
SCANS FRAMEWORK:

SIMULATION OF CUAS NETWORKS AND SENSORS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Austin Riegsecker

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF

COMMITTEE APPROVAL

Dr. Eric T. Matson

Department of Computer and Information Technology

Dr. J. Eric Dietz

Department of Computer and Information Technology

Dr. John Springer

Department of Computer and Information Technology

Dr. John Gallagher

Department of Electrical Engineering and Computer Science

University of Cincinnati

Approved by:

Dr. Kathryne A. Newton

iii

This work is dedicated to my best friend who has unconditionally supported me

through my grad school journey. I look forward to the many other journeys we have

ahead.

iv

ACKNOWLEDGMENTS

I would like to thank Emily King for her support and willingness to help with

editing. I would also like to thank my parents for endlessly calling me to see if I still

had my mental faculties, because at times there were reasons to question. I would

like to thank my committee members who have helped me grow professionally and

academically during my time at Purdue. Without their encouragement this work

would not have been completed in the time frame it was. Finally, I’d like to thank

my past teachers whose words have driven me to achieve more.

v

PREFACE

This research presents a novel approach for simulating counter unmanned

aerial system (CUAS) systems. The SCANS Framework, which stands for the

Simulation of CUAS Networks and Sensors. The hope is for this framework to

adapt and grow to fit the needs of the research community allowing for rapid

prototyping and design of CUAS models. By employing the framework, planning

and developmental cost can be lowered leading to more time for developing better

systems. Hopefully, this project will grow as a research platform allowing teams the

ability to perform system validation tests while still in the research planning stage.

The overall goal is to have a modular, system-agnostic framework capable of

adapting to the user’s needs and personal choice for software implementation.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xi

SYMBOLS . xiii

ABBREVIATIONS . xiv

ABSTRACT . xvi

CHAPTER 1. INTRODUCTION . 1
1.1 Problem Statement . 2
1.2 Significance . 3
1.3 Research Question . 4
1.4 Assumptions . 4
1.5 Limitations . 5
1.6 Delimitations . 5
1.7 Definitions . 6
1.8 Summary . 6

CHAPTER 2. REVIEW OF RELEVANT LITERATURE 7
2.1 Sensors . 7

2.1.1 Acoustic . 7
2.1.2 Electro-Optical and Infrared 9
2.1.3 Radar and LiDAR . 11
2.1.4 Radio Frequency . 14
2.1.5 Inverse-Square Law . 15

2.2 Consumer UAS Specifications . 15
2.3 Communication Networks . 18

2.3.1 Physical Wireless Network Characteristics 19
2.3.2 Wireless Network Performance Based Upon Environment . . 23

2.4 Current CUAS Simulation Models 26
2.5 Summary . 27

CHAPTER 3. FRAMEWORK DESCRIPTION AND METHODOLOGY . . 28
3.1 AEIOU . 29
3.2 Input Parameters . 31
3.3 Model Outputs . 42
3.4 Model Framework Layers . 47

vii

Page
3.5 Agent and Model Functions and Variables 48

3.5.1 UAS Agent . 48
3.5.2 Common Sensor Agent . 49
3.5.3 Acoustic Sensor Agent . 51
3.5.4 Radar Sensor Agent . 53
3.5.5 Camera Sensor Agent . 54
3.5.6 PassiveRF Sensor Agent . 56
3.5.7 Common Communication Device Agent 57
3.5.8 CommunicationNode Agent 57
3.5.9 CommandAndControl Agent 59
3.5.10 Model Startup and Shutdown 60

3.6 Methodology for Evaluating the Framework 62
3.7 Summary . 64

CHAPTER 4. ANYLOGIC IMPLEMENTATION 65
4.1 Building the Model . 65

4.1.1 Creating the Main Agent . 67
4.1.2 Creating the UAS Agent . 75
4.1.3 Similarities Between Sensor Agents 77
4.1.4 Creating Specific Sensor Agent Types 79
4.1.5 Similarities Between Communication Agents 85
4.1.6 Creating Specific Communication Agent Types 86

4.2 Summary . 89

CHAPTER 5. USING THE SCANS FRAMEWORK 90
5.1 Acoustic Experiments . 91
5.2 Radar Experiments . 97
5.3 Camera Experiments . 101
5.4 PassiveRF Experiments . 103

CHAPTER 6. SUMMARY . 106
6.1 Future Work . 107
6.2 Closing Thoughts . 108

LIST OF REFERENCES . 110

APPENDIX A. CUSTOM SENSORDATA DATA STRUCTURE 119

APPENDIX B. DATABASE TABLE STRUCTURE 123
B.1 Database Table: model runs . 123
B.2 Database Table: sensor . 123
B.3 Database Table: sensor data . 124

APPENDIX C. DATA PROCESSING SCRIPTS 126
C.1 PowerShell: Sort and Reformat AnyLogic Output 126
C.2 Python: Generate pColorMesh Graphs 129

viii

Page
C.3 PowerShell: Quick Sort by SensorID for AnyLogic Output 130

VITA . 132

ix

LIST OF TABLES

Table Page

2.1 UAS Specification Comparison . 17

3.1 Determined Input Parameters Using AEIOU Analysis 33

3.2 Specific Additional Sensor Inputs . 34

3.3 UAS Parameter Inputs . 37

3.4 General and Acoustic Sensor Parameter Inputs 38

3.5 Camera Sensor Parameter Inputs . 39

3.6 Radar Sensor Parameter Inputs . 40

3.7 PassiveRF Sensor Parameter Inputs . 40

3.8 DHS suggested sensor parameters . 41

3.9 Communication Node and CC Parameter Inputs 43

3.10 SensorData Class Parameters and Datatypes 44

3.11 Abbreviated Agent Identification Codes 45

3.12 UAS Variable Names, Datatypes, and Default Values 49

3.13 UAS Variable Names, Datatypes, and Default Values 50

5.1 Model Completion Time for Yang50R10A 93

5.2 Results of Experiment Yang50R10A: Trial 1 96

5.3 Results of Experiment Yang50R10A: Trial 2 96

5.4 Results of Experiment Yang50R10A: Trial 3 96

5.5 Input Parameters For Experiment Farlik5KM10G 99

5.6 Interative Tests for the Farlik5K10G Model 100

5.7 Radar Agent Input Parameters for Park et al. (2020) 101

5.8 Infrared Camera Agent Tests For Farlik, Kratky, Casar, and Stary (2019) 102

5.9 Infrared Camera Agent Tests Using Calculated PPF 103

5.10 Input Parameters for PassiveRF and UAS Agent 104

x

Table Page

B.1 Database Structure for the model runs Table 123

B.2 Database Structure for the sensor Table 124

B.3 Database Structure for the sensor data Table 125

xi

LIST OF FIGURES

Figure Page

3.1 Framework Communication Chain . 31

3.2 Object Class and Inheritance Structure 35

3.3 General Model Framework . 47

4.1 AnyLogic Element Palettes . 66

4.2 SCANS Framework Landing Page . 67

4.3 Experimental Setup for Yang (2019) 68

4.4 Yang’s (2019, p.35) Acoustic Node Layout for Experiments 69

4.5 Annotated Experiment 1 of Yang (2019) Within the Main Agent . . . 70

4.6 Experiment 1 of Yang (2019) Without Annotations 71

4.7 Zoomed View of Agent Population Elements and Point Node Collections 72

4.8 Annotated UAS Agent . 76

4.9 Annotated Generalized Sensor Agent 78

4.10 Annotated Acoustic Agent as Implemented 80

4.11 Annotated Radar Agent as Implemented 82

4.12 Annotated Camera Agent as Implemented 83

4.13 Annotated PassiveRF Agent as Implemented 84

4.14 Annotated Generalized Communication Device Agent 85

4.15 Annotated CommunicationNode Agent as Implemented 87

4.16 Annotated CommandAndControl Agent as Implemented 88

5.1 Example of Records Created Each Model Run 90

5.2 Record of Each Agent and Parameters Used in Every Model Run . . . 91

5.3 Sensor Data Recorded by CommandAndControl Agents 92

5.4 Yang’s First Experiment: Yang50R10A 94

5.5 Yang50R10A Experiment 1 Detection Graph Results 95

xii

Figure Page

5.6 Flight Path and Radar Placements of Farlik et al. (2019, p.6) 98

5.7 Radar Sensor Evaluation Based on Farlik et al. (2019) 99

5.8 Radar Model Based on Parameters of Park et al. (2020) 100

5.9 PassiveRF Agent Configured as DeDrone’s RF-100 105

xiii

SYMBOLS

A Lens Angle (of Camera)

C Circumference

c Speed of Light

D Distance

F Frequency (of Radio Wave)

I Energy Intensity

Io Threshold of Human Hearing

r Radius

t Time

λ Wavelength

◦ Degree

xiv

ABBREVIATIONS

AEIOU Activities, Environments, Interactions, Objects, Users

CC Command and Control

CCW Counter Clockwise

CN Communication Node

CUAS Counter Unmanned Aerial System

CW Clockwise

dB Decibel

dBm Decibel-Milliwatts

DHS Department of Homeland Security

DPR Dropped Packet Ratio

FAA Federal Aviation Administration

FOV Field of View

FSPL Free Space Path Loss

g Gram

GHz Gigahertz

IoT Internet of Things

km Kilometer

m Meter

m/s Meters per Second

MHz Megahertz

mW Milliwatts

PPF Pixels per Foot

px Pixel

RCS Radar Cross Section

xv

RF Radio Frequency

Rot Rotation

SCANS Simulation of CUAS Networks and Sensors

SPL Sound Pressure Level

Tx Transmit or Transfer

UAS Unmanned Aerial System/Vehicle

W Watt

xvi

ABSTRACT

Riegsecker, Austin Ph.D., Purdue University, December 2020. SCANS Framework:
Simulation of CUAS Networks and Sensors . Major Professor: Eric T. Matson.

Counter Unmanned Aerial System (CUAS) security systems have unrealistic

performance expectations hyped on marketing and idealistic testing environments.

By developing an agent-based model to simulate these systems, an average

performance metric can be obtained, thereby providing better representative values

of true system performance.

Due to high cost, excessive risk, and exponentially large parameter

possibilities, it is unrealistic to test a CUAS system for optimal performance in the

real world. Agent-based simulation can provide the necessary variability at a low

cost point and allow for numerous parametric possibilities to provide actionable

output from the CUAS system.

This study describes and documents the Simulation of CUAS Networks and

Sensors (SCANS) Framework in a novel attempt at developing a flexible modeling

framework for CUAS systems based on device parameters. The core of the

framework rests on sensor and communication device agents. These sensors,

including Acoustic, Radar, Passive Radio Frequency (RF), and Camera, use input

parameters, sensor specifications, and UAS specifications to calculate such values as

the sound pressure level, received signal strength, and maximum viewable distance.

The communication devices employ a nearest-neighbor routing protocol to pass

messages from the system which are then logged by a command and control agent.

This framework allows for the flexibility of modeling nearly any CUAS

system and is designed to be easily adjusted. The framework is capable of reporting

true positives, true negatives, and false negatives in terms of UAS detection. For

xvii

testing purposes, the SCANS Framework was deployed in AnyLogic and models

were developed based on existing, published, empirical studies of sensors and

detection UAS.

1

CHAPTER 1. INTRODUCTION

Autonomy of systems has been one of the goals for computers since their

inception. Today, websites have code which help write themselves, autonomous cars

work towards gaining public confidence and are optimized to drive safer and longer,

and quad-copters are capable of following their owners and delivering packages with

minimal, if any, human intervention. While these advancements seem recent in the

consumer market, governments and militaries have made use of autonomous systems

for decades with Unmanned Aerial Systems (UAS) first developed by the U.S.

military at the end of the first World War. In contrast, it was not until 2006 when

the Federal Aviation Administration (FAA) granted the first UAS pilot licence to a

civilian.

Small, consumer UAS, also known as drones in the consumer market, are

just one example of a complex systems-of-systems involving flight stabilization,

waypoint or GPS navigation, autonomous flight, robust communication systems,

and numerous safety measures which promote ease of use and safety. Due to the

prevalence and ease of obtaining a UAS today, government organizations, home

owners, and other property owners are concerned for their safety and privacy in

regards to the ease at which small UAS can be operated. From these concerns, as

well as illegal activity wherein small UAS were used, companies have developed

complex systems in which to detect and interdict these small, nimble aerial vehicles.

Due to numerous laws preventing their use, system complexity, and the research and

development needed to create such a counter system, testing system performance is

expensive and, in some cases, impossible until the countermeasures are implemented.

2

1.1 Problem Statement

Current research in the Counter Unmanned Aerial Systems (CUAS) space

focuses on a specific detection, tracking, or interdiction method, and commercial

CUAS systems leave performance metrics unknown or overstated. The problem

addressed in this study is the inability to perform cost-effective planning when

developing a CUAS system from a generalized sensor detection and sensor

communication perspective. Due to current laws, lack of availability, and nature of

the application, CUAS systems are difficult for potential customers to procure and

test for the system’s claimed efficiency given a customer’s unique environment.

Using software simulation modeling, a mock-up of an environment can be made and

rapid-prototyping is possible due to the low cost associated with virtual models.

Using the parameterization of sensors, UAS, and sensor communication allows for

optimizations of sensor placement to be found based upon expected system needs.

According to the FAA report posted March 2018 (Federal Aviation

Administration, n.d.), the consumer-based small UAS fleet is expected to more

than double by 2022 to 2.4 million, with an annual growth rate of 16.9%. The

annual growth rate for remote pilots are forecast to be 32.4% over the next five

years. In addition to the growing number of small UAS, commonly referred to as

drones, there have been three incidences where they have been used to get close to

heads of state; namely German Chancellor Angela Merkel in 2013 (Gallagher,

2013), the White House lawn landing in 2015 (Schmidt & Shear, 2015), and an

attempted attack on Venezuelan President Nicolas Maduro in August of 2018

(Koettl & Marcolini, 2018). Furthermore, UAS have been used for carrying

contraband into prisons (Phillip, 2014), smuggle drugs over country borders (Drug

delivery drone crashes in Mexico, 2015), and have twice flown over French nuclear

reactors (De Clercq, 2018; Labbe & Rose, 2014).

Research teams, commercial companies, and governmental agencies have

been working to detect and counter the threats posed by small UAS in numerous

3

ways. Methods for detection include radar, radio frequency scanning, sound

signature, infrared camera capture, and via standard, visual cameras, among other

methods (Drozdowicz et al., 2016; Liu et al., 2017; Nguyen, Ravindranatha,

Nguyen, Han, & Vu, 2016; Shin, Jung, Kim, Ham, & Park, 2017; Solomitckii,

Gapeyenko, Semkin, Andreev, & Koucheryavy, 2018). According to the co-director

of the Center for the Study of the Drone at Bard College, New York, more than

two-hundred companies are working on the CUAS problem (Watson, 2018, section

3, para. 2). However, despite all of these products and research, Brett Velicovich,

the current CEO of Drone Experts and a former U.S. soldier, says “companies are

spending millions of dollars to defeat a threat that cost about $500 apiece”

(Watson, 2018, section 3, para. 9). A down-side to many of these products is the

lack of swarm detection, with the the first commercially advertised solution being

DroneTacker 3.5 by DeDrone (Drone Swarm Detection Capabilities , 2018).

1.2 Significance

Developing a flexible model framework with generic, parameterized sensors

for UAS detection, based upon mathematical models for sensing distance and radio

communication distance, will provide verifiable performance metrics for proposed

CUAS systems. Such a model would also be capable of providing optimizations for

sensor placements, of which is currently missing in available real-world systems due

to current implementation cost and environment variability.

Small, consumer drones and UAS are not going away; and among their many

benefits, there are also several security pitfalls. Legally, in the United States, these

UAS must fly below 400 feet (122 meters) (Recreational Fliers & Modeler

Community-Based Organizations , 2019). However, the DJI drones software allows

flights up to 1,500 feet (457 meters) and the machines are capable of altitudes over

20,000 feet (6092 meters) (Atherton, 2016; Mavic 2 - Specifications, FAQs, Videos,

Tutorials, Manuals , n.d.). This, coupled with the ability of some drones to carry

4

several pounds of payload (How Much Weight Can A Drone Lift? , n.d.), gives rise

to a unique concern not seen before on the civilian battleground. That being the

capability for anyone to weaponize small, consumer UAS and launch attacks on

large gathering spaces or restricted spaces undetected, and therefore unstoppable

(De Clercq, 2018; Finn & Wright, 2012; Labbe & Rose, 2014).

By developing a system to measure effectiveness and creating better, more

capable systems of detection and counter-measure, crimes and terrorism performed

with these devices such as in Drug delivery drone crashes in Mexico (2015) and

Phillip (2014) can be mitigated. This can then extend to educational courses,

certifications, and businesses to help raise awareness about these issues and combat

the bad actors. The market for which this technology would be applicable includes

secure government areas of operation, military zones, correctional facilities, airports,

schools, and large companies.

1.3 Research Question

What is necessary to develop and validate an extensible and general use case

CUAS simulation model, with a focus on sensor simulation and a detection-alert

network communication system?

1.4 Assumptions

The assumptions for this study include:

• Performance data reported by other research teams are accurate.

• Regarding the AnyLogic implementation, unidirectional agents are assumed to

be at the proper pitch (regarding angle) for UAS detection

• The detection of a UAS by a sensor agent is assumed to have occurred when

all sensor threshold criteria are met

5

1.5 Limitations

The limitations for this study include:

• Due to AnyLogic programmatic limitations, features of the framework, such as

object inheritance cannot be strictly adhered to.

• Functions specifically related to the z-axis space (having an upper and lower

bound of sensor detection height) could not be implemented due to time

constraints. However three-dimensional (3D) space is used for calculating all

distances.

• Due to sensor complexity and unavailability of sensor parameters, LiDAR

could not be implemented into the system.

• The SCANS framework is meant to be a continuously evolving framework and

its implementation is currently limited by the single viewpoint of the

researcher.

1.6 Delimitations

The delimitations for this study include:

• The SCANS framework is system agnostic, but will be implemented for

testing purposes in AnyLogic 8 Professional.

• The implemented model will only test open space, clear sky environments so

as to limit theoretical signal interference in the form of reflections, refractions,

and diffractions.

• The implemented model will focus solely on sensor- and communication-level

interaction and will not implement an advanced detection, tracking, or

interdiction system.

• This work is not concerned with advanced network routing protocols.

6

1.7 Definitions

The following are definitions that provide a common understanding of

ambiguous concepts within the UAS and CUAS space.

Unmanned Aerial System (UAS): A small, consumer-based rotary-wing or

fixed-winged craft weighing less than 55 pounds per the Federal Aviation

Administrations specifications in Part 107 Federal Aviation Administration

(2018). Commonly referred to as a drone in the consumer market. Also known

as UAV, quad-copter or hex-copter.

Counter-UAS (CUAS) System: Any system capable of either detecting, tracking,

interdicting, or any combination thereof, one or more UAS.

Agent: An entity within AnyLogic containing program data and functions capable

of interacting with other agents. Symbolically, it is synonymous with a “class”

in object-oriented programming.

Sensor: An abstracted entity implemented as an agent within AnyLogic, which

performs calculations against the rogue UAS or the environment and

generates data related to a detection event.

Detection Event: An action triggered when all detection criteria has been met,

which then sends an alert message to Command and Control.

1.8 Summary

This chapter provided the scope, significance, research question,

assumptions, limitations, delimitations, definitions, and other background

information for the research project. Chapter 2 provides background information on

UAS, sensors, wireless communication networks, and simulation models. The

chapter covers specifications, functions, the mathematics used to determine sensor

performance, and recent work performed within the CUAS simulation space.

7

CHAPTER 2. REVIEW OF RELEVANT LITERATURE

This chapter provides a review of the literature relevant to the simulated

model’s function and form. A review is given for various types of sensors and their

functions, a collection of UAS specifications, and communication network

technologies. Review is also given for several CUAS system simulations.

2.1 Sensors

The following provides a description of sensor types used in CUAS activities

and the theoretical mathematical equations for calculating their range and

performance. Also provided are experimental examples wherein the specific sensor

type is used. In total, the sensors discussed are acoustic, electro-optical (visual and

infrared cameras), radar, LiDAR and passive radio frequency (RF) sensors.

2.1.1 Acoustic

Acoustic sensors, also known as acoustic wave sensors, sound sensors, or

simply, microphones, are inexpensive, versatile, and abundant. This makes them

common components in CUAS research (Mezei, Fiaska, & Molnar, 2015; Mezei &

Molnar, 2016) and professional systems (Busset et al., 2015; Hauzenberger &

Holmberg Ohlsson, 2015; Sathyamoorthy, 2015). The technology used to create

acoustic wave sensors can be transformed to form pressure, temperature, torque,

mass, and humidity sensors, among many others (Drafts, 2001). These sensors

work by measuring the voltage changes created by pressure waves against a thin

diaphragm or quartz surface, resulting in sensitive changes in electrical resistance

(Drafts, 2001). Acoustic sensors have a limited range when used in an

8

omni-directional capability, however using funnels or parabolic dishes provide a

focusing of sound waves allowing for greater detection capabilities at the cost of the

maximum sensing angle. The U.S. Department of Homeland Security (2019) states

that with the use of additional computer tools such as software analytics and UAS

sound sample databases, acoustic sensors can be used for triangulation and

determining the speed and direction of an incoming threat because of the Doppler

effect. The FAA, however, in its UAS technical considerations informs that acoustic

sensors do not provide the necessary range to warrant their use as a primary

detection device, and should typically be considered only as validation or secondary

sensors (Federal Aviation Administration, 2019, p.2).

Two formulas, the sound intensity formula and the Inverse-square law, are

used to measure sound wave intensity and the distance between a sound source and

a sensors, respectively. The sound intensity formula (Moore, 1995, p.11) is given as

dB = 10 log(
I

Io
), (2.1)

where Io = 10−12Wm−2. The term Io is the reference value commonly used in sound

applications representing the threshold of human hearing (Nave, 1999). The

Inverse-square law formula and explanation is given in Section 2.1.5 due to other

sensors relying on the formula.

In terms of testing done in the acoustic CUAS space, Farlik et al. (2019)

performed four years worth of tests on various small consumer and professional

grade UAS including the DJI Phantom 2, DJI DJI MAVIC Pro, 3DR X8, DJI

Inspire 1, and the TAROT F650. The specifications of these machines are listed in

Section 2.2, Table 2.1. From Farlik et al., effective detection of a drone using a

SONY F-V120 was between 70 and 300 meters using the TAROT F650 and DJI

S800E UAS. Hauzenberger and Holmberg Ohlsson (2015), Mezei et al. (2015),

Busset et al. (2015), and Mezei and Molnar (2016) each show successful detection of

UAS using acoustical technologies, however these systems are had a limited range of

9

less than 150 meters. There is also a distinct lack of computational times for the

detection process. It was noted in Mezei et al. (2015) that when using pre-recorded

sound samples of 30 seconds, their system had a confidence score of 84%, while at

140 seconds the confidence score was only 57%.

2.1.2 Electro-Optical and Infrared

CUAS systems utilizing imaging solutions depend on collecting enough

information to accurately classify a rogue UAS. For this purpose, an image subject

(the UAS) must meet the minimum pixel per foot (PPF) requirements of an image

detection system. As the PPF specification depends upon the detection algorithm

and camera specifications, no one answer exists. Few published papers report on the

PPF requirement of their algorithms and instead opt to describe the maximum

functional distance of their systems, if any distance is reported at all.

