric s = τsyn/τneu and

shows that with s < 1 ensures fidelity of operation, the exact requirements are problem and

architecture dependent. Memristive crossbar arrays paired with a fast summing amplifier

synapse could operate very efficiently at as low as few tens of ps speeds [ 46 ], [  51 ], [  96 ]–[ 98 ],
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Affiliates BIFI Hitachi Fujitsu Tokyo Tech. UC Berkeley Purdue

Name Janus II annealing machine Digital Annealer STATICA RBM-based Purdue-P (ApC)

Technology FPGA 40nm CMOS + FPGA 65nm CMOS 65 nm CMOS FPGA FPGA

Latest 2014 2019 2018 2020 2020 2020

Connectivity Local (5,N-N) Local (8,King’s Graph) All-to-All All-to-All All-to-All Local (5,N-N)

Total Neurons, N 2,000 30,000 1024 512 150 8,100

Parallel Neurons Np N/2= 1,000 N/4= 7,500 1 N=512 N=150 N=8,100

Clock Frequency, f 250 MHz 100 MHz 100 MHz 320 MHz 70 MHz 125 MHz

Weight Precision 1 bit 3 bit 16 bit 5 bit 9 bit 16 bit

Neuron Time

(MC step) 𝛕 = 𝟏/𝐟 4 ns 10 ns 10 ns ~3 ns 14 ns 32 ns

flips per second 

(Np/𝝉) 2.5 × 1011 7.5 × 1011 108 ~2 × 1011 1010 ~2.5 × 1011

[r
ep
or
te
d]

[d
er
iv
ed

]

Figure 3.13. flips per second (fps) is a substrate and algorithm inde-
pendent performance metric for simulated annealing processors much like the
flops per second metric used for general purpose computers. It is a measure of
how many flips, and hence spin configurations the system can cycle through
in a second. fps can be derived from the reported performance metrics of the
processors following ref. [  48 ]. The reported and derived quantities as indicated.
Current CMOS based annealing processors perform at ∼ 1012 fps. We project
that MTJ based hardware can increase by a few orders of magnitude.

[ 122 ]. The digital annealers mimic the Ising spin using a combination of random-number

generators (LFSR, Xoshiro, etc.), look-up-tables (LUT) and comparators. The random

number generator (RNG) unit is one of the most are expensive elements in the design [ 123 ].

Even in the most optimized design, the RNG unit take up ∼ 11% of the total logic gate area

[ 28 ]. The 3T-1MTJ design offers drastic reduction in the area footprint, promising massive

scalability leveraging existing 1T-1MTJ Magnetic RAM technology that already has 1Gbit

integrated cells [ 53 ], [ 124 ].

Fig.  3.12 (b) projects fps number considering τ ≡ τneu ≈ τCORR for different no of spins,

N. An MTJ realization with circular IMA, with ∼ ns timescale can offer almost two orders

of magnitude speedup with < 10k neurons. If spins are implemented in Gbit densities

all stochastic implementations seem to outperform the CMOS implementations. For such

systems the upper bound for N is ultimately determined either by area or by power budget

of the chip. Note that the fps number does not reflect the connectivity of the spins or the

algorithm implemented by the hardware. It also does not indicate he solution accuracy

obtainable for specific problems [  125 ]. What we highlight here is that using the natural

physics of the MTJ we can design a very compact realization of eq.  3.2 compared to current
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state of the art CMOS implementations, and despite being a magnetic circuit, low barrier

magnet implementations even offer an overall speed up due to their fast fluctuation rates.

3.4 Summary

In this chapter, we presented a comprehensive evaluation of naturally stochastic magnetic

building blocks for implementing probabilistic algorithms compactly and efficiently. We

generalized the proposed 1MTJ-3T design to a 1SR-3T design and presented necessary design

rules for BSN operation that we hope will stimulate further interest in finding stochastic

resistance (1SR) with suitable properties. We extended the physical performance analysis

of the 1MTJ-3T BSN design to include unstable MTJ’s with different low-barrier-magnets

as free layers. They are evaluated as physical realizations of the general stochastic resistor

(SR) with respect to 14nm FinFET transistors. IMA magnets with barrier ≤ kBT proved to

be the best option, low-barrier PMA can function as current-tunable resistors as well. While

careful optimization of the fixed layer to cancel the stray fields in IMA MTJ is preferred,

PMA can benefit from the presence of stray fields (can be a source of the I50). The most

challenging set of working conditions are set for telegraphic IMA magnets, even if they are

highly optimized and no stray fields are present in the circuit, they need to be coupled with

high current transistors due to their high pinning currents, because if paired with low current

transistors like 14 nm FinFET results in a staircase-like functional behavior which does not

work as a p-bit as we discussed.

These BSNs are an integral part of Ising machines which are often referred to as an-

nealing processors. Using 1MTJ-3T BSN could speed up the operation of these processors

by orders of magnitude. Another important application space for these BSN is stochastic

neural networks [  36 ], [  43 ], [  126 ], [  127 ]. Infact, binary stochastic neurons are desired for deep

learning networks, but are typically avoided because it is harder to generate random bits

in CMOS hardware [  128 ]. Use of this compact neuron that relies on MTJs natural physics

to provide stochastic binarization could accelerate computation in custom hardware [ 129 ],

[ 130 ] by faster evaluation of BSN function [  60 ] and also encourage algorithmic advancement

using BSN.
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4. REALIZATION OF WEIGHTED p-BIT

Most of the materials in this chapter have been extracted verbatim from the paper: “ Voltage-driven Building

Block for Hardware Belief Networks”, O. Hassan, K. Y. Camsari and S. Datta, published in IEEE Design &

Test, vol. 36, 2019 [ 39 ].

There are two equations (eq.  1.2 and eq.  1.3 ) that constitute the behavioral model of

probabilistic spin logic (PSL) framework. So far we have focused mainly on the hardware

realization of eq.  1.2 . Eq.  1.3 could be implemented on software or hardware to enable p-

circuit operation. In this chapter we present a complete hardware building-block (weighted

p-bit) that combines the functionality of both the equations in a single composite unit.

We propose augmenting the embedded s-MTJ MRAM structures presented in Chapter.  2 , 3 

with floating-gate MOS (FGMOS) based capacitive adder [ 131 ] with the embedded s-MTJ

MRAM structures [ 77 ]. We show a hardware mapping and demonstrate how the results of

a fully interconnected wp-bit circuit closely approximate the ideal PSL equations using an

example of an “invertible” full-adder (FA) that can perform 1-bit addition and subtraction.

We also show how such invertible FAs can be interconnected to solve a simple instance of the

NP-complete subset sum problem (SSP). The examples in this chapter has been obtained

using full-SPICE models that simply uses transistors, capacitors, and resistors without any

additional complex circuitry or processing.

4.1 Weighted p-bit Building Block

The PSL model is defined by two equations:

mi(t + ∆t) = sgn{rand(−1, 1) + tanh(Ii(t))} (4.1a)

where rand(−1,+1) is a random number uniformly distributed between −1 and +1, and t is

the normalized time unit. The synapse generates the input Ii from a weighted sum of the

states of other p-bits according to the relation

Ii(t) = I0

(
hi(t) +

∑
j

Jijmj

)
(4.1b)
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where, hi is the on-site bias and Jij is the weight of the coupling from jth p-bit to ith p-bit

and I0 is a dimensionless constant. These two equations constitute the behavioral model of

PSL. The objective of this chapter is to present a voltage-driven hardware building block

using present day device technologies such as embedded MRAM [ 110 ] and Floating-Gate

MOS transistors, such that identical copies of the same block can be interconnected with

wires to implement Eqs.  4.1 .

(a) (b)
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Figure 4.1. (a) Weighted p-bit (W p-bit) has two components. The first is
the p-bit implemented through an embedded s-MTJ with two inverters added
to give positive and negative outputs. The second is the capacitive voltage
adder with an inverter structure on the left similar to floating gate MOS tran-
sistors. (b)Shows the the block diagram of W p-bit. (c) Shows how an inverter
helps amplify the input (Vi) of the capacitive network to give Vin,i at the gate
of the p-bit’s NMOS transistor T0. (d) Shows the relation of the input gate
voltage of the NMOS (Vin,i) to output (V +

OUT ). (e) Shows the transfer charac-
teristics of the W p-bit as a whole. The inputs in each case is swept from −0.4V
to +0.4V in 1 µs. The yellow dots are time averaged values at each point over
300 ns and the solid blue lines are numerical fits.

Our building block has two components corresponding to the two eq.  4.1 a,b.Eq.  4.1 a is

implemented by the p-bit in fig.  4.1 a which consists of an embedded low-barrier unstable MTJ
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coupled to two CMOS inverters which provides a stochastic output whose average value is

controlled by the input voltage:

Vout,i = VDD

2 sgn
(

rand(−1, +1) + tanhVin,i

V0

)
(4.2a)

where ±VDD/2 are the supply voltages, and V0 is a parameter (∼ 22 mV) describing the

width of the sigmoidal response.

The value of V0 depends on the details of the 1T/1MTJ in the embedded MRAM structure

[ 77 ] and the transistor characteristics. The conductance, G0 of the MTJ is chosen to match

the MTJ switching characteristics to the transistors in the Wp-bit so that the overall transfer

characteristics is centered at zero as shown in fig.  4.1 e. To do that, an input voltage of Vi =0V

is applied at the input of T1 and T2 transistors turning both of them ON (|VGS| = 0.4V)

and G0 is swept to observe the outputs. The G0 value for which V+
OUT=V−

OUT = 0V is the

value chosen to be the MTJ conductance. For minimum sized 14nm HP-FinFET transistors

models with VDD = 0.8V, 1/G0 ≈62 kΩ and it seems reasonable considering the RA-products

of modern MTJs [ 74 ].

Eqs.  4.1 b is implemented by the weighted synapse portion of fig.  4.1 a , which is a capac-

itive voltage adder just like those used in neuMOS devices [ 131 ], [ 132 ]. We can write

V i =
Vbias,iCb,i +∑

j Vout,jCij

Cg + Cz,i + Cb,i +∑
j Cij

(4.2b)

Note that the capacitive voltage divider typically attenuates the voltage V i at its output,

and the inverter scales it up to Vin,i as shown in fig.  4.1 c, the two being related approximately

by

Vin,i ≈ VDD

2 tanhV i

ν0

≈ VDD

2ν0
V i if V i � ν0 (4.2c)

62



where ν0 is a parameter characteristic of the inverter. Eqs.  4.2 a,b can be mapped onto the

PSL Eqs.  4.1 a,b by defining

mi = Vout,i

VDD/2 , Ii = Vin,i

V0
(4.3a)

Cb,i = biC0 Cz,i = ziC0 (4.3b)

hi = bi
Vbias,i

VDD/2 , Jij = Cij

C0
(4.3c)

I0 = (VDD/2ν0)(VDD/2V0)
(Cg/C0) + zi + bi +∑

j Jij
(4.3d)

Cg is the intrinsic gate capacitance of the neuMOS inverter. The significance of C0 is that

we assume the input is composed of many identical capacitors C0, and that the weights Jij

have been designed to have integer values such that Cij can be implemented by connecting

Jij elementary capacitors in parallel. The other coefficients zi, bi are also integers. We adjust

the number bi of bias capacitors to facilitate external biasing and the number zi of grounded

capacitors to make zi + bi +∑
j Jij = K a constant, so that I0 is independent of index i:

I0 = (VDD/2ν0)(VDD/2V0)
(Cg/C0) + K

(4.4)

Note that K is usually a fairly large number equal to the sum of all the weights, and to

implement an I0 ∼ 1 it is important to keep the factor (VDD/2ν0)(VDD/2V0) to be much

grater than 1. This is the reason for using an inverter between the capacitive voltage adder

and the p-bit. Our model neglects any leakage resistances associated with the capacitive

weights. Modern transistors with thin oxides can have gate leakage currents ∼1nA, with RC

∼ µs-ms. This should not affect the weighting, since the examples presented here operate

at sub-ns time scales. For slower neurons, it may be advisable to use thicker oxides for the

capacitive weights to ensure lower leakage.

Fig.  4.1 b shows the icon we use to represent our building block which we call a weighted

p-bit. The input consists of three types of inputs designated S, D and Q having capacitances

C0, 2 C0 and 4 C0. Combinations of these are used to implement different weights Jij and

different bias hi. Each block has two outputs V +
OUT , V −

OUT . The choice of output depends on
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the sign of the corresponding Jij. Similarly different signs of hi are implemented by choosing

Vbias,i to be +VDD/2 or −VDD/2.

