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ABSTRACT 

Atomic force microscopy (AFM) is widely used to study material properties and domain 

heterogeneity of polymers. In both quasi-static force spectroscopy and dynamic AFM, challenging 

complexities such as the presence of different effective tip-surface forces, surface dynamics, and 

material viscoelasticity can occur on polymer samples. Many models that attempt to link 

experimental observables to contact mechanics fail to rigorously account for these complexities. 

This may lead to inaccurate and unreliable predictions, especially when examining soft polymers. 

Therefore, having access to rigorous models that can facilitate the understanding of the underlying 

phenomena during tip-surface interaction, explain the observations, and make reliable and accurate 

predictions, is of great interest. Among the previously developed models, Attard et al. proposed a 

novel non-Hertzian-based model that has a versatile ability to systematically incorporate different 

linear viscoelasticity constitutive models and surface adhesive forces. However, the 

implementation of Attard’s model into the AFM framework is challenging. 

In a series of studies, we improve the computational speed and stability of Attard’s 

viscoelastic contact model and embed it into an AFM framework by proposing algorithms for three 

AFM operational modes: tapping mode, bimodal, and peak force tapping. For each mode, the 

results are successfully verified/validated against other reliable AFM codes, FEM simulations, and 

experiments. The algorithms’ predictions illustrate how viscoelasticity and surface adhesive 

hysteresis of polymeric samples is reflected in AFM observables. However, since Attard’s model 

does not lead to a closed-form solution for tip-surface interaction force, using that to quantify the 

surface mechanical properties based on the AFM observables is not straightforward. Therefore, 

we utilize the data analytics-based approaches such as linear regression and machine learning 

algorithms to enable the material viscoelasticity and adhesive parameters estimation based on the 

provided instrument observables.  

The set of results reported in this thesis improves the current knowledge about complex 

phenomena that occur during tip-surface interactions, especially on soft-viscoelastic-adhesive 

polymers. The introduced “improved Attard’s model” fulfills the need for a continuum mechanics 

viscoelasticity contact model that rigorously captures the complexities of such samples. The 

viscoelasticity contact model and the proposed inverse solution algorithms in this thesis facilitate 
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quantitative measurement and discrimination of the surface adhesive and viscoelastic properties 

based on the acquired nanoscale AFM maps of polymeric samples.  
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1. INTRODUCTION 

Atomic force microscopy (AFM) techniques are suitable tools to characterize nanoscale 

mechanical properties of surfaces such as elasticity, plasticity, failure, adhesion, friction, and wear. 

However, accurately nanoscale mapping of the mechanical properties of viscoelastic/adhesive 

surfaces of polymers and biological samples using AFM is challenging. Due to the wide range of 

the viscoelastic substances and their broad applications, their nanoscale mechanical properties 

characterization and consequently their resultant microscale behavior is of widespread importance. 

The encountered hurdles in accurately relating AFM observables to mechanical properties of this 

category of materials is mostly due to the complexity of their mechanical response in comparison 

with elastic materials. The simplistic ad hoc viscoelastic contact models, which are commonly 

used to connect AFM observables to mechanical properties of viscoelastic materials, lack the 

required reliability and accuracy [1]. Therefore, a fast first-principles viscoelastic contact 

mechanics model that enables rigorous prediction and interpretation of AFM images on soft, 

adhesive, and viscoelastic materials is needed. In this thesis, we first critically compare the 

proposed viscoelastic contact models in terms of their reliability and inclusivity of the effective 

parameters in contact phenomena on viscoelastic/adhesive samples. Next, we improve upon the 

viscoelastic contact model proposed by Attard [2] as arguably the most advanced contact 

mechanics model for such samples. Finally, a set of algorithms are developed to implement 

Attard’s model in the AFM framework to predict and interpret the tip-surface interactions on 

viscoelastic/adhesive samples in selected AFM modes. For each of the assessed AFM modalities 

in this thesis, we complement the computational predictions by applying the developed algorithms 

to acquired AFM experimental data. 

1.1 Atomic force microscopy 

Scanning tunneling microscopy (STM) [3], which earned its inventors the 1986 Nobel 

Prize in Physics, can achieve atomic resolution when imaging conductive samples. In STM, a 

sharp conductive tip is placed in the proximity of a conducting surface. A bias voltage is applied 

to the probe-sample ensemble and the transmitted tunneling current is used to estimate the tip-

surface distance. High-resolution STM facilitates imaging and manipulation of atoms [4]. 
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Furthermore, STM can reconstruct the topography of a surface of a conductive sample by rastering 

the tip over the sample and using a feedback loop to maintain a constant tunneling current. 

Although STM made great breakthroughs in atomic-level resolution imaging [5], a major 

limitation is that it can be used only for electrically conductive samples. To overcome this, a new 

instrument called “Atomic Force Microscopy” (AFM)[6] was introduced by Binnig et al. in 1986.  

In AFM, instead of tunneling current, the interaction force between the tip and surface is 

measured and interpreted. In contrast with STM, AFM can image both conductive and non-

conductive materials. The interaction force sensed by the tip is measured through the observed 

deflection of a microcantilever on which the tip is mounted. The first AFM used an STM probe to 

measure the defection of the microcantilever. Since these initial measurements, AFM has made 

significant advances in design and methodology enabling it to grow into a popular multifunctional 

tool for nanoscale measurements. Other than the surface topography, AFM now can provide 

information about surface properties such as: mechanical, electrical, magnetic, chemical, and 

thermal properties of a wide variety of either conductive or non-conductive surfaces and materials 

[7, 8]. A wide range of AFM modes, techniques, and methods have been devised to visualize or 

manipulate surface and subsurface properties at the microscale, nanoscale, and atomic scale [9-

11].  

Contact mode AFM, the first AFM mode developed, uses a single control loop to maintain 

a constant microcantilever tip deflection ( q ) during imaging. The control loop in contact mode 

adjusts the altitude of the microcantilever tip ( )Z  while the AFM tip scans the surface in physical 

contact so that the tip-surface interaction force ( )tsF  during imaging is constant (Figure 1). In 

contact mode, q  and  tsF  during imaging are related by the microcantilever’s bending steady-state 

solution:  tsF k q=  , where k is the quasi-static microcantilever bending stiffness. The conceptual, 

as well as implementation simplicity of contact mode, is helpful from a training point of view. 

Contact mode is also advantageous due to its ability to generate high-resolution images with even 

atomic level contrast [12]. However, the presence of substantial non-controlled lateral forces is 

considered as a drawback for contact mode. Large lateral forces can prevent the imaging of fragile 

surfaces that are common in biological applications. However, one can take advantage of the effect 

of lateral forces in contact mode to study the relevant parameters such as surface friction, adhesion, 
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and wear forces at the nanoscale [13-15].  A final limitation of contact mode is that it only provides 

information on sample topography and does not directly provide information on sample properties.  

 

Figure 1. Schematic of AFM microcantilever and associated distance parameters with the 

surface. Z(t) is the distance between the undeflected tip and the undeformed surface, q(t) is the 

deflection of the cantilever, and d(t) is the separation between the deflected tip and undeformed 

surface. as obvious: d(t) Z(t) q(t)= +  

To overcome the shortcomings of contact mode AFM, dynamic atomic force microscopy 

(dAFM) modes were introduced in which the microcantilever is vibrated by an excitation source 

and the tip is in intermittent contact with the sample [9]. The dAFM modes are advantageous in 

that they: (1) they allow imaging of fragile samples without damaging the soft surfaces, (b) they 

facilitate the spectroscopy of samples in the liquid environment [16, 17], (c) they minimize the 

effects of lateral forces [18, 19] and (d) they increase the number of the instrument observables 

enabling measurements of additional sample properties [20].  The improvements provided by 

introducing dAFM modes enable the study of delicate biological samples such as DNA, cells, 

viruses, and proteins in liquid and under conditions like their native environments. Furthermore, 

dAFM modes open the door to in situ [21] or more recently, video-rate [22] studies of the 

biological samples. The two initially developed dAFM modes are amplitude-modulation AFM 

(AM-AFM) [23] and frequency-modulation AFM (FM-AFM) [24].  

In AM-AFM (also known as tapping mode), the microcantilever is excited at a fixed 

frequency, which usually is the first resonance frequency of the microcantilever. When the 

oscillating microcantilever approaches the surface, the tip-surface interaction force causes the 

oscillation amplitude and the phase lag between the response and excitation signal ( ) to change. 

The ratio of the microcantilever’s tip oscillation amplitude when it interacts with the sample and 
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when it is far from the sample (negligible interaction), A  and 0A respectively, is termed the 

amplitude ratio ( )ratio

0A A A= . In AM-AFM the feedback controller tracks the surface 

topography during a scan by maintaining ratioA  at a user-defined value through adjusting Z . The 

phase lag channel ( )  at AM-AFM enables discrimination of surface domains with different 

mechanical properties. However, the responsiveness of the microcantilever to the topographical or 

compositional changes on the surface is a function of the transient time scale of the microcantilever: 

2Q =   where, Q  and  are, respectively, the quality factor and the resonance frequency of the 

microcantilever fundamental eigenmode when it is not interacting with the surface [9]. This 

constrains the scanning speed of AFM in higher Q  environments like UHV and encourages higher 

speed scans in lower Q  environments such as air and liquid.  

In FM-AFM, both the amplitude and phase lag of the oscillating tip are maintained constant 

during scanning. A phase-locked-loop (PLL) increases/decreases the excitation frequency by f , 

which is called “frequency shift”, to always maintain 90 =  with respect to the input signal 

during scanning of a pixel of an FM-AFM image. The excitation frequency is initially set to the 

first resonance frequency of the microcantilever when it is far from the sample. The oscillation 

amplitude of the tip is also preserved by adjusting the amplitude of the excitation signal by 0A . 

This shows that the required control scheme for FM-AFM is more complicated than AM-AFM. 

There are two feedback loops and two observables in FM-AFM: drive and frequency shift which 

allow separating the contributions of conservative and dissipative interaction forces [25-27]. In 

contrast with AM-AFM, the time scale of the microcantilever in FM-AFM is no longer a function 

of the microcantilever’s Q  factor: 1 =   [28].  

The oscillation response of the microcantilever at different frequencies carries details of 

the nonlinear and complicated tip-surface interaction force. In AM-AFM, the amplitude of higher 

harmonic oscillations is more than two orders of magnitude smaller than the amplitude of the first 

mode [29] and is often associated with small signal-to-noise ratios. However, in multifrequency 

AFM [30], in which the microcantilever is excited and/or its dynamic response is measured at two 

or more frequencies [31], the employed lock-ins can accurately demodulate the output signal into 

the corresponding observable channels. In multifrequency AFM, as a subset of the dAFM family, 

the microcantilever is mostly excited/measured at harmonics of the fundamental frequency [32-
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34] and/or at two or more flexural/torsional eigenfrequencies of the microcantilever [30, 35-37]. 

Bimodal AFM is the most common technique under multifrequency AFM in which first and 

another (mostly second) eigenmodes of the microcantilever are simultaneously excited. Several 

configurations for bimodal AFM are devised and deployed based on the utilized control schemes 

for the first and secondary excited modes of the microcantilever[38-40]. Among those, the most 

direct configuration is the one in which bimodal AFM scans the sample by regulating the amplitude 

ratio of the first mode (AM) and allowing the amplitude and phase of the secondary mode free to 

respond to the interaction between tip and surface[41]. In this configuration, both the phase and 

amplitude of the secondary mode are open to reflect the local surface properties [42]. The 

additional information channels provided by bimodal AFM can be used for material 

characterization purposes such as estimating the viscoelastic or adhesive properties of polymeric 

surfaces [37, 43-45]. Bimodal (or more generally multifrequency) AFM is mainly aimed to fulfill 

the demand for adding high-contrast compositional channels without significantly changing 

tapping forces, i.e. the forces are gentle [10, 39, 46]. However, even when there is no specific 

commensurate relationship between the two excitation frequencies, an undesirable interference of 

the secondary mode oscillation on the first mode dynamics and observables may be perceived. 

This interference may influence and disturb the first mode observables including the topography 

image of the surface. It is experimentally suggested by others to select a smaller ratio of the free 

amplitudes of the first and second modes to avoid the above-mentioned crosstalk between excited 

modes [47-50]. However, the underlying mechanism of the crosstalk between modes in bimodal 

AFM is not yet well understood. 

 

Figure 2. Force-time and force-separation curves for a typical PFT experiment. The relevant 

parameters are noted in the pictures. 
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Off-resonance AFM force spectroscopy modes such as quasi-static loading are historically 

the first developed AFM modes designed to estimate the mechanical properties of the samples [51]. 

In these modes, the microcantilever as-a-whole approaches, interacts, and retracts off the sample 

at each cycle while the deflection of the microcantilever is monitored. Usually, a 4-segment 

photodiode sensor is used to trace the interaction force experienced by the microcantilever at each 

sampling-step through the detected deflection as shown in Figure 2. This conveys information 

about the surface mechanical properties such as elastic/viscoelastic modulus, surface energy, and 

adhesion. During one oscillation cycle, the microcantilever undergoes positive/negative 

deflections due to repulsive/attractive interaction forces between the tip and the surface. Different 

regions of the acquired force vs. distance curves are used to extract corresponding surface 

properties based on the utilized contact mechanics models. Bruker’s exclusive peak force tapping 

(PFT AFM) mode falls in this category which acquires a force-curve each time it taps on the 

surface while scanning the surface. These force curves can be used to estimate and map the surface 

mechanical properties with high resolution. The feedback parameter in PFT is the peak force value 

of the force-curve (Figure 2) which is maintained constant during scanning. In PFT, the Z  

excitation frequency is far below the fundamental resonance frequency and therefore, the quasi-

static microcantilever bending model still holds to link the tip-surface interaction force to the 

observed deflection. 

1.2 Mathematical models of tip-sample interaction forces 

The Hertz model that can predict the contact force between an elastic sphere and an elastic 

half-space is the oldest classical contact model [52]. To accurately predict the contact force ( )tsF  

as a function of the indentation depth ( ) , the Hertz model requires the contact radius ( )a  to be 

much smaller than the radius of the sphere ( )R . When the sphere is much stiffer than the half-

space (in this case, we call the sphere “tip”, hereinafter), the Hertz model provides the following 

closed-form equation to calculate the interaction force:  

( )
3

2
ts 2

4E
F R

3 1-
= 


 (1) 
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where, E  and   are Young’s modulus and Poisson’s ratio of the sample, respectively. The Hertz 

model ignores the surface adhesive forces and cannot make reliable and accurate predictions when 

attractive forces are significant. 

Table 1. A comparison between well-known continuum mechanics contact models in terms of 

their ability to include surface forces, viscoelasticity, and surface dynamics. These are important 

parameters which are needed to be accounted for when working with soft, adhesive, and 

viscoelastic polymers. 

Model Adhesive Forces Viscoelasticity 
Surface 

Dynamics 

Hertz [52]    

DMT [53] ✓   

JKR [54] ✓   

Maugis [55] ✓   

Ting [56]  ✓  

Attard [2] ✓ ✓ ✓ 

 

Since then, others have introduced new models to enhance and improve upon the Hertz 

model by removing the model’s constraints such as the spherical shape of the tip and a / R  ratio 

requirement of the model [57-59]. Two well-known models have been introduced in which the 

role of the surface adhesive forces on the contact phenomenon is observed: Derjaguin-Muller-

Toporov (DMT) [53] and Johnson-Kendall-Roberts (JKR) [54]. It is widely accepted that the DMT 

model is more appropriate for contacts on “stiffer” samples while JKR is more suitable for “softer” 

and more adhesive samples. To quantify this qualitative relevance criterion for JKR and DMT 

models, Tabor [60] proposed a unitless number (Tabor parameter) to determine whether DMT or 

JKR is appropriate for a situation. Later, Maugis [55] developed a model that provides the bridge 

between JKR and DMT limits which can be used on either soft or stiff samples and it also includes 

the effect of the presence of surface adhesive forces. In Table 1, a comparison between several 

continuum mechanics-based contact modes is provided. These models are compared in terms of 

their inclusivity of the effective parameters when studying tip-surface interaction on soft 
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viscoelastic polymers. This table also can be used as a guide to distinguish the reliability criterion 

for each of these contact models. The ad hoc viscoelasticity models are not included in the list. 

The other deficiency of the Hertz model is its constraint on making reliable predictions for 

contact phenomena on materials with more complex behavior such as viscoelastic materials. It is 

specifically an obstacle to study the mechanical properties of polymers as a large class of materials 

with ubiquitous usage in different fields [61-66]. Constitutive models which represent the 

material’s viscoelasticity behavior were first incorporated into the contact problems firstly through 

an ad hoc addition of a Kelvin-Voigt viscoelasticity assumption within Hertzian or DMT contact 

mechanics theories  [67-73]: 

ts 3/2

0, d 0

F (d,d) 4
E* R ( d) d Rd, d 0

3




= 
− − − 



 (2) 

where tsF  is assumed to be a function of the tip-sample gap d  and tip velocity d . E * ,  , and R

are the effective tip-sample elastic modulus, sample viscosity, and tip radius, respectively, where: 

2 2
tip surface

tip surface

11 1

E* E E

− −
= +  (3) 

There are at least two fundamental problems with this ad hoc viscoelasticity model. First, when 

the tip is interacting with the sample ( d 0 ) and it is withdrawing from the sample ( d 0 ), it is 

possible that tsF 0  for sufficiently large d  and  . However, the Hertz contact model should only 

include repulsive surface forces ( tsF 0 ), so this outcome of the model (Eq. (2)) is non-physical. 

Put another way, as the tip withdraws, the deformed sample does not return to its original condition 

instantly, but rather it takes a finite time to relax due to viscoelasticity allowing the tip to detach 

from the sample before d 0= . However, the ad hoc viscoelasticity model cannot account for this 

and applies an attractive force to constrain the tip to withdraw only as fast as the sample can relax. 

This is seen clearly in a force-indentation history during a single tap that is simulated using Hertz 

contact mechanics with an ad hoc Kelvin-Voigt viscoelasticity model which is generated by 

VEDA (Virtual Environment for Dynamic AFM) [74] as shown in Figure 3. The presence of 

attractive forces during the retraction phase arises from the ad hoc and incorrect assumption that 

the contact area history of the tip during the retraction phase of the oscillation for a viscoelastic 

material is not different from that of a purely elastic material. In contrast, Ting’s model [56] 
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modifies the  Hertzian contact model by using the viscoelastic correspondence principle and 

correctly predicts the contact area evolution for tip interaction with a linear viscoelastic solid. 

However, since surface forces are ignored in Ting’s model, it cannot predict surface deformations 

occurring before tip-sample contact nor spontaneous and non-equilibrium surface instabilities such 

as sample snap off and jump to contact with the tip. These phenomena are especially relevant for 

dAFM on soft materials or viscoelastic surfaces with a moderate to large adhesion. In recognition 

of the likely role of surface relaxation in dAFM, recent works [75, 76] have included surface 

relaxation within dAFM simulations and modeled the contact as a bed of linear springs and viscous 

dashpots. However, they do not consider contact mechanics, 3D continuum viscoelasticity, and 

surface forces in a self-consistent manner. Therefore, a fast first-principles viscoelastic contact 

mechanics model that enables rigorous prediction and interpretation of AFM images on soft, 

adhesive, and viscoelastic polymers is still lacking. 

 

Figure 3. F d− history during a single taping cycle predicted by the AMAC tool in VEDA [77] 

using the Hertz model including Kelvin-Voigt viscoelasticity in an ad hoc manner. The 

computational input parameters are as follows: free amplitude: 60 nm; natural and driving 

frequency: 75 kHz; Q = 150; approach velocity: 200 nm/s; tip radius: 10 nm. The viscoelastic 

surface is characterized by E = 1 GPa and η = 500 Pa·s. Note that the retraction phase features a 

region of attractive forces shaded in brown which is an artifact of underlying model assumptions. 

Attard and co-workers [2, 78-81] introduced a fundamentally different approach for 

including the relevant physics of the contact between an axisymmetric tip and an adhesive 

viscoelastic surface using the Boussinesq solution [82] of a tip-sample contact problem. 

Computationally, the proposed approach is akin to a boundary element method in that the sample 

surface is discretized with a mesh and the surface deformation and pressure are computed at each 

mesh point in time explicitly. Attard’s approach does away with ad hoc assumptions of prior 
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models discussed before and computes the surface deformation field self-consistently using 3D 

linear elasticity/viscoelasticity and arbitrary surface forces. Attard’s model has significant 

advantages relative to models that use an ad hoc approach to add viscoelasticity to DMT or Hertz 

based models: 

1. Hertz and DMT based models with ad hoc Kelvin-Voigt elements assume a certain 

dependence of contact area on indentation depth regardless of history of deformation. The 

history dependence of the contact area was studied by Ting [56] but his approach does not 

include surface forces. Attard’s model inherently addresses this dependence since it solves 

a 3-dimensional linear viscoelastic deformation problem without assumptions on contact 

area evolution. As a result, the detachment of the tip from the surface is correctly computed, 

unlike in the ad hoc viscoelastic models. 

2. Hertz and DMT approaches with ad hoc Kelvin Voigt viscoelasticity are generally unable 

to predict viscoelastic dissipation when the tip oscillates in the attractive regime. Since 

Attard’s model includes surface forces it allows for the viscoelastic surface to deform and 

relax and dissipate energy even if the tip oscillates in an attractive regime with the surface. 

3. A viscoelastic surface will continue to relax as the oscillating tip detaches and moves away 

from the surface. This is an expected surface behavior that is not predicted by ad hoc Kelvin 

Voigt elements added on to classical contact mechanics models. 

4. Finally, ad hoc Kelvin Voigt modifications of classical contact mechanics models can lead 

to artifacts such as the creation of negative tip-sample interaction forces even in the absence 

of surface forces. Attard’s model systematically includes both general surface force models 

as well as linear 3-dimensional viscoelasticity of the sample surface and avoid these 

artifacts. 

While utilizing the Hertz/DMT models with ad hoc Kelvin Voigt viscoelasticity may 

provide less inaccurate results on stiff samples with low adhesion and low viscoelasticity, to 

establish a relationship between AFM observables and local physical properties of soft, adhesive, 

and highly viscoelastic materials it may be desirable to use more accurate models such as Attard’s 

model. However, since the algorithm is based on an iterative loop, it is computationally expensive. 