Liu, Qu, Liu, Zhao, and Chen (2018) designed and implemented a 30 camera

array and detection algorithm for detecting UAS, however no specifications were

given as to the maximum distance the system was capable of for the purposes of

detecting and classifying a UAS. Ganti and Kim (2016) developed an

implementation for detection and tracking of small UAS using an eletro-optical

system, with acoustic sensors used for confirmation. Ganti and Kim noted their

system, as every other electro-optical solution, relied on the number of pixels the

UAS occupied in the video frame. From this, their system could identify small UAS

up to 61 meters away and commercial airplanes up to 1524 meters.

The following equations can use a given PPF to calculate the maximum

distance an object can be detected, reliant upon an individual system’s

performance. Using algebra would allow the PPF to be calculated from the

10

maximum distance detected and camera resolution, as in Ganti and Kim’s study.

The maximum FOV is calculated by

FOV =
Resolution Width

px./ft. Required
. (2.2)

With the maximum FOV calculated, the necessary lens angle for the desired

viewing distance can be calculated. Inversely, if the CUAS system must be able to

detect a UAS at a certain distance, the lens angle can be calculated based upon the

camera resolution. This is achieved by calculating the circumference (C) based

upon lens angle (A) with

C = FOV ∗ 360/A. (2.3)

From the calculated circumference, the radius is derived, which provides the

maximum detection distance of the camera. The radius of the circle is calculated

with

r =
C

2π
(2.4)

Infrared imaging is also used in the CUAS space and operates in much the

same way as a standard camera does, but with sensors sensitive to the near-infrared

and infrared spectrum, instead of visual light. Qi, Zhang, and Xu (2018) proposes a

drone detection method using 460x520 pixel images, whereby the highest achieved

precision rating was 97.8% with a 98.2% recall rate. This was achieved with a pixel

density of 4 px/ft giving a maximum detection range of 288 feet, or 87 meters.

Farlik et al. (2019) also tested for infrared, or heat-based imaging, and concluded

that with a MATIS HH thermal imaging camera “effective detection of a UAV was

possible at distances up to 1.8 km, recognition up to 1 km, and identification up to

0.4 km” (p.19). By using a FLIR A40M infrared camera and no additional lenses,

the maximum detection distance was only 140 meters. It should be noted that these

distances are based upon having a clear sky background. Having a complex

background, such as a cityscape, would drastically reduce the detection distance.

11

The FAA has also stated in their technical considerations report that electro-optical

solutions should be secondary sensors due to their low detection ranges (Federal

Aviation Administration, 2019).

2.1.3 Radar and LiDAR

Radar is a popular technology reliant upon radio waves to determine an

object’s range, angle, or velocity. The size of the object able to be detected depends

upon the radio frequency used for detection. LiDAR uses lasers instead of radio

waves and is typically used to survey a given landmass area. Both technologies send

energy pulses and measure the time to receive a reflection back. Based upon this

time, distance are then calculated using the speed of light. Distance for both radar

and LiDAR can be calculated by

D =
c ∗ t

2
, (2.5)

where c is 3 ∗ 108m/s and t is time measured from pulse transmit to reflection

received. Ullrich, Pfennigbauer, and Rieger (2013) can be referenced for a detailed

overview of the various operational types of LiDAR.

C. J. Li and Ling (2017) investigated radar signatures of a DJI Phantom 2, a

DJI Inspire 1, and a 3DR Solo using both 3-6 Gigahertz (GHz) and 12-15 GHz

radar. The measurements were taken at short distances within 35 centimeters.

However, this shows the ability to detect these UAS using the above stated

frequencies. Of note, with all other variables controlled, using the lower frequencies

showed a lowered maximum signal between 10 and 11 decibels (dB) when compared

to using the 12-15 GHz frequencies. Drozdowicz et al. (2016) showed successful

detection of the DJI Phantom 4 and S1000, using a 35 GHz radar. However, the

environment was optimistic and appears to be a proof-of-concept experiment.

12

Skolnik (1980, p.4) defines the radar equation as such,

Pr =
PtG

2λ2σ

(4π3)R4
(2.6)

where Pr is the reflected powered received by the radar measured in watts, Pt is the

power transmitted by the radar in watts, G is the radar antenna’s gain in decibels

(dB), λ is the wavelength used by the radar in meters, Ae is the effective capture

area of the antenna measured in square meters, σ is the radar cross-section (the

area radio waves can reflect off of on the target) measured in square meters, and R

is the distance between the radar and the target in meters.

The maximum range of a radar can be determined by

Rmax =

(
PtA

2
eσ

4πλ2Smin

) 1
4

(2.7)

or

Rmax =

[
PtG

2λ2σ

(4π)3Smin

] 1
4

, (2.8)

where Smin is the lowest detectable signal in watts. While these equations are the

basis for the power needs of radar systems, Skolnik mentions that they are usually

over optimistic by as much as double due to not accounting for loss. To counteract

this, the equation can have a total loss parameter, L, added to the denominator.

This loss includes internal attenuation, fluctuation losses during reflection, and

atmospheric losses. This is difficult to quantify without measuring the environment

directly. L is given in dB and the modified equation becomes

Rmax =

[
PtG

2λ2σ

(4π)3SminL

] 1
4

, (2.9)

LiDAR (also lidar or LIDAR) has been shown to be useful in UAS detection.

There are two main types of LiDAR: scanning or flash LiDAR. Scanning LiDAR is

the more traditional approach, whereby a single or dual laser apparatus is pulsed

13

against an angled, rotating mirror. This type of LiDAR can have a wide field of

view (FOV), which is controlled by the rotation of the mirror. A flash LiDAR

illuminates a given FOV and detects the photon reflections using a focal plane array.

McManamon et al. (2017) provides an in-depth comparison of several flash LiDAR

systems and discusses the energy needed for various degrees of photon detection and

difference frequencies. A general reference to the many complexities of LiDAR is

given by National Oceanic and Atmospheric Administration NOAA Coastal Services

Center (2012). Rocadenbosch (2007) provides an expansive look at the calculations

used to determine LiDAR performance. A simplistic form of the power detected by

a LiDAR system is provided in McManamon and McManamon (2019) with

P (R) = KG(R)β(R)T (R) (2.10)

where P is the power received from a distance R. K captures the overall

performance of the system. G is the range-dependent measurement geometry. β is

the backscatter coefficient, which is typically unknown until measured as it

describes the ability of the atmosphere to reflect light back to the emitter. Finally,

T is the transmission term, accounting for the loss of energy while traversing the

distance R and back. K can be defined as

K = P0
cτ

2
Aη. (2.11)

P0 is the average power of a single laser pulse, and τ is the temporal pulse length in

seconds. A is the area of the primary optical receiver, and η is the overall system

efficiency. McManamon and McManamon (2019) also provides additional equations

for the other terms, however they will not be provided here at this time given their

complexity, and the decision to not include LiDAR in the SCANS Framework at

this time.

Hammer, Borgmann, Hebel, and Arens (2019) developed a multi-sensor UAS

detection and classification system using a 360◦ LiDAR sensor and camera sensor.

14

While deemed a successful method, the system only had an effective range of 35

meters. Laurenzis, Rebert, Schertzer, and Christnacher (2019) used a LiDAR

system to track and make predictions as to a UAS’ flight behavior, showing positive

results for a range of 450-550 meters. From a military approach Kim, Khan, Choi,

and Kim (2019) were able to show a double pan-tilt system capable of detecting

UAS from 2000 meters with a FOV of 100◦.

2.1.4 Radio Frequency

UAS commonly use the 2.4GHz and 5.8GHz radio frequency (RF) bands to

communicate with their controller and to pass video information back to an

operator. These frequencies are used because the communication relies upon Wi-Fi

systems and they are unlicensed. Passive RF detectors can listen for these

frequencies and alert CUAS systems of a possible breach. Passive RF detection is

similar to acoustical detection in the sense that the emitter is the UAS itself,

instead of the UAS acting as a reflector, such as with LiDAR or radar. If the radio

signal strength from the UAS is known, then the potential Received Signal Strength

(RSS) can be calculated using the Free Space Path Loss (FSPL) equation (Coleman

& Westcott, 2018, pp.89-90).

FSPL is a theoretical equation used to calculate the loss in power of a radio

signal for a given frequency between two points in free space. The FSPL equation is

defined as

FSPL = 32.44 + 20log10(F) + 20log10(D) (2.12)

where F is frequency in Megahertz (MHz) and D is distance between the target and

the detector in kilometers.

RF detection is a common method employed in the commercial world due to

the ease of use and setup. Farlik et al. (2019) used DeDrones’ DroneTracker system

(Dedrone, Inc., n.d.) to successfully alert on a DJI MAVIC Pro, Phantom II, and a

3DR Y6 at 1400 meters. A major point of concern with the use of RF technology,

15

however, are the legal implications involved, driving the FAA and the U.S.

Department of Homeland Security to suggest seeking legal advise before

implementing any such system (Federal Aviation Administration, 2019; U.S.

Department of Homeland Security, 2019).

2.1.5 Inverse-Square Law

The effective distance of each sensor type described above can be described

using the Inverse-square law. The Inverse-square law states that a specified physical

quantity is inversely proportional to the square of the distance from the source of

that physical quantity. Phenomena affected by this law include electricity,

magnetics, light, sound, and radiation. Mathematically speaking, the Inverse-square

law can be written as

intensity ∝ 1

distance2
(2.13)

for a single source, or

intensity1
intensity2

=
distance22
distance21

(2.14)

if comparing two sources or a source and receiver together.

2.2 Consumer UAS Specifications

UAS come in many shapes and sizes. While distinctions can lie between

simple quad- or hex-copters and UAS, for the purposes of this study only the term

“UAS” will be used. “UAS” is defined as a small, consumer-based rotary-wing or

fixed-winged craft weighing less than 55 pounds (25 kilograms) per the FAA

specifications in Part 107 (Federal Aviation Administration, 2018).

The consumer market has no shortage of drone companies. Popular brands

such as DJI, Yuneec, Parrot, and Uvify make up a large portion of sales across the

16

U.S. These UAS typically weigh between 300 - 1500 grams and are capable of

distances between 2 - 15 kilometers. Despite their small size, UAS such as the

Phantom 3, are capable of lifting payloads upwards of 1 kilogram (Murray, 2016).

Even small toy quad-copters have been shown to lift a substantial weight for their

size (Fungineers, 2016). Moving past typical consumer UAS, the unique

classification of “heavy-lifting” UAS specify devices capable of lifting payloads up to

12 kilograms.

Table 2.1 lists a variety of commercial UAS and their relevant specifications

such as size, weight, flight range, and speed. All information is found on either the

manufacture’s specification sheet, or promotional information distributed by the

manufacture. Data that was unable to be located is denoted with an en dash. The

selected UAS were chosen based upon buying guides and popularity from online

retailers and technology blogs. The intention was to gather information on UAS

consumers are likely to buy. In addition to the consumer-level UAS, several popular

heavy-lifting UAS were included, denoted in italics. Finally, a “racing” UAS, the

Uvify Draco, specifically designed to achieve high speeds, was included as the

powerful motors allow for a large payload based upon the motor’s performance

specification. The table is organized by manufacture, then model, with the

heavy-lifting UAS listed at the bottom of each manufacture.

To categorize the UAS into more comparable groups, the DJI Spark, Parrot

Bebop, and Yuneec Breeze are very small camera UAS designed for novices costing

around $300 to $600. The DJI Mavic line, Parrot Anafi, and the Autel Robotics Evo

are for “pro-sumer” customers, who are categorized between the average consumer

and the enthusiast or professional, but make up the largest sector of the market of

consumer drone sales. These UAS typically cost between $1000 - $2000.

As mentioned earlier, the Uvify Draco is designed for racing. This UAS is

small and made for speeds of 160 kilometers per hour (100 miles per hour). To

achieve these speeds, powerful motors are needed, which has the unintended benefit

of being able to lift relatively heavy objects. Each of the above mentioned UAS are

17

Table 2.1.

UAS Specification Comparison
Brand / Model Size (mm)

(LxWxH)
Weight

(g)
Max

Range
(km)

Control
Distance
(km)

Max
Speed
(m/s)

Align
M690L 900x900x362 3400 17 2 33.5

Autel Robotics
Evo 254x127x127 863 18 7 20

DJI
Inspire 1 437x302x453 3060 11.8 5 22
Inspire 2 427x317x425 3440 21 7 26
Mavic Air 168x184x64 430 10 4 19
Mavic Pro 83x83x198

(folded)
734 13 6.88 18

Mavic 2 Pro 322x242x84 907 18 8 20
Phantom 4 221x381x325 1380 16.8 5 20
Spark 143x143x55 300 2 0.1 14
Agras MG-1 1471x1471x482 12500 2.4 1 8
Matrice 100 650x650x– 2355 14.5 5 22
Matrice 600 1668x1518x759 9100 8.1 5 18
S900 900x900x130 3300 7.2 – 16
S1000 1045x1045x130 4200 7.2 – 16

FreeFly
Alta 8 1325x1325x253 6200 7 7 15.6

Parrot
Anafi 175x239x63 320 11.25 4 15
Bebop 328x328x88 500 0.3 0.3 16

Uvify
Draco 214x166x63 692 2.68 2.68 44.7

Yuneec
Breeze 196x196x65 385 1.8 0.007 5
H520 520x455x295 1633 12.75 1.6 17
Typhoon H Plus 480x425x295 1995 11.25 1.6 13.4
Tornado H920 920x920x461 890 10 1.6 14

18

quad-rotor devices. The DJI Inspire line, the Yuneec Typhoon, and the H520 are

UAS capable of speeds useful for filming moving vehicles. Finally, the heavy-lifting

UAS include the DJI Matrice series, a professional UAS capable of carrying a

variety of payloads; the S series, a customizable bare-bones development system;

the Yuneec Tornado H920 and Align M690L are comparable systems to the DJI

Matrice series; and finally, the FreeFly Alta 8 and DJI Agras MG-1 are both

examples of high-end UAS designed for the professional market. Both are capable of

payloads above 10 kilograms and cost between $15000 and $17000.

While there have been several demonstrations to show the lack of

counter-UAS security (De Clercq, 2018; Gallagher, 2013; Schmidt & Shear,

2015), small UAS have also been used in actual attacks against government officials

(Koettl & Marcolini, 2018) and in Syria (Hennigan, 2017). The attacks in Syria

involved small quad-copters, or crude fixed-wing UAS, flying over ground forces and

dropping munitions on them. The use of UAS on the battlefield has led the U.S.

military to invest in counter technologies such as nets, radio frequency jammers, and

lasers, an aggregated list of which can be found in Michel (2018). In addition to

these attacks, the Federal Emergency Management Agency (FEMA), the

Department of Homeland Security (DHS), and independent researchers have

published studies and reports as to the effects of explosives, devices which these

UAS are known to carry in varying environments as well as potential damage to the

human body (Federal Emergency Managment Agency, 1995; U.S. Department of

Homeland Security, n.d.; Zipf, Kenneth, & Cashdollar, 2010). Based upon the

average speed data presented in Table 2.1 (18 m/s), a rogue UAS could cover an

expanse of 500 meters in only 27.7 seconds, leaving little time to react to a threat.

2.3 Communication Networks

While sensors are necessary for detection, communication networks are

necessary to pass information from those sensors to a communication hub where

19

further processing can take place. There are several variables to consider when

designing a wireless network and choosing a communication technology. These

include the intended use case, frequency restrictions, throughput and bandwidth

requirements, user capacity, power usage, and transmission distance. The

environment in which a CUAS system is deployed makes a difference for the

recommended wireless network technology. If transmissions must travel through

vegetation, a sub-gigahertz frequency with high robustness, such as LoRaWAN, may

be ideal; whereas, if within a city, cellular technologies or Wi-Fi may be better

suited due to the speed of packet retransmission and advanced signal processing

techniques.

2.3.1 Physical Wireless Network Characteristics

The following outlines technology characteristics of potential communication

networks based upon an Internet of Things (IoT) or sensor network mindset.

LoRaWAN

Long Range Wide-Area Network, more commonly referred to as LoRaWAN,

is managed by the LoRa Alliance. Created in 2015, LoRaWAN relies on the

proprietary underlying radio technology LoRa (LoRa Alliance, 2015). The radio

technology LoRa uses Chirp Spread Spectrum (CSS) modulation allowing it to

transmit over large distances through heavy-noise environments (LoRa Alliance,

2017). LoRa radios operate at either 433 MHz in Asia, 868 MHz in Europe, or 915

MHz in North America.

LoRaWAN is designed for IoT applications, and as a result, varying

configuration options exists to enable either faster throughput, longer battery life,

greater communication distance, or higher network capacity in terms of usable

clients (LoRa Alliance, 2015). The variance in performance comes from adjusting

the spreading factor of the CSS modulation, the bandwidth allotted to

20

communication, and the coding rate used for sending the data. Along with these

variances, LoRaWAN allows for different classes of nodes which relate to when the

node sends and receives data.

Class A nodes are best for long-term deployments and only allow for data to

be received shortly after data is sent. This allows for packet acknowledgments.

Class B devices open a receive window at set intervals, allowing for communication

from the gateway to occur even if information hasn’t been sent. This is optimal for

situations needing low-priority status updates. Class C devices only close the receive

window when transmitting data; as a result, these devices use the most power and

are most akin in functionality to other technologies (LoRa Alliance, 2017).

LoRa radios have a remarkable link budget stemming from a low received

signal sensitivity of -136 decibels (dB) (Semtech SX1276 , n.d.) and several studies

have measured their performance. Augustin, Yi, Clausen, and Townsley (2016)

provides a detailed overview of LoRaWAN performance in an urban setting. The

study showed communications were reliable at distances up to 3 kilometers using

the maximum spreading factor, but also noted that issues arose with communication

performance if network traffic became too dense. They concluded that LoRaWAN is

best for low-power, low-throughput, and long-range networks. Cattani, Boano, and

Römer (2017) found that as temperatures increase to 50◦C, communications using

LoRa radios cease. Conversely, Riegsecker (2018) found that as temperatures

approached 0◦C, communication performance suffered, but as temperatures dropped

below freezing communication started to improve once more. Yim et al. (2018)

found inconclusive results related to LoRa performance in a tree farm, possibly due

a blocking of the Fresnel Zone. Petajajarvi, Mikhaylov, Roivainen, Hanninen, and

Pettissalo (2015) measured LoRa performance while driving in a car and over water

in a boat. From the car, an average packet loss ratio of 13.5% was seen at distances

less than 5 kilometers, and a packet loss ratio of 74% was seen at distances between

10 and 15 kilometers. From the boat, an average packet loss ratio of 32% was seen

at distances between 5 and 30 kilometers. Of note, while all of above-mentioned

21

studies measured the true LoRa radio performance, each made reference that

performance would only increase given the ability of LoraWAN to manage

retransmitted packets and dynamically adjust transmission parameters of clients.

LTE-M

Long Term Evolution category M1 (LTE-M) is the communication method of

low complexity user equipment (UE) for machine-type communication (Rohde &

Schwarz, n.d.). First defined in Release 13 from 3GPP, LTE-M supports multiple

access multiplexing, allowing multiple clients to simultaneously communicate with

the base station. LTE-M allows for one megabit per second throughput and has a

bandwidth of 1.08 MHz (Ray, 2017). LTE-M was designed to have a ten year

battery life using a five watt-hour battery, have a low cost, and reach seven times

further than current cellular networks (Vos, n.d.). Currently, LTE-M has been

deployed throughout the U.S., Canada, Brazil, Western Europe, Australia, and

several countries in Asia.

In terms of characteristics, LTE-M uses current 3G and 4G cellular networks

and their technologies. Differences lie within the narrow bandwidth, the low

sensitivity of the receivers, and the strong power signal provided by LTE-M modules

(Vos, n.d.). This allows for signals to be received underground with 20-30 dB of

attenuation and a 95% received packet ratio. Outdoors, LTE-M obtains a a 99%

received packet ratio with less than 10 dB of attenuation (Lauridsen, Kovacs,

Mogensen, Sorensen, & Holst, 2016). Vos (n.d.) shows LTE-M coverage to be

between 100 meters and 10 kilometers. Dawaliby, Bradai, and Pousset (2017)

provides an in-depth analysis of LTE-M performance and have concluded that while

LTE-M provides better coverage, latency, and jitter metrics than CAT-0

connections, at the time of publication, it had yet to match the prescribed

performance metrics described by 3GPP. Dawaliby et al. suggest protocol

modifications to reduce bandwidth further, thereby allowing more IoT devices onto

22

a network. Typical use cases for LTE-M include resource monitoring for energy or

water, agricultural sensing, smart city applications, patient monitoring in hospitals,

and wearable devices, among others (Vos, n.d.).

IEEE 802.11n-2009

The IEEE 802.11 family of protocols has become ingrained in the daily lives

of people everywhere. Due to extensive testing and design work, the protocols

themselves are extremely robust and provide high data throughputs and reliability.

A major impact to this family of technologies was the IEEE 802.11n-2009 (802.11n)

standard (Coleman & Westcott, 2018).

The IEEE 802.11 protocols, known commonly as Wi-Fi, operate in the free,

unlicensed Industrial, Scientific, and Medical (ISM) and unlicensed national

information infrastructure (U-NII) bands. From these frequency bands, the 2.4 GHz

and 5 GHz are used for Wi-Fi and are shared with Bluetooth, microwave ovens, and

UAS control systems. Being free and unlicensed bands means frequencies are often

overcrowded and signal interference is great. 802.11n improved on previous Wi-Fi

technologies in several ways. First, throughput was increased in both the 2.4 GHz

and 5 GHz bands; second, 802.11n capitalized on the phenomenon known as

multi-path instead of being hindered as other technologies were. This allowed

802.11n to increase signal range (Coleman & Westcott, 2018).

In accordance with all U.S. regulations set forth by the Federal

Communications Commission (FCC), 47 CFR 15, the 2.4 GHz frequency is capable

of transmitting up to 160 kilometers. This, however, is unrealistic due to the need of

accounting for the curvature of the Earth. Realistic distances are upwards of 32

kilometers (20 miles). However, even at these relatively closer distances, 2.4 GHz

signals need to remain mostly line-of-sight due to rapid link deterioration when

obstructed by an obstacle, such as a tree.

23

5G Cellular

5G, or the fifth generation of cellular communication, has received a lot of

excitement since its initial release in 2018. It has even generated a few marketing

legal battles related to branding (Clover, 2019). While 5G is built upon current 4G

fundamentals, the vast expansion of frequencies available for use, along with

multiple modes and module virtual radio functions, enables a large selection of use

cases. These include pervasive video, high-speed mobility, sensor networks, tactile

internet, lifeline communications in emergencies, e-health services and broadcast

services (Next Generation Mobile Networks Alliance 5G Initiative, 2015). 5G

should also support “several tens of [megabits per second] ... for tens of thousands

of users in crowded areas, such as stadiums or open-air festivals” (Next Generation

Mobile Networks Alliance 5G Initiative, 2015, p. 28).