4.2 Invertible full adder

In PSL, any given truth table can be implemented using eq.  4.1 by choosing an ap-

propriate [J ] and [h] matrices [  31 ]. Here we show how those [J ] and [h] are mapped onto

physical hardware using our proposed building block using only transistors, resistors and

capacitances.

(a) (b) (c)
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Figure 4.2. Invertible Full Adder with Wp-bit: (a)[J ] matrix for imple-
menting a Full Adder. (b) Explicitly shows the hardware connections made to
one of the inputs (A) from the other p-bits where 1C, 2C, and 4C represent
capacitors in units of C = C0 = 100aF . (c) Shows the subcircuit represen-
tation of the Full Adder with its input/output terminals. Ci, B, A input and
S, Co output read terminals and separate corresponding clamping terminals
hCi , hB, hA, hS, hC0 . We used 8C for the clamping terminals to ensure input /
outputs follow what is dictated by the external signals.

A Full Adder can be implemented in PSL using the [J ] matrix shown in fig.  4.2 . In this

chapter, we improve the 14 p-bit implementation of the invertible Full Adder (FA) in Ref.[ 31 ]

and implement the same functionality using 5 p-bits. This is achieved by first noting that

the first half of the FA truth table is complementary to the second half for the FA (fig.  4.3 a

inset)Ṫhe first 4 lines in the truth table is turned into an orthonormal set by a Gram-Schmidt

process and a [J] matrix is obtained using eq. 12 in Ref.[  31 ] which is finally rounded to integer

values, with diagonal entries replaced by zeros. This [J ] defines the interconnection between
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the 5 Wp-bits of the Full Adder in hardware. Each row of the [J ] matrix are realized in terms

of capacitive coupling to the gate of the associated terminal.

B  1
Ci  0

A  1

Directed Inverted

0 0

-V +V +V

+V

0 0

-V

0

S 0
C0  1

(a) (b)

Figure 4.3. Full SPICE implementation of an Invertible Full Adder(5
Wp-bit): The 5 Wp-bit invertible Full Adder circuit is simulated in (a) Directed
and (b) Inverted modes. The clamping values are indicated. All biasing termi-
nals that are not clamped to 1 or 0 are grounded. The histogram of [CiBASC0]
is obtained after thresholding voltages ((V < 0) ≡ −1, (V > 0) ≡ +1). The
SPICE model is run for 1µs and compared with the PSL equations where each
p-bit is updated in random but sequential order [  31 ]. In this example I0 ' 1
is chosen to emphasize how the models are in good agreement even in the
magnitudes of the minor peaks of the histogram.

To ensure a uniform I0 is applied to each p-bit (eq.  4.4 ), the same weighting factor K needs

to be used for all Wp-bits. To apply a given I0, we first find max(bi +∑
Jij) for any given [J ],

and then ground zi = M −bi +
∑

Jij (zi ≥ 0, zi ∈ N) unit capacitances for all terminals where

M is a number that can be used to control I0, a larger M causing a smaller I0. Fig.  4.2 b

shows explicit connections made to one of the inputs “A” and fig.  4.2 c shows the subcircuit

of the Full Adder with Ci, B, A as inputs, S, C0 as the outputs, and hCi, hB, hA, hS, hCo as

the clamping pins.

Fig.  4.4 shows the operation of a Full Adder in the usual forward mode with Ci, B, A

clamped to values (0,1,1) which forces the S and C0 to (0,1) according to the truth ta-

ble. In the invertible mode S and C0 are clamped to (0,1) and the circuit stochasti-

cally searches consistent combinations of Ci, B, A to satisfy the truth table: {Ci, B, A} =

{{0, 1, 1}, {1, 0, 1}, {1, 1, 0}}. Fig.  4.4 shows steady state (t = 1 µs) histogram plots of the
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Full Adder operation in direct and inverted mode side by side with results from the PSL

behavioral model.

The good agreement between the ideal PSL behavioral model and the coupled SPICE

simulation that solves PTM-based transistors models with stochastic LLGs validates the

hardware mapping of the ideal p-bit equations with the weighted p-bits.

4.3 3SUM Problem

3SUM is a decision problem in complexity theory that asks whether three elements of a

given set can sum up to zero. A variant of the problem is when the set of three numbers

have to add up to a given constant number. This problem has a polynomial time solution

and is not in NP. In this section, we show how the invertibility feature of the Full Adders

can be utilized to design a hardware 3SUM solver. In the next section, we show how the

3SUM hardware can be modified to design a general solver for the NP-complete Subset Sum

Problem.

The invertibility property of the Full Adders ensure that given the sum, it can provide

the possible input combinations for that sum as shown in fig.  4.4 a. So an n-bit 3 number

adder circuit implemented in PSL can essentially provide solution sets for the 3SUM problem

when the sum is clamped to a given value.

Fig.  4.4 a shows the circuit constructed out of Full Adders to solve a 4-bit 3SUM problem.

Each of the Full Adders in the circuit are the 5 p-bit invertible adders that were shown in

fig.  4.3 . The first row of adders adds the two 4-bit numbers A and B, and feeds its output

X, to the next row of adders which adds X and C to give the sum S = C + X = C + B + A.

Because p-circuits are invertible, if we clamp the sum S, the circuit naturally explores through

all possible sets and multisets of the set of all integers from 0 to 24 −1 that add up to S. The

given set for the problem could be implemented through clamping certain bits of A,B and C

or externally circuitry could be used to detect only the results that belong to the given set.

Fig.  4.4 b shows the how A,B,C is fluctuating between values that satisfy the clamped sum

15.
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Figure 4.4. SPICE simulation of a 4bit 3-SUM Problem (9 × 5 = 45
Wp-bit network): (a) The circuit is constructed by interconnecting two rows
of invertible Full-Adders (FA) to construct a 3 number, 4-bit adder. The sum
S is clamped to the desired value and A, B, C resolves themselves to create
all the possible 3 number subsets out of all positive numbers 0 to 24 − 1 that
satisfy A + B + C = S. (b) Shows the results when S is clamped to 15. A, B
and C get correlated to satisfy the sum with different combinations. In this
example, the inputs A, B, C are unconstrained and can take on any value
between 0-15.
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4.4 Subset-sum Problem (SSP)

In this section, we show how the hardware circuit that was designed for 3SUM problem

could be modified to solve a small instance of subset-sum problem (SSP) [  133 ] which is

believed to be a fundamentally difficult problem in computer science (NP-complete). In the

SSP, a set G with a finite number of positive numbers is defined. And then the decision

problem is to ask whether there is a subset S’ such that S’ ⊆ G whose elements sum to a

specified target. For example, fig.  4.5 shows a circuit that is programmed to choose a set,

G={1, 2, 4} and a target that is defined by 4-bits. In the 3SUM circuit the input bits (A,

B, C) were left “floating”, here, the inputs are constrained to a given number (1,2,4) by

clamping the remaining bits of an input. For example, the inputs A1 and A0 are clamped

to zero to make A either 4 or 0. Under these conditions, clamping the output to a specified

target makes the circuit search for a consistent input combination to find a subset that

satisfies the clamped target. Fig.  4.5 c shows three example targets where the inputs get

correlated to satisfy the clamped sum. The invertibility feature that is utilized to solve the

SSP in this hardware is similar to those discussed in the context of memcomputing [ 134 ],

however the physical mechanisms are completely different.

One striking difference in the design of the SSP we considered, compared to the 3SUM

hardware is the direction of information. In 3SUM the connections were from the first layer

of Full Adders to the second, as in normal addition (fig.  4.4 a). In the SSP, we observed that

reversing these connections from the second layer of adder to the first layer drastically im-

proves the accuracy of the solution (fig.  4.5 a). A similar observation regarding the directional

flow of information for another inverse problem using p-circuits (integer factorization) was

made in [ 31 ]. Here we have limited the discussion to a small instance of the SSP which would

in general require more layers of Full Adders in both vertical and horizontal directions to

account for more numbers of elements in S and their size. The purpose of this example is to

illustrate how invertibility can be combined with standard digital VLSI design to construct

any general “cost function” for hard problems of computer science in an asynchronously

running hardware platform without any external clocking.
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Figure 4.5. SPICE simulation of a 3 input, 3-bit Subset Sum Prob-
lem (7 × 5 = 35 Wp-bit network): (a) A 3-input 3-bit binary adder that
adds three numbers A,B,C. Unlike the 3SUM, in this case inputs are con-
strained to a given value specified by the set G ={1, 2, 4} in this example. A
target S is selected and the output of the adders are clamped to the target
value as shown in (b). (c) Shows three different instances of a target where the
inputs find a consistent combination (the correct subset of G) to satisfy the
target. Histograms show that the highest probable state is the correct subset.
An important difference from the 3SUM circuit is that the information flow is
directed from the target (second layer of adders) to the first layer of adders.
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4.5 Summary

In this chapter we have proposed a compact building-block for Probabilistic Spin Logic

(PSL) combining a recently proposed Embedded MRAM-based p-bit, with an integrated

capacitive network that can be implemented using Floating Gate MOS (FGMOS) transistors

similar to the neuMOS concept. We have shown by extensive SPICE simulations that the

results of the hardware model for the weighted p-bit agree well with the behavioral equations

of PSL. Having dedicated MTJ based hardware stochastic neurons could help minimize the

footprint and consume lower power for applications as also indicated by ref.[  74 ], [ 135 ]. Even

though an FGMOS-based capacitive network for performing the voltage addition seems like a

natural option for, we note that the device equations for any capacitance [Cij] or conductance

network [Gij] would have been essentially the same. Moreover, our discussion was only about

static weights, but an FPGA-like re-configurable weighting scheme can also be employed

either by using transistor-based gates or by additional multiplexing circuitry to perform

online learning or redesign p-circuit connectivity. Finally, using the basic building block we

have shown how a small instance of the NP-complete Subset Sum Problem hardware solver

can be designed using the unique invertibility feature of p-circuits.
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5. MAGNETOELECTRIC MEMORY DEVICE BASED ON

PSEUDO-MAGNETIZATION

Parts of the material presented in this chapter have been extracted verbatim from the paper: “Equivalent

Circuit for Magnetoelectric Read and Write Operations”, K. Y. Camsari, R. Faria, O. Hassan, B. M. Sutton,

and S. Datta, published in Phys. Rev. Applied, 2018 [ 136 ], along with unpublished results.

In this chapter, we propose a new type of magnetoelectric memory device that stores

magnetic easy-axis information or pseudomagnetization, rather than a definite magnetization

direction, in piezoelectric/ferromagnetic (PE/FM) heterostructures. We show how a PE/FM

combination can lead to non-volatility in pseudo-magnetization exhibiting ferroelectric-like

behavior. The pseudo-magnetization can be manipulated by extremely low voltages espe-

cially when the FM is designed as a low-barrier nanomagnet. Using a circuit model that

is benchmarked against experiments, we determine the switching energy, delay, probability

and retention time of our memory device in-terms of magnetic and circuit parameters and

discuss its thermal stability. READ and WRITE operations of a 1T/1C memory architecture

are shown. The proposed memory device combines the advantages of ferroelectric memory

devices, such as energy-efficiency and high speed with those of magnetic memory such as

non-volatility and high density.

5.1 Equivalent Circuit Model for Magnetoelectric Effect

In this section, we describe an equivalent circuit model applicable to a wide variety of

magnetoelectric phenomena and use SPICE simulations to benchmark this model against ex-

perimental data. There is increasing interest in magnetic random access memory (MRAM)

technology to develop voltage-driven units based on different types of magnetoelectric phe-

nomena [ 137 ]–[ 154 ] for low power operation. We present an equivalent circuit model (Fig.  5.1 )

applicable to a range of magnetoelectric (ME) phenomena including both write and read op-
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erations. It consists of a capacitor circuit which incorporates the back voltage from the

magnetoelectric coupling described by ( 5.1 ):

VIN = Q

CL

+ Q

C
+ ∂Em

∂Q
(5.1)

where Em is the magnetic energy including the part controlled by the charge Q on an

adjacent capacitor C, through the ME effect. Equation (  5.1 ) is solved self-consistently with

the stochastic Landau-Lifshitz-Gilbert (s-LLG) equation which feels an effective field ( ~Hme =

−∇m Em/{MsVol.}), ∇m represents the gradient operator with respect to magnetization

directions m̂i, Ms is the saturation magnetization and Vol. is the volume of the magnet.

