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ABSTRACT

Gupta, Shivam Ph.D., Purdue University, May 2021. Temporal Precision in Gene
Expression and Cell Migration. Major Professor: Andrew Mugler Professor.

Important cellular processes such as migration, differentiation, and development

often rely on precise timing. Yet, the molecular machinery that regulates timing is

inherently noisy. How do cells achieve precise timing with noisy components? We

investigate this question using a first-passage-time approach, for an event triggered by

a molecule that crosses an abundance threshold. We investigate regulatory strategies

that decrease the timing noise of molecular events. We look at several strategies

which decrease the noise: i) Regulation performed by an accumulating activator, ii)

Regulation dues to a degrading repressor, iii) Auto-regulation and the presence of

feedback. We find that either activation or repression outperforms an unregulated

strategy. The optimal regulation corresponds to a nonlinear increase in the amount

of the target molecule over time, arises from a tradeoff between minimizing the timing

noise of the regulator and that of the target molecule itself, and is robust to additional

effects such as bursts and cell division. Our results are in quantitative agreement with

the nonlinear increase and low noise of mig-1 gene expression in migrating neuroblast

cells during Caenorhabditis elegans development. These findings suggest that dynamic

regulation may be a simple and powerful strategy for precise cellular timing.

Autoregulatory feedback increases noise. Yet, we find that in the presence of

regulation by a second species, autoregulatory feedback decreases noise. To explain

this finding, we develop a method to calculate the optimal regulation function that

minimizes the timing noise. Our method reveals that the combination of feedback and

regulation minimizes noise by maximizing the number of molecular events that must

happen in sequence before a threshold is crossed. We compute the optimal timing
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precision for all two-node networks with regulation and feedback, derive a generic

lower bound on timing noise, and compare our results with the neuroblast migration

during C. elegans development, as well as two mutants. We finds that indeed our

model is aligned with the experimental findings.

Furthermore, we apply our framework of temporal regulation to explain how the

stopping point of the migrating cells in C. elegans depends on the body size. Consid-

ering temporal regulation, we find the termination point of the cell for various larval

sizes. We discuss three possible mechanisms: i) No compensation; here the migration

velocity is constant across the mutants of C. elegans, and this results in the migration

distance to be constant but the relative position to be different across various sizes; ii)

Total compensation; here the velocity is compensated with body size, hence resulting

in the same relative position of cells across mutants; and iii) Partial compensation;

here the velocity of migration is correlated with body size to some degree, resulting

in a non-linear relationship between termination point and body size. We find that

our partial compensation model is consistent with experimental observations of cell

termination.

Finally, we look at the detection of traveling waves by single-celled organisms.

Cells must use temporal and spatial information to sense the direction of traveling

waves, as seen in cAMP detection by the amoeba Dictyostelium. If a cell only uses

spatial information to sense the direction of the wave then the cell will move forward

when the wave hits the front of the cell, and move backward when the wave hits the

back of the cell, resulting in neutral movement. Cells must use temporal information

along with spatial information to effectively move towards the source. Here we develop

a mechanism by which cells are able to integrate the spatial and temporal information

through a system of inhibitors. We find the optimal time to release the inhibitors for

maximizing the precision of directional sensing.
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1. INTRODUCTION

Proper timing is crucial for biological processes, including cell division [1–3], cell dif-

ferentiation [4], cell migration [5], viral infection [6], embryonic development [7, 8],

and cell death [9]. These processes are governed by molecular events inside cells, i.e.,

production, degradation, and interaction of molecules. Molecular events are subject

to unavoidable fluctuations, because molecule numbers are small and reactions occur

at random times [10, 11]. Cells combat these fluctuations using networks of regu-

latory interactions among molecular species. This raises the fundamental question

of whether there exist regulatory strategies that maximize the temporal precision of

molecular events and, in turn, cellular behaviors.

A canonical mechanism by which a molecular event triggers a cellular behavior

is accumulation to a threshold [3, 4, 12–14]: molecules are steadily produced by the

cell, and once the molecule number crosses a particular threshold, the behavior is

initiated. The temporal precision of the behavior is therefore bounded by the temporal

precision of the threshold crossing. Threshold crossing has been shown to underlie

cell cycle progression [3] and sporulation [4], although alternative strategies, such as

derivative [9] or integral thresholding [15], oscillation [16], and dynamical transitions

in the regulatory network [8], have also been investigated.

Recent work has investigated the impact of auto-regulation (i.e., feedback) on the

temporal precision of threshold crossing [12,13]. Interestingly, it was found that auto-

regulation generically decreases the temporal precision of threshold crossing, meaning

that the optimal strategy is a linear increase of the molecule number over time with

no auto-regulation [12] (although auto-regulation can help if there is a large timescale

separation and the threshold itself is also subject to optimization [13]). Indeed, even

when the molecule also degrades, the optimal precision is achieved when positive

auto-regulation counteracts the effect of degradation, preserving the linear increase
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over time [12]. However, in many biological processes, such as the temporal control

of neuroblast migration in Caenorhabditis elegans [5], the molecular species govern-

ing the behavior increases nonlinearly over time. This suggests that other regulatory

interactions beyond auto-regulation may play an important role in determining tem-

poral precision. In particular, the impact of activation and repression on temporal

precision, where the activator or repressor has its own stochastic dynamics, remains

unclear.

We apply the framework of first passage time statistics to describe the crossing of a

threshold number in gene production, in order to understand the cell-to-cell variability

in migration time of the neuroblast in C. elegans. We calculate the timing noise when

regulation by a second gene and/or auto-regulation are incorporated. We use master

equation framework for solving a discrete probabilistic gene system. We use analytic

and numerical methods to determine the timing noise of gene networks. We find that

regulation by a second gene increases the precision in time measurement by a cell.

Interestingly we show that when auto-regulation is present by itself it increases the

timing noise; however, if auto-regulation is present along with regulation by a second

gene, the timing noise is further decreased than by regulation alone. Our collaborators

at Hubrecht University and Institut de Biologie de l’Ecole Normale Supérieure, CNRS

have performed experiments to test our predictions. In one experiment performed, we

have shown that the observed timing noise in migrating neuroblasts can be attributed

to a regulator mechanism as we describe [17]. We extend our method to explain the

observed stopping point of a cell during its migration inside C. elegans [18].

The tools and insights we gathered from our previous studies can be applied to

a vast variety of biological problems. For example, many single-celled organisms

must sense the direction of chemical waves. We develop a theoretical mechanism by

which cells can sense the direction of incoming nutrient waves, and which explains

cell movement towards the nutrient source.
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2. THESIS PLAN

Here, we briefly describe the basic components of the thesis. Further details on each

component will follow in Chapters 3-6.

Cells keep track of time through molecular events such as production, degra-

dation and interaction of molecules. Molecular events are inherently noisy, which

generates noise in the timing of biological processes. Cells combat this noise using

gene regulatory networks. In collaboration with two experimental groups, we study

the regulatory networks that govern timing precision in migrating neuroblast cells

called QR.p (Figure 2.1A, pink dot) in the roundworm C.elegans. The QR.p cells are

present at the tail position when C. elegans is in early stage of development. These

cells migrate from the tail position to the head position during development. Our

collaborators have shown that in mutants of C. elegans, migration speed of QR.p is

positively related to elg-20 gene expression. Over expressing of elg-20 leads to over

migration of QR.p and under-expression of elg-20 leads to under-migration of QR.p.

Their experimental evidence suggests that the migration of QR.p cells happens only

for fixed amount of time. This raises the fundamental question of how, and with what

precision, the cells keep track of time. For my PhD thesis work, I have worked on

four projects explaining the timing precision of cell migration and the final position

of QR.p cell’s descendant in C. elegans.

2.1 Temporal precision of regulated gene expression

Experiments on the migration of QR.p cells suggest that the migration is con-

trolled by the number of mig-1 mRNAs produced by QR.p cells. Cells start migrat-

ing after the mig-1 production starts and they stop migrating when the mig-1 crosses
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threshold molecule number y∗ (Figure 2.1B). mig-1 production is regulated by a

number of genes. We study activator and repressor gene networks and their effect on

timing precision. In the activator mechanism, the production rate of mig-1 increases

as the number of activator molecules increase, whereas in the repressor mechanism,

the production rate of mig-1 decreases as the repressor molecules increase. For these

two models we calculate the trajectory of mig-1 expression and timing variance in

crossing the threshold molecule number. To compare our analytical and numerical

results with the experiments we define a linearity parameter (ρ) which measures the

non-linear rise in the number of mig-1 molecules. We calculate the timing variance

as a function of linearity (Figure 2.1C) and compare with the experimental values.

The increase in precision due to regulation is a consequence of a tradeoff between

reducing the extrinsic noise of the regulator, and reducing the intrinsic noise of the

target molecule itself. Our minimal model is sufficient to explain both the high degree

of nonlinearity and the low degree of noise in the dynamics of mig-1 in C. elegans

neuroblasts, suggesting that these cells use regulated expression to terminate their

migration with increased temporal precision [17].

2.2 Temporal precision of molecular events with regulation and feedback

Recent studies on gene regulatory networks suggest that feedback is disadvanta-

geous for timing precision [12]. However, mig-1 is thought to be regulated by feedback

in QR.p cells. Having feedback on mig-1 means that the production rate of mig-1

depends on how many mig-1 molecules are present. This raises the fundamental

question, if the feedback is disadvantageous then why its present in gene regulatory

networks? We hypothesized that there is an interplay between feedback and regu-

lation which can be beneficial to the timing precision. Investigating this hypothesis

with our stochastic framework, we found that indeed, feedback alone decreases timing

precision, but, surprisingly, feedback can be beneficial in the presence of regulation.

In this project, we sought to find the global regulation function of mig-1 which min-
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Fig. 2.1. A) In C. elegans, QR.p cell (pink dot) is present at the tail
position at an early stage of development, and then it migrates to the
head position. B) Experimentally measured rise in mig-1 number during
migration. C) Model prediction of timing variance and non-linear rise in
mig-1 agrees with experimental data. D) Timing variance comparison for
various gene regulatory networks.

imizes the timing variance. We use analytic and gradient descent methods to find

the global regulation function, and the theoretical global minimum timing variance

achievable by a two-species regulatory network. Figure 2.1D is a comparison of the

lowest possible noise achieved by various types of regulatory networks. Our findings

suggest that a cellular process where timing precision is important should be governed

by a molecular network with both multistep regulation and feedback, particularly one

in which every species is subject to regulation. We find that adding freedom to the
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Fig. 2.2. A) Piece-wise linear fit to mig-1 expression in control, B) Timing
variance across three cases, magenta line is threshold minimum variance,
C) In C. elegans, QR.p final position across the mutants with larva size `0.
No compensation assumes migration velocity is constant in all mutants,
partial compensation model assumes migration velocity to be dependent
on larva size `0 and total compensation is assuming cell stops at fixed
position. D) Optimum receptors m needed to maximize the difference
∆m between activated receptors on left side and activated receptors on
the right side.

system can be utilized to obtain higher timing precision [19]. To test this mechanism,

our collaborator performed experiments through CRISPR gene knockout. Through

experimental studies we found that the mig-1 expression is regulated by the bar-1
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gene (Figure 2.2A). Furthermore, we looked at mig-1 in three types of populations. i)

Control (wild type); ii) Active, where C. elegans were mutated so that bar-1 produc-

tion was active, hence saturating the effect of bar-1 on mig-1; and iii) Mutant, where

individuals were mutated such that bar-1 was not produced. We built a mathemat-

ical model based on empirical data to identify the mig-1 regulation networks. We

calculated the timing variance in crossing a threshold for each group (Figure 2.2B).

We discovered that mig-1 expression is controlled through positive feedback via bar-

1. Furthermore, we found that the timing noise for the control group is the lowest

and agrees with our analytical result for threshold global minimum variance (Figure

2.2B).

2.3 Termination of QR.p cell migration

In the previous project we discussed temporal regulation by QR.p cells (neurob-

last) and quantified the precision of migration time. Here, we develop a model to

explain the final position of the QR cell after migration is terminated. Recent exper-

imental findings by our collaborators suggest that the larva size of C. elegans affects

the final position of the QR.p cell. The empirical measurements reveal that the QR.p

cell final position is correlated with larva size at hatching (Figure 2.2C). To explain

these observations, we combined our model of timed cell migration in the previous

projects, with a model of larval growth. Larval growth is similar to an expanding

universe model, where every point is moving apart so that migration velocity is af-

fected with respect to its background. We test whether migration velocity across the

mutants is compensated by larval size. We find that the relative stopping position

varies inversely with the larval size, and that larval growth softens this dependence

into a roughly linear decrease. Our minimal model explains this effect in mutants

with various larval size (Figure 2.2C).



8

2.4 Detection of nutrient wave by single-celled organisms

Our previous projects either investigated or were inspired by the timing precision

of a migrating cell within C. elegans. However, the problem of precise timing is very

common in biology. One common problem that many single-celled organisms face is

the ability to sense nutrient waves. Signal sensing is used by many biological processes

such as wound healing, neural patterning and tumor migration [20–22]. We study the

mechanism by which cells are able to sense the direction of nutrient waves.

We hypothesized that cells sense the direction of nutrient waves through recep-

tors present on the cell surface. As a case study, we assume the wave comes from the

left direction and receptors are activated on upon interaction with the nutrient wave.