Lauridsen, Gimenez, Rodriguez, Sorensen, and Mogensen (2017) took a

precursory look at expected limitations of 5G technology based upon current LTE

technology. From their study they identified that in order to achieve the requisite

time for hand-offs, latency, and execution time major advancements would need to

be made regarding user and control plane efficiency. Said differently, the radio

access network is the largest contention area for delays. Solomitckii et al. (2018)

proposed a plan to use 5G itself for small UAS detection given the proliferation of

base stations and available bandwidth. A system such as this could help reduce

overall communication delay if the sensor network is made up of 5G base stations.

2.3.2 Wireless Network Performance Based Upon Environment

As stated earlier, the medium in which wireless signals propagate affects

network performance. The following environments were chosen based upon their

diversity and use cases within the CUAS space. Each environment provides a

unique challenge to wireless network communication.

24

Sports Stadiums

Sports stadiums are troublesome for wireless communication networks.

Holding between several thousand to one-hundred thousand people, stadiums create

harsh RF environments given their highly reflective nature and large amounts of

attenuation due to patrons (Klepal, Mathur, McGibney, & Pesch, n.d.; Mathur,

Klepal, McGibney, & Pesch, n.d.). Young et al. (2010) measured RF propagation of

the Philadelphia stadium before demolition. Tests were performed for frequencies

between 49 MHz and 1830 MHz. The study found an increase in the median

received power and a decrease in standard deviation as frequency increased. Young

et al. (2014), work performed by the same team, found that given a similar

environment and equivalent power, received power is negatively correlated with the

frequency used. However, each tested frequency, between 430 MHz and 2400 MHz,

acted similarly; the 4900 MHz signal showed a faster signal decay rate. This

provides evidence that frequencies between 49 MHz and 2400 MHz are better suited

for stadium use. Frequencies higher than 2400 MHz appear not to propagate well

enough to be useful. Finally, Remley, Koepke, Holloway, Camell, and Grosvenor

(2009) describes radio propagation in harsh environments. While the study looked

at an oil refinery and a manufacturing plant, the RF-reflective building materials

highlight communication issues within stadiums, which are also reflect RF signals

strongly.

Urban Canyon

Urban canyons are streets with high rises or skyscrapers bordering them,

creating a corridor for radio waves to travel down. While not many exists, some

examples include the Magnificent Mile in Chicago, the Financial District in Toronto,

the Canyon of Heroes in Manhattan, and the Central and Kowloon districts in Hong

Kong. These areas typically hold parades and celebrations where recreational UAS

25

pilots will fly to capture video or pictures of events. This creates a public safety

issue and is a candidate for UAS detection-interdiction systems to be deployed.

In terms of characteristics of urban canyons, Matolak et al. (2014) performed

measurements for 700 MHz and 4900 MHz, both public safety frequencies, and

noted wave-guiding along the buildings occurring for the 4900 MHz frequency. This

is in line with expectations as higher frequencies tend to reflect, rather than

penetrate, an object. Holloway, Koepke, Camell, Young, and Remley (2014) noted

the effects of buildings on RF propagation with measurements taken before, during,

and after several building collapses. Finally, Haneda et al. (2016); Lu, Bertoni,

Remley, Young, and Ladbury (2014) have created models for describing path loss

specifically in urban and urban canyon environments. All models described were

then validated with empirical studies.

Forests

All U.S. national forests, and many private tree farms, restrict UAS flight

with few exceptions (U.S. National Park Service, n.d.). Forests, or wooded areas in

general, cover large expanses of land and some are protected by the National Park

Service for their beauty and role in the ecosystem. For this reason, the National

Park Service wants to minimize the amount of radio towers used within parks,

opting for technologies that travel longer distances. As trees and foliage are a

massive hindrance on RF propagation, this creates a unique use case for radio

transmissions. As the best radio reception is had with no obstructions, radio towers

could be built above tree lines. However, with trees capable of growing between 20 -

300+ feet in natural settings, this is impractical. Having towers above the treeline

would also make it difficult to detect UAS flying below the treeline. For this reason,

the following studies will focus on radio propagation through forested areas.

Jamrogowicz (n.d.) shows an average attenuation of 11 dB across 14 tree

species, with a maximum attenuation of 20 dB at the 1600 MHz frequency.

26

Ghoraishi, Takada, and Imai (2016) performed a detailed analysis of radio

propagation through forested areas noting the complex multi-path scenario within

dense forests. Their work describes radio waves breaking into three distinct clusters,

thereby causing receive delays and attenuations. The study used 2.2 GHz. Park et

al. (2018) and Yim et al. (2018) provide measurements and use of LoRa radios for

monitoring purposes, operated at 915 MHz, in tree farm operations giving possible

credence to the use of LPWANs. Ahmad, Salleh, Segaran, and Hashim (2018) tested

propagation in a rubber tree farm and a “light tropical jungle”. Using a spreading

factor of 7 and 12 at 433 MHz, the researchers showed reliable transmissions with

the antennas less than three meters off the ground. Specifically, the researchers

recorded signal strengths of -101 dB at approximately 720 meters using a spreading

factor of 12. With the antennas at three meters above ground level, this would have

approximately a 36% Fresnel Zone blockage. While within recommended bounds, if

the antennas could be placed even a few meters higher, it is possible the received

signal would have improved.

Open Field

Open fields provide one of the most idealistic environments for wireless

communication. Provided a transceiver can be mounted a significant height above

the ground, any frequency could be used to communicate. Assuming no-blockage of

the Fresnel Zone, wireless communication performance should be evaluated on the

maximum distance possible, given any frequency and the transmit power necessary

to do so.

2.4 Current CUAS Simulation Models

Modeling a complete CUAS system is complex due to the

systems-on-systems design, and therefore a choice is made to model smaller pieces

instead of the whole. Cline and Dietz (2020) used AnyLogic to model and evaluate

27

the critical threat speed of a UAS, whereby the ability of a counter system to detect

and interdict becomes prone to failure. Aside from speed, all other aspects of the

UAS and counter system interaction remained static. White, Shin, and Tsourdos

(2011) provided simulated results for UAS obstacle avoidance. This system was not

based upon counter tactics or detection, but rather the UAS functionality itself.

Wagoner, Schrader, and Matson (2017) focused on UAS interdiction, assuming

detection and basic tracking were already accomplished. Wagoner used Gazebo and

the Robot Operating System (ROS) messaging protocol to develop a monocular

hunter-drone counter interdiction system utilizing a man-in-the-loop system. The

system operated with a human operator manually aligning the hunter drone before

switching to autonomous mode for a kinetic interdiction. S. Li (2019) made use of

NetLogo software to model a tracking algorithm making use of trilateration. A

limitation of the study, however was the assumption that a sensor would detect a

UAS at a specified distance all of the time.

2.5 Summary

This section provided a review of sensors, UAS, network communication

technologies, and current CUAS simulation models common to CUAS research from

around the world. Current research focuses on either a specific sensor type, or

efforts are spent developing a method for a later phase of the detect, track, interdict

CUAS model. This has left little research in the way of generalized sensor

performance modeling, as well as the communications network necessary to connect

those sensors to a control hub for processing and escalating a UAS threat. Chapter

3 proposes and defines a novel framework for such a system, including system

inputs, outputs, functionality, and internal model processing.

28

CHAPTER 3. FRAMEWORK DESCRIPTION AND METHODOLOGY

There is no singular way to model a complex system such as a CUAS

simulation. However, methods exists that can aide in discerning a system with

value. The organizational framework AEIOU (Martin & Hanington, 2012, pp.

10-11) can be used as a means of documenting various aspects of the simulation’s

functionality. AEIOU stands for Activities, Environments, Interactions, Objects,

and Users. It is typically associated with coding user interactions via observations,

however it can work in a modified state for this research by ensuring interactions

between agents are adequately developed. From the AEIOU documentation,

scenarios (Martin & Hanington, 2012, pp. 152-153) will be developed to test the

functionality and robustness of the model. By the end, the simulation model itself

will allow end-users to design using a flexible modeling (Martin & Hanington, 2012,

pp. 88-89) approach, thereby creating a rapid prototyping environment.

The focus of this work is to design, implement, and evaluate a new model

framework, called the SCANS Framework, for CUAS system performance

evaluation. In order to determine what should be included in such a framework, the

AEIOU framework, along with the information presented in Chapter 2, has been

used in an attempt to encompass the CUAS problem space. From this, an iterative

process is used to further model and refine system interactions before the model is

implemented in AnyLogic. AnyLogic is built upon the Java programming language,

however the overall SCANS Framework is system agnostic.

The methodology for testing and validation of the model is provided at the

end of this chapter. Validation relies upon the implemented framework’s ability to

replicate various experiments, whereby comparing the performance results of the

virtual experiment to the original experiment. This chapter first describes the

AEIOU process, followed by the SCANS Framework outline. The outline consist of

29

input parameters, output data, and model and agent functions and variables. The

section concludes by describing the process used for evaluating the SCANS

Framework.

3.1 AEIOU

Traditionally, AEIOU would be used to document activities as they occur

naturally, however it can also be used on an imaginary scenario as well. Imagine a

facility, such as a prison that requires its borders to be protected against contraband

being flown in via a UAS air drop. Cline and Dietz (2020) has modeled such a

facility and Sathyamoorthy (2015) highlighted several cases wherein UAS were used

to deliver illicit drugs to a prison facility. The following is an analysis of the

activities, environments, interactions, objects, and users of the scenario in an

attempt to determine what inputs for the model are required. The overall goal of

the proposed framework is to determine if a UAS can be detected given various

combinations of sensors. The activities of such a system are few and straight

forward.

One or more UAS partake in flying a mission. This activity involves the UAS

pilot setting up the UAS, the UAS taking off and flying to a waypoint, and may or

may not involve the UAS returning back to the pilot depending on the mission. Any

given sensor has to measure the environment, with the potential for rotating in

place, and must send its data onward to a collection point. Communication nodes

act as aggregation points for the sensors to send their data and must forward the

traffic to either another communication node or a CUAS command and control hub

(CC) for further action to take place. The CC must record any data received in

order for further counter action to take place. Any action above this point is out of

the current scope for this research.

Due to time constraints, and the complexity involved with modeling and

evaluating a system with numerous environmental obstacles, the SCANS Framework

30

will initially only consider a CUAS environment in an open field. This means any

and all sensors and communication hubs have clear line of sight to each other.

However, environmental weather factors such as high wind and poor visibility can

still be considered in an error rate parameter explained in Section 3.2.

Interactions between agents, those being the UAS, sensors, communication

nodes, and command and control hubs, are also straightforward in scope. The UAS

flies overhead of the sensors on the ground. Noise generated by the spinning rotors,

and radio communication signals for receiving commands are measured by different

sensors. The UAS may also give off a heat signature from the computer and

mechanical components allowing for the use of thermal cameras to visualize the

UAS. The sensors, regardless of type, must measure an output of the drone relative

to itself, typically dependent upon distance. If a sensor measures a significant

signal, it should send an alert via the communication nodes to the CC. As the

ultimate goal is for the data to be received at a CC, the communication nodes must

forward the data either to other communication nodes or to the CC. This also

dictates the communication nodes and CC be capable of receiving said data.

Finally, the CC, having received the data, should log any data received so further

tracking or interdiction action can be taken.

Objects for a given scenario include the UAS pilot, the UAS, numerous

sensors of varying type (acoustic, passive RF, electro-optical, etc.), communication

devices, CC(s), the CC operators, response teams, and interdiction systems, if

applicable. For the purposes of this framework, the UAS pilot will be disregarded as

the main focus is the UAS itself, also anything beyond the data collection stage at

the CC will be disregarded as that lies beyond the sensor focus view of this research.

From this preliminary analysis, Figure 3.1 is provided to show the general flow of

information within this framework between agents.

The last piece of the AEIOU framework are the users involved. As the UAS

pilot and various individuals enrolled in the interdiction phase of the project have

been disregarded, it would be most beneficial to shift focus to the users of the

31

Figure 3.1. Framework Communication Chain

SCANS Framework to ensure their needs are met. As this framework is meant to

assist in the evaluation and design of CUAS systems, a “CUAS system designer” is

considered to be the primary user. These users may be researchers or professionals

with a desire to design experiments, test various sensor configurations, define

variables, or ascertain a general expectation of system behavior. A secondary user

may be an individual using the pre-built framework for the purpose of cost analysis

or system optimization.

3.2 Input Parameters

The next step in describing the SCANS Framework is to define the input

parameters. Outputs and Functions are discussed later sections. In accordance with

the AEIOU analysis and the information presented in Chapter 2, the general inputs

for the system are given in Table 3.1, and the specific inputs for agents are discussed

later in this chapter. Most inputs for the UAS are derived from the various needs of

the snesors.

The Maximum Sound Pressure Level (SPL), for example, is the maximum

volume of noise the UAS generates during flight. Typically, this noise is from the

whirling of the rotors attached to the motors. The Maximum SPL distance specifies

the distance at which the Maximum SPL value was calculated. As a SPL is only

relevant at the point of measure, the distance at which the SPL was measured is

needed in tandem with the intensity formula (Equation 2.1) to calculate the SPL at

a new distance. As a default value, the Maximum SPL is 88.5 dB and the Maximum

32

SPL distance is 1 meter. These values are based upon measurements in Cabell,

McSwain, and Grosveld (2016) for the DJI Phantom 2. The measurements of Cabell

et al. were also used in Torija, Li, and Self (2020).

The radar sensor requires the cross sectional area of the UAS, provided in

squared meters. Farlik et al. (2019) performed several measurements of consumer

UAS with various sensor types. For the radar sensor type, the measurements found

that a DJI Phantom 2 had the greatest cross section of 0.26, when using a 8600

MHz frequency, based upon a computer generated model using a software called

SuperNEC SW. Based upon real-world measurements using a 10 GHz radar, the

highest recorded radar cross section (RCS) was 0.35 m2. C. J. Li and Ling (2017)

also measured the DJI Phantom 2 using a 12-15 GHz radar and found the cross

section area to be approximately 0.12 m2 at the strongest measure.

The passive RF sensors require the various radio parameters to be provided

including the transmission frequency, power, and antenna gain. As a UAS

commonly makes use of both 2.4 GHz and 5.0 GHz channel frequencies, two sets of

frequency, power, and antenna gain are added as input parameters.

In regards to the sensors, Table 3.2 highlights the specific, unique inputs

required by a given sensor, while Table 3.1 provides the common inputs. Common

inputs include items such as rotation speed,field of view, whether the sensor is

unidirectional, and a sensor’s polling rate. In terms of operation, the

communication node agent and the CC agent are designed as radio communicators

and differ only in how they process the data they are given. This causes input

parameters for both to be similar.

Currently, both the communication node and the CC are considered wireless

communication devices only, as wired communication would involve building more

advanced routing protocols into the framework, which at this time is out of project

scope. However, wired communication can be simulated. By setting the Frequency

input to be the same on all nodes, the Transmit Power and Antenna Gain to 999,

and the Dropped Packet Ratio (DPR) to 0, communication could be guaranteed for

33

T
ab

le
3.

1.

D
et

er
m

in
ed

In
pu

t
P

ar
am

et
er

s
U

si
n

g
A

E
IO

U
A

n
al

ys
is

U
A
S

S
e
n
so

r
C
o
m
m
u
n
ic
a
ti
o
n

N
o
d
e

C
o
m
m
a
n
d

a
n
d

C
o
n
tr
o
l

M
ax

im
u
m

S
p

ee
d

R
ot

at
es

N
oi

se
F

lo
or

N
oi

se
F

lo
or

M
ax

im
u
m

S
ou

n
d

P
re

ss
u
re

L
ev

el
(S

P
L

)
E

rr
or

R
at

e
F

re
q
u
en

cy
F

re
q
u
en

cy

M
ax

im
u
m

S
P

L
D

is
ta

n
ce

R
ot

at
io

n
S
p

ee
d

T
ra

n
sm

it
P

ow
er

T
ra

n
sm

it
P

ow
er

R
ad

ar
C

ro
ss

S
ec

ti
on

(R
C

S
)

F
ie

ld
of

V
ie

w
A

n
te

n
n
a

G
ai

n
A

n
te

n
n
a

G
ai

n

R
ad

io
F

re
q
u
en

cy
(1

&
2)

P
ol

li
n
g

R
at

e
D

ro
p
p

ed
P

ac
ke

t
R

at
io

D
ro

p
p

ed
P

ac
ke

t
R

at
io

R
ad

io
T

ra
n
sm

it
P

ow
er

(1
&

2)
R

ot
at

io
n

O
ff

se
t

S
en

si
ti

v
it

y
S
en

si
ti

v
it

y

R
ad

io
A

n
te

n
n
a

G
ai

n
(1

&
2)

34

almost any distance. At that point the current mechanism for route decision could

be used to define a path of communication, however this would result in a system

with no network hops. For this application, however, wired communication is not

implemented due to the modeled distances between sensors and communication

nodes, as well as non-necessity for the tested use cases.

Because of the commonalities between sensor types and the commonalities

between the communication devices, it is beneficial to have a general Sensor object

class and a CommunicationDevice object class from which the different sensor types

and the communication devices inherit from. The envisioned object-oriented class

inheritance structure is provided in Figure 3.2.

Table 3.2.

Specific Additional Sensor Inputs

Acoustic Camera Radar Passive Radio
Frequency

Noise Floor Resolution Height Transmit Power Frequency

Resolution Width Minimum Receive
Power

Antenna Gain

Pixels Per Foot Frequency Sensitivity

Lens Angle Antenna Gain

System Loss

Given the hierarchical structure of the framework, there are multiple

common parameters present in each agent. The first parameter, Error Rate, acts as

a buffer for the unknown, or difficult to compute scenarios, and does not have a

necessarily rigid definition. For example, when applied to an acoustic sensor, a

higher probability may be used to indicate a windier day; a radar may use it for a

misidentification of a bird; or the passive RF sensor may use it as a sudden noise

floor spike. The communication devices – CommunicationNode and

35

Figure 3.2. Object Class and Inheritance Structure

CommandAndControl – make use of a “Dropped Packet Ratio” (DPR) for semantic

reasons, but the purpose is the same as an error rate.

Rotates, Rotation Speed, Field of View, and Rotation Offset govern the

necessary attributes to create rotating agents. Rotates is a Boolean value used to

define whether an agent will be considered omnidirectional or unidirectional and, in

this particular implementation, defines changes in an agent’s graphical presentation

(i.e. when true a directional indicator is added to the agent). Rotation Speed defines

how quickly an agent rotates and is dependent on Rotates being true. The model

currently implements this rotation functionality as a function of the Polling Rate.

Due to this chosen implementation, Rotation Speed is given as a degree delta by

which to rotate the agent. For example, a Rotation Speed of 60 would rotate the

agent by 60◦ at every elapse of Polling Rate. An issue that arises from using these

stated methods of rotating an agent is the inability to face an agent in a specified

direction. Upon initialization, AnyLogic places all agents with a rotation angle of

zero degrees (facing towards the positive X axis); Rotation Offset, used in

accordance with Rotates, is used to offset this initial zero degree rotation. A 90◦

offset will face the agent toward the positive Y axis. During implementation it

should be noted that AnyLogic’s implementation of the coordinate plane system

requires these coordinates to be adjusted. In order for an agent to stay stationary at

Rotation Offset ’s value, Rotation Speed should be set to zero.

36

Finally, Polling Rate defines the time delay necessary between querying the

sensor value. For this framework, this rate is used as the general speed delimiter for

the sensor by providing a rate limiter for sensor rotation and a rate limiter for the

amount of data generated. Most sensor types have been given a Polling Rate of 250

milliseconds ±10, with the exception of the Camera sensor type, which was set to

500 milliseconds ±10. The ±10 is necessary due to a limitation of the

communication devices not having a data packet queue, and acts to limit data

collisions. Data collision mechanisms would be an improvement on the system, but

are not currently implemented.

As mentioned before, Table 3.4 outlines the common sensor inputs. Tables

3.3 - 3.9 provide each parameter for the UAS, sensors, communication nodes, and

CC; the data type; and the default value. The Acoustic sensor has a single

additional parameter, noiseFloor, which measures the environmental noise level in

decibels (dB). The noiseFloor parameter is given a default value of 30, which is

considered to be similar to the noise level of a quite room. The default value is a

subjective decision and will change based upon use-case, but this parameter, and

every other parameter’s default value, is chosen as a reasonable starting point based

upon the work presented in Chapter 2.

Much thought has gone into whether the noiseFloor parameter should be

only a part of the Acoustic sensor agent, or if it should be applied to every other

sensor type, as well. In general, every sensor, regardless of type, has a lower limit of

what can be measured due to environmental noise. Measurements below this

threshold may be impossible due to the electrical noise present in a radar, the traffic

noise on a freeway (in the case of a microphone), or electromagnetic waves in the

case of radio communication. The noise floor is usually independent of the sensor,

and dependent on a specific location and time. However, while implementing the

framework, the noise floor only seemed applicable to acoustic sensors and radio

communication. Radar may have an applicable noise floor, however it was not

apparent from the literature that such a metric should be considered.

37

Table 3.3.

UAS Parameter Inputs

Parameter Datatype Default Value Description

maxSpeed Double 25 Maximum speed of a
DJI Phantom 2 in
m/s

maxSoundPressureLevel Double 88.5 Max SPL generated
by a Phantom 2 in dB

maxSPLDistance Double 1 Distance maxSPL was
measured from in m

radarCrossSection Double 0.26 Measured in m2

radioFrequency1 Double 2400 UAS control
frequency 1 measured
in MHz

transmitPower1 Double 20 UAS radio 1 transmit
power measured in
dBm

antennaGain1 Double 2.5 Gain for a 2.4 GHz
dipole antenna
measured in dB

radioFrequency2 Double 5800 UAS control
frequency 2 measured
in MHz

transmitPower2 Double 20 UAS radio 2 transmit
power measured in
dBm

antennaGain2 Double 3.2 Gain for a 5.8 GHz
dipole antenna
measured in dB

Electro-optical sensors, which includes visible spectrum and infrared cameras, also

do not make use of a noise floor due to the closest comparison for the parameter

being camera focus. For these reasons, it was determined that noiseFloor should

not be applied as a global parameter. Later studies may find this to be an errant

38

Table 3.4.

General and Acoustic Sensor Parameter Inputs

Parameter Datatype Default Value Description

rotates Boolean false If true, sensor is considered
unidirectional. If false,
omnidirectional

rotationSpeed Double 30 Step value of rotation in
degrees

rotationOffset Double 0 Beginning rotational offset
from 0 degrees

fieldOfView Double 30 Angle of view for a sensor in
degrees

pollingRate Double 250 Delay between sensor
calculations in ms

errorRate Double 0.05 Definition changes per sensor
type. Percentage range of 0.0
- 1.0

choice. A comparable parameter to a noise floor is a sensor’s sensitivity, however the

two are not the same. In general, the sensitivity of a sensor marks the lowest

measurement possible if the noise floor was not present or defines the amount of

received power necessary to record a chosen voltage.

The Camera class, representing electro-optical sensors, has a redundancy for

the fieldOfView (FOV) parameter due to also specifying the resolutionWidth and

the pixelsPerFoot parameters. FOV can be calculated by dividing the latter two

parameters together, as in Equation 2.2. The use of either set of parameters are left

to personal choice, however, care should be taken to specify all applicable

parameters as error checking is not currently implemented.

Radar and LiDAR systems are difficult to model due to the typical lack of

system specifications by manufactures. It is for this reason, along with the number

of inputs necessary to have a meaningful distance calculation, other than maximum

39

Table 3.5.