We first benchmark this equivalent circuit against the recently demonstrated Magneto-

ELectric Random Access Memory (MELRAM) device [  155 ], [  156 ] which uses the magneto-

electric effect (ME) and its inverse (IME) for write and read operations, using a structure

whose energy Em is given by Eq.  5.2 . We then argue that, unlike MELRAM, the “1” and

the “0” states need not be represented by states with a net magnetization. For example,

using a structure whose energy E is given by eq.  5.4 , one could instead switch the easy axis

with a write voltage, and this change in the easy axis can be read as a change in the voltage

across a series capacitor through the inverse effect, allowing a “field-free” operation without

any symmetry breaking magnetic field.

Experimental Benchmark

We start with the MELRAM device (Fig.  5.2 b) reported recently in [ 156 ] where the

magnetic energy has the form

Em = −EAmxmy + EH/
√

2(mx − my) + vMQ (m2
x − m2

y) (5.2)

We note that this energy expression is essentially the same as what was reported in

Ref. [  156 ] expressed using magnetization components, mx, my, mz. For example, the anisotropy

energy is written in [  156 ] as −EA sin2 φ, with φ measured from the magnetic field ~Hext such

that mx = cos(3π/4 − φ), my = sin(π/4 − φ) and mxmy = sin2 φ, ignoring an unimpor-
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LLG

(b)(a)

Figure 5.1. Equivalent circuit for magnetoelectric (ME) read and
write operations (a) The charge on the piezoelectric (PE) capacitor changes
the easy-axis of the ferromagnet (FM) and this causes a change in the out-
put voltage VL through the inverse effect. (b) Equivalent circuit model ob-
tained from (  5.1 ). Write operation is through the effective field ~Hme =
−∇m Em/(MsVol.) that enters the stochastic Landau-Lifshitz-Gilbert (s-LLG)
equation. Read operation is through the dependent voltage source V that is
proportional to ∂Em/∂Q, where Em is the magnetic energy.

tant constant. Similarly the Zeeman term is written in [  156 ] as −EH cos φ which equals

EH(mx − my)/
√

2. In [ 156 ], the uniaxial anisotropy energy term and the external magnetic

field were ingeniously balanced (by choosing EH = EA

√
2) to provide two unique low energy

states that represent “0” and “1” at φ = π/2 and φ = π.

Finally, the last term represents the ME effect where an applied voltage generates a

charge Q, controlled by the input voltage VIN, which changes the anisotropy energy such

that a positive (or negative) Q causes the magnetic energy to favor the y-axis (or the x-

axis) for a positive vM . This is due to the anisotropic piezoelectric coefficients d31 and d32

having different signs, a special property of the 〈011〉-cut (PMN-PT) that was chosen in the

experiment.

The equivalent circuit incorporates the back voltage from the ME coupling using ( 5.1 ),

with the load capacitor CL replaced by a resistor R:

VIN = R
dQ

dt
+ Q

C
+ ∂Em

∂Q
= R

dQ

dt
+ Q

C
+ vM(m2

x − m2
y) (5.3)
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(a) (b)

Figure 5.2. Experiment vs circuit model: (a) The results of the
self-consistent circuit model for the structure in (b) are in good agreement
with the experimental results in [  156 ]. VME is the mathematical difference
of two measurements of VR with and without the external magnetic field,
VME = VR(H 6= 0) − VR(H = 0). (b) Experimental structure reported in
[ 156 ] where the piezeoelectric (PE) is 〈011〉-cut PMN-PT and the ferromag-
net (FM) is N layers of TbCo2/FeCo. The back-voltage is V=vMµ where
µ = m2

x − m2
y and the magnetic energy is Em = QP EvMµ where QP E is the

charge on the capacitor CPE. The following parameters are used: Coercivity for
FM (HK=200 Oe), saturation magnetization Ms=1100 emu/cc, FM thickness,
tFM=200 nm, PE thickness tPE=30 µm, Area=520 × 520 nm2, Magnetoelas-
tic constant B = −7 MPa, a net PE constant, d = d31 − d32 = 2500 pC/N,
permittivity ε = 4033 ε0, resistance R = 2 MΩ, back voltage vM = BdtFM/2ε.
In the experiment, magneto-optic Kerr effect (M.O.K.E) is used to show the
variation of magnetization, which is compared to the pseudo-magnetization
in our simulation. Experimental panel is reproduced with permission of AIP
Publishing LLC, from Reference [ 156 ].
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It is possible to write the ME energy as qMV in terms of an applied voltage V rather than

charge Q, but this choice would lead to a back charge ∂Em/∂V instead of a back voltage

∂Em/∂Q, giving a different but equivalent looking circuit model.

Fig.  5.2 a shows the write and read signals for the experimental structure in Fig.  5.2 b

calculated using a SPICE model, that are in good agreement with the experimental results

presented in [  156 ]. The reason for the very different time scales of the experiment and the

circuit model is that the circuit model solves the real-time dynamics of the nanomagnet

with time steps of the order of a fraction of the inverse FMR frequency of the nanomagnet

(1/f ∼ 2π/γ/
√

[HK(HK + 4πMs)] ∼ 0.2 ns for the chosen parameters) to avoid large numer-

ical integrations while the experimental measurement is performed with quasi-static pulses.

Therefore the RC time constants in both cases are very different, however the maxima and

minima of each signal closely match based on the chosen parameters.

We use this model to suggest a different mode of operation where the “1” and “0” states

are not represented by states with net magnetization (like mx, my or mz) but by different

easy axes, quantitatively described by (m2
x −m2

y) which switches from “0” to “1” through the

write voltage. This change is directly detected as a read signal through the inverse effect.

The use of (m2
x − m2

y) to represent a bit is a radical departure from the standard convention

of using the magnetization (m) to represent information.

5.2 Pseudomagnetization - New Order Parameter

In recent years, voltage control of magnetism (VCM) has emerged as a promising alter-

native to current control of magnetism due to its potential for energy efficiency [ 157 ]. Apart

from a special class of VCM phenomena that allows a deterministic 180 degree switching of

magnetism [  143 ], VCM typically results in 90 degree switching of magnetization or a change

in the easy-axis of the magnetization, necessitating additional assist mechanisms or complex

pulsing schemes [ 158 ], [ 159 ].

We show that the easy-axis information (or pseudo-magnetization) itself can be a state

variable that can be switched between two deterministic states (WRITE) and that can be

read out through the inverse effect (READ). The principle of pseudo-magnetism is general

and could find use in voltage-control of magnetic anisotropy devices [  158 ], but we focus
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our theoretical and experimental discussion to piezoelectric/ ferromagnetic (PE/FM) het-

erostructures. We show that the interaction of magnetism and piezoelectricity can lead to

non-volatility in pseudo-magnetization that can reach to years of retention time for experi-

mentally demonstrated magnetic and circuit parameters. We describe a prototypical 1T/1C

memory cell that encodes pseudo-magnetization and show its READ and WRITE operation

through the equivalent circuit model [ 136 ] that is benchmarked against experiments [ 156 ],

[ 160 ].

(a) (b) (c)

(d) (e) (f)

Figure 5.3. Pseudomagnetization (a) Basic electrical circuit for charac-
terization of PE/FM structure. Information on the device is stored in the
magnetic easy axis direction (± x or ± y) which we term pseudomagnetiza-
tion, µ. (b) Shows the change of µ due to the applied voltage, V across the
PE/FM structure and (c) shows the resulting charge versus voltage character-
istics in the circuit which is similar to standard ferroelectrics. (d)-(f) shows the
stable states at different voltages across the structure on a heatmap. Unlike
conventional magnetic memory there are multiple states associated with each
voltage indicating preferred easy axis. The states are separated by a large
barrier, so which allows for non-volatile memory application.

76



We start from an energy expression associated with the PE/FM heterostructure in

fig.  5.3 a:

E = Q2

2C
+ Qvmµ − QVIN − (EA

2 )µ (5.4)

where µ is the pseudo-magnetization that defines the easy-axis for the magnet µ = m2
x − m2

y,

EA = HKMSΩ/2 is the magnetic anisotropy that defines an easy-axis for the magnet, VIN

is the applied voltage and vm is the magnetoelectric (ME) back voltage that couples the

charge Q on the PE capacitor (C) with the pseudo-magnetization µ of the FM through the

internal strain. In the PE/FM heterostucture, µ is given by a combination of the material

parameters of the PE and FM, vm = BdtFM/2ε where, B is the magnetoelastic constant

of the magnet, d is the net piezoelectric coefficient of the PE layer, ε is its the dielectric

permittivity, and tF M is the thickness of the magnet. The circuit model we use to generate

results in fig.  5.4 - 5.5 is derived from this energy model, and the fundamental operation can

be understood from the energy equation.

For a given VIN, charge is formed on the capacitor which creates an effective anisotropy

like energy Qvm in the magnet. If this energy is large enough (� kBT ), a preferred easy axis

will be induced in the magnet and the magnetization will lie in that axis without a preference

for a direction. Consider the case when VIN = 0 and a low barrier magnet (EA ∼ 0). In

this case the energy, E = (1/2C)(Q + Cvmµ)2 − (1/2)Cv2
mµ2 is minimized when µ = ±1.

Therefore, even when VIN = 0, as long as Cv2
m � kBT , µ can get spontaneously polarized

and induces an internal charge Q = Cvmµ, much like a standard ferroelectric.

A self-consistent solution of the energy equation for this minimum energy condition

shows this phenomenon (fig.  5.3 b,c). The width of the pseudo-magnetization vs. voltage

hysteretic loop is independent of the capacitance of the structure and depends only on the

magnetoelectric voltage vm, but the actual switching voltage depends on the capacitance, C

through the anisotropy energy associated with the magnet, EA. The loop is symmetric about

the point EA/Cvm. It is important to note that although the charge on the load capacitor

CL may leak out after writing, the pseudo-magnetization information is still preserved in the

cell much like ferroelectric random-access-memories (FeRAM).
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Fig.  5.3 (d)-(f) shows the heatmap of the charge and magnetization state associated with

three voltage conditions using the energy expression. At the symmetry point EA/Cvm all

four states of magnetization (two of pseudo-magnetization) are equally probable. They are

separated by a barrier of the order of Cv2
m/2 that can be designed to be much larger than

kBT for typical parameters. This means that, once the system is in one of the four states, it

remains there. Applying ± vm from the symmetry point switches the pseudo-magnetization

to ∓1 states.

5.3 Magnetoelectric Memory Cell

A magnetoelectric memory cell that uses pseudo-magnetization can be constructed like

a standard 1T-1C circuit where one end of the PE/FM capacitor is connected to the bit-line

(BL) through a pass transistor and the other end is connected to a plate line (PL). The cell

access is provided by the word-line (WL) as shown in fig.  5.4 a. From SPICE simulations of

the circuit model [ 159 ] we show the WRITE and READ process of the cell in fig.  5.4 b,c.

To write a ‘0’ the BL is charged to ‘2vm’, PL is kept grounded and then the transistor

is turned on through the WL to complete the writing process. To write a ‘1’ a similar

procedure is employed where the BL is charged to ‘−2vm’ instead. Fig.  5.4 b shows the

writing process. Even after the charge on the load capacitor leaks, the internal state of

the cell can be retained for a long time as long as Cv2
m/2kBT � 1. Therefore, for reading

the state a read pulse needs to be applied. The BL is first pre-charged to ‘0V’ then the

access transistor is turned on which creates a capacitive divider circuit between PL and

ground. When a positive read pulse is applied to PL, the voltage is divided between the

ME capacitor and the bit-line capacitance (CBL) depending on their relative values and the

state of the ME device. A sense amplifier can then be used to detect these voltages. As

fig.  5.4 b indicates, this reading process is destructive so data must be rewritten once read,

similar to FeRAM [  161 ]. In the simulations in fig.  5.4 we chose parameters for the ME circuit,

which are based on experimentally reported material parameters [ 156 ], [  160 ] and reasonable

device dimensions. We also chose the bit-line parasitic capacitance to be equal to the PE

capacitance (CBL = C) for simplicity.
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(a) 1T-1C Memory Cell (b) (c)

Figure 5.4. (a) Magnetoelectric 1T-1C memory cell.The READ/WRITE
Operation of the cell mimics the scheme of FeRAM operation. (b) WRITE
pulse is applied to the bit-line keeping plate line grounded. (c) READ pulse is
applied to the PL and voltage at BL is detected. The read process is destructive
as in FeRAM, but unlike DRAM is µ non-voltaile so does not require periodic
refresh.