Oncem receptors are activated on the left side of the cell, they release inhibitors inside

the cell. These inhibitors are free to diffuse inside the cell. When the inhibitors reach

the right side, they deactivate the right-side receptors, preventing them from further

activation by the nutrient wave. We assume that the nutrient wave can be described

as a traveling wave. This mechanism creates a polarization due to the gradient of

activated receptors on the left and receptors activated on the right side of the cell

surface. The cell can control the release of inhibitors in time via m. We calculate the

gradient of activated receptors at left and right side of cell. This gradient estimates

the polarization direction for the cell. A higher gradient represents that the cell is

able to sense direction of the wave precisely. Here we find a trade off between the

diffusion time and the wave velocity for maximizing the gradient. If the diffusion

is faster than the nutrient wave it will create a polarization of activated receptors

towards the nutrient wave direction. We have developed a model to quantify the

polarization towards the direction of the nutrient wave. We calculated the optimum

number of receptors m needed out of total receptor number N for the release of in-

hibitors, hence maximizing the polarization (Figure 2.2D).
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3. TEMPORAL PRECISION OF REGULATED GENE
EXPRESSION

This chapter has been published as S. Gupta, J. Varennes, HC. Korswagen, A. Mugler
(2018), “Temporal precision of regulated gene expression,” PLoS Comput Biol 14(6):
e1006201.

Here we investigate the temporal precision of threshold crossing for a molecule

that is regulated by either an accumulating activator or a degrading repressor. Using

a first-passage-time approach [12, 23–25] and a combination of computational and

analytic methods, we find that, unlike in the case of auto-regulation, the presence of

either an activator or a repressor increases the temporal precision beyond that of the

unregulated case. Furthermore, the optimal regulatory strategy for either an activator

or a repressor corresponds to a nonlinear increase in the regulated molecule number

over time. We elucidate the mechanism behind these optimal strategies, which stems

from a tradeoff between reducing the noise of the regulator and that of the target

molecule, and is similar to the fact that a sequence of time-ordered stochastic events

becomes more precisely timed with more events. These findings are robust to more

complex features of the regulation process, including bursts of molecule production,

more complex regulator dynamics, and cell division. Our results are quantitatively

consistent with both the temporal precision and nonlinearity of the mig-1 mRNA

dynamics of the migrating neuroblast cells in C. elegans larvae [5]. The agreement

of our simple model with these data suggests that many molecular timing processes

may benefit from the generic regulatory strategies we identify here.
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3.1 Results

We consider a molecular species X whose production is regulated by a second

species, either an activator A or a repressor R (Fig. 3.1A). The regulator undergoes

its own dynamics: the activator undergoes pure production at a zeroth-order rate k

whereas the repressor undergoes pure degradation at a first-order rate µ, such that

in either case the production rate of X increases over time. The activator does not

degrade and the repressor is not produced, although we later relax this assumption.

For the regulation function we take a Hill function, which is a generic model of

cooperative regulation [12,13,26],

f+(a) =
αaH

aH +KH
(activator), (3.1)

f−(r) =
αKH

rH +KH
(repressor). (3.2)

Here a and r are the molecule numbers of A and R, respectively, α is the maximal

production rate of X, K is the half-maximal regulator number, and H is the co-

operativity. First we neglect additional complexities such as bursts of production,

more complex regulator dynamics, cell division, auto-regulation, longer regulatory

cascades, or transcriptional delay. Later we check the robustness of our results to

bursts, more complex regulator dynamics, and cell division, and we speculate upon

the effects of auto-regulation, longer regulatory cascades, and delay in the Discussion.

We suppose that a behavior is initiated when the molecule number x crosses

a threshold x∗ (Fig. 3.1B). Because the production of X and the dynamics of the

regulator are stochastic, the time at which x first reaches x∗ is a random variable.

We characterize the precision of this event by the mean t̄ and variance σ2
t of this first-

passage time, which we compute numerically from the master equation corresponding

to the reactions in Fig. 3.1A (see Materials and Methods). The maximal production

rate α is set to ensure that t̄ is equal to a target time t∗, which we assume is set

by functional constraints on the initiated behavior. This leaves k, K, and H as free
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Fig. 3.1. Threshold crossing of a regulated molecular species. (A)
A target species X is regulated by either an accumulating activator A
or a degrading repressor R. (B) Temporal precision is quantified by the
variance σ2

t of the first-passage time, at which the stochastic molecule
number x first crosses the threshold x∗. (C, D) Deterministic dynamics
illustrate the effects of regulation. Parameters are kt∗ = 20 and K = 15
in C; µt∗ = 2.75, K = 2.6, and N = 15 in B and D; and x∗ = 15 and
H = 1 throughout. t0 is defined by ā(t0) = K in C and r̄(t0) = K in D.

parameters of the regulation (with α a function of these parameters). In principle,

these parameters can be optimized to minimize the timing variance σ2
t .

The deterministic dynamics, illustrated in Fig. 3.1C and D, neglect fluctuations

but give an intuitive picture of the regulation. Whereas the amount of activator
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increases linearly over time, the amount of repressor decays exponentially from an

initial molecule number N :

ā(t) = kt, (3.3)

r̄(t) = Ne−µt. (3.4)

In either case, the production rate f± of X increases over time, such that x̄ increases

nonlinearly. N is an additional free parameter in the repressor case.

3.1.1 Regulation increases temporal precision

To investigate the effects of regulation on temporal precision, we consider the

timing variance σ2
t as a function of the parameters k and K, or µ and K. The

special case of no regulation corresponds to the limits k → ∞ and K → 0 in the

case of activation, or µ → ∞ and K → ∞ in the case of repression. In this case,

the production of X occurs at the constant rate α. Reaching the threshold requires

x∗ sequential events, each of which occurs in a time that is exponentially distributed

with mean 1/α. The total completion time for such a process is given by a gamma

distribution with mean t̄ = x∗/α and variance σ2
t = x∗/α

2 [25]. Ensuring that t̄ = t∗

requires α = x∗/t∗, for which the variance satisfies σ2
t x∗/t

2
∗ = 1. This expression gives

the timing variance for the unregulated process.

In Fig. 3.2 we plot the scaled variance σ2
t x∗/t

2
∗ as a function of the parameters k

and K, or µ and K, for cooperativity H = 3 (color maps). In the case of activation

(Fig. 3.2A), the variance decreases with increasing k and K. This means that the

temporal precision is highest for an activator that accumulates quickly and requires a

high abundance to produceX. In the case of repression (Fig. 3.2B), the variance has a

global minimum as a function of µ and K. This means that the temporal precision is

highest for a repressor with a particular well-defined degradation rate and abundance

threshold. Importantly, we see that for both activation and repression, the scaled

variance can be less than one, meaning that regulation allows improvement of the
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temporal precision beyond that of the unregulated process. We have checked that

this result holds for H ≥ 1.
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Fig. 3.2. Optimal regulatory strategies. Timing variance as a function
of the regulatory parameters reveals (A) a trajectory along which the
variance decreases in the case of the activator and (B) a global minimum
in the case of the repressor. White dashed line in A and white dot in
B show the analytic approximations in Eqs. 3.9 and 3.11, respectively.
Parameters are N = 15 in B, and x∗ = 15 and H = 3 in both.

3.1.2 Optimal regulation balances regulator and target noise

To understand the dependencies in Fig. 3.2, we develop analytic approximations.

First, we assume that H →∞, such that the regulation functions in Eqs. 3.1 and 3.2

become threshold functions. In this limit, the production rate of X is zero if a < K or

r > K, and α otherwise. The deterministic dynamics of X become piecewise-linear,

x̄(t) =

0 t < t0

α(t− t0) t ≥ t0,

(3.5)

where t0 is determined by either ā(t0) = K or r̄(t0) = K according to Eqs. 3.3 and

3.4. Then, to set α, we use the condition x̄(t∗) = x∗, which results in α = x∗/(t∗− t0).



14

Lastly, we approximate the variance in the first-passage time using the variance in

the molecule number and the time derivative of the mean dynamics [13]. Specifically,

the timing variance of X arises from two sources: (i) uncertainty in the time when

the regulator crosses its threshold K, which determines when the production of the

target X begins, and (ii) uncertainty in the time when x crosses its threshold x∗,

given that production begins at a particular time. The first source is regulator noise,

and the second source is target noise. We estimate these timing variances from the

associated molecule number variances, propagated via the time derivatives,

σ2
t ≈ σ2

y

(
dȳ

dt

)−2
∣∣∣∣∣
t0︸ ︷︷ ︸

regulator

+ σ2
x

(
dx̄

dt

)−2
∣∣∣∣∣
t∗︸ ︷︷ ︸

target

, (3.6)

where y ∈ {a, r} denotes the regulator molecule number.

For the activator, which undergoes a pure production process with rate k, the

molecule number obeys a Poisson distribution with mean kt. Therefore, the molecule

number variance at time t0 is σ2
a = kt0. For the repressor, which undergoes a pure

degradation process with rate µ starting from N molecules, the molecule number

obeys a binomial distribution with number of trials N and success probability e−µt.

Therefore, the molecule number variance at time t0 is σ2
r = Ne−µt0(1 − e−µt0). For

the target molecule, which undergoes a pure production process with rate α starting

at time t0, the molecule number obeys a Poisson distribution with mean α(t − t0).

Therefore, the molecule number variance at time t∗ is σ2
x = α(t∗− t0). Inserting these

expressions into Eq. 3.6, along with the derivatives calculated from Eqs. 3.3-3.5 and

the appropriate expressions for α and t0, we obtain

σ2
t x∗
t2∗
≈ Kx∗

(kt∗)2
+

(
1− K

kt∗

)2

(activator), (3.7)

σ2
t x∗
t2∗
≈ (N −K)x∗

NK(µt∗)2
+

[
1− log(N/K)

µt∗

]2

(repressor). (3.8)
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As a function of kt∗ and K, the global minimum of Eq. 3.7 occurs as kt∗ → ∞ and

K → ∞. The path of descent toward this minimum is given by differentiating with

respect to K at fixed kt∗ and setting the result to zero, which yields the curve

K =

0 kt∗ <
x∗
2

kt∗ − x∗
2

kt∗ ≥ x∗
2
,

(3.9)

along which the variance satisfies

σ2
t x∗
t2∗

=

1 kt∗ <
x∗
2

x∗
kt∗

(
1− x∗

4kt∗

)
kt∗ ≥ x∗

2
,

(3.10)

where the first case comes from the fact that K must be nonnegative. In contrast,

the global minimum of Eq. 3.8 occurs at finite µt∗ and K: differentiating with respect

to each and setting the results to zero gives the values

K = e−2N, (3.11a)

µt∗ =
e2x∗
2N

+ 2, (3.11b)

σ2
t x∗
t2∗

=
x∗

x∗ + 4e−2N
, (3.12)

where we have assumed thatK/N � 1 (see Materials and Methods), which is justified

post-hoc by Eq. 3.11a.

These analytic approximations are compared with the numerical results for the

activator in Fig. 3.2A (white dashed line, Eq. 3.9) and for the repressor in Fig. 3.2B

(white circle, Eq. 3.11). In Fig. 3.2A we see that the global minimum indeed occurs

as kt∗ → ∞ and K → ∞, and the predicted curve agrees well with the observed

descent. In Fig. 3.2B we see that the predicted global minimum lies very close to the

observed global minimum. We have also checked along specific slices in the (K, kt∗)

or (K,µt∗) plane and found that the analytic approximations generally differ from
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the numerical results by about 10% or less, despite the fact that the approximations

take H →∞ whereas the numerics in Fig. 3.2 use H = 3.

The success of the approximations means that Eq. 3.6 describes the key mechanism

leading to the optimal temporal precision. Eq. 3.6 demonstrates that the optimal

regulatory strategy arises from a tradeoff between minimizing regulator and target

noise. On the one hand, minimizing only the regulator noise would require that the

regulator cross its thresholdK with a steep slope dȳ/dt and therefore at an early time,

meaning that the target molecule would be effectively unregulated and would increase

linearly over time. On the other hand, minimizing only the target noise would require

that the regulator cross its threshold only shortly before the target time t∗, such that

the target molecule would cross its threshold x∗ with a steep slope dx̄/dt, leading

to a highly nonlinear increase of the target molecule over time. In actuality, the

optimal strategy is somewhere in between, with the regulator crossing its threshold

at some intermediate time t0, and the target molecule exhibiting moderately nonlinear

dynamics as in Fig. 3.1C and D.

Eqs. 3.10 and 3.12 demonstrate that the timing variance is small for large kt∗/x∗ in

the case of activation, and small for large N/x∗ in the case of repression. This makes

intuitive sense because each of these quantities scales with the number of regulator

molecules: k is the production rate of activator molecules, while N is the initial

number of repressor molecules. To make this intuition quantitative, we define a cost

as the time-averaged number of regulator molecules,

〈a〉 =
1

t∗

∫ t∗

0

dt ā(t) =
1

2
kt∗, (3.13)

〈r〉 =
1

t∗

∫ t∗

0

dt r̄(t) =
N

µt∗
(1− e−µt∗), (3.14)

where the second steps follow from Eqs. 3.3 and 3.4. We see that, indeed, 〈a〉 scales

with k, and 〈r〉 scales with N . Thus, Eqs. 3.10 and 3.12 demonstrate that increased

temporal precision comes at a cost, in terms of the number of regulator molecules

that must be produced.
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3.1.3 Model predictions are consistent with neuroblast migration data

We test our model predictions using data from neuroblast cells in C. elegans

larvae [5]. During C. elegans development, particular neuroblast cells migrate from

the posterior to the anterior of the larva. It has been shown that the migration

terminates not at a particular position, but rather after a particular amount of time,

and that the termination time is controlled by a temporal increase in the expression of

themig-1 gene [5]. Sincemig-1 is known to be subject to regulation [27], we investigate

the extent to which the dynamics of mig-1 can be explained by the predictions of our

model.