Camera Sensor Parameter Inputs

Parameter Datatype Default Value Description

resolutionHeight Double 480 Resolution height of the
camera picture in px

resolutionWidth Double 720 Resolution width of the
camera picture in px

pixelsPerFoot Double 4 Number of pixels per foot
required for object detection
in px

lensAngle Double 30 Lens angle of the camera in
degrees

range, LiDAR systems are not implemented in the SCANS Framework at this time.

Radar systems, while having slightly more available information, still appears

lacking in terms of desired performance and usability for this framework. However,

based upon the studies done by Farlik et al. (2019) and C. J. Li and Ling (2017),

among others, information can be acquired in order to obtain range calculations.

The Radar agent assumes data availability via a systems designer actively seeking

to implement radar technology into a CUAS solution. The default values presented

in Table 3.6 are chosen from within ranges cited in other studies but are, for all

intents and purposes, arbitrary and hold no significance.

The many parameters proposed by this framework may lower usability simply

due to the amount information needed. For comparison, Table 3.8 provides the

sensor parameter recommendations from the U.S. Department of Homeland Security

(DHS) (U.S. Department of Homeland Security, 2019, pp.20-22). These parameters

have the benefit of being uniform across sensor types, are few and simplistic, and

are more in-line with what other researchers, such as Cline and Dietz (2020) and

S. Li (2019), have used. Yet, while obtaining the information for these parameters is

40

Table 3.6.

Radar Sensor Parameter Inputs

Parameter Datatype Default Value Description

transmitPower Double 1000 Power of the radar in
W

minimumReceivedPower Double 0.000000001 Smallest energy signal
detectable in W
(-90dBW)

frequency Double 3.5 Radio frequency in
GHz

antennaGain Double 36 Gain for the antenna
measured in dB

systemLoss Double 1 Entire power loss of
the system measured
in dB

Table 3.7.

PassiveRF Sensor Parameter Inputs

Parameter Datatype Default Value Description

sensitivity Double -80 Smallest energy signal
detectable in dB

frequency Double 2400 Radio frequency in MHz

antennaGain Double 2.5 Gain for a 2.4 GHz dipole
antenna measured in dB

usually readily available from manufactures, the measures provided may be inflated,

which is precisely the problem the SCANS Framework aims to combat.

Now, more than ever, there are a variety of communication technologies built

for sensor communication, Internet of Things (IoT) applications, and low data

applications. A few of these were described in Section 2.3 and have similar inputs

regardless of the technology. Differences between technologies such as Wi-Fi and

LoRaWAN come in the the form of modulation schemes, frequency usage, and

41

T
ab

le
3.

8.

D
H

S
su

gg
es

te
d

se
n

so
r

pa
ra

m
et

er
s

A
co

u
st
ic

E
O
/
IR

R
a
d
a
r

R
F

D
et

ec
ti

on
R

an
ge

D
et

ec
ti

on
R

an
ge

D
et

ec
ti

on
R

an
ge

D
et

ec
ti

on
R

an
ge

D
ir

ec
ti

on
F

in
d
in

g
F

O
V

F
ie

ld
of

R
eg

ar
d

R
ad

io
F

re
q
u
en

ci
es

G
eo

lo
ca

ti
on

S
ca

n
R

at
e

F
re

q
u
en

cy
B

an
d
w

id
th

D
ir

ec
ti

on
F

in
d
in

g

C
la

ss
ifi

ca
ti

on
Im

ag
e

R
es

ol
u
ti

on
S
ca

n
R

at
e

G
eo

lo
ca

ti
on

T
ra

n
sm

it
P

ow
er

C
la

ss
ifi

ca
ti

on

42

maximum packet size. For most technologies, besides from LoRaWAN in some

instances, the communication window between radios is less than one millisecond.

For LoRaWAN, if the spreading factor and coding rate is high, the

transmission window can be up to four seconds due to the Chirp Spread Spectrum

(CSS) modulation (LoRa Alliance, 2015). This extra dwell time between

communications is not accounted for in this model, as a real-world application of

communication nodes requiring four seconds of transmission time is deemed

unacceptable. A UAS travelling at 18 m/s, would cover 72 meters (236 feet) in 4

seconds. If a communication network had only three network hops before the CC, a

UAS could travel 288 meters (945 feet) before a single detection signal was

registered.

Keeping this in mind, the most pertinent factors to account for include the (i)

radio frequency, (ii) transmit power, and (iii) antenna gain as these directly relate

to the distance a signal can travel using FSPL as given in Equation 2.12. The noise

floor and radio sensitivity are also important factors as they provide a threshold for

the lowest signal a radio can receive. Finally, the dropped packet ratio (DPR)

defines the rate at which a communication packet fails to be received. As stated

before, the communication nodes and CC nodes differ only in how they process the

received data, and therefore have the same inputs, as provided in Table 3.9.

3.3 Model Outputs

While there are many inputs to consider within the SCANS Framework, the

outputs are few and easy to follow. However, as the SCANS Framework is merely a

framework, data output can be adapted to meet any need. To enable easier

post-processing of results, all model output is only logged by the Command And

Control (CC) agent, which can then be passed to a database, text file, or another

function for further processing. A custom datatype, SensorData, was created to

43

Table 3.9.

Communication Node and CC Parameter Inputs

Parameter Datatype Default Value Description

frequency Double 2400 Radio frequency in
MHz

transmitPower Double 30 Transmit power of
the radio measured in
dBm

antennaGain Double 2.5 Gain for a 2.4 GHz
dipole antenna
measured in dB

sensitivity Double -80 Smallest energy signal
detectable in dB

droppedPacketRatio Double 0.05 Percentage a packet
will not be received,
range of 0.0 - 1.0

allow custom messages to be passed between agents. The Java data structure is

given in Appendix A, and the general parameters are given in Table 3.10.

The ID parameter is a custom abbreviated code for each agent. These codes

are provided in Table 3.11, with an index value for each agent appended to the

code, starting at zero. For example, the second communication node in the model

would have an ID value of “CN-1”. This identification system was made, in part, to

provide a mechanism for labeling different agents so they can be referenced in a

meaningful way, but also because it was shown that AnyLogic’s internal mechanism

for providing identification values appears random for each model run.

AnyLogic numbers every agent within the same rolling number system, with

identification numbers sometimes starting randomly at 600, 650, 700, or even 730.

The SCANS Framework solution is usefrul in the case that another modeling

program not have an identification assignment mechanism. The proposed framework

method for labeling each agent groups them into individual agent classes, then

44

Table 3.10.

SensorData Class Parameters and Datatypes

Parameter Datatype Default Value Description

ID String “” ID code of the
data-generating agent

detected Boolean false Whether a detection occurred

inRange Boolean false Whether the UAS was in
range

distance Double 0.0 Distance between detecting
agent and UAS

measure Double 0.0 Specific measure calculated by
the agent

units String “” Units of the measure
parameter

time Double 0.0 Model time the detection
occurred in seconds

message received Boolean true Was this message received by
a CC node

last com node String “” The last node to successfully
receive the message

assigns an identification number, beginning at zero. The proposed identification

system is consistent between model runs and the identification assignment process

allows for an expected outcome to be delivered on each model run. How these

identification numbers are applied is discussed later in Section 3.5.10.

The detected and inRange parameters are used together to determine false

negatives. Due to the errorRate for sensors, it is possible to have a rogue UAS

within range of the sensor but for detection to fail. This would be represented by a

false, true response for detected and inRange, respectively. Output data is only

generated if inRange is true. This is to limit the amount of ignorable data that

would otherwise be generated by a sensor at every pollingRate interval. Another

45

Table 3.11.

Abbreviated Agent Identification Codes

Agent Code

UAS DR (for “DRone”)

Unidirectional Acoustic AU

Omnidirectional Acoustic AO

Unidirectional Radar RU

Omnidirectional Radar RO

Visible Spectrum Camera VC

Infrared Camera IR

Unidirectional Passive RF RFU

Omnidirectional Passive RF RFO

Communication Node CN

Command and Control Node CC

type of false negative can occur due to a communication node’s droppedPacketRatio,

which is synonymous to a sensor’s errorRate. Both the message received and

last com node parameters assist in detecting when a communication failure has

happened. If a SensorData message is sent, but a communication node fails to

receive it due to the DPR, the sender’s ID is recorded in the last com node field and

message received is set to false. The packet is then forwarded on through the

communication channel to the CC with no further modifications. If a message is

successfully received by all communication agents, the CC will record its own ID in

the last com node field and message received will remain true.

Finally, distance, measure, units, and time relate to the measurable data

present when a sensor “detects” a UAS. The time parameter is the model run time,

in seconds, when a detection occurred. The decision to use model time instead of

real-world time was two-fold. The first reason being the model could be artificially

sped up or slowed down, which would render real-world time irrelevant. The second

46

reason being the ability to more readily compare model runs together, as the

runtime always starts from zero. The real-world time is recorded when the model

begins and ends, the details of which are discussed further in Section 3.5.10.

The distance parameter is calculated using Java’s getDistance() function in

AnyLogic, and is scaled to the units in the Main agent of the model. This value is

used by the model to calculate and compare against the various values each sensor

is measuring. For example, the distance between the UAS and an acoustic sensor is

necessary to calculate a drop in sound pressure levels, as the mathematical equation

relies on comparing distances. This is similar for the other sensors as well. The

measure parameter records the calculated value for a given sensor. For example,

Acoustic agent sensors measure SPL, PassiveRF agents record the Received Signal

Strength (RSS), and Camera and Radars agents record the maximum range at

which a particular UAS could be detected.

The units parameter records the specific unit a measure pertains to.

Acoustic agents return the SPL in decibels, recorded as “dB”, PassiveRF sensors

agents return the RSS, also in dB, and the Camera and Radar sensor agents return

maximum ranges in the unit of measurement declared in the AnyLogic Main agent,

where the model is configured. These values are measured units such as yards,

meters, or feet.

All of the aforementioned output is logged only by the CC agent. As a

result, troubleshooting errors within the framework are minimized in relation to

output data, and the functionality mimics a real-world system. Following the

communication chain shown in Figure 3.1, a sensor is the only device that can

generate new data. This is done when all criteria are met for a detection to occur.

The sensor sends the SensorData message to the nearest communication node. The

communication node, via a simple nearest neighbor routing protocol, sends data to

only one other communication agent – either another communication node or the

CC, if within range. Once the SensorData message reaches the CC, information is

logged whatever manner chosen. Output data for the model also includes a record

47

of when the model started, ended, and the number of agents and their parameters

for each model run.

3.4 Model Framework Layers

By combining the hierarchical class structure (Figure 3.2) with the

communication chain (Figure 3.1), the SCANS Framework can be defined asa three

layer system. These layers encompass the object classes, the communication chain,

and how users interact with the model, which is shown in Figure 3.3. The User

Interface layer includes simulation-program specific interfacing as well as the setting

of parameters for the sensors and communication devices. The middle Agent layer is

where sensor and communication device specific variables and functions are defined.

This layer should be considered separate from the user interference. Finally, the

third layer is the Data Collection layer and is only reachable from the CC. It is from

this layer that extensions to the model’s functionality can be made, such as the

creation of an interdiction system.

Figure 3.3. General Model Framework

48

3.5 Agent and Model Functions and Variables

This section provides an outline of agents, functions and variables. For

distinction of terminology, what was discussed in Section 3.2, were agent

Parameters, which are synonymous with function arguments used when

instantiating a new object instance. Variables are for use by the model and agents

themselves, without user interference. They are bits of data used solely by an agent

and not directly by the user. For clarity, the agent functions will be discussed first,

followed by the model startup functions, and finally any closing functions.

3.5.1 UAS Agent

The UAS sensor, despite being arguably the most important agent in the

model, as without it this framework would not have a purpose, is the simplest agent.

The variables, including the datatype and default values, are given in Table 3.12.

The variables are used by the single function within the agent, getSoundLevel().

This function is used to assign a value to soundPressureLevel, which in turn is called

by the Acoustic agent. The getSoundLevel() function is a simple single-line

equation, given in Equation 3.1 and returns a numerical value of datatype double.

The ID variable holds the agent code (Table 3.11) and index number. As the

UAS moves around the map, the framework allows for the UAS speed to vary. The

currentSpeed variable stores the varying speed. Finally, the soundPressureLevel

variable stores the current noise level being produced by the UAS, dependent upon

speed, as shown in Equation 3.1. This variable is referenced by the Acoustic agent

when calculating the relative SPL.

SPL = maxSPL ∗
(
currentSpeed

maxSpeed

)
(3.1)

49

Table 3.12.

UAS Variable Names, Datatypes, and Default Values

Name Datatype Value

ID String “”

currentSpeed Double 0

soundPressureLevel Double 0

3.5.2 Common Sensor Agent

The following variables are representative of the features in the Sensors

agent, shown in Figure 3.2. The variables are used to create the SensorData

message that is sent from a sensor to a communication device. These variables are

given in Table 3.13. While all of the function names are shared between all sensor

types, only two are truly universal: determineClosestComNode() and

calculateRelativeDronePosition(). The general algorithms for each are given in

Algorithm 3.1 and 3.2, respectively. Of note, calculateRelativeDronePosition()

does not currently take into account the altitude of the UAS when determining

sensor FOV. The model does, however, determine the overall distance between a

sensor and the UAS in three-dimensional (3D) space. This means an assumption

exists that the sensor is properly directed at the rogue UAS in terms of the altitude

angle. Given a sensor with a small vertical FOV, this limitation may provide

unrealistic results. These inaccurate results would occur if, in the real-world test, a

UAS would fly overhead a sensor, undetected. This undetected overhead flight

scenario is currently not possible in the SCANS Framework.

Concerning the variables listed in Table 3.13, ID is as described in Section

3.5.1. The variables isDetected, inRange, droneDistance, and sensorMeasure are all

part of the SensorData message sent upon the detection of a UAS. The

sensorMeasure variable is the individual measure made by a given sensor and

represents the data that could be acted upon by an interdiction system. The

50

nearestCom variable holds the agent to which this sensor should send data to. At

this time, it is assumed that a sensor will always connect with the nearest

communication node, regardless of distance. However, the communication node

could still fail to receive the message based upon its DPR. When the rotates

parameter is used in conjunction with rotationSpeed, an agent will rotate in place.

The agent’s current angle of rotation is held in the variable rotationAngle. For each

following sensor descriptions, the functions and procedures are similar regardless of

whether a sensor is rotating. If movement is involved, the sensor first rotates based

upon the rotationSpeed, then proceeds through the standard procedure described.

Table 3.13.

UAS Variable Names, Datatypes, and Default Values

Name Datatype Value

ID String “”

isDetected Boolean false

inRange Boolean false

droneDistance Double 0

sensorMeasure Double 0

nearestCom CommunicationNode null

rotationAngle Double 0

Algorithm 3.1 Determine the Closest Communication Node to Send SensorData to

1: function determineClosestComNode
2: currentDistance← 0 . Distance of the current nearest neighbor
3: for For Every ComNode Agent do
4: cn← ComNode(i)
5: potentialDistance← getDistance(sensor.Location, cn.Location)
6: if potentialDistance < currentDistance | currentDistance = 0 then
7: currentDistance← potentialDistance
8: nearestCom← cn

51

3.5.3 Acoustic Sensor Agent

The Acoustic sensor agent is the simplest of all sensors and is most similar to

its parent Sensor agent. The Acoustic agent has no unique variables. However,

similar to all other specific sensor types, it has sense(), calculateMeasure(), and

sendAlert() functions. The sense() and calculateMeasure() functions require a

Algorithm 3.2 Calculate the UAS Position Relative to a Sensor

1: function calculateRelativeDronePosition
2: UAS output← null
3: for Every UAS agent do
4: drone← UASagent(i)
5: x, y, z ← sensor.Location− drone.Location
6: rot← |sensor.GetRotation() ∗ 180/π| mod 360
7: relativeRot← (arctan(|y|/|x|) ∗ 180/π) mod 360
8: droneInV iew ← false
9: ccwRot← (((rot+ sensor.FoV/2) mod 360) + 360) mod 360
10: cwRot← (((rot− sensor.FoV/2) mod 360) + 360) mod 360
11: if x < 0 then . If x is negative
12: if y < 0 then . If y is negative
13: if ccwRot > relativeRot & cwRot < relativeRot then
14: droneInV iew ← true
15: else . Negative x, Positive y
16: if ccwRot > (360− relativeRot) & cwRot < (360− relativeRot)

then
17: droneInV iew ← true
18: else
19: if y < 0 then . Positive x, Negative y
20: if ccwRot > (180− realtiveRot) & cwRot < (180− relativeRot)

then
21: droneInV iew ← true
22: else . Positive x, Positive y
23: if ccwRot > (180 + relativeRot) & cwRot < (180 + relativeRot)

then
24: droneInV iew ← true
25: if droneInV iew = true then
26: output← drone
27: BREAK
28: Return output

52

UAS agent be passed as a parameter to enable processing. All of the functions are

interwoven amongst each other, with one function calling another. Algorithm 3.3 is

the start of this process and is similar for other sensor types. Algorithms 3.4 - 3.6

show the three individual functions. While sense() and calculateMeasure()

change drastically depending upon the sensor employed, the only difference for

sendAlert() between sensors is the sensorMeasure value and the measureUnits

(from the SensorData datatype). As such, Algorithm 3.3 and Algorithm 3.6 will

only be given here and each subsequent sensor section will specify adaptions as

necessary.

To better clarify potential confusion within the algorithms, scaleUnits, listed

in Algorithm 3.4 line 4, is a variable implemented in the Main agent of AnyLogic.

The variable holds the unit of measure (i.e. meter, foot, etc.) used for model

scaling. This implementation is used because of AnyLogic quirks, regarding access

to the scale entity. The Java function getDistance() returns the number of pixels

between two points, and scaleUnit is used to convert this data using the

scale.pixelsPerUnit(LengthUnit) function. Another point of clarification is for

the use of randomFalse(). This native Java function takes in a percentage value

between 0.0 and 1.0 (given by the errorRate parameter) and will return false by

that percent based upon a random number generator. Said another way, if

errorRate = 0.05 and randomFalse(errorRate), then false would be returned 5%

of the time. This function is used throughout the model to introduce error in what

would otherwise be a never-faulting simulation.

Algorithm 3.3 Determine if a UAS is Nearby

1: procedure Is a UAS nearby
2: for For Every UAS Agent do
3: sense(UAS(i))
4: if isDetected & inRange then
5: BREAK

53

Algorithm 3.4 Acoustic Scanning Function

1: function sense(UAS)
2: sensorMeasure← calculateMeasure(UAS)
3: droneDistance← getDistance(sensor.Location, UAS.Location)
4: droneDistance← droneDistance/scaleUnits . Scale the distance by the

proper units
5: if sensorMeasure >= noiseF loor & randomFalse(errorRate) then .

java.randomFalse returns false by the percentage rate given it
6: Set Detection to true
7: isDetected← true
8: inRange← true
9: else
10: if sensorMeasure >= noiseF loor then
11: inRange← true
12: else
13: inRange← false

14: isDetected← false
15: Set Detection to False

Algorithm 3.5 Calculate the SoundPressureLevel Using UAS speed

1: function calculateMeasure(UAS)
2: droneDistance← getDistance(sensor.Location, UAS.Location)
3: droneDistance← droneDistance/scaleUnits . Scale the distance by the

proper units
4: intensityRatio← (log10(

droneDistance2

UAS.maxSPLDistance2
) ∗ 100)/100

5: dB ← −1 ∗ (10 ∗ intensityRatio− UAS.soundPressureLevel)
6: return dB

Algorithm 3.6 If Detection Occurs, Send an Alert

1: function sendAlert
2: Create a new instance of SensorData with units = dB
3: data← new SensorData(...)
4: if isDetected = false then
5: data.setMessage Received← false
6: data.setLastComNode← sensor.ID
7: if nearestCom = null then determineClosestComNode
8: Send data to nearestCom

3.5.4 Radar Sensor Agent

The Radar sensor agent has only one additional variable over the general

Sensor agent, droneRange. This variable is a Map interface type in the Java

54

language and is used as a HashMap. Given the lack of literature pertaining to the

specifications of radar systems, this framework assumes an approach of calculating

the maximum distance a radar system could potentially view a UAS using its RCS.

For the sendAlert() function, the sensorMeasure used is the maximum distance

the radar could potentially detect the UAS and the measureUnits are based upon

whichever unit of length is used in the model’s main view (the Main agent).

Algorithm 3.7 and 3.8 are provided to highlight the differences in processing

between the sensor types.

3.5.5 Camera Sensor Agent

Similar to the Radar agent, the Camera agent adds only the single

droneRange variable. It functions in the same manner as described in Section 3.5.4.

The sense() function is also the same as the Radar agent. Algorithm 3.9 defines

the changes in distance processing from the Radar agent. Instead of using the speed

Algorithm 3.7 Radar Scanning Function

1: function sense(UAS)
2: calculateMeasure(UAS)
3: droneDistance← getDistance(sensor.Location, UAS.Location)
4: droneDistance← droneDistance/scaleUnits . Scale the distance by the

proper units
5: if droneRange.UAS.ID >= droneDistance & randomFalse(errorRate) .
droneRange.UAS.ID is a HashMap then

6: Set Detection to true
7: sensorMeasure← droneRange.UAS.ID
8: isDetected← true
9: inRange← true
10: else
11: if droneRange.UAS.ID >= droneDistance then
12: inRange← true
13: else
14: inRange← false

15: isDetected← false
16: Set Detection to False

55

Algorithm 3.8 Calculate Maximum Detection Range Using UAS RCS

1: function calculateMeasure(UAS)
2: if droneRange = null then
3: Instantiate the droneRange HashMap

4: if droneRange does not have the UAS key then
5: c← 299792458 . Speed of Light
6: Let s reference this sensor
7: numerator ← s.TxPower ∗ s.antennaGain2 ∗ c

s.frequency∗109
2 ∗

UAS.radarCrossSection
8: denominator ← (4 ∗ π)3 ∗ s.minimumReceivePower ∗ s.systemLoss
9: range max← numerator

denominator

0
.25

10: droneRange← UAS.ID, range max . Add data to droneRange
HashMap

of light and radio frequencies, the Camera sensor uses the picture resolution, pixels

per foot required for detection, and the camera lens angle to determine the

maximum detection range. The specific dimensions of the object being detected are

of no consequence as this is captured in the pixelsPerFoot (PPF) metric.