The energy barrier that determines the stability of pseudo-magnetization can be related

to its equilibrium fluctuations (Fig.  5.5 a). The RMS value of equilibrium fluctuations is

related to the energy barrier of the magnet by: ∆ = kBT/2(1 − µ2
RMS). Fig.  5.5 b shows

the extracted thermal barrier from 1000 samples, for different magnetoelectric voltages for

a constant C. The results agree well with an analytically derived value of Cv2
m/2 which can

be > 40kBT for experimentally demonstrated parameters.

Additionally, we estimate switching energies and time associated with the write operation.

The switching time of pseudo-magnetization is related to the magnet dynamics. The voltage

generated stress can be expressed as an effective magnetic field Hs ≡ (Qvm/MsVol.) ≡

(CVINvm/MsVol). This effective magnetic field can be used to estimate the typical switching

time of magnetization where τ ∼ 1/αγHs that can result in sub-ns switching speeds for

typical parameters. As the PE/FM heterostructure is a fully capacitive system the write

energy approximated by CV2
IN/2 can also be very low. Ignoring parasitics and other non-

idealities, this number can be optimistically in the ∼ aJ range for our experimentally guided

parameters.
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(a) Effective Stability (b) Switching Probability

Figure 5.5. (a)The stability of pseudomagnetization states can be measured
from equilibrium fluctuations. The effective stability (∆) of µ can be at-
tributed to an effective stress anisotropy field (Hs) it feels which depends on
the back-voltage vm and the capacitance value C. (b) Switching probability of
pseudomagnetization is calculated from 1500 samples for different amplitudes
and pulse widths. Sub-ns switching speeds (τ) can be attained due high stress
fields (Hs = CVINvm/MsV ol) in nanomagnets.

5.4 Extraction of vm from FMR Results

The magneto-electric back voltage vm in an FM/PE heterostructure can be extracted

from ferromagnetic resonace (FMR) measurements. We characterize two sets of ferromag-

netic resonance (FMR) measurements performed on a (011) cut PMN-PT/CoFeB film and

array of nanodots. The experimental details can be found in [  162 ]. The peak resonance

frequency of FMR is typically described by the Kittel formula. Here, we derive a modified

Kittel formula that includes the voltage induced stress term from the Landau-Lifshitz-Gilbert

(LLG) equation. The free-energy associated with an in-plane magnet whose easy axis is along

the x-direction and the field applied along the easy-axis is: Em = [Hk(1 − m2
x) + HDm2

Z +

HS(m2
x − m2

y) − Hresmx]MsΩ, where HD denoted the demagnetization field perpendicular to

the plane. The resonance frequency of such a magnet can be derived from its free-energy

expression which results in the modified Kittle equations as follows:

f = γ

2π

√
(Hk + Hres − 2HS)(Hk + Hres + HD − HS), HS > (Hres + Hk)/2 (5.5)
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f = γ

2π

√
(H2

res − (Hk − 2Hs)2))(HD + Hres + HK − HS)
Hk − 2Hs

, HS ≤ (Hres + Hk)/2 (5.6)

The key parameter is once again, the stress-induced magnetic field HS ≈ Bd(VIN/tPE)/Ms ≈

2CVINvm/(MsΩ) that modifies the easy-axis anisotropy. We use the experimental FMR data

to extract the back-volatge vm for the two experimental cases as shown in fig.  5.6 .

PMN-PT/CoFeB Film

PMN-PT/CoFeB nanodots

Ms=1040 emu/cc

Ω = 9.6 × 10-14 m3

Ms=1250 emu/cc

Ω = 3 × 10-15 m3

𝑣𝑚 ≈ 34𝑚𝑉

𝑣𝑚 ≈ 24𝑚𝑉

Hk~60 Oe, HD~4πMS

Hk~0 Oe, HD~4πMS

Figure 5.6. Characterizing FMR Measurements Ferromagnetic reso-
nance (FMR) measurements performed on two samples (a) Film and (b) nan-
odot array show modification of magnetic anisotropy of CoFeB by applying
voltage across the PMN-PT layer. The modified Kittle equations (eq. 5.5 and
5.6) including the voltage-induced stress term Hs are used to fit the measure-
ments.The reported experimental parameters for the piezoelectric are relative
permittivity εr = 600, piezoelectric co-efficient d = 4500 pC/N, and for the
magnet the magnetoelastic constant B = 4 MPa. For the film the theoreti-
cally expected ME back-voltage (vm = BdtFM/2ε) of 34 mV fits the data while
a slightly lower value of 34 mV fits the nanodots which has a Ti/Au layer
inbetween the PE and FM layer.

For a magnetic film, the data fits well with the theoretical expectation of ∼ 34mV, while

a slightly lower value of ∼ 24mV is extracted for the nanodot arrays. These results show
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that the easy-axis or pseudo-magnetization can be manipulated by voltages and can result

in values of vm in tens of millivolts range for both film and patterned magnets demonstrating

WRITE operation. Electrical detection of the change in easy-axis and the resulting pseudo-

magnetization from first and second harmonic measurements on a similar sample have been

reported in [  160 ], and characterized using the same theory. The measurements indicated

a vm ∼ few mV, demonstrating the feasibility of magnetoelectric READ operation of the

pseudo-magnetization.

5.5 Summary

In this chapter, we have presented an equivalent circuit for magneotoelectric read and

write and showed that it describes recent experiments on the MELRAM device quite ac-

curately. We analyzed the feasibility of a new magnetoelectric memory device that uses a

new order parameter, pseudo-magnetization. When the magnet is designed as a low-barrier

nanomagnet this device can potentially operate with an energy-delay of hundreds of (aJ-ps)

while combining attractive features of magnetic and ferroelectric memory technologies such

as high-density and non-volatility.

82



6. SUMMARY

Probabilistic computing has emerged as an effective and more immediate means of handling

search and recognition problems posed by the ever-increasing amounts and demands of big

data. A probabilistic computer can bridge the gap between genuine quantum computers and

the standard classical computers. In this thesis, we have presented a complete evaluation of

naturally stochastic hardware based on low-barrier magnets for scalable and energy-efficient

realization of p-computers. We demonstrated the potential benefits of leveraging natural

stochasticity for efficient simulation of probability.Such probabilistic hardware can imple-

ment probabilistic algorithms that use Markov chain Monte Carlo process compactly and

efficiently. The final chapter serves to highlight the key findings and contributions of this

work and look ahead towards additional areas of exploration.

6.1 Realization of Naturally Stochastic Hardware

We evaluated the compact mixed-signal unit based on a low-barrier nanomagnet that

uses a single magnetic tunnel junction (MTJ). Such a compact unit can drastically reduce

the area footprint of p-bit hardware while promising massive scalability by leveraging the

existing Magnetic RAM (MRAM) technology that has integrated 1T-1MTJ cells in ∼ Gbit

densities. By employing circular in-plane LBM coupled the designs can respond in sub-ns

timescales requiring only a few fJs of energy.

Use of naturally stochastic bits enable autonomous or clockless operation so that PSL

is not limited by clock frequencies like digital circuits. This enables to go beyond the tera

flips per second flips per second that current CMOS processors are stuck at and venture into

peta to even beyond-exa scale operation.

To serve as bridge, probabilistic computing needs it to be a near-term technology unlike

quantum computer. Our design evaluation demonstrates a path to realization of p-bits with

what we believe are only slight modifications in the already established magnetic memory

technology. Infact, since our proposals academic and industry efforts that were set-forth has

seen success in realization of functional low-barrier magnet MTJs. But we would still like to
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point out that the realization need not be an LBM MTJ based realization. Any two terminal

stochastic resistor realizations can be adapted into the design.

Explore Novel Stochastic Mechanisms: We established the design rules for the p-bit device

from a very general two terminal stochastic resistor to encourage further research into novel

mechanisms that can harness natural stochasticity in circuits.

6.2 Physics of Low-barrier Magnets

Magnetic memory is a mature technology where stable magnets are typically used to

store information which can be retained for many many years. Thus most of the theoretical

predictions and characterizations involved looking into stable magnets which has a high

barrier separating its two states. The design explorations and material research is focused

on achieving high-barrier at nano-scale. Low-barrier magnets whose magnetization fluctuates

instead of retaining its state is naturally considered a nuisance in this respect. LBMs have

thus largely been ignored all this time, creating a gap in the theoretical understanding and

predictions due to their irrelevance. However, p-bit designs that we propose aim to leverage

from these ”bad” bits of the memory world giving them relevance. In such applications it

is desired to have a very small barrier between the magnetic states to enable thermal noise

to cause rapid fluctuations of the states. In chapter 2 and 3 we aimed to fill this gap by

analyzing the behavior of LBM and providing relevant expressions.

We discovered that in-plane LBM has surprisingly fast fluctuation rates as low as sub-ns

timescales and high threshold currents compared to its isotropic or uniaxial magnetization

counterparts. Our numerical results supported by the theoretical understanding which have

recently received some experimental confirmations, suggest investing in fabricating circular

IMA magnets with fast fluctuation rates for realization of efficient p-bits.

Novel Spintronic Devices: The theory of LBM does not only lend itself to p-bits, it can

open up new ways to building new energy-efficient spintronics devices like oscillators (as

hinted in Chapter.  3 , multi-terminal rectifiers [ 85 ], and even memory devices as we showed
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in Chapter. 6. The use of LBM can lead to extremely low voltage manipulation of data in

coupled piezoelectric and ferromagnetic (PE/FM) heterostructures.

6.3 Benchmarking Metrics for Probabilistic Computing

A clear and definite set of metrics are needed to asses the performance of probabilistic

hardware. Although probabilistic computing is not a new area of study, but as it has been

mostly limited to software implementations until recently, it still lacks a standard industry

standard for benchmarking.

In chapter 2 we define the performance metrics for an individual p-bit as time and energy

per flip similar to the switching time and energy associated with digital electronics. Our LBM

based design shows that it can flip at sub-ns timescales requiring only a few fJ energy orders

of magnitude better than its CMOS counterparts.

In chapter 3 we emphasise the use of a problem and substrate independent performance

metrics - flips per second and energy per flip to benchmark specialized probabilistic hardware

like Ising Machines. Flips per second refers to the number of samples the system can produce

per second. The basic operation of a probabilistic computer like Ising machines is to go

through samples and reach a solution. The number of samples required to reach a solution is

problem dependent, so a general way to benchmark just the hardware’s performance could

be through the more fundamental flips per second metric, similar to the FLOPS of digital

computers, that can be continually improved in later technology generations of probabilistic

hardware.

Compared to digital Ising machines today with tera fps performance our naturally stochas-

tic hardware is projected to out-perform them by orders of magnitude (a million p-bit network

is projected to achieve more than peta fps). As the realization depends on slight modifica-

tions of the existing MRAM industry, we hope the results, discussion, and design guidelines

presented will serve to encourage industries to consider building this network in larger scale

and also expand into different application areas.
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Accelerating Machine Learning: Probabilistic bits are analogous to the binary stochastic

neurons of stochastic neural networks. Stochastic neural networks like Boltzmann Machines

(BM) and Restricted Boltzmann Machines (RBM) are an integral component to deep belief

networks, which have become more common with increased interest in deep learning [ 127 ]

today. Stochastic binarization is desired by typically avoided due to hardware complexity

of realizing true random numbers with deterministic circuitry, to quote the expert Yoshua

Bengio, “The stochastic binarization is more appealing than the sign function, but harder to

implement as it requires the hardware to generate random bits when quantizing. As a result,

we mostly use the deterministic binarization function...”[ 128 ]. Our s-MTJ based p-bits can

evaluate the BSN function fast and efficiently, and thus could accelerate computation in

custom neural-network hardware [ 129 ], [ 130 ].

86



REFERENCES

[1] J. Shalf, “The future of computing beyond moore’s law,” Philosophical Transactions
of the Royal Society A, vol. 378, no. 2166, p. 20 190 061, 2020.

[2] G. E. Moore et al., Cramming more components onto integrated circuits, 1965.

[3] M. Kanellos, Moore says nanoelectronics face tough challenges, Mar. 2005. [Online].
Available:  https://www.cnet.com/news/moore-says-nanoelectronics-face-
tough-challenges/ .

[4] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. R.
LeBlanc, “Design of ion-implanted mosfet’s with very small physical dimensions,”
IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[5] It’s time to shift to data centric computing. [Online]. Available:  https://research.
ibm.com/articles/datacentricdesign/ .

[6] T. M. Conte, E. P. DeBenedictis, P. A. Gargini, and E. Track, “Rebooting computing:
The road ahead,” Computer, vol. 50, no. 1, pp. 20–29, 2017.

[7] N. Thompson and S. Spanuth, “The decline of computers as a general purpose tech-
nology: Why deep learning and the end of moore’s law are fragmenting computing,”
Available at SSRN 3287769, 2018.