Figure 3.3A shows the number x of mig-1 mRNA molecules per cell as a function

of time t, obtained by single-molecule fluorescent in situ hybridization (from [5]). We

analyze these data in the following way (see Materials and Methods for details). First,

noting that the dynamics are nonlinear, we quantify the linearity using the area under

the curve, normalized by that for a perfectly linear trajectory x∗t∗/2,

ρ =
2

x∗t∗

∫ t∗

0

dt x(t). (3.15)

By this definition, ρ = 1 for perfectly linear dynamics, and ρ → 0 for maximally

nonlinear dynamics (a sharp rise at t∗). Then, we estimate x∗, t∗, and the timing

variance σ2
t from the data. Specifically, migration is known to terminate between

particular reference cells in the larva [5], which gives an estimated range for the

termination time t∗. This range is shown in magenta in Fig. 3.3A and corresponds

to a threshold within the approximate range 10 ≤ x∗ ≤ 25. Therefore, we divide the

x axis into bins of size ∆x, choose bin midpoints x∗ within this range, and for each

choice compute the mean t∗ and the variance σ2
t of the data in that bin. Fig. 3.3B

shows the average and standard deviation of results for different values of x∗ and ∆x

(blue circle).

The experimental data point in Fig. 3.3B exhibits two clear features: (i) the

dynamics are nonlinear (ρ is significantly below 1), and (ii) the timing variance is
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Fig. 3.3. Model predictions agree with neuroblast migration data.
(A) Number of mig-1 mRNA molecules per cell as a function of time t,
obtained by single-molecule fluorescent in situ hybridization, from [5]. Ma-
genta shows approximate range of times when cell migration terminates.
Black lines show mean t̄d (dashed) and standard deviation σd of cell divi-
sion times (black points). (B) Timing variance vs. linearity of x(t), both
for experimental data in A (blue circle) and our model (curves, Eqs. 3.16
and 3.17). Data analyzed using ranges of threshold 10 ≤ x∗ ≤ 25 and bin
size 3 ≤ ∆x ≤ 12; error bars show standard deviations of these results.
We see that for sufficiently large cost 〈a〉/x∗ or 〈r〉/x∗, model predictions
agree with experimental data point.

low (σ2
t x∗/t

2
∗ is significantly below 1). Neither feature can be explained by a model

in which the production of x is unregulated, since that would correspond to a linear

increase of molecule number over time (ρ = 1) and a timing variance that satisfies

σ2
t x∗/t

2
∗ = 1 (square in Fig. 3.3B). Furthermore, since auto-regulation has been shown

to generically increase timing variance beyond the unregulated case [12], it is unlikely

that feature (ii) can be accounted for by a model with auto-regulation alone. Can

these data be accounted for by our model with regulation?

To address this question we calculate ρ and σ2
t x∗/t

2
∗ from our model. For simplicity,

we focus on the analytic approximations in Eqs. 3.7 and 3.8, since they have been
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validated in Fig. 3.2. In these approximations, since x̄(t) is piecewise-linear (Eq. 3.5),

calculating ρ via Eq. 3.15 is straightforward: ρ = 1 − t0/t∗, where t0 is once again

determined by either ā(t0) = K or r̄(t0) = K according to Eqs. 3.3 and 3.4. For a

given ρ and cost 〈a〉/x∗ or 〈r〉/x∗, we calculate the minimum timing variance σ2
t x∗/t

2
∗.

For the activator, we use the expression for ρ along with Eq. 3.13 to write Eq. 3.7 in

terms of ρ and 〈a〉/x∗,
σ2
t x∗
t2∗

=
x∗

2〈a〉
(1− ρ) + ρ2. (3.16)

For the repressor, we use the expression for ρ along with Eq. 3.14 to write Eq. 3.8

in terms of ρ and 〈r〉/x∗, and then minimize over N (see Materials and Methods) to

obtain
σ2
t x∗
t2∗

=
e3

27

x∗
〈r〉

(1− ρ)3 + ρ2. (3.17)

Eqs. 3.16 and 3.17 are shown in Fig. 3.3B (green solid and red dashed curves, re-

spectively), and we see the same qualitative features for both cases: all curves satisfy

σ2
t x∗/t

2
∗ = 1 at ρ = 1, as expected; and as ρ decreases, each curve exhibits a mini-

mum whose depth and location depend on cost. Specifically, as cost increases (lighter

shades of green or red), the variance decreases, as expected. Importantly, we see that

at a cost on the order of 〈a〉/x∗ = 〈r〉/x∗ ∼ 10, the model becomes consistent with

the experimental data: both the low timing variance and the low degree of linear-

ity predicted by either the activator or repressor case agree quantitatively with the

experiment. This suggests that either an accumulating activator or a degrading re-

pressor is sufficient to account for the temporal precision observed in mig-1-controlled

neuroblast migration.

3.1.4 Results are robust to additional complexities including cell division

Our minimal model neglects common features of gene expression such as bursts

in molecule production [28] and additional sources of noise. Therefore we test the

robustness of our findings to these effects here. First, we test the robustness of
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the results to the presence of bursts by replacing the Poisson process governing the

activator production with a bursty production process. Specifically, we assume that

each production event increases the activator molecule count by an integer in [1,∞)

drawn from a geometric distribution with mean b [29, 30]. The limiting case of b = 1

recovers the original Poisson process. The results are shown in Fig. 3.4A for b = 1,

3, and 5 (green solid, cyan dashed, and magenta dashed curves). We see that bursts

in the activator increase the timing variance of the target molecule, as expected,

but that there remain parameters for which the variance is less than that for the

unregulated case, σ2
t x∗/t

2
∗ = 1 (dashed black line). This result shows that even with

bursts, regulation by an accumulating activator is beneficial for timing precision.

We also recognize that whereas the activator can be assumed to start with exactly

zero molecules, it is more realistic for the repressor to start with an initial number

of molecules that has its own variability. We incorporate this additional variability

into the model by performing stochastic simulations [31] of the reactions in Fig. 3.1A

and drawing the initial repressor molecule number from a Poisson distribution across

simulations. The result is shown by the green dashed curve in Fig. 3.4B. We see that

the additional variability gives rise to an increase in the timing variance of the target

molecule, as expected (compare with the green solid curve). However, for most of

the range of degradation rates, including the optimal degradation rate, the variance

remains less than that of the unregulated case, σ2
t x∗/t

2
∗ = 1 (dashed black line). This

result indicates that the benefit of repression is robust to this additional source of

noise.

Then, we test the robustness of the results to our assumptions that the activator

undergoes pure production and the repressor undergoes pure degradation. Specifi-

cally, we introduce a degradation rate µ for the activator, and a production rate k

for the repressor, such that either regulator reaches a steady state of k/µ. The blue

curves in Fig. 3.4A and B show the case where the increasing activator’s steady state

k/µ is twice its regulation threshold K, or the decreasing repressor’s steady state k/µ

is half its regulation threshold K, respectively. In both cases, we see that the timing
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variance of the target molecule increases because the regulator slows down on the

approach to its regulation threshold. Nonetheless, we see that it is still possible for

the variance to be lower than that of the unregulated case. The red curves show the

case where the regulator’s steady state is equal to its regulation threshold. Here we

are approaching the regime in which threshold crossing is an exponentially rare event.

As a result, the variance further increases, to the point where it is above that of the

unregulated case for the full range of parameters shown. These results demonstrate

that the benefit of regulation is robust to more complex regulator dynamics, but only

if the regulator still crosses its regulation threshold at a reasonable mean velocity.

Finally, we test the robustness of the results to a feature exhibited by the exper-

imental mig-1 data: near the end of migration, cell division occurs (Fig. 3.3A, black

data). One daughter cell continues migrating (Fig. 3.3A, dark blue data), while the

other undergoes programmed cell death [5]. To investigate the effects of cell division,

we perform stochastic simulations, and at a given time td we assume that the cell vol-

ume V is reduced by a factor of two. For each simulation, td is drawn from a Gaussian

distribution with mean t̄d and variance σ2
d determined by the data (Fig. 3.3A, black).

At td, we reduce the molecule numbers of both the regulator and the target molecule

assuming symmetric partitioning, such that the molecule number after division is

drawn from a binomial distribution with total number of trials equal to the molecule

number before division and success probability equal to one half. We also reduce the

molecule number threshold K by a factor of two because it is proportional to the cell

volume via K = KdV , where Kd is the dissociation constant.

Fig. 3.4C shows the dynamics of the mean molecule numbers of the activator

(green solid) and its target (blue solid), or the repressor (red dashed) and its target

(blue dashed). We see that the activator, repressor, and target drop in molecule

number at division but that the abruptness of the drop is smoothed by the variability

in the division time. The smoothing is more pronounced in the cases of the repressor

and the target because the molecule numbers of these species are smaller at division.

Thus, for either the activator or repressor mechanism, we see that the experimentally
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observed variability in division time is sufficient to smooth out the dynamics of the

target molecule number, consistent with the experimental data in Fig. 3.3A.

Additionally, we see in Fig. 3.4D that the timing variance of the target molecule

in both the activator and repressor cases is similar to that without division in the

region of the experimental division time. This further indicates that either model

remains sufficient to account for the low experimental timing variance, even with the

experimentally observed cell division. Taken together, the results in Fig. 3.4C and D

show that the key results of the model are robust to the effects of cell division.

3.2 Discussion

We have demonstrated that regulation by an accumulating activator or a dimin-

ishing repressor increases the precision of threshold crossing by a target molecule,

beyond the precision achievable with constitutive expression alone. The increase in

precision results from a tradeoff between reducing the noise of the regulator and re-

ducing the noise of the target molecule itself. Our minimal model is sufficient to

account for both the high degree of nonlinearity and the low degree of noise in the

dynamics of mig-1 in C. elegans neuroblasts, providing evidence for the hypothesis

that these cells use regulated expression to terminate their migration with increased

temporal precision. These results suggest that regulation by a dynamic upstream

species is a simple and generic method of increasing the temporal precision of cellular

behaviors governed by threshold-crossing events.

Why does regulation increase temporal precision, whereas it has been shown

that auto-regulation (feedback) does not [12]? After all, either regulation or pos-

itive feedback can produce an acceleration in molecule number over time, leading

to a steeper threshold crossing. The reason is likely that positive feedback relies

on self-amplification. In addition to amplifying the mean, positive feedback also

amplifies the noise. In contrast, regulation by an external species does not involve

self-amplification. Therefore, the noise increase is not as strong. The target molecule
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certainly inherits noise from the regulator (Eq. 3.6), but the increase in noise does not

outweigh the benefit of the acceleration, as it does for feedback. Future work could

investigate the interplay of regulation and feedback, as well as active degradation

of the target molecule, especially as mig-1 is thought to be subject to feedback and

degradation in addition to external regulation [5, 27].

Our finding that regulation increases temporal precision is related to the more

basic phenomenon that a sequence of ordered events has a lower relative timing error

than a single event [25, 32]. Specifically, if a single event occurs in a time that is

exponentially distributed with a mean τ , then the relative timing error is σ/τ = 1.

For n such events that must occur in sequence, the total completion time follows

a gamma distribution with relative timing error σ/τ = 1/
√
n, which decreases with

increasing n. Thus, at a coarse-grained level, the addition of a regulator can be viewed

as increasing the length of the sequence of threshold-crossing events from one to two,

and thus decreasing the timing error. This perspective suggests that the timing error

could be decreased even further via a cascade of regulators.

Although we have demonstrated that our findings are robust to complexities such

as bursts and cell division (Fig. 3.4), our model neglects additional features of reg-

ulated gene expression such as transcriptional delay. Transcriptional delay has been

shown to play an important role in regulation [33, 34] and to have consequences for

the mean and variance of threshold-crossing times [35]. If a delay were to arise due

to a sequence of stochastic but irreversible steps, then we conjecture that the rela-

tive timing error would decrease with the number of these steps, due to the same

cascading mechanism mentioned in the previous paragraph. However, it has been

shown that if there are reversible steps or cycles within a multistep process, then the

first passage time distribution can approach an exponential as the number of steps

becomes large [32]. In this case the timing statistics would be captured by our simple

model, which assumes single exponentially distributed waiting times. Future work

could explore the effects of transcriptional delay in more detail.
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Finally, we have shown that the mig-1 data from migrating neuroblasts in C.

elegans are quantitatively consistent with either the accumulating activator or dimin-

ishing repressor model, but the data do not distinguish between the two models. A

direct approach to search for a distinction would be to use genetic knockout tech-

niques to screen directly for regulators of mig-1 and their effects on its abundance.