Algorithm 3.9 Calculate Maximum Detection Range of Camera

1: function calculateMeasure(UAS)
2: if droneRange = null then
3: Instantiate the droneRange HashMap

4: if droneRange does not have the UAS key then
5: Let s reference this sensor
6: FOV ← 0
7: if s.fieldOfV iew is not set then
8: FOV = s.resolutionWidth/s.PPF
9: else
10: FOV = s.fieldOfV iew

11: range max = FOV ∗360/s.lensAngle
2π

. Returns distance in feet
12: Convert range max to scaleUnits . Where scaleUnits is the unit of length

the model displays
13: droneRange← UAS.ID, range max . Add data to droneRange HashMap

56

3.5.6 PassiveRF Sensor Agent

For the PassiveRF sensor agent, no additional variables are required over the

ones provided in Section 3.5.2. Functionally speaking, sense() adds an additional

condition to lines 5 and 10 of Algorithm 3.4, that being

sensorMeasure >= s.sensitivity. The calculateMeasure() function, which is

unique to this agent, is given in Algorithm 3.10

Algorithm 3.10 Calculate Received Signal Strength Using UAS Signaling

1: function calculateMeasure(UAS)
2: Let s reference this sensor
3: DroneTxFrequency ← 0 . The UAS agent has multiple radio settings, these

holder variables allow us to focus on just one
4: droneTxPower ← 0
5: droneTxGain← 0
6: if |UAS.frequency1− s.frequency| <= 20 then . Make sure the

frequencies are within one channel of each other
7: droneTxFrequency ← UAS.frequency1
8: droneTxPower ← UAS.TxPower1
9: droneTxGain← UAS.antennaGain1
10: else if |UAS.frequency2− s.frequency| <= 20 then
11: droneTxFrequency ← UAS.frequency2
12: droneTxPower ← UAS.TxPower2
13: droneTxGain← UAS.antennaGain2
14: else
15: return −999 . If the frequencies don’t match, -999 guarantees the radios

will never sense each other
16: distance← getDistance(s.Location, UAS.Location)
17: Scale distance by Kilometers
18: Set droneDistance to distance, scaled for scaleUnits
19: FSPL ← 20 ∗ log10(distance) + 20 ∗ log10(droneTxFrequency) + 32.44 −

s.antennaGain− droneTxGain
20: return droneTxPower − FSPL

57

3.5.7 Common Communication Device Agent

Between The CommunicationNode and the CommandAndControl agents,

only two additional variables are added for their personal use. The first is ID which

operates in a similar fashion as the other agents. The second variable, sensorData,

is of type SensorData and stores any incoming message for further processing. The

general process for handling data is straight forward for each agent and does not

warrant an algorithm to be developed, but is explained in the follow paragraph.

Upon receiving a message, msg, the CommunicationDevice has a

droppedPacketRatio chance of marking the message as failed to receive. If the

message is not received, msg.messageReceived is set to false and

msg.lastComNode is set to this.ID where this refers to the sensor itself. If the

packet is received, nothing within the msg chagnes. The msg is then stored in the

sensorData variable. Finally, the data is either sent onward, if the agent is a

CommunicationNode, or recorded in the case of being a CommandAndControl agent.

3.5.8 CommunicationNode Agent

The CommunicationNode acts as the glue to allow sensor agents to

communicate with the CC. To achieve this, the CommunicationNode employs a

rudimentary nearest-neighbor routing mechanism, which are discussed in the

Algorithms 3.11 - 3.13. Once a nearest-neighbor is determined, that agent is stored

in the nearestNeighbor variable, which has a default value of self . Ideally, this

would be the only variable needed. However, because a CommunicationNode and

CommandAndControl agent are two different datatypes, two variables are needed.

Hence, there is also a nearestCCNode variable. As long as nearestCCNode is

assigned, the CommunicationNode agent will send data directly to the CC as that is

the ultimate message destination. Otherwise, the data is sent to the nearest

CommunicationNode. To accomplish these goals, the agent makes use of a

determineConnections() (Algorithm 3.11 & 3.12), determineNeighbor()

58

(Algorithm 3.13), and sendData() (Algorithm 4.5) function. None of the functions

require an input parameter.

A new AnyLogic element, different from other agents up to this point, is

what AnyLogic calls “Connections”. The CommunicationNode has two,

comNodeLinks and ccLinks, and are simply ArrayLists of CommunicationNode and

CommandAndControl agents, respectively. These allow for visual links to be drawn

between agents as well as allows for easier directed communication between agents.

They are not crucial for the SCANS Framework, but a list is necessary for

determineConnections() to determine which agents are closest.

Algorithm 3.11 Determine All Potential NearestNeighbors: Part 1 of 2

1: function determineConnections
2: if nearestCCNode is null | nearestNeighbor is not set to self

then
3: for Every CommandAndControl agent do
4: cc← CommandAndControl(i)
5: if |cc.frequency − self.frequency| >= 20 then
6: CONTINUE
7: distance← getDistance(cc.Location, self.Location) . Returns a

value in pixels
8: Scale distance to Kilometers
9: FSPL ← 20 ∗ log10(distance) + 20 ∗ log10(self.frequency) + 32.44 −
self.antennaGain− cc.antennaGain

10: RSS ← self.transmitPower − FSPL
11: if RSS >= noiseF loor & RSS >= cc.sensitivity then
12: if ccLinks does not contain cc then
13: RSS ← cc.transmitPower − FSPL . Test that the

connection will work for both agents
14: if RSS >= self.noiseF loor & RSS >= self.sensitivity

then
15: ccLinks.Add(cc)
16: else
17: ccLinks.Remove(cc)

18: else
19: ccLinks.Remove(cc)

59

Algorithm 3.12 Determine All Potential NearestNeighbors: Part 2 of 2

20: function determineConnections
21: if nearestCCNode is null | nearestNeighbor is set to self then
22: for Every CommunicationNode agent do
23: cn← CommunicationNode(i)
24: if |cn.frequency − self.frequency| >= 20 | cn = self then
25: CONTINUE
26: distance← getDistance(cn.Location, self.Location) . Returns a

value in pixels
27: Scale distance to Kilometers
28: FSPL ← 20 ∗ log10(distance) + 20 ∗ log10(self.frequency) + 32.44 −

self.antennaGain− cn.antennaGain
29: RSS ← self.transmitPower − FSPL
30: if RSS >= noiseF loor & RSS >= cn.sensitivity then
31: if comNodeLinks does not contain cn then
32: RSS ← cn.transmitPower − FSPL . Test that the

connection will work for both agents
33: if RSS >= self.noiseF loor & RSS >= self.sensitivity

then
34: comNodeLinks.Add(cn)
35: else
36: comNodeLinks.Remove(cn)

37: else
38: comNodeLinks.Remove(cn)

3.5.9 CommandAndControl Agent

The CommandAndControl (CC) agent is much simpler than the

aforementioned CommunicationNode agent. Only a single function needs defining

for this agent, which is sendData(). While the function name is similar to the

CommunicationNode agent, in the CC agent sendData() is used to log data for

later analysis. Simply put, a SensorData message arrives from a

CommunicationNode agent and the output is sent to the chosen output venue. The

function can be easily adapted to output to a CSV (comma separated values) file, a

standard text file, or a database. No additional variables from those discussed in

Section 3.5.7 are needed for this agent. Lastly, an AnyLogic collection named

60

Algorithm 3.13 Determine the NearestNeighbor

1: function determineNeighbor
2: connectedCCNodes← ccLinks.getAll()
3: if connectedCCNodes.size() > 0 then
4: nearestCCNode← connectedCCNodes[0] . If any CC nodes are within

range, send data directly there
5: nearestNeighbor ← self
6: else
7: nearestCCNode← null
8: connectedNodes← comNodeLinks.getAll()
9: currentDistance← 0
10: if nearestNeighbor! = self.ID | cn.nearestNeighbor.ID = self.ID then
11: CONTINUE
12: potentialDistance← getDistance(self.Location, cn.Location)
13: if nearestNeighbor.ID = self.ID then
14: nearestNeighbor ← cn
15: currentDistance← potentialDistance
16: CONTINUE
17: if potentialDistance < currentDistance then
18: nearestNeighbor ← cn
19: currentDistance← potentialDistance

20: for Every connectedNodes do
21: if nearestNeighbor.ID = connectedNodes[i].ID |
22: connectedNodes[i].nearestNeighbor.ID = self.ID then
23: CONTINUE
24: else
25: comNodeLinks.Remove(connectedNodes[i])

comNodeLinks is used to track connections between this agent and a

CommunicationNode agent. This is as described in Section 3.5.8.

3.5.10 Model Startup and Shutdown

By using AnyLogic, much of the preparatory work for the model begins

before the model is even compiled. If implementing the framework in another

environment, take note that the specifics for accomplishing the following tasks will

differ. Focusing primarily on the Main agent, which is the default Java.Main class,

the flight path for the UAS, flight mechanics, agent populations, and several public

61

variables are configured. It is specifically within this agent where Sensors are placed

and the model’s global scale is set.

There are three variables implemented, however one is merely for AnyLogic

presentation purposes. As the model’s scale can easily shift depending on the

applicable distance used in a given scenario, the globalScale variable allows for all

graphics to remain the same size for visibility. Previous works, such as Lee (2019)

and Cline and Dietz (2020), utilized the scaling of presentation graphics and Java’s

collision() function to determine if an object is within Line of Sight (LOS). As

each agent of the SCANS frameworks bases its detection of another agent on

location and data values, presentation graphic scaling is a non-issue. This allows the

graphical respresentation of agents to be scaled for visibility without effecting the

overall performance of the model. The second variable, which has been discussed

before in various sensor algorithms, is the scaleUnits variable.

As a simulation, scale must be applied in some fashion. Due to limitations,

whether real or unknown, the scale units of an AnyLogic model is not a stored

property. This variable stores the LengthUnits value which the Main agent’s scale

is configured for. For example, if the Main agent had a scale of 400 meters,

scaleUnits would equal “METER”. In this way, any subsequent agent can perform

conversion gymnastics to ensure all output reports using similar units. Finally, the

third variable is droneCount, which acts as the index counter for the UAS agent’s

ID field.

Due in part to the chosen implementation, yet still adaptable to any

situation, exists two functions. The Main agent’s startup() function and a

placeSensors() function, are ran at model startup. The placeSensors() function

is executed before the startup() function. Neither of the fucntions have input

parameters associated with them.

The purpose of the placeSensors() function is twofold. The first is due to

an AnyLogic implementation limitation dealing with how agents are placed within a

model. AnyLogic is unable to specify a direct location for more than one type of

62

agent and must make use of a PointNode. These PointNodes are circles placed

around the model space and are added to a specific collection associated with a

given population of sensor. The placeSensors() function programmatically moves

each agent into place, as well as logs the agent’s parameters into a database table.

The function also provides agents with their ID.

The onStartup() function is used to inject a single UAS agent into the

model to begin. The function also provides the UAS agent with its ID. A button is

used to add subsequent UAS agents to the model. A droneCount variable is

incremented each time and used to keep track of the spawned UAS agents.

Finally, the onDestroy() function is used to log the number of agents and

agent types to a database table along with the time the model started and ended.

This record allows for the distinction of model runs to be made at a later time, as

well as to ensure the models were run using a similar number of agents.

3.6 Methodology for Evaluating the Framework

Verification is gained by ensuring the model’s programming code is

implemented correctly. This chapter has shown, through the various algorithms,

how the Framework should be implemented, however, the specific implementation

described in Chapter 4 needs to be verified. This is accomplished by testing the

SCANS frameworks functionality and feature set to ensure the AnyLogic

implementation operates as expected. For example, when the rotationOffset

parameter is enabled, does the agent rotate accordingly.

Validation confirms the accuracy of the model against a real-world system.

The objective operational validation approaches described in Sargent (2011) are

used to test the SCANS Framework validity. As a general sensor model, output of

the system should be dependent upon the sensor parameters defined during model

deployment. Historical positive economics validation is obtained by comparing the

output of multiple published experiments involving various sensors such as Yang

63

(2019) (acoustics), Farlik et al. (2019) (radar, passiveRF, electro-optical), and Park

et al. (2020)(radar). This is accomplished by comparing the calculated results of a

built model, in AnyLogic, to the empirical measurements obtained through the

studies. A positive result is determined when the published experiment’s

measurement is matched by implemented AnyLogic model’s calculation.

For testing and evaluation purposes, models of the above-mentioned

published works were created. A model of the first experiment of Yang (2019) was

built and ran three times. This shows the AnyLogic model’s capability to vary data

between runs, but highlights the similarities between runs as well. The output of

the SCANS model can provide true positive, false negative, and true negative

responses, but not false positive. False positives are impossible, as this would

require the model to “make up” detection events in a random, believable fashion.

Data processing for the three iterations used the Python scripting language

to generate pColorMesh charts showing detection events. This requires the numpy,

pandas, and matplotlib.pyplot packages. The pColorMesh provides a yellow bar

to indicate a detection and a purple bar to indicate no detection. The model

outputs data to a database table called sensor data, where the originating sensor id,

detected, and model time columns are used to create the charts. Windows

PowerShell is used to prepare the data for ingestion by the pColorMesh function.

All data processing scripts and a description of their function is provided in

Appendix C.

In addition to the pColorMesh detection charts, the number of true positives,

false negatives, average detected SPL value, and the detected SPL’s standard

deviation is reported for each sensor, as well as the overall system. Only true

positive values were used for the calculation of the average and standard deviation.

Unlike Yang’s study, Farlik et al. and Park et al. evaluated sensor

performance, as opposed to system performance. Farlik et al. performed a survey of

sensor measurements for CUAS applications including acoustic, electro-optical,

radar, and passive RF sensors. Park et al. developed their own radar system and

64

tested the system performance using a car, person, and small UAS. For each

applicable study of sensors (electro-optical, radar, and passive RF for Farlik et al.,

and radar for Park et al.) the sensor parameters were given, or were found using

specification sheets from the equipment manufacture. In some cases, such as to find

a camera sensor’s lens angle, the maximum distance measured within the study and

the appropriate sensor parameters were calculated using the equations from Section

2.1. From the found, or derived, sensor parameters, models were constructed within

AnyLogic, where the resultant maximum sensed distance was compared to the

empirical studys’ finding. Additional analysis concerning the model’s performance

versus expectations is then given for each sensor type.

3.7 Summary

This chapter has provided the outline for the SCANS Framework including

class hierarchies, parameters, variables, and methods. Each agent was introduced,

including the UAS, Sensor types, and CommunicationDevice types. Algorithms

were provided for implementation within an individual’s simulation software of

choice and the interaction between agents was explained. All of this was derived

from the AEIOU framework used to describe and document a potential CUAS

scenario and the literature highlighted in Chapter 2. Finally, the methodology for

performing validation and verification testing was described using the objective

operational validation approach. Chapter 4 shows the implementation of the

SCANS Framework within AnyLogic, highlighting the unique quirks of the system

and the adaptions necessary to work within AnyLogic’s specifications.

65

CHAPTER 4. ANYLOGIC IMPLEMENTATION

Chapter 3 defined the basic operational structure and feature set for the

SCANS Framework. This chapter provides the details of how the SCANS

Framework was implemented within AnyLogic. AnyLogic was chosen based upon

the program availability, as well as the researcher’s previous experience with the

software. Parts of the SCANS Framework are easily implemented within AnyLogic,

such as agents and behaviors, however some components, such as object inheritance

must be adapted.

The structure for the chapter begins with the Main agent’s elements. The

chapter then details the UAS agent, the individual sensor agents, and finally the

communication device agents. The chapter uses the work of Yang (2019) for the

layout of the Main agent, as that work will be the first experiment compared

against in Chapter 5.

4.1 Building the Model

Building any model in AnyLogic is as simple as clicking and dragging the

desired element onto the screen, which is done through the various palette windows.

All elements within this model were made from either the “Process Modeling” ,

“Presentation”, or “Agent” palettes, shown in Figures 4.1(a) - 4.1(d). In general,

each element has standard properties such as size, color, and name, as well as areas

to add additional Java code for a dynamic action.

In addition to creating the various agents, AnyLogic separates the process of

executing the model from process of designing the model. In this way, experiments

can have varied input parameters while using the same base model. Unfortunately,

as each of the experiments and tests described later in the chapter are structurally

66

(a) Agent (b) Process Modeling

(c) Presentation (d) Statecharts

Figure 4.1. AnyLogic Element Palettes

different in their design, this feature is of no use in this application. Nonetheless, a

single simulation screen must be configured, and that screen is shown is Figure 4.2.

This is the landing page for the model at runtime. The single functional aspect on

this page is the ability to enter a name for a particular model, which can be used as

67

a label for identifying multiple tests at a later date. This name is written to the

model runs internal AnyLogic database table.

4.1.1 Creating the Main Agent

The experiment performed in Yang (2019) is the ideal test case for the

SCANS framework due to the experimental setup, the use of a communication

network with a command and control center, and the graphical output, which can

be replicated from the AnyLogic model output. As the understanding of Yang’s

system layout is paramount for understanding the goal of this build model, Figure

4.3 provides the basic system layout, the network structure, and flight paths as

published in Yang’s work 2019, p.52.

Yang described four separate experiments, each with six acoustical sensors,

shown in Figure 4.4. Using Experiment 1 as a reference, and the AnyLogic palettes,

Figure 4.2. SCANS Framework Landing Page

68

(a) Sensor Layout (p.52) (b) Network Topology (p.22)

(c) Flight Path (p.36)

Figure 4.3. Experimental Setup for Yang (2019)

the visual aspect of the Main agent was made, which is shown in Figure 4.5. Figure

4.6 is provided without the additional annotations and represents the true view of

the Main agent within AnyLogic. This and all models have a 3D graphical

component to them, however only the 2D representation is shown here.

One of AnyLogic’s limitations is lacking the ability to place agents without

geographic information system (GIS) coordinates. To overcome this, point node

elements are placed and color coded within the model and added to an AnyLogic

collection. These collections are highlighted on the left of Figure 4.5 and are later

referenced by the placeSensors() function to place agents at model runtime. A

zoomed in view of the agent populations and collections is provided in Figure 4.7.

Collections are simply ArrayList and are referenced as such within the Java

programming language. The build begins by placing a central, magenta colored

point node element which represents the CommunicationNode agent and a gold

colored point node for the CommandAndControl agent, labeled as such in the figure.

69

Figure 4.4. Yang’s (2019, p.35) Acoustic Node Layout for Experiments

They are added to the CommunicationNodes and CommandAndControlNodes

collections, respectively.

From Yang, the UAS was flown over each acoustic sensor with a potential

horizontal flight space of twenty meters and an altitude of ten meters. The

light-blue, dashed lines in Figure 4.5 represent this flight space. These lines are only

present for the benefit of the model viewer and do not serve any functional purpose.

The green point nodes (green circles), labeled “flight start” and “flight end” define

where the UAS agent is spawned into the model and the destination goal of the

UAS, respectively. Upon reaching its goal, the UAS turns around and follows the

flight path back to the “flight start” node where the UAS is removed from the

model. The white, dashed line in the figure is the path element and defines a UAS

70

F
ig

u
re

4.
5.

A
n
n
ot

at
ed

E
x
p

er
im

en
t

1
of

Y
an

g
(2

01
9)

W
it

h
in

th
e

M
ai

n
A

ge
n
t

71

F
ig

u
re

4.
6.

E
x
p

er
im

en
t

1
of

Y
an

g
(2

01
9)

W
it

h
ou

t
A

n
n
ot

at
io

n
s

72

Figure 4.7. Zoomed View of Agent Population Elements and Point Node Collections

agent’s flight path. As the “flight start” and “flight end” point nodes are connected

via this path, the UAS agent will automatically follow along. While it is not

observable from Figure 4.5, the flight path begins at elevation 0 and climbs to 10

meters (70 pixels), as specified in Yang’s work (p.25). This height is set within the

path element’s z-axis coordinate. Additional bends and curves are added to the

flight path, as is depicted in Yang’s procedures.

Six red colored point node elements are added to the model and also the

AcousticNodes Omni collection. The acoustic parameters are set within the

omniAcoustic agent population. Agent populations are similar to making a new

interface or construct within a programming language and help link the various

73

agent classes together through the Main agent. The specifics of the acoustic sensor

agent are discussed following this section.

As described in Section 3.5.10, several functions are implemented to help the

flow of data. In addition to the placeSensor() function described earlier, two

additional functions were added in order to populate the “Extra Metrics” as labeled

in Figure 4.5. The getUASAltitude() and getUASSpeed() functions dynamically

report on the flight altitude and travel speed of the first UAS agent in the model.

This was added for both, troubleshooting, and useful feedback purposes while the

model is operating. Above the “Extra Metrics” lies a button control for adding

additional UAS agents to the model. The button calls an AnyLogic specific

inject() function which in turn adds a new UAS agent to the UASagents

population. The model is also configured to load a single agent at the startup and

uses the same functionality.

After a new UAS agent is added to the model, the “UAS Movement

Controls” are called. The inject() function mentioned earlier is a function of the

source control block. This control is called at the use of the inject() function and

is configured to spawn one UAS agent at a time. The control also specifies the

location to spawn the new agent, which in this case is the “flight start” point node.

Immediately following a UAS agent spawning via the source control, the UAS

follows along the process line to a delay control block. This delay is added to

simulate a pilot preparing the UAS for launch. As the UAS agent moves into the

holding time of the delay block, the control sends a message to the UAS agent via

AnyLogic’s native messaging system. This message (“Ready for launch”) is the

catalyst for the UAS agent to progress further into its own statechart. This

statechart, as well as the other elements of the UAS agent are given in Figure 4.8

and described in more detail later in this chapter. As the UAS agent leaves the

delay control block, the delay block sends another message to the UAS agent

(“Launching”). This propels the UAS agent into its next state. The moveTo

control blocks instructs the UAS to travel to pre-specified location, whether that be

74

a marked area, or in this case, the “flight end” point node. It is possible to perform

the same action with fewer moveTo controls, but this method provides flexibility

within the model. For example, the UAS could spawn in a different area, then move

to the start flight node, representing a pre-flight manoeuvre.

The last elements to discuss on the Main agent are agent populations,

collections (where the point node elements are stored), and the model’s scale. As

mentioned before, creating a new agent type in AnyLogic is similar to creating a

new class in a programming language. Within the agent type, parameters, variables,

functions, graphics, and statecharts are specified, just as they would if developing

an traditional object class in computer programming. Agent populations are special

collections within AnyLogic allowing instances of an agent to be instantiated. It is

the agent population where agent parameters, as well as the initial number of agents

at model runtime, can be specified. It is possible to add agents and modify their

parameters programmatically, however an agent population must be present. It is

also the presence of this element that allows a specific agent type to refer back to

the Main agent. This linking feature allows the reference of variables or even other

agent types, as is done in the CommunicationNode agent, from any other agent.

Collections have been introduced earlier, but to summarize, they are similar to

ArrayList and are interacted with as such.

Each agent within AnyLogic has a scale. Obviously, a simulation model is

ran within a computer, and as such requires a scale by which to relate distances to

real-world systems. When an AnyLogic model is ran, the user mostly sees and

interacts with the Main agent. Also, given that the Main agent acts as a central

hub connecting all other agents, its scale is the easiest to refer to globally. The scale

of each agent can be different between agents and AnyLogic will handle the

differences when the two or more agents are placed on the Main agent. The scale

can be in any imperial or metric length unit and provides a conversion factor of

pixels to length unit for conversion purposes. Utilizing this scale allows a model’s

internal distance to change, without necessarily requiring the model layout change.

75

For easier access to the units used in the Main agents scale (referred to as “global

scale” from here on), a variable called scaleUnits was created. The scaleUnits

variable is used within other agent types to have consistent length conversions. As

the SCANS Framework bases distance calculations upon agent positions and

parameters, the scale of the graphical representation of agents does not matter. As

such, every agent references the globalScaler variable to scale their graphical

representations to an easily viewed scale. This scaling is set dynamically at model

runtime using 15/main.scale.pixelsPerLengthUnit, which scales every agent as if

the Main agents scale was set to 15 pixels per 1 length unit. By using scaling in this

way, each agent’s size is relative to one another, so the system works best if agents

are scaled in a similar manner.

4.1.2 Creating the UAS Agent

Possibly the most critical piece in this Framework is the UAS agent.