[8] W. G. Hatcher and W. Yu, “A survey of deep learning: Platforms, applications and
emerging research trends,” IEEE Access, vol. 6, pp. 24 411–24 432, 2018.

[9] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-of-the-art deep learning
software tools,” in 2016 7th International Conference on Cloud Computing and Big
Data (CCBD), IEEE, 2016, pp. 99–104.

[10] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu, B. Anderson,
M. Breughe, M. Charlebois, W. Chou, et al., “Mlperf inference benchmark,” in 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA),
IEEE, 2020, pp. 446–459.

87

https://www.cnet.com/news/moore-says-nanoelectronics-face-tough-challenges/
https://www.cnet.com/news/moore-says-nanoelectronics-face-tough-challenges/
https://research.ibm.com/articles/datacentricdesign/
https://research.ibm.com/articles/datacentricdesign/


[11] Quantum Computing Market Research Report: By Offering, Deployment Type, Appli-
cation, Technology, Industry - Industry Share, Growth, Drivers, Trends and Demand
Forecast to 2030. Apr. 2020. [Online]. Available:  https://www.researchandmarkets.
com / reports / 5010716 / quantum - computing - market - research - report - by ?
utm _ source = dynamic & utm _ medium = GNOM & utm _ code = 4m3fxs & utm _ campaign =
1375670%20-%20Worldwide%20Quantum%20Computing%20Market%20(2019%20to%
202030)%20-%20Drivers,%20Restraints%20and%20Opportunities&utm_exec=
jamu273gnomd .

[12] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gus-
tavsson, and W. D. Oliver, “Superconducting qubits: Current state of play,” Annual
Review of Condensed Matter Physics, vol. 11, pp. 369–395, 2020.

[13] S. GAMBLE, “Quantum computing: What it is, why we want it, and how we’re trying
to get it,” in Frontiers of Engineering: Reports on Leading-Edge Engineering from the
2018 Symposium, National Academies Press, 2019.

[14] F. Barahona, “On the computational complexity of ising spin glass models,” Journal
of Physics A: Mathematical and General, vol. 15, no. 10, p. 3241, 1982.

[15] A. Lucas, “Ising formulations of many np problems,” Frontiers in Physics, vol. 2, p. 5,
2014.

[16] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated anneal-
ing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[17] M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris,
A. J. Berkley, J. Johansson, P. Bunyk, et al., “Quantum annealing with manufactured
spins,” Nature, vol. 473, no. 7346, pp. 194–198, 2011.

[18] P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamate, T.
Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, et al., “A fully programmable 100-
spin coherent ising machine with all-to-all connections,” Science, vol. 354, no. 6312,
pp. 614–617, 2016.

[19] S. Dutta, A. Khanna, H. Paik, D. Schlom, A. Raychowdhury, Z. Toroczkai, and S.
Datta, “Ising hamiltonian solver using stochastic phase-transition nano-oscillators,”
arXiv preprint arXiv:2007.12331, 2020.

[20] H. Goto, K. Tatsumura, and A. R. Dixon, “Combinatorial optimization by simulating
adiabatic bifurcations in nonlinear hamiltonian systems,” Science advances, vol. 5,
no. 4, eaav2372, 2019.

88

https://www.researchandmarkets.com/reports/5010716/quantum-computing-market-research-report-by?utm_source=dynamic&utm_medium=GNOM&utm_code=4m3fxs&utm_campaign=1375670%20-%20Worldwide%20Quantum%20Computing%20Market%20(2019%20to%202030)%20-%20Drivers,%20Restraints%20and%20Opportunities&utm_exec=jamu273gnomd
https://www.researchandmarkets.com/reports/5010716/quantum-computing-market-research-report-by?utm_source=dynamic&utm_medium=GNOM&utm_code=4m3fxs&utm_campaign=1375670%20-%20Worldwide%20Quantum%20Computing%20Market%20(2019%20to%202030)%20-%20Drivers,%20Restraints%20and%20Opportunities&utm_exec=jamu273gnomd
https://www.researchandmarkets.com/reports/5010716/quantum-computing-market-research-report-by?utm_source=dynamic&utm_medium=GNOM&utm_code=4m3fxs&utm_campaign=1375670%20-%20Worldwide%20Quantum%20Computing%20Market%20(2019%20to%202030)%20-%20Drivers,%20Restraints%20and%20Opportunities&utm_exec=jamu273gnomd
https://www.researchandmarkets.com/reports/5010716/quantum-computing-market-research-report-by?utm_source=dynamic&utm_medium=GNOM&utm_code=4m3fxs&utm_campaign=1375670%20-%20Worldwide%20Quantum%20Computing%20Market%20(2019%20to%202030)%20-%20Drivers,%20Restraints%20and%20Opportunities&utm_exec=jamu273gnomd
https://www.researchandmarkets.com/reports/5010716/quantum-computing-market-research-report-by?utm_source=dynamic&utm_medium=GNOM&utm_code=4m3fxs&utm_campaign=1375670%20-%20Worldwide%20Quantum%20Computing%20Market%20(2019%20to%202030)%20-%20Drivers,%20Restraints%20and%20Opportunities&utm_exec=jamu273gnomd
https://www.researchandmarkets.com/reports/5010716/quantum-computing-market-research-report-by?utm_source=dynamic&utm_medium=GNOM&utm_code=4m3fxs&utm_campaign=1375670%20-%20Worldwide%20Quantum%20Computing%20Market%20(2019%20to%202030)%20-%20Drivers,%20Restraints%20and%20Opportunities&utm_exec=jamu273gnomd


[21] T. Wang and J. Roychowdhury, “Oim: Oscillator-based ising machines for solving
combinatorial optimisation problems,” in International Conference on Unconventional
Computation and Natural Computation, Springer, 2019, pp. 232–256.

[22] I. Ahmed, P.-W. Chiu, and C. H. Kim, “A probabilistic self-annealing compute fabric
based on 560 hexagonally coupled ring oscillators for solving combinatorial optimiza-
tion problems,” in 2020 IEEE Symposium on VLSI Circuits, IEEE, 2020, pp. 1–2.

[23] J. Chou, S. Bramhavar, S. Ghosh, and W. Herzog, “Analog coupled oscillator based
weighted ising machine,” Scientific reports, vol. 9, no. 1, pp. 1–10, 2019.

[24] M. Baity-Jesi, R. A. Baños, A. Cruz, L. A. Fernandez, J. M. Gil-Narvión, A. Gordillo-
Guerrero, D. Iñiguez, A. Maiorano, F. Mantovani, E. Marinari, et al., “Janus ii: A
new generation application-driven computer for spin-system simulations,” Computer
Physics Communications, vol. 185, no. 2, pp. 550–559, 2014.

[25] M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, and H. Mizuno, “24.3
20k-spin ising chip for combinational optimization problem with cmos annealing,” in
2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical
Papers, IEEE, 2015, pp. 1–3.

[26] T. Takemoto, M. Hayashi, C. Yoshimura, and M. Yamaoka, “2.6 a 2× 30k-spin mul-
tichip scalable annealing processor based on a processing-in-memory approach for
solving large-scale combinatorial optimization problems,” in 2019 IEEE International
Solid-State Circuits Conference-(ISSCC), IEEE, 2019, pp. 52–54.

[27] M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, and H. G. Katz-
graber, “Physics-inspired optimization for quadratic unconstrained problems using a
digital annealer,” Frontiers in Physics, vol. 7, p. 48, 2019.

[28] K. Yamamoto, K. Ando, N. Mertig, T. Takemoto, M. Yamaoka, H. Teramoto, A.
Sakai, S. Takamaeda-Yamazaki, and M. Motomura, “7.3 statica: A 512-spin 0.25 m-
weight full-digital annealing processor with a near-memory all-spin-updates-at-once
architecture for combinatorial optimization with complete spin-spin interactions,”
in 2020 IEEE International Solid-State Circuits Conference-(ISSCC), IEEE, 2020,
pp. 138–140.

[29] S. Patel, L. Chen, P. Canoza, and S. Salahuddin, “Ising model optimization problems
on a fpga accelerated restricted boltzmann machine,” arXiv preprint arXiv:2008.04436,
2020.

[30] S. Patel, P. Canoza, and S. Salahuddin, “Logically synthesized, hardware-accelerated,
restricted boltzmann machines for combinatorial optimization and integer factoriza-
tion,” arXiv preprint arXiv:2007.13489, 2020.

89



[31] K. Y. Camsari, R. Faria, B. M. Sutton, and S. Datta, “Stochastic p-bits for invertible
logic,” Physical Review X, vol. 7, no. 3, p. 031 014, 2017.

[32] K. Y. Camsari, B. M. Sutton, and S. Datta, “P-bits for probabilistic spin logic,” arXiv
preprint arXiv:1809.04028, 2018.

[33] B. Behin-Aein, V. Diep, and S. Datta, “A building block for hardware belief networks,”
Scientific reports, vol. 6, p. 29 893, 2016.

[34] R. P. Feynman, “Simulating physics with computers,” International journal of theo-
retical physics, vol. 21, no. 6-7, pp. 467–488, 1982.

[35] R. Faria, K. Y. Camsari, and S. Datta, “Implementing bayesian networks with em-
bedded stochastic mram,” AIP Advances, vol. 8, no. 4, p. 045 101, 2018.

[36] J. Kaiser, R. Faria, K. Y. Camsari, and S. Datta, “Probabilistic circuits for au-
tonomous learning: A simulation study,” Frontiers in Computational Neuroscience,
vol. 14, 2020.

[37] B. Sutton, K. Y. Camsari, B. Behin-Aein, and S. Datta, “Intrinsic optimization using
stochastic nanomagnets,” Scientific Reports, vol. 7, p. 44 370, 2017.

[38] W. A. Borders, A. Z. Pervaiz, S. Fukami, K. Y. Camsari, H. Ohno, and S. Datta,
“Integer factorization using stochastic magnetic tunnel junctions,” Nature, vol. 573,
no. 7774, pp. 390–393, 2019.

[39] O. Hassan, K. Y. Camsari, and S. Datta, “Voltage-driven building block for hardware
belief networks,” IEEE Design & Test, vol. 36, no. 3, pp. 15–21, 2019.

[40] K. Y. Camsari, S. Chowdhury, and S. Datta, “Scaled quantum circuits emulated with
room temperature p-bits,” arXiv preprint arXiv:1810.07144, 2018.

[41] S. Chowdhury, K. Y. Camsari, and S. Datta, “Emulating quantum interference with
generalized ising machines,” arXiv preprint arXiv:2007.07379, 2020.

[42] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm for boltzmann
machines,” Cognitive science, vol. 9, no. 1, pp. 147–169, 1985.

[43] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,”
Neural computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[44] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S. Lam, N. Ge,
J. J. Yang, and R. S. Williams, “Dot-product engine for neuromorphic computing:
Programming 1t1m crossbar to accelerate matrix-vector multiplication,” in 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), IEEE, 2016, pp. 1–6.

90



[45] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. C. Adam, K. K. Likharev, and D. B.
Strukov, “Training and operation of an integrated neuromorphic network based on
metal-oxide memristors,” Nature, vol. 521, no. 7550, pp. 61–64, 2015.

[46] H. Huang, J. Heilmeyer, M. Grözing, M. Berroth, J. Leibrich, and W. Rosenkranz,
“An 8-bit 100-gs/s distributed dac in 28-nm cmos for optical communications,” IEEE
Transactions on Microwave Theory and Techniques, vol. 63, no. 4, pp. 1211–1218,
2015.

[47] V. Ostwal, R. Zand, R. DeMara, and J. Appenzeller, “A novel compound synapse
using probabilistic spin–orbit-torque switching for mtj-based deep neural networks,”
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 5,
no. 2, pp. 182–187, 2019.

[48] B. Sutton, R. Faria, L. A. Ghantasala, K. Y. Camsari, and S. Datta, “Autonomous
probabilistic coprocessing with petaflips per second,” arXiv preprint arXiv:1907.09664,
2019.

[49] A. Z. Pervaiz, B. M. Sutton, L. A. Ghantasala, and K. Y. Camsari, “Weighted p-
bits for fpga implementation of probabilistic circuits,” IEEE transactions on neural
networks and learning systems, 2018.

[50] A. Z. Pervaiz, S. Datta, and K. Y. Camsari, “Probabilistic computing with binary
stochastic neurons,” in 2019 IEEE BiCMOS and Compound semiconductor Integrated
Circuits and Technology Symposium (BCICTS), IEEE, 2019, pp. 1–6.