Moreover, the approach requires precise knowledge of the tip motion, which is not known a priori 

in dAFM, but rather depends on the material properties and operating conditions. In the following 
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chapters, detailed discussions on the underlying theory of Attard’s approach and the proposed 

computational approach is provided.  

1.3 Overview of the work 

In this series of works, we both accelerate the computational method introduced by Attard 

and propose algorithms to embed it within the selected AFM modes (AM-AFM, bimodal AFM, 

PFT) to recover the instrument observables. Attard’s model was chosen due to its systematic 

inclusion of different effective parameters in contact phenomena on soft polymers such as surface 

adhesive forces, material viscoelasticity, and surface dynamics that make it capable of making 

more realistic predictions. The proposed algorithms allow for the self-consistent inclusion of 

microcantilever dynamics, surface forces, and linear three-dimensional material viscoelasticity 

within AFM simulations. The developed codes and proposed improvements and approaches are 

all verified/validated by comparison with the results provided by Attard [2], FEM simulation 

results, VEDA simulation results, and experimental data for the corresponding modes. The 

approach is then used to study the effects of polymer relaxation modes and surface forces on 

interaction force, surface deformation history, and AFM observables. We believe this set of works 

will shed a light on the ongoing research in the interpretation of AFM observables on soft polymers. 

Each of chapters 2-5 of this thesis is constructed based on the published/ under review/ under 

preparation publication.  

In chapter 2, we present a computational method that enables the prediction and 

interpretation of AM-AFM observables on samples with arbitrary surface forces and linear 

viscoelastic constitutive properties with a first-principles approach. The approach embeds the 

accelerated version of Attard’s model within the tapping mode amplitude reduction formula (or 

equivalently frequency modulation frequency shift/damping formula) to recover the force history 

and instrument observables as a function of the setpoint amplitude or  Z -distance. The role of 

surface forces and polymer relaxation times on the phase lag, energy dissipation, and surface 

deformation history is clarified. Experimental data on energy dissipation in AM-AFM for different 

free amplitudes and setpoint ratios are presented on a three-polymer blend consisting of well-

dispersed phases of polypropylene, polycarbonate, and elastomer. An approach to experimental 

validation of the computational results is presented and analyzed. 
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In chapter 3, we first propose an algorithm that systematically accommodates surface 

forces and linearly viscoelastic three-dimensional deformation computed via Attard’s model into 

a bimodal AFM framework. The proposed algorithm simultaneously satisfies the amplitude 

reduction formulas for both resonant eigenmodes and enables the rigorous prediction and 

interpretation of bimodal AFM observables with a first-principles approach. The dependence of 

bimodal observables on local adhesion and standard linear solid (SLS) constitutive parameters as 

well as the operating conditions are predicted. Secondly, we present an inverse method to predict 

quantitatively the local adhesion and SLS viscoelastic parameters from bimodal data acquired on 

a heterogeneous sample. We demonstrate the method experimentally using bimodal AFM on a 

polystyrene-low density polyethylene (PS-LDPE) polymer blend. This inverse method enables the 

quantitative discrimination of adhesion and viscoelastic properties from bimodal maps of such 

samples. 

In chapter 4, we illustrate a method to render Attard’s contact model into a faster and more 

robust computational tool compared to Attard’s original method. In the proposed enhanced 

Attard’s model (EAM) the surface deformation is reconstructed using a complete set of optimized 

biorthogonal basis functions as opposed to the computationally expensive radial discretization-

based approach employed by Attard. The use of higher-order numerical procedures in EAM to 

solve the model’s governing ordinary differential equations (ODEs) leads to more stable solutions 

even for soft and sticky samples. We also rearranged the original model’s formalism to enable a 

fast and explicit solution of the model ODEs. Implementing these enhancements, EAM is more 

stable, three orders of magnitude faster, and equally accurate when compared to the original model. 

These improvements facilitate the inclusion of EAM into simulations of various AFM. This is 

demonstrated with fast simulations of force-distance curves and amplitude modulation AFM on 

soft polymer surfaces. On a typical desktop computer, simulation of an amplitude modulation 

approach curve with EAM takes less than a minute as compared to 15  hours by the original 

Attard’s model. The Fast and rigorous EAM predictions for AFM on soft, viscoelastic polymers 

with surface forces provide significant insight into the complex tip-surface interaction phenomena 

on such samples. 

In chapter 5, we develop a forward solution algorithm to predict the PFT AFM Force vs. 

time (F-t) curves based on the material viscoelastic and adhesive properties. The proposed 

algorithm can be adapted for other similar off-resonance modes. This algorithm allows the 
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inclusion of EAM to calculate the tip-surface interaction. Then we use a machine learning (ML) 

algorithm to tackle the inverse problem and estimate the viscoelastic and adhesive properties of 

the sample based on the acquired experimental F-t curves. We used the forward solution algorithm 

to generate the required simulation dataset with a vast range of known input parameters to train 

the ML algorithm. The method is demonstrated by predicting surface adhesive and viscoelastic 

properties from PFT AFM measurements on a Dow fabricated elastomer sample.  
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2. TAPPING MODE ON VISCOELASTIC POLYMER SAMPLES WITH 

SURFACE FORCES 

2.1 Introduction 

Dynamic atomic force microscopy (dAFM) offers many advantages and unique 

capabilities for the nanoscale characterization of advanced polymeric materials [61-66]. dAFM 

enables the high-resolution imaging of polymer samples in air/vacuum/liquid environments with 

gentle normal and lateral forces [83], thus allowing for minimally invasive imaging of these soft 

samples. Moreover, dAFM mode imaging always provides additional channels of observables 

(phase contrast, energy dissipation, higher harmonics, bimodal phase, etc.), which can be used to 

render nanoscale compositional contrast [84, 85] to complement topography images.  

However, the dAFM compositional contrast on polymers can arise from different material 

properties (elasticity, viscoelasticity, relaxation times, hysteretic, or van der Waals (vdW) adhesion, 

etc.)  and depends on the operating conditions (setpoint ratio, free amplitude, drive frequency, 

stiffness, tip radius, and quality factor) [9]. Due to the variety of effective parameters that 

characterize the physical properties of polymers, the interpretation of the instrument’s observables 

on polymer samples is difficult. 

To understand the link between dAFM compositional contrast on polymers and local 

material properties, a mathematical model that predicts the interaction between the dAFM 

oscillating tip and the viscoelastic sample surface is required. For example, to interpret contact-

mode related AFM methods such as force modulation, or contact resonance, viscoelastic sample 

models without surface forces are often used [67-73].  However, such approaches cannot be 

applied to dAFM, where the tip intermittently interacts with the viscoelastic sample surface and 

requires an accurate and self-consistent inclusion of both surface forces and surface relaxation 

dynamics. Prior efforts linking dAFM compositional contrast on polymers to local properties have 

key limitations. For example, early works suggested that dAFM phase-contrast under moderate 

tapping conditions on polyethylene was merely correlated with polymer density and elasticity [61] 

rather than viscoelastic properties. However, understanding dAFM on polymers needs 

computational approaches in which the relevant physics of the interactions are considered in a self-

consistent manner.  
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In this work, we both accelerate the computational method introduced by Attard and embed 

it within the tapping mode amplitude reduction formula (or equivalently frequency modulation 

frequency shift/damping formula) to recover the instrument observables (phase contrast/energy 

dissipation) and force and surface deformation history as a function of the setpoint amplitude or Z 

distance over adhesive viscoelastic surfaces. The algorithm allows for the self-consistent inclusion 

of resonant microcantilever dynamics, surface forces, and linear three-dimensional material 

viscoelasticity within dAFM simulations. The approach is validated by comparison with the results 

of Attard [78], as well as with VEDA simulations using Ting’s model [56]. The approach is then 

used to study the effects of polymer relaxation modes and surface forces on interaction force and 

surface deformation history, and TM-AFM/AM-AFM observables such as energy dissipation and 

phase. Experimental data acquired using TM-AFM/AM-AFM on energy dissipation on a blend of 

polypropylene, polycarbonate, and elastomer are described. An approach for the experimental 

validation of computational results is presented and analyzed.  

2.2 Theory of the proposed approach 

In AM-AFM (commonly known as TM-AFM), a microcantilever with a sharp tip is excited 

near its fundamental frequency, and the microcantilever’s vibration while interacting with the 

surface of the sample is monitored via a beam bounce technique. Here we review some key 

concepts from the analytical theory of AM-AFM upon which the proposed approach is based, 

recognizing that the proposed approach can be easily adapted for frequency modulation AFM (FM-

AFM).  

For steady-state AM-AFM oscillations in air/vacuum, the tip settles in a well-defined 

motion[86], which is dominated by the fundamental harmonic of tip motion:  q(t) Asin( t )=  − , 

where q(t) is the tip deflection, A  is the amplitude of the oscillation, and   is the phase lag relative 

to the excitation force. Higher harmonics also occur but they are about two orders of magnitude 

smaller than the fundamental in air or vacuum applications [29, 87]. If we assume that the higher 

harmonics of tip displacement are negligible compared to the primary harmonic, the unperturbed 

distance of the tip above the sample surface is Z which is adjusted by the Z piezo, the tip-sample 

gap is: d(t) Z q(t)= +  and d  is the tip velocity. A schematic of an oscillating tip interacting with 

a sample is illustrated in Figure 4. During the interaction time, the tip experiences local surface 
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forces, both conservative and non-conservative. The oscillation amplitude A  of the resonant probe 

decreases once the Z piezo approaches and the microcantilever begins to interact with the sample 

surface. Under these conditions, the virial tsV (A,Z)  and energy dissipation tsE (A,Z)  can be 

calculated as follows: 

T

ts ts ts

0

1
V F (Z Asin( t ) , Z A cos( t )) Asin( t ) dt V (A,Z) ,

T
= +  − +   −   − =  (4) 

T

ts ts ts

0

E F (Z Asin( t ) , Z A cos( t )) A cos( t ) dt E (A,Z) ,= +  − +   −    − =  (5) 

where  tsF  is the tip-sample interaction force and T  is the time-period of the oscillation. 

Furthermore, 
ratio freeA A / A= , known as the amplitude setpoint ratio (dimensionless), is the ratio 

of the resonant amplitude A  during interaction and the free amplitude ( freeA ) far from the sample. 

ratioA  is related to tsE (A,Z) and tsV (A,Z)  using the amplitude reduction formula, which is 

derived by rearranging the virial and energy dissipation equations [88-90] of AM-AFM.  

Specifically, 

ratio

22

ts ts

2 2

,
1/ Q

A

2 V (A,Z) 1 E (A,Z)

kA Q kA

=

−   
+ +      

 
(6) 

where, tsV  (eV/cycle) is the virial, tsE  (eV/cycle) is the energy dissipation, k  (N/m) is the 

equivalent microcantilever stiffness of the driven eigenmode [91], and Q  is the quality factor of 

the microcantilever. Eq. (6) highlights the implicit relationship between amplitude reduction and 

tip-sample interactions. In particular, the amplitude A  appears both on the left-hand side and on 

the right-hand side (through the tsE  and tsV  terms) of Eq. (6). 
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Figure 4. A schematic of an oscillating tip with tip-sample dissipative and conservative forces. 

d (nm)  is the tip-sample gap and Z (nm)  is the distance between the unperturbed 

microcantilever tip and the sample. The average of interaction force history during approach and 

retraction is the conservative part of interaction since it depends on the instantaneous tip-sample 

gap d  and contributes to the Virial, while the difference of the approach and retraction force 

history during a cycle is the non-conservative part of the interaction and contributes to the energy 

dissipation. 

We propose an algorithm for using Eq. (6) to find the Z -distance for each desired/observed 

ratioA  and thus predict the AM-AFM observables and surface deformation and force history as a 

function of ratioA . As illustrated in Figure 5, ratio

currentA  is the desired/observed amplitude ratio, ratio

newA  

is the computed amplitude ratio, tol  is the tolerance band, dZ  (nm) is a small decrement in Z  and 

Z  is the initial guess for the Z  piezo increment. The value dZ  is updated at each iteration to 

facilitate faster convergence. In the proposed approach, the procedure starts with an initially 

guessed Z -distance value, which is adjusted (increased /decreased) such that the ratioA obtained by 

computing tsE  and tsV  using Attard’s method and inserting into the right-hand side of Eq. (3) 

matches the desired ratioA on the left-hand side of Eq. (3), within tol , the defined tolerance. When 

the difference between the computed and desired ratioA falls within tol , all observables like Z , 

energy dissipation, virial, indentation, amplitude, tip-sample force history, sample deformation 

history are recorded for the specific ratioA . Additionally, the phase lag   can be calculated for each 

desired ratioA  as follows: 
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After meeting the tolerance criteria for a given ratioA , the algorithm goes to the next ratioA

in the range. The ratioA  range considered in the flowchart (Figure 5) is between ratio

maxA  and ratio

minA  

with ratioA  steps. The advantage of the above algorithm is that it allows for the computation of 

the amplitude/phase/energy dissipation as a function of ratioA  without time-domain simulations of 

nonlinear governing equations of AFM microcantilever dynamics as in VEDA [77].  

The described algorithm (Figure 5) thus only needs the fast computation of tsE  and tsV  

using Attard’s model [2, 78-81] for tip oscillation amplitudes A  and Z  distances for which it is 

called to execute. The underlying principle of Attard’s model is highlighted in Figure 6, where an 

axisymmetric rigid tip is shown in close proximity to the sample surface. The radial coordinate r  

measures the radial distance along the undeformed surface from the projected location of the center 

of the tip. 0h (r, t)  is the gap between the tip and the undeformed surface. Specifically, when called 

by the proposed algorithm (Figure 5), with a specific A , Z , and    value, 0h (r, t)  takes the 

following explicit time-dependent form: 

( )
2

0

r
h (r, t) 1 Z Asin( t) ,

2R

 
= + +  
 

 (8) 

 

ts

2

ts

2

1 E (A,Z)

Q kA
tan .

2V (A,Z)

kA

+


 =
−

 (7) 
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Figure 5. The proposed algorithm for predicting instrument observables by embedding Attard’s 

model into the AM- AFM amplitude reduction formula.  

Furthermore, u(r, t)  is the vertical displacement (deformation) of the sample, 

0h(r, t) h (r, t) u(r, t)= −  is the gap profile between the tip and the deformed surface, and the 

illustrated nodes (Figure 6) show the spatial discretization on the surface of the sample. The spatial 

discretization is referred to by i j  indices. The Lennard-Jones pressure accounts for the surface 

force between the tip and the sample:  

6 6

0 0

3 6 3 6

0 0

H z H z
p(h(r, t)) 1 1

6 h(r, t) h(r, t) 6 (h (r, t) u(r, t)) (h (r, t) u(r, t))

  
= − = −  

  − −   
, (9) 

where H  is the Hamaker constant and 0z  is the equilibrium distance. Alternative surface force 

models can also be included in the approach. The viscoelasticity of the sample is incorporated by 

the creep compliance of a standard linear solid (three-element) viscoelastic model [92], however, 

the approach can in principle include any linear viscoelastic constitutive relation: 
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t/0

0

1 1 E E
e ,

E(t) E E E

− 

 

−
= +  (10) 

2

s

1 1
,

E(t) E (t)

−
=  (11) 

where, sE (t)  and E(t)  are the time-dependent Young modulus and reduced elastic modulus of the 

sample as defined in Eq. (11), respectively, 0E  and E  are short and long-time reduced Young’s 

modulus of the sample ( 0E E ), and   is the relaxation time for the creep compliance function. 

The rate of the change of the sample surface deformation and its deformation is correlated by [2]: 

( )
0 0

1 1
u(r, t) u(r, t) u (r, t) k(r,s) p(h(s, t)) s ds ,

E



= − − −
   (12) 

where, u  and p  are time derivatives of sample deformation and the pressure, respectively. The 

longtime static deformation ( u ) and k(r,s)  are given by 

0

1
u (r, t) k(r,s)p(h(s, t)) s ds ,

E







= −   (13) 
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2

2

4 sK( ) s r
rr

k(r,s)
4 rK( ) s r

ss


 

= 
 


 (14) 

where, K  is the complete elliptical integral of the first kind. Equations (12) and (13) can be 

spatially discretized by trapezoidal integration as follows: 

N

i j j i j j i i

j 10

1 1
u(r , t) p(h(r , t)) r k(r , r ) r (u(r , t) u (r , t))

E


=

= −  − −


 , (15) 

N

i j j i j j

j 1

1
u (r , t) p(h(r , t)) r k(r ,r ) r

E


=

= −   (16) 

where, j j j 1r r r − = −  and N  is the number of radial nodes. As can be seen, u  appears explicitly 

and implicitly (through p(h) ) on both sides of Eq. (15). To solve this equation, Attard [2, 79] used 

a slow iterative approach in which a value of u  is guessed at each time step and refined iteratively 

until the left and right-hand sides of Eq. (15) are within a defined tolerance.    

It is important to emphasize that Attard’s model represents the exact solution to the field 

equations of 3D elasticity and through the correspondence principle allows for any linear 
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viscoelastic constitutive relationship to be included. Interested readers are referred to Attard’s 

papers for a complete theory of the employed model [2, 78-80]. 

 

Figure 6. Attard’s viscoelastic model assumes an axisymmetric rigid tip interacting with a flat 

polymer surface. In order to model the viscoelasticity of the sample, creep compliance of a 

standard three-element viscoelastic model is utilized (Eq. (10)) [92] in conjunction with arbitrary 

surface force models. (a) and (b) show the un-deformed and deformed sample, respectively. 

In contrast to Attard’s algorithm for solving these equations, we propose to take all the 

explicit u  terms in Eq. (15)  to the left side as follows:   

1

i ij iu(r , t) J b−=  (17) 

( )ij j j i j ij

0

1
J p (h(r , t)) r k(r , r )

E
=  −  (18) 

N

i j 0 j j i j j i i

j 10

1 1
b p (h(r , t)) h (r , t) r k(r ,r ) r (u(r , t) u (r , t))

E


=

=  + −


  (19) 

6

0
j 4 6

0 j j 0 j j

dp H 3z
p (h(r , t)) 1

dh 2 (h (r , t) u(r , t)) (h (r , t) u(r , t))

 
 = = −   − − 

 (20) 

where, ij  is the Kronecker delta. Eq. (17) is thus a large set of nonlinear coupled ordinary 

differential equations with explicit time-dependent forcing through the 0 jh (r , t)  term. This is 

solved by discretizing time and evaluating the left-hand side of Eq. (14) at each time step and using 

the deformation velocities at the nodes to step forward to the new position of the deformed surface. 

The code is implemented in both FORTRAN for future deployment in VEDA and MATLAB. In 

both codes, the time is discretized per uniform increments/decrements of the tip-sample gap (d)  

and the surface is spatially discretized into nodes with equal radial increments. The selection of 

the appropriate number of temporal/radial discretization points is made through numerical studies 



 

 

38 

to ensure that the solution is converged, and the predictions are independent of the number of 

discretization points.  This allows for the explicit computation of iu(r , t)  and consequently ih(r , t)

and thus ip(h(r , t)) . With this computation in place, it is easy to determine the tip-sample 

interaction force history as follows:  

N

ts k j k j

j 1

F (t ) 2 r p(h(r , t )) r .
=

=     (21) 

Once the tip-sample force history is calculated during an oscillation cycle for a specific Z  

and A  value, the result can be plugged into the Eq. (5) and Eq. (6) to compute tsE (Z,A)  and 

tsV (Z,A) , which is needed to determine the Z  value required to achieve a certain A and  . Once 

this is computed as described in Figure 5, all the relevant dAFM observables such as sample 

deformation/relaxation history per cycle, energy dissipation, force history, virial, phase lag, etc., 

can be determined at the desired ratioA .  

2.3 Verification 

By directly solving the set of ODE’s in the time domain rather than an iterative solver as 

in Attard’s original work, the present approach is nearly an order of magnitude faster than the 

original computational approach presented by Attard [78]. We present here the computational 

verification and validation of the proposed approach. 

In order to verify the accelerated computational approach presented, we compare the 

predicted F- d  histories for a prescribed triangular tip motion with the ones in Attard’s original 

work (Figure 7) [78]. These results are also compared with simulations performed using identical 

parameters but using Ting’s viscoelastic model of contact mechanics without surface forces, which 

is calculated by using the VEDA set of tools [77]. The number of temporal discretization points is 

410 , the simulations are performed for an effective tip radius of 10 m , and 600 radial nodes are 

used within a radius of 500 nm of the surface to ensure convergence of the solution.  The 

characteristic relaxation time for the creep function is 1 ms , the short-time Young’s modulus of 

the sample ( 0E  ) is 10 GPa , and the long-time Young’s modulus of the sample ( E ) is 1GPa . 

For Attard’s viscoelastic model, the Hamaker constant H  is 1910 J− , the equilibrium position 0z  

is 0.5nm . A triangular oscillation with amplitude 20 nm  with three different tip velocities are 
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prescribed into the model and 0h  oscillates between 10 nm  and 10 nm− . The predictions of the 

developed code predict excellently the ones presented by Attard [78] and are in close agreement 

with Ting’s model prediction during the approach phase but not during the retraction phase. This 

result is consistent with the lack of surface forces in Ting’s model.  

 

Figure 7. Attard’s viscoelastic model results [78], Ting’s analytical viscoelastic model [77], and 

the code developed in the present work are compared with a prescribed triangular motion time 

profile of a rigid spherical tip. The triangular drive velocities are (a): 5 m / s  , (b): 2 m / s  , 

and (c): 1 m / s  . Tip radius is 10 m  and the other material parameters used are identical to 

the ones used by Attard to facilitate comparison [78]. 