Without it, the sensor agents would have nothing to scan for, which causes the

communication agents to have nothing to communicate. As with the Main agent,

the UAS agent is made by placing AnyLogic elements and controls from the various

palettes. The annotated agent is provided in Figure 4.8. AnyLogic’s 3D helicopter

model was chosen as the graphical representation for the UAS agent. As this

particular model is unable to scale dynamically, an additional circle graphic is

placed behind the helicopter, which can be scaled. At model runtime, this circle

changes color between blue and white via the changeDetectionColor event to aid in

locating the UAS agent as it is moving. The model scale is set to one meter, which

is the same relative size as the sensor and communication agents.

The parameters, variables, and functions are as described in Section 3.5.1,

save for one additional variable, detectionColor. While the UAS agent does not

detect anything, the detectionColor variable is added to every agent in the model

and is used to control the color changing circle below the agent graphic. As every

76

Figure 4.8. Annotated UAS Agent

other agent has similar functionality, the variable name is also similar for constancy

purposes. The detectionColor variable is changed by the changeDetectionColor

event, which changes the variable data from “blue” to “white” every one half

seconds. This creates a slow strobing effect on the UAS agent.

When an agent is spawned, each of the agent’s statecharts move into the first

state. For the UAS agent, this is the preLaunching state. As mentioned in the Main

agent’s UAS Movement Controls, this corresponds to the UAS entering the delay

control block. As the agent enters the delay block, the “Ready for Launch” message

77

is received, which triggers the preFlightCompleted transition. As the UAS leaves the

delay block, the takeOff transition is triggered via the message “Launching”. In this

instance, the multiple states are used to change the helicopter model’s color when

viewed in 3D space. The flying state varies the current speed of the UAS agent via

the speedChange transition. The algorithm for this transition is given in Algorithm

4.1. The speedChange transition is triggered every one half seconds. This is done to

model potential UAS speed inconsistencies when flying. The speed currently varies

by only the top ten percent of UAS’ top speed.

Algorithm 4.1 speedChange Transition

1: function changeSpeeds
2: currentSpeed← uniformDistribution(maxSpeed * 0.9, maxSpeed)
3: Set UAS agent’s current speed
4: getSoundLevel

4.1.3 Similarities Between Sensor Agents

The following is provided to describe the similarities between sensor agents

in a single location. This allows the sections related to individual sensor agents to

focus on their unique additions on top of this agent. Aside from the model’s scale,

all elements presented in this agent are carbon copied into the more specific sensor

agent types.

While every agent is distinguished graphically in the model, they each share

the circle graphic, a FOV indicator (blue cone shape), and a text label. The circle

changes color between red (not detected) and green (detected) dependent upon

whether or not the sensor detects the UAS agent. If the rotates parameter is true,

then the FOV indicator is used to signify the direction a sensor is currently pointed.

If rotates is false, this FOV indicator is hidden from view as the sensor is deemed to

be omnidirectional. The text label is configured to show the agent’s ID as assigned

by the placeSensors() function in the Main agent.

78

Figure 4.9 provides a view of the shared parameters and features of all sensor

agents. All elements shown in this figure are carbon copied to the specific

implementations of the sensors. All parameters, variables, and functions are as

described in Section 3.5, with the addition of a detectionColor variable. This

variable is tied to the color property of the circle graphic and is changed between

red and green via the sensing and sensing1 states. Each agent also has three

functions, sense(), calculateMeasure(), and sendAlert(). Both, sense() and

calculateMeasure(), take an argument of datatype UAS agent. Each of these

functions differ dependent upon the agent employing them. For that reason, the

functions will be described within the following sections for each sensor agent.

Figure 4.9. Annotated Generalized Sensor Agent

When the sensor agent is spawned into the model, the statechart is tiggered

automatically. Whether the left side or the right side of the statechart is used

79

depends upon the rotates parameter. If rotates is false, the sensor is considered to

be omnidirectional, the FOV indicator is hidden, and the left branch of the state

chart is used. If rotates is true, the sensor is considered unidirectional, the FOV

indicator is made visible, and the right branch is used. The algorithm for the left

branch is given in Algorithm 4.2, while the right branch is given in Algorithm 4.3.

Algorithm 4.2 Left Branch of the General Sensor Statechart

1: procedure Omnidirectional Sensor Operation
2: this.FOVIndicator.isVisible(false)
3: while rotates = false do . Agent is considered omnidirectional
4: isDetected← false . Enter sensing state
5: inRange← false
6: while inRange = false do . Trigger objectInRange transition
7: for Every UASagent do
8: drone← UASagent.get(i)
9: sense(drone)
10: if isDetected = true & inRange = true then
11: BREAK
12: Delay(pollingRate) . Trigger sensorT imeOut transition

13: if no UASagents exist then
14: detectionColor ← red
15: sendAlert . Enter alerting state
16: Delay(pollingRate) . Trigger returnToSense transition

4.1.4 Creating Specific Sensor Agent Types

Most features for all agents are covered in the previous section. However, in

addition to those features, each agent type has a specific graphical representation

and the data added to the SensorData message when an alert occurs is different.

For the Acoustic agent, a 3D sphere is used for graphical representation,

shown in Figure 4.10. The additional functions shown, sense(),

calculateMeasure(), and sendAlert() are as described in Section 3.5.3. For the

Acoustic agent, the sensorMeasure is the noise level generated by the UAS agent,

and the measuredUnits are “dB”.

80

F
ig

u
re

4.
10

.
A

n
n
ot

at
ed

A
co

u
st

ic
A

ge
n
t

as
Im

p
le

m
en

te
d

81

Algorithm 4.3 Right Branch of the General Sensor Statechart

1: procedure Unidirectional Sensor Operation
2: this.FOVIndicator.isVisible(true)
3: while rotates = true do . Agent is considered unidirectional
4: while inRange = false do . Trigger objectInRange transition
5: if rotationSpeed! = 0 then . Enter moving state
6: rotationAngle← rotationAngle+ (rotationSpeed ∗ π

180
) .

AnyLogic uses radians, parameters entered are in degrees
7: self.setRotation(rotationAngle)

8: Delay(10ms) . Trigger rotationComplete Transition
9: isDetected← false . Enter sensing state
10: inRange← false
11: drone←calculateRelativeDronePosition
12: if drone! = null then
13: sense(drone)
14: else
15: detectionColor ← red
16: Delay(pollingRate) . Trigger nothingFound transition

17: sendAlert . Enter alerting state
18: Delay(pollingRate) . Trigger returnToSense transition

The Radar and Camera agents are provided in Figures 4.11 and 4.12,

respectively. The Radar agent is represented by AnyLogic’s 3D radar shape, while

Camer is represented by a 3D cone shape rotated 180◦. The sense() and

calculateMeasure() functions are detailed in Section 3.5.4 and 3.5.5. For both,

the sendAlert() function records the maximum distance a particular UAS agent

can be detected and converts that value to match the length units of the Main

agent. The main.scaleUnits length unit is configured as the measuredUnits.

For the last of the sensor agents, PassiveRF is represented by an un-rotated

3D cone. Similarly to the other sensors, the sense() and calculateMeasure()

functions are listed in Section 3.5.6. Finally, the sendAlert() function records the

received signal strength from signals generated by the UAS agent and records a

“dB” unit for the measuredUnits. The PassiveRF implementation is provided in

Figure 4.13.

82

F
ig

u
re

4.
11

.
A

n
n
ot

at
ed

R
ad

ar
A

ge
n
t

as
Im

p
le

m
en

te
d

83

F
ig

u
re

4.
12

.
A

n
n
ot

at
ed

C
am

er
a

A
ge

n
t

as
Im

p
le

m
en

te
d

84

F
ig

u
re

4.
13

.
A

n
n
ot

at
ed

P
as

si
ve

R
F

A
ge

n
t

as
Im

p
le

m
en

te
d

85

4.1.5 Similarities Between Communication Agents

For the two communication device agents, the object class hierarchy (Figure

3.2), suggests many inputs and functions can be shared. Figure 4.14 highlights the

shared elements of the CommunicationNode and CommandAndControl agents. The

various parameters and variables used are detailed in Section 3.5.7. The algorithm

for the statechart is provided in Algorithm 4.4.

Figure 4.14. Annotated Generalized Communication Device Agent

86

Algorithm 4.4 General Procedures for Communication Devices

1: procedure Receive Message
2: while true do
3: Rest in receiving state until message is received
4: if messageReceived = true then . Trigger forwarding transition
5: if message.getReceived() = true & randomFalse(DPR) then
message is of type SensorData

6: message.setLastComNode← this.ID

7: else
8: if message.getReceived() = true then
9: message.setMessageReceived← false
10: message.setLastComNode← self.ID

11: sensorData← message
12: sendData
13: Delay(1ms) . Return back to the receiving state to wait for a new

message

4.1.6 Creating Specific Communication Agent Types

The CommunicationNode agent is represented by a 3D, upright pyramid,

which when viewed from above, looks like a square. This representation is provided

in Figure 4.15. While both the CommunicationNode and the CommandAndControl

agents have a sendData() function, each performs a different task. The specific

implementation for the CommunicationNode is given in Algorithm 4.5. The purpose

of the function is to pass data onward to either a CommandAndControl agent, or

another CommunicationNode agent. The color variable is used to turn the circle

graphic of the agent between red and green when a message is received. It acts

similarly to a link light on a computer’s internet (LAN) port.

Algorithm 4.5 Sending Data Onward from a CommunicationNode Agent

1: function sendData
2: if nearestCCNode = null then
3: send(sensorData, nearestNeighbor) . send() is an AnyLogic-specific

messaging function
4: else
5: send(sensorData, nearestCCNode)

87

Figure 4.15. Annotated CommunicationNode Agent as Implemented

An item unique to the CommunicationNode agent is the topologyGeneration

statechart. This statechart determinies the communication route topology for

sending messages between agents based on the determineConnections() and

determineNeighbor() functions. Both of these functions are defined in Section

3.5.8. The algorithm for the topologyGeneration statechart is given in Algorithm 4.6.

Finally, the last agent in the model, the CommandAndControl agent, has the

important job of recording any received messages. The agent is represent by

AnyLogic’s 3D representation of a factory, and is shown in Figure 4.16. The

functional difference between this agent and the CommunicationNode agent is the

88

sendData() function. The function’s purpose is to write SensorData messages to

both the AnyLogic console and AnyLogic’s built in database. The database table

structures used in this model are provided in Appendix B.

Algorithm 4.6 Generate the Routing Topology for CommunicationNode Agents

1: procedure topologyGeneration
2: determineConnections
3: determineNeighbors
4: Delay(1s)

Figure 4.16. Annotated CommandAndControl Agent as Implemented

89

4.2 Summary

This chapter described the results of implementing the SCANS Framework

within AnyLogic. While the desired object inheritance properties were not able to

be used strictly, both the general sensor agent and the general communication

device agent were provided to highlight the similarities between the specific agent

types. This chapter also provided descriptions for the agents’ statecharts which

dictate their processing and movement. Additionally, the work of Yang (2019) was

used as a reference when building the Main agent as it met many of the features the

SCAN Framework makes use of including the use of acoustic sensors, wireless

networking, and a command and control station.

In the following chapter, several models will be created based on experiments

performed by sensor and CUAS researchers to test the SCANS Framework accuracy

against empirical evidence. This process will act as the validation for the SCANS

Framework.

90

CHAPTER 5. USING THE SCANS FRAMEWORK

Within this chapter, the AnyLogic implementation of the SCANS

Framework, as detailed in Chapter 4, will be used to recreate published, empirical

experiments based on sensor detection and CUAS systems. These tests will be used

to show the SCANS Framework’s accuracy and ability to model the detection of a

UAS. As mentioned in Section 3.6, each created model will be ran three times and a

detection chart will be generated using pColorMesh in Python’s matplotlib

package.

Examples of the model output are given in Figures 5.1 - 5.3. The model runs

table captures the start and end times of each model run (distinguished by pressing

the play and stop buttons within AnyLogic), the number of each agent type within

the model, and an optional name to distinguish model runs. The name is entered at

on the simulation’s landing page. The second table, sensors, records every agent

types parameters, including communication devices but not UAS agents, at model

runtime. The third and final table, sensor data, is the table to which

CommandAndControl agents record the data received from sensors.

Figure 5.1. Example of Records Created Each Model Run

91

Figure 5.2. Record of Each Agent and Parameters Used in Every Model Run

5.1 Acoustic Experiments

Much of the setup for this experiment was discussed in Chapter 4. The

model examined Yang’s first experiment, where the acoustic nodes were placed at a

50 meter radius from the central network node. The UAS had a flight space of 20

meters and an altitude of 10 meters. Based on the radius measurement and the

altitude, the model will be referred to as “Yang50R10A”. The model was set to fly

the UAS agent from the start node, to the end node, and back to the start. The

model layout is provided in Figure 5.4. Logged data is shown in the console on the

right-handed pane of the figure. The flight completion times for Yang50R10A are

provided in Table 5.1. According to the DJI published specification sheet, the

92

F
ig

u
re

5.
3.

S
en

so
r

D
at

a
R

ec
or

d
ed

b
y

C
om

m
an

dA
n

dC
on

tr
ol

A
ge

n
ts

93

Phantom 2 is capable of speed up to 15 m/s, however this is not recommended

(DJI, n.d.). As such, the speed of the UAS agent was set to 12 m/s, or 80% of the

specified top speed. Yang’s work did not specify the speed. The default SPL for the

model (88.5 dB) was used as Yang did not specify otherwise. The 88.5 dB value was

measured by Cabell et al. (2016) for the DJI Phantom 2 and was used by Torija et

al. (2020) in their study. The noiseFloor for the environment was configured for 44

dB, the parameter’s default value, as this appeared in line with Yang’s reports

(p.44).

Table 5.1.

Model Completion Time for Yang50R10A
Trial Model Run Time (s)

1 47.8
2 42.8
3 43.8

Average 44.6

The detection graphs of the three trial runs are provided in Figure 5.5. Only

records where the UAS was detected and the SensorData message was received

successfully by the CommandAndControl agent are shown in the graphs. These are

considered the true positives. Individual detections are marked in yellow, while

purple markings represents the sensor not detecting the UAS. This non-detection of

the UAS agent represents both the false negatives and the true negatives of the

system. The x-axis is the number of data points recorded, ordered by timestamp.

These results are consistent with Yang’s findings, given the known variables, even

though Yang’s data was processed using machine learning tools.

In order to understand the affects of a lesser SPL value, the

soundPressureLevel of the UAS agent was set to 75 dB, a significantly lower value

typical of a DJI Phantom 4 DJI (n.d.). This resulted in a clear path taken by the

UAS over the Acoustic agents. This result is included with the original three tests,

shown in Figure 5.5(d), for comparative purposes.

94

F
ig

u
re

5.
4.

Y
an

g’
s

F
ir

st
E

x
p

er
im

en
t:

Y
an

g5
0R

10
A

95

(a) Trial 1 (b) Trial 2

(c) Trial 3 (d) SPL Set to 75dB

Figure 5.5. Yang50R10A Experiment 1 Detection Graph Results

According to the Equation 2.14, a SPL value of 88.5 dB will meet the noise

floor threshold of 44 dB at approximately 150 meters, or 490 feet. This 150 meter

measure, is consistent with the data presented in Section 2.1.1 by Busset et al.

(2015),Hauzenberger and Holmberg Ohlsson (2015), and Mezei and Molnar (2016).

For comparison, a SPL source value of 75 dB becomes 44 dB at approximately 32

meters, or 105 feet. This is also consistent with the detection graphs of Figure 5.4,

where the Acoustic nodes were placed approximately 25 meters apart and a clear

path of travel is shown.

Tables 5.2 - 5.4 provide several statistics from the three trials. Each table

provides the total number of records, the true positives and false negatives

generated by the system, as well as the average SPL measurement and the standard

deviation of the SPL measurement. The tables calculate each metric for the

96

individual sensors, while the “Total” column encompasses all sensors. From the

sensor data database table, a true positive value is determined when both the

detected and message received fields are true. A false negative occurs when the

detected field is false, but the in range field is true. True negatives can be calculated

by dividing the model run by the Acoustic agent’s pollingRate and subtracting the

total records field from the results tables. As mentioned before, false positives are

not possible in this framework.

Table 5.2.

Results of Experiment Yang50R10A: Trial 1
Acoustic Sensors AO-0 AO-1 AO-2 AO-3 AO-4 AO-5 Overall

Total Records 84 87 86 88 82 75 502
True Positives 75 79 81 79 75 68 457

False Negatives 7 5 5 6 5 2 30
Average Measure 54.1 54 54.29 52.9 52.06 50.78 53.08

σ 6.58 5.59 4.93 4.89 5.01 4.93 5.47

Table 5.3.

Results of Experiment Yang50R10A: Trial 2
Acoustic Sensors AO-0 AO-1 AO-2 AO-3 AO-4 AO-5 Overall

Total Records 73 76 76 76 75 69 445
True Positives 64 66 74 70 70 62 406

False Negatives 5 4 0 4 4 4 21
Average Measure 54.29 54.31 54.63 54 52.57 51.69 53.61

σ 6.68 5.09 5.18 5.45 5.85 5.39 5.69

Table 5.4.

Results of Experiment Yang50R10A: Trial 3
Acoustic Sensors AO-0 AO-1 AO-2 AO-3 AO-4 AO-5 Overall

Total Records 77 79 78 77 74 69 454
True Positives 71 75 69 69 70 60 414

False Negatives 2 1 4 2 4 5 18
Average Measure 54.67 55.07 54.98 54.2 53.06 51.55 53.99

σ 6.18 5.28 5.48 5.53 5.61 5.95 5.77

97

5.2 Radar Experiments

The work by Farlik et al. (2019) extensively looks at radar, passive RF

scanning, acoustic, and electro-optical sensors in the CUAS space, providing

valuable measurements in regards to sensor performance and consumer UAS. Farlik

et al. were able to show through simulation, and then with field experiments, the

radar cross section (RCS) of a DJI Phantom 2, Phantom 4, and a 3DR Y6. Using

the average RCS for a DJI Phantom 2 (0.33 m2), a radar experiment can be

constructed within AnyLogic to determine possible ranges of detection. No range

testing was performed by Farlik in regards to radar systems. However, Farlik et al.

provides in their study, a map of the UAS flight path, radar location, and a UAS

spotter location. It is this figure with which the SCANS model was made. For

comparison purposes, the map graphic from Farlik et al. is provided as Figure 5.6

and the SCANS Framework implementation is provided in Figure 5.7. The scales of

each are matched as closely as possible with the scale bar on Farlik’s figure, which

reads 5000 meters. From the terrain map’s scale, the UAS flew between 600 – 900

meters at the closest observation position. Given the 5 km distance and the use of

the 10 GHz frequency, the AnyLogic model will be referred to as Farlik5K10G.

In total, three unidirectional radar nodes are placed in the model; two on the

left and one on the right side of the flight path. The flight path is the white dotted

line in the north/south direction. The chained agents across the bottom of the

model are CommunicationNode agents. A blue connecting line indicates the traffic

is passed from one CommunicationNode to another, while a red connecting line

shows the messages are passed directly to the CommandAndControl agent. The

CommandAndControl agent is the third agent from the right.

Farlik et al. used several Czech Republican military radar systems for their

field experiments, however no performance metrics concerning the radar systems

were published with their work. One such system was the ReVisor system,

developed by Retia Incorporated. A request has been made for basic specification

98

Figure 5.6. Flight Path and Radar Placements of Farlik et al. (2019, p.6)

details pertaining to the ReVisor radar, however a reply from ReVisor has not been

received at the time of writing.

An iterative process was completed several times with the radar at the 10

GHz frequency, and testing began with the settings listed in Table 5.5. With a UAS

RCS of 0.33 m2, the Radar agents calculated the maximum distance the UAS would

be detectable to be 75.48 meters. Testing continued with the values given in Table

5.6. The strongest transmit power and lowest received power tested obtained a

maximum calculated range for detection of 754.83 meters.

In an effort to understand the effects of parameters on calculated distance,

the model was run with a sub-gigahertz radar frequency of 915 MHz, 70 dBm

transmit power, and a minimum received power of -90 dBm. For an object with an

RCS of 0.33 m2, this resulted in a maximum potential detection distance of 2495.41

99

Figure 5.7. Radar Sensor Evaluation Based on Farlik et al. (2019)

meters. The problem with this frequency, however is the 915 MHz channel has a

wavelength of 32.7 cm, which would be too long to provide meaningful detection of

a small UAS. For comparison, a 10 GHz signal has a wavelength of 2.9 cm and a

DJI Phantom 2 is 35x35x18 cm (LxWxH), including the propellers (DJI, n.d.).

Table 5.5.

Input Parameters For Experiment Farlik5KM10G
Parameter Value
transmitPower 1000 W (60 dBm)
minimumReceivePower 0.000000001 W (-60 dBm)
frequency 10 GHz
antennaGain 32 dB
systemLoss 0.5 dB

Given these unexpected shortened distances, an additional test was

performed to ensure the Radar agent was calculating the distance properly. A

second radar model, based upon Park et al. (2020), was made using the detailed

specifications for their self-made radar system. The AnyLogic model is given in

100

Table 5.6.

Interative Tests for the Farlik5K10G Model
transmitPower

(dBm)
minimumReceive
Power (dBm)

Potential Detection
Range (m)

60 -60 75.48
70 -60 134.23
60 -90 424.47
70 -90 754.83

Figure 5.8. Radar Model Based on Parameters of Park et al. (2020)

Figure 5.8. Using the data provided by Park et al., Table 5.7 list the various Radar

input parameters of 1 W , using the 2.4 GHz ISM band, and according to their

results a minimum received power of approximately -80 dBm, or 0.00000000001 W

(p.15). Park et al. record that the radar detected the DJI Phantom UAS at 17

meters.

The results of the experiment showed the Radar agent capable of detecting

the UAS agent at a range of 60.4 meters. This is a concerning finding as Park et al.

reported the DJI Phantom UAS was only detected up to 17 meters, while their

flight path covered a 40 meter space directly in front of the radar. This could

101

Table 5.7.

Radar Agent Input Parameters for Park et al. (2020)
Parameter Value
transmitPower 1 W
minimumReceivePower 0.00000000001 W (-80 dBm)
frequency 2.44 GHz
antennaGain 10 dBi
systemLoss 1 dB
fieldOfView 30◦

potentially be explained by their system having a high amount of system loss, or if

there was a high amount of environmental noise.

The only mention of system loss Park et al. mentioned was due high

amounts of heat generated by the system, however this was addressed by adding a

heat block to the bottom of the radar components. In terms of environmental noise,

Park et al. measured between approximately -9 and -45 dBm. This is presumably

caused by Wi-Fi systems in the area operating on the same frequency. By

configuring the model’s systemLoss parameter to 46 dBm (environmental noise + 1

dB of system loss), the potential detection distance for the Radar agent becomes

16.8 meters. This is inline with the experiment of Park et al.

5.3 Camera Experiments

Farlik et al. also tested the capabilities of the ReTOB military optical air

surveillance device. The ReTOB uses a MATIS HH thermal camera and has an

angle of view of 9 x 6◦ (WxH) (Farlik et al., 2019, p.18) and a picture resolution of

384x256 (Broekaert & Budin, 2003, p.234). Farlik et al. also used a second device

called FLIR ThermoVisionTM A40M/Researcher. This IR camera has an angle of

view of 24 x 18◦ (WxH) and a resolution of 320x240. The team found the FLIR

thermal imaging camera capable of UAS detection at 140 meters, while the MATIS

HH camera detected UAS at 1.8 km. It is important to note however that for this

102

test, Farlik et al. used a DJI Spreading Wings S900 hexacopter, which is over six

times larger than the DJI Phantom 2 UAS other studies have been using. The

specifications for the S900 are provided in Table 2.1.