[51] F. Cai, S. Kumar, T. Van Vaerenbergh, R. Liu, C. Li, S. Yu, Q. Xia, J. J. Yang,
R. Beausoleil, W. Lu, et al., “Harnessing intrinsic noise in memristor hopfield neural
networks for combinatorial optimization,” arXiv preprint arXiv:1903.11194, 2019.

[52] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. Piramanayagam, “Spin-
tronics based random access memory: A review,” Materials Today, vol. 20, no. 9,
pp. 530–548, 2017.

[53] “Everspin enters pilot production phase for the world’s first 28 nm 1 gb stt-mram
component,” Everspin Technology, Jul. 2019. [Online]. Available:  https://investor.
everspin.com/news-releases/news-release-details/everspin-enters-pilot-
production-phase-worlds-first-28-nm-1-gb .

[54] A. Fukushima, T. Seki, K. Yakushiji, H. Kubota, H. Imamura, S. Yuasa, and K. Ando,
“Spin dice: A scalable truly random number generator based on spintronics,” Applied
Physics Express, vol. 7, no. 8, p. 083 001, 2014.

91

https://investor.everspin.com/news-releases/news-release-details/everspin-enters-pilot-production-phase-worlds-first-28-nm-1-gb
https://investor.everspin.com/news-releases/news-release-details/everspin-enters-pilot-production-phase-worlds-first-28-nm-1-gb
https://investor.everspin.com/news-releases/news-release-details/everspin-enters-pilot-production-phase-worlds-first-28-nm-1-gb


[55] W. H. Choi, Y. Lv, J. Kim, A. Deshpande, G. Kang, J.-P. Wang, and C. H. Kim, “A
magnetic tunnel junction based true random number generator with conditional per-
turb and real-time output probability tracking,” in 2014 IEEE International Electron
Devices Meeting, IEEE, 2014, pp. 12–5.

[56] H. Lee, F. Ebrahimi, P. K. Amiri, and K. L. Wang, “Design of high-throughput
and low-power true random number generator utilizing perpendicularly magnetized
voltage-controlled magnetic tunnel junction,” AIP Advances, vol. 7, no. 5, p. 055 934,
2017.

[57] P. Debashis, R. Faria, K. Y. Camsari, J. Appenzeller, S. Datta, and Z. Chen, “Exper-
imental demonstration of nanomagnet networks as hardware for ising computing,” in
Electron Devices Meeting (IEDM), 2016 IEEE International, IEEE, 2016, pp. 34–3.

[58] nanohub.org, Modular approach to spintronics,  https://nanohub.org/groups/
spintronics .

[59] Predictive Technology Model (PTM) (http://ptm.asu.edu/).

[60] O. Hassan, R. Faria, K. Y. Camsari, J. Z. Sun, and S. Datta, “Low-barrier magnet
design for efficient hardware binary stochastic neurons,” IEEE Magnetics Letters,
vol. 10, pp. 1–5, 2019.

[61] R. Faria, K. Y. Camsari, and S. Datta, “Low-barrier nanomagnets as p-bits for spin
logic,” IEEE Magnetics Letters, vol. 8, pp. 1–5, 2017.

[62] B. Parks, M. Bapna, J. Igbokwe, H. Almasi, W. Wang, and S. A. Majetich, “Su-
perparamagnetic perpendicular magnetic tunnel junctions for true random number
generators,” AIP Advances, vol. 8, no. 5, p. 055 903, 2018.

[63] K. Y. Camsari, R. Faria, O. Hassan, A. Z. Pervaiz, B. M. Sutton, and S. Datta,
“P-transistors and p-circuits for boolean and non-boolean logic,” in Spintronics X,
International Society for Optics and Photonics, vol. 10357, 2017, 103572K.

[64] D. J. Amit and D. J. Amit, Modeling brain function: The world of attractor neural
networks. Cambridge university press, 1992. [Online]. Available:  https://doi.org/
10.1016/0166-2236(90)90155-4 .

[65] Binary stochastic neurons in tensorflow (https://r2rt.com/binary-stochastic-neurons-
in-tensorflow.html).

[66] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM Transactions on
Embedded computing systems (TECS), vol. 12, no. 2s, p. 92, 2013. [Online]. Available:

 https://doi.org/10.1145/2465787.2465794 .

92

https://nanohub.org/groups/spintronics
https://nanohub.org/groups/spintronics
https://doi.org/10.1016/0166-2236(90)90155-4
https://doi.org/10.1016/0166-2236(90)90155-4
https://doi.org/10.1145/2465787.2465794


[67] S. K. Esser, A. Andreopoulos, R. Appuswamy, P. Datta, D. Barch, A. Amir, J. Arthur,
A. Cassidy, M. Flickner, P. Merolla, et al., “Cognitive computing systems: Algorithms
and applications for networks of neurosynaptic cores,” in Neural Networks (IJCNN),
The 2013 International Joint Conference on, IEEE, 2013, pp. 1–10. [Online]. Avail-
able:  https://doi.org/10.1109/IJCNN.2013.6706746 .

[68] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan,
B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, et al., “A million spiking-neuron
integrated circuit with a scalable communication network and interface,” Science,
vol. 345, no. 6197, pp. 668–673, 2014. [Online]. Available:  https://doi.org/10.
1126/science.1254642 .

[69] Note that we are using a bipolar representation ±1 instead of the binary representa-
tion (0,1). This is reflected in the use of the tanh function in Eq.  2.1 instead of the
usual logistic function.

[70] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale
memristor device as synapse in neuromorphic systems,” Nano letters, vol. 10, no. 4,
pp. 1297–1301, 2010. [Online]. Available:  http://doi.org/10.1021/nl904092h .

[71] U. Çilingiroglu, “A purely capacitive synaptic matrix for fixed-weight neural net-
works,” IEEE Transactions on Circuits and Systems, vol. 38, no. 2, pp. 210–217,
1991. [Online]. Available:  https://doi.org/10.1109/31.68299 .

[72] B. R. Zink, Y. Lv, and J.-P. Wang, “Telegraphic switching signals by magnet tunnel
junctions for neural spiking signals with high information capacity,” Journal of Applied
Physics, vol. 124, no. 15, p. 152 121, 2018. [Online]. Available:  https://doi.org/10.
1063/1.5042444 .

[73] D. Vodenicarevic, N. Locatelli, A. Mizrahi, J. S. Friedman, A. F. Vincent, M. Romera,
A. Fukushima, K. Yakushiji, H. Kubota, S. Yuasa, et al., “Low-energy truly random
number generation with superparamagnetic tunnel junctions for unconventional com-
puting,” Physical Review Applied, vol. 8, no. 5, p. 054 045, 2017.

[74] A. Mizrahi, T. Hirtzlin, A. Fukushima, H. Kubota, S. Yuasa, J. Grollier, and D. Quer-
lioz, “Neural-like computing with populations of superparamagnetic basis functions,”
Nature communications, vol. 9, no. 1, p. 1533, 2018.

[75] D. Vodenicarevic, N. Locatelli, A. Mizrahi, T. Hirtzlin, J. S. Friedman, J. Grollier,
and D. Querlioz, “Circuit-level evaluation of the generation of truly random bits
with superparamagnetic tunnel junctions,” in 2018 IEEE International Symposium
on Circuits and Systems (ISCAS), IEEE, 2018, pp. 1–4.

93

https://doi.org/10.1109/IJCNN.2013.6706746
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
http://doi.org/10.1021/nl904092h
https://doi.org/10.1109/31.68299
https://doi.org/10.1063/1.5042444
https://doi.org/10.1063/1.5042444


[76] C. M. Liyanagedera, A. Sengupta, A. Jaiswal, and K. Roy, “Stochastic spiking neural
networks enabled by magnetic tunnel junctions: From nontelegraphic to telegraphic
switching regimes,” Physical Review Applied, vol. 8, no. 6, p. 064 017, 2017. [Online].
Available:  https://doi.org/10.1103/PhysRevApplied.8.064017 .

[77] K. Y. Camsari, S. Salahuddin, and S. Datta, “Implementing p-bits with embedded
mtj,” IEEE Electron Device Letters, vol. 38, no. 12, pp. 1767–1770, 2017.

[78] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross, “Vlsi imple-
mentation of deep neural network using integral stochastic computing,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 10, pp. 2688–
2699, 2017. [Online]. Available:  https://doi.org/10.1109/TVLSI.2017.2654298 .

[79] B. Yuan and K. K. Parhi, “Vlsi architectures for the restricted boltzmann machine,”
ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 13,
no. 3, p. 35, 2017. [Online]. Available:  https://doi.org/10.1145/3007193 .

[80] L. Lopez-Diaz, L. Torres, and E. Moro, “Transition from ferromagnetism to super-
paramagnetism on the nanosecond time scale,” Physical Review B, vol. 65, no. 22,
p. 224 406, 2002.

[81] W. F. Brown Jr, “Thermal fluctuations of a single-domain particle,” Physical Review,
vol. 130, no. 5, p. 1677, 1963.

[82] W. T. Coffey and Y. P. Kalmykov, “Thermal fluctuations of magnetic nanoparticles:
Fifty years after brown,” Journal of Applied Physics, vol. 112, no. 12, p. 121 301, 2012.

[83] J. Kaiser, A. Rustagi, K. Y. Camsari, J. Z. Sun, S. Datta, and P. Upadhyaya,
“Subnanosecond fluctuations in low-barrier nanomagnets,” Physical Review Applied,
vol. 12, no. 5, p. 054 056, 2019.

[84] J. Z. Sun, “Spin-current interaction with a monodomain magnetic body: A model
study,” Physical Review B, vol. 62, no. 1, p. 570, 2000.

[85] S. Sayed, K. Y. Camsari, R. Faria, and S. Datta, “Rectification in spin-orbit materials
using low-energy-barrier magnets,” Physical Review Applied, vol. 11, no. 5, p. 054 063,
2019.

[86] A. Z. Pervaiz, L. A. Ghantasala, K. Y. Camsari, and S. Datta, “Hardware emulation
of stochastic p-bits for invertible logic,” Scientific reports, vol. 7, no. 1, p. 10 994,
2017.

[87] K. Y. Camsari, S. Ganguly, and S. Datta, “Modular approach to spintronics,” Scien-
tific reports, vol. 5, p. 10 571, 2015.

94

https://doi.org/10.1103/PhysRevApplied.8.064017
https://doi.org/10.1109/TVLSI.2017.2654298
https://doi.org/10.1145/3007193


[88] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu, “Predictive technology
model,” Internet: http://ptm. asu. edu, 2002.

[89] D. E. Nikonov and I. A. Young, “Benchmarking of beyond-cmos exploratory devices
for logic integrated circuits,” IEEE Journal on Exploratory Solid-State Computational
Devices and Circuits, vol. 1, pp. 3–11, 2015.

[90] R. Zand, K. Y. Camsari, S. Datta, and R. F. DeMara, “Composable probabilistic infer-
ence networks using mram-based stochastic neurons,” arXiv preprint arXiv:1811.11390,
2018.

[91] F. Neukart, G. Compostella, C. Seidel, D. Von Dollen, S. Yarkoni, and B. Parney,
“Traffic flow optimization using a quantum annealer,” Frontiers in ICT, vol. 4, p. 29,
2017.

[92] F. Barahona, M. Grötschel, M. Jünger, and G. Reinelt, “An application of combinato-
rial optimization to statistical physics and circuit layout design,” Operations Research,
vol. 36, no. 3, pp. 493–513, 1988.

[93] C. Cook, H. Zhao, T. Sato, M. Hiromoto, and S. X.-D. Tan, “Gpu based parallel ising
computing for combinatorial optimization problems in vlsi physical design,” arXiv
preprint arXiv:1807.10750, 2018.

[94] G. Rosenberg, P. Haghnegahdar, P. Goddard, P. Carr, K. Wu, and M. L. De Prado,
“Solving the optimal trading trajectory problem using a quantum annealer,” IEEE
Journal of Selected Topics in Signal Processing, vol. 10, no. 6, pp. 1053–1060, 2016.

[95] H. Sakaguchi, K. Ogata, T. Isomura, S. Utsunomiya, Y. Yamamoto, and K. Ai-
hara, “Boltzmann sampling by degenerate optical parametric oscillator network for
structure-based virtual screening,” Entropy, vol. 18, no. 10, p. 365, 2016.