Next, we validated the proposed algorithm (Figure 8) for computing the dynamic approach 

curves when using Attard’s model for tip-sample interactions. AMAC (Amplitude Modulated 

Approach Curves) is an already validated tool on VEDA, which includes full microcantilever 

dynamics and makes reliable predictions for tapping mode AFM [77]. This tool can accurately use 

Ting’s model (but not Attard’s) as the tip-sample interaction model, which we choose for the 

validation of this algorithm. Therefore, the comparison between the instrument observables 

predicted by computing force-distance histories and embedding them within the AM-AFM 

amplitude reduction formula (Figure 5) and the ones computed directly from the AMAC tool help 

us to ensure the validity of the proposed algorithm.  As illustrated in Figure 8, the A ,  , tsV , tsE  

graphs show an excellent match for both elastomer and polycarbonate material properties. Since 

polycarbonate is stiffer than the elastomer, the energy dissipation and virial values for the 

elastomer are greater than the ones of polycarbonate. The parameter values used for the polymers 

in these simulations are listed in Table 2.  
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Figure 8. A comparison between the dynamic approach curves results predicted by using the 

present algorithm (Figure 5) and the ones from the AMAC tool which includes explicit 

microcantilever dynamics for elastomer (upper row), and polycarbonate (lower row). The blue 

circles are from the proposed algorithm and the red solid lines are the VEDA-AMAC tool’s 

outputs. The used material property data for these simulations are listed in Table 2. The 

equivalent microcantilever properties are: K 28 N / m=  and Q 542= , and the oscillation period 

is 63 10 s− .  

Table 2. The parameter values used for the simulations in verification and computational results 

sections. 

   0E  E  H  0z  0A  

 sec  GPa  GPa  J  nm  nm  

Elastomer 85.47 10−  0.143  0.029  207.99 10−  0.6  60  

Polycarbonate 86.56 10−  2.960  2.08  208.82 10−  0.3  20  

2.4 Computational results 

In order to visualize the physics of the tip-sample interaction during a single cycle, a 

simulation is carried out for a prescribed sinusoidal tip motion interacting with an elastomer 

sample (Figure 9). The elastomer sample is represented by a standard linear viscoelastic solid 

(three-element) model with the data provided in Table 2. The complete set of parameters used for 

this simulation is provided in the caption of the figure. The number of temporal discretization 
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points is 
510 , the simulations are performed for an effective tip radius of 100 nm , and 100  radial 

nodes are used inside a radius of 50 nm  on the surface to ensure convergence of the solution. 

Figure 9 shows the force history during one cycle as a function of d  and d (inset). These force 

histories clearly show the dependence of hysteresis and adhesion on both d  and d . The series of 

tip-sample geometries corresponding to 12 instants during the force history (Figure 9b) are 

captured from the output video of the code. During the tip approach, the material’s surface slightly 

deforms upwards from its initial flat state, and then snaps on to the tip, and then deforms 

downwards with the tip movement. However, it gradually peels away from the tip during the 

retraction process, until a final detachment occurs. After the detachment, the surface continues to 

relax until it returns to the initial state. These surface instabilities are in line with predictions by 

Attard’s model [93, 94]. The cycle then repeats at every tap, unless the sample has not fully relaxed 

prior to a subsequent tap. This latter condition has not been explored in the present work where we 

assume the sample eventually fully relaxes prior to a subsequent tap. It is worth mentioning that 

the phenomena that are captured by the model and demonstrated in this figure are not fully 

accounted for by any of the classical models such as Hertz, JKR (Johnson, Kendall, and Roberts), 

DMT, or Ting’s model.  

In order to study the effect of diverse relaxation modes of polymers[92] on AM-AFM 

observables, a set of the relaxation times   ranging between 
62.9 10−  and 92.8 10 (s)−  is used 

in the developed code as prescribed in Figure 5, and their effect on the outputs of the model such 

as tsV , tsE , tsF , and indentation depth vs. ratioA  is investigated. The relaxation time   determines 

how fast the instantaneous Young’s modulus of the sample changes from 0E  to E . All the other 

parameters except   are identical for all the simulations.  
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Figure 9. The interaction between a rigid axisymmetric tip and the elastomer sample surface is 

computed using the approach of the present work. The viscoelasticity of the elastomer is 

modeled by using a standard linear solid (SLS) model with the data provided in Table 2. The tip 

travels through a sinusoidal wave with 100 kHz  frequency and Z 45 nm= . The oscillation 

amplitude is 50 nm  and tip radius 100 nm= . In (a) the F d− and the F d−  history (inset) are 

graphed. In (b), the deformation history during a sequence of time instants labeled 1-12 is 

graphed.  

As illustrated in Figure 10, energy dissipation values are significantly affected by  . tsE  

reaches its maximal values at specific relaxation times. Figure 10a also demonstrates an additional 

key result. The ratioA  at which maximum energy dissipation occurs [95] is highly dependent on  . 

However, as depicted in Figure 10b, contrarily, the tsV does not vary substantially when   is 

changed.  
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Figure 10. (a) Energy dissipation ts(E )  and (b) Virial ts(V )  vs. setpoint ratio ratio(A )  for a set 

of relaxation time ( )  values: 1: 2.9 s , 2: 1.1 s , 3: 0.40 s , 4: 0.15 s , 5: 54.7 ns , 6: 

20.3 ns , 7: 7.6 ns , and 8: 2.8 ns . The Lennard-Jones parameters for all simulations are: 
20H 8 10 J−=  , and 0Z 0.6 nm= , and additional material properties are provided in Table 2 for 

the elastomer. The oscillation period is 63 10 s− , the equivalent microcantilever properties are: 

K 28 N m=  and Q 542= , and the tip radius is 15 nm . The vertical lines marked by Roman 

numerals are discussed in Figure 12. 

It is instructive to examine in Figure 11a, the F- d  histories acquired as a part of the 

simulations presented in Figure 10 for a fixed ratioA  as the   is changed in the stated range above. 

In Figure 11a, the force loops show minimal hysteresis when   is small compared with the contact 

time, reach a maximum hysteresis when for an intermediate value of  , and the hysteresis vanishes 

when   is very large. To be more quantitative, we estimate the contact (interaction) time in each 

F- d  history in  Figure 11a from the time 
ratioA 0.5= spent in the repulsive interaction regime. 

Then we plot the corresponding indentation, tsE , and tsV  as a function of   non-dimensionalized 

by the contact time in Figure 11b, all at 
ratioA 0.5= . Figure 11b illustrates that the indentation 

depth increases with decreasing  . For  <<contact time, the material has enough time to 

completely relax during the interaction time and therefore the modulus behaves more like E

during both approach and retraction leading to a larger indentation, and small hysteresis leading to 

low energy dissipation tsE . Likewise, when >>contact time the material responds with a stiff 0E  

leading to a less indentation and small hysteresis leading to low energy dissipation tsE . Figure 11b 

shows that tsE  is maximized when  /contact time ~0.01-0.1. Put another way, tsE  is maximized 
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when the ratio of creep (retardation) time ( ( )0E E=  ) to contact time ~ 0.05 0.5− .  Thus, if a 

polymer surface were to have many relaxation modes, those whose relaxation and creep times are 

0.01 0.1 −  and 0.05 0.5 −  of the contact time, respectively, are likely to contribute most to the 

energy dissipation. In this sense, the energy dissipated in AM-AFM on a viscoelastic sample may 

be considered as a “narrowband filter” for capturing the effect of a narrow range of polymer 

relaxation times. 

 

Figure 11. F d−  histories and indentation depth predictions at 
ratioA 0.5=  for a range of 

relaxation times ( )  are demonstrated.  The   values and other simulation parameters are 

identical to the ones in Figure 10 (b). The indentation depth, tsE , and tsV  corresponding to the F-

d histories in (a) are graphed as a function of    non-dimensionalized by the tip-sample 

interaction time. Note that each of the cycles 1-8 in (a) has a different interaction time.  

Figure 12 illustrates tsV  and tsE  vs.   for four selected set point ratios: 0.3, 0.5, 0.7, and 

0.9. These are extracted from the same set of simulations as in Figure 10 and are shown by vertical 

dashed lines marked by Roman numerals. The results show that while tsE  varies more 

significantly than tsV  with  , tsE  is maximized and tsV  is minimized when the creep time is 

0.05 0.5 −  of the contact time.  

The surface pressure parameters ( H , 0z ) that define the resultant surface adhesion, are also 

expected to play a role in the observed energy dissipation and hysteresis. In order to assess the 

sensitivity of tsE  vs ratioA  to these parameters, a range of H  values between 
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19 192 10 10 10 J− − −   and a range of 0z  values between 0.5 0.8nm−  are used in the model. For 

smaller values of 0z chosen in this range, surface instabilities are observed with increased 

hysteresis. However, those simulations are also associated with computational instabilities. The 

range of 0z  chosen in these simulations is both comparable to prior computational results and 

appropriate for small roughness polymer surfaces [96]. As shown in Figure 13, within the range 

of chosen surface pressure parameters,  tsE  increases as H  is increased or as 0z  is decreased. This 

result is in line with the expectation that energy dissipation should increase with an increase in 

surface forces. 

 

Figure 12. (a) Energy dissipation ts(E )  vs. relaxation time ( )   and (b) Virial ts(V )  vs.   for a 

series of ratioA 0.3, 0.5, 0.7= , and 0.9  that are specified in Figure 10 by vertical dashed lines 

labeled I, II, III, IV , respectively. All of the simulation parameters are identical to the ones in 

Figure 10. 
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Figure 13. The Energy dissipation ts(E )  vs setpoint ratio ratio(A )  for (a) different Hamaker (H)  

constant values, (b) different values of the equilibrium position 0(z ) . For (a), 0z 0.6 nm= and for 

(b), 20H 8 10 J−=  . The material properties are the ones recorded in Table 2 for the elastomer. 

2.5 Experiments 

To demonstrate how the proposed computational approach relates to experimental data 

acquired on polymers, a set of experiments using tapping mode (TM) or AM-AFM at 326.1 kHz, 

and quasi-static (QS) at 1 Hz are conducted on the surface of a three-component polymer blend 

sample. The sample consists of a glassy polymer, polycarbonate; a semicrystalline polymer, 

polypropylene; and a polyolefin-based elastomer. The full description of the employed instruments 

and sample preparation is provided in the methods section. A typical sample data is shown in 

Figure 12 that are acquired over a rectangular region with the TM microcantilever with 

freeA 35.9 nm=  and 
ratioA 0.7= . The resulting topography image (Figure 14a) shows areas of 

smooth PC are interspersed with areas of PP with more surface roughness. Smaller areas of 

elastomer are found embedded in and surrounded by PC and PP domains.  

The methods and materials used to conduct experiments are described below in more details: 

Instrument: All TM/AMAFM and QS measurements were made on a Bruker MultiMode 

8 AFM with a Nanoscope V controller running v8.15 Nanoscope software. For the TM 

measurements, a Bruker TESP silicon microcantilever was used with a quality factor, spring 

constant, and fundamental frequency of 542, 28.0 N/m, and 326.1 kHz, respectively. These values 

were measured using thermal tuning of the undriven microcantilever. TM-AFM/AM-AFM 
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experiments are performed on a 10×5 µm rectangular region with 512 points/line resolution level 

and a scan rate of 0.5 Hz using two different free amplitudes (18.0 and 35.9 nm) and 9 different 

amplitude ratios (0.9, 0.8 … 0.1). For the TM imaging, the phase was zeroed when the 

microcantilever was within 100 nm of the surface for each amplitude ratio measurement.  QS force 

curves are acquired over the same sample at 200 points (5 rows x 40 columns evenly spaced) on 

the same region using a Bruker TESP silicon type microcantilever whose spring constant was 21.2 

N/m. Using a blind reconstruction method, the tip radius of the QS microcantilever was estimated 

to be 14.2 and the tip radius of the TM microcantilever was determined to be 14.0 nm. 

 

Figure 14. (a) Topography image, (b) Phase lag image, (c) Extracted energy dissipation on a 

three-phase blend polymer sample with ratioA 0.7= and freeA 35.9 nm= . (d) and (e) show 

histograms of the extracted energy dissipation and phase lag values acquired over the selected 

rectangular areas of the PC, PP, and elastomer marked in (b) with corresponding colors. The 

vertical bold lines shown for each histogram in (d) and (e) represent the mean value for each 

polymer. The scale bar is shown in (a) represents 1 m .  

Sample Preparation: The sample consists of a glassy polymer, polycarbonate (Calibre™ 302-6, 

Trademark of Trinseo); a semicrystalline polymer, polypropylene (Inspire™ 404, Trademark of 
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Braskem); and a polyolefin-based elastomer (Engage® 8003, Registered Trademark of The Dow 

Chemical Company).  The sample was fabricated using injection-compression molding providing 

2 inch x 2 inch x 1/8 inch plaques.  Pieces of the plaque were removed via a punch and mounted 

into vice holders.  Trapezoid faces were cryo milled in the plaques pieces at -120°C and then 

polished in a cryo-microtome at -120°C to produce block faces for AFM investigation.  

The acquired phase data are converted to phase lag   and adjusted so that when drive 

frequency equals the microcantilever’s natural frequency far from the sample then 90 = .  For 

these operating conditions, the AFM mostly operates in the net repulsive regime ( 90   , 

throughout the scan region) as seen in Figure 14b. The tsE  values (eV per tap) are extracted from 

the phase lag images by using the following relation [88, 89]: 

( )ratio0
ts

kAA
E (Z,A) sin( ) A

Q


=  −  (22) 

and mapped to the scan region as shown in Figure 14c. Histograms of  tsE  and  acquired over 

rectangular regions of the PP, PC, and elastomer phases are shown respectively in Figures 12 d 

and e.  

 

Figure 15. Maximum tsE  and ratioA at which the maximum tsE  occurs plotted as a function of 

the relaxation time ( )  and 0E / E  ratio for PP. The employed material properties are listed in 

Table 3, freeA 18 nm= , K 28 N / m=  , and other parameters are identical to the ones described in 

the experiments section.  

The experimental validation of our computational approach is challenging due to 

uncertainties associated with the model parameters. For example, viscoelastic bulk properties can 
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be measured using Dynamic Mechanical Analysis (DMA). However, their correlation with 

viscoelastic surface properties measured using AFM methods remains an active topic of research. 

Specifically, with moderate to large net indentation, contact resonance (CR) method-based AFM 

studies have reported local elasticity values consistent with bulk DMA [97, 98]. However, in AM-

AFM in which gentler forces are used, indentations are much smaller, and the local properties may 

be more influenced by surface effects [99-105]. Moreover, the sample under consideration features 

significant interphase effects due to the mixture of small volumes of the three phases. Even if the 

AFM measures properties far from interphase regions on the sample surface, there can be sub-

surface interphases that influence surface AFM measurements. Last, but not least, the surface force 

parameters 0z  and H  are very hard to estimate experimentally. While H  can be approximated 

using theory, there is no clearly accepted method to approximate 0z  for the specific sample.  

 

Figure 16. Comparison between theory and experiment for the three phases following 

calibration of   and 0E  to best match the amount tsE  and the ratioA  at which it occurs in the 

experimental data acquired with freeA 35.9 nm= . A cubic polynomial is fitted to theory and 

experimental data to facilitate the identification of the maximum  tsE  location and magnitude. To 

help to clarify the regime of the oscillation, the 90-degree phase lag is marked by a green 

horizontal dashed line. 
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We chose to adopt the following strategy for estimating parameters for subsequent experimental 

validation: 

1. We estimate the Hamaker constants between native Si oxide on the tip surface and the 

specific polymer using Lifshitz theory[96]. 0z is chosen within the range of prior works[96] 

and is made as small as possible to enable stable computation. 

2. We use the QS force curves acquired on each of the three phases to estimate the long-

timescale elastic modulus E  using Hertz contact mechanics. This is a reasonable approach 

since the QS curves are performed at extremely slow rates (1Hz) and the quantification of 

uncertainties in measuring surface elastic modulus using standard force-distance curves is 

well understood [106].  

3. We then estimate 0E  and   by fitting these numbers to match various features of the tsE  

vs ratioA  curve acquired on the three polymer phases with freeA 35.9 nm= . Specifically, for 

each of the polymer domains: 

a.   is adjusted until the ratioA  at which maximum energy dissipation occurs in 

simulations results matches within 10% the one found in the experiment. This is based 

on a key theoretical prediction that the ratioA  at which the maximum tsE  energy 

dissipation occurs is mostly affected by   (Figure 15b) and to a much lesser extent by 

0E / E . As an initial starting guess   is chosen to be 1% of the microcantilever 

oscillation period. 

b. 0E  value is increased from E  so that the maximum energy dissipation ts(E )  of 

the model matches within 10% of the peak value of the fitted curve. 

c.   is again tuned to ensure that the ratioA  at which maximum energy dissipation 

occurs in simulations remains within 10% of the one in the experiment.  

The estimated values for the material properties using this approach are provided in Table 3. 

The resulting computational and experimental tsE  vs ratioA  are compared in Figure 16. As can be 

seen, the computational results using material properties estimated with the experimental data set 

at freeA 35.9 nm=   matches the experimental results within 5% across a wide range of ratioA . 

These estimated material properties are in line with the results provided by others[107, 108]. 
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Using the material properties estimated using the calibration data (Table 3) we validate the 

computational approach by comparing predictions with experimental data for freeA 18.0 nm= . As 

illustrated in Figure 17, the predicted and measured tsE  are within 10% over a wide range of  ratioA  

for both PP and Elastomer. The good match obtained on the elastomer is particularly interesting 

since for freeA 18.0 nm=  most of the approach curve is in the attractive regime of oscillation.  

 

Figure 17. Comparison of computational predictions and experimental results for freeA 18 nm=  

on the three polymer phases. The material property data used for the computation (Table 2) are 

based on quasi-static force curves, theoretical estimates, and with   and 0E  calibrated from 

similar data acquired for freeA 35.9 nm=  (Figure 16). The observed discrepancy between 

simulation and experimental results are less than 11%, 11%, and 22% for Elastomer, PP, and PC, 

respectively.  

However, the computational approach underpredicts actual energy dissipation by over 20% 

for PC. In contrast with the other polymer phases in the blend, PC is hydrophilic, so that under the 

ambient conditions of the experiment, water bridges may form leading to capillary forces and 

significant additional energy dissipation that are unaccounted for in the present approach[109-111].  

To estimate the influence of capillary forces on the total observed energy dissipation, a set of Peak 

Force Tapping experiments were conducted under ambient and dry nitrogen flushed conditions. 
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Based on the observed results, the hysteresis of a single force cycle at ambient condition is about 

8%, 7%, and 50% higher for PP, elastomer, and PC respectively under ambient conditions 

compared to under dry nitrogen. Thus, capillary forces are likely to contribute more to AM-AFM 

under ambient conditions on PC than on PP or elastomer and might have resulted in unrealistic 

predictions for PC. 

Table 3. The material property estimations/extracted from the set of experiments with 
freeA 35.9 nm=  and used for subsequent validation with another set of experiments with 

freeA 18 nm=  on the three blend polymer sample. 

   0E  E  H  0z  

 sec  GPa  GPa  J  nm  

Elastomer 81.05 10−  2.5  0.115  208 10−  0.26  

Polypropylene 82.18 10−  9.01 1.64  207.6 10−  0.19  

Polycarbonate 94.5 10−  110  3.7  208.8 10−  0.19  

 

Finally, it is worth mentioning that there is a potential bi-stability between attractive and 

repulsive regimes of oscillation in AM-AFM[9, 112, 113]. Under the free oscillation amplitudes 

considered in these simulations, the tip either remained exclusively in the attractive (for example, 

on the elastomer in Figure 17) or repulsive regime of oscillation in the range of setpoint amplitudes 

considered. If there is an initial attractive regime, the algorithm tracks that solution until that 

solution bifurcates and the algorithm jumps to the repulsive regime as the setpoint is decreased. 

2.6 Conclusions 

Understanding dAFM on polymers needs computational approaches in which the relevant 

physics of the interactions are considered in a self-consistent manner. By accelerating Attard’s 

model computations and embedding it within dAFM amplitude reduction formulas it is possible 

to efficiently compute key dAFM observables such as surface deformation history, indentations, 

energy dissipation, phase, etc. as a function of the amplitude ratio. This allows the inclusion of 

arbitrary surface forces and linear 3D viscoelasticity in a self-consistent manner in such 

simulations, representing a significant advance in computational AFM on polymers. This method 
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alleviates the issues with the artifacts arising from the use of ad hoc viscoelastic contact mechanics 

models. The code and algorithm have been validated against prior results and other reliable codes. 

Experimental data on energy dissipation in TM-AFM/AM-AFM for different free amplitudes and 

amplitude ratios are presented on a three-polymer blend consisting of well-dispersed phases of 

polypropylene, polycarbonate, and elastomer. An approach to experimental validation of 

computational results is presented using TM-AFM data on a blend of PP-elastomer-PC. The 

computational and experimental approaches presented in this work clarify the role of surface forces 

and polymer relaxation times on the phase lag, energy dissipation, and surface deformation history. 

Such approaches are expected to aid ongoing efforts to interpret dAFM observables on polymers 

in terms of quantitative physical properties. 
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3. DISCRIMINATION OF ADHESION AND VISCOELASTICITY 

FROM NANOSCALE MAPS OF POLYMER SURFACES USING 

BIMODAL ATOMIC FORCE MICROSCOPY 

The simultaneous excitation and measurement of two eigenmodes in bimodal atomic force 

microscopy (AFM) during sub-micron scale surface imaging augments the number of observables 

at each pixel of the image compared to the normal tapping mode. However, a comprehensive 

connection between the bimodal AFM observables and the surface adhesive and viscoelastic 

properties of polymer samples remains elusive. To address this gap, we first propose an algorithm 

that systematically accommodates surface forces and linearly viscoelastic three-dimensional 

deformation computed via Attard’s model into the bimodal AFM framework. The proposed 

algorithm simultaneously satisfies the amplitude reduction formulas for both resonant eigenmodes 

and enables the rigorous prediction and interpretation of bimodal AFM observables with a first-

principles approach. The dependence of bimodal observables on local adhesion and standard linear 

solid (SLS) constitutive parameters as well as operating conditions are predicted. Secondly, we 

present an inverse method to predict quantitatively the local adhesion and SLS viscoelastic 

parameters from bimodal data acquired on a heterogeneous sample. We demonstrate the method 

experimentally using bimodal AFM on polystyrene-low density polyethylene (PS-LDPE) polymer 

blend. This inverse method enables the quantitative discrimination of adhesion and viscoelastic 

properties from bimodal maps of such samples and opens the door for advanced computational 

interaction models to be used to quantify local nanomechanical properties of adhesive, viscoelastic 

materials in bimodal AFM. 