A less direct approach would be to more closely investigate the effects of the cell

division that occurs during migration. For example, we assumed in this study that

the volume fraction is equal to the average molecule number fraction in the surviv-

ing cell after division. However, if they were found to be unequal for either mig-1

or its regulator(s), then the concentrations of these species could undergo an abrupt

change after division, which may have opposing consequences for the activator vs.

the repressor mechanism. Future studies could use these or related approaches to

more concretely identify the role of gene regulation in achieving precise timing during

cellular processes.

3.3 Materials and methods

3.3.1 Computation of the first-passage time statistics

We compute the first-passage time statistics t̄ and σ2
t numerically from the master

equation following [12], generalized to a two-species system. Specifically, the proba-

bility F (t) that the molecule number crosses the threshold x∗ at time t is equal to

the probability Py,x∗−1(t) that there are y regulator molecules (where y ∈ {a, r}) and

x∗−1 target molecules, and that a production reaction occurs with rate f±(y) to bring

the target molecule number up to x∗. Since this event can occur for any regulator

molecule number y, we sum over all y,

F (t) =
Y∑
y=0

f±(y)Py,x∗−1(t), (3.18)
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where Y = {amax, N}. The repressor has a maximum number of moleculesN , whereas

the activator number is unbounded, and therefore we introduce the numerical cutoff

amax = kt∗ +
√

10kt∗. The probability Pyx evolves in time according to the master

equation corresponding to the reactions in Fig. 3.1A,

Ṗax = kPa−1,x + f+(a)Pa,x−1 − [k + f+(a)]Pax, (3.19a)

Ṗrx = k(r + 1)Pr+1,x + f−(r)Pr,x−1 − [kr + f−(r)]Prx. (3.19b)

The moments of Eq. 3.18 are

〈tm〉 =
Y∑
y=0

f±(y)

∫ ∞
0

dt tmPy,x∗−1(t), (3.20)

where t̄ = 〈t〉 and σ2
t = 〈t2〉 − 〈t〉2. Therefore computing t̄ and σ2

t requires solving for

the dynamics of Pyx.

Because Eq. 3.19 is linear in Pyx, it is straightforward to solve by matrix inversion.

We rewrite Pyx as a vector by concatenating its columns, ~P> = [[P00, . . . , PY 0], . . . , [P0,x∗−1, . . . , PY,x∗−1]],

such that Eq. 3.19 becomes ~̇P = M~P , where

M =



M(1)

M(2) M(1)

M(2) M(1)

. . . . . .

M(2) M(1)


. (3.21)

Here, for i, j ∈ {0, . . . , Y }, the x∗ − 1 subdiagonal blocks are the diagonal matrix

M
(2)
ij = f±(i)δij, and the x∗ diagonal blocks are the subdiagonal matrix M

(1)
ij =

−[k(1−δiamax)+f+(i)]δij+kδi−1,j or the superdiagonal matrixM(1)
ij = −[ki+f−(i)]δij+

k(i + 1)δi+1,j for the activator or repressor case, respectively. The δiamax term pre-

vents activator production beyond amax molecules. The final M(1) matrix in Eq. 3.21

contains f± production terms that are not balanced by equal and opposite terms any-
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where in their columns. These terms correspond to the transition from x∗ − 1 to x∗

target molecules, for which there is no reverse transition. Therefore, the state with

x∗ target molecules (and any number of regulator molecules) is an absorbing state

that is outside the state space of ~P [12]. Consequently, probability leaks over time,

and ~P (t→∞) = ~∅. Equivalently, the eigenvalues of M are negative.

The solution of the dynamics above Eq. 3.21 is ~P (t) = exp(Mt)~P (0). Therefore,

Eq. 3.20 becomes 〈tm〉 = ~V >
[∫∞

0
dt tm exp(Mt)

]
~P (0), where ~V > is a length-x∗(Y +1)

row vector consisting of [f±(0), . . . , f±(Y )] preceded by zeros. We solve this equation

via integration by parts [12], noting that the boundary terms vanish because the

eigenvalues of M are negative, to obtain

〈tm〉 = (−1)m+1m!~V >
(
M−1

)m+1 ~P (0). (3.22)

We see that computing t̄ = 〈t〉 and σ2
t = 〈t2〉 − 〈t〉2 requires inverting M, which we

do numerically in Matlab. We initialize ~P as Pax(0) = δa0δx0 or Prx(0) = δrNδx0 for

the activator or repressor case, respectively.

When including cell division, we compute t̄ and σ2
t from 50,000 stochastic simu-

lations [31].

3.3.2 Deterministic dynamics

The dynamics of the mean regulator and target molecule numbers are obtained

by calculating the first moments of Eq. 3.19, ∂tȳ =
∑

yx yṖyx and ∂tx̄ =
∑

yx xṖyx,

where y ∈ {a, r}. For the regulator we obtain ∂tā = k or ∂tr̄ = −µr̄ in the activator

or repressor case, respectively, which are solved by Eqs. 3.3 and 3.4. For the target

molecule we obtain ∂tx̄ = 〈f±(y)〉, which is not solvable because f± is nonlinear

(i.e., the moments do not close). A deterministic analysis conventionally assumes
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〈f±(y)〉 ≈ f±(ȳ), for which the equation becomes solvable by separation of variables.

For example, in the case of H = 1, using Eqs. 3.1-3.4, we obtain

x̄(t) =

αt− (αK/k) log[(kt+K)/K] (activator)

(α/µ) log[(N +Keµt)/(N +K)] (repressor).

(3.23)

Equation 3.23 is plotted in Fig. 3.1C and D.

When including cell division, we compute the mean dynamics from the simulation

trajectories (Fig. 3.4C).

3.3.3 Details of the analytic approximations

To find the global minimum of Eq. 3.8, we differentiate with respect to kt∗ and K

and set the results to zero, giving two equations. kt∗ can be eliminated, leaving one

equation for K,
1

2
log

N

K
= 1− K

N
(3.24)

This equation is transcendental. However, in the limit K � N , we neglect the last

term, which gives Eq. 3.11.

To derive Eq. 3.17, we use

ρ = 1− t0
t∗

= 1− logN/K

µt∗
(3.25)

where the second step follows from r̄(t0) = K according to Eq. 3.4; and, from Eq.

3.14,

〈r〉 =
N

µt∗
(1− e−µt∗) ≈ N

µt∗
(3.26)

where the second step assumes that the repressor is fast-decaying, µt∗ � 1. We use

Eqs. 3.26 and 3.25 to eliminate µt∗ and K from Eq. 3.8 in favor of ρ and 〈r〉,

σ2
t x∗
t2∗
≈ x∗
N

(
eN(1−ρ)/〈r〉 − 1

)〈r〉2
N3

+ ρ2. (3.27)
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For nonlinear dynamics (ρ < 1) we may safely neglect the −1 in Eq. 3.27. Then,

differentiating Eq. 3.27 with respect to N and setting the result to zero, we obtain

N = 3〈r〉/(1− ρ). Inserting this result into Eq. 3.27 produces Eq. 3.17.

3.3.4 Analysis of the experimental data

To estimate the time at which migration terminates in Fig. 3.3A, we refer to [5].

There, the position at which neuroblast migration terminates is measured with respect

to seam cells V1 to V6 in the larva (see Fig. 4D in [5]). In particular, in wild type

larvae, migration terminates between V2 and the midpoint of V2 and V1. This range

corresponds to the magenta region in Fig. 3.3A (see Fig. 4B, upper left panel, in [5]).

Under the assumptions of constant migration speed and equal distance between seam

cells, the horizontal axis in Fig. 3.3A represents time.

To compute ρ for the experimental data in Fig. 3.3A according to Eq. 3.15 we use

a trapezoidal sum. For the choices of x∗ and t∗ described in the text, this produces

the ρ values in Fig. 3.3B.
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Fig. 3.4. Results are robust to additional complexities including
cell division. (A, B) Green solid curves show slices from Fig. 3.2 with
K = 10 while black dashed line shows unregulated limit σ2

t x∗/t
2
∗ = 1.

We see that regulation can reduce timing variance even with bursts in
activator production of mean size b (A, cyan and magenta dashed), initial
Poisson noise in repressor number (B, green dashed), or steady state k/µ
in regulator dynamics (blue) unless it approaches regulation threshold K
(red). (C) Mean dynamics of activator model (solid) and repressor model
(dashed) in which cell division occurs at time t̄d on average. Abrupt re-
ductions in molecule numbers are smoothed by noise in td and by binomial
partitioning of molecules. (D) Timing variance approaches that with no
division (dashed) within experimental division region (gray). In A and
B, parameters are as in Fig. 3.2. In C and D, parameters are x∗ = 15,
〈a〉/x∗ = 〈r〉/x∗ = 10, and H = 3, with kt∗, µt∗, and K set to optimal
values (Fig. 3.2) and t̄d and σd set to experimental values. In all cases, α
is set to ensure that mean threshold crossing time t̄ equals t∗.
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4. TEMPORAL PRECISION OF MOLECULAR EVENTS
WITH REGULATION AND FEEDBACK

Parts of this chapter have been published as S. Gupta, S. Fancher, HC. Korswagen,
A. Mugler (2020), “Temporal precision of molecular events with regulation and feed-
back,” Phys. Rev. E 101, 062420.

4.1 Introduction

Precise timing is crucial for many biological processes including cell division [1–

3], cell differentiation [4], cell migration [5], embryonic development [7, 8], and cell

death [9]. Ultimately the timing of these processes is governed by the timing of

molecular events inside the cell. However, these events are inherently stochastic.

Cells use regulatory networks to reduce this stochasticity, but the effects of particular

regulatory features on timing precision remain poorly understood.

In chapter 3 we demonstrated that the time at which an accumulating molecular

species crosses an abundance threshold is more precise if that species is regulated by

a second species with its own stochastic dynamics [17]. In contrast, it was recently

demonstrated that if the species is instead regulated by itself (feedback), then the

crossing time is less precise [12]. It is difficult to predict in advance the effect of a

particular regulatory feature on timing precision. Moreover, even if the effect of a

regulatory feature is known for specific parameters, a systematic method of determin-

ing whether the effect is generic, or of determining the optimal regulatory function,

is currently lacking.

Feedback cannot be generically harmful to timing precision, as feedback is common

in many important timing processes. In yeast, the cyclin proteins that cross an

abundance threshold to initiate the cell cycle [3] are subject to positive feedback
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[1, 36, 37]. In Caenorhabditis elegans, the mig-1 protein that crosses an abundance

threshold to terminate migration in QR neuroblasts [5] has been found in experiments

on the sister QL lineage to be subject to feedback via Wnt signaling [27]. This raises

the question of why feedback is observed in key timing processes if it has previously

been shown to decrease timing precision.

Here we investigate the combined effect of regulation and feedback on timing pre-

cision. We develop a gradient-descent approach to find the globally optimal regulation

function for a given network topology that minimizes the timing noise. We find that,

despite the fact that feedback generically increases timing noise when it acts alone,

feedback decreases timing noise when it acts in combination with regulation by an

external species. We explain the mechanisms behind this counterintuitive result, de-

rive a generic lower bound on the timing noise, and compare of our results to the

timing of neuroblast migration in C. elegans.

4.2 Results

Consider a molecular species Y that is produced over time and first reaches a

molecule-number threshold y∗ at a particular time t∗ on average (Figure 4.1A). In

what follows we assume that Y can only be produced, not degraded, and that when

regulated, the regulator of Y can only be produced or degraded, not both. This

simplifying assumption limits the possible paths that the system can take through

molecule number space, but the methods we outline below are readily generalized to

species that are both produced and degraded, and we comment on this case in the

Discussion.

Stochasticity in the accumulation process leads to variability in the crossing time

t. The timing noise is given by the variance σ2
t . For unregulated production of Y ,

the time between each production event is exponentially distributed with mean t∗/y∗

and variance (t∗/y∗)
2. Because the production events are independent, the variances
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Fig. 4.1. Feedback increases timing precision in the presence but not ab-
sence of regulation. (A) A species Y crosses a molecule-number threshold
y∗ at mean time t∗ with timing variance σ2

t . (B) Feedback increases the
variance. However, in the presence of regulation by a second species X,
feedback on either (C) Y or (D) X can decrease the variance. Parameters
are Ky = 2.5 in B; α0t∗ = 10, Hx = −0.5, Hxy = −Hy, Kx = 15, Ky = 5,
and Kxy = 6 in C; α0t∗ = 10, Hy = 4, Kx = 10, and Ky = 7.5 in D; and
y∗ = 10 throughout. A is generated by Gillespie simulation [31]; B-D are
generated by solving the master equation numerically [17].
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add, giving a total variance of σ2
t = y∗(t∗/y∗)

2 = t2∗/y∗. Therefore we focus on the

scaled variance σ2
t y∗/t

2
∗, whose value is 1 for unregulated production.

First we investigate the effect of feedback on timing precision using a simple

example: we suppose that the production rate of Y is not a constant but rather is a

simple sigmoidal function of the current number of molecules y,

β(y) = β0{1 + tanh[Hy(y/Ky − 1)]}, (4.1)

where positive (negative) Hy corresponds to positive (negative) feedback, |Hy| is the

maximum steepness, Ky is the molecule number at which β is half-maximal, and β0 is

set to ensure that the average time at which y first reaches y∗ is t∗. We calculate the

variance σ2
t from the master equation by matrix inversion [17]. In Fig. 4.1B we see

that when there is no feedback (Hy = 0), the variance satisfies σ2
t y∗/t

2
∗ = 1, and that

either positive or negative feedback increases the variance. This result is consistent

with previous findings for a species that does not degrade [12], and it has an intuitive

explanation: a sequence of time-ordered stochastic events is most precisely timed

if the mean time for each event to occur is equal, but feedback makes these times

unequal.