[96] L. Xia, P. Gu, B. Li, T. Tang, X. Yin, W. Huangfu, S. Yu, Y. Cao, Y. Wang, and
H. Yang, “Technological exploration of rram crossbar array for matrix-vector mul-
tiplication,” Journal of Computer Science and Technology, vol. 31, no. 1, pp. 3–19,
2016.

[97] F. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang, M. P. Flynn, and
W. D. Lu, “A fully integrated reprogrammable memristor–cmos system for efficient
multiply–accumulate operations,” Nature Electronics, vol. 2, no. 7, pp. 290–299, 2019.

[98] F. M. Bayat, M. Prezioso, B. Chakrabarti, H. Nili, I. Kataeva, and D. Strukov, “Imple-
mentation of multilayer perceptron network with highly uniform passive memristive
crossbar circuits,” Nature communications, vol. 9, no. 1, pp. 1–7, 2018.

95



[99] M. M. Torunbalci, P. Upadhyaya, S. A. Bhave, and K. Y. Camsari, “Modular compact
modeling of mtj devices,” IEEE Transactions on Electron Devices, vol. 65, no. 10,
pp. 4628–4634, 2018.

[100] M. W. Daniels, A. Madhavan, P. Talatchian, A. Mizrahi, and M. D. Stiles, “Energy-
efficient stochastic computing with superparamagnetic tunnel junctions,” Physical
Review Applied, vol. 13, no. 3, p. 034 016, 2020.

[101] J. Grollier, D. Querlioz, K. Camsari, K. Everschor-Sitte, S. Fukami, and M. D. Stiles,
“Neuromorphic spintronics,” Nature Electronics, pp. 1–11, 2020.

[102] M. A. Abeed and S. Bandyopadhyay, “Low energy barrier nanomagnet design for
binary stochastic neurons: Design challenges for real nanomagnets with fabrication
defects,” IEEE Magnetics Letters, vol. 10, pp. 1–5, 2019.

[103] J. L. Drobitch and S. Bandyopadhyay, “Reliability and scalability of p-bits imple-
mented with low energy barrier nanomagnets,” IEEE Magnetics Letters, vol. 10,
pp. 1–4, 2019.

[104] B. Parks, A. Abdelgawad, T. Wong, R. F. Evans, and S. A. Majetich, “Magnetoresis-
tance dynamics in superparamagnetic co- fe- b nanodots,” Physical Review Applied,
vol. 13, no. 1, p. 014 063, 2020.

[105] S. Cheemalavagu, P. Korkmaz, K. V. Palem, B. E. Akgul, and L. N. Chakrapani, “A
probabilistic cmos switch and its realization by exploiting noise,” in IFIP Interna-
tional Conference on VLSI, 2005, pp. 535–541.

[106] N. Shukla, A. Parihar, E. Freeman, H. Paik, G. Stone, V. Narayanan, H. Wen, Z. Cai,
V. Gopalan, R. Engel-Herbert, et al., “Synchronized charge oscillations in correlated
electron systems,” Scientific reports, vol. 4, p. 4964, 2014.

[107] S. Kumar, J. P. Strachan, and R. S. Williams, “Chaotic dynamics in nanoscale nbo
2 mott memristors for analogue computing,” Nature, vol. 548, no. 7667, pp. 318–321,
2017.

[108] B. Stampfer, F. Zhang, Y. Y. Illarionov, T. Knobloch, P. Wu, M. Waltl, A. Grill, J.
Appenzeller, and T. Grasser, “Characterization of single defects in ultrascaled mos 2
field-effect transistors,” ACS nano, vol. 12, no. 6, pp. 5368–5375, 2018.

[109] J. Cai, B. Fang, L. Zhang, W. Lv, B. Zhang, T. Zhou, G. Finocchio, and Z. Zeng,
“Voltage-controlled spintronic stochastic neuron based on a magnetic tunnel junc-
tion,” Physical Review Applied, vol. 11, no. 3, p. 034 015, 2019.

96



[110] C. Lin, S. Kang, Y. Wang, K. Lee, X. Zhu, W. Chen, X. Li, W. Hsu, Y. Kao, M.
Liu, et al., “45nm low power cmos logic compatible embedded stt mram utilizing a
reverse-connection 1t/1mtj cell,” in Electron Devices Meeting (IEDM), 2009 IEEE
International, IEEE, 2009, pp. 1–4.

[111] Y. Lv, R. P. Bloom, and J.-P. Wang, “Experimental demonstration of probabilistic
spin logic by magnetic tunnel junctions,” IEEE Magnetics Letters, vol. 10, pp. 1–5,
2019.

[112] B. R. Zink, Y. Lv, and J.-P. Wang, “Independent control of antiparallel-and parallel-
state thermal stability factors in magnetic tunnel junctions for telegraphic signals with
two degrees of tunability,” IEEE Transactions on Electron Devices, vol. 66, no. 12,
pp. 5353–5359, 2019.

[113] S. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-H.
Yang, “Giant tunnelling magnetoresistance at room temperature with mgo (100) tun-
nel barriers,” Nature materials, vol. 3, no. 12, pp. 862–867, 2004.

[114] S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. Lee, K. Miura, H. Hasegawa, M. Tsunoda,
F. Matsukura, and H. Ohno, “Tunnel magnetoresistance of 604% at 300 k by sup-
pression of ta diffusion in co fe b/ mg o/ co fe b pseudo-spin-valves annealed at high
temperature,” Applied Physics Letters, vol. 93, no. 8, p. 082 508, 2008.

[115] M. R. Pufall, W. H. Rippard, S. Kaka, S. E. Russek, T. J. Silva, J. Katine, and
M. Carey, “Large-angle, gigahertz-rate random telegraph switching induced by spin-
momentum transfer,” Physical Review B, vol. 69, no. 21, p. 214 409, 2004.

[116] C. Safranski, J. Kaiser, P. Trouilloud, P. Hashemi, G. Hu, and J. Z. Sun, “Demonstra-
tion of nanosecond operation in stochastic magnetic tunnel junctions,” arXiv preprint
arXiv:2010.14393, 2020.

[117] M. Romera, P. Talatchian, S. Tsunegi, F. A. Araujo, V. Cros, P. Bortolotti, J. Trastoy,
K. Yakushiji, A. Fukushima, H. Kubota, et al., “Vowel recognition with four coupled
spin-torque nano-oscillators,” Nature, vol. 563, no. 7730, pp. 230–234, 2018.

[118] S. Jenkins, A. Meo, L. E. Elliott, S. K. Piotrowski, M. Bapna, R. W. Chantrell,
S. A. Majetich, and R. F. Evans, “Magnetic stray fields in nanoscale magnetic tunnel
junctions,” Journal of Physics D: Applied Physics, vol. 53, no. 4, p. 044 001, 2019.

[119] R. Faria, J. Kaiser, K. Y. Camsari, and S. Datta, “Hardware design for autonomous
bayesian networks,” arXiv preprint arXiv:2003.01767, 2020.

[120] S. V. Isakov, I. N. Zintchenko, T. F. Rønnow, and M. Troyer, “Optimised simu-
lated annealing for ising spin glasses,” Computer Physics Communications, vol. 192,
pp. 265–271, 2015.

97



[121] E. Aarts, E. H. Aarts, and J. K. Lenstra, Local search in combinatorial optimization.
Princeton University Press, 2003.

[122] M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang,
R. S. Williams, J. J. Yang, et al., “Memristor-based analog computation and neural
network classification with a dot product engine,” Advanced Materials, vol. 30, no. 9,
p. 1 705 914, 2018.

[123] H. Gyoten, M. Hiromoto, and T. Sato, “Area efficient annealing processor for ising
model without random number generator,” IEICE TRANSACTIONS on Information
and Systems, vol. 101, no. 2, pp. 314–323, 2018.

[124] S. Aggarwal, H. Almasi, M. DeHerrera, B. Hughes, S. Ikegawa, J. Janesky, H. Lee,
H. Lu, F. Mancoff, K. Nagel, et al., “Demonstration of a reliable 1 gb standalone
spin-transfer torque mram for industrial applications,” in 2019 IEEE International
Electron Devices Meeting (IEDM), IEEE, 2019, pp. 2–1.

[125] X. Zhang, R. Bashizade, Y. Wang, C. Lyu, S. Mukherjee, and A. R. Lebeck, “Beyond
application end-point results: Quantifying statistical robustness of mcmc accelera-
tors,” arXiv preprint arXiv:2003.04223, 2020.

[126] S. Nasrin, J. L. Drobitch, S. Bandyopadhyay, and A. R. Trivedi, “Low power restricted
boltzmann machine using mixed-mode magneto-tunneling junctions,” IEEE Electron
Device Letters, vol. 40, no. 2, pp. 345–348, 2019.

[127] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean, G. S. Rose, and
J. S. Plank, “A survey of neuromorphic computing and neural networks in hardware,”
arXiv preprint arXiv:1705.06963, 2017.

[128] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural
networks: Training neural networks with weights and activations constrained to+ 1
or-1,” arXiv preprint arXiv:1602.02830, vol. 2, 2016.

[129] C.-H. Tsai, W.-J. Yu, W. H. Wong, and C.-Y. Lee, “A 41.3/26.7 pj per neuron weight
rbm processor supporting on-chip learning/inference for iot applications,” IEEE Jour-
nal of Solid-State Circuits, vol. 52, no. 10, pp. 2601–2612, 2017.

[130] S. Park, K. Bong, D. Shin, J. Lee, S. Choi, and H.-J. Yoo, “93tops/w scalable deep
learning/inference processor with tetra-parallel mimd architecture for big-data appli-
cations,” in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest
of Technical Papers, IEEE, 2015, pp. 1–3.

[131] T. Shibata and T. Ohmi, “A functional mos transistor featuring gate-level weighted
sum and threshold operations,” IEEE Transactions on Electron devices, vol. 39, no. 6,
pp. 1444–1455, 1992.

98



[132] N. Nakamura, K. Shimada, T. Matsuda, and M. Kimura, “Neuron mos inverter and
source follower using thin-film transistors,” in Future of Electron Devices, Kansai
(IMFEDK), 2015 IEEE International Meeting for, IEEE, 2015, pp. 90–91.

[133] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms.
MIT press, 2009.

[134] F. L. Traversa and M. Di Ventra, “Polynomial-time solution of prime factorization
and np-complete problems with digital memcomputing machines,” Chaos: An Inter-
disciplinary Journal of Nonlinear Science, vol. 27, no. 2, p. 023 107, 2017.

[135] R. Zand, K. Y. Camsari, I. Ahmed, S. D. Pyle, C. H. Kim, S. Datta, and R. F.
DeMara, “R-dbn: A resistive deep belief network architecture leveraging the intrinsic
behavior of probabilistic devices,” arXiv preprint arXiv:1710.00249, 2017.

[136] K. Y. Camsari, R. Faria, O. Hassan, B. M. Sutton, and S. Datta, “Equivalent circuit
for magnetoelectric read and write operations,” Physical Review Applied, vol. 9, no. 4,
p. 044 020, 2018.

[137] A. K. Biswas, H. Ahmad, J. Atulasimha, and S. Bandyopadhyay, “Experimental
demonstration of complete 180° reversal of magnetization in isolated co nanomag-
nets on a pmn–pt substrate with voltage generated strain,” Nano letters, vol. 17,
no. 6, pp. 3478–3484, 2017.

[138] K. Roy, S. Bandyopadhyay, and J. Atulasimha, “Hybrid spintronics and straintronics:
A magnetic technology for ultra low energy computing and signal processing,” Applied
Physics Letters, vol. 99, no. 6, p. 063 108, 2011.

[139] N. Kani, J. T. Heron, and A. Naeemi, “Strain-mediated magnetization reversal through
spin-transfer torque,” IEEE Transactions on Magnetics, vol. 53, no. 11, pp. 1–8, 2017.

[140] A. Jaiswal and K. Roy, “Mesl: Proposal for a non-volatile cascadable magneto-electric
spin logic,” Scientific reports, vol. 7, p. 39 793, 2017.

[141] S. Manipatruni, D. E. Nikonov, R. Ramesh, H. Li, and I. A. Young, “Spin-orbit logic
with magnetoelectric nodes: A scalable charge mediated nonvolatile spintronic logic,”
arXiv preprint arXiv:1512.05428, 2015.

[142] T. Gao, X. Zhang, W. Ratcliff, S. Maruyama, M. Murakami, A. Varatharajan, Z. Ya-
mani, P. Chen, K. Wang, H. Zhang, et al., “Electric-field induced reversible switching
of the magnetic easy axis in co/bifeo3 on srtio3,” Nano letters, vol. 17, no. 5, pp. 2825–
2832, 2017.