3.1 Introduction 

The continuing need for sub-micron scale compositional imaging of complex material 

surfaces has led to the increased use of multi-frequency AFM methods. Bimodal AFM is a popular 

subset of multi-frequency AFM methods[31, 43, 44, 114] that provides additional information 

channels beyond the traditional Amplitude-Modulated AFM (AM-AFM) or tapping mode. AM-

AFM usually requires a trade-off between greater compositional contrast and greater imaging 

forces which may be detrimental for the fragile samples.[115] Bimodal AFM can enhance 

achieved compositional contrast while applying gentle imaging forces without damaging the 
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surface.[10, 30, 39, 46, 116, 117] In bimodal AFM the microcantilever is excited at its fundamental 

eigenmode frequency along with an additional small amplitude “perturbation” excitation of a 

higher flexural eigenmode (secondary eigenmode) (Figure 18)[31, 118]. The resulting tip motion 

occurs at different timescales, a slow timescale corresponding to that of the fundamental mode and 

a fast timescale corresponding to the higher eigenmode. The lock-in amplifiers demodulate and 

measure the averaged amplitude and phase of tip motion at the two excitation frequencies.  

 

Figure 18. (a) Bimodal AFM simultaneously excites the first and a higher eigenmode of the 

microcantilever. (b) The resulting tip trajectory is assumed to be the sum of two harmonics 

whose steady-state amplitudes and phases change due to the tip-sample interaction and the 

microcantilever properties. In this figure i  is the excitation frequency and iA  and i  are the 

amplitude and phase lag relative to the excitation force of the thi mode. Z  and d (t)  are the 

distance of the microcantilever base and tip with respect to the undeformed surface level, 

respectively. q (t)  is the microcantilever tip deflection. 

Bimodal AFM scans of a surface are characterized by three observables at each pixel in 

addition to the topography, regardless of the feedback control loops used. There are many ways to 

configure the feedback control loops to operate bimodal AFM [38-40]. In the most direct and 

commonly used configuration, the amplitude of the first mode is regulated at a fixed setpoint 

amplitude by adjusting the Z distance and the slow-timescale averaged phase of the fundamental 

mode and the amplitude and phase of the secondary mode are allowed to respond to changes in 

local surface properties (AM-AM)[41]. In the other common feedback loop arrangement, AM-FM, 

the first mode’s amplitude is regulated by adjusting the Z distance while the secondary mode’s 

phase lag and amplitude are controlled by the excitation frequency and the amplitude, respectively. 

in this mode which is also referred to as constant amplitude phase-locked loop (CA-PLL), the 
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excitation amplitude provides a measure of the tip-sample dissipation. During imaging, the slow-

timescale averaged phase lag of the fundamental mode and frequency shift and dissipation of the 

secondary mode at each pixel is recorded. Finally, in FM-FM, two PLLs and drive modulation are 

used to regulate the slow-timescale averaged amplitudes and phases of both modes [38].  The three 

observables for these most common implementations of bimodal AFM: AM-AM, AM-FM, and 

FM-FM are listed in Table 4 Error! Reference source not found.[42]. The complexity of the 

required feedback loops for these bimodal AFM configurations is different and the associated 

control schemes become more complicated in the order they listed in Table 4. 

Table 4. Three observables of the most common modalities of bimodal AFM Observable.  

 # 1 2 3 

 Mode # First mode Secondary mode Secondary mode 

Config. 1 AM-AM Phase ( )1  Phase ( )2  Amplitude ( )2A  

Config. 2 AM-FM Phase ( )1  Freq. shift ( )1f  Drive ( )2D  

Config. 3 FM-FM Freq. shift ( )1f  Freq. shift ( )1f  Drive ( )2D  

Quantitative bimodal AFM on polymeric surfaces requires the pixel-by-pixel inversion of 

three observables of the mode to extract quantitative maps of local polymer properties. Garcia et 

al. used an energy balance theory method to link the bimodal AM-FM observables to the material 

viscoelastic properties.[43, 114] The method is based on a simple Hertzian contact model for tip-

sample interaction force with ad hoc addition of a Kelvin-Voigt viscoelastic element without any 

surface forces (adhesion). In another work[39], the ad hoc tip-sample viscoelastic model 

approach[114] was extended to a fractional calculus-based method to calculate the material 

viscoelastic properties. Proksch et al.[44] used Oliver and Pharr method[119] to link the tip-sample 

interaction stiffness to the contact radius. They calculated the tip-sample interaction using a Hertz 

model’s elastic generalization and neglect the velocity-dependency of the tip-sample interaction 

force and long-range surface forces. All these prior-tip sample interaction models have the 

advantage that when combined with energy balance laws for each mode, they offer simple closed-

form expressions that allow the inversion of bimodal observables to quantitative estimates of the 

local elastic/viscoelastic properties.  
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However, one of the major shortcomings of these prior inversion approaches is that they 

utilize simple or ad hoc tip-sample models which are limited in their ability to represent tip contact 

with soft, adhesive, and viscoelastic surfaces. Specifically: (a) ad hoc viscoelastic models are 

unable to accurately predict the tip-detachment from the surface[39, 68, 69] and are unable to 

predict surface relaxation post-detachment (b) they can lead to artifacts such as the presence of 

apparently attractive forces[1] even if the model does not contain attractive forces, and (c) they do 

not include attractive/adhesive forces. These shortcomings can lead to artifacts in estimated 

parameters, especially on soft viscoelastic adhesive samples. In one example, a bimodal map 

inversion based on an ad hoc viscoelastic model[39] led to an effective viscosity prediction for the 

PS domain in a PS-LDPE blend to be 4 times greater than the viscosity for the LDPE domain when 

measured in the same scan. This ratio of damping characteristics prediction for stiff PS, which is 

in the glassy state in room temperature, and soft LDPE which is in rubbery state in room 

temperature is not physically acceptable. 

In this work, we develop an algorithm including Attard’s model to link the surface 

properties of an adhesive and viscoelastic sample to associated AM-AM bimodal AFM 

observables. The algorithm has several advantages: (1) it can easily be adapted to other 

implementations of bimodal AFM such as AM-FM or FM-FM bimodal operation, (2) it 

simultaneously satisfies the amplitude reduction formulas for both excited modes in AM-AM 

bimodal AFM, and (3) it requires the computation of tip-surface interaction and surface 

deformation history which is implemented here using an accelerated computational approach[1] 

for Attard’s model which is more than two orders of magnitude faster than the original 

implementation[2, 79].  

We use the proposed algorithm to illustrate the dependence of the bimodal AFM 

observables on the properties of adhesive, viscoelastic surfaces modeled by Lennard Jones 

pressure and SLS viscoelastic constitutive relations. Then, we present an approach to invert the 

three bimodal AFM parameters using a linear surrogate model based on the forward computations 

carried out over a vast range of sample parameters selected by the Latin hypercube sampling 

method[120]. The computational surrogate model, applicable for the specific cantilever and 

operating conditions, then relates physical properties of the local polymer such as adhesion, long- 

and short-term elastic moduli, to the three AM-AM bimodal observables via a computed 3 by 3 

matrix. The three observables measured at each pixel can then be converted to quantitative 
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estimates of these physical properties via matrix inversion at each pixel and that relates the 

observables to physical polymer properties. Thus, this approach can discriminate quantitatively 

between adhesion and viscoelastic properties which is normally considered very challenging for 

adhesive viscoelastic samples. The approach is demonstrated using experimental measurements 

using AC160 cantilevers on a PS-LDPE sample. The resulting quantitative maps of adhesion, long- 

and short-term elastic moduli are in line with ones reported previously in the literature [114, 121, 

122].  

3.2 Theory 

We model the transverse deflection of the microcantilever, w(x, t) , with Euler-Bernoulli 

partial differential equation (PDE) for a beam with rectangular cross-section, as follows:  

( )c c hydro c c ts c directA w(x, t) F w(x, t),w(x, t) E I w (x, t) F (d,d) (x L ) F (x, t) , + + =  − +  (23) 

where, x , t , c , cA , cE , cI , and cL  are the longitudinal distance from the base of the 

microcantilever, time, the linear density, cross-sectional area, elastic modulus, area moment, and 

tip location distance from the base of the microcantilever, respectively. w(x, t)  and w(x, t)  are 

the first and second derivative of w(x, t)  respect to t , respectively. w (x, t)  is the fourth 

derivative of w(x, t)  with respect to x . d  and d  are the tip-sample gap and its velocity relative 

to the undeformed surface level as shown in Figure 18.  hydro hydroF (w(x, t),w(x, t)) F (x, t)=  is the 

uniformly distributed hydrodynamic force per unit length computable in the frequency domain 

using Sader’s method [123],  acting on the oscillating microcantilever. The tip-surface interaction 

force, tsF (d,d) , which acts locally at the tip location is described with a Dirac delta function,  . 

The microcantilever is excited directly[124], i.e. via photothermal, magnetic, or Lorentz for 

excitation, which exerts a Spatio-temporal distributed force per unit length, directF (x, t) . Dither 

piezo excitation will be included through the boundary conditions as described later in this section. 

The absolute deflection of the microcantilever is composed of the Z-piezo motion, Z(t) , the dither-

piezo motion, y(t) , and the transverse vibration in the non-inertial frame attached to the base, 

u(x, t) : 

w(x, t) Z(t) y(t) u(x, t) .= + +  (24) 
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Substituting Eqn. (24) in the beam PDE, Eqn. (23), the equation of motion can be cast into the 

moving reference frame attached to the base of the microcantilever: 

( )

( )
c c hydro c c

ts c direct c c

A u(x, t) F y(t) u(x, t) Z(t), y(t) u(x, t) Z(t) E I u (x, t)

F (d,d) (x L ) F (x, t) A y(t) Z(t) .

 + + + + + + =

 − + − +
 (25) 

and the corresponding boundary conditions, ignoring the tip-mass effect become: 

c cu(0, t) 0, u (0, t) 0, u (L , t) 0, u (L , t) 0.  = = = =  (26) 
 

For bimodal operation, excitation forces are applied at two eigenfrequencies of the 

microcantilever, i 1= , or fundamental mode frequency, and i 2= or secondary mode frequency. 

The secondary mode is often the second eigenmode of the microcantilever, but it can instead be 

any higher order eigenmode.  As a result, we can combine the net external excitation on the 

microcantilever as the sum of direct excitation and inertial excitation: 

2

direct c c drive,i

i 1

F (x, t) A y(t) F (x, t)
=

− =  (27) 
 

where drive,iF (x, t)  are the net forcing functions at the two different drive frequencies. Therefore, 

we discretize Eqn. (25) using Galerkin’s method based on microcantilever excited eigenmodes: 

2

i i

i 1

u(x, t) (x) q (t) ,
=

=   (28) 
 

where i (x)  and iq (t)  describe the microcantilever eigenmodes of free vibration and the 

associated generalized coordinates, respectively. The mode shapes are normalized so that 

i c(L ) 1 =  for each of the eigenmodes [91] and the generalized coordinates represent the tip 

motion in each eigenmode: 

2 2 2

c c i i hydro i i i i

i 1 i 1 i 1

2 2

c c i i ts c drive, i

i 1 i 1

A (x) q (t) F (x) q (t), (x) q (t)

E I (x) q (t) F (d,d) (x L ) F (x, t) .

= = =

= =

 
  +   

 

+  =  − +

  

 

 (29) 
 

Next, we use the biorthogonality of i (x)  terms to extract the discretized equations of motion of 

excited modes by multiplying Eqn. (29) once with 1(x)  and then with 2(x) , and then 

integrating respect to x. The resultant ODEs are: 
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( )

c c

c c

L L 2 2
2

c c i i hydro i i i i i

i 1 i 10 0

L L 22

c c i i ts i drive, i

i 10 0

A (x)dx q (t) F (x) q (t), (x) q (t) (x)dx

E I (x) dx q (t) F (d,d) (x) F (x, t) dx .

= =

=

   
  +          

 
+  = +   

 

  

 

 (30) 

In order to simplify the hydroF  term, we note that in bimodal AFM operation the cantilever response 

generally combines harmonic motion at two discrete frequencies. Under these conditions it is 

reasonable to approximate the Fourier transform of hydroF [123] as follows: 

( ) ( )
2

j t 2 2 j t

hydro hydro i i
t t

i 1

F x F x, t e dt b ( ) (x) q (t) e dt
4

 
−  − 

=− =−
=


 = =       (31) 

where,  , b , and ( )   are the air density, nominal width of the microcantilever, and the 

dimensionless hydrodynamic function, respectively. The hydrodynamic force per unit length on 

the microcantilever can be converted into two frequency-dependent parameters: effective modal 

damping, ĉ( ) , and added mass, M̂( ) [123]. However, since the excitation forces in bimodal 

operation are applied on relatively narrow frequency ranges, the frequency dependence of ĉ( )  

and M̂( )  is weak and we can safely express them as follows:  

*

j j
ˆm M( ) ,=   

*

j j
ˆc c( ) .=   

(32) 

After rearranging Eqn. (30) to include experimentally observable parameters, the beam’s PDE 

reduces into two coupled ODEs as follows: 

1 1 1 ts 11 1 12 22

1 1 1 1 1 1

2 2 2 ts 21 1 22 22

2 2 2 2 2 2

1 1 1 1 1
q (t) q (t) q (t) F (d,d) F ( , t) F ( , t)

Q k k k

1 1 1 1 1
q (t) q (t) q (t) F (d,d) F ( , t) F ( , t)

Q k k k

+ + = +  + 
 

+ + = +  + 
 

 (33) 

where, 

cL

ij j i drive,i

0

F ( , t) (x) F (x, t)dx , i, j 1, 2 , =  =  (34) 

and ik , i i2 f =  , and iQ  are equivalent stiffness, natural frequencies (rad/s), and quality factor 

of the thi  mode ( i 1 , 2= ), respectively. Solutions of Eqn. (33) show that ij jF ( , t)  has a negligible 
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effect on tip motion when i j  and can be ignored. Then, we express the discretized ODEs by re-

writing the excitation magnitudes in terms of the oscillation amplitudes in absence of the tip-

sample interaction:  

01
1 1 1 ts 12

i i i 1 1

02
2 2 2 ts 22

2 2 2 2 2

1 2

1 1 1 A
q (t) q (t) q (t) F (d,d) cos( t) ,

Q k Q

1 1 1 A
q (t) q (t) q (t) F (d,d) cos( t) ,

Q k Q

d(t) Z q (t) q (t)

+ + = + 
 

+ + = + 
 

= + +

 
(35) 

where, 0iA  is the “free” oscillation amplitude of the thi  mode, which is the forced steady-state 

amplitude in the absence of tip-sample interaction. Eqn. (13) represents the tip dynamics in 

bimodal AFM when the excitation frequencies exactly coincide with the natural frequencies.  The 

method needs to be adapted if there is any intentional detuning between excitation and natural 

frequencies.  

To derive amplitude reduction equations for bimodal AFM, we assume that the tip motion 

can be expressed as the sum of two harmonics at two different excitation frequencies, i.e.: 

1 2 1 1 1 2 2 2q(t) q (t) q (t) A cos( t ) A cos( t )= + =  − +  − , (36) 

where iA  and i  are the steady-state tip oscillation amplitude and phase lag of the thi  mode 

relative to its corresponding modal excitation force[42, 48]. This assumes that any slow time-scale 

amplitude and phase modulation leading to sidebands around the excited modes are considered 

negligible for amplitude reduction. It is also assumed that higher harmonics of the excited modes 

play a negligible role in the amplitude reduction at the two excitation frequencies, a condition 

generally met for air or in vacuum applications when higher eigenfrequencies are not integer 

multiples of the excited modes [49, 87, 125].   

Next, we substitute 1q (t)  and 2q (t)  from Eqn. (36) into Eqn. (35): 

( )

( )

1
1 1 1 01 1 ts

1

2
2 2 2 02 2 ts

2

k
A sin( t ) A cos( t) F (d,d),

Q

k
A sin( t ) A cos( t) F (d,d),

Q

−  − +  =

−  − +  =

 (37) 

where, 1 2d (t) Z q (t) q (t)= + + .  Then, we multiply Eqn. (37) with iq (t)  and integrate with 

respect to time over 0 to c 1n T . Then, we repeat the process by multiplying Eqn. (37) with iq (t)  
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and then integrating with respect to time over 0 to c 1n T . The coefficient cn  represents the number 

of slow time-scale periods that the mode parameters are computed and averaged over. Thus 

yielding: 

( ) ( )

( ) ( )

c i c 1

c i c 1

n T n T

ts,i ts i ts i i i

c i c 10 0

i 0i i
i

i

n T n T

i
ts,i ts i ts i i i i

c c 10 0

i i 0i i
i

i 0i

1 1
V F d,d q (t)dt F d,d A cos( t )dt

n T n T

k A A
cos( ),

2Q

1 T
E F d,d q (t)dt F d,d A sin( t )dt

n n T

k A A A
sin( ) .

Q A

= =  − =

− 

= − =    − =

 
 − 

 

 

 

 (38) 

Here, iT , ts,iV , and ts,iE  are the time period, the average value of the virial (conservative 

interactions), and dissipation (non-conservative interactions) associated with the thi  mode during 

each interaction cycle[89]. ts,iV  and ts,iE  are computed and averaged over many time-periods of 

the fundamental mode ( c 1n T ). This mimics the experimental conditions where lock-in amplifiers 

average these quantities for the two excited modes over the slow timescale. If the ratio of excitation 

frequencies is equal to the ratio of two integer numbers, the resultant bimodal tip trajectory is 

periodic, and it simplifies the parameters’ calculation. However, the driving frequencies of the 

microcantilevers are generally incommensurate[126] and the tip motion can be quasi-

periodic[127].   

The amplitude reduction formulas for the first and secondary modes are then attained by 

eliminating i  in Eqn. (38) as follows: 

( )

2
ratio i i i i
i 2

20i 2
i i

ts,i ts,i

i

A k A Q
A ,

A
k A

2 V E
Q


= =

 
−  + + 

 

 
(39) 

where, i 1, 2=  and ratio

iA  is the amplitude ratio for the thi  mode: ( )i 0iA A . In addition to the 

amplitude reduction equations, removing isin( )  and icos( )  terms in Eqn. (38) leads to the phase 

lag equations: 
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2

i i i ts,i1

i

ts,i

k A Q E
tan ,

2 V

−
  +

 =   −  
 (40) 

The tip-sample interaction force ( tsF ) in Eqn. (38) can, in principle, be calculated using any 

appropriate contact model. Here, the tip-surface interactions on viscoelastic polymeric surfaces are 

computed using the accelerated Attard’s model and the viscoelastic behavior of the polymer is 

modeled by using an SLS model, except otherwise specified. The Creep compliance function of 

the SLS constitutive model is:  

t0

0

1 1 E E
e ,

E(t) E E E

− 

 

−
= +  (41) 

that includes a single relaxation time, which governs how fast the instantaneous modulus of the 

sample changes from 0E  (short-term modulus of the sample) to E (long-term modulus once the 

material is completely relaxed). Attard’s three-dimensional viscoelasticity model correlates the 

radial time-dependent sample surface deformation, u (r, t) , to its rate of change, u (r, t) , through 

its interaction with an axisymmetric rigid tip[2]:  

( )
0 0

1 1
u(r, t) u(r, t) u (r, t) k(r,s) p(h(s, t)) s ds ,

E



= − − −
   (42) 

where, p(h(r, t))  is the interaction force per unit area (pressure) between the tip and the surface. 

p(h(r, t))  is a function of h(r, t)  which is the radial time-dependent gap between the axisymmetric 

tip and the deformed sample at time t  and radius r  from the central axis. In this work, we calculate 

p(h(r, t))  based on the Lennard-Jones pressure equation: 

( )3 6 6

0p(h(r, t)) H 6 h(r, t) z h(r, t) 1 ,=  −  (43) 

where 0z  and H are the intermolecular equilibrium distance and Hamaker constant, respectively. 

Also, u(r, t)  and p(h(r, t))  are time derivatives of u(r, t)  and p(h(r, t)) , respectively. The long-

time static deformation of the surface, u (r, t) , is defined as: 

0

1
u (r, t) k(r,s) p(h(s, t)) s ds ,

E







= −   (44) 

and the kernel of the integral, k(r,s) , can be expressed in terms of the complete elliptic integral of 

the first kind[81], K , as shown below: 
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2 2

2 2

4
K(s r ) s r

r
k(r,s)

4
K(r s ) s r

s


 

= 
 


. (45) 

Attard’s model parameters and the associated computational methods are elaborated elsewhere [1].  

 

Figure 19. The algorithm proposed in this work for predicting instrument observables in 

bimodal AFM through simultaneous compliance of the amplitude reduction formulas for both 

driven modes.  

To embed Attard’s model into the bimodal AFM framework, we propose an algorithm 

(Figure 19) that can predict the Z  distance and associated 1 , nA , and n  for a given ratio

1A , 01A ,  

and 0nA . In this algorithm, we assume the cantilever is simultaneously excited exactly at two of 

its eigenfrequencies (i=1 and i=n) and the relevant parameters are labeled accordingly. The 

algorithm simultaneously satisfies the amplitude reduction formulas (Eqn. (39)) for both excited 

modes and computes the resulting bimodal phases (Eqn. (40)). The subscript “ g ” denotes a 

guessed value for a parameter and the subscripts “” and “ ” represent the number of iterations 

of each loop. g AM AFMZ Z −=  is the initially guessed Z value using a previously proposed algorithm 

for AM-AFM[1]. Z  and n,A   are the adjustments made to Z  and nA  at each iteration, 
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respectively which are applied to the guessed values to facilitate the convergence process. These 

values ( Z  and n,A  ) are updated at each iteration to achieve accelerated convergence. When 

both loops are satisfied as directed by the algorithm, all bimodal AFM parameters such as Z , 

indentation, second mode amplitude, energy dissipations, and virials are recorded for the given set 

of input parameters. A tolerance (“ tol ” as shown in Figure 19) of 
210−

which facilitates a 

reasonable accuracy is used to fulfill the condition of the algorithm. 