As the Radar agent and Camera agent function similarly, at least in the

SCANS Framework, the model layout has been reused from Figure 5.8. The Radar

agent in the center of the model was replaced with an IR Camera agent and the

scale of the model was increased from 20 meters to 150 meters for the FLIR camera

test and to 1800 meters for the MATIS HH test.

From Farlik et al., each camera’s FOV is given. As this is given, neither the

resolution of the cameras, nor the px/ft (PPF) threshold for UAS detection is

needed. Using Equations 2.4 and 2.3, the lens angles for each imaging solution can

be calculated and these parameters can be used in the model to verify proper

operation. If the model’s calculations are functioning properly, then the MATIS HH

test should return a maximum detection range of 1.8 kilometers and the FLIR test

should return 140 meters.The results of these calculations are recorded in Table 5.8.

Table 5.8.

Infrared Camera Agent Tests For Farlik et al. (2019)
Parameters MATIS HH FLIR ThermoVision
fieldOfView 9 24
lensAngle 0.087 3
Max Distance 1.806 km 139.71 m

While not a complicated evaluation, the success shown in Table 5.8 helps to

verify the calculations performed by the Camera agent. The Camera agent also

signaled a detection only when the UAS agent was properly within the designated

FOV. Verification of the Camera agent can be taken further by calculating the PPF

ensuring Equation 2.2 has been implemented properly, as well. The PPF is

calculated by dividing the resolution width by FOV. That results in a PPF of 42.66

for the MATIS HH and 13.33 for the FLIR. The parameters entered and the

calculated maximum detection ranges are recorded in Table 5.9.

103

Table 5.9.

Infrared Camera Agent Tests Using Calculated PPF
Parameters MATIS HH FLIR ThermoVision
resolutionWidth 384 320
lensAngle 0.087 3
pixelsPerFoot 42.66 13.33
Max Distance 1.806 km 139.71 m

Compared to Qi et al. (2018), referenced in Section 2.1.2, with a PPF of 4

and a camera resolution of 460 x 520, the PPF for the MATIS HH and FLIR

cameras appeared too large. However, given the area of the side profile for the DJI

S900, the pixels required per camera are only 0.144% of the total resolution for the

MATIS HH, and 0.057% for the FLIR camera. For comparison, Qi et al. used a DJI

Phantom 2 and machine learning algorithms for a detection range of 87 meters.

This requires 0.003-0.0038% of the image’s resolution.

5.4 PassiveRF Experiments

DeDrone has become a popular company in the CUAS space with their

DroneTracker software. Farlik et al. (2019) also tested this system and using

DeDrone’s now deprecated passive RF scanner, the RF-100, tested DeDrone’s

claimed 2 kilometer detection range. Farlik et al. measured positive detections for

the DJI Phantom 2 and the 3DR Y6 at up to 1.7 kilometers. This is theoretically

accomplished provided the UAS transmitted with the 2.4 GHz frequency, at 100

mW of power and a 2.5 dBi antenna. The RF-100 would then need only a 5 dBi

antenna, if the environmental noise floor was -80 dB, which it appears to have in

DeDrone’s published images. The specifications for DeDrone’s antenna could not be

found. The assumptions listed for the UAS radio transmission are common within

the wireless network space, even on deprecated hardware such as the Cisco 1242

access point (Cisco, 2009).

104

Figure 5.9 shows the test model and Table 5.10 provides the input parameters

and results of the test. As expected, with the stated parameters, RF detection was

possible at the 2 km mark, with a noise floor of -80 dB. This result, and the results

shown in the right pane of Figure 5.9, verify the calculations are performing as

expected. However, the value is generous due to the lack of system noise.

A more conservative noiseFloor value for simulation purposes may be +3 dB

to any given value. This would place the noiseFloor at -77 dB, which in turn lessens

the detection distance to 1670 meters. A noise floor of -78 dB lessens the distance to

1875 meters, which may still be too generous according to the results of Farlik et al.

(p.13). The DJI MAVIC Pro UAS was unable to be detected at 1740 meters, but

was able to be both detected and identified at 1400 meters. This could indicate that

a detection distance near 1670 meters exists at the specified -77 dB noise floor.

Table 5.10.

Input Parameters for PassiveRF and UAS Agent
Agent Parameter Value
UAS transmitPower1 20 dBm
UAS radioFrequency1 2400 MHz
UAS antennaGain1 2.5 dBi
PassiveRF frequency 2400 MHz
PassiveRF antennaGain 5 dBi
PassiveRF noiseFloor -80 dBm
PassiveRF sensitivity -80 dBm
Result RSS (2075m) -78 dBm

105

F
ig

u
re

5.
9.

P
as

si
ve

R
F

A
ge

n
t

C
on

fi
gu

re
d

as
D

eD
ro

n
e’

s
R

F
-1

00

106

CHAPTER 6. SUMMARY

This work has presented and detailed a novel framework for the modeling of

CUAS systems. The framework, Simulation of CUAS Networks and Sensors

(SCANS), has been designed to use mathematical formulas for determining key

sensor performance characteristics, instead of the traditional “maximum sensor

range” approach. Along with the formulas, the AEIOU framework was used as a

springboard for documenting and identifying various activities, environments,

interactions, objects, and users necessary for such a system. This led to an object

hierarchy broken into three categories, UAS, sensors, and communication devices.

Under the sensors category, Acoustic, Radar, Camera, and PassiveRF agent

types were developed. Each had common input parameters and individual input

parameters, as well as various functions and variables. The communication devices

category housed the CommunicationNode and CommandAndControl agents. The

CommunicationNode acts as the glue between sensors and the CommandAndControl

agent, passing the custom datatype of SensorData in message format between

agents. Finally, the CommandAndControl agent was tasked with logging any

received messages. This restriction of data flow allows the system to respond

similarly to a real-world system, whereby information must reach a central

processing location before further action can be taken. Chapter 3 detailed each

agent’s functions and parameters, while Chapter 4 provided an implementation

example of the framework using the AnyLogic simulation software.

Chapter 5 provided tests and results of several published studies and from

this, the AnyLogic’s implementation was analyzed for calculation accuracy. In

addition to the analysis presented, the SCANS Framework also reported the SPL

measured by the Acoustic agents, the RSS measured by the PassiveRF agents, and

the maximum detection range the Radar and Camera agents were capable of.

107

From this, it was found that the calculations for the Radar agent may have

been too simplistic as the maximum range measured in Farlik et al. (2019) was

never achieved. A potential change to the Framework would be to report the

reflected power signal for the Radar agent, and the measured pixels per foot for the

Camera agent, so as to provide more actionable information. These changes would

affect the calculateMeasure() function of both agents.

6.1 Future Work

Additional future changes made to the framework should work to address

current model limitations. One such limitation is the inability to consider a sensor’s

vertical FOV in relation to the height of a UAS agent. The model currently takes

3D space into account, however the model fails to consider the pitch angle of a

sensor when calculating distances. Currently, this results in the model assuming the

sensor agent is aimed correctly in the vertical axis orientation.

Another limitation of the framework is the absence of a LiDAR agent. Future

work needs to more closely examine the requirements of modeling a LiDAR system

and its many complexities. Unfortunately, at this time, not enough information

could be gathered to accurately simulate a LiDAR sensor’s performance. It is

potentially feasible to model the LiDAR system as a flash LiDAR, instead of a

traditional sweep LiDAR. This would eliminate needing to model the laser beam

performance, however flash LiDAR systems are considered to have their own unique

performance equations. This may pose more problems than are solved.

The next major enhancement of the model should be the networking

interfaces. Additional routing protocols, queues, and advanced communication

protocols would enhance the model’s capability to produce realistic results in terms

of data transmission. Wired communication capabilities could also be added, either

as a separate communication agent, or as a switch within the CommunicationNode

108

agent. Provisions should be made to simulate the performance of less traditional

modulation schemes, such as Chirp Spread Spectrum (CSS) in LoRaWAN.

From the results presented in Section 5.2, a more robust examination of the

mathematical formulas surrounding the Radar agent are needed so as to better

understand the discrepancies created by the range calculations. While Equation 2.9

is foundational in understanding the relationship between signal strength and

maximum range, perhaps additional information is needed, or an unfound

implementation error in the program code is present.

6.2 Closing Thoughts

What is necessary to develop and validate an extensible and general use case

CUAS simulation model, with a focus on sensor simulation and a detection-alert

network communication system? That was the question this project worked to

answer. The SCANS Framework provides a novel way of modeling the CUAS space

using a limited number of agent types. With this, each sensor agent is capable of

free movement, and creates detection-events based on mathematical formulas,

instead of relying upon the manufacture published effective distance rates.

Furthermore, given the decision to name functions similarly and the use of helper

methods for invocation, functionality can be added or changed with minimal

alterations to the rest of the Framework. The functionality and versatility of the

framework was then shown by modeling and testing several experiments involving a

host of sensor types and UAS.

This work presents a foundation on which to expand the SCANS Framework

and its functionality in the future. Continued validation and adaptation of the

model should be done by using the tool to first design, and then implement a CUAS

system. Comparisons of the results from empirical studies to that of the model

should then follow. It is of my opinion that this tool is most useful when used for

109

planning and preliminary CUAS system design, where estimates can be obtained for

real-world performance.

LIST OF REFERENCES

110

LIST OF REFERENCES

Ahmad, K. A., Salleh, M. S., Segaran, J. D., & Hashim, F. R. (2018). Impact of
foliage on LoRa 433MHz propagation in tropical environment. AIP
Conference Proceedings , 1930 (February), 1–7. doi: 10.1063/1.5022903

Atherton, K. (2016). Hobbyist Flies Drone To 11,000 Feet. Retrieved 2019-03-24,
from https://www.popsci.com/hobbyist-flies-drone-to-11000-feet

Augustin, A., Yi, J., Clausen, T., & Townsley, W. M. (2016). A Study of LoRa:
Long Range & Low Power Networks for the Internet of Things. Sensors ,
16 (9). Retrieved from
https://search-proquest-com.ezproxy.lib.purdue.edu/technology1/
docview/1882248452/BECAF79264F74955PQ/7?accountid=13360 doi:
10.3390/s16091466

Broekaert, M., & Budin, J. (2003). Pixel fusion and superresolution for Matis
handheld thermal imager. Infrared Technology and Applications XXIX ,
5074 (October 2003), 233. doi: 10.1117/12.497131

Busset, J., Perrodin, F., Wellig, P., Ott, B., Heutschi, K., Rühl, T., & Nussbaumer,
T. (2015, oct). Detection and tracking of drones using advanced acoustic
cameras. In E. M. Carapezza, P. G. Datskos, C. Tsamis, L. Laycock, &
H. J. White (Eds.), (Vol. 9647, p. 96470F). International Society for Optics
and Photonics. Retrieved from
http://proceedings.spiedigitallibrary.org/
proceeding.aspx?doi=10.1117/12.2194309 doi: 10.1117/12.2194309

Cabell, R., McSwain, R., & Grosveld, F. (2016). Measured Noise from Small
Unmanned Aerial Vehicles. In New England NoiseCon. Hampton:
NASA/Langley Research Center.

Cattani, M., Boano, C., & Römer, K. (2017, jun). An Experimental Evaluation of
the Reliability of LoRa Long-Range Low-Power Wireless Communication.
Journal of Sensor and Actuator Networks , 6 (2), 7. Retrieved from
http://www.mdpi.com/2224-2708/6/2/7 doi: 10.3390/jsan6020007

Cisco. (2009). Cisco Aironet 1130AG Series IEEE 802 . 11A / B / G Access Point. ,
1–8.

Cline, T. L., & Dietz, J. E. (2020). Agent based modeling for low-cost counter UAS
protocol in prisons. International Journal of Aviation, Aeronautics, and
Aerospace, 7 (2). doi: 10.15394/IJAAA.2020.1462

Clover, J. (2019). AT&T and Sprint Settle Lawsuit Over Misleading ’5GE’ Label for
AT&T’s 4G Network. Retrieved 2019-08-18, from https://
www.macrumors.com/2019/04/22/sprint-att-5ge-lawsuit-settled/

111

Coleman, D., & Westcott, D. (2018). CWNA Certified Wireless Network
Administrator Study Guide (Fifth ed.; J. Sleeva, Ed.). Indianapolis, Indiana:
John Wiley & Sons, Inc.

Dawaliby, S., Bradai, A., & Pousset, Y. (2017). In depth performance evaluation of
LTE-M for M2M communications. IEEE 12th International Conference on
Wireless and Mobile Computing, Networking and Communications (WiMob),
1–8. doi: 10.1109/wimob.2016.7763264

De Clercq, G. (2018). Greenpeace crashes Superman-shaped drone into French
nuclear plant. Retrieved 2019-03-17, from https://www.reuters.com/
article/us-france-nuclear-greenpeace/greenpeace-crashes-superman
-shaped-drone-into-french-nuclear-plant-idUSKBN1JT1JM

Dedrone, Inc. (n.d.). Retrieved 2019-08-09, from https://www.dedrone.com/

DJI. (n.d.). Phantom 2 - The Spirit Of Flight. Retrieved 2020-11-08, from
https://www.dji.com/phantom-2

Drafts, B. (2001). Acoustic Wave Technology Sensors. IEEE Transactions on
Microwave Theory and Techniques , 49 (4 II), 795–802. doi:
10.1109/22.915466

Drone Swarm Detection Capabilities. (2018). Retrieved 2019-03-24, from
http://www.uavexpertnews.com/2018/09/
drone-swarm-detection-capabilities/

Drozdowicz, J., Wielgo, M., Samczynski, P., Kulpa, K., Krzonkalla, J., Mordzonek,
M., . . . Jakielaszek, Z. (2016, may). 35 GHz FMCW drone detection system.
In 2016 17th International Radar Symposium (IRS) (pp. 1–4). IEEE.
Retrieved from http://ieeexplore.ieee.org/document/7497351/ doi:
10.1109/IRS.2016.7497351

Drug delivery drone crashes in Mexico. (2015). Retrieved 2019-03-17, from
https://www.bbc.com/news/technology-30932395

Farlik, J., Kratky, M., Casar, J., & Stary, V. (2019). Multispectral detection of
commercial unmanned aerial vehicles. Sensors (Switzerland), 19 (7). doi:
10.3390/s19071517

Federal Aviation Administration. (n.d.).

Federal Aviation Administration. (2018). Fact Sheet – Small Unmanned Aircraft
Regulations (Part 107). Retrieved 2019-08-11, from
https://www.faa.gov/news/fact sheets/news story.cfm?newsId=22615

Federal Aviation Administration. (2019).
UnmannedAircraftSystemDetection-TechnicalConsiderations.

Federal Emergency Managment Agency. (1995). Explosive blast. Buildings , 1–14.

112

Finn, R. L., & Wright, D. (2012, apr). Unmanned aircraft systems: Surveillance,
ethics and privacy in civil applications. Computer Law & Security Review ,
28 (2), 184–194. Retrieved from https://www.sciencedirect.com/
science/article/pii/S0267364912000234 doi:
10.1016/J.CLSR.2012.01.005

Fungineers. (2016). How much weight can a drone lift? YouTube. Retrieved from
https://www.youtube.com/watch?v=UoVrXuM5lXk

Gallagher, S. (2013). German chancellor’s drone “attack” shows the threat of
weaponized UAVs — Ars Technica. Retrieved 2019-03-17, from
https://arstechnica.com/information-technology/2013/09/german
-chancellors-drone-attack-shows-the-threat-of-weaponized-uavs/

Ganti, S. R., & Kim, Y. (2016, jun). Implementation of detection and tracking
mechanism for small UAS. In 2016 International Conference on Unmanned
Aircraft Systems, ICUAS 2016 (pp. 1254–1260). IEEE. Retrieved from
http://ieeexplore.ieee.org/document/7502513/ doi:
10.1109/ICUAS.2016.7502513

Ghoraishi, M., Takada, J.-i., & Imai, T. (2016). Radio Wave Propagation Through
Vegetation. Intech, i(tourism), 13. doi: http://dx.doi.org/10.5772/57353

Hammer, M., Borgmann, B., Hebel, M., & Arens, M. (2019, may). UAV detection,
tracking, and classification by sensor fusion of a 360 lidar system and an
alignable classification sensor. In M. D. Turner & G. W. Kamerman (Eds.),
Laser Radar Technology and Applications XXIV (Vol. 11005, p. 10). SPIE.
Retrieved from https://www.spiedigitallibrary.org/
conference-proceedings-of-spie/11005/2518427/
UAV-detection-tracking-and-classification-by-sensor-fusion-of-a/
10.1117/12.2518427.full doi: 10.1117/12.2518427

Haneda, K., Omaki, N., Imai, T., Raschkowski, L., Peter, M., & Roivainen, A.
(2016, may). Frequency-Agile Pathloss Models for Urban Street Canyons.
IEEE Transactions on Antennas and Propagation, 64 (5), 1941–1951.
Retrieved from http://ieeexplore.ieee.org/document/7421994/ doi:
10.1109/TAP.2016.2536170

Hauzenberger, L., & Holmberg Ohlsson, E. (2015). Drone Detection using Audio
Analysis. Retrieved from
https://lup.lub.lu.se/student-papers/search/publication/7362609

Hennigan, W. (2017). Islamic State’s deadly drone operation is faltering, but U.S.
commanders see broader danger ahead. Retrieved 2019-08-24, from https://
www.latimes.com/world/la-fg-isis-drones-20170928-story.html

Holloway, C. L., Koepke, G., Camell, D., Young, W. F., & Remley, K. A. (2014).
Propagation measurements before, during, and after the collapse of three
large public buildings. IEEE Antennas and Propagation Magazine, 56 (3),
16–36. doi: 10.1109/MAP.2014.6867680

How Much Weight Can A Drone Lift? (n.d.). Retrieved 2019-03-24, from
https://www.uavsystemsinternational.com/
how-much-weight-can-a-drone-lift/

113

Jamrogowicz, K. (n.d.). 2 and 5 GHz Real World Propagation. Retrieved from
https://maipn.org/wp-content/uploads/2017/04/propagation.pdf

Kim, B. H., Khan, D., Choi, W., & Kim, M. Y. (2019). Real-time counter-UAV
system for long distance small drones using double pan-tilt scan laser radar.
(May 2019), 8. doi: 10.1117/12.2520110

Klepal, M., Mathur, R., McGibney, A., & Pesch, D. (n.d.). Influence of people
shadowing on optimal deployment of WLAN access points. In IEEE 60th
Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 (Vol. 6, pp.
4516–4520). IEEE. Retrieved from
http://ieeexplore.ieee.org/document/1404934/ doi:
10.1109/VETECF.2004.1404934

Koettl, C., & Marcolini, B. (2018). A Closer Look at the Drone Attack on Maduro
in Venezuela - The New York Times. Retrieved 2019-03-18, from
https://www.nytimes.com/2018/08/10/world/americas/
venezuela-video-analysis.html

Labbe, C., & Rose, M. (2014). France investigates mystery drone activity over
nuclear plants — Reuters. Retrieved 2019-03-17, from
https://www.reuters.com/article/us-edf-drones/
france-investigates-mystery-drone-activity-over-nuclear-plants
-idUSKBN0IJ0ZI20141030

Laurenzis, M., Rebert, M., Schertzer, S., & Christnacher, F. (2019). Tracking and
prediction of small unmanned aerial vehicles’ flight behavior and
three-dimensional flight path from laser gated viewing images. (May 2019),
9. doi: 10.1117/12.2519273

Lauridsen, M., Gimenez, L. C., Rodriguez, I., Sorensen, T. B., & Mogensen, P.
(2017, mar). From LTE to 5G for Connected Mobility. IEEE
Communications Magazine, 55 (3), 156–162. Retrieved from
http://ieeexplore.ieee.org/document/7876975/ doi:
10.1109/MCOM.2017.1600778CM

Lauridsen, M., Kovacs, I. Z., Mogensen, P., Sorensen, M., & Holst, S. (2016, sep).
Coverage and Capacity Analysis of LTE-M and NB-IoT in a Rural Area. In
2016 IEEE 84th Vehicular Technology Conference (VTC-Fall) (pp. 1–5).
IEEE. Retrieved from http://ieeexplore.ieee.org/document/7880946/
doi: 10.1109/VTCFall.2016.7880946

Lee, D. (2019). Amazon to deliver by drone ’within months’. Retrieved 2019-08-22,
from https://www.bbc.com/news/technology-48536319

Li, C. J., & Ling, H. (2017). An Investigation on the Radar Signatures of Small
Consumer Drones. IEEE Antennas and Wireless Propagation Letters , 16 ,
649–652. doi: 10.1109/LAWP.2016.2594766

Li, S. (2019). Applying multi agent system to track uav movement. (December).

Liu, H., Qu, F., Liu, Y., Zhao, W., & Chen, Y. (2018). A drone detection with
aircraft classification based on a camera array. IOP Conference Series:
Materials Science and Engineering , 322 (5). doi:
10.1088/1757-899X/322/5/052005

114

Liu, H., Wei, Z., Chen, Y., Pan, J., Lin, L., & Ren, Y. (2017, apr). Drone Detection
Based on an Audio-Assisted Camera Array. In 2017 IEEE Third
International Conference on Multimedia Big Data (BigMM) (pp. 402–406).
IEEE. Retrieved from http://ieeexplore.ieee.org/document/7966780/
doi: 10.1109/BigMM.2017.57

LoRa Alliance. (2015). LoRaWAN - What is it? A technical overview of LoRa R©
and LoRaWAN TM (Tech. Rep.). San Ramon, California, US: LoRa Alliance
Technical Marketing Workgroup. Retrieved from
https://docs.wixstatic.com/ugd/
eccc1a acef1a0dbad649bc894a372cf8ff6beb.pdf

LoRa Alliance. (2017). LoRaWAN TM 101, A technical introduction.

Lu, J. S., Bertoni, H. L., Remley, K. A., Young, W. F., & Ladbury, J. (2014).
Site-specific models of the received power for radio communication in urban
street canyons. IEEE Transactions on Antennas and Propagation, 62 (4),
2192–2200. doi: 10.1109/TAP.2013.2297164

Martin, B., & Hanington, B. (2012). Universal Methods of Design. Beverly ,MA:
Rockport Publishers.