Next we investigate the interplay of feedback and regulation by introducing a

second species X that is produced at a constant rate α0. The Y production rate

β(x, y) is now a function of both molecule numbers x and y. We find that if it is

a simple sum β(x, y) = f1(x) + f2(y) or product β(x, y) = f1(x)f2(y) then feedback

continues to generically increase the timing variance, but if we include a coupling term

β(x, y) = f1(x)f2(y)f3(xy) the situation is different. Specifically, Fig. 4.1C shows the

case where

β(x, y) = β0{1 + tanh[Hx(x/Kx − 1)]}

× {1 + tanh[Hy(y/Ky − 1)]}

× {1 + tanh[Hxy(xy/K
2
xy − 1)]}. (4.2)
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We see that with no feedback (Hy = 0) we have σ2
t y∗/t

2
∗ < 1, which demonstrates that

regulation by a second species increases the timing precision as found previously [17].

However, now we also see that with positive feedback (Hy > 0), the variance can

be even lower. Together with Fig. 4.1B, this result implies that although feedback

increases timing noise in the absence of regulation, it can decrease timing noise in the

presence of regulation.

Similarly we investigate the case where the feedback occurs on X, not Y . We take

the production rates of x and y to be

α(x) = α0{1 + tanh[Hx(x/Kx − 1)]}, (4.3)

β(x) = β0{1 + tanh[Hy(x/Ky − 1)]}, (4.4)

respectively. We see in Fig. 4.1D that with negative feedback (Hx < 0) the variance

is lower than with no feedback (Hx = 0), again implying that feedback can reduce

timing noise when coupled to regulation.

To understand this effect, we develop a gradient-descent method to find the op-

timal regulation that minimizes the timing variance. The regulation is specified by

the X and Y production rates α(x, y) and β(x, y), respectively, which each depend

on the molecule numbers x and y in general, but whose dependencies will later be

restricted to consider particular feedback topologies. The probability of first reaching

y = y∗ at time t is P (t) =
∑
{~s} P (t|~s)P (~s), where

P (~s) =
S−1∏
i=0

ri
ki
, (4.5)

P (t|~s) =

(
S−1∏
i=0

∫ ∞
0

dtikie
−kiti

)
δ

(
t−

S−1∑
j=0

tj

)
. (4.6)

In Eq. 4.5, P (~s) is the probability of taking a path ~s from (x0, y0) = (0, 0) to (xS, yS) =

(xS, y∗) for any nonnegative xS, where S is the length of the path. Each step i takes

the system out of state (xi, yi) with rate ki = α(xi, yi) +β(xi, yi) and into a new state
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with probability ri/ki, where the new state is either (xi + 1, yi) with ri = α(xi, yi) or

(xi, yi + 1) with ri = β(xi, yi). In Eq. 4.6, P (t|~s) is the probability that traversing the

given path ~s takes a time t. The first term integrates over all values of each step’s

transition time ti, which is exponentially distributed with rate ki, and the second

term ensures that the sum of these transition times is t. From P (t) we calculate the

moments in section 6.3, of which the first two are

〈t〉 =
∑
{~s}

P (~s)
S−1∑
i=0

1

ki
, (4.7)

〈t2〉 =
∑
{~s}

P (~s)

(S−1∑
i=0

1

k2
i

)
+

(
S−1∑
j=0

1

kj

)2
 . (4.8)

The optimal regulation function minimizes 〈t2〉 at fixed 〈t〉 = t∗. Therefore, defining

a vector ~γ whose components are all components of both the α(x, y) and β(x, y)

matrices, we initialize ~γ to satisfy 〈t〉 = t∗ and update it as

~γ(n+1) = ~γ(n) − ε~u. (4.9)

Here ε� 1, and ~u is such that ~u ·∇γ〈t2〉 is maximized with respect to the constraints

~u · ∇γ〈t〉 = 0 and |u|2 = 1. To summarize this numerical method, we initialize the

rates ~γ, calculate the gradient of the timing variance σ2
t = 〈t2〉 − 〈t〉2 (Eqs. 4.7 and

4.8) with respect to ~γ at each point in state space, and update the rates such that

∇~γσ2
t is maximized while keeping the target condition fixed by ∇~γ〈t〉 = 0. After

many iterations this method converges to the minimum variance.

First we apply this method to the case where X regulates Y with no feedback.

Thus, we fix α = α0 and optimize β(x). Figure 4.2A shows the result, and we see

that the optimal β(x) is an increasing function of x (i.e., X activates Y ). The reason,

clear from the mean dynamics in 4.2B, is that as x increases over time, β(x) increases

over time, which causes y to accelerate. The acceleration allows ȳ to cross y∗ with

a large slope, reducing the uncertainty of the crossing time. We observed this effect
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previously with Hill-function activation [17], but the optimal regulation function was

unknown.

Next we keep α = α0, but we allow feedback on Y and find the optimal β(x, y).

Figure 4.2C shows the result, and we see that the optimal β(x, y) depends on y,

confirming that feedback is beneficial in the presence of regulation. Specifically, we

see that β(x, y) decreases with y (negative feedback) when x is small, and increases

with y (positive feedback) when x is large. These two properties are also exhibited

by Eq. 4.2 with Hx < 0, Hy > 0, and Hxy < 0 as in Fig. 4.1C. The first property

ensures that Y is not prematurely activated at early times when x is small. The

second property provides an additional acceleration of y at late times when x is large.

Thus, X acts as a “timer” for Y , allowing Y to apply self-amplification only at late

times. This has two advantages, as seen in Fig. 4.2D: (i) it increases the slope of ȳ at

crossing, beyond that without feedback; and (ii) it allows the acceleration to begin at

a ȳ value that is already close to y∗, thus reducing trajectory-to-trajectory variability

caused by prolonged self-amplification [12].

Finally we consider the case where feedback acts on X instead of Y . Here, to

provide a reasonable constraint on x(t), we introduce a bound x∗ and restrict α(x)

such that x̄(t) ≤ x∗ over the range 0 ≤ t ≤ t∗. The optimal regulation functions α(x)

and β(x) are shown in Fig. 4.2E. We see that X represses itself and activates Y , and

that both regulation functions have a sharp transition when x = x∗. We see in Fig.

4.2F that the resulting dynamics are sharply kinked.

To understand the sharp nature of the optimal solution in Fig. 4.2E and F, we

investigate our optimization scheme (Eqs. 4.5-4.9) analytically. The analytic version

of Eq. 4.9 is 0 = γi∂γi(〈t2〉 − λ〈t〉), where the Lagrange multiplier λ enforces 〈t〉 = t∗,

and the factor of γi in front enforces γi > 0 (see section 6.3). By inserting Eqs. 4.7

and 4.8 into this condition, we show in section 6.3 that it is satisfied when (i) α and

β are such that all possible paths ~s to reach y = y∗ have the same length S, and (ii)

all transition rates along each of these paths are equal. Each such set of equal-length,

constant-velocity paths is a local optimum, and the global optimum that minimizes
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Fig. 4.2. Optimal regulation functions that minimize timing variance.
(A) Without feedback, X activates Y , (B) allowing ȳ to accelerate before
crossing y∗. (C) With feedback on Y , X acts as a “timer” for Y , allowing
Y to self-repress at early times and self-activate at late times, and (D)
providing further, late-phase acceleration of ȳ. (E) With feedback on X,
it represses itself and activates Y sharply, (F) resulting in kinked dynamics
where x̄ and ȳ growth are separated in time. Parameters are α0t∗ = 7
(A-D), x∗ = 7 (E, F), and y∗ = 10 throughout.
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the timing variance is the set for which (iii) the path length S is as large as possible.

More generally, if only property (ii) is satisfied, we show section that the timing

variance satisfies
σ2
t

t2∗
=

σ2
S

〈S〉2
+

1

〈S〉
, (4.10)

where 〈S〉 and σ2
S are the mean and variance of the path lengths, weighted by the

path probabilities P (~s). Clearly the variance is minimized when σ2
S = 0 and 〈S〉 is as

large as possible, consistent with properties (i) and (iii) above, respectively.

Now we can understand why the the optimal solution in Fig. 4.2E and F looks the

way it does. The sharp nature of the regulation functions ensures that at early times

only x changes, and at late times only y changes, confining the stochastic dynamics

to only one possible path in (x, y) space [property (i)]. The values of α and β, when

they are nonzero, are constant and equal to each other, ensuring that the velocity

along this path is constant [property (ii)]. Finally, both x and y attain their maximal

values x∗ and y∗, ensuring that the path is as long as possible [property (iii)].

Indeed, Fig. 4.3 shows the optimal solutions for all of the networks considered thus

far in terms of these three properties. Specifically, Fig. 4.3A shows the mean dynamics

in (x, y) space; Fig. 4.3B shows the velocity v(t) =
√

(dx̄/dt)2 + (dȳ/dt)2 along this

path, normalized by its time average v̄ = t−1
∗
∫ t∗

0
dt v(t); and Fig. 4.3C shows the

variance σ2
S in the path length across all paths. With only Y and no X (blue), there

is only one possible path (Fig. 4.3A), and therefore σ2
S = 0 (Fig. 4.3C). The optimal

solution has constant velocity along the path (Fig. 4.3B), which is achieved with no

feedback. When X regulates Y (cyan, orange), the mean path extends into the (x,

y) plane (Fig. 4.3A), which increases its length and thus lowers the timing variance.

However, it also makes the velocity non-constant (Fig. 4.3B) and allows for many

possible paths such that σ2
S > 0 (Fig. 4.3C). Only upon allowing X to also regulate

itself (red) does the path become as long as possible (Fig. 4.3A), constant-velocity

(Fig. 4.3B), and unique (Fig. 4.3C).

The minimal values of the timing variance for the networks are shown by the filled

circles in Fig. 4.4A. We see that the single species Y achieves the standard σ2
t y∗/t

2
∗ = 1
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2, or both is required. Parameters as in Fig. 4.2. (B) Mean dynamics and
regulation function (inset) for case when X is degraded. Here α0t∗ = 3.5.

(blue), regulation by X lowers the variance (cyan), feedback on Y lowers it further

(orange), and regulation of X lowers it to the global minimum given by Eq. 4.10 with

σ2
S = 0 and 〈S〉 = x∗+ y∗, namely σ2

t y∗/t
2
∗ = y∗/(x∗+ y∗). Because the results in Fig.

4.4A are minima, it does not matter in the last case whether the regulation of X is

by X itself (red link 1), by Y (red link 2), or both; the optimal regulation functions

will produce the red path in Fig. 4.3 regardless.

Thus far we have only considered the scenario where X is produced over time.

However, X could alternatively be degraded over time [17]. In the cases where X is

unregulated (cyan, orange), this corresponds to replacing its production propensity

α0 (for x→ x+ 1) with a degradation propensity α0x (for x→ x− 1). The resulting

minimal values of the timing variance are shown by the open circles in Fig. 4.4A, and

we see that they are lower than the corresponding values when X is produced over

time (filled circles). The reason, illustrated for the case where X regulates Y in Fig.

4.4B, is that when X is produced over time it increases linearly (Fig. 4.2B dashed),
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whereas when X is degraded over time it decreases exponentially (Fig. 4.4B dashed).

The curvature of the exponential begins to approximate the kinked dynamics of the

globally optimal solution (Fig. 4.2F dashed). Specifically, X is most dynamic at early

times (Fig. 4.4B dashed), and Y is only produced once x drops below a particular

value (Fig. 4.4B inset) allowing it to be most dynamic at late times (Fig. 4.4B solid).

Thus, even without feedback, the nonlinear dynamics of a degraded regulator allow

its target to more closely approach the globally optimal timing precision.

4.3 Experimental observation in QR.p cells in C. elegans

Our collaborators performed experiments on mutants of C. elegans to test our

hypothesis that timing variance decreases in the presence of regulation and feedback.

During C. elegans development a cell called QR.p migrates for specific amount of

time [5]. It has been shown that temporal regulation of QR.p is controlled by ex-

pression of mig-1 through Wnt signaling [5]. The experiments were performed using

CRISPR gene knockout. Through this method we found that the bar-1 gene regulates

the production of mig-1, and mig-1 in turn feeds back on bar-1. We measured the

number of mig-1 mRNA produced by a QR.p cell during migration. Experiments

were performed on three types of populations (Figure 4.5): i) Wild type (WT); ii)

Active, where bar-1 was over-expressed such that the effect of bar-1 on mig-1 was

saturated; and iii) Mutant, where bar-1 was removed. Each data point gathered, cor-

responds to a particular C. elegans individual; thus experiments were performed on

the population to acquire data at various time points (Figure 4.5). We calculate the

variance of stopping times in all cases. We considered that the migration stops when

a threshold of mig-1 expression (y∗) is crossed. We assumed that this threshold can

be anywhere higher than y∗ = 10. We chose the minimum threshold to be 10 because

the data show a clear distinction between low copy number of mig-1 and high copy

number (Figure 4.5A). We calculate variance in stopping times (σ2
t∗y∗/t

2
∗) for each

population (4.5A, B, C). The graphical representation of regulation for each popula-
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Fig. 4.5. mig-1 expression in QR.p cell. The bar graph represent the
distribution of points above the black dashed line. We choose black dashed
line to be at protein number to be 10. (A) mig-1 expression for wild
type population. , (B) mig-1 expression for active population, (C) mig-
1 expression for mutant population, and (D) systematic gene regulation
network of control, active, and mutant.
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tion is shown in Figure 4.5D. For the control group mig-1 expression is regulated by

bar-1, and bar-1 is regulated by mig-1. For the active group bar-1 is overly expressed,

such that it’s effect is saturated on mig-1; hence, no regulation on mig-1. Similarly

for the mutant group bar-1 is absent; therefore no effect on mig-1.
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Fig. 4.6. A) The bar graph represent the distribution of points above the
black dashed line. Black dashed line represent the minimum threshold
for y∗. B) mig-1 expression for wild type population and magenta line is
piece-wise linear fit to WT.