3.3 Verification of the amplitude reduction algorithm 

To verify Eqn. (39) and (40), the predictions from the proposed algorithm are compared to 

experimental data from literature[42] extracted on a stiff (silicon) elastic sample and simulation 

results from the AMAC (amplitude modulated approach curves) tool of VEDA (Virtual 

Environment for Dynamic AFM) which includes explicit microcantilever dynamics in bimodal 

AFM[74]. The interaction force ( )tsF  is calculated using the DMT (Derjaguin, Muller, and 

Toporov) model[53], and the surface and interaction parameters[42] are mentioned in the caption 

of Figure 20. The results from the algorithm show an excellent agreement with the experimental 

and simulation data. In these simulations, the tip oscillates in the attractive regime ( 1 90  ). 

To examine the accuracy of the model predictions when the tip-surface interaction is in the 

repulsive regime, we conducted another set of simulations on a softer elastic surface which its 

parameters are mentioned in the caption of Figure 21.  The interaction force ( )tsF  is calculated 

using the DMT model. The predictions from the proposed algorithm (Figure 21) again show 

excellent consistency with the results of VEDA tools for this scenario in which the oscillation 

regime is repulsive ( 1 90  ) (Figure 21).  
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Figure 20. Validation of Eqn.’s (39) and (40) against previously published bimodal AFM 

experimental data [42] and simulation results extracted using the AMAC tool of VEDA [74] on 

a Silicon sample illustrates excellent agreement. The ratio

1A  range used for these simulations is 

between 0.1 and 0.9. The employed parameters in these simulations are as follows: 01A 10 nm= , 

02A 1 nm= , 20H 9.03 10 J−=  , 1k 0.9 N / m= , 2k 35.2 N / m= , 1f 48.913 kHz= , 

2f 306.194 kHz= , 1Q 255= , and 2Q 1000= [42]. 

 

Figure 21. Validation against bimodal AFM simulation results extracted using the AMAC tool 

of VEDA [74] on an elastic sample illustrates perfect agreement with the proposed algorithm. 

The used values for material properties, microcantilever, and DMT model parameters are: 

01A 50 nm= , 02A 1 nm= , 2 1f f 6.26= , E 1 GPa= , and 
20H 7.55 10 J−=  . The 1Ar  range used 

for these simulations is between 0.1 and 0.9.  
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3.4 Computational results 

To predict the dependence of bimodal AFM observables on adhesive and viscoelastic 

properties of local polymeric domains using the proposed Attard’s model, we conduct a set of 

simulations using typical viscoelastic polymer properties[92]. The values for operational 

parameters and the cantilever properties are chosen in range with what is commonly used for 

bimodal AFM experiments on polymers. Different creep (retardation) times ( )  ranging between 

53.2 10 s−  and 103.2 10 s−  are employed in the simulations while all other parameters are held 

fixed. This range for   was chosen to span the range from much smaller to much larger than tip-

surface interaction time. 

Typical calibration values of Olympus AC160-R3 microcantilevers are used in these 

simulations: 1f 280 kHz= , 1k 28.1 N / m= , 1Q 430= , 2f 1593 kHz= , and 2Q 600= . The 

calibration methods are explained in the experimental section. 01A  and 02A  are selected to be 

50 nm  and 1 nm , respectively. We specifically chose a small 02 01A A  ratio to avoid crosstalk 

between modes as suggested by others [47-50].The surface properties used are listed in Table 5.  

Table 5. The surface properties used to predict the dependence of bimodal observables on local 

adhesive and viscoelastic polymer properties using the proposed algorithm.  

  0E  E  H  0z    

varies 2.0 GPa  0.5 GPa  205 10 J−  0.28 nm  0.49  

 

Simulation results are shown in Figure 22 as a function of ratio

1A . As discussed elsewhere 

[1], the calculated values for 1  (Figure 22-a), which depend on the average dissipated energy 

during each interaction cycle[95], are a function of the ratio between the interaction time (the 

duration on which the tip experiences surface forces) and the effective relaxation (or creep) time 

for viscoelastic samples. When   contact time or    contact time, the polymer is either nearly 

completely relaxed or relaxes very little during the interaction time, respectively. In both cases, 

minimal hysteresis occurs during tapping cycles. However, when   value gradually changes 

between these two extremes, energy dissipation during each interaction cycle appears, rises to its 

maximum, and then gradually vanishes. This phenomenon leads to the non-monotonic behavior of 
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1  and tsE  vs.   for a fixed ratio

1A  in Figure 22 (a and e) as observed previously for tapping 

mode[1] on viscoelastic and adhesive surfaces. 

 

Figure 22. Study of the bimodal observables’ sensitivity to the effective creep time of the 

polymer ( ) . Selected   values are stated in the legends and the range is between 53.2 10 s−  to  

103.2 10 s− . 
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Figure 5 provides key insights into the sensitivity of bimodal observables to local changes 

in tau while scanning a hypothetical sample where other parameters such as E  and 0E  are held 

constant. While 1  changes more sensitively with ratio

1A  than 2 , when the main difference 

between two adjacent domains on the surface is their associated effective relaxation time, 2  can 

discriminate much more effectively between regions where   is much smaller or much larger than 

the contact time. A clue to the underlying reasons for this behavior can be found in Figure 22 f and 

h which show that across the five orders of magnitude changes in   studied, the range of attained 

values for ts,2V  is much smaller than the range of ones attained for ts,2E  . When combined with the 

fact that 2

2 2 2k A Q 2

1 1 1k A Q  due to the amplitude difference between modes, the resulting 

2  (Eqn. (40)) thus depends proportionally more on ts,2E  and ts,2V  compared to the dependence 

of 1  on ts,1E  and ts,1V . For these reasons 2  appears more sensitive than 1  to   change.  In 

addition, the amplitude of the second mode ( 2A ), as depicted in Figure 22 (b), monotonically 

changes with relaxation time (). As illustrated, for the same setpoint for the amplitude of the first 

mode, when (  contact time) and sample’s stiffness is almost like E (softer), 2A  is larger than 

when (  contact time) and the sample’s stiffness is almost like 0E  (stiffer).  In both of these 

cases, the energy dissipation due to viscoelasticity is 0  and according to Eqn. (38), 2A  is related 

to 2  as follows: 2 02 2A A sin( )=  . Therefore, when energy dissipation by the second mode is 

negligible, larger 2  results in a greater 2A  prediction. 

A comprehensive study of the dependence of bimodal AFM observables on local adhesive and 

viscoelasticity parameters for a fixed   is presented in Figure 23. The microcantilever properties, 

01A , and 02A  of these simulations are identical to the ones used for Figure 22 and the ratio

1A  is 0.5. 

The simulation results for various viscoelasticity model parameters and two different surface 

adhesions are presented in Figure 23. These are the identical parameters used for all the conducted 

simulations: R 3 nm= , ratio

1A 0.5= , and 0.1 s =  . The Poisson ratio ( ) for the LDPE and PS 

domains are chosen as the nominal values provided by the manufacturer, 0.49  and 0.35 , 

respectively. . 0E  and E  values for the simulations are selected based on the Latin hypercube 

sampling method. Since 02(A indentation depth 1) , the interaction time is mainly dictated by 

the first mode and our previous studies on the relaxation mode(s) of the polymer that contributes 
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the most to energy dissipation during a tapping cycle of AM-AFM [1] is indeed applicable to 

bimodal AFM. Therefore, we chose the creep time of the polymers to be 0.1 s  for all simulations 

conducted. 

 

Figure 23. Study of the bimodal observables’ dependence on the surface adhesion (quantified 

as 2

0HR 6z ) and viscoelasticity level. The first row (a-c) and second row (d-f) simulations have 

smaller and larger adhesions associated with 20H 1 10 J−=   and 20H 7 10 J−=  , respectively. The 

selection of 0E  and E  in the performed simulations are done based on the “Latin hypercube 

sampling” method. The used material and interaction parameters are stated in the text. In these 

conducted simulations  R 3 nm= , ratio

1A 0.5= , 0.49 = , and 0.1 s =   

As seen in Figure 23, the hysteresis due to surface adhesive forces is larger when E  and/or 

adhesive forces are relatively smaller and larger, respectively. Furthermore, while 2  is generally 

more sensitive to changes in surface viscoelasticity, the surface adhesion is better resolved via 1 . 

The higher sensitivity to the magnitude of surface adhesion of 1  in comparison with 2  can be 

explained through the tip velocity-dependency of the energy dissipation as expressed in Eqn. (38). 

Therefore, since the adhesive forces between tip and surface during the interaction time occur 

when the tip experiences the largest first mode velocities, their contribution toward first-mode 

dissipation weighs more than equally-in-size repulsive forces. This relation holds either during 
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approach or retraction off the surface. However, in terms of the secondary mode energy dissipation 

contributions, there is no such relation between the tip secondary mode velocity and the adhesive 

forces.  

3.5 Material viscoelasticity and adhesive properties estimation 

We explore utilizing the proposed computational approach to post-process the 

experimental observables and estimate the surface adhesive and viscoelastic properties. Since the 

accelerated Attard model does not provide a closed-form solution, finding a correlation between 

the experimental data and the surface properties is challenging. Here we present a data analysis 

approach to connect the bimodal AFM observables to the material’s properties through an inverse 

model.  

The data analysis approach requires a comprehensive set of simulations with an appropriate 

range for 0E , E , surface static adhesion, and tip radius ( R ) values for known AFM 

microcantilever properties and operating conditions ( 1k , 2k , 1Q , 2Q , 01A , ratio

1A , ratio

2A ). We 

select 0.1 s =   with the same reasoning described previously. The Poisson ratio (  ) for the 

LDPE and PS domains are chosen as the nominal values provided by the manufacturer, 0.49  and 

0.35 , respectively. This inclusive bimodal database with known input parameters facilitates a 

regression-based analysis to identify and recognize the existing dataset patterns. We used a method 

based on the multivariate linear regressions to estimate 0E , E  , and surface static adhesion from 

the measured 1 , 2 , and 2A  values at each pixel. In order to minimize the precision loss due to 

using linear regression, we select the range of E  in the simulation results datasets in accordance 

with the expected material properties. The process utilized can be represented as a conversion 

matrix and vector, as follows: 

1 1 2 3 0 1

2 4 5 6 2

2 7 8 9 3

c c c E d

c c c E d

A c c c Adh d



      
      
 = +      

            

 (46) 



 

 

72 

3.6 Experiments 

To validate the performance of the described inverse approach, we acquired a set of 

experimental bimodal AFM data on a polymer blend sample and used it to estimate its viscoelastic 

and adhesive properties. The bimodal AFM experiments are performed using a commercial Cypher 

AFM setup (Asylum Research, Santa Barbara, CA) on a fresh PS-LDPE polymer blend which was 

purchased from Bruker Nano Inc. The experiments are performed on a 4 4 m   rectangular region 

with a 1024 points/line resolution level and a scan rate of 1 Hz. The sample is selected due to the 

significant mechanical difference between polymer domains, as the bulk nominal Young’s 

modulus for PS and LDPE are 2 GPa and 0.1 GPa, respectively, as per the product description. By 

calibrating Olympus AC160 microcantilevers, the following parameters are determined: 

1f 281 kHz,=  2f 1.593 MHz,= 1

1k 28.1 Nm ,−=  1

2k 509.8 Nm ,−=  1Q 429,=  2Q 600,=  

01A 50 nm,=  and 02A 1 nm= . The calibration of the first mode stiffness was performed based on 

two well-established calibration techniques: the Sader method [128] and the thermal noise 

method[129]. This arrangement which does not require mechanical contact with a hard sample 

during the calibration is accessible through the GetReal™ tool in the instrument software. The 

calibration of the second mode stiffness was performed using the suggested power-law relationship 

between stiffness and frequencies of the excited modes: ( ) 2

2 1 2 1k k f f


= , where 2  is the 

calibration parameter which is empirically determined for specific microcantilevers[130, 131]. The 

calibration values obtained using the mentioned method were compared with the ones from the 

slope of the dynamic amplitude approach curve for the second eigenfrequency and the one for the 

quasi-static force curve for the first resonance mode on a fresh clean silicon sample and the 

agreement of the acquired values was satisfactory. The blueDrive photothermal excitation system 

excites the microcantilever at two eigenfrequencies (1 and 2). Modal amplitudes and phases were 

tuned when the microcantilever was within 100 nm above the surface. We specifically suggest 

ratio

1A  at 0.5 for the experiments to maximize the energy dissipation during each cycle[1]. The 

experiments were conducted under ambient temperature and dry nitrogen flushed conditions to 

minimize the effect of capillary forces. As shown in Figure 24, The polymeric domains are well 

separated. The round shapes on the images are LDPE domains which are surrounded by a 

homogeneous PS background. We use the bimodal observables of each pixel of the images, i.e. 



 

 

73 

1 , 2 , and 2A , to estimate the surface nanoscale properties using the regression model (Eqn. 

(44)). 

 

Figure 24. Bimodal images of the PS-LDPE sample illustrate phase lag of the first and second 

mode, and amplitude of the 2nd mode from left to right, respectively. The associated histograms 

are shown in the second row. The size of the images is 4 4 m  . 

The calculated ic  and id  constant terms of Eqn. (44) are determined through linear 

regression on the relevant simulation results datasets and are listed in Table 6. The spatially 

resolved surface properties estimations using the described inverse approach are shown in Figure 

25 and the predicted mean values for polymer domains are listed in Table 7. Since similar samples 

were previously explored by others, here we compare our results with their predictions. Garcia et 

al.[114] presented a method in which the model parameters were first calibrated on the PS domain 

so that the model predictions for  PS stiffness becomes comparable with expected values. Then, 

the calibrated model was applied to LDPE domain leading to stiffness estimates of 0.11 0.02  

GPa which compares well to our E  value prediction as listed in Table 7. In their method, the 

viscoelasticity of the surface was described by a so-called “3D Kelvin–Voigt model” in which the 

surface adhesion is neglected. Meng et al.[132] employed an elastic-based model to estimate the 

PS-LDPE surface adhesion and stiffness using magnetic-drive soft probes. The resultant mean 

reduced modulus predictions for PS and LDPE phases were 0.1 and 1.8 GPa, respectively which 
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compare well to our results. Since each group used different microcantilevers to conduct 

experiments, we compare the predicted adhesion force values for PS and LDPE phases through 

the ratio of the mean predicted adhesions for these domains. Meng et al. and Solgaard et al. 

reported adhesions ratio as 1.26[132] and 1.2~2.0[121] which is in agreement with 1.29 predicted 

by our method. Therefore, we conclude that despite the simplifications applied to the proposed 

algorithm, the attained results prove the capability of the employed model to make realistic 

predictions.  

Table 6. The coefficients of the conversion matrix and vector as described in Eqn. (46) 

determined through linear regression on simulation results. The tip radius estimate is 8.7 nm. 

 1c  (GPa) 2c  (GPa) 
3

GPa
c

nm

 
 
 

 
4c  (GPa) 5c  (GPa) 

6

GPa
c

nm

 
 
 

 

PS 0.89 6.81 -0.21 0.14 -33.72 0.15 

LDPE 0.23 2.41 -0.07 0.07 -1.24 -0.003 

 7c  (nN) 8c  (nN) 9c  (Pa) 1d  (GPa) 2d  (GPa) 3d  (nN) 

PS 0.18 -1.62 -0.14 -22.54 8.36 -0.08 

LDPE 0.008 0.69 -0.02 -4.06 -0.49 0.99 

Table 7. Predicted mean viscoelastic properties for the polymer domains based on the acquired 

bimodal AFM data. The predictions agree with the ones in the literature [114, 121, 132]. 

domain 0E (GPa)  E (GPa)  Static Adhesion (nN)  

PS 5.68 0.31  1.82 0.31  8.08 0.91  

LDPE 2.73 0.11  0.11 0.03  6.28 0.22  
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Figure 25. The estimates for adhesion force, E   and 0E  values for the scanned polymer 

domains are predicted using the proposed algorithm. The static adhesion is calculated based on 
2

0HR 6z . 

3.7 Conclusions 

This work features a proposed algorithm that systematically accommodates surface forces 

and linear viscoelastic three-dimensional deformation into the bimodal AFM framework. To 

establish the algorithm, we derived the amplitude reduction formulas for the resonant modes in 

bimodal AFM based on the Euler Bernoulli assumption for the microcantilever behavior. The 

algorithm simultaneously satisfies the derived amplitude reduction formulas for both resonant 

eigenmodes while the tip-surface interaction is computed using the accelerated Attard’s model. 

The algorithm enables the rigorous prediction and interpretation of bimodal AFM observables with 

a first-principles approach. Simulations illustrate that bimodal AFM can provide enhanced contrast 

between domains with relaxation time discrepancies in comparison with the conventional tapping 

mode AFM. The results show that 2  channel is more responsive to the viscoelasticity level of the 

sample than 1 . However, 1  channel is more sensitive to the surface adhesion level than 2 . 
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Furthermore, simulations showed that the phase lag and amplitude ratio of the secondary mode 

illustrates a nonmonotonic and monotonic variation versus relaxation time, respectively. Then, we 

presented an inverse surrogate-model-based method that quantitatively predicts the local adhesion 

and standard linear solid viscoelastic parameters from acquired bimodal data. The application of 

this method on bimodal AFM data on a PS-LDPE polymer blend leads to quantitative 

discrimination of adhesion and viscoelastic properties of the sample. Taken together, the results 

presented here successfully open the way to advanced interaction models to be used to quantify 

local nanomechanical properties of soft, adhesive, and viscoelastic materials in bimodal AFM.  
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4. A FAST FIRST-PRINCIPLES APPROACH TO MODEL ATOMIC 

FORCE MICROSCOPY ON ADHESIVE VISCOELASTIC SURFACES 

The previous chapters have illustrated approaches that allow Attard’s model to be accelerated 

computationally and embedded in algorithms that can predict the dAFM observables given the 

sample adhesive and viscoelastic properties. In this chapter, we render Attard’s contact model, one 

of the most rigorous models for tips interacting with adhesive viscoelastic samples, into an easy-

to-use, fast, and more robust computational tool than either Attard’s original method or the 

accelerated implementation of the previous chapters. In the proposed enhanced Attard’s model 

(EAM) the surface deformation is reconstructed using a complete set of optimized biorthogonal 

basis functions as opposed to the computationally expensive radial discretization-based approach 

employed by Attard. The use of higher-order numerical procedures in EAM to solve the model’s 

governing ordinary differential equations (ODEs) leads to more stable solutions even for soft and 

sticky samples. We also rearranged the original model’s formalism to enable a fast and explicit 

solution of the model ODEs. Implementing these enhancements, EAM is more stable, 3+ orders 

of magnitude faster, and equally accurate when compared to the original model. These 

improvements facilitate the inclusion of EAM into simulations of various AFM modes of operation. 

This is demonstrated with fast simulations of force-distance curves and amplitude modulation 

AFM on soft polymer surfaces. On a typical desktop computer, simulation of an amplitude 

modulation approach curve with EAM takes less than a minute as compared to 15  hours by the 

original Attard’s model. The Fast and rigorous EAM predictions for AFM on soft, viscoelastic 

polymers with surface forces provide significant insight to better understand the complex tip-

surface interaction phenomena and also AFM images interpretations on such samples.  

4.1 Introduction 

In this work, we use strategies to significantly enhance the computational part of Attard’s 

model and turn it into a faster and more robust first-principles approach. First, we rearranged the 

model formalism so that its governing differential equations become explicitly solvable. Next, we 

approximate the deformed surface profile using a complete set of optimized biorthogonal basis 

functions to replace the radial discretization in the original model. Finally, we used higher-order 
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numerical procedures to solve the model’s ordinary differential equations instead of the original 

forward Euler’s method. To demonstrate the utility of EAM in the AFM context, we performed 

simulations of an AFM force-distance curve and a dynamic approach/retract curve on polymeric 

surfaces. EAM utilization to make predictions or interpret AFM images of soft viscoelastic sticky 

polymers provides a fast path to gain further insight into the complex tip-surface interaction 

phenomena on such samples.  

4.2 Methods 

The elastic equation for a semi-infinite half-space predicts the surface deformation due to 

a distributed applied force as follows [133]:  

21 p( )
u( ) d ,

E

−
= −

 
s

r s
r - s

 (47) 

where r is the position vector to the point of interest on the surface, u( )r  is the surface deformation 

at r, and p( )s  defines the distributed pressure applied on the surface with elastic modulus E  and 

Poisson ratio  . When a rigid tip contacts a surface, p( )r  arises from the local instantaneous tip-

surface interaction forces which their magnitude depends on h( , t)r , the tip-deformed surface 

distance. These parameters for an interacting tip-surface ensemble are shown in Figure 26. With a 

parabolic approximation of the rigid tip profile, the geometry parameters can be correlated as: 

2

0u( , t) h (t) 2 R h( , t) .= + −r r r  (48) 
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Figure 26. The tip-sample interaction schematic illustrating the parameters used in the model. 

Dashed lines on the surface represent the surface rest level before the deformation. 

To extend Eqn. (47) to tip-surface contact on linear viscoelastic materials, the surface 

deformation history is accounted for by implementing the correspondence principle on the linear 

elastic equation as follows: 

0

2
t

0
t

1 p(h( , t ))
u( , t) u( , t ) d dt ,

E(t t )

−
− = −

 − 
s

r r s
r - s

 (49) 

where, p(h( , t)) dp(h( , t)) dt=r r  and 0t  is the initial time instant of the computations. Tip position 

at 0t  is assumed to be far enough from the sample so that the surface is flat and stationary 

( 0u( , t ) 0r ) and tip-surface interaction is negligible. As seen in Eqn. (49), the deformation of 

viscoelastic surfaces in a continuum mechanics perspective requires a time integral over its 

preceding deformation history.  