Mathur, R., Klepal, M., McGibney, A., & Pesch, D. (n.d.). Influence of people
shadowing on bit error rate of IEEE802.11 2.4GHz channel. In 1st
International Symposium onWireless Communication Systems, 2004. (pp.
448–452). IEEE. Retrieved from
http://ieeexplore.ieee.org/document/1407287/ doi:
10.1109/ISWCS.2004.1407287

Matolak, D. W., Remley, K. A., Gentile, C., Holloway, C. L., Wu, Q., & Zhang, Q.
(2014, oct). Peer-to-Peer Urban Channel Characteristics for Two
Public-Safety Frequency Bands. IEEE Antennas and Propagation Magazine,
56 (5), 101–115. Retrieved from
http://ieeexplore.ieee.org/document/6971921/ doi:
10.1109/MAP.2014.6971921

Mavic 2 - Specifications, FAQs, Videos, Tutorials, Manuals. (n.d.). Retrieved
2019-03-24, from https://www.dji.com/mavic-2/info

McManamon, P. F., Banks, P., Beck, J., Fried, D. G., Huntington, A. S., & Watson,
E. A. (2017). Comparison of flash lidar detector options. Optical
Engineering , 56 (3), 031223. doi: 10.1117/1.oe.56.3.031223

McManamon, P. F., & McManamon, P. F. (2019). Introduction to LiDAR. LiDAR
Technologies and Systems , 1–18. doi: 10.1117/3.2518254.ch1

Mezei, J., Fiaska, V., & Molnar, A. (2015, nov). Drone sound detection. In 2015
16th IEEE International Symposium on Computational Intelligence and
Informatics (CINTI) (pp. 333–338). IEEE. Retrieved from
http://ieeexplore.ieee.org/document/7382945/ doi:
10.1109/CINTI.2015.7382945

115

Mezei, J., & Molnar, A. (2016, may). Drone sound detection by correlation. In 2016
IEEE 11th International Symposium on Applied Computational Intelligence
and Informatics (SACI) (pp. 509–518). IEEE. Retrieved from
http://ieeexplore.ieee.org/document/7507430/ doi:
10.1109/SACI.2016.7507430

Michel, A. H. (2018). Counter-Drone Systems. Counter(February), 23.

Moore, B. C. J. (1995). Hearing (Second ed.; B. C. J. Moore, Ed.). San Diego, CA:
Academic Press. Retrieved from https://books.google.com/
books?id=OywDx9pxCMYC&pg=PA11#v=onepage&q&f=false

Murray, N. (2016). DJI Phantom 3 and 4 maximum lifting weight. YouTube.
Retrieved from https://www.youtube.com/watch?v=E6zZWsWhC8s

National Oceanic and Atmospheric Administration NOAA Coastal Services Center.
(2012). Lidar 101 : An Introduction to Lidar Technology , Data , and
Applications. NOAA Coastal Services Center(November), 76. doi:
10.5194/isprsarchives-XL-7-W3-1257-2015

Nave, C. R. (1999). Sound Intensity. Retrieved 2020-06-14, from
http://hyperphysics.phy-astr.gsu.edu/hbase/Sound/intens.html

Next Generation Mobile Networks Alliance 5G Initiative. (2015). 5G White Paper.
NGMN Alliance, 124. Retrieved from
https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/
2015/NGMN 5G White Paper V1 0.pdf

Nguyen, P., Ravindranatha, M., Nguyen, A., Han, R., & Vu, T. (2016).
Investigating Cost-effective RF-based Detection of Drones. In Proceedings of
the 2nd Workshop on Micro Aerial Vehicle Networks, Systems, and
Applications for Civilian Use - DroNet ’16 (pp. 17–22). New York, New
York, USA: ACM Press. Retrieved from
http://dl.acm.org/citation.cfm?doid=2935620.2935632 doi:
10.1145/2935620.2935632

Park, S., Kim, Y., Lee, K., Smith, A. H., Dietz, J. E., & Matson, E. T. (2020).
Accessible real-time surveillance radar system for object detection. Sensors
(Switzerland), 20 (8), 1–19. doi: 10.3390/s20082215

Park, S., Kwon, R., Yun, S., Ganser, J., Kim, H., & Anthony, S. (2018). Forestry
monitoring system using lora and drone. ACM International Conference
Proceeding Series . doi: 10.1145/3227609.3227677

Petajajarvi, J., Mikhaylov, K., Roivainen, A., Hanninen, T., & Pettissalo, M. (2015,
dec). On the coverage of LPWANs: range evaluation and channel
attenuation model for LoRa technology. In 2015 14th International
Conference on ITS Telecommunications (ITST) (pp. 55–59). IEEE.
Retrieved from http://ieeexplore.ieee.org/document/7377400/ doi:
10.1109/ITST.2015.7377400

Phillip, A. (2014). Delivery drone carrying marijuana, cellphones and tobacco
crashed outside a S.C. prison - The Washington Post. Retrieved 2019-03-17,
from https://www.washingtonpost.com/news/post-nation/wp/2014/07/

116

31/a-delivery-drone-carrying-marijuana-cell-phones-and-tobacco
-crashed-outside-of-a-s-c-prison/
?noredirect=on&utm term=.5c21c207d2a5

Qi, S., Zhang, W., & Xu, G. (2018). Detecting consumer drones from static infrared
images by fast-saliency and HOG descriptor. ACM International Conference
Proceeding Series , 62–66. doi: 10.1145/3290420.3290426

Ray, B. (2017). What is LTE-M? Retrieved 2017-07-26, from
https://www.link-labs.com/blog/what-is-lte-m

Recreational Fliers & Modeler Community-Based Organizations. (2019). Retrieved
2019-03-24, from https://www.faa.gov/uas/recreational fliers/

Remley, K. A., Koepke, G., Holloway, C., Camell, D., & Grosvenor, C. (2009, jun).
Measurements in harsh RF propagation environments to support
performance evaluation of wireless sensor networks. Sensor Review , 29 (3),
211–222. Retrieved from
https://www.emeraldinsight.com/doi/10.1108/02602280910967620
doi: 10.1108/02602280910967620

Riegsecker, A. (2018). Measuring Environmental Effects on LoRa Radios in Cold
Weather Using 915 MHz. Unpublished master’s thesis, Purdue University.

Rocadenbosch, F. (2007). Introduction to LIDAR (laser radar) Remote Sensing
Systems. (C), 30.

Rohde & Schwarz. (n.d.). LTE-M Testing. Retrieved 2019-04-26, from
https://www.rohde-schwarz.com/us/solutions/test-and-measurement/
wireless-communication/iot-m2m/lte-m/lte-m-theme 234034.html

Sargent, R. G. (2011). Advanced Tutorials: Verification and Validation of
Simulation Models. Proceedings of the 2011 Winter Simulation Conference,
183–198. Retrieved from
https://www.informs-sim.org/wsc11papers/016.pdf

Sathyamoorthy, D. (2015). A Review of Security Threats of Unmanned Aerial
Vehicles and Mitigation Steps. The Journal of Defence and Security , 6 (1),
81–97.

Schmidt, M., & Shear, M. (2015). A Drone, Too Small for Radar to Detect, Rattles
the White House - The New York Times. Retrieved 2019-03-17, from
https://www.nytimes.com/2015/01/27/us/white-house-drone.html

Semtech SX1276. (n.d.). Retrieved 2017-07-26, from
http://www.semtech.com/wireless-rf/rf-transceivers/sx1276/

Shin, D.-H., Jung, D.-H., Kim, D.-C., Ham, J.-W., & Park, S.-O. (2017, feb). A
Distributed FMCW Radar System Based on Fiber-Optic Links for Small
Drone Detection. IEEE Transactions on Instrumentation and Measurement ,
66 (2), 340–347. Retrieved from
http://ieeexplore.ieee.org/document/7762208/ doi:
10.1109/TIM.2016.2626038

117

Skolnik, M. I. (1980). Introduction to radar systems (Vol. 3). McGraw-hill New
York.

Solomitckii, D., Gapeyenko, M., Semkin, V., Andreev, S., & Koucheryavy, Y. (2018,
jan). Technologies for Efficient Amateur Drone Detection in 5G
Millimeter-Wave Cellular Infrastructure. IEEE Communications Magazine,
56 (1), 43–50. Retrieved from
https://ieeexplore.ieee.org/document/8255736/ doi:
10.1109/MCOM.2017.1700450

Torija, A. J., Li, Z., & Self, R. H. (2020). Effects of a hovering unmanned aerial
vehicle on urban soundscapes perception. Transportation Research Part D:
Transport and Environment , 78 (0), 1–51. doi: 10.1016/j.trd.2019.11.024

Ullrich, A., Pfennigbauer, M., & Rieger, P. (2013). How to read your LIDAR spec –
a comparison of single-laser-output and multi-laser-output LIDAR
instruments. Riegl , 1–21. Retrieved from
https://mail.google.com/mail/u/0/%5Cnpapers2://publication/uuid/
9F4502B4-07AA-41AF-8893-1D7CDD344950

U.S. Department of Homeland Security. (n.d.). Bomb Threat Stand-Off Chart. U.S.
Department of Homeland Security. doi: 10.1002/oby.20937

U.S. Department of Homeland Security. (2019). Counter-Unmanned Aircraft
Systems (Tech. Rep. No. September). New York, New York, USA: National
Urban Security Technology Laboratory.

U.S. National Park Service. (n.d.). Unmanned Aircraft in the National Parks.
Retrieved 2019-08-14, from https://www.nps.gov/articles/
unmanned-aircraft-in-the-national-parks.htm

Vos, G. (n.d.). The Opportunity for LTE-M / Cat-M1 Cat-M1 is a LPWA
Technology. Sierra Wireless.

Wagoner, A. R., Schrader, D. K., & Matson, E. T. (2017). Towards a vision-based
targeting system for counter unmanned aerial systems (CUAS). 2017 IEEE
International Conference on Computational Intelligence and Virtual
Environments for Measurement Systems and Applications, CIVEMSA 2017 -
Proceedings , 237–242. doi: 10.1109/CIVEMSA.2017.7995333

Watson, B. (2018). Against the Drones: How to Stop Weaponized Consumer
Drones. Retrieved 2019-03-18, from
https://www.defenseone.com/feature/against-the-drones/

White, B. A., Shin, H.-S., & Tsourdos, A. (2011). UAV Obstacle Avoidance using
Differential Geometry Concepts. IFAC Proceedings Volumes , 44 (1),
6325–6330. doi: 10.3182/20110828-6-IT-1002.02344

Yang, B. (2019). UAV Detection System with Multiple Acoustic Nodes Using
Machine Learning Models. Master of science, Purdue University. Retrieved
from https://hammer.figshare.com/articles/thesis/
UAV DETECTION SYSTEM WITH MULTIPLE ACOUSTIC NODES USING MACHINE
LEARNING MODELS/7975991

118

Yim, D., Chung, J., Cho, Y., Song, H., Jin, D., Kim, S., . . . Riegsecker, A. (2018).
An Experimental LoRa Performance Evaluation in Tree Farm. In IEEE
Sensors Applications Symposium. Seoul, Korea: IEEE.

Young, W. F., Holloway, C. L., Koepke, G., Camell, D., Becquet, Y., & Remley,
K. A. (2010, apr). Radio-Wave Propagation Into Large Building
Structures—Part 1: CW Signal Attenuation and Variability. IEEE
Transactions on Antennas and Propagation, 58 (4), 1279–1289. Retrieved
from http://ieeexplore.ieee.org/document/5406066/ doi:
10.1109/TAP.2010.2041142

Young, W. F., Remley, K. A., Holloway, C. L., Koepke, G., Camell, D., Ladbury, J.,
& Dunlap, C. (2014). Radiowave propagation in urban environments with
application to public-safety communications. IEEE Antennas and
Propagation Magazine, 56 (4), 88–107. doi: 10.1109/MAP.2014.6931660

Zipf, R. K., Kenneth, P. E., & Cashdollar, L. (2010). Explosions and Refuge
Chambers: Effects of blast pressure on structures and the human body.
Retrieved from https://www.cdc.gov/niosh/docket/archive/pdfs/
NIOSH-125/125-ExplosionsandRefugeChambers.pdf

APPENDICES

119

A. CUSTOM SENSORDATA DATA STRUCTURE

1 /**

2 * SensorData

3 */

4 public class SensorData implements Serializable {

5

6 private String ID = "";

7 private boolean detected = false;

8 private boolean inRange = false;

9 private double distance = 0.0;

10 private double measure = 0.0;

11 private String units = "";

12 private double time = 0.0;

13 private boolean message_received = true;

14 private String last_com_node = "";

15

16 public SensorData(String sensorID, boolean isDetected,

17 boolean withinRange, double distanceFromDrone,

18 double measurement, String unitOfMeasure,

19 double modelTime){

20 ID = sensorID; //Originating sensor

21 detected = isDetected;

22 inRange = withinRange;

23 distance = distanceFromDrone;

24 measure = measurement; //sensor data

25 units = unitOfMeasure; //"yard", "meter", "dB", etc.

120

26 time = modelTime; //seconds within the model

27 //that this data was collected

28 }

29

30 public String getSensorID(){

31 return ID;

32 }

33

34 public boolean getDetection(){

35 return detected;

36 }

37

38 public boolean getWithinRange() {

39 return inRange;

40 }

41

42 public double getDistance(){

43 return distance;

44 }

45

46 public double getMeasurement(){

47 return measure;

48 }

49

50 public String getUnits(){

51 return units;

52 }

53

54 public double getTime() {

55 return time;

56 }

121

57

58 public boolean getReceived() {

59 return message_received;

60 }

61

62 public String getLastComNode() {

63 return last_com_node;

64 }

65

66 public void setSensorID(String sensorID){

67 ID = sensorID;

68 }

69

70 public void setDetection(boolean isDetected){

71 detected = isDetected;

72 }

73

74 public void setWithinRange(boolean withinRange) {

75 inRange = withinRange;

76 }

77

78 public void setDistance(double distanceFromDrone){

79 distance = distanceFromDrone;

80 }

81

82 public void setMeasurement(double measurement){

83 measure = measurement;

84 }

85

86 public void setUnitOfMeasure(String unitOfMeasure){

87 units = unitOfMeasure;

122

88 }

89

90 public void setTime(double modelTime) {

91 time = modelTime; //time in seconds

92 }

93

94 public void setMessage_Received(boolean received) {

95 message_received = received;

96 }

97

98 public void setLastComNode(String comNodeID) {

99 last_com_node = comNodeID;

100 }

101

102 }

123

B. DATABASE TABLE STRUCTURE

B.1 Database Table: model runs

The mode runs table records the start and end time of a model run as well

as the number and type of agents used within the model.

Table B.1.

Database Structure for the model runs Table

Column Name Type

start time String

end time String

acoustic omni Integer

acoustic uni Integer

radar omni Integer

radar uni Integer

visual camera Integer

infrared camera Integer

com nodes Integer

command nodes Integer

run name String

B.2 Database Table: sensor

The sensor table records all agents, except the UAS agent, and the

parameters of those agents at the start of the model. The id column is the agent’s

framework-assigned ID value. Each input parameter name is recorded to the

124

param name column, while the value is recorded to the param value column. The

real time column records the real-world time in order to place the parameters with a

specific model run.

Table B.2.

Database Structure for the sensor Table

Column Name Type

id String

param name String

param value String

real time String

B.3 Database Table: sensor data

The sensor data table records the data generated by the various agents when

a detection event is triggered. The originating sensor id refers to the sensor agent

responsible for originally generating the message. A true positive detection for an

individual sensor agent is marked by the columns detected and in range recording a

true value. The distance column records the distance between the UAS agent being

detected and the sensor agent performing the detection. Columns measure and

sensor units are the calculated measures and units of said measures, as defined

within a sensor’s calculatedMeasures() function. The model time and real time

record the time of detection in both the model simulation time and real-world time,

respectively. Finally, the message received and last com node column record whether

the message was successfully received by the recording CommandAndControl agent.

If message received is false, the message failed to be received by either a

CommunicationNode or the CommandAndControl node, while the last com node

records the agent ID of the agent that failed to receive the message.

125

Table B.3.

Database Structure for the sensor data Table

Column Name Type

originating sensor id String

detected Boolean

in range Boolean

distance Double

measure Double

sensor units String

model time String

real time String

messsage received Boolean

last com node String

126

C. DATA PROCESSING SCRIPTS

C.1 PowerShell: Sort and Reformat AnyLogic Output

The purpose of this script is to take the direct output from the sensor data

table in AnyLogic and reorganize the data for the consumption of the pColorMesh

graph. As a prerequisite, the model time parameter must be rounded to one tenth

of a second. This performs a basic grouping function on the data which would

otherwise have only unique model times recorded. The model time column is then

sorted and unique values are added to the PowerShell $uniqueTimes variable. Using

these times as an index, each unique sensor from the AnyLogic output is added as a

column head. For every item ($line) in $uniqueTimes, the script queries for all

records from the AnyLogic data. If a record exists for a given sensor and time, and

that record’s detected property and message received property are true, the value for

the cell becomes “1”, otherwise the value for that cell becomes “0”. If a sensor did

not record a detection at the model time being queried, the cell value is marked

with a “0”.

The final output of the script is a data table structure with the number of

$uniqueTimes rows and the number of $uniqueSensors columns. The value for each

data cell is either a “1” or “0”. This output is written to a CSV file which is then

ingested by the Section C.2 Python script.

1 #============================

2 # DATA REFORMATTER

3 #============================

4

5 $path = $1 #First passed in argument

127

6 $outputFile = $2 #Second passed in argument

7 $csv = Import-CSV -path $path

8 $times = @()

9 $output = @()

10

11 #Time comes in as a string, need to turn it into a double

12 foreach($line in $csv){

13 #move all time entries to another array

14 $times += [double]$line.model_time

15 }

16

17 #sort the time array and grab only unique values

18 $uniqueTimes = $times | sort -unique

19

20 #make this script more generalized and grab unique sensors from the data.

21 $uniqueSensors = $csv.SensorID | Sort -Unique

22

23 #For every timestamp

24 foreach ($line in $uniqueTimes){

25

26 #Get every sensor ID and Detected for that timestamp

27 $data = $csv | Where-Object {$_.model_time -eq $line

28 -and $_.messageReceived -ne "FALSE"}

29

30 #Create a blank custom object. Very important line.

31 $record = [pscustomobject]@{}

32

33 #Add the time as a property

34 $record | Add-Member -MemberType NoteProperty

35 -Name time -Value $line

36

128

37 #For a given timestamp, work through every record

38 #(should be one per sensor per time)

39 foreach ($sensor in $uniqueSensors){

40 $value = 0

41

42 #If a sensor ID is found, use the data

43 #from the Detected field.

44 if ($data.SensorID -contains $sensor){

45 if ($($data | Where-Object {$_.SensorID

46 -eq $sensor}).Detected -eq "TRUE"){

47 $value = 1

48 }

49 } #If the sensor ID is not found,

50 #set the data to False (see line 40)

51

52 #Add the property using the sensorID as the

53 #column header and the Detected as the value

54 $record | Add-Member -MemberType NoteProperty

55 -Name $sensor -Value $value

56 }

57 #Add the psCustomObject to a more general list for output.

58 $output += $record

59 }

60 $output | Export-CSV -path $outputFile

61 #============================

62 # END: DATA REFORMAT

63 #============================

129

C.2 Python: Generate pColorMesh Graphs

This Python script inputs the data structure generated by the PowerShell

script in Section C.1 and outputs a pColorMesh graph.

1 #============================

2 # CREATE PCOLORMESH GRAPH

3 #============================

4 import matplotlib.pyplot as plt

5 import numpy as np

6 import pandas as pd

7

8 def graphDetectionPlot(df, plotTitle, x_label,

9 y_label, transpose = False):

10

11 #fig adjust the entire graph, ax adjust individual graphs

12 fig, ax = plt.subplots()

13 ax.set_title(plotTitle)

14 ax.set_xlabel(x_label)

15 ax.set_ylabel(y_label)

16 if (transpose == True):

17 plt.pcolormesh(df.T)

18 else:

19 plt.pcolormesh(df.iloc[1:,1:])

20 plt.show()

21

22 path = $inputFile #Output from PowerShell data formatter script

23 df = pd.read_csv(path) #read csv into a dataFrame

24 df.set_index("time", inplace=True)

25

26 graphDetectionPlot(df, "Experiment 1: Trial 1",

130

27 "Detection Records", "Sensor", True)

28 #============================

29 # END: CREATE PCOLORMESH GRAPH

30 #============================

C.3 PowerShell: Quick Sort by SensorID for AnyLogic Output

This PowerShell script sorts the sensor data table output from AnyLogic by

the originating sensor id column which was renamed to SensorID here. This

enables easier data processing within Excel, or another program, for determining

the number of true positives, false negatives, averages, and so on.

1 #============================

2 # DATA SORTER

3 #============================

4 $path = $1 #First passed in argument

5 $outputPath = $2 #Second passed in argument

6 $csv = Import-CSV -path $path

7 $output = @()

8

9 #make this script more generalized and

10 #grab unique sensors from the data.

11 $uniqueSensors = $csv.SensorID | Sort -Unique

12

13 #For every timestamp

14 foreach ($sensor in $uniqueSensors){

15 if ($sensor -eq "" -or $sensor -eq $null){

16 continue

17 }

131

18 $data = $csv | Where-Object {$_.SensorID -eq $sensor}

19

20 #Get every sensor ID and Add the psCustomObject

21 #to a more general list for output.

22 $output += $data

23 }

24 $output | Export-CSV -path $outputFile$

25 #============================

26 # END: DATA SORTER

27 #============================

VITA

132

VITA

Austin J. Riegsecker

Education

• Ph.D., Technology

Purdue University, West Lafayette, IN, USA

December 2020

• M.S., Computer and Information Technology

Purdue University, West Lafayette, IN, USA

May 2018

• B.S., Computer and Information Technology

Purdue University, West Lafayette, IN, USA

December 2016

Work Experience

• Virtualization Solutions Architect

General Dynamics Information Technology, Odon, IN, USA

October 2020 - Present

• Senior Software Developer

General Dynamics Information Technology, Odon, IN, USA

April 2020 - September 2020

• Wireless Network Consultant

West Lafayette, IN, USA

May 2019 - August 2019

133

• International Cybersecurity Boot Camp Instructor

Purdue University, West Lafayette, IN, USA

May 2019 - August 2019

• Head Teaching Assistant

Purdue University, West Lafayette, IN, USA

January 2019 - May 2019

• GenCyber Course Instructor

Purdue University, West Lafayette, IN, USA

May 2018 - August 2018

• Teaching and Research Assistant

Purdue University, West Lafayette, IN, USA

January 2017 - December 2020

• Network Administrator

Korean Software Square, West Lafayette, IN, USA

January 2017 - December 2020

• Software Developer Intern

Crowe Horwath - Applied Technology Department, Indianapolis, IN, USA

May 2016 - August 2016

• Software Developer Intern

CEC Controls, Warren, MI, USA

May 2013 - May 2016

Publications

• Cline, T. L., Ho, K. E., Hood, C., Riegsecker, A., & Dietz, J. E. (2020). A case

for standardized communications for point of distribution operations. Journal

of Emergency Management, 18(6). https://doi.org/10.5055/jem.2020.0490

• Gilbert, A. K., Riegsecker, A., & Dietz, J. E. (2018). Assessing Security

Perimeters for Large Events using Agent-based modeling. In International

Association of Journals and Conferences. Orlando, FL, USA: International.

134

• Riegsecker, A. (2018). Measuring Environmental Effects on LoRa Radios in

Cold Weather Using 915 MHz. Purdue University.

• Yim, D., Chung, J., Cho, Y., Song, H., Jin, D., Kim, S., . . . Riegsecker, A.

(2018). An Experimental LoRa Performance Evaluation in Tree Farm. In

IEEE Sensors Applications Symposium (p. 6). Seoul, Korea: IEEE.

Service

• IEEE IRC Program Committee Member (2020)

• IEEE IRC Peer Reviewer (2019 & 2020)

• ETRI Journal Peer Reviewer (2018)

• ICPADS Peer Reviewer (2017)

• Korean Software Square Research Team Advisor (2017-2019)