The timing variance for each case is plotted in figure 4.6A. We find that the control

population has the lowest timing variance, lower than the active and mutant groups.

This suggests that the bar-1 regulation on mig-1 reduces the timing variance. We

expect that without any regulation the timing variance should be 1 in these units,

but we see the variance is still less than one in the active and mutant groups. This

suggest that mig-1 production is regulated by other genes in addition to the bar-1.

We further tested the degree to which mig-1 is regulated in the control group. Our

model predicts that for the two gene regulatory network the minimum global timing

variance is when dynamics are sharp (Figure 4.3). We compare this regulation strat-
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egy to control group. We fit the data as a piece-wise linear function. We considered

error in x and y to fit the line. The error function is,

E = (1− γ)
n∑
i=1

(x̄− xi)2 + γ

n∑
i=1

(ȳ − yi)2, (4.11)

where γ is a weight factor for y error, and n is the number of data points. For

γ = 1, Eq. 4.11 reduces to a standard linear regression. We chose to include error

in both terms because the x and y are both measured variables and subjected to

error. We varied γ from 0 to 1 and calculated the fit line, and used the mean of all

fitted lines. We calculated the global minimum timing variance obtained through the

optimal sharp regulation strategy. That is, bar-1 production is constant, and when a

threshold of bar-1 (x∗) is crossed, then mig-1 production starts with a same rate as

the bar-1 production rate. The threshold x∗ can be estimated as the intercept of best

fitted line (Figure 4.6B). Using x∗ and y∗ we calculated the global minimum variance,

y∗/(x∗ + y∗) as discussed below Eq. 4.10. The global minimum variance is plotted

in Figure 4.6A as a magenta line. We see that the control variance is close to the

threshold minimum and within its error bound, propagated from the errors in x∗ and

y∗.

4.4 Discussion

We have developed a gradient-descent approach that provides the optimal reg-

ulation functions for a given network topology that minimize the timing noise of a

threshold-crossing event. The approach has revealed that feedback reduces timing

noise in the presence but not absence of regulation because the combination of the

two increases the number of transitions that must happen sequentially in molecu-

lar state space. More generally, our work suggests a perspective where noise is not

minimized by finding the right network topology, but rather by finding the right

combination of regulation functions that produce a path through state space that is

as long, steady, and unique as possible. We anticipate that this perspective applies
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broadly to biological processes where timing is crucial. Although our work is limited

to two-species networks, whereas most biochemical networks are much larger, our

approach is straightforward to generalize to larger and more complex networks given

sufficient computational power.

Our findings generalize previously known results. It was previously found that

Hill-function autoregulation increases noise [12]. Here, we have shown that in fact,

any autoregulation function increases noise, as it results in unequal production rates

at different points in state space, which is suboptimal. We previously found that

Hill-function regulation by an upstream species reduces noise [17], but we lacked a

procedure to determine whether Hill-function optimization is optimal. Here, we have

computed the optimal regulation function that results in the minimal noise, and we

see that it is not necessarily Hill-like but rather concave-up (Fig. 4.2A).

We have considered networks in which species can be produced or degraded, but

not both. However, species that can be both produced and degraded are ubiquitous

in biochemical networks. We have checked for small system sizes in the case where

X regulates Y without feedback, that adding degradation to either X or Y does not

significantly change the optimal regulation function from that in Fig. 4.2A, but it does

increase the timing variance. The increase in the timing variance makes sense because

degradation introduces a much larger set of possible paths for the molecule numbers

to take through state space, as now one of the species can go down in molecule

number as well as up. Consistent with our results herein, a larger path number

should lead to higher path stochasticity and therefore larger threshold-crossing noise.

This finding also suggests that if the degradation rate is also optimized over, the

optimal degradation rate would be zero, and therefore that our results on theoretical

optimality apply also when degradation is included. We leave a more comprehensive

investigation of simultaneous production and degradation to future work.

We find that timing noise is minimized by following a single deterministic path

through state space, which is likely unrealistic for biochemical reactions. However,

this result is nonetheless useful because it demonstrates that under ideal conditions
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any network will have a fundamental minimum timing variance. Here we provide the

value of that variance for the simple cases of one- and two-species networks. This is

important because it provides a bound to which an actual network may (or may not)

come close, even if that network does not take a single deterministic path through state

space. Moreover, the more realistic examples in Fig. 1 demonstrate that significant

reductions in timing noise are possible due to regulation and feedback even without

the globally optimal regulation functions. We anticipate that our general insights will

serve as guiding predictions for experimental investigations, such as the findings that

in order to increase timing precision species should be only produced or degraded

but not both, and that different species should change molecule number at separate

times.

Our findings suggest that a cellular process where timing precision is important

should be governed by a molecular network with both multistep regulation and feed-

back, particularly one in which every species is subject to regulation as in Fig. 4.4A

(red). An experimental example in which timing precision is particularly well studied

is neuroblast migration in developing C. elegans larvae. Here, the QR neuroblast

produces a protein called mig-1 that crosses an abundance threshold to terminate mi-

gration; overproduction causes undermigration and vice versa [5]. Our collaborators

have discovered that mig-1 is regulated by bar-1. We compared the timing variance

of wild type with active (where bar-1 was over expressed) and mutant (where bar-1

was absent) groups. We discovered that the timing variance is lower for the WT case

compared to other two. The over-expression and no expression of bar-1 reduces the

path length to reach the target, hence increasing the timing variance. Furthermore,

we compared the timing variance of wild type with the globally minimum timing

noise. The noise of the wild type was found to be close to the global minimum.

Finally, our work has connections to other active areas of research and other bio-

logical systems. In principle, confining a stochastic system to a single deterministic

path in state space should come at a large thermodynamic cost. Although we do

not consider this cost here, the connection between noise reduction and energy ex-
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penditure is a rich and active field [38–40], beginning with the seminal example of

kinetic proofreading [41]. Furthermore, our finding that timing precision is maxi-

mized by systems that only move in one direction (i.e., production or degradation

but not both), and whose species progress one at a time, are reminiscent of molecular

motors on filaments. Systems of motors may exhibit these properties mechanically,

via ratcheted motion and steric hinderance, and therefore may be promising examples

of precise biological timers [25,42–44].

4.5 Materials and methods

4.5.1 Calculation of the moments of the first passage time

Using Eqs. 4.5 and 4.6, we write the first passage time distribution as

P (t) =
∑
{~s}

P (~s)P (t|~s)

=
∑
{~s}

(
S−1∏
i=0

ri
ki

)(
S−1∏
j=0

∫ ∞
0

dtjkje
−kjtj

)

× δ

(
t−

S−1∑
`=0

t`

)

=
∑
{~s}

(
S−1∏
i=0

∫ ∞
0

dtirie
−kiti

)
δ

(
t−

S−1∑
j=0

tj

)
. (4.12)
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The nth moment is

〈tn〉 =

∫ ∞
0

dt tnP (t)

=

∫ ∞
0

dt tn
∑
{~s}

(
S−1∏
i=0

∫ ∞
0

dtirie
−kiti

)

× δ

(
t−

S−1∑
j=0

tj

)

=
∑
{~s}

(
S−1∏
i=0

∫ ∞
0

dtirie
−kiti

)(
S−1∑
j=0

tj

)n

. (4.13)

Specifically, the first and second moments are

〈t〉 =
∑
{~s}

(
S−1∏
i=0

∫ ∞
0

dtirie
−kiti

)(
S−1∑
j=0

tj

)

=
∑
{~s}

(
S−1∏
i=0

ri
ki

)
S−1∑
j=0

1

kj

=
∑
{~s}

P (~s)
S−1∑
j=0

1

kj
(4.14)



49

and

〈
t2
〉

=
∑
{~s}

(
S−1∏
i=0

∫ ∞
0

dtirie
−kiti

)(
S−1∑
j=0

tj

)2

=
∑
{~s}

(
S−1∏
i=0

∫ ∞
0

dtirie
−kiti

)

×

(
S−1∑
j=0

t2j +
S−2∑
j=0

S−1∑
`=j+1

2tjt`

)

=
∑
{~s}

(
S−1∏
i=0

ri
ki

)
S−1∑
j=0

S−1∑
`=j

2

kjk`

=
∑
{~s}

(
S−1∏
i=0

ri
ki

)(S−1∑
j=0

1

k2
j

)
+

(
S−1∑
j=0

1

kj

)2
 ,

=
∑
{~s}

P (~s)

(S−1∑
j=0

1

k2
j

)
+

(
S−1∑
j=0

1

kj

)2
 , (4.15)

as in Eqs. 4.7 and 4.8, where the last line in each case recalls Eq. 4.5.

4.5.2 Analytic minimization of timing variance using Lagrange multipli-

ers

To find the minimum variance when the mean is fixed to be t∗, we utilize Lagrange

multipliers. Because the variance is a function of only the first and second moments

and is monotonically increasing with the second moment, finding the minimum of

the variance with a fixed mean is equivalent to finding the minimum of the second

moment with a fixed mean. Thus, the set of r` values which produces the minimum

variance is the set which solves

0 =
∂

∂r`

(〈
t2
〉
− λ 〈t〉

)
(4.16)

for Lagrange multiplier λ.
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However, Eq. 4.16 raises an issue. Assume that x∗ = y∗ = 1. In this case, there

are only three possible rates αxy and βxy, namely α00, β00, and β10. There are also

only two possible paths: ~s1 = [{0, 0} , {0, 1}] and ~s2 = [{0, 0} , {1, 0} , {1, 1}]. Putting

these rates and paths into Eqs. 4.14 and 4.15 yields

〈t〉 =
β00

α00 + β00

1

α00 + β00

+
α00

α00 + β00

β10

β10

(
1

α00 + β00

+
1

β10

)
=

1

α00 + β00

(
1 +

α00

β10

)
(4.17)

and

〈
t2
〉

=
β00

α00 + β00

2

(α00 + β00)2

+
α00

α00 + β00

β10

β10

(
2

(α00 + β00)2

+
2

(α00 + β00) β10

+
2

β2
10

)

=
2

(α00 + β00)2

(
1 +

α00

β10

+
α00 (α00 + β00)

β2
10

)
. (4.18)

By putting Eqs. 4.17 and 4.18 into Eq. 4.16 and solving the resulting system of equa-

tions, one obtains that some rates must be negative or even undefined depending on

the order in which they are solved. Since negative rates are unphysical, we can enforce

positivity by making the substitutions αxy = exp (axy) /t
∗ and βxy = exp (bxy) /t

∗

and finding the minimum variance in (axy, bxy) space rather than (αxy, βxy) space.

This procedure can be done without ever leaving (αxy, βxy) space by noting that

∂/∂a = (∂α/∂a) ∂/∂α = α (∂/∂α) and similarly that ∂/∂b = β (∂/∂β). This allows

Eq. 4.16 to be rewritten as

0 = r`
∂

∂r`

(〈
t2
〉
− λ 〈t〉

)
. (4.19)
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Putting Eqs. 4.17 and 4.18 into Eq. 4.19 yields two possible solutions to the result-

ing equations: [β00, α00, β10] = [1/t∗, 0, β10] with σ2 = t2∗ for any value of β10 or

[β00, α00, β10] = [0, 2/t∗, 2/t∗] with σ2 = t2∗/2. Of important note is the fact that when

α00 = 0 only the ~s1 path is available, while when β00 = 0 only the ~s2 path is available.

Thus, the variance is seen to be extremized when only one possible path is available

and all rates along that path are equal. Additionally, the longer path yields a smaller

variance.

This can be seen to be a simple case of a larger trend. For any possible values

of x∗ and y∗ it is possible to choose a set of reaction rates such that there is only

one possible path through (x, y) space. When this is done, the product terms in Eqs.

4.14 and 4.15 become identically 1 since ri = ki must be true along the one possible

path. All other paths will have ri = 0 for some i and will thus not contribute. This

allows Eq. 4.19 to be easily calculated for any r` that is in the single possible path,

0 = r`
∂

∂r`

(S−1∑
i=0

1

r2
i

)
+

(
S−1∑
i=0

1

ri

)2

− λ

(
S−1∑
i=0

1

ri

)
=
λ

r`
− 2

r2
`

− 2

r`

(
S−1∑
i=0

1

ri

)
(4.20)

Eq. 4.20 is true for all r` along the single path if and only if all r` along that path

have the same value, which, from the restriction that the mean first passage time

must be t∗ and Eq. 4.14, means r` = S/t∗. Putting these values back into Eq. 4.15

then allows the variance to be simply calculated to be σ2 = t∗2/S.