In this work, we choose to model the surface viscoelasticity behavior using the constitutive 

relationship of a standard linear solid (SLS) whose creep compliance function is defined as:  

t/0

0

1 1 E E
e ,

E(t) E E E

− 

 

−
= +  (50) 

where, 0E  and E  are the short and long-term modulus of the surface, E(t)  is the effective 

instantaneous viscoelastic modulus, and   is the characteristic creep(retardation) time. when is 

very short or long comparing with the interaction time, the SLS model reduces to the Kelvin-Voigt 

or Maxwell models, respectively. However, when is chosen to be comparable with interaction time, 

the SLS model can capture more complex material behavior that none of those models can exhibit. 
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We calculate the tip-surface pressure between any point on the surface with the tip using a 

Lennard-Jones (LJ) model of the van der Waals interaction between two infinite parallel surfaces: 

6

0

3 6

H z
p(h( , t)) 1 ,

6 h( , t) h( , t)

 
= − 

  
r

r r
 (51) 

where H  is the Hamaker constant and 0z  is the equilibrium distance. These two physical 

parameters, H  and 0z  define the work of adhesion which is the reversible thermodynamic work 

to separate two interfaces from equilibrium state to distance of infinity: 

a 1 2 12 2

0

H
W ,

16 z
=  +  −  =


 (52) 

where, 1  and 2  are surface energies of the two bodies and 12  is the interfacial energy. Attard’s 

calculates the distributed tip-surface pressure ( p(h( , t))r ) as a function of r   using the well-known 

Derjaguin approximation [134, 135] which applies to smooth convex surfaces that their curvature 

compared to the gap between interacting bodies is small. The model can accommodate alternative 

and/or extra surface force models or more sophisticated linear viscoelasticity constitutive models 

such as the generalized Maxwell model (also known as Prony series) or power-law rheology to 

capture more complex sample behavior.  

SLS model’s creep compliance substitution into Eqn. (49) and subsequently, its 

differentiation respect to time cast the equations in the form of differential equations and remove 

the time-convolution integral, as follows:  

( )
0,s

1 1 p(h( , t ))
u( , t) u( , t) u ( , t) d ,

E



= − − −

  
s

r r r s
r - s

 (53) 

,s

1 p(h( , t ))
u ( , t) d .

E





= −

 
s

r s
r - s

 (54) 

where, 0,sE  and ,sE  are reduced short- and long-term modulus of the sample, respectively: 

2

0,s

0

2

0,

1
E ,

E

1
E ,

E




−
=

−
=

 (55) 

Due to axisymmetry of the problem, Attard further simplifies the equation by expressing the kernel 

in terms of the complete elliptic integral of the first kind: 
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( )
dr

0,s 0

1 1
u(r, t) u(r, t) u (r, t) p(h(s, t)) k(r,s) s ds ,

E
= − − −

   (56) 

,s 0

1
u (r, t) p(h(r, t )) k(r,s) s ds ,

E







= −   (57) 

where dr  is the computational domain beyond which the tip-sample interaction is considered 

negligible. k(r,s)  is defined as: 

2 2

2 2

4
K(s r ) s r

r
k(r,s) ,

4
K(r s ) r s

s




= 
 


 (58) 

where, K is the complete elliptical integral of the first kind. Since k(r,s) k(s, r)=  the k square 

matrix is symmetric.  

4.3 Attard’s original computational model: 

The equations (47)-(58) and described methodology are identical to the ones suggested by 

Attard et al. [2, 79, 81]. Introducing radial discretization on Eqn. (56)/(57) yields a set of nonlinear 

differential equations that each represents the surface deformation rate at the associated radial node 

specified by radial distance r . Due to concealed u(r, t)  in p(h(s, t))  term on the right side of Eqn. 

(56), the resultant set of ODEs cannot be treated and solved explicitly. Therefore, Attard solves 

them through iteratively adjusting a guessed u(r, t)  until the equality between both sides of Eqn. 

(56) is established. Attard also suggests using forward Euler’s method to predict u(r, t)  for each 

time-step based on the calculated u(r, t)  for preceding time-step. Attard numerically calculates the 

integrals in Eqn. (56) and (57) using introduced radial nodes as integration points. Simultaneously 

these nodes are used to reconstruct the deformed surface profile at each time-step and act like 

degrees of freedom (DOF) of the surface. This bifunctionality of the radial nodes is not 

computationally efficient since the number of radial discretization for sufficiently accurate integral 

calculations might not be necessarily the same as the required DOF to render the deformed surface. 

We will refer to the above-described computational method proposed by Attard as the “iterative” 

approach. 
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4.4 Improved computational framework: 

Despite the iterative computational approach’s output accuracy, it is very sluggish and 

computationally expensive. To improve the computational part of the model, we first remove the 

incompetent iterative solution of the model’s differential equations. To do so, we expand the rate 

of pressure change in Eqn. (56) as follows: 

0p(h(r, t)) p (h(r, t)) [h (t) u(r, t)]= −  (59) 

where p (h) dp dh = . Then, we substitute Eqn. (59) into Eqn. (56) and rearrange it so that u(r, t)  

terms are all on the left side of the equation, as below: 

( )

d

d

r

0,s 0

r

0

0,s 0

1
p (h(s, t)) u(s, t) k(r,s) s ds u(r, t)

E

1 h (t)
u(r, t) u (r, t) p (h(s, t)) k(r,s) s ds .

E


 − =

− +






 (60) 

The result is a set of nonlinear coupled ordinary differential equations with explicit time-

dependent forcing through the 0h (t)  term. Hereafter, this method is referred to as the “explicit” 

approach in this chapter. Eqn. (60) can be solved by introducing radial and temporal discretization 

like the iterative approach. Using the explicit approach solution significantly reduces the 

computational time in comparison with the iterative approach.  

Furthermore, we propose a method to optimize the computations speed by separating the 

dual functionality of the radial nodes in the original contact model. To do so, we apply separation 

of temporal and radial variables on u(r, t)  as follows: 

bn

i i

i 0

u(r, t) a (t) f (r) ,
=

=  (61) 

where ia (t)  represent the time-dependent coefficients of the radial basis functions and if (r)  are a 

complete set of functions that approximate the surface deformation profile at each time-step. 

Substitution of Eqn. (61) into Eqn. (60) results in a set of differential equations as follows: 
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d b

db

r nn
i

i i i

i 0 i 00,s 0

rn

0
i i

i 0 0,s 0

a (t)
p (h(s, t)) f (s) k(r,s) s ds a (t) f (r)

E

1 h (t)
a (t) f (r) u (r, t) p (h(s, t)) k(r,s) s ds .

E

= =



=

 − =

 
− + 

  

 

 

 (62) 

Thus, instead of solving a set of ODEs in Eqn. (60) each associated with a radial element, we solve 

Eqn. (62) for the time-dependent coefficients, ia (t) , that each associated with a selected radial 

basis function. The resultant advantage is that the number of basis functions can now be adjusted 

and optimized independently of the number of radial integral partitions. While almost any 

complete set of functions can be chosen for if (r) , an accurate reconstruction of the deformed 

surface is achieved with smaller bn  if the shape of selected functions resembles the expected 

deformed surface profiles during an interaction cycle. To further simplify Eqn. (62), we choose 

if (r)  to be a complete biorthogonal set of functions. Since the problem is axisymmetric, we only 

consider the even terms of selected basis functions. Then, we multiply both sides of Eqn. (62) with 

jf (r)  and integrate over (0, dr ) to utilize the terms biorthogonality to simplify the resultant equation:  

db

d d

rn

i
i j j j

i 0 0,s 0

r r

j 0
j j j

,s 0,s0 0

a (t)
p (h(s, t)) f (s) s (s) ds a (t)

E

a (t) 1 h (t)
p(h(s, t)) s (s) ds p (h(s, t)) s (s) ds ,

E E

=



  −  =

 +  + 
 

 

 

 (63) 

dr

j j

0

(s) f (r) k(r,s) dr , =   (64) 

dr

2

j j

0

f (r) dr , =   (65) 

where, i  and j  are integer numbers between 0 to bn . j(s)  and j  are time-independent variables 

and hence, are not required to be calculated for each time-step. We rearrange Eqn. (63) into a 

matrix representation and introduce temporal discretization as follows:   

1

i q ij ja (t ) J b ,−=  (66) 
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dr

ij q i j ij j

0 0

1
J p (h(s, t )) f (s) s (s) ds ,

E
=  −   (67) 

d dr r

j 0
j j j j

,s 0,s0 0

a (t) 1 h (t)
b p(h(s, t)) s (s) ds p (h(s, t)) s (s) ds ,

E E

=  +  + 
     (68) 

where, ij  is the Kronecker delta. We use the Riemann approach to calculate the integrals for the 

simulations in this chapter. Solving the set of nonlinear ODEs for time-step qt  yields the set of 

associated i qa (t )  coefficient rates. Then, Eqn. (61) reconstructs the deformed surface profile at 

each time-step. This allows for the explicit computation of u(r, t)  and thus h(r, t)  and 

consequently ( )p h(r, t) . The tip-surface interaction force, tsF (t) , for each time-step is calculated 

as follows: 

dr

ts

0

F (t) 2 p(h(r, t) r dr .=    (69) 

To evaluate and optimize the performance of the proposed computational approach, we 

studied an alternative way of implementing the approximating basis functions. In this scenario, we 

express the tip-surface distance h(r, t)  in terms of a complete set of biorthogonal radial basis 

functions, as follows: 

bn

i i

i 0

h(r, t) a (t) f (r) .
=

=  (70) 

The implementation process for Eqn. (70) is similar to the previously explained procedure.  

4.5 Computational Stability 

In cases where the selected model to calculate p(h(r, t))  switches between attractive and 

repulsive forces depending on the gap between interacting bodies, the Attard’s model 

computations may become unstable. As illustrated in Figure 27-b, the computational instability 

occurs when the surface undergoes rapid non-equilibrium movements during the interaction cycle, 

specifically during snap-in or off surface processes for which the model predicts large qu(r, t ) . 

Attard suggests using forward Euler’s method to project q 1u(r, t )+  at each time-step based on the 

calculated qu(r, t )  for previous time-step [2]: 
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q 1 q qu(r, t ) u(r, t ) dt u(r, t ) ,+ = +   (71) 

where “dt” is the infinitesimal time interval between time-steps. Using forward Euler’s method, 

the projected q 1u(r, t )+  is directly proportional to qu(r, t )  of the proceeding time-step. Therefore, 

when qu(r, t )  is very large, it may lead to discontinuities in the reconstructed deformed surface 

profile and resultant computational instabilities. This may happen due to surface deformation 

instabilities during interaction time such as snap-in and/or snap-off instances when the tip 

approaches or retracts off the surface, respectively, especially on highly soft and sticky surfaces. 

To alleviate this issue, we employed the generalized Euler’s method to establish a more controlled 

link between u(r, t)  at each time-step and u(r, t)  of the proceeding time-steps: 

En

q 1 q i q i

i 0

u(r, t ) u(r, t ) dt a u(r, t ) ,+ −

=

= +    (72) 

where, as per definition the rate coefficients must satisfy this condition: 
En

i

i 0

a 1
=

= .  

 

Figure 27. Computational stability improvements by employing generalized Euler’s method 

(Eqn. (72)) with (a): En 1=  in comparison with (b): forward Euler’s method. The rigid tip 

oscillates through a sinusoidal wave and interacts with the LDPE surface as characterized in 

Table 8. All the employed simulation parameters for (a) and (b) are identical to enable robustness 

comparison. The surface adhesion level is regulated by employing various 0z  which are 

mentioned in the figures. 

 



 

 

86 

To visualize the achieved computational stability enhancement, we used the generalized 

Euler’s method (Eqn. (72)) with two different number of terms: En 0=  (forward Euler’s method) 

and En 1=  to predict a single force-distance (F-d) curve when a rigid tip oscillating through a 

sinusoidal wave interacts with a low-density polyethylene (LDPE) sample as characterized in 

Table 8. We regulated the adhesion of the surface by decreasing 0z  in the LJ pressure equation 

(Eqn. (51)) to study when computational instabilities arise. As illustrated in Figure 27, generalized 

Euler’s method implementation stabilizes the computations in comparison with forward Euler’s 

method. We name the described method as formulated by Eqn. (17)-(19) combined with Eqn. (72) 

as “enhanced Attard’s model” (EAM). 

Table 8. The employed values for LJ pressure and surface viscoelasticity properties for LDPE 

in the conducted simulations. H, 0z ,  , 0E , E , and   are Hamaker constant, equilibrium 

distance, Poisson’s ratio, short-term modulus, Long-term modulus, and creep time, respectively. 

The tip radius in these simulations is set to be 10 nm. 

H (J) 
0z (nm)    

0E (GPa)  E (GPa)  (sec)  

191 10−  0.25 0.49 2 0.1 71 10−  

4.6 EAM Verification 

To verify EAM and assure the reliability of the developed code, we compare EAM 

predicted  F-d curves for a prescribed triangular tip motion with the ones presented in Attard’s 

original work [2]. In this set of simulations, the paraboloid tip has a radius of 10 m  which 

oscillates through a triangular wave between 0h 10 nm=  and 0h 10 nm= − . The employed 

material properties and interaction parameters are: 0E 10 GPa= , E 1GPa = , 19H 10 J−= , 

0z 0.5 nm= , and 1 ms = . The sample and tip movement parameters are identical with the ones 

used in the original work to enable comparing the results. The number of temporal discretization 

points and employed cosine basis functions to reconstruct the deformed surface are 
410  and 250, 

respectively. the short/ long time Young’s modulus of the sample ( 0E / E ) are 10/ 1 GPa, 

respectively. Hamaker constant, H, is 
1910−

J and the equilibrium position, 0z , is 0.5 nm. The rigid 
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tip oscillates between 10 and −10 nm through a triangular waveform with an abrupt velocity 

change. The characteristic relaxation time for the creep function (retardation time) is 1 ms.  

The results are checked to be independent of the number of employed temporal and radial 

discretization. The employed surface and interaction parameters except tip velocities are identical 

in all Figure 28 simulations. The variation of predicted F-d curves indicates the velocity 

dependency of the model when interacting with a viscoelastic surface. Figure 28 illustrates an 

excellent agreement between the original Attard’s model and EAM predictions.  

 

Figure 28. The interaction between a rigid axisymmetric paraboloid tip oscillating through a 

prescribed triangular wave and a viscoelastic surface is simulated using EAM. The triangular 

excitation velocities are (a) 5 m s  , (b) 2 m s  , and (c) 1 m s  . The employed material 

and interaction parameters are identical with the ones used by Attard[2] to facilitate comparison. 

4.7 EAM performance 

We simulate tip-surface interaction in amplitude-modulation AFM (AM-AFM) on an 

LDPE sample using various configurations of EAM to evaluate, compare, and optimize their 

output computational accuracy. We assume tip oscillation is steady-state and sinusoidal in AM-

AFM which is a reasonable approximation when the operation is performed in air/vacuum [86]: 

q(t) Asin( t )=  − , where q  and t  are the tip deflection and time, and A ,  , and   are the 

steady-state amplitude of oscillation, excitation frequency, and phase lag relative to excitation 

force, respectively. Since the output computational error of “iterative” and “explicit” approaches 

can be minimized by employing a proper number of radial and temporal discretization, we consider 

them as “exact” solutions. EAM simulations converge to exact predictions if a sufficient number 

of basis functions ( bn  in Eqn. (61)) are employed. To quantify the convergence of EAM solutions, 



 

 

88 

we use virial ( )tsV  and energy dissipation ( )tsE  values of a single AM-AFM force history on an 

LDPE sample: 

where q (t)  is the tip velocity and T is the period of a single oscillation cycle.  

Table 9. The convergence rate of these EAM implementation setups is evaluated to realize the 

optimized configuration.  

# 
Radial 

disc. 

Solution type of 

nonlinear diff. eq. set 
Basis function 

Approximated 

parameter 

Orthogonality 

implementation 

A Yes Iterative NA NA NA 

B Yes Explicit NA NA NA 

C No Explicit Fourier u(r, t)  No 

D No Explicit Fourier h(r, t)  No 

E No Explicit Fourier u(r, t)  Yes 

F No Explicit Fourier h(r, t)  Yes 

G No Explicit Bessel first kind u(r, t)  Yes 

tsV  and tsE  are commonly used parameters to quantify AM-AFM and represent the 

conservative and non-conservative part of the interaction energy during tip-surface contact [1]. 

The utilized LDPE properties and the employed EAM setups are listed in Table 8 and Table 9, 

respectively. Typical calibration values of Olympus AC160-R3 microcantilevers are used in these 

simulations: f 278 kHz= , k 28.1 N / m= , and Q 430= , where f , k , and Q  are the excitation 

frequency, equivalent stiffness, and quality factor of the microcantilever. The free amplitude, 0A , 

is 62 nm and the amplitude setpoint is 0.8 for these simulations. Setups ‘C’ and ‘E’/’G’ are 

computed using Eqn. (62) and Eqn. (63), respectively and setups ‘D’ and ‘F’ refer to employing 

Fourier expansion basis functions to approximate h(r, t)  instead of u(r, t) . All solutions are 

T

ts ts

0

1
V F (t) q(t) dt ,

T
=   (73) 

T

ts ts

0

E F (t) q(t) dt ,= −  (74) 
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checked to be independent of the selected domain and temporal discretization values. Since the 

problem is assumed to be axisymmetric, only the even terms of the employed basis functions are 

considered. The number of the employed basis functions are in the range of 0 to 56. The 

convergence of the EAM configurations is appraised using the exact solutions (‘A’ and ‘B’) [1, 2, 

79] and the associated energy errors are expressed as a percentage. We considered the 1% error on 

both tsV  and tsE  parameters as the convergence threshold and we determined the convergence 

when this criterion is met constantly beyond a specific bn . The number of the time discretization 

is identical for all simulations ( )410  and the number of radial discretization for exact 

computational methods is 70. 

 

Figure 29. Comparison of the convergence performance of different configurations of EAM 

implementation as listed in Table 9. The graphs are color-coded according to legends of graph 

‘a’ and the labels defined in Table 9. The insets of the second-row graphs are intended to 

envision 1% error criteria of the energy parameters with respect to exact solutions.  
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The results illustrated in Figure 29 (a-b) show that tsV  and tsE  of the considered EAM 

setups gradually converge to the associated exact values by increasing bn . Figure 29 (c-d) depicts 

the percentage error of each of these setups and the insets are intended to assist in realizing the 

specific bn  beyond which the 1% error threshold for convergence is met. Figure 29 (c) shows that 

the Fourier basis function’s implementation leads to a more optimized tsV  convergence when used 

to approximate u(r, t)  (setups ‘C’ and ‘E’) than h(r, t)  (setups ‘D’ and ‘F’). Moreover, Figure 29 

(d) shows that in terms of tsE  convergence, the ones with biorthogonality implementation (setups 

‘E’ and ‘F’) converge in slightly smaller bn  numbers than others. Figure 29(a and b) illustrate a 

faster convergence for tsV  than tsE . We visualized this on predicted F-d histories as shown in 

Figure 30. In this graph, F-d history predictions by configuration ‘E’ when bn  increases from 0 to 

values specified in the legend are illustrated. When bn 0= , the surface deformation is 

characterized by a sole function of time: 0u(r, t) u(t) a (t)= = . The force history predictions 

gradually converge to the exact solution and do not visually seem to vary significantly beyond 

bn 20= . The repulsive phase of the force history converges faster to the exact solutions than the 

attractive phase. It means that EAM prioritizes the reconstruction of the more effective and central 

parts of the deformed profile earlier than the outer regions of the contact area. 

 

Figure 30. Visualization of F-d history convergence to the exact solution by increasing the 

number of employed basis functions ( bn ). The surface and LJ interaction parameters are listed in 

Table 8. 
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The time elapsed to compute a single tip-sample interaction cycle when using the setups 

listed in Table 9 is compared in Figure 31. The significant difference between iterative (‘A’) and 

other computational approaches depicts the considerable enhancement achieved through the 

applied strategies. Furthermore, the setups with biorthogonal basis functions (Setups ‘E’, ‘F’, and 

‘G’) which enjoy a further simplified formalism (Eqn.s (66)-(68)) lead to faster computations 

(Figure 31). The Bessel set of basis functions (‘G’) despite the acceptable convergence rate, is 

slower than Fourier ones due to the intrinsic computational complexity of the Bessel functions and 

their orthogonality implementation. Figure 31 illustrates that in terms of the computational time, 

EAM can outperform the “explicit” approach with a far fewer number of employed basis functions 

in EAM than the number of the implemented radial discretization in the “explicit” approach.   

 

Figure 31. Elapsed time to compute a tip-surface interaction cycle using different EAM 

configurations as listed in Table 9. The labels in the legend are defined in the first column of 

Table 9. The surface and interaction parameters are listed in Table 8. It shows the computational 

rate of EAM is about three orders of magnitude faster than the original iterative approach 

proposed by Attard[2, 79]. All simulations are carried out on a typical desktop computer. 

Considering both results in Figure 29 and Figure 31, amongst the evaluated EAM setups 

the tip-sample interaction phenomenon is most efficiently computed by EAM when the surface 

deformation is approximated by cosine terms of Fourier expansion as formulated in Eqn. (66)-(68) 

(setup ‘E’). Hereafter, we only employ this configuration to carry out EAM simulations in this 

chapter. Observing 1% virial and dissipation energy values error as the convergence criterion, the 
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number of required basis functions ( bn ) to approximate u(r, t)  is ~24 for this set of the input 

parameters.  

4.8 AFM Simulations using EAM 

EAM is a fast first-principles approach that can make reliable predictions when studying 

the interaction with viscoelastic and/or adhesive surfaces. The achieved improvements facilitate 

the inclusion of EAM into simulations of various AFM modes of operation. In this chapter, first, 

we use an algorithm to embed EAM into the AFM force spectroscopy simulations on soft polymer 

samples. AFM force spectroscopy is commonly used to study the surface mechanical properties 

[136-138]. In AFM force spectroscopy the microcantilever due to the Z-piezo expansion 

approaches the surface, snaps into the surface, indents into the sample until it reaches the defined 

setpoint, and then withdraws back to its initial state. The schematics and used parameters are 

shown in Figure 32. Interaction force is inferred from q(t) using the microcantilever equivalent 

stiffness (k) which is determined by calibration of the AFM microcantilever.  

 

Figure 32. AFM force spectroscopy schematics and used parameters. In this mode, the input 

signal to Z-piezo prescribes the defined Z motion. The microcantilever moves toward the 

surface, indents, and then retracts as it reaches the defined force setpoint. Tip and surface 

parameters are shown in Figure 26. 