99



[143] J. Heron, J. Bosse, Q. He, Y. Gao, M. Trassin, L. Ye, J. Clarkson, C. Wang, J. Liu, S.
Salahuddin, et al., “Deterministic switching of ferromagnetism at room temperature
using an electric field,” Nature, vol. 516, no. 7531, p. 370, 2014.

[144] X. He, Y. Wang, N. Wu, A. N. Caruso, E. Vescovo, K. D. Belashchenko, P. A. Dow-
ben, and C. Binek, “Robust isothermal electric control of exchange bias at room
temperature,” Nature materials, vol. 9, no. 7, p. 579, 2010.

[145] Z. Zhao, W. Echtenkamp, M. Street, C. Binek, and J.-P. Wang, “Magnetoelectric
device feasibility demonstration—voltage control of exchange bias in perpendicular
cr 2 o 3 hall bar device,” in Device Research Conference (DRC), 2016 74th Annual,
IEEE, 2016, pp. 1–2.

[146] P. K. Amiri and K. L. Wang, “Voltage-controlled magnetic anisotropy in spintronic
devices,” in Spin, World Scientific, vol. 2, 2012, p. 1 240 002.

[147] D. Chien, X. Li, K. Wong, M. A. Zurbuchen, S. Robbennolt, G. Yu, S. Tolbert, N.
Kioussis, P. Khalili Amiri, K. L. Wang, et al., “Enhanced voltage-controlled mag-
netic anisotropy in magnetic tunnel junctions with an mgo/pzt/mgo tunnel barrier,”
Applied Physics Letters, vol. 108, no. 11, p. 112 402, 2016.

[148] S. K. Piotrowski, M. Bapna, S. D. Oberdick, S. A. Majetich, M. Li, C. Chien, R.
Ahmed, and R. Victora, “Size and voltage dependence of effective anisotropy in sub-
100-nm perpendicular magnetic tunnel junctions,” Physical Review B, vol. 94, no. 1,
p. 014 404, 2016.

[149] M. G. Mankalale, Z. Liang, Z. Zhao, C. H. Kim, J.-P. Wang, and S. S. Sapatnekar,
“Comet: Composite-input magnetoelectric-based logic technology,” IEEE Journal on
Exploratory Solid-State Computational Devices and Circuits, vol. 3, pp. 27–36, 2017.

[150] A. Khan, D. E. Nikonov, S. Manipatruni, T. Ghani, and I. A. Young, “Voltage induced
magnetostrictive switching of nanomagnets: Strain assisted strain transfer torque ran-
dom access memory,” Applied Physics Letters, vol. 104, no. 26, p. 262 407, 2014.

[151] N. Pertsev, “Giant magnetoelectric effect via strain-induced spin reorientation tran-
sitions in ferromagnetic films,” Physical Review B, vol. 78, no. 21, p. 212 102, 2008.

[152] R.-C. Peng, J.-M. Hu, L.-Q. Chen, and C.-W. Nan, “On the speed of piezostrain-
mediated voltage-driven perpendicular magnetization reversal: A computational elastodynamics-
micromagnetic phase-field study,” NPG Asia Materials, vol. 9, no. 7, e404, 2017.

[153] R. M. Iraei, S. Dutta, S. Manipatruni, D. E. Nikonov, I. A. Young, J. T. Heron,
and A. Naeemi, “A proposal for a magnetostriction-assisted all-spin logic device,” in
Device Research Conference (DRC), 2017 75th Annual, IEEE, 2017, pp. 1–2.

100



[154] S. Sharmin, Y. Shim, and K. Roy, “Magnetoelectric oxide based stochastic spin device
towards solving combinatorial optimization problems,” Scientific Reports, vol. 7, no. 1,
p. 11 276, 2017.

[155] N. Tiercelin, Y. Dusch, A. Klimov, S. Giordano, V. Preobrazhensky, and P. Pernod,
“Room temperature magnetoelectric memory cell using stress-mediated magnetoelas-
tic switching in nanostructured multilayers,” Applied Physics Letters, vol. 99, no. 19,
p. 192 507, 2011.

[156] A. Klimov, N. Tiercelin, Y. Dusch, S. Giordano, T. Mathurin, P. Pernod, V. Preo-
brazhensky, A. Churbanov, and S. Nikitov, “Magnetoelectric write and read opera-
tions in a stress-mediated multiferroic memory cell,” Applied Physics Letters, vol. 110,
no. 22, p. 222 401, 2017.

[157] S. Manipatruni, D. E. Nikonov, and I. A. Young, “Beyond cmos computing with spin
and polarization,” Nature Physics, vol. 14, no. 4, pp. 338–343, 2018.

[158] P. K. Amiri, J. G. Alzate, X. Q. Cai, F. Ebrahimi, Q. Hu, K. Wong, C. Grèzes,
H. Lee, G. Yu, X. Li, et al., “Electric-field-controlled magnetoelectric ram: Progress,
challenges, and scaling,” IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1–7,
2015.

[159] K. Roy, S. Bandyopadhyay, and J. Atulasimha, “Binary switching in a ‘symmetric’po-
tential landscape,” Scientific reports, vol. 3, p. 3038, 2013.

[160] T. Shen, V. Ostwal, K. Y. Camsari, and J. Appenzeller, “Demonstration of a pseudo-
magnetization based simultaneous write and read operation in a co 60 fe 20 b 20/pb
(mg 1/3 nb 2/3) 0.7 ti 0.3 o 3 heterostructure,” Scientific reports, vol. 10, no. 1,
pp. 1–9, 2020.

[161] A. Sheikholeslami and P. G. Gulak, “A survey of circuit innovations in ferroelectric
random-access memories,” Proceedings of the IEEE, vol. 88, no. 5, pp. 667–689, 2000.

[162] e. a. Tingting Shen Orchi Hassan, “Demonstration of pseudo-magnetization based
write operation in cofeb films and nanodots using ferromagnetic resonance,” (in prepa-
ration),

101



A. DERIVATION OF PINNING FIELD OF LBM

Magnets are generally used to store information putting the focus on the evaluating and

predicting characteristics of stable high-barrier magnets. It is interesting to note that the-

oretical predictions and analytical derivations regarding low-barrier magnet (∆ ≤ kBT) dy-

namics typically receive less attention as cases of ’least practical interest’[ 81 ]. We document

the analytical expressions associated with LBM in fig.  3.10 . The expressions for correlation

time and biasing current can be found in ref.[  60 ], [  82 ], [  83 ], [  85 ], in this appendix we derive

the bias field.

We derive the expressions for external magnetic field H0 required to pin the magnetization

of an LBM with ∆ ≤ kBT here. We start from the energy expression for the magnet (E)

and derive the expressions presented in fig.  3.10 from the steady-state average magnetization

defined by:

〈m〉 =

∫ θ=π

θ=0

∫ φ=π

φ=−π

sin θ dφ dθ m exp(−E/kBT )∫ θ=π/2

θ=0

∫ φ=π

φ=−π

sin θ dφ dθ exp(−E/kBT )
(A.1)

where (mx, my, mz) ≡ (cos θ, sin θ sin φ, sin θ cos φ).

A.1 Perpendicular Magnetic Anisotropy (PMA)

In case of LBM with perpendicular magnetization, the anisotropy field along x-axis Hkp → 0

and thus for a field applied in the x-direction the energy expression eq.  3.1 is reduced to :

E = −HextMSΩ mx (A.2)

Evaluation eq.  A.1 wrt to this energy gives us: 〈mx〉 = coth(HextMSΩ/kBT )−(HextMSΩ/kBT ) ≈

tanh(HextMSΩ/3kBT ). So to pin the magnetization to any of its state 〈mx〉 = ±1, the re-

quired external field for PMA magnets can be approximated by:

|Hext(P MA)| = 3kBT

MsΩ
(A.3)
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A.2 In-plane Magnetic Anisotropy (IMA)

For LBM with in-plane magnets, the anisotropy field along z-axis Hki → 0 and a large

demagnetization field HD exists along the z-axis which keeps the magnetization in-plane.

The energy expression from eq.  3.1 in this case is :

E = HDMSΩ m2
x − HextMSΩ mz. (A.4)

Once again evaluating eq.  A.1 wrt to this energy for very large demagnetizing field

(HD → ∞) can be simplified to 〈mz〉 ≈ HextMSΩ/2kBT . So to pin the magnetization to any

of its state 〈mz〉 = ±1, the required external field for IMA magnets can be approximated

by:

|Hext(IMA)| = 2kBT

MsΩ
(A.5)

The expression is independent of the demagnetization field. These empirical expressions

match our SPICE simulation results quite well as shown in fig.  A.1 .

M1: M𝑆Ω = 47 × 10−18emu
M2: MsΩ = 23× 10−17emu

(a) (b)

HD = 2400π emu/cc

H𝐷
′ = 4800π emu/cc

Figure A.1. Pinning Field of low-barrier magnets The numerical evalua-
tions of equations are compared to SPICE simulation for (a) Isotropic magnets
and (b) circular IMA magnets which have ∆ ≤ kBT. The pinning fields are
shown to be a function of MSΩ only where MS = 600 emu/cc and the vol-
ume of magnet Ω is varied, The pinning field values for IMA magnets indicate
that it is independent of the large demagnetization field, HD. The precise
correspondence between the analytical formulas and the numerical simulation
also constitutes as a benchmark to our finite temperature (stochastic) LLG
formulation.
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B. P-BIT DESIGN CRITERIA FROM BEHAVIORAL MODEL

Independent of the technology being used, probabilistic bits need to fulfill three key crite-

ria. The necessary conditions that the p-bit needs to satisfy can be interpreted from the

mathematical description of the p-bit given by:

mi = sgn[tanh(Ii) + ri] (B.1)

where Ii is the input to the p-bit which tunes its probability and ri is a continuous ran-

dom variable that provides stochasticity. The sgn function ensures that the mi values are

thresholded between ±1 values. But is it necessary for ri to be continuous and mi to be

thresholded? In chapter.  3 we showed that bipolar ri did not work. In this section we

elaborate on these necessary conditions.

Eq.  B.1 can be modified to represent a bipolar and un-thresholded p-bit design:

Bipolar ri : mi = sgn[tanh(Ii) + sgn(ri)];

Unsigned mi : mi = tanh(Ii) + ri;
(B.2)

We look at the performance of each of the p-bit behavioral models in a probabilistic

spin logic framework by designing two Boltzmann machines (BMs) for performing invertible

Boolean logic, namely the AND gate and 1 bit full-adder (FA). The p-bits are correlated

through their individual inputs Ii = ∑ Jijmj + hi, where Jijs are the coupling coefficients and

hi are the individual bias terms [  31 ]. The numerical probabilities of the system should agree

with the probabilities predicted from the energy function defined by

E(m) = −1
2
∑

ij
Jijmimj −

∑
i

himi (B.3)

using the Boltzmann law:

p(m) = exp (−E)∑
i,j exp (−E) (B.4)

Fig.  B.1 shows the transfer characteristic and probability distribution for the gates for

each p-bit model along with the expected Boltzmann distributions. The bipolar and unsigned
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(a) Transfer 
Characteristic

p-bit

(b) AND Gate

p-circuit

(b) 1bit Full-Adder

𝑚𝑖 = sgn[tanh 𝐼𝑖 − 𝒓𝒊[±𝟏]]𝑚𝑖 = sgn[tanh 𝐼𝑖 − 𝒓𝒊] 𝑚𝑖 = 𝑠𝑔𝑛[tanh 𝐼𝑖 − 𝑟𝑖]

Figure B.1. Behavioral Models: p-bit (a)Transfer Characteristics and p-
circuit implementations showing (b) AND Gate operation and (c) 1-bit Full
Adder operation for three different behavioral representations of p-bits. Only
the p-bit model expressed by eq.  B.1 with thresholding and continuous random
variable ri is able to reproduce the Bolzmann distribution exactly.

p-bit models fail to agree with the expected Boltzmann distributions. We demonstrate two

necessary requirements of p-bit behavior through this exercise, namely (a) the ri needs to

be continuous meaning the source of randomness in hardware has to have a continuous

distribution and (b) the output mi needs to be thresholded meaning hardware would require

a thresholding circuit (like the inverter) of some-sort.
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C. CODES

The SPICE modules for the spintronic device elements used in this thesis are available at

https : //nanohub.org/groups/spintronics [ 58 ] and the transistor models are available at

http : //ptm.asu.edu/ [ 59 ].

The codes used for generating the figures are available upon request to the author (email: has-

san19@purdue.edu, orchi.hassan@gmail.com).
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