Eq. 4.19 must hold for all off-path reactions as well. This can be seen to be true by

noting that for all other paths at least one ri must be 0 in the product term. If ` 6= i

this fact is not changed and that path will still have 0 contribution. If ` = i then the

r` in front of the derivative operator will still force that path to have 0 contribution

since no ki can be 0. Similarly, if r` is not a reaction that occurs at any state along

the one possible path then the derivative will cause it to vanish since the contribution

from the one possible path does not depend on rates that exist in other states, while
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if r` is a 0 rate that exists at a state in the one possible path then the factor of r`

in front of the derivative will cause the whole expression to vanish. Thus, choosing a

set of reaction rates such that there is a single possible path and all rates along that

path are equal is a solution to Eq. 4.19 for all r`. Additionally, since σ2 = t∗2/S, the

longer that path is the smaller the variance will be.

4.5.3 Derivation of the lower bound on timing variance

If all rates are the same, ki = k, then Eqs. 4.14 and 4.15 become

〈t〉 =
∑
{~s}

P (~s)
S

k
=
〈S〉
k

(4.21)

and 〈
t2
〉

=
∑
{~s}

P (~s)

(
S

k2
+
S2

k2

)
=
〈S〉
k2

+
〈S2〉
k2

. (4.22)

We then have

σ2
t

〈t〉2
=
〈t2〉 − 〈t〉2

〈t〉2

=
k2

〈S〉2

(
〈S〉
k2

+
〈S2〉
k2
− 〈S〉

2

k2

)

=
1

〈S〉
+

σ2
S

〈S〉2
, (4.23)

as in Eq. 4.10 of the main text. Eq. 4.23 implies that the system does not need to be

restricted to only one path, but rather to any set of paths of the same length, Then,

σ2
S = 0 still, and a local minimum in the variance is still obtained.

We summarize the results of this and the preceding appendix by establishing three

rules which state that the variance in first passage time is minimized when:

1. All possible paths have the same length,
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2. The rate at which the system moves through state space is as constant as

possible, and

3. The path length through state space is maximized.
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5. TERMINATION OF QR.P CELL MIGRATION

This chapter has been adapted from C. Dubois*, S. Gupta*, M.A. Felix, A. Mugler,
“Sensitivity to perturbations of a cell migration under temporal regulation,” bioRxiv
2020.07.21.213710; under review in Development (* equal contributors)

Cell migration is a key process during the development of many animal tissues.

The direction of migration, the signal transduction and the cytoskeletal dynamics

behind the movement has been widely studied [45–52]. However, little is known

about the termination of migration, although it is obviously of key importance for

final cell and organ position [53–55]. Termination of migration has been thought to

be spatially triggered by homogeneous concentration of guiding cues [56], adhesion

to a specific target [57] and/or physical barriers [55, 58]. However, recent studies

have shown that the termination of migration is due to temporal cues in some cell

types [5]. The occurrence of cell migration begs the question of the degree of precision

in the final cell position. Most studies have been focused on the precision of the final

position due to genetic effects or experimental perturbations [46,55]. Here, we study

the final position of QR.p cells subjected to natural genetic variation. We explain the

termination point of QR.p cells by considering temporal precision in the migration of

QR.p cells.

The QR neuroblast is a cell that migrates a long distance from the posterior to

a more anterior position during first larval stage of the C. elegans. Three rounds of

cell division take place during the migration [59]. The progeny are named according

to their anterior or posterior position at each successive cytokinesis: QR.p is the

posterior daughter of QR, and QR.pa the anterior daughter of QR.p. Finally, the

daughter cells of QR.pa, QR.paa and QR.pap (hence after called QR.pax), acquire

a neuronal identity [60]. The posterior-to-anterior migration of the QR.pa lineage

stops upon expression of the Wnt receptor mig-1 [5]. The expression of mig-1 in
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QR.pa is not induced by the cell reaching a certain position in the body; rather, it

responds to temporal regulation. Indeed, preventing QR migration or increasing its

speed does not alter the timing of mig-1 expression [5]. After QR.pa stops migrating,

the daughter cells of QR.pa, called QR.paa and QR.pap (hence after called QR.pax)

separate in a dorsoventral direction while crossing each other in an antero-posterior

direction [61,62]; they then differentiate without further change in cell body position

(Figure 5.1).
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Fig. 5.1. QR.p neuroblast migration during the L1 stage. A) Nomarski
micrograph of a L1 larva, where QR.pap and QR.paa have reached their
final position. The relevant cells are outlined. B) Illustration of QR.p
neuroblast migration during the L1 stage showing the final position of
QR.paa and QR.pap and the relative scale used in scoring their position.
This relative scale from 0 to 27 was constructed relative to the seam cells,
as shown here.

Given the temporal regulation of mig-1 expression and of the migration endpoint,

a change in L1 larva body size should lead to a shift in the final cell position relative to

other landmarks along the antero-posterior axis, provided that cell migration occurs
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at the same speed in C. elegans of different body sizes. The expectation is that QR.pa

stops in a more posterior position relatively to body landmarks in longer C. elegans.

To assess the effect of body size on the relative position of QR.pax, we developed a

mathematical model of the expected relationship between body size and QR.pax final

position, while accounting for larval growth during cell migration. Our collaborator

used different body size mutants in the reference genetic background N2 to confirm

the hypothesis.

5.1 Results

The cessation of QR.pa migration relies on the timing of expression of mig-1 and

not the position of the cell in C. elegans [5]. From this observation, we predicted that

the body size affects QR.pax final position: in a longer body, the cell should stop at

the same time, i.e. at a more posterior position. Conversely, the cell should stop at

a more anterior position in a shorter body (Figure 5.2A, left). To make this intuition

quantitative, we develop a mathematical model for the no compensation hypothesis.

5.1.1 Mathematical model for no compensation hypothesis

For the no compensation model, we assume that the migration velocity is constant

across all mutants. We treat the dynamics of the QR cell lineage as one dimensional

within a growing larva. Taking the pharynx to be stationary at the origin x = 0 and

rectum to moving away with constant velocity u due to growth, the length of the

pharynx-to-rectum region evolves in time according to

`(t) = `0 + ut, (5.1)

where `0 is the length at hatching (t = 0). The dynamics of the cell position x are

dx

dt
= −v(t) +

x

`(t)
u, (5.2)
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where the first term is the leftward velocity of the cell, and the second term is an

effective rightward velocity due to the growth. In the second term we enforce uniform

expansion of the larva during growth, such that intermediate points move according

to the fraction of the distance to the origin. We assume that the cell begins migrating

at a constant velocity v0 at a time t = τ after hatching and stops migrating at time

t = T ,

v(t) =


0, if t < τ

T, if t ≤ τ ≤ T

0, if t > T

(5.3)

Integrating Eq. 5.2 gives

x(t) =


`(t)x0

l0
, if t < τ

`(t)
[
x0
l0
− v0

u
log
(
`(t)
`(τ)

)]
, if t ≤ τ ≤ T

`(t)
[
x0
l0
− v0

u
log
(
`(T )
`(τ)

)]
, if t > T

(5.4)

where x0 is the initial position of the cell. The relative position on the semi-discrete

scale is p = Nx/`, where N = 27 (Figure 5.1B). Inserting Eq. 5.4, we have

p(t) =


p0, if t < τ

p0 − Nv0
u

log
(
`(t)
`(τ)

)
, if t ≤ τ ≤ T

p0 − Nv0
u

log
(
`(T )
`(τ)

)
, if t > T

(5.5)

where p0 = 19 is the initial position of the cell (Figure 5.1B). We take u = (35 µm)/(6 hours) =

5.6 µm/hr (Figure 5.3A) (every mutant grows approximately 35 µm in 6h, from the

experiments), and τ = 2 hr and T = 8 hr from the literature [59,63,64], leaving only

v0 as a fit parameter. Figure 5.2C (red curve) shows p versus `0 from Eq. 5.5 (t > T )

with best-fit value v0 = 11.6 µm/hr. Our collaborators measured the final position

of QR.p, and we compare with our hypothesis. We see that the red curve even with

best fit does not agree with the data. Without body size compensation, the empirical
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measurements show a smaller effect of body size, indicating the presence of a partial

compensation mechanism.

We investigated two different scenarios to decipher the relationship between body

size and QR.pax final position in the context of partial compensation: an adaptive

QR.p migration or an adaptive QR.p cell velocity which is positively related to the

body size. In the first case, given that the temporal regulation of mig-1 expression

occurs at the end of the migration the relative position of QR.p division should

be similar between long and short animals. Our experimental measurements on final

position of QR.p does not support this mechanism (Figure 5.3B); the QR.p position is

more anterior in small animals. Hence, we use adaptive migration velocity. Therefore,

we adjust our model for partial compensation.

5.1.2 Mathematical model for partial compensation hypothesis

For the partial compensation model, we used Eq. 5.2 to infer the cell velocity

from measurements of x and ` at two time points t1 = 3 hr and t2 = 6 hr. Calling

x(t1) = x1, x(t2) = x2, `(t1) = `1, and `(t2) = `2 for short, and recognizing that both

t1 and t2 fall between τ and T , we have from Eq. 5.4,

x1

`1

=
x0

`0

− v0

u
log

(
`1

`(τ)

)
, (5.6)

x2

`2

=
x0

`0

− v0

u
log

(
`2

`(τ)

)
, (5.7)

at each point. Subtracting Eq. 5.7 from Eq. 5.6 gives

x1

`1

− x2

`2

=
v0

u
log

(
`2

`1

)
. (5.8)
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Fig. 5.2. Sensitivity of QR.pax position to body size. A) Schematics
of the relative position of QR.pax in a long versus a short animal in the
absence of body size compensation (left), with full compensation (right) or
with a partial compensation (middle). B) Relationship between QR.pax
final position and Pharynx-to-Rectum distance at hatching relationship
in a subset of the panel. Orange and green dots represent one round of
subsampling of the data. Black dots and error bars represent the mean and
confidence intervals (CI 95%) from the data for each genotype. The black
line represents the regression line from the data. The grey area represents
regression lines after each iteration of subsampling. C) Mathematical
model of the relationship between QR.pax final position and Pharynx-to-
Rectum distance assuming full body size compensation, no compensation
(with one fit parameter, cell velocity), or partial compensation (with no
fit parameters).
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Because growth is linear in time (Eq. 5.1), we have u = (`2 − `1)/(t2 − t1). Inserting

this expression into Eq. 5.8 and solving for v0 gives

v0 =

(
x1

`1

− x2

`2

)
`2 − `1

(t2 − t1) log(`2/`1)
(5.9)

Eq. 5.9 was used to calculate the cell velocities in the lon-1 (x1 = 97.9 µm, x2 =

73.5 µm, `1 = 160.1 µm, `2 = 195.4 µm) and sma-1 (x1 = 69.8 µm, x2 = 46.1 µm,

`1 = 103.2 µm, `2 = 110.9 µm) mutants, giving v0 = 13.9 µm/hr and v0 = 9.3 µm/hr,

respectively (Figure 5.3B). Assuming a linear relationship between velocity and body

size,

v0 = m`2 + b, (5.10)

the two values of v0 and `2 imply m = 0.054 hr−1 and b = 3.3 µm/hr. Recognize that

`2 = `0 + ut2, Eq. 5.10 becomes

v0 = m(`0 + ut2) + b, (5.11)

with ut2 = 35 µm (Figure 5.3A). Figure 5.2C (purple curve) shows p versus `0 from

Eq. 5.5 (t < T ) with Eq. 5.11 inserted for v0.

In this scenario, we assumed that the cell migrates faster in long animals. Based

on measurements of cell position at two time points during migration (t = 3h and

t = 6h after hatching) and the inference of the cell velocity through Eq. 5.9. We

found that the migration speed of QR lineage from 3h to 6h after hatching was higher

in lon-1 (13.9 µm/hr) compared to small mutant sma-1 (9.3 µm/hr) (Figure 5.3B).

These results are consistent with the partial compensation mechanism of body size

acting on cell velocity. Incorporating these data into the model gives good agreement

with the measurement using no free parameters (Figure 5.2C, purple curve).
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Fig. 5.3. (A) Relationships between pharynx-to-rectum (P-to-R) distance
at 0 and 6h after hatching in N2 (green), size mutants (pink). The black
line represents the regression line from the data. (B) Absolute distances
between the rectum, QR cell* and the pharynx 3h and 6h after hatching
in lon-1; ayIs9 and ayIs9 sma-1 animals. At 3h QR* is either QR or QR.p
in some animals, at 6h QR* is either QR.p division or QR.pa in lon-1;
ayIs9 and mostly QR.p in ayIs9 sma-1.