The tip trajectory in AFM force spectroscopy with respect to the unperturbed surface level, 

0h (t) Z(t) q(t)= + , is not known a priori. Therefore, we need an algorithm to enable embedding 

EAM into the force spectroscopy framework. The quasi-static force curves are conducted in low 
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and off-resonance frequencies. Besides, we assume the microcantilever deflections are small 

enough so that it acts as a linear spring with equivalent stiffness k. Therefore, the designed 

algorithm iteratively determines q(t) at each time-step so that the quasi-static solution holds: 

tsq(t) F (t) k=  (75) 

The transient microcantilever responses such as the ringing effect which occur 

experimentally are not captured due to the quasi-static solution assumption. We applied the 

algorithm to simulate an AFM force spectroscopy on an LDPE sample with viscoelasticity and LJ 

pressure parameters as specified in Table 8 except 0.01 ms = . In this simulation, the 

microcantilever equivalent stiffness is 28.1 N/m and the microcantilever base travels through a 

triangular wave with 1 Hz frequency and 50 nm amplitude. 

 

Figure 33. Study the surface-microcantilever ensemble dynamics in AFM force spectroscopy. 

(a) shows the predicted microcantilever deflection during one oscillation cycle. (b) and (c) 

illustrate the predicted F-Z and F-d curves, respectively. The blue and red solid lines represent 

the approach and retraction branches of the force curve computed using EAM with bn 25= , 

respectively. The dashed black line is computed using the explicit approach. 

The results shown in Figure 33 illustrate the model’s ability to well capture the surface 

instabilities both when approaching and retracting the surface. During retraction, the adhered 

surface to the tip gradually peels away until the adhesive forces again dominate and the 

microcantilever deflects downward (negative force). This will lead to a hysteretic loop in which 

the long-range surface forces may significantly contribute to the resultant energy dissipation. The 

whole cycle computation took less than a minute to complete using a typical desktop computer as 

compared to 12  hours of the original Attard’s model. 
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Table 10. The employed values for LJ pressure and surface viscoelasticity properties for 

polystyrene (PS) in the conducted simulations. The tip radius in these simulations is set to be 50 

nm. 

H (J) 
0z (nm)    

0E (GPa)  E (GPa)  (sec)  

202 10−  0.15 0.35 4.25 1.89 71 10−  

Next, an AM-AFM approach/retract curve on a polystyrene (PS) surface with 

viscoelasticity and adhesive properties as specified in Table 10 is simulated. To do so, we used an 

energy balance based algorithm[1] employing the amplitude reduction formula:  

ratio

22

ts ts

2 2

1 Q
A

2V 1 E

kA Q kA

=

−   
+ +      

 
(76) 

where, ratioA  and A are the amplitude setpoint and tip oscillation amplitude, respectively. We 

calculated tsE , tsV , and   as a function of ratioA  as shown in Figure 34. Elapsed time to complete 

simulations for the approach curve with bn 25=  which meets the 1% tsV  and tsE  error threshold, 

is about a minute using a typical desktop computer as compared to 15  hours taken by the original 

Attard’s model. The results are checked to be independent of the computational domain selection 

and temporal discretization.  
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Figure 34. Computed (a): Phase lag ( ) , (b): Energy dissipation ( )tsE , and (c): virial ( )tsV  od 

AM-AFM dynamic approach/retract curves on an LDPE sample. In these simulations u(r, t)  is 

approximated according to Eqn. (61) with bn 25= . The employed 0A , f , Q, and k are 15 nm, 

278 kHz, 429.5, and 28.1 N/m, respectively. The results are in excellent agreement with exact 

solutions. 

The hysteretic approach-retraction branches in Figure 34 demonstrate the co-existence of 

both repulsive and attractive regimes in a range of ratioA ’s. The predicted dissipation in the 

repulsive regime follows the same trend previously predicted [88]. However, the method is 

uniquely capable of calculating the viscoelastic and adhesive dissipation in the attractive regime 

of AM-AFM operation. This can facilitate the visco-nanomechanics of soft, adhesive, and 

viscoelastic surfaces in an attractive regime using AFM modes. This is particularly helpful for 

sticky and/or highly delicate samples for which imaging in the repulsive regime is challenging 

and/or sample is susceptible to damage with forces in the repulsive regime.  
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Figure 35. The tip-surface interaction in a single cycle of AM-AFM on the LDPE surface in the 

time domain as predicted by EAM (blue area) and exact (dashed black line) approaches. The 

surface characteristic parameters are listed in Table 8. The instant associated with each of the 

images is noted at the left-down of each picture. a-f and g-l image series illustrate the approach 

and retraction parts of the cycle, respectively. The arrows are to assist in realizing the tip velocity 

direction. The frame dimensions are in nm.  

Finally, we visualized the tip-surface interaction in a single cycle of AM-AFM on an LDPE 

sample as characterized in Table 8. A series of figures illustrating the tip position and surface 

geometry at different time-steps are shown in Figure 35. The full video is provided in the 

supporting information. The finite-range attractive tip-surface forces cause the surface to deform 

slightly toward the approaching tip (Figure 35-c). When retracting, the soft, relaxed surface forms 

a meniscus around the tip profile and progressively detaches until it completely peels off and 

continues to gradually return to its initial state (Figure 35-g to i). Surface attractive forces cause 

the contact radius during retraction to become larger than the one during the approach. The unique 

model predictions of the tip-surface interaction phenomena qualitatively match well with in-situ 

experimental observations by confocal imaging of polymers during indentation [139].  
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4.9 Conclusion 

This works features an approach to enhance the computational part of Attard’s continuum 

mechanics viscoelasticity contact model. The enhancements implemented in 3 directions: 1) The 

model’s formalism is optimized to enable the explicit solution of the model’s governing 

differential equations, 2) Instead of using radial discretization, the deformed surface is 

reconstructed using a complete set of basis functions, 3) instead of forward Euler’s method, higher-

order numerical procedures are employed to solve the model’s ordinary differential equations. By 

implementing the enhancements, EAM is more than three orders of magnitude faster than the 

originally proposed computational model. Furthermore, the enhancements improve the 

computational stability of the model to better tolerate the surface nonequilibrium movements. 

EAM is a fast first-principles viscoelasticity model that is versatile in terms of the inclusion of 

various tip-surface interaction forces and surface linear viscoelasticity models. EAM was 

implemented within the AFM framework to predict force spectroscopy observables and dynamic 

approach/retract curves by AM-AFM. Moreover, we used EAM to calculate the time-resolved 

surface dynamics during a single tip-surface interaction cycle of AM-AFM. The excellent 

agreement between EAM simulation results and the ones by exact approaches verifies the accuracy 

of the developed approach. The achieved excellent accuracy and quick computations by EAM, 

facilitate making accurate and reliable predictions for AFM operations especially on soft, adhesive, 

and viscoelastic surfaces. 
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5. MECHANICAL PROPERTIES CHARACTERIZATION OF SOFT 

POLYMERS WITH SURFACE FORCES USING PEAKFORCE TAPPING 

AFM – A MACHINE-LEARNING APPROACH 

5.1 Introduction 

The atomic force microscopy (AFM) modes that can measure or reconstruct the complete 

tip-surface interaction force curves are widely used set of techniques to estimate the nanoscale 

mechanical properties of polymers. The variation of tip-surface interaction force with respect to 

the instantaneous tip-surface distance can either be represented as F vs. d, F vs. Z, or F vs time (t) 

curves, where d and Z are demonstrated in Figure 36-a. Classical force volume mapping (FVM) 

[11], PeakForce Tapping (PFT) [140], quantitative imaging (QI) [141], tapping mode AFM (TM) 

[9], and Fast Force Mapping (FFM) [142] are examples of various AFM modes that outputs the 

force curves at each probed point on the surface. These modes differ in terms of the utilized 

excitation frequency, the acquisition speed, designed control loops, and provided observables[141-

143] and can be classified into two main categories: 1- On-resonance modes, at which the 

excitation frequency coincides or overlaps the bandwidth of usually the first eigenfrequency of the 

microcantilever, . In this category of AFM modes, a force reconstruction process is required to 

link the mode observables to the associated F-d curve at each image pixel [144]. 2- Sub-resonance 

modes, at which the excitation frequency is usually well below the fundamental frequency of the 

microcantilever to avoid complexities associated with the cantilever resonance and its harmonics 

[145]. In sub-resonance modes, the base of the microcantilever is excited through an oscillatory 

waveform (triangular, sinusoidal, or other) at Z  frequency. The tip deflection, q(t), is monitored 

and recorded in real-time and transformed to tip-surface interaction force, tsF . The steady-state 

correlation between q(t) and tsF  is established by the quasi-static solution of the force spectroscopy 

that can be represented as an equivalent mass-spring model as demonstrated in Figure 36-b [146]. 

At each image pixel, a control loop adjusts Z to maintain the mode setpoint which is usually the 

maximum interaction force during imaging. This allows the extraction of the topography of the 

surface as well as acquiring F-d curves at each image pixel. The scanning speed with these modes 

is generally slower than the resonant modes and is proportional to the resonance frequency of the 

employed microcantilever, Z , and the time constant of the instrument’s lock-in amplifiers.   
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Figure 36. (a) Schematics of an interacting AFM microcantilever tip and a surface. The relevant 

parameters characterizing the tip-surface distance, tip deflection, and surface deformation are 

labeled and shown in the image. (b) The equivalent point-mass model representation for the 

uniform and rectangular microcantilever excited at a sub-resonant frequency. 

In Bruker PFT AFM a sinusoidal waveform is used to modulate Z [143]. The prescribed 

Z(t) in PFT AFM can be expressed as follows: 

Z ZZ(t) Z A cos( t) ,= +   (77) 
 

where, ZA  is the Z oscillation amplitude and Z Z2 f =   . The smooth and continuous 

sinusoidal Z velocity profile prevents artifacts due to piezoelectric tube oscillation that originates 

from the velocity profile discontinuity common in triangular Z modulation. Furthermore, this 

change reduces issues associated with dynamic mechanical coupling between harmonics of the 

triangular wave and the AFM instrument compartments. The improvements of PFT AFM 

compared to prior approaches enable the simultaneous topography mapping and force curves 

acquisition at a higher imaging speed, higher pixel resolution, and with better peak force control. 

The schematic shown in Figure 37 demonstrates various possible tip deflection and surface 

deformation during a PFT AFM cycle on a polymeric surface. When the retracting tip becomes 

fully detached from the surface, the microcantilever starts ringing freely without interacting with 

the surface. This high-frequency segment of the output signal is filtered out in PFT mode through 

averaging over a set of force curves at each image pixel and the use of denoising algorithms. 

However, despite the experimental advances, there is not yet a comprehensive, reliable, and 

rigorous method to quantitatively link the acquired F-d curves by PFT or other similar AFM modes 

for each pixel to the nanoscale mechanical properties of soft, viscoelastic, and adhesive polymers. 
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Figure 37. Schematic of PFT AFM on a soft sample. The dashed red-blue curve shows the 

trajectory of the microcantilever base during a cycle (Eqn. (77)). The black solid curve represents 

the tip deflection (q) during a cycle. The transient ringing signal of the retracting microcantilever 

occurs when the tip becomes fully detached from the surface. This part of the force curve is 

usually filtered out in PFT mode. 

In this work, we first develop a forward solution algorithm to predict the PFT force curves 

based on the material viscoelastic and adhesive properties. The proposed algorithm can be adapted 

for the similar sub-resonance modes introduced by other AFM manufacturers. The algorithm 

enables the inclusion of EAM into the forward simulation of the microcantilever and sample 

responses. We validate the proposed algorithm by comparing it with Attard’s original work [2] 

and with FE simulations. The validated algorithm is employed to conduct a parametric study that 

varies AFM operational parameters, microcantilever properties, and surface properties. In the 

second part of the work, we examine using a regression-based machine learning (ML) algorithm 

to tackle the inverse part of the problem and estimate the viscoelastic and adhesive properties of 

the sample based on a given force curve. We use the forward solution algorithm on a vast range of 

known input parameters selected by the Latin hypercube sampling method[120] to generate the 

required training dataset for the ML algorithm. The adhesive and viscoelastic properties of the 

studied polymeric surfaces are modeled by Lennard Jones pressure and standard linear solid (SLS) 

viscoelastic constitutive model, respectively.  
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Figure 38. The flowchart illustrates the two-step method used to estimate the material 

viscoelastic and adhesive properties based on an experimentally acquired PFT F-t curve. The 

procedure employs a machine learning algorithm that is trained by a dataset of forward 

simulation results.  

5.2 Theory 

In PFT AFM, the interaction between the tip of a microcantilever and a surface is monitored 

and recorded while the Z distance of the microcantilever is modulated by a sinusoidal waveform. 

The absolute deflection of the microcantilever at distance x from the base of the microcantilever 

and at time t, w(x, t) , is composed of two components: Z(t)  which is the prescribed Z-piezo 

motion, and u(x, t)  which is the transverse deflection of the beam in the non-inertial frame 

attached to the base: 

w(x, t) Z(t) u(x, t) .= +  (78) 
 

We model the deflection of the microcantilever in PFT AFM with partial differential 

equations (PDEs) of Euler-Bernoulli beam theory. Since Z , the Z modulation frequency of PFT 

mode is selected to be much less than  , the microcantilever’s fundamental frequency, 

( Z 1=  ), the inertial and damping terms of the beam PDEs become negligible and the 

model can be approximated as follows: 

tsk q(t) F (t),   (79) 

where k is the static spring constant of the microcantilever and q(t)  is the generalized coordinate 

represents the tip deflection at time t. Eqn. (79) can be represented as an equivalent spring-mass 
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model shown in Figure 36-b. the transient phenomena such as microcantilever ringing during 

retraction cannot be captured using the steady-state solution.  

 

Figure 39. The algorithm proposed in this work for predicting the F-d curve in PFT AFM. the 

axisymmetric tip profile is defined by tipf (r) . 

We use EAM to calculate tsF  in Eqn. (79). The EAM model allows including different 

linear viscoelasticity models such as the ones with single relaxation time such as KV, Maxwell, 

standard linear solid (SLS), or power-law rheology (PLR) models or the ones with multiple 

relaxation times such as the generalized Maxwell model also known as Prony series. EAM is 

versatile in terms of including various tip-surface interaction forces such as electrostatic, capillary, 

or van der Waals forces. In this work, we model the surface viscoelasticity and tip-surface 

interaction by the SLS model and Lennard-Jones pressure (LJ) equations, respectively. The creep 

compliance function, J(t) , of an SLS viscoelasticity element is:  

t0

0

1 E E
J(t) e

E E E

− 

 

−
= +  (80) 

where, E , 0E , and   are long term modulus, short term modulus, and retardation (creep) time of 

the surface, respectively. LJ pressure equation predicts the interaction force per unit area between 

two parallel and infinite surfaces with distance h  as follows: 
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 
= − 

  
 (81) 

where 0z  and H are the intermolecular equilibrium distance and Hamaker constant of interacting 

surfaces, respectively. 

In EAM, a set of bn  radial cosine terms as even biorthogonal functions are used to 

reconstruct the deformed surface profile, u(r, t) , at each time step:   

bn

i

i 0 d

r
u(r, t) a (t) cos(i ) ,

r=

=   (82) 

where r is the radial distance from the central symmetry axis (Figure 36a) and dr  indicates the 

computational domain beyond which the tip-sample interaction is considered negligible. The 

matrix representation of the numerical solution of the model’s governing differential equations at 

each timestep can be demonstrated as the multiplication of inverse of a Jacobean matrix J and a 

vector b, defined as follows: 

1

i ij ja (t) J b ,−=  (83) 

dr

ij j ij j

0,s d0

1 s
J p (h(s, t)) cos(i ) s (s) ds ,

E r
=   −   (84) 

d dr r

j

j j j j

,s 0,s0 0

a (t) 1 d(t)
b p(h(s, t)) s (s) ds p (h(s, t)) s (s) ds ,

E E

=  +  + 
     (85) 

where, h(r, t)  is the tip-surface distance at radius r and time t (Figure 36a). 

p (h(r, t)) dp(h(r, t)) d h(r, t) = , d(t) dd(t) d t= , ij  is the Kronecker delta, and 0,sE / ,sE  are 

reduced short/ long term modulus of the sample, defined as follows: 

2

0,s

0
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1
E ,

E

1
E ,

E




−
=

−
=

 (86) 

where,   is the Poisson’s ratio of the surface. The time-independent variables j(s)  and j  are 

defined as: 
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dr

j

d0

s
(s) cos( j ) k(r,s) dr ,

r
 =   (87) 

dr

2

j

d0

s
cos ( j ) dr ,

r
 =   (88) 

where the kernel term of the integral in Eqn. (87), k(r,s) , is expressed in terms of the complete 

elliptic integral of the first kind[81] of the surface, K , as follows: 

2 2

2 2

4
K(s r ) s r

r
k(r,s) .

4
K(r s ) s r

s


 

= 
 


 (89) 

The EAM parameters and the employed computational methods and enhancements are 

further elaborated in chapter 4. The tip-surface interaction force, tsF (t) , for each time-step is 

calculated by integrating the tip-surface interaction forces over the whole computational domain: 

dr

ts

0

F (t) 2 p(h(r, t) r dr .=    (90) 

Then, we propose an algorithm (Figure 19) that predicts PFT force curves when a 

microcantilever with a prescribed sinusoidal Z motion interacts with a surface with known 

viscoelastic and adhesive properties. The algorithm has a loop in which the guessed tip deflection 

for each timestep, gq , is corrected at each iteration until calculated tsF (t)  using EAM becomes 

equal to gk q   as in Eqn. (79). Subsequently, all the predicted parameters including u(r, t) , 

h(r, t) , q(t) , and tsF (t)  for that instance are recorded. This procedure continues for all timesteps 

of an oscillation cycle and then, the force curve prediction process is complete. The subscript “ g ” 

denotes a guessed value for a parameter. 
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Figure 40. (a) Developed FE model includes a spherical rigid indenter which on one side 

interacts with a surface and from the other side is connected to an oscillating plate by a linear 

spring. This ensemble represents the sub-resonant excited cantilever in PFT AFM. (b) The 

agreement between the F-Z curves predicted by the proposed model and the FE model is 

presented in this graph. The surface adhesive forces are not included in the FE model. The inset 

shows the effective von Mises stress distribution during the interaction time. 

5.3 Validation of the proposed algorithm 

To ensure the validity of the proposed algorithm, we first compare its predictions with the 

ones by a developed finite element (FE) model with identical input parameters. In the developed 

axisymmetric FE model, a spring element with constant k connects a rigid spherical indenter to a 

moving base element (Figure 40a). We constrained the contact between the sample with a fixed 

bottom surface and the indenter to be frictionless. The results are tested to be grid-independent and 

a refined adaptive meshing around the indentation zone on the sample is implemented to assure 

obtaining reliable accuracy. FE simulations were conducted in Abaqus CAE (version 14, Simulia 

Corp., Providence, RI) environment. The comparison between the resultant F-Z curves for the 

same input parameters demonstrates excellent consistency (Figure 40b). The difference in the 

attractive part of the force curve is due to the neglect of surface long-range forces in the developed 

FE model. The surface properties used in these simulations are: 0E 3.87 GPa= , E 1.94 GPa = , 

0.1s = , 20H 1 10 J−=  , and 0z 0.3 nm= . The base of a cantilever with a spherical tip with R=15 

nm oscillates through a triangular waveform with 1 Hz frequency and 100 nm amplitude.  
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Figure 41. F-Z predictions by the proposed model and the ones provided in Attard’s original 

Work for two different tip velocities. The identical employed surface properties in both models 

are: 0E 10 GPa= , 0E 1GPa= , 1 ms = , 19H 1 10 J−=  , and 0z 0.5 nm= . Tip radius is R = 10

m . The velocities of Z triangular waveforms are different between graphs: (a) 5 m / s  , (b) 

2 m / s  , (c) 1 m / s  . 

Next, we assess the agreement between the predictions of the proposed model and the ones 

presented in Attard’s original work for prescribed triangular tip motions with three different 

velocities (Figure 41). Since the employed model by Attard does not include the cantilever 

mechanics, we select to use a very large value for the spring constant to minimize the tip deflection 

during the interaction cycle and facilitate comparison between results. The employed surface and 

cantilever properties are identical with the ones used in Attard’s work and are listed in the caption 

of Figure 41. 

5.4 Computational results 

To further visualize the physics of PFT AFM on soft polymers, we employed the proposed 

algorithm to perform a single cycle PFT AFM simulation on an elastomer sample. The results are 

illustrated in Figure 42. The elastomer viscoelastic properties, which are represented by an SLS 

model, as well as the PFT operational parameters for this simulation are listed in column ‘*’ of 

Table 11. The predicted q(t)  and tsF (t)  are illustrated in Figure 42a and Figure 42b, respectively.  
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Table 11. Operational and material characterization used in simulations for visualizing the 

cantilever-sample interaction in PFT mode of operation and parametric study. The colored cells 

are the parameters whose effect on the predicted F-d curves are studied and the employed range 

for each is mentioned in the legends of each of the sub-figures in Figure 43 with the same label. 

 * a b  c d e f g h i 

R (nm) 30 30 30 30 30 30 30  30 30 

k (N/m) 5 5 5 5 5 5  5 5 5 

f (kHz) 2 2 2 2 2 2 2 2 2  

ZA  (nm) 100 100 100 100 100 100 100 100  100 

0E  (GPa) 1 1 1 1   1 1 1 1 

E (GPa) 0.1 0.1 0.1  0.1  0.1 0.1 0.1 0.1 

H (
2010 J−

) 8  8 8 8 8 8 8 8 8 

0z  (nm) 0.31 0.31  0.31 0.31 0.31 0.31 0.31 0.31 0.31 

 

During the tip approach, the long-range attractive forces between the axisymmetric rigid 

tip and the surface cause the microcantilever to deform downward toward the surface. 

Simultaneously, on the sample side, as shown in u(r 0, t)=  graph (shown as the dashed line in 

Figure 42a), the attractive forces cause the surface to gradually rise upward from its initial flat 

state. Eventually, when tsF  gradient exceeds the microcantilever stiffness, k, the tip of the 

deflected down microcantilever and the bulged surface meet each other above the undeformed 

surface level through a rapid non-equilibrium phenomenon so-called “snap-in” (also known as 

jump into contact). The snap-in instance of the cycle is labeled as   in Figure 42a and its associated 

surface deformation, u(r, t) , and the pressure distribution over the computational domain, p(r, t) , 

are shown in Figure 42c and Figure 42g, respectively. By further approaching, the total interaction 

force between the tip and the surface gradually switches to repulsive and the microcantilever 

deflects upward, accordingly. 

When tsF (t)  reaches the peak force setpoint, the cantilever begins to retract. Instances 

labeled as II  and III  in Figure 42a, with associated u(r, t)  shown in Figure 42d and Figure 42e, 

and p(r, t)  shown in Figure 42h and Figure 42i, respectively, are meant to represent this part of 

the cycle. As seen in Figure 42h and Figure 42i, while the total tip-surface interaction is repulsive, 

the predicted pressure distribution over the contact region by the algorithm includes a central 

repulsive part surrounded by regions with distributed attractive pressures. During retraction, the 

central repulsive region progressively shrinks and the tip-surface interaction regime on those areas 
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convert to attractive. As shown in Figure 42a, when tsF (t) 0=  during retraction the surface is still 

below the undeformed level ( u(r 0, t) 0=  ) and the material needs more time to complete the 

return process. If there are no attractive forces between tip and sample, the tip detaches the yet 

indented surface when tsF (t) 0= . However, in the simulated example, the long-range attractive 

forces prevent this. The attractive forces cause the surface to form a meniscus around the retracting 

tip profile and detachment occurs through a gradual “peeling off” process. In this process, the 

outermost areas of the contact region on the surface gradually detach the tip until it fully separates 

through another non-equilibrium phenomenon so-called “snap-off” (labeled as IV  in Figure 42a). 

The associated u(r, t)  and p(r, t)  for this instance are shown in Figure 42f and Figure 42j, 

respectively. When the final detachment happens, the surface begins to relax to its original state 

by its timescale. The situation of the surface when snap-off occurs depends on the material 

viscoelastic properties and the operational parameters. In this work, we assume the surface will be 

provided enough chance to return to its original state before being hit by the subsequent tap. The 

obtained insightful predictions about the cantilever-sample interaction in PFT AFM using the 

proposed algorithm cannot be fully achieved using any of the classical models such as Hertz, JKR 

(Johnson, Kendall, and Roberts), DMT, or Ting’s model.  
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Figure 42. Simulation results for a single cycle of PFT AFM on an elastomer sample. The 

labels for each sub-figure are specified at its bottom left. The operational parameters and 

cantilever and surface properties are listed in Table 11 under column “*”. Graph (a) illustrates 

the tip deflection and surface deformation at r=0 (dashed line) during interaction time and graph 

(b) depicts the predicted F-d curve. The red and blue segments of these graphs represent the 

approach and retraction phases of the cycle. 4 instances during the interaction time including 

snap-in and snap-off phenomena are marked with vertical dotted lines and labeled as  ,  ,  , 

and IV  in the graph (a). The predicted surface deformation as well as the tip position at these 

instances are shown in (c), (d), (e), and (f) graphs, respectively. The associated pressure 

distribution over the contact region at these instances are also shown in (g), (h), (i), and (j) 

graphs, respectively. The green and red areas in (g), (h), (i), and (j) graphs represent attractive 

and repulsive interaction pressures, respectively. 
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Figure 43. Predicted F-d curves variation when the operational parameters and surface 

viscoelastic/adhesive properties are systematically changed. The labels for each sub-figure are 

specified at its bottom left. At each of the graphs except (c), only one of the parameters which 

are specified in the legend is changed and other surface properties or operational parameters are 

identical. At (c), both 0E  and E  are changed while the 0E E  ratio remains constant. Full 

input parameters used for each set of simulations are listed in Table 11 with the same label 

specified at each graph. For all these simulations 1 s =  . Arrows are intended to visually help 

to distinguish the predicted changes on the F-d curves by increasing the parameter of interest at 

each sub-figure. 

We conducted a series of parametric studies at which the effect of variation of 

microcantilever/ surface properties or operational parameters on the predicted PFT force curves 

are systematically evaluated (Figure 43). The input parameters employed for each of these sets of 

simulations are listed in Table 11 with the same labeling word as shown in Figure 43 graphs. The 
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predictions show that the adhesion force variation through H and 0z  has a stronger effect on the 

retraction segment of the F-d curve and the approach segment and its slope remains almost 

unchanged (Figure 43a and Figure 43b, respectively). The higher tip-surface adhesion leads to a 

longer “peeling off” process, i.e., outermost regions of the contact zone become more resistant to 

detach the tip profile. For soft polymers, the surface follows the tip to a height above its 

undeformed state, and simultaneously the cantilever deflects further downward before detachment. 

Changing surface adhesion does not lead to a considerable change in the indentation depth.  

Figure 43c, Figure 43d, and Figure 43e depict the F-d curve variation due to change of SLS 

parameters (Eqn. (80)) with a constant 1 s =   which is much smaller than the interaction time. 

Either increasing 0E  when E  is constant or decreasing E  when 0E  is constant leads to force 

loops with greater hysteresis. When   the interaction time, the majority of the surface on the 

contact zone have enough chance to transit its stiffness from 0E  to E  and the increased 

dissipation due to E  reduction cause the whole force curve reshapes (Figure 43c). However, 

boosted dissipation due to 0E  increase manifests itself mainly in the attractive part of the retraction 

segment of the force curve (Figure 43d). Therefore, when   the interaction time, E change 

will more significantly affect the resultant F-d curve. In Figure 43e, we change both 0E  and E  

while their ratio 0E E  (Deborah’s number) remains constant. The resultant F-d curve variation 

is a mixture of both effects seen when either 0E  or E  changes.  

Then we examine the predicted F-d curve variation due to change of microcantilever 

properties including microcantilever stiffness, k (Figure 43f) and Tip radius, R (Figure 43g). The 

microcantilever deflection, q, proportionally changes with its k value variation, but the indentation 

depth, tip trajectory, and sample deformation during the interaction time do not noticeably change. 

When all the parameters are identical except microcantilever stiffness, a softer microcantilever 

spends more time interacting with the surface than a stiffer microcantilever. That is since the snap-

in/off with the surface for the softer microcantilever occurs earlier/later than a stiffer one. As 

described earlier, the snap-in/off phenomenon are results of the mutual contribution of the surface 

and the microcantilever to minimize the interaction energy between the approaching/retracting tip 

and the surface. The amount of contribution of the surface or the microcantilever in these processes 

depend on the surface/microcantilever properties and adhesion force between them. When we 
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employ a softer microcantilever, its more flexibility leads to its more contribution during the snap-

in/off instances. Variation of the microcantilever’s tip radius, R, does not noticeably influence the 

length of the interaction time and its effect on the predicted F-d curves is mainly due to an increase 

of the contact radius (Figure 43g). This leads to a decrease in indentation depth and an increase in 

pull-off force as tip radius increases. When   to interaction time ratio is smaller than 1, ZA  

(Figure 43h) and f (Figure 43i) reduction leads to less dissipative F-d loops. This trend is inverse 

when   to interaction time ratio is greater than 1.  

5.5 Regression-based machine-learned predictive models 

Using data analytics strategies in material science to predict the material’s characteristics, 

response, or behavior emerges as an efficient and accurate alternative for computationally solving 

the fundamental governing equations or conducting a comprehensive set of experiments [147]. 

The resultant surrogate machine learning models provide predictive capabilities based on 

recognizing the underlying patterns in the past data. When there is not an established theoretical 

model to connect the observables to the material characteristics or it is hard to perform 

measurements or computations using traditional techniques, data-centric informatics methods are 

favorable. These methods typically involve a “descriptor” selection phase in which the proper 

number of observables as input parameters of the model are carefully chosen. The descriptors may 

have different units and scales and therefore, implementing a scaling process to assimilate their 

scales is recommended. Then, a learning algorithm maps between the descriptors and the material 

properties of interest using a linear [148] or nonlinear regression-based technique such as support 

vector regression (SVR)[149], random forest regression (RFR)[150], or multilayer neural 

networks (MLP)[151]. We need to have an inclusive set of material characteristics with known 

associated descriptors to train the learning predictive algorithm. Usually, different combinations 

of selected descriptors and various learning algorithms are examined to determine the 

configuration that delivers the optimized predictive performance.  

As illustrated earlier, the forward EAM-based algorithm predicts PFT force curves based 

on known material/cantilever properties and PFT operational parameters. However, there is not a 

straightforward way to tackle the inverse problem i.e., estimating the material properties according 

to a given force curve and its associated cantilever properties and PFT operational parameters. The 

complexity of the inverse problem of the proposed algorithm is partly due to the way the tip-
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surface interaction force is calculated by EAM. As shown earlier, for each instance during the 

interaction cycle with known tip position/velocity with respect to the undeformed surface, EAM 

first predicts the deformed surface velocity/position profile and then, calculates tsF  by integrating 

over all interacting tip-surface radial elements. This indirect established link between tip 

position/velocity and the associated tsF  complicates the pathway for the inverse solution of the 

problem. Therefore, we utilize the predictions of the proposed forward algorithm as the training 

data for a data analytics-based inverse solution. This model is expected to map the problem 

descriptors which are the given F-t curve, the utilized microcantilever properties, and PFT 

operational parameters to the material viscoelastic and adhesive properties. The training dataset 

with known descriptors and associated material properties are split into two portions: a training set 

and a test set. We use these sets to train and evaluate the performance of the ML algorithm, 

respectively.  

 

Figure 44. The used F-t curve parametrization method. The red dots shown on the curve are the 

15 representative <F, t> pairs for the stable regions of an F-t curve acquired on a polyolefin-

based elastomer (Engage 8003, The Dow Chemical Company). 

Simulated F-t curves need to be parametrized to a set of representative values acting as ML 

model descriptors. To do so, we split the F-t curve into three segments as illustrated in Figure 44 

on an F-t curve acquired on a polyolefin-based elastomer (Engage 8003, The Dow Chemical 

Company): (a): Approach/ attractive, (b): repulsive, and (c): retraction/ attractive. To parametrize 

the F-t curve, we first determine and record the maximum retraction or attractive tip-surface 
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interaction force for each of these segments as well as their associated nondimensionalized time 

instance (3 points): max,max,
F , t f

  where :  a, b, and c. Then, the following 12 <F, t> pairs 

on the stable parts of the given F-t curve, as marked in Figure 44, are recorded:  i imax,
F , t f


    

where: i 1, 2, 3=  and i 0.75, 0.5, and 0.25 = . Each i  when b =  has two associated 

nondimensionalized time instances. Using this method, the stable parts of a given F-t curve can be 

represented by total of (12+3=15) <F, t> pairs with 18 independent values. These values along 

with the tip radius, R, and cantilever stiffness, k, constitute the problem descriptors (total 20 

values).  

The forward solution algorithm generates a set of predicted F-t curves for an associated 

known operational and microcantilever parameters and sample viscoelastic properties. For these 

set of simulations, we assume ZA 50 nm= , Zf 2 kHz= , 0z 0.3 nm= , 0.5 = , and 5 s =  . The 

defined ranges for Z and other material/ microcantilever parameters for the training set simulations 

are shown in Table 12. These ranges are defined based on the expected properties for elastomer 

samples and Bruker RTESPA-150-30 probes. The input parameters for the training set simulation 

are randomly selected over these defined ranges using the Latin hypercube sampling (LHS) 

method [120]. We use two different predictive regression algorithms, support vector regression 

(SVR) [149] and multi-layer neural network (MLP) [151], to connect the model descriptors to the 

output parameters: E , 0E , H , and Z. For each of these algorithms, we use a grid-based search 

to optimize the regression parameters such as kernel type for SVR or size of the hidden layers for 

MLP. We use a k-fold cross-validation technique to avoid overfitting the employed regression 

algorithms to the training data [152]. In the k-fold cross-validation technique, first, the training 

dataset is divided into k portions with an almost identical number of samples and then, the 

predictive performance of the algorithm is k times evaluated (we use k=5 for this work). At each 

of these k times, one of the k portions of the dataset is considered as the test set and the remaining 

k-1 portions are used to train the algorithm. The optimal parameters for the algorithms are the ones 

that deliver the minimum cross-validation error comparing with others. Since the descriptors and 

output parameters are in various scales/ units and also to reduce the impact of outliers, we 

independently scaled each of these training data parameters using a robust non-linear 

preprocessing technique so that each follows a normal distribution. Due to various scale of the 
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output material properties, we calculate the error of the model predictions based on the “mean 

absolute percentage error” (MAPE) which is defined as: 

n
t t

t 1 t

100% A P
MAPE ,

n A=

−
=   

(91) 

where, n is the number of the predictions and tA  and tP  are the actual and the ML prediction 

values, respectively.  

 

Table 12. The ranges for Z and other material/ microcantilever parameters for the training set 

simulations. These ranges are defined based on the expected properties for elastomer samples 

and Bruker RTESPA-150-30 probes. The input parameters for the training set simulation are 

randomly selected over these defined ranges using the Latin hypercube sampling (LHS) method 

[120]. 

R (nm)  k (N / m)  Z (nm)  0E (GPa)  E (GPa)  20H ( 10 J)−  

30 10  5 2  42 4  4.5 4  0.11 0.09  20 15  

 

A typical set of predictive accuracy evaluation charts for SVR and MLP models is 

illustrated in Figure 45. In each of these charts, the actual and predicted values, which are ideally 

supposed to be equal (represented by the dashed red lines), for one output parameter are compared 

for the employed ML models. The calculated MAPE for each of the output parameters are listed 

in Table 13, based on 10 times using the predictive models on the training data. For each of these 

times, 20% of the training dataset is randomly selected as the test set and the model is trained with 

the rest of the data.  

Table 13. the evaluation results for the ML models’ predictive accuracy. The employed test 

percentage used in these evaluations is 20%. 

model E  0E  H  Z  

MLP 4.3 0.4 %  28.4 6.5 %  5.2 0.6 %  0.3 0.1%  

SVR 3.8 0.8 %  26.9 9.5 %  5.0 1.1%  0.3 0.1%  
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Figure 45. A typical set of the models’ predictive accuracy evaluation charts when 20% of the 

training data is considered as test data. In these charts, the actual and predicted values, which 

ideally supposed to be equal (represented as dashed red lines), for E , 0E , H , and Z  using each 

of the employed ML models are illustrated and compared. 

Except for 0E , both SVR and MLP models provide almost equally acceptable predictive 

accuracy. MLP predictions undergo less accuracy variation comparing with SVR and lead to a 

smaller number of outliers. We hypothesize that the weaker predictive performance for 0E  by both 

regression models is due to the reduced sensitivity of the simulation F-t curves to their associated 

0E  values in the training dataset. The low 0E  sensitivity is a consequence of the selected   for the 

material which is  the interaction time. This causes the creep compliance function of the 

material, Eqn. (80), converges to its associated E  at early stages of the interaction and in the 

following instances J(t) 1 E . This limits the effect of 0E  on the resultant F-t curve and 

consequently, a range of 0E  values may lead to almost the same simulated F-t curves. This causes 
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the pattern recognition process by the ML model to become challenging. Furthermore, it shows 

that when using the SLS viscoelasticity element to represent the viscoelasticity behavior of the 

sample, the selection for   to interaction time ratio regulates the influence level of 0E  and E  

values on the resultant F-t curves. With the analogous reasoning, a similar issue with E  when 

  the interaction time is expected. Nonetheless, the acceptable accuracy of the models’ 

predictions for Z, E , and H shows the regression-based models’ ability to tackle the inverse 

problem.  

5.6 Conclusions 

We demonstrate the utilization of EAM as an advanced 3-dimensional viscoelastic model 

in the context of PFT.  Analysis of the results enables a better understanding of the mutual 

interaction between the microcantilever and the sample during a PFT cycle. The results highlight 

the effects of viscoelasticity and long-range surface forces and can accurately capture complex 

dynamics such as sample necking and energy loss due to peeling away of the surface from the 

retracting tip. The computational parametric study depicts the role of sample properties, 

microcantilever properties, and PFT operational parameters on the predicted force curves. Finally, 

we presented a data-analytics approach to estimate the material viscoelastic and adhesive 

properties based on an observed force curve. We compared using two regressive based algorithms 

to tackle the inverse problem and concluded the multilayer neural network model leads to fewer 

outliers on the test data. The demonstrated algorithm enables rigorous, first principles viscoelastic 

contact mechanics models to be applied to PFT AFM simulations and experiments.  
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6. CONCLUSIONS AND FUTURE WORK 

6.1 Contributions of This Thesis 

The research works reported in this thesis contribute to the active scientific efforts toward 

characterizing the soft viscoelastic materials, such as polymers and biological samples at the 

nanoscale. The proposed methodologies/ algorithms and obtained results in this thesis provide 

considerable advancement and insight to better understanding the complexities associated with 

using AFM to characterize soft-viscoelastic-adhesive samples. Specifically, the main contributions 

of this thesis are a) to present a fast, rigorous, and 3-dimensional viscoelastic model (EAM), b) to 

embed this model into selected AFM modalities’ framework through proposing algorithms, and c) 

to employ the proposed algorithms to predict/ interpret AFM modes observables/ acquired images. 

These contributions are briefly reviewed in the next paragraphs. 

In this thesis, we introduce EAM which is a computationally enhanced continuum 

mechanics viscoelasticity contact model based on the model proposed by Attard et al. [2]. The 

achieved excellent accuracy and quick computations by EAM addresses an important gap in using 

the existing AFM-based nanoscale viscoelastic/adhesive properties measurement techniques for 

the soft-adhesive-viscoelastic surfaces. To understand the tip-surface interaction on such samples, 

we need a physical model that accurately and comprehensively accounts for the effects of the 

surface viscoelasticity/ dynamics as well as the long-range surface forces. The existing AFM-based 

nanoscale mechanical properties measurement techniques often use simplistic ad hoc contact 

models that do not rigorously account for these effective tip-surface interaction parameters. The 

shortcomings of ad hoc viscoelasticity contact models can result in inaccurate predictions for the 

material properties, especially when used on soft-adhesive-viscoelastic samples. They also may 

lead to artifacts in the predictions such as the ones elaborated in this thesis. 

 Despite the advantages of EAM in comparison with common ad hoc viscoelasticity 

models, its implementation to model AFM modes is challenging. Like other continuum mechanics-

based viscoelasticity contact models, EAM does not lead to a closed-form solution connecting the 

indentation depth to the tip-surface interaction force and its understanding/ implementation is 

complex. Furthermore, its complexity leads to more time-consuming and expensive computational 

needs. In this thesis, we propose algorithms to tackle the forward problem in which the tip-surface 



 

 

119 

interaction is predicted by EAM for selected AFM modes: AM-AFM, bimodal AFM, and PFT 

AFM. These algorithms enable making reliable predictions for the tip-surface interaction 

phenomena on such samples when the effective parameters are rigorously and comprehensively 

accounted for. They establish a link between the material/ microcantilever/ operational parameters 

to the associated AFM mode observables. Furthermore, they enable visualizing the various 

phenomena that occur during an interaction cycle either on the sample or microcantilever side.  

The inverse problem i.e., linking the AFM modes observables and the material viscoelastic 

and adhesive properties using EAM is not straightforward. The lack of having a closed-form 

solution connecting the relative position of tip-surface to the interaction force necessitates using 

data-analytics-based approaches to tackle the inverse problem. In this thesis, we examine and 

present using linear regression and machine learning algorithms to connect bimodal AFM and PFT 

AFM observables to the material viscoelastic and adhesive properties. These multivariate data-

analytics approaches are first trained on a set of data generated using the forward solution 

simulations. These simulations are performed based on randomly but systematically selected input 

parameters on an appropriate range for sample properties and microcantilever/ operational 

parameters.  

6.2 Future Research Directions 

1- Despite the improvements offered by introducing EAM (chapter 4), the complexity 

of the continuum mechanics-based viscoelasticity contact models, both from understanding and 

implementation perspectives, limits their common utilization. So, simplifying these models, either 

for predicting AFM observables or interpreting AFM images to estimate the samples’ mechanical 

properties, is highly encouraging. The data-centric Physics-informed learning algorithms assist in 

the identification of closed-form governing equations that can characterize the physical behavior 

of a system [153]. The learned correlations through these algorithms can be considered as a 

surrogate model that relies on the recognized underlying dynamics of the system instead of a large 

number of fitting parameters. These types of models enjoy an enhanced extrapolation and 

generalization capability which is not usually possible for common machine learning algorithms. 

These types of models can specifically of interest to the complex dynamic phenomena for which 

acquiring a direct solution is not achievable. The size of the required training data depends on the 

system's complexity and stochasticity. The training dataset can be either from the experimentally 
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measured or simulation results. As an example of such models, the “symbolic regression” 

algorithm leads to an explicit solution form of f (y, )  for the system in which   are coefficients 

of a selected complete set of basis functions, (y) , such as polynomials: f (y, ) (y) =  . The 

  coefficients are determined through training the algorithm with a proper set of experimental or 

simulation data [154]. The “sparse identification of nonlinear dynamics (SINDY)”, another 

example of such algorithms, uses an extra term in the loss (error) function to minimize the number 

of terms in (y)  to accurately characterize the behavior of the system [155]. These type of 

techniques which has immense potential for application across various fields may assist in 

discovering an accurate governing equation that solves the forward problem and paves the path for 

a more straightforward EAM-based inverse solution. Furthermore, using these data-fueled 

techniques helps the computational robustness of EAM. 

2- Acquiring PFT AFM experimental data on a set of soft-viscoelastic-adhesive 

polymeric samples and apply the proposed ML regressive model to experimental F-t curves, 

complements the work done in chapter 5. It is specifically of interest due to the vast utilization of 

PFT AFM to characterize polymeric samples which are mainly accomplished by using ad hoc 

viscoelasticity contact models. As described in the thesis, since the common ad hoc viscoelastic 

models do not comprehensively account for the physical phenomena that occur during tip-surface 

interaction on soft-viscoelastic-adhesive samples, their utilization may lead to non-reliable 

predictions. Therefore, illustrating the proposed regressive-based ML model’s ability to tackle the 

inverse problem of a rigorous viscoelastic model that can be used on acquired experimental F-t 

data is highly favorable. furthermore, the proposed model enables characterizing the surface both 

in terms of the viscoelastic properties and surface adhesions, rather than the limitations of the 

common models to characterizing the surface adhesion.  

3- Deployment of the proposed algorithms in this thesis on VEDA, the online AFM 

simulation platform of the group which is freely available to researchers/ industries. The provided 

accessibility through implementing these algorithms as a new set of tools on VEDA will assisting 

obtaining reliable predictions based on a rigorous viscoelastic contact model without dealing with 

its inherent complexities.    
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