5.2 Discussion

We observed that cells migrate farther, relative to the body size, when the body

size is small, and vice versa. This observation is qualitatively consistent with the fact

that these cells stop after a certain amount of time: if the speed is constant, they will

migrate a constant distance, which will be larger relative to a smaller body. However,

quantitatively, the degree of this effect was observed to be less than predicted by the

model, even for the best-fit value of the constant speed. We therefore hypothesized

that partial compensation may be acting through a change in cell speed as a function

of body size, i.e. if QR and its progeny migrate faster at larger body size. To test

this hypothesis, we measured the speed in sma-1 versus lon-1 mutants and using the

model, we found that partial compensation of body size did operate through a change
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in cell speed. The improved model provided a quantitatively accurate description of

the measurements. Moreover, given the known inputs (cell start position, cell start

and stop time, cell velocity in two mutants, and larval growth speed), the improved

model succeeded with no fit parameters.

Our mathematical model is minimal in its construction yet quantitatively accounts

for the observation. Some simplifying assumption are supported by the data, for

example the observation that all larva, independent of mutant strain, grow a constant

amount in 6 hours. We have checked other assumption explicitly; for example, we find

that the results are negligibly changed if the cell accelerates and decelerates instead

of instantaneously starting and stopping it’s migration. This result also suggests that

our result would be robust to details such as temporal variation in cell speed or pause

due to cell division.

A possible mechanism of cell speed dependence on body size could be the following.

First, migration speed could be increased at larger cell size. Nonetheless, evidence

from literature tends to associate a negative correlation between cell size and cell

velocity in vitro [65, 66]. Second, body size could affect extracellular matrix density,

such that larger cells secrete a less tight matrix, resulting in faster net migration

speed, as in the emb-9 matrix collagen mutant [5, 67]. Finally, body size could affect

the properties of the Wnt gradient influencing QR migration; this could operate if for

instance a larger body size resulted in stronger Wnt concentration at a given relative

position, resulting in faster cell speed [5].
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6. TRAVELING WAVE DETECTION BY SINGLE-CELLED
ORGANISMS

Previous projects investigated cell migration due to temporal regulation. However,

the problem of cell migration is very common in biology. Cells also migrate in response

to spatially heterogeneous cues from the surrounding environment. Chemotaxis is the

migration of cells due to a chemical gradient of a chemoattractant. Cell migration

due to spatial cues plays an important role in many biological processes including

embryogenesis, neural patterning, and tumor dissemination [20–22, 68]. Cell migra-

tion due to a static gradient of chemoattractant is well understood [69]. However,

natural chemical gradients to which cells respond are often dynamic, with both spa-

tial and temporal components [70,71]. Therefore chemotaxis in natural environments

often requires integration of temporal and spatial information. One such example is

the self-organized chemoattractant field arising during the development of the social

amoeba Dictyostelium discoideum. Here, nondissipating waves of chemoattractant

travel outward from an aggregation center and provide long-range cues to direct the

migration of cells toward the wave source. If cells only sense the spatial cues when

the traveling wave hits the front of the cell, the cell will move forward, and when

the wave hits the back of the cell, it will reverse the direction, resulting neutral

movement. Cells must integrate temporal information to sense the direction of the

wave and thereby overcome neutral movement. In one experiment using spatially

uniform concentrations of chemoattractant, neutrophils cells were observed to main-

tain their polarity when the concentration was increasing, but reversed polarity when

the concentration was decreasing [72]. In another study, Dictyostelium exhibited a

chemokinetic response to temporal oscillation of chemoattractant [73,74]. It has also

been shown that Dictyostelium moves towards the direction of cAMP wave source,

and reverses its direction for longer wave period [75]. Despite substantial evidence for
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this pattern of behavior, we do not understand the mechanism for encoding temporal

and spatial information.

6.1 Mathematical model for traveling wave sensing

We hypothesize that cells sense the direction of incoming traveling waves using

spatial and temporal information through a system of inhibitors. We assume the

signaling wave is traveling from left to right in one dimension (Figure 6.1). When the

wave encounters receptors on the surface of cell, the receptors activate. Upon acti-

vation of a sufficient number of receptors, we assume the receptors release inhibitors.

Inhibitors are free to diffuse inside the cell. Once inhibitors reach the right side of

the cell, inhibitors deactivate the receptors on the right hence no activation of the

right side receptors through the wave. This mechanism encodes the direction of the

traveling wave.

Fig. 6.1. The signaling wave traveling towards the cell. Cell has diameter
a and it is divided in two parts left (L) and right (R), each parts of cell
surface has N receptors. m Receptors are needed to activate to release
the inhibitors on left side of cell. m′ is the receptors activated by signaling
wave on the right side before inhibitor diffuses to right side.

First we consider a simplified model by using a deterministic approach to demon-

strate wave detection by the cell. Later we consider a general class of traveling wave

and use a stochastic approach. We limit our study to a one dimensional system for

simplicity; however, the model can be extended to three dimensions.
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We consider a step wave moving to the right with a velocity v. The wave can be

described as,

φ(x, t) =

1, if x ≤ vt

0, otherwise
(6.1)

We assume that there are N receptors on each side of the cell. Receptors release

inhibitors when m receptors are activated. The probability distribution of the time

for any one receptor to activate is exponentially distributed,

P1 = ke−kt, (6.2)

where k = k0φ(x, t) is the activation rate for each receptors. We can write the

probability distribution for m receptors getting activated out of N by considering

there are
(
N
m

)
possibilities [76],

Pm|N(t) =

(
N

m

)
mP1(t)

(∫ t

0

dt′P1(t′)

)m−1(
1−

∫ t

0

dt′P1(t′)

)N−m
(6.3)

Thus the mean time tm|N for m receptors to be activated out of N total receptors can

be calculated as
∫
tPm|N(t). Integrating over all time we get,

t̄m|N =

(
N

m

)
m

k0

m−1∑
l=0

(−1)l

(N −m+ l + 1)2
(6.4)

We assume at t = 0 the wave is at the left end of the cell and that it takes tm|N

time to activate m receptors. Inhibitors are released in the cell once m receptors are

activated. Inhibitors are free to diffuse inside the cell. The distribution of times for

diffusing molecules to diffuse to the right side with a hard boundary can be described

as follows [77],

PD(t|a) =
∞∑
n=0

(−1)n
(2n+ 1)πD

a2
e−(n+1/2)2π2Dt/a2 , (6.5)
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where a is the diameter of the cell and D is the diffusion constant. The mean time

for inhibitors to diffuse to the right end of the cell can be calculated using Eq. 6.5

and is found to be tD = a2/2D. After inhibitors reach the right side, they deactivate

receptors on the right side from further activation from wave. We calculate the

number of right-side receptors activated by the wave m′ before inhibitors reach the

right side. The time taken by the wave to reach right side is tw = a/v. The wave

has t̄ = tm|N + tD − tw time to activate the receptors. Each receptor has ke−kt

probability to activate. Therefore, the number of receptors, m′ activated in time t̄

can be calculated as,

m′ = N

∫ t̄

0

dtke−kt (6.6)

If the wave reaches the right end after the inhibitors arrive, inhibitors will deac-

tivate all receptors on right side in this case, hence m′ = 0. By solving Eq. 6.6 we

get,

m′ =

N
(

1− e−kt̄−(
τ1
2
−τ2)
)
, if kt̄ ≥ −

(
τ1
2
− τ2

)
0, otherwise

(6.7)

where τ1 = ka2/D, and τ2 = ka/v are dimensionless parameters. We calculate the

gradient of activated receptors as (m − m′)/N . This gradient estimates the wave

direction memory. For a large gradient, the cell is able to detect the wave direction

precisely because of a large difference in activated receptors between the left and right

side of the cell. Figure 6.2A (cyan line) plots the gradient for varying m for τ1 = 1

and τ2 = 1. We see that the gradient has an optimum. This optimum occurs at

the point when the wave and inhibitors reach at right side at the same time. If the

wave reaches earlier than the inhibitors than it activates receptors on right side hence

reducing the gradient. However, if the wave reaches after the inhibitors then having a

large m increases the gradient. We calculated the location of optimum m∗/N and its

value ∆m∗/N for the range of τ1 and τ2 (figure 6.2B, C). We see a boundary where

m∗ is 1. This boundary represents the trade-off line for the time at which inhibitors

and the wave reach the right side.
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We further study more a generalized system by considering the signaling wave to

be a smooth traveling wave. A traveling wave can be described by analytic solution

of the Fisher-Kolmogorov equation [78]. We assume that the wave has a finite width

w (as opposed to the step function case where w = 0). The analytic solution for

Fisher-Kolmogorov equation is [78],

φ(x, t) =
1

(1 + exp((x− vt)/w))2
, (6.8)

hence the activation rate for any receptors is time dependent k(x, t) = k0φ(x, t). We

derive the time distribution for the next reaction happening in section 6.3. The proba-

bility for any one receptor getting activated is given by P1(x, t) = k(x, t)e−k0
∫ t
−∞ dt′φ(x,t′).
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We use Eq. 6.3 to calculate Pm|N(x, t). To include the stochastic behavior of recep-

tor activation and diffusion of inhibitors we perform a convolution of the probability

distribution instead of using the mean time. We write the probability distribution of

time for inhibitors reaching at the right side of the cell as,

PI(t) =

∫ t

−∞
dt′Pm|N(t′)PD(t− t′), (6.9)

where t′ is a instance of time when m receptors activate and t − t′ is the time left

for inhibitors to reach at right side. On the right side of the cell, the probability of

any one receptor getting activated in time t can be calculated as
∫ t
−∞ dt

′P1(t′|x = a)

. Hence total number of receptors activated before the wave reaches is,

m′ = N

∫ ∞
−∞

dt(1− e−k0f(t−a/v))PI(t) (6.10)

where f(x, t) =
∫ t
−∞ dt

′φ(x, t′). Integrating φ(x, t) we get,

k0f(x, t) = `τ2

[
1

1 + e
− x
w

+ u
`τ2

+ log
(

1 + e
− x
w

+ u
`τ2

)
− 1

]
(6.11)

where u = k0t and ` = w/a are dimensionless time and length respectively. We

solve Eq. 6.10 numerically and calculate the gradient for activated receptors. Figure

6.2A (magenta) plots the gradient against m/N for dimensionless parameter l = 0

(step wave). We see that the optimum persists for stochastic solution. The reason

for this optimum is due to competition between the wave reaching the right end and

inhibitors reaching the right end. By tuning when to release inhibitors the cell can

maximize the precision by which it can sense the direction. However as the width of

the wave increases, the optimum starts to disappear (Figure 6.2D). For higher width

of wave the optimal m is increasing. This suggests a cell can sense better if it releases

inhibitors at a later time. The reason is due to flat nature of wave. If the wave is

smoothed, both ends of the cell are sensing the wave approximately at the same time
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and with the same intensity. Hence the directional information of the wave is being

lost.

6.2 Discussion

We have hypothesized a mechanism for a cell to detect the direction of a nutrient

traveling wave. Our model is minimal but presents a strong hypothesis for wave

sensing. The mechanism by which cells sense the direction requires the integration

of spatial and temporal information. Cells use a system of receptors and inhibitors

to encode the direction of the wave. Cells can maximize the direction sensing by

controlling the time to release the inhibitors. Optimal time for the cell to release

inhibitors is such that inhibitors and the wave reach the right side at the same time.

Future works will be required to further validate our mechanism. We plan to extend

our study by including noise in the traveling wave, as traveling waves are subjected

to stochastic fluctuations.

6.3 Materials and methods

6.3.1 Calculation of the probability distribution for the next reaction

The probability of a next reaction happening at time t for a given reaction rate k

can be derived as follows:

Assuming we divide time t in small sub-intervals of length ∆t, we write the probability

of a reaction at time t as having no reaction in first n sub-intervals and the reaction

happening in next sub-interval,

P (t)∆t = (1− k∆t)nk∆t (6.12)

where n = ∆t
n
. The first part of the right side represents the probability that

the reaction does not happen in n sub-intervals, and second part represents that the
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reaction happens in next sub-interval. Using the exponential approximation we can

write equation 6.12 as,

P (t) = ke−kt (6.13)

For a traveling wave, the reaction rate k is time dependent. We assume the time

dependent reaction rate can be described by,

k(t) = k0
1

(1 + exp((x− vt)/w))2 (6.14)

Writing the probability of the reaction happening at time t by dividing the time

in small sub-intervals ∆t,

P (t)∆t = (1− k1∆t)(1− k2∆t).....(1− kn∆t)k(n+1)∆t (6.15)

Taking the log of both sides,

logP (t)∆t = log(1− k1∆t) + log(1− k2∆t)....+ log(1− kn∆t) + log k(n+1)∆t (6.16)

Using Taylor’s approximation,

logP (t)∆t = −k1∆t− k2∆t....− kn∆t+ log k(n+1)∆t (6.17)

logP (t)∆t = −∆t
n∑
i=1

ki + log k(n+1)∆t (6.18)

P (t) = kn+1e
−∆t

∑n
i=1 ki (6.19)

Note that for ki = k we get the exponential time distribution. Solving for the expo-

nential part,

f = −∆t
n∑
i=1

ki (6.20)
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f = −∆t
n∑
i=1

k0
1

(1 + exp((x− vi∆t)/w))2 (6.21)

For limit the ∆t→ 0, n→∞. Hence we convert
∑

i →
∫
di

f = −k0∆t

∫ i=t/∆t

i=0

di
1

(1 + exp((x− vi∆t)/w))2 (6.22)

Substituting i∆t→ t′, we obtain the final result.

f = −k0∆t

∫ t

t′=0

dt′
1

(1 + exp((x− vt′)/w))2 . (6.23)
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